WorldWideScience

Sample records for polarized hydrogen jet

  1. Experimental study of hydrogen jet ignition and jet extinguishment

    International Nuclear Information System (INIS)

    Wierman, R.W.

    1979-04-01

    Two phases are described of an experimental study that investigated: (1) the ignition characteristics of hydrogen--sodium jets, (2) the formation of hydrogen in sodium--humid air atmospheres, and (3) the extinguishment characteristics of burning hydrogen--sodium jets. Test conditions were similar to those postulated for highly-improbable breeder reactor core melt-through accidents and included: jet temperature, jet velocity, jet hydrogen concentration, jet sodium concentration, atmospheric oxygen concentration, and atmospheric water vapor concentration

  2. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)

    2010-04-15

    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  3. Analysis of jet flames and unignited jets from unintended releases of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Houf, W.G.; Evans, G.H.; Schefer, R.W. [Sandia National Laboratories, Livermore, CA 94551-0969 (United States)

    2009-07-15

    A combined experimental and modeling program is being carried out at Sandia National Laboratories to characterize and predict the behavior of unintended hydrogen releases. In the case where the hydrogen leak remains unignited, knowledge of the concentration field and flammability envelope is an issue of importance in determining consequence distances for the safe use of hydrogen. In the case where a high-pressure leak of hydrogen is ignited, a classic turbulent jet flame forms. Knowledge of the flame length and thermal radiation heat flux distribution is important to safety. Depending on the effective diameter of the leak and the tank source pressure, free jet flames can be extensive in length and pose significant radiation and impingement hazard, resulting in consequence distances that are unacceptably large. One possible mitigation strategy to potentially reduce the exposure to jet flames is to incorporate barriers around hydrogen storage equipment. The reasoning is that walls will reduce the extent of unacceptable consequences due to jet releases resulting from accidents involving high-pressure equipment. While reducing the jet extent, the walls may introduce other hazards if not configured properly. The goal of this work is to provide guidance on configuration and placement of these walls to minimize overall hazards using a quantitative risk assessment approach. The program includes detailed CFD calculations of jet flames and unignited jets to predict how hydrogen leaks and jet flames interact with barriers, complemented by an experimental validation program that considers the interaction of jet flames and unignited jets with barriers. As a first step in this work on barrier release interaction the Sandia CFD model has been validated by computing the concentration decay of unignited turbulent free jets and comparing the results with the classic concentration decay laws for turbulent free jets taken from experimental data. Computations for turbulent hydrogen

  4. Polarization and Structure of Relativistic Parsec-Scale AGN Jets

    International Nuclear Information System (INIS)

    Lyutikov, M

    2004-01-01

    We consider the polarization properties of optically thin synchrotron radiation emitted by relativistically moving electron-positron jets carrying large-scale helical magnetic fields. In our model, the jet is cylindrical, and the emitting plasma moves parallel to the jet axis with a characteristic Lorentz factor Λ. We draw attention to the strong influence that the bulk relativistic motion of the emitting relativistic particles has on the observed polarization. Our computations predict and explain the following behavior. (1) For jets unresolved in the direction perpendicular to their direction of propagation, the position angle of the electric vector of the linear polarization has a bimodal distribution, being oriented either parallel or perpendicular to the jet. (2) If an ultra-relativistic jet with Λ >> 1 whose axis makes a small angle to the line of sight, θ ∼ 1/Λ, experiences a relatively small change in the direction of propagation, velocity or pitch angle of the magnetic fields, the polarization is likely to remain parallel or perpendicular; on the other hand, in some cases, the degree of polarization can exhibit large variations and the polarization position angle can experience abrupt 90 o changes. This change is more likely to occur in jets with flatter spectra. (3) In order for the jet polarization to be oriented along the jet axis, the intrinsic toroidal magnetic field (in the frame of the jet) should be of the order of or stronger than the intrinsic poloidal field; in this case, the highly relativistic motion of the jet implies that, in the observer's frame, the jet is strongly dominated by the toroidal magnetic field B φ /B z (ge) Λ. (4) The emission-weighted average pitch angle of the intrinsic helical field in the jet must not be too small to produce polarization along the jet axis. In force-free jets with a smooth distribution of emissivities, the emission should be generated in a limited range of radii not too close to the jet core. (5) For

  5. Hydrogen jet recombination under postulated LMFBR accident conditions

    International Nuclear Information System (INIS)

    Wierman, R.W.

    1977-01-01

    Certain conditions may be postulated in LMFBR risk assessments for which the potential of hydrogen release to the reactor containment building needs to be evaluated. The inherent self-ignition characteristics of hydrogen jets entering the air atmosphere of the reactor containment building should be understood for such analyses. If hydrogen jets were to self-ignite (recombine) at the source where they enter the reactor containment building, then undesirable hydrogen accumulation would not occur. Therefore, experiments have been conducted investigating the phenomena associated with the recombination of hydrogen jets under conditions similar to those postulated for LMFBR studies. The data presented define the conditions required for self-ignition of the hydrogen jets

  6. Polarized Emission from Gamma-Ray Burst Jets

    Directory of Open Access Journals (Sweden)

    Shiho Kobayashi

    2017-11-01

    Full Text Available I review how polarization signals have been discussed in the research field of Gamma-Ray Bursts (GRBs. I mainly discuss two subjects in which polarimetry enables us to study the nature of relativistic jets. (1 Jet breaks: Gamma-ray bursts are produced in ultra-relativistic jets. Due to the relativistic beaming effect, the emission can be modeled in a spherical model at early times. However, as the jet gradually slows down, we begin to see the edge of the jet together with polarized signals at some point. (2 Optical flash: later time afterglow is known to be insensitive to the properties of the original ejecta from the GRB central engine. However, a short-lived, reverse shock emission would enable us to study the nature of of GRB jets. I also briefly discuss the recent detection of optical circular polarization in GRB afterglow.

  7. Linear Polarization Properties of Parsec-Scale AGN Jets

    Directory of Open Access Journals (Sweden)

    Alexander B. Pushkarev

    2017-12-01

    Full Text Available We used 15 GHz multi-epoch Very Long Baseline Array (VLBA polarization sensitive observations of 484 sources within a time interval 1996–2016 from the MOJAVE program, and also from the NRAO data archive. We have analyzed the linear polarization characteristics of the compact core features and regions downstream, and their changes along and across the parsec-scale active galactic nuclei (AGN jets. We detected a significant increase of fractional polarization with distance from the radio core along the jet as well as towards the jet edges. Compared to quasars, BL Lacs have a higher degree of polarization and exhibit more stable electric vector position angles (EVPAs in their core features and a better alignment of the EVPAs with the local jet direction. The latter is accompanied by a higher degree of linear polarization, suggesting that compact bright jet features might be strong transverse shocks, which enhance magnetic field regularity by compression.

  8. Lunar true polar wander inferred from polar hydrogen.

    Science.gov (United States)

    Siegler, M A; Miller, R S; Keane, J T; Laneuville, M; Paige, D A; Matsuyama, I; Lawrence, D J; Crotts, A; Poston, M J

    2016-03-24

    The earliest dynamic and thermal history of the Moon is not well understood. The hydrogen content of deposits near the lunar poles may yield insight into this history, because these deposits (which are probably composed of water ice) survive only if they remain in permanent shadow. If the orientation of the Moon has changed, then the locations of the shadowed regions will also have changed. The polar hydrogen deposits have been mapped by orbiting neutron spectrometers, and their observed spatial distribution does not match the expected distribution of water ice inferred from present-day lunar temperatures. This finding is in contrast to the distribution of volatiles observed in similar thermal environments at Mercury's poles. Here we show that polar hydrogen preserves evidence that the spin axis of the Moon has shifted: the hydrogen deposits are antipodal and displaced equally from each pole along opposite longitudes. From the direction and magnitude of the inferred reorientation, and from analysis of the moments of inertia of the Moon, we hypothesize that this change in the spin axis, known as true polar wander, was caused by a low-density thermal anomaly beneath the Procellarum region. Radiogenic heating within this region resulted in the bulk of lunar mare volcanism and altered the density structure of the Moon, changing its moments of inertia. This resulted in true polar wander consistent with the observed remnant polar hydrogen. This thermal anomaly still exists and, in part, controls the current orientation of the Moon. The Procellarum region was most geologically active early in lunar history, which implies that polar wander initiated billions of years ago and that a large portion of the measured polar hydrogen is ancient, recording early delivery of water to the inner Solar System. Our hypothesis provides an explanation for the antipodal distribution of lunar polar hydrogen, and connects polar volatiles to the geologic and geophysical evolution of the Moon

  9. A STUDY OF RADIO POLARIZATION IN PROTOSTELLAR JETS

    Energy Technology Data Exchange (ETDEWEB)

    Cécere, Mariana [Instituto de Astronomía Teórica y Experimental, Universidad Nacional de Córdoba, X5000BGR, Córdoba (Argentina); Velázquez, Pablo F.; De Colle, Fabio; Esquivel, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, CP: 04510, D.F., México (Mexico); Araudo, Anabella T. [University of Oxford, Astrophysics, Keble Road, Oxford OX1 3RH (United Kingdom); Carrasco-González, Carlos; Rodríguez, Luis F. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, 58090, Morelia, Michoacán, México (Mexico)

    2016-01-10

    Synchrotron radiation is commonly observed in connection with shocks of different velocities, ranging from relativistic shocks associated with active galactic nuclei, gamma-ray bursts, or microquasars, to weakly or non-relativistic flows such as those observed in supernova remnants. Recent observations of synchrotron emission in protostellar jets are important not only because they extend the range over which the acceleration process works, but also because they allow us to determine the jet and/or interstellar magnetic field structure, thus giving insights into the jet ejection and collimation mechanisms. In this paper, we compute for the first time polarized (synchrotron) and non-polarized (thermal X-ray) synthetic emission maps from axisymmetrical simulations of magnetized protostellar jets. We consider models with different jet velocities and variability, as well as a toroidal or helical magnetic field. Our simulations show that variable, low-density jets with velocities of ∼1000 km s{sup −1} and ∼10 times lighter than the environment can produce internal knots with significant synchrotron emission and thermal X-rays in the shocked region of the leading bow shock moving in a dense medium. While models with a purely toroidal magnetic field show a very large degree of polarization, models with a helical magnetic field show lower values and a decrease of the degree of polarization, in agreement with observations of protostellar jets.

  10. Characterization of high-pressure, underexpanded hydrogen-jet flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W.; Houf, W.G.; Williams, T.C. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Bourne, B.; Colton, J. [SRI International, 333 Ravenwood Ave., Menlo Park, CA 94025 (United States)

    2007-08-15

    Measurements were performed to characterize the dimensional and radiative properties of large-scale, vertical hydrogen-jet flames. This data is relevant to the safety scenario of a sudden leak in a high-pressure hydrogen containment vessel and will provide a technological basis for determining hazardous length scales associated with unintended hydrogen releases at storage and distribution centers. Jet flames originating from high-pressure sources up to 413 bar (6000 psi) were studied to verify the application of correlations and scaling laws based on lower-pressure subsonic and choked-flow jet flames. These higher pressures are expected to be typical of the pressure ranges in future hydrogen storage vessels. At these pressures the flows exiting the jet nozzle are categorized as underexpanded jets in which the flow is choked at the jet exit. Additionally, the gas behavior departs from that of an ideal-gas and alternate formulations for non-ideal gas must be introduced. Visible flame emission was recorded on video to evaluate flame length and structure. Radiometer measurements allowed determination of the radiant heat flux characteristics. The flame length results show that lower-pressure engineering correlations, based on the Froude number and a non-dimensional flame length, also apply to releases up to 413 bar (6000 psi). Similarly, radiative heat flux characteristics of these high-pressure jet flames obey scaling laws developed for low-pressure, smaller-scale flames and a wide variety of fuels. The results verify that such correlations can be used to a priori predict dimensional characteristics and radiative heat flux from a wide variety of hydrogen-jet flames resulting from accidental releases. (author)

  11. Jet cross sections in polarized photon-hadron collisions

    CERN Document Server

    de Florian, Daniel

    1999-01-01

    We present a computation of one- and two-jet cross sections in polarized photon-hadron collisions, which is accurate to next-to-leading order in QCD. Our results can be used to compute photoproduction cross sections in electron-proton scattering. To this purpose, we investigate the structure of the polarized Weizsaecker-Williams function, where we include a universal, non-logarithmic term, neglected in the literature. We construct a Monte Carlo code, within the framework of the subtraction method, and we use it to study the phenomenology of jet production in the energy range relevant to HERA. In particular, we investigate the perturbative stability of our results, and we discuss the possibility of constraining polarized parton densities of the proton and the photon using jet data.

  12. Characteristics of polar coronal hole jets

    Science.gov (United States)

    Chandrashekhar, K.; Bemporad, A.; Banerjee, D.; Gupta, G. R.; Teriaca, L.

    2014-01-01

    Context. High spatial- and temporal-resolution images of coronal hole regions show a dynamical environment where mass flows and jets are frequently observed. These jets are believed to be important for the coronal heating and the acceleration of the fast solar wind. Aims: We studied the dynamics of two jets seen in a polar coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We observed drift motions related to the evolution and formation of these small-scale jets, which we tried to model as well. Methods: Stack plots were used to find the drift and flow speeds of the jets. A toymodel was developed by assuming that the observed jet is generated by a sequence of single reconnection events where single unresolved blobs of plasma are ejected along open field lines, then expand and fall back along the same path, following a simple ballistic motion. Results: We found observational evidence that supports the idea that polar jets are very likely produced by multiple small-scale reconnections occurring at different times in different locations. These eject plasma blobs that flow up and down with a motion very similar to a simple ballistic motion. The associated drift speed of the first jet is estimated to be ≈27 km s-1. The average outward speed of the first jet is ≈171 km s-1, well below the escape speed, hence if simple ballistic motion is considered, the plasma will not escape the Sun. The second jet was observed in the south polar coronal hole with three XRT filters, namely, C-poly, Al-poly, and Al-mesh filters. Many small-scale (≈3″-5″) fast (≈200-300 km s-1) ejections of plasma were observed on the same day; they propagated outwards. We observed that the stronger jet drifted at all altitudes along the jet with the same drift speed of ≃7 km s-1. We also observed that the bright point associated with the first jet is a part of sigmoid structure. The time of appearance of the sigmoid and that of the ejection of plasma from the bright

  13. Dynamically polarized hydrogen target as a broadband, wavelength-independent thermal neutron spin polarizer

    International Nuclear Information System (INIS)

    Zhao Jinkui; Garamus, Vasil M.; Mueller, Wilhelm; Willumeit, Regine

    2005-01-01

    A hydrogen-rich sample with dynamically polarized hydrogen nuclei was tested as a wavelength-independent neutron transmission spin polarizer. The experiment used a modified setup of the dynamic nuclear polarization target station at the GKSS research center. The standard solvent sample at the GKSS DNP station was used. It is 2.8mm thick and consists of 43.4wt% water, 54.6wt% glycerol, and 2wt% of EHBA-Cr(v) complex. The wavelength of the incident neutrons for the transmission experiment was λ=8.1A with Δλ/λ=10%. The polarization of neutron beam after the target sample was analyzed with a supermirror analyzer. A neutron polarization of -52% was achieved at the hydrogen polarization of -69%. Further experiments will test the feasibility of other hydrogen-rich materials, such as methane, as the polarizer. A theoretical calculation shows that a polarized methane target would allow over 95% neutron polarizations with more than 30% transmission

  14. Shock-wave proton acceleration from a hydrogen gas jet

    Science.gov (United States)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

    2013-04-01

    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  15. Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets

    Science.gov (United States)

    Kravchenko, E. V.; Kovalev, Y. Y.; Sokolovsky, K. V.

    2017-05-01

    We perform polarimetry analysis of 20 active galactic nuclei jets using the very long baseline array at 1.4, 1.6, 2.2, 2.4, 4.6, 5.0, 8.1, 8.4 and 15.4 GHz. The study allowed us to investigate linearly polarized properties of the jets at parsec scales: distribution of the Faraday rotation measure (RM) and fractional polarization along the jets, Faraday effects and structure of Faraday-corrected polarization images. Wavelength dependence of the fractional polarization and polarization angle is consistent with external Faraday rotation, while some sources show internal rotation. The RM changes along the jets, systematically increasing its value towards synchrotron self-absorbed cores at shorter wavelengths. The highest core RM reaches 16 900 rad m-2 in the source rest frame for the quasar 0952+179, suggesting the presence of highly magnetized, dense media in these regions. The typical RM of transparent jet regions has values of an order of a hundred rad m-2. Significant transverse RM gradients are observed in seven sources. The magnetic field in the Faraday screen has no preferred orientation, and is observed to be random or regular from source to source. Half of the sources show evidence for the helical magnetic fields in their rotating magneto-ionic media. At the same time jets themselves contain large-scale, ordered magnetic fields and tend to align its direction with the jet flow. The observed variety of polarized signatures can be explained by a model of spine-sheath jet structure.

  16. Modeling Polarized Emission from Black Hole Jets: Application to M87 Core Jet

    Directory of Open Access Journals (Sweden)

    Monika Mościbrodzka

    2017-09-01

    Full Text Available We combine three-dimensional general-relativistic numerical models of hot, magnetized Advection Dominated Accretion Flows around a supermassive black hole and the corresponding outflows from them with a general relativistic polarized radiative transfer model to produce synthetic radio images and spectra of jet outflows. We apply the model to the underluminous core of M87 galaxy. The assumptions and results of the calculations are discussed in context of millimeter observations of the M87 jet launching zone. Our ab initio polarized emission and rotation measure models allow us to address the constrains on the mass accretion rate onto the M87 supermassive black hole.

  17. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.

    1984-01-01

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  18. Optical pumping production of spin polarized hydrogen

    International Nuclear Information System (INIS)

    Knize, R.J.; Happer, W.; Cecchi, J.L.

    1984-01-01

    There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process where photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allow the production of greater than 10 18 polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed

  19. Supersonic Combustion of Hydrogen Jets System in Hypersonic Stream

    International Nuclear Information System (INIS)

    Zhapbasbaev, U.K.; Makashev, E.P.

    2003-01-01

    The data of calculated theoretical investigations of diffusive combustion of plane supersonic hydrogen jets in hypersonic stream received with Navier-Stokes parabola equations closed by one-para metrical (k-l) model of turbulence and multiply staged mechanism of hydrogen oxidation are given. Combustion mechanisms depending on the operating parameters are discussing. The influences of air stream composition and ways off fuel feed to the length of ignition delay and level quantity of hydrogen bum-out have been defined. The calculated theoretical results of investigations permit to make the next conclusions: 1. The diffusive combustion of the system of plane supersonic hydrogen jets in hypersonic flow happens in the cellular structures with alternation zones of intensive running of chemical reactions with their inhibition zones. 2. Gas dynamic and heat Mach waves cause a large - scale viscous formation intensifying mixing of fuel with oxidizer. 3. The system ignition of plane supersonic hydrogen jets in hypersonic airy co-flow happens with the formation of normal flame front of hydrogen airy mixture with transition to the diffusive combustion. 4. The presence of active particles in the flow composition initiates the ignition of hydrogen - airy mixture, provides the intensive running of chemical reactions and shortens the length of ignition delay. 5. The supersonic combustion of hydrogel-airy mixture is characterized by two zones: the intensive chemical reactions with an active energy heat release is occurring in the first zone and in the second - a slow hydrogen combustion limited by the mixing of fuel with oxidizer. (author)

  20. Parsec-Scale Kinematic and Polarization Properties of MOJAVE AGN Jets

    Directory of Open Access Journals (Sweden)

    Lister Matthew L.

    2013-12-01

    Full Text Available We describe the parsec-scale kinematics and statistical polarization properties of 200 AGN jets based on 15 GHz VLBA data obtained between 1994 Aug 31 and 2011 May 1. Nearly all of the 60 most heavily observed jets show significant changes in their innermost position angle over a 12 to 16 year interval, ranging from 10° to 150° on the sky, corresponding to intrinsic variations of ~ 0.5° to ~ 2°. The BL Lac jets show smaller variations than quasars. Roughly half of the heavily observed jets show systematic position angle trends with time, and 20 show indications of oscillatory behavior. The time spans of the data sets are too short compared to the fitted periods (5 to 12 y, however, to reliably establish periodicity. The rapid changes and large jumps in position angle seen in many cases suggest that the superluminal AGN jet features occupy only a portion of the entire jet cross section, and may be energized portions of thin instability structures within the jet. We have derived vector proper motions for 887 moving features in 200 jets having at least five VLBA epochs. For 557 well-sampled features, there are sufficient data to additionally study possible accelerations. The moving features are generally non-ballistic, with 70% of the well-sampled features showing either significant accelerations or non-radial motions. Inward motions are rare (2% of all features, are slow (< 0.1 mas per y, are more prevalent in BL Lac jets, and are typically found within 1 mas of the unresolved core feature. There is a general trend of increasing apparent speed with distance down the jet for both radio galaxies and BL Lac objects. In most jets, the speeds of the features cluster around a characteristic value, yet there is a considerable dispersion in the distribution. Orientation variations within the jet cannot fully account for the dispersion, implying that the features have a range of Lorentz factor and/or pattern speed. Very slow pattern speed features are

  1. Control of radial propagation and polarity in a plasma jet in surrounding Ar

    KAUST Repository

    Gong, W.

    2018-01-08

    In recent years, the use of shielding gas to prevent the diffusion of the ambient air, particularly oxygen and nitrogen species, into the effluent of the atmospheric pressure plasma jet, and thus control the nature of chemical species used in the plasma treatment has increased. In this paper, the radial propagation of a plasma jet in ambient Ar is examined to find the key determinants of the polarity of plasma jets. The dynamics of the discharge reveal that the radial diffusion discharge is a special phenomenon observed only at the falling edge of the pulses. The radial transport of electrons, which is driven by the radial component of the applied electric field at the falling edge of the pulse, is shown to play an important role in increasing the seed electron density in the surrounding Ar. This result suggests a method to provide seed electrons at atmospheric pressure with a negative discharge. The polarity of the plasma jet is found to be determined by the pulse width rather than the polarity of the applied voltage, as it dictates the relative difference in the intensity of the two discharges in a single pulse, where the stronger discharge in a pulse dominates the behavior of the plasma jet. Accordingly, a method to control the polarity of a plasma jet through varying the pulse width is developed. Since plasma jets of different polarities differ remarkably in terms of their characteristics, the method to control the polarity reported in this paper will be of use for such applications as plasma-enhanced processing of materials and plasma biomedicine.

  2. Control of radial propagation and polarity in a plasma jet in surrounding Ar

    Science.gov (United States)

    Gong, W.; Yue, Y.; Ma, F.; Yu, F.; Wan, J.; Nie, L.; Bazaka, K.; Xian, Y.; Lu, X.; Ostrikov, K.

    2018-01-01

    In recent years, the use of shielding gas to prevent the diffusion of the ambient air, particularly oxygen and nitrogen species, into the effluent of the atmospheric pressure plasma jet, and thus control the nature of chemical species used in the plasma treatment has increased. In this paper, the radial propagation of a plasma jet in ambient Ar is examined to find the key determinants of the polarity of plasma jets. The dynamics of the discharge reveal that the radial diffusion discharge is a special phenomenon observed only at the falling edge of the pulses. The radial transport of electrons, which is driven by the radial component of the applied electric field at the falling edge of the pulse, is shown to play an important role in increasing the seed electron density in the surrounding Ar. This result suggests a method to provide seed electrons at atmospheric pressure with a negative discharge. The polarity of the plasma jet is found to be determined by the pulse width rather than the polarity of the applied voltage, as it dictates the relative difference in the intensity of the two discharges in a single pulse, where the stronger discharge in a pulse dominates the behavior of the plasma jet. Accordingly, a method to control the polarity of a plasma jet through varying the pulse width is developed. Since plasma jets of different polarities differ remarkably in terms of their characteristics, the method to control the polarity reported in this paper will be of use for such applications as plasma-enhanced processing of materials and plasma biomedicine.

  3. Laser-driven polarized sources of hydrogen and deuterium

    International Nuclear Information System (INIS)

    Young, L.; Holt, R.J.; Green, M.C.; Kowalczyk, R.S.

    1988-01-01

    A novel laser-driven polarized source of hydrogen and deuterium which operates on the principle of spin exchange optical pumping is described. The advantages of this method over conventional polarized sources for internal target experiments are presented. Technological difficulties which prevent ideal source operation are outlined along with proposed solutions. At present, the laser-driven polarized hydrogen source delivers 8 /times/ 10 16 atoms/s with a polarization (P/sub z/) of 24%. 9 refs., 2 figs

  4. Azimuthal transverse single-spin asymmetries of inclusive jets and charged pions within jets from polarized-proton collisions at √{s }=500 GeV

    Science.gov (United States)

    Adamczyk, L.; Adams, J. R.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Barish, K.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bryslawskyj, J.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; Dedovich, T. G.; Deng, J.; Deppner, I. M.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fujita, J.; Fulek, L.; Gagliardi, C. A.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Herrmann, N.; Hirsch, A.; Horvat, S.; Huang, B.; Huang, T.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kapukchyan, D.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kim, C.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Krauth, L.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, W.; Li, Y.; Li, C.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, F.; Liu, P.; Liu, Y.; Liu, H.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, G. L.; Ma, L.; Ma, R.; Ma, Y. G.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Mayes, D.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nemes, D. B.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seto, R.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Shen, W. Q.; Shi, S. S.; Shi, Z.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stewart, D. J.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, G.; Xie, W.; Xu, Y. F.; Xu, J.; Xu, Q. H.; Xu, N.; Xu, Z.; Yang, S.; Yang, Y.; Yang, C.; Yang, Q.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, X. P.; Zhang, J. B.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2018-02-01

    We report the first measurements of transverse single-spin asymmetries for inclusive jet and jet+π± production at midrapidity from transversely polarized proton-proton collisions at √{s }=500 GeV . The data were collected in 2011 with the STAR detector sampled from 23 pb-1 integrated luminosity with an average beam polarization of 53%. Asymmetries are reported for jets with transverse momenta 6 jet azimuthal transverse single-spin asymmetry, sensitive to twist-3 initial-state quark-gluon correlators; the Collins asymmetry, sensitive to quark transversity coupled to the polarized Collins fragmentation function; and the first measurement of the "Collins-like" asymmetry, sensitive to linearly polarized gluons. Within the present statistical precision, inclusive-jet and Collins-like asymmetries are small, with the latter allowing the first experimental constraints on gluon linear polarization in a polarized proton. At higher values of jet transverse momenta, we observe the first nonzero Collins asymmetries in polarized-proton collisions, with a statistical significance of greater than 5 σ . The results span a range of x similar to results from semi-inclusive deep-inelastic scattering but at much higher Q2. The Collins results enable tests of universality and factorization breaking in the transverse momentum-dependent formulation of perturbative quantum chromodynamics.

  5. A high intensity Stern-Gerlach polarized hydrogen source for the Munich MP-Tandem laboratory using ECR ionization and charge exchange in cesium vapor

    International Nuclear Information System (INIS)

    Hertenberger, R.; Eisermann, Y.; Metz, A.; Schiemenz, P.; Graw, G.

    2001-01-01

    The 14 year old Lamb-Shift hydrogen source of the Munich Tandem laboratory is presently replaced by a newly developed Stern-Gerlach type atomic beam source (ABS) with electron-cyclotron-resonance (ECR) ionization and subsequent double charge exchange in a supersonic cesium vapor jet target. The atomic beam source provides an intensity of 6.4*10 16 atoms/sec of polarized hydrogen and of about 5*10 16 atoms/sec of polarized deuterium. Beam intensities larger than 100 μA were observed for positive H-vector + and D-vector + ion beams after ECR ionization and intensities larger than 10 μA for negative D-vector - ion beams in three magnetic substates

  6. Effects of the input polarization on JET polarimeter horizontal channels

    International Nuclear Information System (INIS)

    Gaudio, P.; Gelfusa, M.; Murari, A.; Orsitto, F.; Boboc, A.

    2013-01-01

    In the past, the analysis of JET polarimetry measurements were carried out only for the vertical channels using a polarimetry propagation code based on the Stokes vector formalism [1,2]. A new propagation code has been developed therefore for the horizontal chords to simulate and interpret the measurements of the Faraday rotation and Cotton–Mouton phase shift in JET. The code has been used to develop a theoretical study to the effect of the input polarization on the eventual quality of the measurements. The results allow choosing the best polarization to optimize the polarimetric measurements for the various experiments

  7. Horizontal H 2-air turbulent buoyant jet resulting from hydrogen leakage

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu

    2012-01-01

    The current article is devoted to introducing mathematical and physical analyses with numerical investigation of a buoyant jet resulting from hydrogen leakage in air from a horizontal round source. H 2-air jet is an example of the non

  8. Laser-driven nuclear-polarized hydrogen internal gas target

    International Nuclear Information System (INIS)

    Seely, J.; Crawford, C.; Clasie, B.; Xu, W.; Dutta, D.; Gao, H.

    2006-01-01

    We report the performance of a laser-driven polarized internal hydrogen gas target (LDT) in a configuration similar to that used in scattering experiments. This target used the technique of spin-exchange optical pumping to produce nuclear spin polarized hydrogen gas that was fed into a cylindrical storage (target) cell. We present in this paper the performance of the target, methods that were tried to improve the figure-of-merit (FOM) of the target, and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation and the experimental results were in good agreement with the results from the simulation. The best experimental result achieved was at a hydrogen flow rate of 1.1x10 18 atoms/s, where the sample beam exiting the storage cell had 58.2% degree of dissociation and 50.5% polarization. Based on this measurement, the atomic fraction in the storage cell was 49.6% and the density averaged nuclear polarization was 25.0%. This represents the highest FOM for hydrogen from an LDT and is higher than the best FOM reported by atomic beam sources that used storage cells

  9. Effect of steam condensation on pressure and temperature under hydrogen jet fire in a vented enclosure

    International Nuclear Information System (INIS)

    Kuznetsov, Mike; Xiao, Jianjun; Travis, Jack

    2017-01-01

    Hydrogen release through leaks due to the LOCA and MCCI accidents and its immediate ignition leads to formation of hydrogen jet fire in a containment of reactor building. An experimental study of hydrogen jet fire in a chamber of 1x1x1 m 3 volume with different vent position, vent areas from 1 to 90 cm 2 and hydrogen mass flow rates from 0.027 to 1.087 g/s were performed in current work. Depending on hydrogen mass flow rate and vent area a well-ventilated or under-ventilated jet fire regime may occur. In the case of relatively small hydrogen release rate and large vent area, relatively stable jet fire behaviour for well-ventilated jet fire leading to over-pressure not more than 0.8 mbar was found. Three different scenarios of under-ventilated jet fire behaviour with self-extinction, re-ignition and external flame leading to relatively high overpressure of 10-100 mbar were found experimentally and numerically. Numerical simulations with GASFLOW-MPI code were performed with/without modelling heat conduction in solid walls, steam condensation, convective heat transfer and thermal radiation. With heat transfer modelling, both initial pressure peak and pressure decay were very well predicted compared to the experimental data. Numerical simulations were then compared with experimental Background Oriented Schlieren (BOS) images obtained to visualize the hydrogen combustion process. Self-extinction and re-ignition events were captured in the numerical simulation as well. An adiabatic case indicates that heat transfer and steam condensation must be included into the combustion model to accurately predict the physical phenomena of turbulent hydrogen jet flames in a vented enclosure. (author)

  10. Measurement of top quark polarization in $t \\overline{t}$ lepton+jets final states

    CERN Document Server

    Abazov, Victor Mukhamedovich; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Agnew, James P; Alexeev, Guennadi D; Alkhazov, Georgiy D; Alton, Andrew K; Askew, Andrew Warren; Atkins, Scott; Augsten, Kamil; Aushev, Volodymyr; Aushev, Yegor; Avila, Carlos A; Badaud, Frederique; Bagby, Linda F; Baldin, Boris; Bandurin, Dmitry V; Banerjee, Sunanda; Barberis, Emanuela; Baringer, Philip S; Bartlett, JFrederick; Bassler, Ursula Rita; Bazterra, Victor; Bean, Alice L; Begalli, Marcia; Bellantoni, Leo; Beri, Suman B; Bernardi, Gregorio; Bernhard, Ralf Patrick; Bertram, Iain A; Besancon, Marc; Beuselinck, Raymond; Bhat, Pushpalatha C; Bhatia, Sudeep; Bhatnagar, Vipin; Blazey, Gerald Charles; Blessing, Susan K; Bloom, Kenneth A; Boehnlein, Amber S; Boline, Daniel Dooley; Boos, Edward E; Borissov, Guennadi; Borysova, Maryna; Brandt, Andrew; Brandt, Oleg; Brochmann, Michelle; Brock, Raymond L; Bross, Alan D; Brown, Duncan Paul; Bu, Xue-Bing; Buehler, Marc; Buescher, Volker; Bunichev, Viacheslav Yevgenyevich; Burdin, Sergey; Buszello, Claus Peter; Camacho-Perez, Enrique; Casey, Brendan Cameron Kieran; Castilla-Valdez, Heriberto; Caughron, Seth Aaron; Chakrabarti, Subhendu; Chan, Kwok Ming Leo; Chandra, Avdhesh; Chapon, Emilien; Chen, Guo; Cho, Sung-Woong; Choi, Suyong; Choudhary, Brajesh C; Cihangir, Selcuk; Claes, Daniel R; Clutter, Justace Randall; Cooke, Michael P; Cooper, William Edward; Corcoran, Marjorie D; Couderc, Fabrice; Cousinou, Marie-Claude; Cuth, Jakub; Cutts, David; Das, Amitabha; Davies, Gavin John; de Jong, Sijbrand Jan; De La Cruz-Burelo, Eduard; Deliot, Frederic; Demina, Regina; Denisov, Dmitri S; Denisov, Sergei P; Desai, Satish Vijay; Deterre, Cecile; DeVaughan, Kayle Otis; Diehl, HThomas; Diesburg, Michael; Ding, Pengfei; Dominguez, DAaron M; Dubey, Abhinav Kumar; Dudko, Lev V; Duperrin, Arnaud; Dutt, Suneel; Eads, Michael T; Edmunds, Daniel L; Ellison, John A; Elvira, VDaniel; Enari, Yuji; Evans, Harold G; Evdokimov, Anatoly V; Evdokimov, Valeri N; Faure, Alexandre; Feng, Lei; Ferbel, Thomas; Fiedler, Frank; Filthaut, Frank; Fisher, Wade Cameron; Fisk, HEugene; Fortner, Michael R; Fox, Harald; Franc, Jiri; Fuess, Stuart C; Garbincius, Peter H; Garcia-Bellido, Aran; Garcia-Gonzalez, Jose Andres; Gavrilov, Vladimir B; Geng, Weigang; Gerber, Cecilia Elena; Gershtein, Yuri S; Ginther, George E; Gogota, Olga; Golovanov, Georgy Anatolievich; Grannis, Paul D; Greder, Sebastien; Greenlee, Herbert B; Grenier, Gerald Jean; Gris, Phillipe Luc; Grivaz, Jean-Francois; Grohsjean, Alexander; Gruenendahl, Stefan; Gruenewald, Martin Werner; Guillemin, Thibault; Gutierrez, Gaston R; Gutierrez, Phillip; Haley, Joseph Glenn Biddle; Han, Liang; Harder, Kristian; Harel, Amnon; Hauptman, John Michael; Hays, Jonathan M; Head, Tim; Hebbeker, Thomas; Hedin, David R; Hegab, Hatim; Heinson, Ann; Heintz, Ulrich; Hensel, Carsten; Heredia-De La Cruz, Ivan; Herner, Kenneth Richard; Hesketh, Gavin G; Hildreth, Michael D; Hirosky, Robert James; Hoang, Trang; Hobbs, John D; Hoeneisen, Bruce; Hogan, Julie; Hohlfeld, Mark; Holzbauer, Jenny Lyn; Howley, Ian James; Hubacek, Zdenek; Hynek, Vlastislav; Iashvili, Ia; Ilchenko, Yuriy; Illingworth, Robert A; Ito, Albert S; Jabeen, Shabnam; Jaffre, Michel J; Jayasinghe, Ayesh; Jeong, Min-Soo; Jesik, Richard L; Jiang, Peng; Johns, Kenneth Arthur; Johnson, Emily; Johnson, Marvin E; Jonckheere, Alan M; Jonsson, Per Martin; Joshi, Jyoti; Jung, Andreas Werner; Juste, Aurelio; Kajfasz, Eric; Karmanov, Dmitriy Y; Katsanos, Ioannis; Kaur, Manbir; Kehoe, Robert Leo Patrick; Kermiche, Smain; Khalatyan, Norayr; Khanov, Alexander; Kharchilava, Avto; Kharzheev, Yuri N; Kiselevich, Ivan Lvovich; Kohli, Jatinder M; Kozelov, Alexander V; Kraus, James Alexander; Kumar, Ashish; Kupco, Alexander; Kurca, Tibor; Kuzmin, Valentin Alexandrovich; Lammers, Sabine Wedam; Lebrun, Patrice; Lee, Hyeon-Seung; Lee, Seh-Wook; Lee, William M; Lei, Xiaowen; Lellouch, Jeremie; Li, Dikai; Li, Hengne; Li, Liang; Li, Qi-Zhong; Lim, Jeong Ku; Lincoln, Donald W; Linnemann, James Thomas; Lipaev, Vladimir V; Lipton, Ronald J; Liu, Huanzhao; Liu, Yanwen; Lobodenko, Alexandre; Lokajicek, Milos; Lopes de Sa, Rafael; Luna-Garcia, Rene; Lyon, Adam Leonard; Maciel, Arthur KA; Madar, Romain; Magana-Villalba, Ricardo; Malik, Sudhir; Malyshev, Vladimir L; Mansour, Jason; Martinez-Ortega, Jorge; McCarthy, Robert L; Mcgivern, Carrie Lynne; Meijer, Melvin M; Melnitchouk, Alexander S; Menezes, Diego D; Mercadante, Pedro Galli; Merkin, Mikhail M; Meyer, Arnd; Meyer, Jorg Manfred; Miconi, Florian; Mondal, Naba K; Mulhearn, Michael James; Nagy, Elemer; Narain, Meenakshi; Nayyar, Ruchika; Neal, Homer A; Negret, Juan Pablo; Neustroev, Petr V; Nguyen, Huong Thi; Nunnemann, Thomas P; Hernandez Orduna, Jose de Jesus; Osman, Nicolas Ahmed; Pal, Arnab; Parashar, Neeti; Parihar, Vivek; Park, Sung Keun; Partridge, Richard A; Parua, Nirmalya; Patwa, Abid; Penning, Bjoern; Perfilov, Maxim Anatolyevich; Peters, Reinhild Yvonne Fatima; Petridis, Konstantinos; Petrillo, Gianluca; Petroff, Pierre; Pleier, Marc-Andre; Podstavkov, Vladimir M; Popov, Alexey V; Prewitt, Michelle; Price, Darren; Prokopenko, Nikolay N; Qian, Jianming; Quadt, Arnulf; Quinn, Gene Breese; Ratoff, Peter N; Razumov, Ivan A; Ripp-Baudot, Isabelle; Rizatdinova, Flera; Rominsky, Mandy Kathleen; Ross, Anthony; Royon, Christophe; Rubinov, Paul Michael; Ruchti, Randal C; Sajot, Gerard; Sanchez-Hernandez, Alberto; Sanders, Michiel P; Santos, Angelo Souza; Savage, David G; Savitskyi, Mykola; Sawyer, HLee; Scanlon, Timothy P; Schamberger, RDean; Scheglov, Yury A; Schellman, Heidi M; Schott, Matthias; Schwanenberger, Christian; Schwienhorst, Reinhard H; Sekaric, Jadranka; Severini, Horst; Shabalina, Elizaveta K; Shary, Viacheslav V; Shaw, Savanna; Shchukin, Andrey A; Simak, Vladislav J; Skubic, Patrick Louis; Slattery, Paul F; Snow, Gregory R; Snow, Joel Mark; Snyder, Scott Stuart; Soldner-Rembold, Stefan; Sonnenschein, Lars; Soustruznik, Karel; Stark, Jan; Stefaniuk, Nazar; Stoyanova, Dina A; Strauss, Michael G; Suter, Louise; Svoisky, Peter V; Titov, Maxim; Tokmenin, Valeriy V; Tsai, Yun-Tse; Tsybychev, Dmitri; Tuchming, Boris; Tully, Christopher George T; Uvarov, Lev; Uvarov, Sergey L; Uzunyan, Sergey A; Van Kooten, Richard J; van Leeuwen, Willem M; Varelas, Nikos; Varnes, Erich W; Vasilyev, Igor A; Verkheev, Alexander Yurievich; Vertogradov, Leonid S; Verzocchi, Marco; Vesterinen, Mika; Vilanova, Didier; Vokac, Petr; Wahl, Horst D; Wang, Michael HLS; Warchol, Jadwiga; Watts, Gordon Thomas; Wayne, Mitchell R; Weichert, Jonas; Welty-Rieger, Leah Christine; Williams, Mark Richard James; Wilson, Graham Wallace; Wobisch, Markus; Wood, Darien Robert; Wyatt, Terence R; Xie, Yunhe; Yamada, Ryuji; Yang, Siqi; Yasuda, Takahiro; Yatsunenko, Yuriy A; Ye, Wanyu; Ye, Zhenyu; Yin, Hang; Yip, Kin; Youn, Sungwoo; Yu, Jiaming; Zennamo, Joseph; Zhao, Tianqi Gilbert; Zhou, Bing; Zhu, Junjie; Zielinski, Marek; Zieminska, Daria; Zivkovic, Lidija

    2017-01-09

    We present a study of top quark polarization in $t \\overline{t}$ events produced in $p \\overline{p}$ collisions at $\\sqrt{s}=1.96$ TeV. Data correspond to 9.7 fb$^{-1}$ collected with the D0 detector at the Tevatron. We use final states containing a lepton and at least three jets. The polarization is measured using the distribution of leptons along the beam and helicity axes, and the axis normal to the production plane. This is the first measurement of top quark polarization at the Tevatron in $\\ell$+jets final states, and first measurement of transverse polarization in $t \\overline{t}$ production. The observed distributions are consistent with the standard model.

  11. Properties of large-scale methane/hydrogen jet fires

    Energy Technology Data Exchange (ETDEWEB)

    Studer, E. [CEA Saclay, DEN, LTMF Heat Transfer and Fluid Mech Lab, 91 - Gif-sur-Yvette (France); Jamois, D.; Leroy, G.; Hebrard, J. [INERIS, F-60150 Verneuil En Halatte (France); Jallais, S. [Air Liquide, F-78350 Jouy En Josas (France); Blanchetiere, V. [GDF SUEZ, 93 - La Plaine St Denis (France)

    2009-12-15

    A future economy based on reduction of carbon-based fuels for power generation and transportation may consider hydrogen as possible energy carrier Extensive and widespread use of hydrogen might require a pipeline network. The alternatives might be the use of the existing natural gas network or to design a dedicated network. Whatever the solution, mixing hydrogen with natural gas will modify the consequences of accidents, substantially The French National Research Agency (ANR) funded project called HYDROMEL focuses on these critical questions Within this project large-scale jet fires have been studied experimentally and numerically The main characteristics of these flames including visible length, radiation fluxes and blowout have been assessed. (authors)

  12. Evaluation of the Minifilament-Eruption Scenario for Solar Coronal Jets in Polar Coronal Holes

    Science.gov (United States)

    Baikie, Tomi K.; Sterling, Alphonse C.; Falconer, David; Moore, Ronald L.; Savage, Sabrina L.

    2016-01-01

    Solar coronal jets are suspected to result from magnetic reconnection low in the Sun's atmosphere. Sterling et al. (2015) looked as 20 jets in polar coronal holes, using X-ray images from the Hinode/X-Ray Telescope (XRT) and EUV images from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA). They suggested that each jet was driven by the eruption of twisted closed magnetic field carrying a small-scale filament, which they call a 'minifilament', and that the jet was produced by reconnection of the erupting field with surrounding open field. In this study, we carry out a more extensive examination of polar coronal jets. From 180 hours of XRT polar coronal hole observations spread over two years (2014-2016), we identified 130 clearly-identifiable X-ray jet events and thus determined an event rate of over 17 jets per day per in the Hinode/XRT field of view. From the broader set, we selected 25 of the largest and brightest events for further study in AIA 171, 193, 211, and 304 Angstrom images. We find that at least the majority of the jets follow the minifilament-eruption scenario, although for some cases the evolution of the minifilament in the onset of its eruption is more complex than presented in the simplified schematic of Sterling et al. (2015). For all cases in which we could make a clear determination, the spire of the X-ray jet drifted laterally away from the jet-base-edge bright point; this spire drift away from the bright point is consistent with expectations of the minifilament-eruption scenario for coronal-jet production. This work was supported with funding from the NASA/MSFC Hinode Project Office, and from the NASA HGI program.

  13. Dihadron fragmentation functions in the quark-jet model: Transversely polarized quarks

    Science.gov (United States)

    Matevosyan, Hrayr H.; Kotzinian, Aram; Thomas, Anthony W.

    2018-01-01

    Within the most recent extension of the quark-jet hadronization framework, we explore the transverse-polarization-dependent dihadron fragmentation functions (DiFFs) H1∢ and H1⊥ of a quark into π+π- pairs. Monte Carlo (MC) simulations are employed to model polarized quark hadronization and calculate the corresponding number densities. These, in turn, are used to extract the Fourier cosine moments of the DiFFs H1∢ and H1⊥. A notable finding is that there are previously unnoticed apparent discrepancies between the definitions of the so-called interference DiFF (IFF) H1∢ , entering the cross sections for two-hadron semi-inclusive electroproduction, and those involved in the production of two pairs of hadrons from back-to-back jets in electron-positron annihilation. This manuscript completes the studies of all four leading-twist DiFFs for unpolarized hadron pairs within the quark-jet framework, following our previous work on the helicity-dependent DiFF G1⊥.

  14. Hydrogen Distribution in the Lunar Polar Regions

    Science.gov (United States)

    Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Bakhtin, B. N.; Bodnarik, J. G.; Boynton, W. V.; Chin, G.; Evans, L. G.; Harshmann, K.; Fedosov, F.; hide

    2016-01-01

    We present a method of conversion of the lunar neutron counting rate measured by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) instrument collimated neutron detectors, to water equivalent hydrogen (WEH) in the top approximately 1 m layer of lunar regolith. Polar maps of the Moon’s inferred hydrogen abundance are presented and discussed.

  15. Laser driven source of spin polarized atomic deuterium and hydrogen

    International Nuclear Information System (INIS)

    Poelker, M.; Coulter, K.P.; Holt, R.J.

    1993-01-01

    Optical pumping of potassium atoms in the presence of a high magnetic field followed by spin exchange collisions with deuterium (hydrogen) is shown to yield a high flux of spin polarized atomic deuterium (hydrogen). The performance of the laser driven source has been characterized as a function of deuterium (hydrogen) flow rate, potassium density, pump laser power, and magnetic field. Under appropriate conditions, the authors have observed deuterium atomic polarization as high as 75% at a flow rate 4.2x10 17 atoms/second. Preliminary results suggest that high nuclear polarizations are obtained in the absence of weak field rf transitions as a result of a spin temperature distribution that evolves through frequent H-H (D-D) collisions

  16. Electric and spectroscopic properties of argon-hydrogen RF microplasma jets at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Souza-Correa, J A; Oliveira, C; Amorim, J [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol-CTBE, Caixa Postal 6170, 13083-970, Campinas, Sao Paulo (Brazil); Gomes, M P, E-mail: jorge.correa@bioetanol.org.b, E-mail: carlos.filho@bioetanol.org.b, E-mail: gomesmp@ita.b, E-mail: jayr.amorim@bioetanol.org.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica-ITA, Praca Marechal Eduardo Gomes 50, 12.228-900, Sao Jose dos Campos, Sao Paulo (Brazil)

    2010-10-06

    Microplasma jets of argon-hydrogen (Ar-H{sub 2}) gas mixture were generated by 144.0 MHz radio-frequency (RF) waves at powers of 5 W, 10 W, 20 W and 50 W. The experimental setup employed creates stable microplasmas at atmospheric pressure from 5.0 mm up to 20.0 mm visual glow lengths. We have determined the rms voltages, the rms electric currents and the power absorptions of these microplasma jets. By making use of optical spectroscopy, the emission spectra of Ar-H{sub 2} microplasma jets were recorded in the range 3060-8200 A, in order to estimate the axial distribution profiles of electron density, rotational temperature, excitation temperature and hydrogen atomic temperature.

  17. Horizontal H 2-air turbulent buoyant jet resulting from hydrogen leakage

    KAUST Repository

    El-Amin, Mohamed

    2012-02-01

    The current article is devoted to introducing mathematical and physical analyses with numerical investigation of a buoyant jet resulting from hydrogen leakage in air from a horizontal round source. H 2-air jet is an example of the non-Boussinesq buoyant jet in which a low-density gas jet is injected/leak into a high-density ambient. The density of the mixture is a function of the concentration only, the binary gas mixture is assumed to be of a linear mixing type and the rate of entrainment is assumed to be a function of the plume centerline velocity and the ratio of the mean plume and ambient densities. On the other hand, the local rate of entrainment consists of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The top-hat profile assumption is used to obtain the mean centerline velocity, width, density and concentration of the H 2-air horizontal jet in addition to kinematic relations which govern the jet trajectories. A set of ordinary differential equations is obtained and solved numerically using Runge-Kutta method. In the second step, the mean axial velocity, mean concentration and mean density of the jet are obtained based on Gaussian model. Finally, several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), turbulent eddy viscosity and turbulent eddy diffusivity, are obtained by solving the governing partial differential equations. Additionally, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  18. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  19. The self limiting effect of hydrogen cluster in gas jet under liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Han Jifeng; Yang Chaowen; Miao Jingwei; Fu Pengtao; Luo Xiaobing; Shi Miangong

    2010-01-01

    The generation of hydrogen clusters in gas jet is tested using the Rayleigh scattering method under liquid nitrogen temperature of 79 K. The self limiting effect of hydrogen cluster is studied and it is found that the cluster formation is greatly affected by the number of expanded molecules. The well designed liquid nitrogen cold trap ensured that the hydrogen cluster would keep maximum size for maximum 15 ms during one gas jet. The scattered light intensity exhibits a power scaling on the backing pressure ranging from 5 to 48 bar with the power value of 4.1.

  20. Impact of gluon polarization on Higgs boson plus jet production at the LHC

    NARCIS (Netherlands)

    Boer, Daniel; Pisano, Cristian

    2015-01-01

    In this paper we consider Higgs boson plus jet production as a process that is sensitive to the linear polarization of gluons inside the unpolarized protons of the LHC. The leading order expressions for the transverse momentum distribution of the Higgs boson plus jet pair are provided in terms of

  1. Hydrogen extraction from liquid lithium-lead alloy by bubbling with rotational jet nozzle

    International Nuclear Information System (INIS)

    Xie Bo; Yang Tongzai; Guan Rui; Weng Kuiping

    2010-01-01

    The technology of tritium extraction from lithium-lead alloy has been simulated, hydrogen extraction from lithium-lead alloy by bubbling with rotational jet nozzle being used to simulate tritium in the study based on the introduction of fluid dynamics to establish algebraic model. The results show that the higher than lithium-lead melting temperature, the higher cumulative hydrogen extraction efficiency, and gas holdup of bubble column is little affected by the impeller diameter. Gas holdup when using small aperture is slightly higher when using large aperture only at a high helium flow rate, but the smaller the aperture, the greater the bubble surface area, and a marked increase in intensity of flow circulation for liquid lithium-lead with the increase of helium flow rate, hydrogen extraction rate increases too. Moreover, influence of the jet rotational velocity on hydrogen extraction is limited. (authors)

  2. The tagged photon beam polarization of the jet target experiment

    International Nuclear Information System (INIS)

    Bianchi, N.; Muccifora, V.

    1989-01-01

    The applicability of the residual electron selection method to the tagging method of the jet target laboratory has been studied. With this end in view the behaviour of the polarized bremsstrahlung cross section in the range considered has been analysed, while the polarization increase by means of the RES has been evaluated. The vertical conditions of the focusing of the tagging spectrometer as a function of energy have been determined. Finally the gamma beam density and the tagging efficiency have been calculated

  3. THE STRUCTURE AND LINEAR POLARIZATION OF THE KILOPARSEC-SCALE JET OF THE QUASAR 3C 345

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, David H.; Wardle, John F. C.; Marchenko, Valerie V., E-mail: roberts@brandeis.edu [Department of Physics MS-057, Brandeis University, Waltham, MA 02454-0911 (United States)

    2013-02-01

    Deep Very Large Array imaging of the quasar 3C 345 at 4.86 and 8.44 GHz has been used to study the structure and linear polarization of its radio jet on scales ranging from 2 to 30 kpc. There is a 7-8 Jy unresolved core with spectral index {alpha} {approx_equal} -0.24 (I{sub {nu}}{proportional_to}{nu}{sup {alpha}}). The jet (typical intensity 15 mJy beam{sup -1}) consists of a 2.''5 straight section containing two knots, and two additional non-co-linear knots at the end. The jet's total projected length is about 27 kpc. The spectral index of the jet varies over -1.1 {approx}< {alpha} {approx}< -0.5. The jet diverges with a semi-opening angle of about 9 Degree-Sign , and is nearly constant in integrated brightness over its length. A faint feature northeast of the core does not appear to be a true counter-jet, but rather an extended lobe of this FR-II radio source seen in projection. The absence of a counter-jet is sufficient to place modest constraints on the speed of the jet on these scales, requiring {beta} {approx}> 0.5. Despite the indication of jet precession in the total intensity structure, the polarization images suggest instead a jet re-directed at least twice by collisions with the external medium. Surprisingly, the electric vector position angles in the main body of the jet are neither longitudinal nor transverse, but make an angle of about 55 Degree-Sign with the jet axis in the middle while along the edges the vectors are transverse, suggesting a helical magnetic field. There is no significant Faraday rotation in the source, so that is not the cause of the twist. The fractional polarization in the jet averages 25% and is higher at the edges. In a companion paper, Roberts and Wardle show that differential Doppler boosting in a diverging relativistic velocity field can explain the electric vector pattern in the jet.

  4. Performance of a hydrogen/deuterium polarized gas target in a storage ring

    NARCIS (Netherlands)

    van Buuren, L.D.; Szczerba, D.; van den Brand, J.F.J.; Bulten, H.J.; Klous, S.; Mul, F.A.; Poolman, H.R.; Simani, M.C.

    2001-01-01

    The performance of a hydrogen/deuterium polarized gas target in a storage ring is presented. The target setup consisted of an atomic beam source, a cryogenic storage cell and a Breit-Rabi polarimeter. High frequency transition units were constructed to produce vector polarized hydrogen and

  5. A laser-driven source of polarized hydrogen and deuterium

    International Nuclear Information System (INIS)

    Young, L.; Holt, R.J.; Gilman, R.A.; Kowalczyk, R.; Coulter, K.

    1989-01-01

    A novel laser-driven polarized source of hydrogen and deuterium which operates on the principle of spin-exchange optical pumping is being developed. This source is designed to operate as an internal target in an electron storage ring for fundamental studies of spin-dependent structure of nuclei. It has the potential to exceed the flux from existing conventional sources (3 times 10 16/ s) by an order of magnitude. Currently, the source delivers hydrogen at a flux of 8 times 10 16 atoms/s with an atomic polarization of 24% and deuterium at 6 times 10 16 atoms/s with a polarization of 29%. Technical obstacles which have been overcome, with varying degrees of success are complete Doppler-coverage in the optical-pumping stage without the use of a buffer gas, wall-induced depolarization and radiation-trapping. Future improvements should allow achievement of the design goals of 4 times 10 17 atoms/s with a polarization of 50%. 8 refs., 2 figs

  6. Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet Flames

    Science.gov (United States)

    2016-05-15

    Conference Paper 3. DATES COVERED (From - To) 18 Mar 2016 – 15 May 2016 4. TITLE AND SUBTITLE Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet...perform, display, or disclose the work. 13. SUPPLEMENTARY NOTES For presentation at 28th Annual Conference on Liquid Atomization and Spray Systems...serious problems in the development of liquid rocket engines. In order to understand and predict them, it is necessary to understand how representative

  7. The CERN polarized atomic hydrogen beam target project

    International Nuclear Information System (INIS)

    Kubischta, W.; Dick, L.

    1990-01-01

    The UA6-experiment at the CERN p bar p Colider is at present using an unpolarized hydrogen cluster target with a thickness up to 5.10 14 atoms/cm 2 . It is planned to replace this target by a polarized atomic hydrogen beam target with a thickness up to about 10 13 atoms/cm 2 . This paper discusses basic requirements and results of atom optical calculations

  8. Polarization-induced sigma-holes and hydrogen bonding

    Czech Academy of Sciences Publication Activity Database

    Hennemann, M.; Murray, J. S.; Politzer, P.; Riley, Kevin Eugene; Clark, T.

    2012-01-01

    Roč. 18, č. 6 (2012), s. 2461-2469 ISSN 1610-2940 Institutional research plan: CEZ:AV0Z40550506 Keywords : hydrogen bond * sigma-hole * polarization * field effect * ab initio calculation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.984, year: 2012

  9. Hydrogen, deuterium, and tritium isotope exchange experiments in JET

    Energy Technology Data Exchange (ETDEWEB)

    Horton, L.D.; Andrew, P.; Bracco, G.; Conroy, S.; Corti, S.; Ehrenberg, J.; Goodall, D.H.J.; Jarvis, O.N.; Lomas, P.; Loughlin, M.; Peacock, A.T.; Saibene, G.; Sadler, G.; Sartori, R.; Stamp, M.F.; Thomas, P.R.; Belle, P. van (JET Joint Untertaking, Abingdon, Oxfordshire (United Kingdom))

    1992-12-01

    Isotope exchange experiments have been performed in JET using hydrogen, deuterium, and, in the recent preliminary tritium experiment (PTE), tritium. The rate of change-over from one isotope to another involves two quite different time constants. We have modelled this behaviour using a multireservoir model which splits the accessible hydrogenic particles into two groups, each having a different rate of exchange of particles with the plasma. By applying this model to the sequence of discharges during and after the PTE, we can determine the parameters in the model. The resulting fit also gives a good representation of hydrogen/deuterium change-over experiments, indicating that the tritium behaves in the same manner as other hydrogen isotopes, at least as far as recycling is concerned. Discrepancies between the model and the actual measurements of tritium recovery after the PTE lead us to conclude that isotope exchange processes resulting from collisions of molecules with the vessel walls play a significant role in spreading tritrium around the machine. (orig.).

  10. Moeller polarimeter for VEPP-3 storage ring based on internal polarized gas jet target

    International Nuclear Information System (INIS)

    Dyug, M.V.; Grigoriev, A.V.; Kiselev, V.A.; Lazarenko, B.A.; Levichev, E.B.; Mikaiylov, A.I.; Mishnev, S.I.; Nikitin, S.A.; Nikolenko, D.M.; Rachek, I.A.; Shestakov, Yu.V.; Toporkov, D.K.; Zevakov, S.A.; Zhilich, V.N.

    2005-01-01

    A new method to determine the polarization of an electron beam circulating in a storage ring by a non-destructive way, based on measuring the asymmetry in scattering of beam electrons on electrons of the internal polarized gas jet target, has been developed and tested at the VEPP-3 storage ring

  11. Computational simulations of hydrogen circular migration in protonated acetylene induced by circularly polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xuetao; Li, Wen; Schlegel, H. Bernhard, E-mail: hbs@chem.wayne.edu [Department of Chemistry, Wayne State University, Detroit, Michigan 48202 (United States)

    2016-08-28

    The hydrogens in protonated acetylene are very mobile and can easily migrate around the C{sub 2} core by moving between classical and non-classical structures of the cation. The lowest energy structure is the T-shaped, non-classical cation with a hydrogen bridging the two carbons. Conversion to the classical H{sub 2}CCH{sup +} ion requires only 4 kcal/mol. The effect of circularly polarized light on the migration of hydrogens in oriented C{sub 2}H{sub 3}{sup +} has been simulated by Born-Oppenheimer molecular dynamics. Classical trajectory calculations were carried out with the M062X/6-311+G(3df,2pd) level of theory using linearly and circularly polarized 32 cycle 7 μm cosine squared pulses with peak intensity of 5.6 × 10{sup 13} W/cm{sup 2} and 3.15 × 10{sup 13} W/cm{sup 2}, respectively. These linearly and circularly polarized pulses transfer similar amounts of energy and total angular momentum to C{sub 2}H{sub 3}{sup +}. The average angular momentum vectors of the three hydrogens show opposite directions of rotation for right and left circularly polarized light, but no directional preference for linearly polarized light. This difference results in an appreciable amount of angular displacement of the three hydrogens relative to the C{sub 2} core for circularly polarized light, but only an insignificant amount for linearly polarized light. Over the course of the simulation with circularly polarized light, this corresponds to a propeller-like motion of the three hydrogens around the C{sub 2} core of protonated acetylene.

  12. NMR at earth's magnetic field using para-hydrogen induced polarization

    NARCIS (Netherlands)

    Hamans, B.C.; Andreychenko, A.; Heerschap, A.; Wijmenga, S.S.; Tessari, M.

    2011-01-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal

  13. Laser-driven polarized hydrogen and deuterium internal targets

    International Nuclear Information System (INIS)

    Jones, C.E.; Fedchak, J.A.; Kowalczyk, R.S.

    1995-01-01

    After completing comprehensive tests of the performance of the source with both hydrogen and deuterium gas, we began tests of a realistic polarized deuterium internal target. These tests involve characterizing the atomic polarization and dissociation fraction of atoms in a storage cell as a function of flow and magnetic field, and making direct measurements of the average nuclear tensor polarization of deuterium atoms in the storage cell. Transfer of polarization from the atomic electron to the nucleus as a result of D-D spin-exchange collisions was observed in deuterium, verifying calculations suggesting that high vector polarization in both hydrogen and deuterium can be obtained in a gas in spin temperature equilibrium without inducing RF transitions between the magnetic substates. In order to improve the durability of the system, the source glassware was redesigned to simplify construction and installation and eliminate stress points that led to frequent breakage. Improvements made to the nuclear polarimeter, which used the low energy 3 H(d,n) 4 He reaction to analyze the tensor polarization of the deuterium, included installing acceleration lenses constructed of wire mesh to improve pumping conductance, construction of a new holding field coil, and elimination of the Wien filter from the setup. These changes substantially simplified operation of the polarimeter and should have reduced depolarization in collisions with the wall. However, when a number of tests failed to show an improvement of the nuclear polarization, it was discovered that extended operation of the system with a section of teflon as a getter for potassium caused the dissociation fraction to decline with time under realistic operating conditions, suggesting that teflon may not be a suitable material to eliminate potassium from the target. We are replacing the teflon surfaces with drifilm-coated ones and plan to continue tests of the polarized internal target in this configuration

  14. OPTICAL POLARIZATION AND SPECTRAL VARIABILITY IN THE M87 JET

    International Nuclear Information System (INIS)

    Perlman, Eric S.; Cara, Mihai; Bourque, Matthew; Simons, Raymond C.; Adams, Steven C.; Harris, D. E.; Madrid, Juan P.; Clausen-Brown, Eric; Cheung, C. C.; Stawarz, Lukasz; Georganopoulos, Markos; Sparks, William B.; Biretta, John A.

    2011-01-01

    During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability has also been seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST-1 shows a highly significant correlation between flux and polarization, with P increasing from ∼20% at minimum to >40% at maximum, while the orientation of its electric vector stayed constant. HST-1's optical-UV spectrum is very hard (α UV-O ∼ 0.5, F ν ∝ν –α ), and displays 'hard lags' during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2σ upper limits of 0.5δ pc and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet position angle (P.A.) makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and 'looping' in the (I, P) plane. The nucleus has a much steeper spectrum (α UV-O ∼ 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.

  15. OPTICAL POLARIZATION AND SPECTRAL VARIABILITY IN THE M87 JET

    Energy Technology Data Exchange (ETDEWEB)

    Perlman, Eric S.; Cara, Mihai; Bourque, Matthew; Simons, Raymond C. [Department of Physics and Space Sciences, 150 W. University Blvd., Florida Institute of Technology, Melbourne, FL 32901 (United States); Adams, Steven C. [Department of Physics and Astronomy, University of Georgia, Athens, GA 30605 (United States); Harris, D. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Madrid, Juan P. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia); Clausen-Brown, Eric [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Cheung, C. C. [National Academy of Sciences, Washington, DC 20001 (United States); Stawarz, Lukasz [Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Georganopoulos, Markos [Department of Physics, University of Maryland-Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Sparks, William B.; Biretta, John A., E-mail: eperlman@fit.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2011-12-20

    During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability has also been seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST-1 shows a highly significant correlation between flux and polarization, with P increasing from {approx}20% at minimum to >40% at maximum, while the orientation of its electric vector stayed constant. HST-1's optical-UV spectrum is very hard ({alpha}{sub UV-O} {approx} 0.5, F{sub {nu}}{proportional_to}{nu}{sup -{alpha}}), and displays 'hard lags' during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2{sigma} upper limits of 0.5{delta} pc and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet position angle (P.A.) makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and 'looping' in the (I, P) plane. The nucleus has a much steeper spectrum ({alpha}{sub UV-O} {approx} 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.

  16. Measurement of top quark polarization in top-antitop lepton+jets final states at DØ

    Energy Technology Data Exchange (ETDEWEB)

    Augsten, Kamil [Czech Technical Univ., Prague (Czech Republic)

    2017-01-01

    This thesis presents a measurement of the top quark polarization in the $t\\overline{t}$ events produced in $p\\overline{p}$ collisions at $\\sqrt{s}=1.96$ TeV using data corresponding to 9.7 fb$^{-1}$ of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The final states used in the measurement contain one lepton and at least three jets. The polarization is measured using the angular distribution of leptons along three different axes: the beam axis, the helicity axis, and the transverse axis normal to the $t\\overline{t}$ production plane. This is the first measurement of top quark polarization at the Tevatron Collider in lepton+jets final states, and the first measurement of transverse polarization in $t\\overline{t}$ production. The polarization along the beam axis is combined with the previous result in the dilepton final states by the D0 experiment. The observed distributions are consistent with the Standard Model of nearly no polarization and no indication for beyond Standard Model physics is observed. The measurement offers legacy result from unique Tevatron Collider data and provides more information about the top quark production and decays, about the properties of the heaviest elementary particle.

  17. Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet

    Science.gov (United States)

    Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis

    2017-10-01

    In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.

  18. Polarization measurement of atomic hydrogen beam spin-exchanged with optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Ueno, Akira; Ogura, Kouichi; Wakuta, Yoshihisa; Kumabe, Isao

    1988-01-01

    The spin-exchange reaction between hydrogen atoms and optically oriented sodium atoms was used to produce a polarized atomic hydrogen beam. The electron-spin polarization of the atomic hydrogen beam, which underwent the spin-exchange reaction with the optically oriented sodium atoms, was measured. A beam polarization of -(8.0±0.6)% was obtained when the thickness and polarization of the sodium target were (5.78±0.23)x10 13 atoms/cm 2 and -(39.6±1.6)%, respectively. The value of the spin-exchange cross section in the forward scattering direction, whose scattering angle in the laboratory system was less than 1.0 0 , was obtained from the experimental results as Δσ ex =(3.39±0.34)x10 -15 cm 2 . This value is almost seven times larger than the theoretical value calculated from the Na-H potential. The potential was computed quantum mechanically in the space of the appropriate wave functions of the hydrogen and the sodium atoms. (orig./HSI)

  19. Tests of a polarized source of hydrogen and deuterium based on spin-exchange optical pumping and a storage cell for polarized deuterium

    International Nuclear Information System (INIS)

    Holt, R.J.; Gilman, R.; Kinney, E.R.

    1988-01-01

    A novel laser-driven polarized source of hydrogen and deuterium which is based on the principle of spin-exchange optical pumping has been developed at Argonne. The advantages of this method over conventional polarized sources for internal target experiments is discussed. At present, the laser-driven polarized source delivers hydrogen 8 x 10 16 atoms/s with a polarization of 24% and deuterium at 6 x 10 16 atoms/s with a polarization of 25%. A passive storage cell for polarized deuterium was tested in the VEPP-3 electron storage ring. The storage cell was found to increase the target thickness by approximately a factor of three and no loss in polarization was observed. 10 refs., 4 figs., 2 tabs

  20. Measurement of top quark polarization in top-antitop lepton+jets final states at D0

    Energy Technology Data Exchange (ETDEWEB)

    Augsten, Kamil [Czech Technical Univ., Prague (Czech Republic)

    2016-01-01

    This thesis presents a measurement of the top quark polarization in the $t\\overline{t}$ events produced in $p\\overline{p}$ collisions at $\\sqrt{s}=1.96$ TeV using data corresponding to 9.7 fb$^{-1}$ of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The final states used in the measurement contain one lepton and at least three jets. The polarization is measured using the angular distribution of leptons along three different axes: the beam axis, the helicity axis, and the transverse axis normal to the $t\\overline{t}$ production plane. This is the first measurement of top quark polarization at the Tevatron Collider in lepton+jets final states, and the first measurement of transverse polarization in $t\\overline{t}$ production. The polarization along the beam axis is combined with the previous result in the dilepton final states by the D0 experiment. The observed distributions are consistent with the Standard Model of nearly no polarization and no indication for beyond Standard Model physics is observed. The measurement offers legacy result from unique Tevatron Collider data and provides more information about the top quark production and decays, about the properties of the heaviest elementary particle.

  1. Characteristics of autoignited laminar lifted flames in heated coflow jets of carbon monoxide/hydrogen mixtures

    KAUST Repository

    Choi, Byungchul

    2012-06-01

    The characteristics of autoignited lifted flames in laminar jets of carbon monoxide/hydrogen fuels have been investigated experimentally in heated coflow air. In result, as the jet velocity increased, the blowoff was directly occurred from the nozzle-attached flame without experiencing a stabilized lifted flame, in the non-autoignited regime. In the autoignited regime, the autoignited lifted flame of carbon monoxide diluted by nitrogen was affected by the water vapor content in the compressed air oxidizer, as evidenced by the variation of the ignition delay time estimated by numerical calculation. In particular, in the autoignition regime at low temperatures with added hydrogen, the liftoff height of the autoignited lifted flames decreased and then increased as the jet velocity increased. Based on the mechanism in which the autoignited laminar lifted flame is stabilized by ignition delay time, the liftoff height can be influenced not only by the heat loss, but also by the preferential diffusion between momentum and mass diffusion in fuel jets during the autoignition process. © 2012 The Korean Society of Mechanical Engineers.

  2. Production of JET fuel containing molecules of high hydrogen content

    Directory of Open Access Journals (Sweden)

    Tomasek Sz.

    2017-12-01

    Full Text Available The harmful effects of aviation can only be reduced by using alternative fuels with excellent burning properties and a high hydrogen content in the constituent molecules. Due to increasing plastic consumption the amount of the plastic waste is also higher. Despite the fact that landfill plastic waste has been steadily reduced, the present scenario is not satisfactory. Therefore, the aim of this study is to produce JET fuel containing an alternative component made from straight-run kerosene and the waste polyethylene cracking fraction. We carried out our experiments on a commercial NiMo/Al2O3/P catalyst at the following process parameters: T=200-300°C, P=40 bar, LHSV=1.0-3.0 h-1, hydrogen/hydrocarbon ratio= 400 Nm3/m3. We investigated the effects of the feedstocks and the process parameters on the product yields, the hydrodesulfurization and hydrodearomatization efficiencies, and the main product properties. The liquid product yields varied between 99.7-99.8%. As a result of the hydrogenation the sulfur (1-1780 mg/kg and the aromatic contents (9.0-20.5% of the obtained products and the values of their smoke points (26.0-34.7 mm fulfilled the requirements of JET fuel standard. Additionally, the concentration of paraffins increased in the products and the burning properties were also improved. The freezing points of the products were higher than -47°C, therefore product blending is needed.

  3. Modelling auto ignition of hydrogen in a jet ignition pre-chamber

    Energy Technology Data Exchange (ETDEWEB)

    Boretti, Alberto A. [School of Science and Engineering, University of Ballarat, PO Box 663, Ballarat, Victoria 3353 (Australia)

    2010-04-15

    Spark-less jet ignition pre-chambers are enablers of high efficiencies and load control by quantity of fuel injected when coupled with direct injection of main chamber fuel, thus permitting always lean burn bulk stratified combustion. Towards the end of the compression stroke, a small quantity of hydrogen is injected within the pre-chamber, where it mixes with the air entering from the main chamber. Combustion of the air and fuel mixture then starts within the pre-chamber because of the high temperature of the hot glow plug, and then jets of partially combusted hot gases enter the main chamber igniting there in the bulk, over multiple ignition points, lean stratified mixtures of air and fuel. The paper describes the operation of the spark-less jet ignition pre-chamber coupling CFD and CAE engine simulations to allow component selection and engine performance evaluation. (author)

  4. Quarkonium polarization and the long distance matrix elements hierarchies using jet substructure

    Science.gov (United States)

    Dai, Lin; Shrivastava, Prashant

    2017-08-01

    We investigate the quarkonium production mechanisms in jets at the LHC, using the fragmenting jet functions (FJF) approach. Specifically, we discuss the jet energy dependence of the J /ψ production cross section at the LHC. By comparing the cross sections for the different NRQCD production channels (1S0[8], 3S1[8], 3PJ[8], and 3cripts>S1[1]), we find that at fixed values of energy fraction z carried by the J /ψ , if the normalized cross section is a decreasing function of the jet energy, in particular for z >0.5 , then the depolarizing 1S0[8] must be the dominant channel. This makes the prediction made in [Baumgart et al., J. High Energy Phys. 11 (2014) 003, 10.1007/JHEP11(2014)003] for the FJF's also true for the cross section. We also make comparisons between the long distance matrix elements extracted by various groups. This analysis could potentially shed light on the polarization properties of the J /ψ production in high pT region.

  5. The role and production of polar/subtropical jet superpositions in two high-impact weather events over North America

    Science.gov (United States)

    Winters, Andrew C.

    Careful observational work has demonstrated that the tropopause is typically characterized by a three-step pole-to-equator structure, with each break between steps in the tropopause height associated with a jet stream. While the two jet streams, the polar and subtropical jets, typically occupy different latitude bands, their separation can occasionally vanish, resulting in a vertical superposition of the two jets. A cursory examination of a number of historical and recent high-impact weather events over North America and the North Atlantic indicates that superposed jets can be an important component of their evolution. Consequently, this dissertation examines two recent jet superposition cases, the 18--20 December 2009 Mid-Atlantic Blizzard and the 1--3 May 2010 Nashville Flood, in an effort (1) to determine the specific influence that a superposed jet can have on the development of a high-impact weather event and (2) to illuminate the processes that facilitated the production of a superposition in each case. An examination of these cases from a basic-state variable and PV inversion perspective demonstrates that elements of both the remote and local synoptic environment are important to consider while diagnosing the development of a jet superposition. Specifically, the process of jet superposition begins with the remote production of a cyclonic (anticyclonic) tropopause disturbance at high (low) latitudes. The cyclonic circulation typically originates at polar latitudes, while organized tropical convection can encourage the development of an anticyclonic circulation anomaly within the tropical upper-troposphere. The concurrent advection of both anomalies towards middle latitudes subsequently allows their individual circulations to laterally displace the location of the individual tropopause breaks. Once the two circulation anomalies position the polar and subtropical tropopause breaks in close proximity to one another, elements within the local environment, such as

  6. Spin-polarized hydrogen, deuterium, and tritium : I

    International Nuclear Information System (INIS)

    Haugen, M.; Ostgaard, E.

    1989-01-01

    The ground-state energy of spin-polarized hydrogen, deuterium and tritium is calculated by means of a modified variational lowest order constrained-variation method, and the calculations are done for five different two-body potentials. Spin-polarized H is not self-bound according to our theoretical results for the ground-state binding energy. For spin-polarized D, however, we obtain theoretical results for the ground-state binding energy per particle from -0.4 K at an equilibrium particle density of 0.25 σ -3 or a molar volume of 121 cm 3 /mol to +0.32 K at an equilibrium particle density of 0.21 σ -3 or a molar volume of 142 cm 3 /mol, where σ = 3.69 A (1A = 10 -10 m). It is, therefore, not clear whether spin-polarized deuterium should be self-bound or not. For spin-polarized T, we obtain theoretical results for the ground-state binding energy per particle from -4.73 K at an equilibrium particle density of 0.41 σ -3 or a molar volume of 74 cm 3 /mol to -1.21 K at an equilibrium particle density of 0.28 σ -3 or a molar volume of 109 cm 3 /mol. (Author) 27 refs., 9 figs., tab

  7. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  8. Drivers and potential predictability of summer time North Atlantic polar front jet variability

    Science.gov (United States)

    Hall, Richard J.; Jones, Julie M.; Hanna, Edward; Scaife, Adam A.; Erdélyi, Róbert

    2017-06-01

    The variability of the North Atlantic polar front jet stream is crucial in determining summer weather around the North Atlantic basin. Recent extreme summers in western Europe and North America have highlighted the need for greater understanding of this variability, in order to aid seasonal forecasting and mitigate societal, environmental and economic impacts. Here we find that simple linear regression and composite models based on a few predictable factors are able to explain up to 35 % of summertime jet stream speed and latitude variability from 1955 onwards. Sea surface temperature forcings impact predominantly on jet speed, whereas solar and cryospheric forcings appear to influence jet latitude. The cryospheric associations come from the previous autumn, suggesting the survival of an ice-induced signal through the winter season, whereas solar influences lead jet variability by a few years. Regression models covering the earlier part of the twentieth century are much less effective, presumably due to decreased availability of data, and increased uncertainty in observational reanalyses. Wavelet coherence analysis identifies that associations fluctuate over the study period but it is not clear whether this is just internal variability or genuine non-stationarity. Finally we identify areas for future research.

  9. Study of a polarized proton source for a cyclotron using a high frequency transition (1961)

    International Nuclear Information System (INIS)

    Thirion, J.; Beurtey, R.; Papineau, A.

    1961-01-01

    The authors have developed an experimental unit yielding a jet of hydrogen or deuterium atoms in which the protons and deutons are polarized. By use of the 'adiabatic passage' method a proton polarisation approaching 100 per cent is assured. (authors) [fr

  10. A polarized hydrogen/deuterium atomic beam source for internal target experiments

    International Nuclear Information System (INIS)

    Szczerba, D.; Buuren, L.D. van; Brand, J.F.J. van den; Bulten, H.J.; Ferro-Luzzi, M.; Klous, S.; Kolster, H.; Lang, J.; Mul, F.; Poolman, H.R.; Simani, M.C.

    2000-01-01

    A high-brightness hydrogen/deuterium atomic beam source is presented. The apparatus, previously used in electron scattering experiments with tensor-polarized deuterium (Ferro-Luzzi et al., Phys. Rev. Lett. 77 (1996) 2630; van den Brand et al., Phys. Rev. Lett. 78 (1997) 1235; Zhou et al., Phys. Rev. Lett. 82 (1998) 687; Bouwhuis et al., Phys. Rev. Lett. 82 (1999) 3755), was configured as a source for internal target experiments to measure single- and double-polarization observables, with either polarized hydrogen or vector/tensor polarized deuterium. The atomic beam intensity was enhanced by a factor of ∼2.5 by optimizing the Stern-Gerlach focusing system using high tip-field (∼1.5 T) rare-earth permanent magnets, and by increasing the pumping speed in the beam-formation chamber. Fluxes of (5.9±0.2)x10 16 1 H/s were measured in a diameter 12 mmx122 mm compression tube with its entrance at a distance of 27 cm from the last focusing element. The total output flux amounted to (7.6±0.2)x10 16 1 H/s

  11. Gravitomagnetic Acceleration of Black Hole Accretion Disk Matter to Polar Jets

    Science.gov (United States)

    Poirier, John; Mathews, Grant

    2015-04-01

    It is shown that the motion of the neutral masses in an accretion disk orbiting a black hole creates a magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk away from the disk and then inward toward the axis of the accretion disk. Moreover, as the accelerated material nears the axis, a frame-dragging effect twists the trajectories around the axis thus contributing to the formation of a narrow polar jet emanating from the poles.

  12. Performance of a hydrogen/deuterium polarized gas target in a storage ring

    International Nuclear Information System (INIS)

    Buuren, L.D. van; Szczerba, D.; Brand, J.F.J. van den; Bulten, H.J.; Ferro-Luzzi, M.; Klous, S.; Kolster, H.; Lang, J.; Mul, F.A.; Poolman, H.R.; Simani, M.C.

    2001-01-01

    The performance of a high-density polarized hydrogen/deuterium gas target internal to a medium-energy electron storage ring is presented. Compared to our previous electron scattering experiments with tensor-polarized deuterium at NIKHEF (Zhou et al., Nucl. Instr. and Meth. A 378 (1996) 40; Ferro-Luzzi et al., Phys. Rev. Lett. 77 (1996) 2630; Van den Brand et al., Phys. Rev. Lett. 78 (1997) 1235; Bouwhuis et al., Phys. Rev. Lett. 82 (1999) 687; Zhou et al., Phys. Rev. Lett. 82 (1999) 687) the target figure of merit, (polarization) 2 xluminosity, was improved by more than an order of magnitude. The target density was increased by upgrading the flux of nuclear-polarized atoms injected into the storage cell and by using a longer (60 cm) and colder (∼70 K) storage cell. A maximal target thickness of 1.2 (1.1)±0.1x10 14 nuclei/cm 2 was achieved with deuterium (hydrogen). With typical beam currents of 110 mA, this corresponds to a luminosity of about 8.4 (7.8)±0.8x10 31 e - nuclei cm -2 s -1 . By reducing the molecular background and using a stronger target guide field, a higher polarization was achieved. The target was used in combination with a 720 MeV polarized electron beam stored in the AmPS ring (NIKHEF) to measure spin observables in electron-proton and electron-deuteron scattering. Scattered electrons were detected in a large acceptance magnetic spectrometer. Ejected hadrons were detected in a single time-of-flight scintillator array. The product of beam and target vector polarization, P e P t , was determined from the known spin-correlation parameters of e'p quasi-elastic (or elastic) scattering. With the deuterium (hydrogen) target, values up to P e P t =0.49±0.03 (0.32±0.03) were obtained with an electron beam polarization of P e =0.62±0.04 (0.56±0.03) as measured with a Compton backscattering polarimeter (Passchier et al., Nucl. Instr. and Meth. A 414 (1998) 4988). From this, we deduce a cell-averaged target polarization of P t =0.78±0.07 (0.58±0

  13. Prospects for measuring ΔG from jets at HERA with polarized protons and electrons

    International Nuclear Information System (INIS)

    Roeck, A. de; Feltesse, J.; Kunne, F.; Maul, M.; Schaefer, A.; Wu, C.Y.; Mirkes, E.; Raedel, G.

    1996-09-01

    The measurement of the polarized gluon distribution function ΔG(x) from photon-gluon fusion processes in electron-proton deep inelastic scattering producing two jets has been investigated. The study is based on the MEPJET and PEPSI simulation programs. The size of the expected spin asymmetry and corresponding statistical uncertainties for a possible measurement with polarized beams of electrons and protons at HERA have been estimated. The results show that the asymmetry can reach a few percent, and is not washed out by hadronization and higher order processes. (orig.)

  14. Prospects for Measuring $\\Delta$G from Jets at HERA with Polarized Protons and Electrons

    CERN Document Server

    De Roeck, A.; Kunne, F.; Maul, M.; Schafer, A.; Wu, C.Y.; Mirkes, E.; Radel, G.

    1996-01-01

    The measurement of the polarized gluon distribution function Delta G(x) from photon-gluon fusion processes in electron-proton deep inelastic scattering producing two jets has been investigated. The study is based on the MEPJET and PEPSI simulation programs. The size of the expected spin asymmetry and corresponding statistical uncertainties for a possible measurement with polarized beams of electrons and protons at HERA have been estimated. The results show that the asymmetry can reach a few percent, and is not washed out by hadronization and higher order processes.

  15. Magnetic Untwisting in Solar Jets that Go into the Outer Corona in Polar Coronal Holes

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.

    2014-01-01

    We present results from 14 exceptionally high-reaching large solar jets observed in the polar coronal holes. EUV movies from SDO/AIA show that each jet is similar to many other similar-size and smaller jets that erupt in coronal holes, but each is exceptional in that it goes higher than most other jets, so high that it is observed in the outer corona beyond 2.2 R(sub Sun) in images from the SOHO/LASCO/C2 coronagraph. For these high-reaching jets, we find: (1) the front of the jet transits the corona below 2.2 R(sub Sun) at a speed typically several times the sound speed; (2) each jet displays an exceptionally large amount of spin as it erupts; (3) in the outer corona, most jets display oscillatory swaying having an amplitude of a few degrees and a period of order 1 hour. We conclude that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is grossly a large-amplitude (i.e., nonlinear) torsional Alfven wave that is put into the reconnected open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate from the measured spinning and swaying that the magnetic-untwisting wave loses most of its energy in the inner corona below 2.2 R(sub Sun). From these results for these big jets, we reason that the torsional magnetic waves observed in Type-II spicules should dissipate in the corona in the same way and could thereby power much of the coronal heating in coronal holes.

  16. Laser-driven source of spin-polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Poelker, M.

    1995-01-01

    A laser-driven source of spin-polarized hydrogen (H) and deuterium (D) that relies on the technique of optical pumping spin exchange has been constructed. In this source, H or D atoms and potassium atoms flow continuously through a drifilm-coated spin-exchange cell where potassium atoms are optically pumped with circularly-polarized laser light in a high magnetic field. The H or D atoms become polarized through spin-exchange collisions with polarized potassium atoms. High electron polarization (∼80%) has been measured for H and D atoms at flow rates ∼2x10 17 atoms/s. Lower polarization values are measured for flow rates exceeding 1x10 18 atoms/s. In this paper, we describe the performance of the laser-driven source as a function of H and D atomic flow rate, magnetic field strength, alkali density and pump-laser power. Polarization measurements as a function of flow rate and magnetic field suggest that, despite a high magnetic field, atoms within the optical-pumping spin-exchange apparatus evolve to spin-temperature equilibrium which results in direct polarization of the H and D nuclei. (orig.)

  17. Analysis of polarization in hydrogen bonded complexes: An asymptotic projection approach

    Science.gov (United States)

    Drici, Nedjoua

    2018-03-01

    The asymptotic projection technique is used to investigate the polarization effect that arises from the interaction between the relaxed, and frozen monomeric charge densities of a set of neutral and charged hydrogen bonded complexes. The AP technique based on the resolution of the original Kohn-Sham equations can give an acceptable qualitative description of the polarization effect in neutral complexes. The significant overlap of the electron densities, in charged and π-conjugated complexes, impose further development of a new functional, describing the coupling between constrained and non-constrained electron densities within the AP technique to provide an accurate representation of the polarization effect.

  18. Quantum effects on the formation of negative hydrogen ion by polarization electron capture in partially ionized dense hydrogen plasmas

    International Nuclear Information System (INIS)

    Jung, Young-Dae; Kato, Daiji

    2009-05-01

    The quantum effects on the formation of the negative hydrogen ion (H - ) by the polarization electron capture process are investigated in partially ionized dense hydrogen plasmas. It is shown that the quantum effect strongly suppresses the electron capture radius as well as the cross section for the formation of the negative hydrogen ion. In addition, it has been found that the electron capture position is receded from the center of the projectile with decreasing the quantum effect of the plasma. (author)

  19. Magnetic Untwisting in Jets that Go into the Outer Solar Corona in Polar Coronal Holes

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David

    2014-06-01

    We present results from a study of 14 jets that were observed in SDO/AIA EUV movies to erupt in the Sun’s polar coronal holes. These jets were similar to the many other jets that erupt in coronal holes, but reached higher than the vast majority, high enough to be observed in the outer corona beyond 2 solar radii from Sun center by the SOHO/LASCO/C2 coronagraph. We illustrate the characteristic structure and motion of these high-reaching jets by showing observations of two representative jets. We find that (1) the speed of the jet front from the base of the corona out to 2-3 solar radii is typically several times the sound speed in jets in coronal holes, (2) each high-reaching jet displays unusually large rotation about its axis (spin) as it erupts, and (3) in the outer corona, many jets display lateral swaying and bending of the jet axis with an amplitude of a few degrees and a period of order 1 hour. From these observations we infer that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is basically a large-amplitude (non-linear) torsional Alfven wave that is put into the open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate that the magnetic-untwisting wave loses most of its energy before reaching the outer corona. These observations of high-reaching coronal jets suggest that the torsional magnetic waves observed in Type-II spicules can similarly dissipate in the corona and thereby power much of the coronal heating in coronal holes and quiet regions. This work is funded by the NASA/SMD Heliophysics Division’s Living With a Star Targeted Research & Technology Program.

  20. High-repetition-rate laser-proton acceleration from a condensed hydrogen jet

    Energy Technology Data Exchange (ETDEWEB)

    Obst, Lieselotte; Zeil, Karl; Metzkes, Josefine; Schlenvoigt, Hans-Peter; Rehwald, Martin; Sommer, Philipp; Brack, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Goede, Sebastian; Gauthier, Maxence; Roedel, Christian; MacDonald, Michael; Schumaker, William; Glenzer, Siegfried [SLAC National Accelerator Laboratory, Stanford (United States)

    2016-07-01

    Applications of laser-accelerated protons demand a stable source of energetic particles at high repetition rates. We present the results of our experimental campaign in cooperation with MEC/SLAC at the 10Hz Ti:Sa laser Draco of Helmholtz-Zentrum Dresden-Rossendorf (HZDR), employing a pure condensed hydrogen jet as a renewable target. Draco delivers pulses of 30 fs and 5 J at 800 nm, focused to a 3 μm spot by an F/2.5 off-axis parabolic mirror. The jet's nominal electron density is approximately 30 times the critical density and its thickness is 2 μm, 5 μm or 10 μm, depending on the applied aperture on the source. Ion diagnostics reveal mono-species proton acceleration in a solid angle of at least +/-45 with respect to the incoming laser beam, with maximum energies of around 5 MeV. The expanding jet could be monitored on-shot with a temporally synchronized probe beam perpendicular to the pump laser axis. Recorded probe images resemble those of z-pinch experiments with metal wires and indicate an m=0 instability in the plasma.

  1. Evaluation of the plasma hydrogen isotope content by residual gas analysis at JET and AUG

    Science.gov (United States)

    Drenik, A.; Alegre, D.; Brezinsek, S.; De Castro, A.; Kruezi, U.; Oberkofler, M.; Panjan, M.; Primc, G.; Reichbauer, T.; Resnik, M.; Rohde, V.; Seibt, M.; Schneider, P. A.; Wauters, T.; Zaplotnik, R.; ASDEX-Upgrade, the; EUROfusion MST1 Teams; contributors, JET

    2017-12-01

    The isotope content of the plasma reflects on the dynamics of isotope changeover experiments, efficiency of wall conditioning and the performance of a fusion device in the active phase of operation. The assessment of the isotope ratio of hydrogen and methane molecules is used as a novel method of assessing the plasma isotope ratios at JET and ASDEX-Upgrade (AUG). The isotope ratios of both molecules in general shows similar trends as the isotope ratio detected by other diagnostics. At JET, the absolute values of RGA signals are in relatively good agreement with each other and with spectroscopy data, while at AUG the deviation from neutral particle analyser data are larger, and the results show a consistent spatial distribution of the isotope ratio. It is further shown that the isotope ratio of the hydrogen molecule can be used to study the degree of dissociation of the injected gas during changeover experiments.

  2. Absolute atomic hydrogen density distribution in a hollow cathode discharge by two-photon polarization spectroscopy

    International Nuclear Information System (INIS)

    Gonzalo, A B; Rosa, M I de la; Perez, C; Mar, S; Gruetzmacher, K

    2004-01-01

    We report on quantitative measurements of ground-state atomic hydrogen densities in a stationary plasma far off thermodynamic equilibrium, generated in a hollow cathode discharge, by two-photon polarization spectroscopy via the 1S-2S transition. Absolute densities are obtained using a well established calibration method based on the non-resonant two-photon polarization signal of xenon gas at room temperature, which serves as the reference at the wavelength of the hydrogen transition. This study is dedicated to demonstrating the capability of two-photon polarization spectroscopy close to the detection limit. Therefore, it requires single-longitudinal mode UV-laser radiation provided by an advanced UV-laser spectrometer

  3. Jets in Planetary Atmospheres

    Science.gov (United States)

    Dowling, Tim

    2018-05-01

    Jet streams, "jets" for short, are remarkably coherent streams of air found in every major atmosphere. They have a profound effect on a planet's global circulation, and have been an enigma since the belts and zones of Jupiter were discovered in the 1600s. The study of jets, including what processes affect their size, strength, direction, shear stability, and predictability, are active areas of research in geophysical fluid dynamics. Jet research is multidisciplinary and global, involving collaborations between observers, experimentalists, numerical modelers, and applied mathematicians. Jets in atmospheres have strong analogies with shear instability in nonneutral plasmas, and these connections are highlighted throughout the article. The article begins with a description of four major challenges that jet researchers face: nonlinearity, non-intuitive wave physics, non-constant-coefficients, and copious nondimensional numbers. Then, two general fluid-dynamical tenets, the practice of rendering expressions dimensionally homogeneous (nondimensional), and the universal properties of shocks are applied to the open question of what controls the on-off switch of shear instability. The discussion progresses to how the physics of jets varies in equatorial, midlatitude, and polar regions, and how jets are observed to behave in each of these settings. The all-in-one conservation law of potential vorticity (PV), which combines the conservation laws of mass, momentum, and thermal energy into a single expression, is the common language of jet research. Earth and Uranus have weak retrograde equatorial jets, but most planets exhibit super-rotating equatorial jets, which require eddies to transport momentum up gradient in a non-intuitive manner. Jupiter and Saturn exhibit multiple alternating jets in their midlatitudes. The theory for why jets are invariably zonal (east-west orientated) is reviewed, and the particular challenges that Jupiter's sharp westward jets present to existing

  4. Polarized gas targets for storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1990-01-01

    It is widely recognized that polarized gas targets in electron storage rings represent a new opportunity for precision nuclear physics studies. New developments in polarized target technology specific to internal applications will be discussed. In particular, polarized gas targets have been used in the VEPP-3 electron ring in Novosibirsk. A simple storage cell was used to increase the total target thickness by a factor of 15 over the simple gas jet target from an atomic beam source. Results from the initial phase of this project will be reported. In addition, the plans for increasing the luminosity by an additional order or magnitude will be presented. The application of this work to polarized hydrogen and deuterium targets for the HERA ring will be noted. The influence of beam-induced depolarization, a phenomena encountered in short-pulse electron storage rings, will be discussed. Finally, the performance tests of laser-driven sources will be presented. 8 refs., 12 figs., 1 tab

  5. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    International Nuclear Information System (INIS)

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2015-01-01

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure

  6. A spin-filter polarimeter for low energy hydrogen and deuterium ion beams

    International Nuclear Information System (INIS)

    Lemieux, S.K.; Clegg, T.B.; Karwowski, H.J.; Thompson, W.J.; Crosson, E.R.

    1993-01-01

    An efficient polarimeter which reveals populations of individual hyperfine states of nuclear-spin-polarized H ± (or D ± ) ion beams has been tested. This device is based on unique properties of a three-level interaction in the 2S 1/2 and 2P 1/2 states of hydrogen (or deuterium) atoms, created when the incident, polarized ion beams undergo electron pickup in cesium vapour. Used on a polarized ion source, its efficiency faciy facilitates both rapid optimization and continual monitoring of parameters that affect the beam polarization. With such sources, and perhaps in applications with polarized gas jet targets, the device has potential for an absolute accuracy of better than 2%. (orig.)

  7. Search for jet handedness in hadronic Z0 decays

    International Nuclear Information System (INIS)

    Abe, K.; Abt, I.; Ahn, C.J.; Akagi, T.; Ash, W.W.; Aston, D.; Bacchetta, N.; Baird, K.G.; Baltay, C.; Band, H.R.; Barakat, M.B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A.O.; Ben-David, R.; Benvenuti, A.C.; Bienz, T.; Bilei, G.M.; Bisello, D.; Blaylock, G.; Bogart, J.R.; Bolton, T.; Bower, G.R.; Brau, J.E.; Breidenbach, M.; Bugg, W.M.; Burke, D.; Burnett, T.H.; Burrows, P.N.; Busza, W.; Calcaterra, A.; Caldwell, D.O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H.O.; Coller, J.A.; Cook, V.; Cotton, R.; Cowan, R.F.; Coyne, D.G.; D'Oliveira, A.; Damerell, C.J.S.; Dasu, S.; De Sangro, R.; De Simone, P.; Dell'Orso, R.; Dima, M.; Du, P.Y.C.; Dubois, R.; Eisenstein, B.I.; Elia, R.; Falciai, D.; Fan, C.; Fero, M.J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G.D.; Hart, E.L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S.S.; Hildreth, M.D.; Huber, J.; Huffer, M.E.; Hughes, E.W.; Hwang, H.; Iwasaki, Y.; Jacques, P.; Jaros, J.; Johnson, A.S.; Johnson, J.R.; Johnson, R.A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Karliner, I.; Kawahara, H.; Kendall, H.W.; Kim, Y.; King, M.E.; King, R.; Kofler, R.R.; Krishna, N.M.; Kroeger, R.S.; Labs, J.F.; Langston, M.; Lath, A.; Lauber, J.A.; Leith, D.W.G.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H.L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T.W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A.K.; Meadows, B.T.; Messner, R.; Mockett, P.M.; Moffeit, K.C.; Mours, B.; Mueller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L.S.; Panvini, R.S.; Park, H.; Pavel, T.J.; Peruzzi, I.; Pescara, L.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K.T.; Plano, R.J.; Prepost, R.; Prescott, C.Y.; Punkar, G.D.; Quigley, J.; Ratcliff, B.N.; Reeves, T.W.; Rensing, P.E.; Rochester, L.S.; Rothberg, J.E.; Rowson, P.C.; Russell, J.J.; Saxton, O.H.; Schalk, T.

    1995-01-01

    We have searched for signatures of polarization in hadronic jets from Z 0 →q bar q decays using the ''jet handedness'' method. The polar angle asymmetry induced by the high SLAC Linear Collider electron-beam polarization was used to separate quark jets from antiquark jets, expected to be left and right polarized, respectively. We find no evidence for jet handedness in our global sample or in a sample of light quark jets, and we set upper limits at the 95% C.L. of 0.063 and 0.099, respectively, on the magnitude of the analyzing power of the method proposed by Efremov et al

  8. NOx emission characteristics in turbulent hydrogen jet flames with coaxial air

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hee Jang [Korea Aerospace University, Goyang (Korea, Republic of); Park, Yang Ho; Yoon, Young Bin [Seoul National University, Seoul (Korea, Republic of)

    2009-06-15

    The characteristics of NOx emissions in pure hydrogen nonpremixed jet flames with coaxial air are analyzed numerically for a wide range of coaxial air conditions. Among the models tested in simple nonpremixed jet flame, the one-half power scaling law could be reproduced only by the Model C using the HO{sub 2}/H{sub 2}O{sub 2} reaction, implying the importance of chemical nonequilibrium effect. The flame length is reduced significantly by augmenting coaxial air, and could be represented as a function of the ratio of coaxial air to fuel velocity. Predicted EINOx scaling showed a good concordance with experimental data, and the overall one-half power scaling was observed in coaxial flames with Model C when flame residence time was defined with flame volume instead of a cubic of the flame length. Different level of oxygen mass fraction at the stoichiometric surface was observed as coaxial air was increased. These different levels imply that the coaxial air strengthens the nonequilibrium effect

  9. NOx emission characteristics in turbulent hydrogen jet flames with coaxial air

    International Nuclear Information System (INIS)

    Moon, Hee Jang; Park, Yang Ho; Yoon, Young Bin

    2009-01-01

    The characteristics of NOx emissions in pure hydrogen nonpremixed jet flames with coaxial air are analyzed numerically for a wide range of coaxial air conditions. Among the models tested in simple nonpremixed jet flame, the one-half power scaling law could be reproduced only by the Model C using the HO 2 /H 2 O 2 reaction, implying the importance of chemical nonequilibrium effect. The flame length is reduced significantly by augmenting coaxial air, and could be represented as a function of the ratio of coaxial air to fuel velocity. Predicted EINOx scaling showed a good concordance with experimental data, and the overall one-half power scaling was observed in coaxial flames with Model C when flame residence time was defined with flame volume instead of a cubic of the flame length. Different level of oxygen mass fraction at the stoichiometric surface was observed as coaxial air was increased. These different levels imply that the coaxial air strengthens the nonequilibrium effect

  10. Equipment and software for the experiment on polarized proton scattering on hydrogen and nuclei

    International Nuclear Information System (INIS)

    Buklej, A.E.; Govorun, N.N.; Zhurkin, V.V.

    1980-01-01

    Installation for the conduction of polarization measurements upon the beam of polarized protons with the 2.1 GeV/c momentum using ITEP synchrotron is described. The installation is designed for polarization measurement in elastic pp-scattering and asymmetry in summary (elastic and inelastic without meson production) scattering of polarized protons upon nuclei in the angle range up to 180 mrad, as well as polarization in elastic pn-scattering. The installation consists of 18 two-coordinate magnetostriction wire spark chambers (s.c.), emitting counters, the system of veto-counters surrounding the target, liquid hydrogen or (deuterium) target and magnet to conduct pulse analysis of scattered particles in the background measurements. Primary processing of the material is conducted on the basis of modernized programs using the M-220 and BESM-6 computers. With a help of the experimental installation described asymmetry measurement on hydrogen, Li, C, Al, Ca have been conducted. The prospect of use of the method described to separate elastic reactions in the range of very small momentum transmitted, where the background of inelastic interactions can be decreased to the negligibly low level, for precise measurement of elastic reactions cross sections and the study of polarization phenomena in the range of coulomb interference is underlined [ru

  11. Determination of thermodynamic affinities of various polar olefins as hydride, hydrogen atom, and electron acceptors in acetonitrile.

    Science.gov (United States)

    Cao, Ying; Zhang, Song-Chen; Zhang, Min; Shen, Guang-Bin; Zhu, Xiao-Qing

    2013-07-19

    A series of 69 polar olefins with various typical structures (X) were synthesized and the thermodynamic affinities (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the polar olefins obtaining hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the polar olefins (X(•-)) obtaining protons and hydrogen atoms, and the thermodynamic affinities of the hydrogen adducts of the polar olefins (XH(•)) obtaining electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The pure C═C π-bond heterolytic and homolytic dissociation energies of the polar olefins (X) in acetonitrile and the pure C═C π-bond homolytic dissociation energies of the radical anions of the polar olefins (X(•-)) in acetonitrile were estimated. The remote substituent effects on the six thermodynamic affinities of the polar olefins and their related reaction intermediates were examined using the Hammett linear free-energy relationships; the results show that the Hammett linear free-energy relationships all hold in the six chemical and electrochemical processes. The information disclosed in this work could not only supply a gap of the chemical thermodynamics of olefins as one class of very important organic unsaturated compounds but also strongly promote the fast development of the chemistry and applications of olefins.

  12. Direct Numerical Simulations of Turbulent Autoigniting Hydrogen Jets

    Science.gov (United States)

    Asaithambi, Rajapandiyan

    Autoignition is an important phenomenon and a tool in the design of combustion engines. To study autoignition in a canonical form a direct numerical simulation of a turbulent autoigniting hydrogen jet in vitiated coflow conditions at a jet Reynolds number of 10,000 is performed. A detailed chemical mechanism for hydrogen-air combustion and non-unity Lewis numbers for species transport is used. Realistic inlet conditions are prescribed by obtaining the velocity eld from a fully developed turbulent pipe flow simulation. To perform this simulation a scalable modular density based method for direct numerical simulation (DNS) and large eddy simulation (LES) of compressible reacting flows is developed. The algorithm performs explicit time advancement of transport variables on structured grids. An iterative semi-implicit time advancement is developed for the chemical source terms to alleviate the chemical stiffness of detailed mechanisms. The algorithm is also extended from a Cartesian grid to a cylindrical coordinate system which introduces a singularity at the pole r = 0 where terms with a factor 1/r can be ill-defined. There are several approaches to eliminate this pole singularity and finite volume methods can bypass this issue by not storing or computing data at the pole. All methods however face a very restrictive time step when using a explicit time advancement scheme in the azimuthal direction (theta) where the cell sizes are of the order DelrDeltheta. We use a conservative finite volume based approach to remove the severe time step restriction imposed by the CFL condition by merging cells in the azimuthal direction. In addition, fluxes in the radial direction are computed with an implicit scheme to allow cells to be clustered along the jet's shear layer. This method is validated and used to perform the large scale turbulent reacting simulation. The resulting flame structure is found to be similar to a turbulent diusion flame but stabilized by autoignition at the

  13. Structures and the Hydrogen Bonding Abilities of Estrogens Studied by Supersonic Jet/laser Spectroscopy

    Science.gov (United States)

    Morishima, Fumiya; Inokuchi, Yoshiya; Ebata, Takayuki

    2013-06-01

    Estrone, estradiol, estriol are known as endogenous estrogen which have the same steroidal frame with different substituent, leading to difference of physiological activity upon the formation of hydrogen bond with estrogen receptor. In the present study, structures of estrogens and their hydrated clusters in a supersonic jet have been studied by various laser spectroscopic techniques and density functional theory calculation to study how the difference of substituents affects their hydrogen bonding ability. Infrared spectra in the OH stretching region indicate a formation of intramolecular hydrogen-bond in estriol, which may lead to weaker physiological activity among the three estrogens. We also measured electronic and infrared spectra of 1:1 hydrated clusters of estrogen. The results show a switch of stable hydration site from the phenolic OH group to the five member ring by substituting one more OH group.

  14. Renewable hydrocarbons for jet fuels from biomass and plastics via microwave-induced pyrolysis and hydrogenation processes

    Science.gov (United States)

    Zhang, Xuesong

    This dissertation aims to enhance the production of aromatic hydrocarbons in the catalytic microwave-induced pyrolysis, and maximize the production of renewable cycloalkanes for jet fuels in the hydrogenation process. In the process, ZSM-5 catalyst as the highly efficient catalyst was employed for catalyzing the pyrolytic volatiles from thermal decomposition of cellulose (a model compound of lignocellulosic biomass). A central composite experiment design (CCD) was used to optimize the product yields as a function of independent factors (e.g. catalytic temperature and catalyst to feed mass ratio). The low-density polyethylene (a mode compound of waste plastics) was then carried out in the catalytic microwave-induced pyrolysis in the presence of ZSM-5 catalyst. Thereafter, the catalytic microwave-induced co-pyrolysis of cellulose with low-density polyethylene (LDPE) was conducted over ZSM-5 catalyst. The results showed that the production of aromatic hydrocarbons was significantly enhanced and the coke formation was also considerably reduced comparing with the catalytic microwave pyrolysis of cellulose or LDPE alone. Moreover, practical lignocellulosic biomass (Douglas fir sawdust pellets) was converted into aromatics-enriched bio-oil by catalytic microwave pyrolysis. The bio-oil was subsequently hydrogenated by using the Raney Ni catalyst. A liquid-liquid extraction step was implemented to recover the liquid organics and remove the water content. Over 20% carbon yield of liquid product regarding lignocellulosic biomass was obtained. Up to 90% selectivity in the liquid product belongs to jet fuel range cycloalkanes. As the integrated processes was developed, catalytic microwave pyrolysis of cellulose with LDPE was conducted to improve aromatic production. After the liquid-liquid extraction by the optimal solvent (n-heptane), over 40% carbon yield of hydrogenated organics based on cellulose and LDPE were achieved in the hydrogenation process. As such, real

  15. A highly polarized hydrogen/deuterium internal gas target embedded in a toroidal magnetic spectrometer

    International Nuclear Information System (INIS)

    Cheever, D.; Ihloff, E.; Kelsey, J.; Kolster, H.; Meitanis, N.; Milner, R.; Shinozaki, A.; Tsentalovich, E.; Zwart, T.; Ziskin, V.; Xiao, Y.; Zhang, C.

    2006-01-01

    A polarized hydrogen/deuterium internal gas target has been constructed and operated at the internal target region of the South Hall Ring (SHR) of the MIT-Bates Linear Accelerator Center to carry out measurements of spin-dependent electron scattering at 850MeV. The target used an Atomic Beam Source (ABS) to inject a flux of highly polarized atoms into a thin-walled, coated storage cell. The polarization of the electron beam was determined using a Compton laser backscattering polarimeter. The target polarization was determined using well-known nuclear reactions. The ABS and storage cell were embedded in the Bates Large Acceptance Toroidal Spectrometer (BLAST), which was used to detect scattered particles from the electron-target interactions. The target has been designed to rapidly (∼8h) switch operation from hydrogen to deuterium. Further, this target was the first to be operated inside a magnetic spectrometer in the presence of a magnetic field exceeding 2kG. An ABS intensity 2.5x10 16 at/s and a high polarization (∼70%) inside the storage cell have been achieved. The details of the target design and construction are described here and the performance over an 18 month period is reported

  16. Magnetization and spin-polarized conductance of asymmetrically hydrogenated graphene nanoribbons: significance of sigma bands

    International Nuclear Information System (INIS)

    Honda, Syuta; Inuzuka, Kouhei; Inoshita, Takeshi; Ota, Norio; Sano, Nobuyuki

    2014-01-01

    The magnetization and spin transport of asymmetric zigzag-edge graphene nanoribbons, terminated by hydrogen on one edge while unterminated on the other edge, were investigated by a combination of first-principles calculations and a tight-binding approach. At the unterminated edge, a spin-polarized σ edge state of minority spin appears near the Fermi level and contributes to spin transport. This state enters the band gap for ribbon widths of less than 15 chains, dominating the spin-polarized current. This indicates the importance of the σ edge states in the design of spintronic devices using graphene nanoribbons. We also examined the case where the ‘unterminated’ edge is partially terminated by hydrogen. (paper)

  17. NMR at earth's magnetic field using para-hydrogen induced polarization.

    Science.gov (United States)

    Hamans, Bob C; Andreychenko, Anna; Heerschap, Arend; Wijmenga, Sybren S; Tessari, Marco

    2011-09-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal equilibrium in the earth's magnetic field. Simultaneous 19F and 1H NMR detection on a sub-milliliter sample of a fluorinated alkyne at millimolar concentration (∼10(18) nuclear spins) was realized with just one single scan. A highly resolved spectrum with a signal/noise ratio higher than 50:1 was obtained without using an auxiliary magnet or any form of radio frequency shielding. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Composite and case study analyses of the large-scale environments associated with West Pacific Polar and subtropical vertical jet superposition events

    Science.gov (United States)

    Handlos, Zachary J.

    Though considerable research attention has been devoted to examination of the Northern Hemispheric polar and subtropical jet streams, relatively little has been directed toward understanding the circumstances that conspire to produce the relatively rare vertical superposition of these usually separate features. This dissertation investigates the structure and evolution of large-scale environments associated with jet superposition events in the northwest Pacific. An objective identification scheme, using NCEP/NCAR Reanalysis 1 data, is employed to identify all jet superpositions in the west Pacific (30-40°N, 135-175°E) for boreal winters (DJF) between 1979/80 - 2009/10. The analysis reveals that environments conducive to west Pacific jet superposition share several large-scale features usually associated with East Asian Winter Monsoon (EAWM) northerly cold surges, including the presence of an enhanced Hadley Cell-like circulation within the jet entrance region. It is further demonstrated that several EAWM indices are statistically significantly correlated with jet superposition frequency in the west Pacific. The life cycle of EAWM cold surges promotes interaction between tropical convection and internal jet dynamics. Low potential vorticity (PV), high theta e tropical boundary layer air, exhausted by anomalous convection in the west Pacific lower latitudes, is advected poleward towards the equatorward side of the jet in upper tropospheric isentropic layers resulting in anomalous anticyclonic wind shear that accelerates the jet. This, along with geostrophic cold air advection in the left jet entrance region that drives the polar tropopause downward through the jet core, promotes the development of the deep, vertical PV wall characteristic of superposed jets. West Pacific jet superpositions preferentially form within an environment favoring the aforementioned characteristics regardless of EAWM seasonal strength. Post-superposition, it is shown that the west Pacific

  19. Combustion of hydrogen-air jets in local chemical equilibrium: A guide to the CHARNAL computer program

    Science.gov (United States)

    Spalding, D. B.; Launder, B. E.; Morse, A. P.; Maples, G.

    1974-01-01

    A guide to a computer program, written in FORTRAN 4, for predicting the flow properties of turbulent mixing with combustion of a circular jet of hydrogen into a co-flowing stream of air is presented. The program, which is based upon the Imperial College group's PASSA series, solves differential equations for diffusion and dissipation of turbulent kinetic energy and also of the R.M.S. fluctuation of hydrogen concentration. The effective turbulent viscosity for use in the shear stress equation is computed. Chemical equilibrium is assumed throughout the flow.

  20. Formation of negative hydrogen ion: polarization electron capture and nonthermal shielding.

    Science.gov (United States)

    Ki, Dae-Han; Jung, Young-Dae

    2012-09-07

    The influence of the nonthermal shielding on the formation of the negative hydrogen ion (H(-)) by the polarization electron capture are investigated in partially ionized generalized Lorentzian plasmas. The Bohr-Lindhard method has been applied to obtain the negative hydrogen formation radius and cross section as functions of the collision energy, de Broglie wave length, Debye length, impact parameter, and spectral index of the plasma. The result shows that the nonthermal character of the plasma enhances the formation radius of the negative hydrogen, especially, for small Debye radii. It is found that the nonthermal effect increases the formation cross section of the negative hydrogen. It is also found that the maximum position of the formation cross section approaches to the collision center with an increase of the spectral index. In addition, it is found that the formation cross section significantly decreases with an increase of the Debye length, especially, for small spectral indices.

  1. Formation of negative hydrogen ion: Polarization electron capture and nonthermal shielding

    International Nuclear Information System (INIS)

    Ki, Dae-Han; Jung, Young-Dae

    2012-01-01

    The influence of the nonthermal shielding on the formation of the negative hydrogen ion (H − ) by the polarization electron capture are investigated in partially ionized generalized Lorentzian plasmas. The Bohr-Lindhard method has been applied to obtain the negative hydrogen formation radius and cross section as functions of the collision energy, de Broglie wave length, Debye length, impact parameter, and spectral index of the plasma. The result shows that the nonthermal character of the plasma enhances the formation radius of the negative hydrogen, especially, for small Debye radii. It is found that the nonthermal effect increases the formation cross section of the negative hydrogen. It is also found that the maximum position of the formation cross section approaches to the collision center with an increase of the spectral index. In addition, it is found that the formation cross section significantly decreases with an increase of the Debye length, especially, for small spectral indices.

  2. Rapid Multiwaveband Polarization Variability in the Quasar PKS 0420-014: Optical Emission from the Compact Radio Jet

    Science.gov (United States)

    D'Arcangelo, Francesca D.; Marscher, Alan P.; Jorstad, Svetlana G.; Smith, Paul S.; Larionov, Valeri M.; Hagen-Thorn, Vladimir A.; Kopatskaya, Eugenia N.; Williams, G. Grant; Gear, Walter K.

    2007-04-01

    An 11 day monitoring campaign in late 2005 reveals clear correlation in polarization between the optical emission and the region of the intensity peak (the ``pseudocore'') at the upstream end of the jet in 43 GHz VLBA (Very Long Baseline Array) images in the highly variable quasar PKS 0420-014. The electric-vector position angle (EVPA) of the pseudocore rotated by about 80° in four VLBA observations over a period of 9 days, matching the trend of the optical EVPA. In addition, the 43 GHz EVPAs agree well with the optical values when we correct the former for Faraday rotation. Fluctuations in the polarization at both wave bands are consistent with the variable emission arising from a standing conical shock wave that compresses magnetically turbulent plasma in the ambient jet. The volume of the variable component is the same at both wave bands, although only ~20% of the total 43 GHz emission arises from this site. The remainder of the 43 GHz flux density must originate in a separate region with very low polarization. If 0420-014 is a typical case, the nonthermal optical emission from blazars originates primarily in and near the pseudocore rather than closer to the central engine where the flow collimates and accelerates.

  3. The Evolving Polarized Jet of Black Hole Candidate Swift J1745-26

    Science.gov (United States)

    Curran, P. A.; Coriat, M.; Miller-Jones, J. C. A.; Armstrong, R. P.; Edwards, P. G.; Sivakoff, G. R.; Woudt, P.; Altamirano, D.; Belloni, T. M.; Corbel, S.; hide

    2013-01-01

    Swift J1745-26 is an X-ray binary towards the Galactic Centre that was detected when it went into outburst in September 2012. This source is thought to be one of a growing number of sources that display "failed outbursts", in which the self-absorbed radio jets of the transient source are never fully quenched and the thermal emission from the geometrically-thin inner accretion disk never fully dominates the X-ray flux. We present multifrequency data from the Very Large Array, Australia Telescope Compact Array and Karoo Array Telescope (KAT- 7) radio arrays, spanning the entire period of the outburst. Our rich data set exposes radio emission that displays a high level of large scale variability compared to the X-ray emission and deviations from the standard radio-X-ray correlation that are indicative of an unstable jet and confirm the outburst's transition from the canonical hard state to an intermediate state. We also observe steepening of the spectral index and an increase of the linear polarization to a large fraction (is approx. equal to 50%) of the total flux, as well as a rotation of the electric vector position angle. These are consistent with a transformation from a self-absorbed compact jet to optically-thin ejecta - the first time such a discrete ejection has been observed in a failed outburst - and may imply a complex magnetic field geometry.

  4. A study of jet handedness in hadronic Zo decays

    International Nuclear Information System (INIS)

    Muller, D.

    1994-05-01

    The authors have searched for inclusive signatures of polarization in hadronic jets from Z 0 → q bar q decays using the open-quote jet handedness close-quote method. They exploited the large polar angle asymmetry induced by the high SLC electron beam polarization to select samples of quark jets and antiquark jets, expected to be left- and right-polarized respectively. They find no evidence for jet handedness in their global sample and set a preliminary upper limit of 7% at 95% C.L. on the magnitude of the analyzing power of this technique. They have used the SLD vertex detector to exclude events containing heavy (b, c) quarks, in which the handedness is expected to be small due to the dominance of decays of spinless mesons. They find no evidence for jet handedness in this high-purity sample of light (u, d and s) quark jets, and set a preliminary upper limit of 11% on the magnitude of the analyzing power in this case. They have investigated several alternative definitions of jet handedness in an attempt to optimize the analyzing power. They find no evidence of jet handedness by any method

  5. Study of a polarized proton source for a cyclotron using a high frequency transition (1961); Etude d'une source de protons polarises utilisant une transition haute frequence pour un cyclotron (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Thirion, J; Beurtey, R; Papineau, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The authors have developed an experimental unit yielding a jet of hydrogen or deuterium atoms in which the protons and deutons are polarized. By use of the 'adiabatic passage' method a proton polarisation approaching 100 per cent is assured. (authors) [French] Les auteurs ont mis au point un ensemble experimental permettant d'obtenir un jet d'atomes d'hydrogene ou de deuterium, dans lequel les protons et les deutons sont polarises. Grace a la methode du 'passage adiabatique' une polarisation de protons voisine de 100 pour cent est obtenue. (auteurs)

  6. Hydrogen-enriched non-premixed jet flames : analysis of the flame surface, flame normal, flame index and Wobbe index

    NARCIS (Netherlands)

    Ranga Dinesh, K.K.J.; Jiang, X.; Oijen, van J.A.

    2014-01-01

    A non-premixed impinging jet flame is studied using three-dimensional direct numerical simulation with detailed chemical kinetics in order to investigate the influence of fuel variability on flame surface, flame normal, flame index and Wobbe index for hydrogen-enriched combustion. Analyses indicate

  7. Stratospheric cooling and polar ozone loss due to H2 emissions of a global hydrogen economy

    Science.gov (United States)

    Feck, T.; Grooß, J.-U.; Riese, M.; Vogel, B.

    2009-04-01

    "Green" hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H2) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H2 that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H2 can occur along the whole hydrogen process chain which increase the tropospheric H2 burden. Across the tropical tropopause H2 reaches the stratosphere where it is oxidised and forms water vapour (H2O). This causes increased IR-emissions into space and hence a cooling of the stratosphere. Both effects, the increase of stratospheric H2O and the cooling, enhances the potential of chlorine activation on liquid sulfate aerosol and polar stratospheric clouds (PSCs), which increase polar ozone destruction. Hence a global hydrogen economy could provoke polar ozone loss and could lead to a substantial delay of the current projected recovery of the stratospheric ozone layer. Our investigations show that even if 90% of the current global fossil primary energy input could be replaced by hydrogen and approximately 9.5% of the product gas would leak to the atmosphere, the ozone loss would be increased between 15 to 26 Dobson Units (DU) if the stratospheric CFC loading would retain unchanged. A consistency check of the used approximation methods with the Chemical Lagrangian Model of the Stratosphere (CLaMS) shows that this additional ozone loss can probably be treated as an upper limit. Towards more realistic future H2 leakage rate assumptions (< 3%) the additional ozone loss would be rather small (? 10 DU). However, in all cases the full damage would only occur if stratospheric CFC-levels would retain unchanged. Due to the CFC-prohibition as a result of the Montreal Protocol the forecasts suggest a decline of the stratospheric CFC loading about 50% until 2050. In this case our calculations

  8. The HERMES polarized hydrogen and deuterium gas target in the HERA electron storage ring

    International Nuclear Information System (INIS)

    Airapetian, A.; Akopov, N.; Akopov, Z.

    2005-01-01

    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA electron ring. Atoms diffusing from the center of the storage cell into a side tube are analyzed to determine the atomic fraction and the atomic polarizations. The atoms have a nuclear polarization, the axis of which is defined by an external magnetic holding field. The holding field was longitudinal during 1996-2000, and was changed to transverse in 2001. The design of the target is described, the method for analyzing the target polarization is outlined, and the performance of the target in the various running periods is presented

  9. The HERMES polarized hydrogen and deuterium gas target in the HERA electron storage ring

    International Nuclear Information System (INIS)

    Airapetian, A.; Akopov, N.; Akopov, Z.; Peking University, Beijing

    2004-08-01

    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA electron ring. Atoms diffusing from the center of the storage cell into a side tube are analyzed to determine the atomic fraction and the atomic polarizations. The atoms have a nuclear polarization, the axis of which is defined by an external magnetic holding field. The holding field was longitudinal during 1996-2000, and was changed to transverse in 2001. The design of the target is described, the method for analyzing the target polarization is outlined, and the performance of the target in the various running periods is presented. (orig.)

  10. Experimental study of hydrogen formation and recombination under postulated LMFBR accident conditions

    International Nuclear Information System (INIS)

    Wierman, R.W.; Hilliard, R.K.

    1976-01-01

    The report describes an experimental study of hydrogen jets burning in air, hydrogen formation by sodium in humid air atmospheres, and the effects of nitrogen, water vapor sodium vapor/aerosol, jet velocity, and jet temperature on ignition of hydrogen jets. The results show that hydrogen jets above 1450 0 F (788 0 C) issuing into an air atmosphere need no ignition source for ignition, a hydrogen jet temperature higher than 500 0 F (260 0 C) and containing more than six grams of sodium per cubic meter of jet gas will auto-ignite in an air atmosphere, the burning efficiency of a hydrogen jet decreases rapidly to zero when the oxygen concentration outside the flame region approaches 10 percent, and hydrogen does not form from a sodium-nitrogen jet issuing into a humid air atmosphere until the ratio O 2 /(H 2 O + O 2 ) is less than 0.5

  11. Resolving the Polarized Dust Emission of the Disk around the Massive Star Powering the HH 80–81 Radio Jet

    Science.gov (United States)

    Girart, J. M.; Fernández-López, M.; Li, Z.-Y.; Yang, H.; Estalella, R.; Anglada, G.; Áñez-López, N.; Busquet, G.; Carrasco-González, C.; Curiel, S.; Galvan-Madrid, R.; Gómez, J. F.; de Gregorio-Monsalvo, I.; Jiménez-Serra, I.; Krasnopolsky, R.; Martí, J.; Osorio, M.; Padovani, M.; Rao, R.; Rodríguez, L. F.; Torrelles, J. M.

    2018-04-01

    Here we present deep (16 μJy beam‑1), very high (40 mas) angular resolution 1.14 mm, polarimetric, Atacama Large Millimeter/submillimeter Array (ALMA) observations toward the massive protostar driving the HH 80–81 radio jet. The observations clearly resolve the disk oriented perpendicularly to the radio jet, with a radius of ≃0.″171 (∼291 au at 1.7 kpc distance). The continuum brightness temperature, the intensity profile, and the polarization properties clearly indicate that the disk is optically thick for a radius of R ≲ 170 au. The linear polarization of the dust emission is detected almost all along the disk, and its properties suggest that dust polarization is produced mainly by self-scattering. However, the polarization pattern presents a clear differentiation between the inner (optically thick) part of the disk and the outer (optically thin) region of the disk, with a sharp transition that occurs at a radius of ∼0.″1 (∼170 au). The polarization characteristics of the inner disk suggest that dust settling has not occurred yet with a maximum dust grain size between 50 and 500 μm. The outer part of the disk has a clear azimuthal pattern but with a significantly higher polarization fraction compared to the inner disk. This pattern is broadly consistent with the self-scattering of a radiation field that is beamed radially outward, as expected in the optically thin outer region, although contribution from non-spherical grains aligned with respect to the radiative flux cannot be excluded.

  12. VLBA AND CHANDRA OBSERVATIONS OF JETS IN FRI RADIO GALAXIES: CONSTRAINTS ON JET EVOLUTION

    International Nuclear Information System (INIS)

    Kharb, P.; O'Dea, C. P.; Tilak, A.; Baum, S. A.; Haynes, E.; Noel-Storr, J.; Fallon, C.; Christiansen, K.

    2012-01-01

    We present here the results from new Very Long Baseline Array (VLBA) observations at 1.6 and 5 GHz of 19 galaxies of a complete sample of 21 Uppasala General Catalog (UGC) Fanaroff-Riley type I (FRI) radio galaxies. New Chandra data of two sources, viz., UGC 00408 and UGC 08433, are combined with the Chandra archival data of 13 sources. The 5 GHz observations of 10 'core-jet' sources are polarization-sensitive, while the 1.6 GHz observations constitute second-epoch total intensity observations of nine 'core-only' sources. Polarized emission is detected in the jets of seven sources at 5 GHz, but the cores are essentially unpolarized, except in M87. Polarization is detected at the jet edges in several sources, and the inferred magnetic field is primarily aligned with the jet direction. This could be indicative of magnetic field 'shearing' due to jet-medium interaction, or the presence of helical magnetic fields. The jet peak intensity I ν falls with distance d from the core, following the relation, I ν ∝d a , where a is typically ∼ – 1.5. Assuming that adiabatic expansion losses are primarily responsible for the jet intensity 'dimming,' two limiting cases are considered: (1) the jet has a constant speed on parsec scales and is expanding gradually such that the jet radius r∝d 0 .4 ; this expansion is, however, unobservable in the laterally unresolved jets at 5 GHz, and (2) the jet is cylindrical and is accelerating on parsec scales. Accelerating parsec-scale jets are consistent with the phenomenon of 'magnetic driving' in Poynting-flux-dominated jets. While slow jet expansion as predicted by case (1) is indeed observed in a few sources from the literature that are resolved laterally, on scales of tens or hundreds of parsecs, case (2) cannot be ruled out in the present data, provided the jets become conical on scales larger than those probed by VLBA. Chandra observations of 15 UGC FRIs detect X-ray jets in 9 of them. The high frequency of occurrence of X

  13. Multiply charged negative ions of hydrogen in linearly polarized laser fields

    International Nuclear Information System (INIS)

    van Duijn, E.; Muller, H.G.

    1997-01-01

    Motivated by the prediction of the appearance of atomic multiply charged negative ions (AMCNI) of hydrogen, induced by a linearly polarized laser field, we present an analytical quantum mechanical treatment of the appearance and structure of AMCNI in a linearly polarized field, based on high-frequency Floquet theory (HFFT). For the simplest AMCNI of hydrogen, H 2- and H 3- , the values of α 0 at which the first bound state appears are α 0 =1.62x10 2 and α 0 =1.02x10 4 , where α 0 =I 1/2 /ω 2 is the amplitude of the oscillation of a free electron in the field with frequency ω and intensity I (unless stated otherwise, we use atomic units throughout this paper). Whereas in vacuum at least one of the electrons of an AMCNI autodetaches, an intense high-frequency field can change the character of the ion dramatically, such that bound states of AMCNI can appear. Due to the interaction with the field, the electrons of the AMCNI oscillate in phase along the polarization axis. This open-quotes quiverclose quotes motion enables the electrons to be spatially separated over distances of order α 0 , reducing the repulsive e-e interaction as α 0 increases. In other words, for α 0 large enough, the field enables a configuration in which the electrons, while widely separated, are bound to one proton. For the prediction of bound states of H N- with N>3, however, a relativistic description or low-frequency theory is required. copyright 1997 The American Physical Society

  14. Computational study of the signature of hydrogen-bond strength on the infrared spectra of a hydrogen-bonded complex dissolved in a polar liquid

    International Nuclear Information System (INIS)

    Hanna, Gabriel; Geva, Eitan

    2010-01-01

    The signature of hydrogen-bond strength on the one- and two-dimensional infrared spectra of the hydrogen-stretch in a hydrogen-bonded complex dissolved in a polar liquid was investigated via mixed quantum-classical molecular dynamics simulations. Non-Condon effects were found to intensify with increasing hydrogen-bond strength and to shift oscillator strength from the stable configurations that correspond to the ionic and covalent tautomers into unstable configurations that correspond to the transition-state between them. The transition-state peak is observed to blue shift and increase in intensity with increasing hydrogen-bond strength, and to dominate the spectra in the case of a strong hydrogen-bond. It is argued that the application of multidimensional infrared spectroscopy in the region of the transition-state peak can provide a uniquely direct probe of the molecular events underlying breaking and forming of hydrogen-bonds in the condensed phase.

  15. Precision Measurement of the Longitudinal Double-Spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at √{s }=200 GeV

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cudd, A. B.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2015-08-01

    We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, AL L, in polarized p p collisions at center-of-mass energy √{s }=200 GeV . The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC p p data. The measured asymmetries provide evidence at the 3 σ level for positive gluon polarization in the Bjorken-x region x >0.05 .

  16. Neutral Hydrogen Structures Trace Dust Polarization Angle: Implications for Cosmic Microwave Background Foregrounds.

    Science.gov (United States)

    Clark, S E; Hill, J Colin; Peek, J E G; Putman, M E; Babler, B L

    2015-12-11

    Using high-resolution data from the Galactic Arecibo L-Band Feed Array HI (GALFA-Hi) survey, we show that linear structure in Galactic neutral hydrogen (Hi) correlates with the magnetic field orientation implied by Planck 353 GHz polarized dust emission. The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. At high Galactic latitudes, where the Planck data are noise dominated, the Hi data provide an independent constraint on the Galactic magnetic field orientation, and hence the local dust polarization angle. We detect strong cross-correlations between template maps constructed from estimates of dust intensity combined with either Hi-derived angles, starlight polarization angles, or Planck 353 GHz angles. The Hi data thus provide a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination.

  17. Effect of hydrogen addition on autoignited methane lifted flames

    KAUST Repository

    Choin, Byung Chul

    2012-01-01

    Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial temperature over 920 K, the threshold temperature for autoignition in methane jets, exhibited features typical of either a tribrachial edge or mild combustion depending on fuel mole fraction and the liftoff height increased with jet velocity. The liftoff height in the hydrogen-assisted autoignition regime was dependent on the square of the adiabatic ignition delay time for the addition of small amounts of hydrogen, as was the case for pure methane jets. When the initial temperature was below 920 K, where the methane fuel did not show autoignition behavior, the flame was autoignited by the addition of hydrogen, which is an ignition improver. The liftoff height demonstrated a unique feature in that it decreased nonlinearly as the jet velocity increased. The differential diffusion of hydrogen is expected to play a crucial role in the decrease in the liftoff height with increasing jet velocity.

  18. Temporal evolution of atmosphere pressure plasma jets driven by microsecond pulses with positive and negative polarities

    Science.gov (United States)

    Shao, Tao; Yang, Wenjin; Zhang, Cheng; Fang, Zhi; Zhou, Yixiao; Schamiloglu, Edl

    2014-09-01

    Current-voltage characteristics, discharge images, and optical spectra of atmospheric pressure plasma jets (APPJs) are studied using a microsecond pulse length generator producing repetitive output pulses with different polarities. The experimental results show that the APPJs excited by the pulses with positive polarity have longer plume, faster propagation speed, higher power, and more excited species, such as \\text{N}2 , O, He, \\text{N}2+ , than that with the negatively excited APPJs. The images taken using an intensified charge-coupled device show that the APPJs excited by pulses with positive polarity are characterized by a bullet-like structure, while the APPJs excited by pulses with negative polarity are continuous. The propagation speed of the APPJs driven by a microsecond pulse length generator is about tens of km/s, which is similar to the APPJs driven by a kHz frequency sinusoidal voltage source. The analysis shows that the space charge accumulation effect plays an important role during the discharge. The transient enhanced electric field induced by the accumulated ions between the needle-like electrode and the nozzle in the APPJs excited by pulses with negative polarity enhances electron field emission from the cathode, which is illustrated by the bright line on the time-integrated images. This makes the shape of the APPJ excited using pulses with negative polarity different from the bullet-like shape of the APPJs excited by pulses with positive polarity.

  19. Chaotic scattering from hydrogen atoms in a circularly polarized laser field

    International Nuclear Information System (INIS)

    Okon, Elias; Parker, William; Chism, Will; Reichl, Linda E.

    2002-01-01

    We investigate the classical dynamics of a hydrogen atom in a circularly polarized laser beam with finite radius. The spatial cutoff for the laser field allows us to use scattering processes to examine the laser-atom dynamics. We find that for certain field parameters, the delay times, the angular momentum, and the distance of closest approach of the scattered electron exhibit fractal behavior. This fractal behavior is a signature of chaos in the dynamics of the atom-field system

  20. Longitudinal double-spin asymmetry and cross section for inclusive jet production in polarized proton collisions at square root of s = 200 GeV.

    Science.gov (United States)

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Sánchez, M Calderón de la Barca; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Mazumdar, M R Dutta; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Gupta, N; Gutierrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; LaPointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Buren, G Van; van der Kolk, N; van Leeuwen, M; Molen, A M Vander; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2006-12-22

    We report a measurement of the longitudinal double-spin asymmetry A(LL) and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at square root of s = 200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A(LL) data cover 5 < pT < 17 GeV/c and disfavor at 98% C.L. maximal positive gluon polarization in the polarized nucleon.

  1. A new look for the Southern Hemisphere jet stream

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, D.; Ribera, P. [Facultad de CC Ambientales, Universidad Pablo de Olavide, Seville (Spain); Garcia-Herrera, R.; Hernandez, E. [Facultad de CC Fisicas, Universidad Complutense de Madrid (Spain); Gimeno, L. [Facultad de Ciencias, Universidad de Vigo, Orense (Spain)

    2005-05-01

    A new jet stream description, defined as the geostrophic streamline of maximum average velocity is proposed. An objective algorithm for detecting and tracking the jet has been developed, tested and applied to the NCEP/NCAR 200-hPa geopotential height in the Southern Hemisphere for the period 1958-2002. The results show the variability of the double character of the Southern Hemisphere jet, with a marked seasonality. During the warm season, a single jet can be found around 40 S, while autumn and winter are characterized by a clear double jet structure, with a strong and dominant subtropical jet located around 30 S and a polar front jet, progressively displaced toward southern latitudes and reaching 60 S by the end of the cold season. In general, a trend toward slower subtropical jets and stronger polar front jets has been detected during the study period. The Southern Annular Mode appears as a main modulator of the latitude and strength of the polar front jet, influencing to a minor extent its subtropical counterpart. The ENSO cycle strongly modifies the latitude and specially the strength of the subtropical jet, affecting its preferred wavenumber as well. Nevertheless, the effect of this oscillation seems fairly restricted in the Pacific, thus limiting the ability of this jet to drive the El Nino teleconnections along the Southern Hemisphere. The consistency of the results, when compared with previous jet climatologies, suggests that the new approach is a reliable jet-tracking method, thus providing a new tool to analyze climatic variability at hemispheric scales.

  2. Experimental investigation of ion cyclotron range of frequencies heating scenarios for ITER's half-field hydrogen phase performed in JET

    NARCIS (Netherlands)

    Lerche, E.; Van Eester, D.; Johnson, T. J.; Hellsten, T.; Ongena, J.; Mayoral, M. L.; Frigione, D.; Sozzi, C.; Calabro, G.; Lennholm, M.; Beaumont, P.; Blackman, T.; Brennan, D.; Brett, A.; Cecconello, M.; Coffey, I.; Coyne, A.; Crombe, K.; Czarnecka, A.; Felton, R.; Giroud, C.; Gorini, G.; Hellesen, C.; Jacquet, P.; Kiptily, V.; Knipe, S.; Krasilnikov, A.; Maslov, M.; Monakhov, I.; Noble, C.; Nocente, M.; Pangioni, L.; Proverbio, I.; Sergienko, G.; Stamp, M.; Studholme, W.; Tardocchi, M.; Vdovin, V.; Versloot, T.; Voitsekhovitch, I.; Whitehurst, A.; Wooldridge, E.; Zoita, V.; JET-EFDA Contributors,

    2012-01-01

    Two ion cyclotron range of frequencies (ICRF) heating schemes proposed for the half-field operation phase of ITER in hydrogen plasmas—fundamental H majority and second harmonic 3 He ICRF heating—were recently investigated in JET. Although the same magnetic field and RF frequencies ( f ≈ 42 MHz and f

  3. RECURRENT SOLAR JETS INDUCED BY A SATELLITE SPOT AND MOVING MAGNETIC FEATURES

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jie; Su, Jiangtao; Yin, Zhiqiang; Priya, T. G.; Zhang, Hongqi; Xu, Haiqing; Yu, Sijie [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Liu, Jihong, E-mail: chenjie@bao.ac.cn [Shi Jiazhuang University, Shi Jiazhuang, 050035 (China)

    2015-12-10

    Recurrent and homologous jets were observed to the west edge of active region NOAA 11513 at the boundary of a coronal hole. We find two kinds of cancellations between opposite polarity magnetic fluxes, inducing the generation of recurrent jets. First, a satellite spot continuously collides with a pre-existing opposite polarity magnetic field and causes recurrent solar jets. Second, moving magnetic features, which emerge near the sunspot penumbra, pass through the ambient plasma and eventually collide with the opposite polarity magnetic field. Among these recurrent jets, a blowout jet that occurred around 21:10 UT is investigated. The rotation of the pre-existing magnetic field and the shear motion of the satellite spot accumulate magnetic energy, which creates the possibility for the jet to experience blowout right from the standard.

  4. Precision Measurement of the Longitudinal Double-Spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at sqrt[s]=200  GeV.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cudd, A B; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2015-08-28

    We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, A_{LL}, in polarized pp collisions at center-of-mass energy sqrt[s]=200  GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC pp data. The measured asymmetries provide evidence at the 3σ level for positive gluon polarization in the Bjorken-x region x>0.05.

  5. Detailed studies of a high-density polarized hydrogen gas target for storage rings

    International Nuclear Information System (INIS)

    Zapfe, K.; Brueckner, W.; Gaul, H.G.; Grieser, M.; Lin, M.T.; Moroz, Z.; Povh, B.; Rall, M.; Stechert, B.; Steffens, E.; Stenger, J.; Stock, F.; Tonhaeuser, J.; Montag, C.; Rathmann, F.; Fick, D.; Braun, B.; Graw, G.; Haeberli, W.

    1996-01-01

    A high-density target of polarized atomic hydrogen gas for applications in storage rings was produced by injecting atoms from an atomic beam source into a T-shaped storage cell. The influence of the internal gas target on electron-cooled beams of 27 MeV α-particles and 23 MeV protons in the Heidelberg Test Storage Ring has been studied in detail. Target polarization and target thickness were measured by means of 27 MeV α-particles. For hyperfine states 1+2 a target thickness of n=(0.96±0.04) x 10 14 H/cm 2 was achieved with the cell walls cooled to 100 K. Working with a weak magnetic holding field (∼5 G) the maximum target polarization was P T =0.84±0.02 when state 1 and P T =0.46±0.01 when states 1+2 were injected. The target polarization was found to be constant over a period of 3 months with a net charge of Q∼100 C passing the storage cell. (orig.)

  6. Trajectory Design for the Lunar Polar Hydrogen Mapper Mission

    Science.gov (United States)

    Genova, Anthony L.; Dunham, David W.

    2017-01-01

    The presented trajectory was designed for the Lunar Polar Hydrogen Mapper (LunaH-Map) 6U CubeSat, which was awarded a ride on NASAs Space Launch System (SLS) with Exploration Mission 1 (EM-1) via NASAs 2015 SIMPLEX proposal call. After deployment from EM-1s upper stage (which is planned to enter heliocentric space via a lunar flyby), the LunaH-Map CubeSat will alter its trajectory via its low-thrust ion engine to target a lunar flyby that yields a Sun-Earth-Moon weak stability boundary transfer to set up a ballistic lunar capture. Finally, the orbit energy is lowered to reach the required quasi-frozen science orbit with periselene above the lunar south pole.

  7. Polarimetry and photometry of M87: is the jet fading

    Energy Technology Data Exchange (ETDEWEB)

    Warren-Smith, R F; King, D J; Scarrott, S M [Durham Univ. (UK). Dept. of Physics

    1984-09-15

    Optical linear polarization mapping and photometry of M87 is presented in B and R wavebands. The results indicate significant polarization in the galactic nucleus. Polarization in the jet in B is consistent with other recent maps obtained for this area in blue light and no significant variation with wavelength between B and R wavebands is found. The spectral index of the jet radiation is measured to be S=-1.65+-0.2 over the wavelength range observed. Comparison of the integrated B magnitude of the jet with previous independent measurements over the period 1934-80 suggests that the jet is variable and has been fading more or less uniformly by about 0.8 mag per decade between 1964 and 1980.

  8. Hydrogen jet combustion in a scramjet combustor with the rearwall-expansion cavity

    Science.gov (United States)

    Zhang, Yan-Xiang; Wang, Zhen-Guo; Sun, Ming-Bo; Yang, Yi-Xin; Wang, Hong-Bo

    2018-03-01

    This study is carried out to experimentally investigate the combustion characteristics of the hydrogen jet flame stabilized by the rearwall-expansion cavity in a model scramjet combustor. The flame distributions are characterized by the OH* spontaneous emission images, and the dynamic features of the flames are studied through the high speed framing of the flame luminosity. The combustion modes are further analyzed based on the visual flame structure and wall pressure distributions. Under the present conditions, the combustion based on the rearwall-expansion cavity appears in two distinguished modes - the typical cavity shear-layer stabilized combustion mode and the lifted-shear-layer stabilized combustion mode. In contrast with the shear-layer stabilized mode, the latter holds stronger flame. The transition from shear-layer stabilized combustion mode to lifted-shear-layer stabilized mode usually occurs when the equivalence ratio is high enough. While the increases of the offset ratio and upstream injection distance both lead to weaker jet-cavity interactions, cause longer ignition delay, and thus delay the mode transition. The results reveal that the rearwall-expansion cavity with an appropriate offset ratio should be helpful in delaying mode transition and preventing thermal choke, and meanwhile just brings minor negative impact on the combustion stability and efficiency.

  9. Polarization images of the inner regions of Comet Halley

    International Nuclear Information System (INIS)

    Eaton, N.; Scarrott, S.M.; Warren-Smith, R.F.

    1988-01-01

    The present CCD polarimeter images of intensity and polarization within the near-nucleus regions of Comet Halley show the occurrence of dust jets on two days in January, 1986, which exhibit increased polarizations above the level of the surrounding coma. Three possible reasons for the enhanced polarization in the jets are considered, assuming that the polarization increase is due to dust grains: (1) the size distribution of the grains could be different from the surrounding coma; (2) the material of the grains could have a different refractive index; and (3) the ratio of dust to gas emission could be different in the jets. 13 references

  10. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  11. A laser driven source of spin polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Poelker, M.; Coulter, K.P.; Holt, R.J.; Jones, C.E.; Kowalczyk, R.S.; Young, L.; Toporkov, D.

    1993-01-01

    Recent results from a laser-driven source of polarized hydrogen (H) and deuterium (D) are presented. The performance of the source is described as a function of atomic flow rate and magnetic field. The data suggest that because atomic densities in the source are high, the system can approach spin-temperature equilibrium although applied magnetic fields are much larger than the critical field of the atoms. The authors also observe that potassium contamination in the source emittance can be reduced to a negligible amount using a teflon-lined transport tube

  12. Blow-off of hydrogen using an optimized design of discharge jet-mixer arrangement

    International Nuclear Information System (INIS)

    Ristow, Torsten

    2011-01-01

    Hydrogen is ignitable in air at volume concentrations between 4 % and 75 %. Therefore, in the case of an emergency evacuation of a hydrogen-cooled generator in nuclear power plants, the gas has to be safely blown-off above the turbine building. Especially, a leakage at the hydrogen containing piping system at the generator has gained more and more importance in the context of safety assessments. The design of a blow-off system respects two safety aspects: Firstly, a short blow-off time is necessary to reduce the hydrogen release inside the turbine building in case of a leakage. Secondly, for the postulated ignition of the released hydrogen on the roof of the building the resulting pressure load must remain below the maximum admissible one of the turbine building roof. In order to fulfill the first condition an appropriate fast evacuation piping system from the generator to the blow-off outlet is designed. Regarding the latter the blow-off system uses special discharge nozzles placed horizontally in a radial-symmetric configuration. In this respect, the influence of strong wind conditions during the evacuation process is also considered. The resulting ignitable volume of the overlapping H2-air clouds does not exceed the maximum allowed ignitable volume. In the following the underlying process of blow-off by a fast hydrogen evacuation system is discussed. First the transient general blow-off behavior in the dedicated piping system is analyzed with the fluid piping tool ROLAST. The results of these calculations are boundary conditions for the subsequent qualification of the blow-off jet-mixer. Here a proof of the general functionality is given (2D CFD). Subsequently the blow-off behavior of the H2-air mixture is discussed in independent 3D CFD calculations with and without wind. From these analyses the possible ignitable gas volumes are determined. Final step is a simplified semi-analytical assessment of the resulting possible deflagration loads on the civil structure

  13. Distillation of hydrogen isotopes for polarized HD targets

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, T., E-mail: takeshi@rcnp.osaka-u.ac.jp [Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047 (Japan); Bouchigny, S. [IN2P3, Institut de Physique Nucleaire, F-91406 Orsay (France); CEA LIST, BP6-92265 Fontenay-aux-Roses, CEDEX (France); Didelez, J.-P. [IN2P3, Institut de Physique Nucleaire, F-91406 Orsay (France); Fujiwara, M. [Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047 (Japan); Fukuda, K. [Kansai University of Nursing and Health Sciences, Shizuki Awaji 656-2131 (Japan); Kohri, H.; Kunimatsu, T.; Morisaki, C.; Ono, S. [Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047 (Japan); Rouille, G. [IN2P3, Institut de Physique Nucleaire, F-91406 Orsay (France); Tanaka, M. [Kobe Tokiwa University, Ohtani-cho 2-6-2, Nagata, Kobe 653-0838 (Japan); Ueda, K.; Uraki, M.; Utsuro, M. [Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047 (Japan); Wang, S.Y. [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Physics, National Kaohsiung Normal University, Kaohsiung 824, Taiwan (China); Yosoi, M. [Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047 (Japan)

    2012-02-01

    We have developed a new cryogenic distillation system to purify Hydrogen-Deuteride (HD) gas for polarized HD targets in LEPS experiments at SPring-8. A small amount of ortho-H{sub 2} ({approx}0.01%) in the HD gas plays an important role in efficiently polarizing the HD target. Since there are 1-5% impurities of H{sub 2} and D{sub 2} in commercially available HD gases, it is necessary to purify the HD gas up to {approx}99.99%. The distillation system is equipped with a cryogenic distillation unit filled with many small stainless steel cells called 'Heli-pack'. The distillation unit consists of a condenser part, a rectification part, and a reboiler part. The unit is kept at the temperature of 17-21 K. The Heli-pack has a large surface area that makes a good contact between gases and liquids. An amount of 5.2 mol of commercial HD gas is fed into the distillation unit. Three trials were carried out to purify the HD gas by changing temperatures (17.5 K and 20.5 K) and gas extraction speeds (1.3 ml/min and 5.2 ml/min). The extracted gas was analyzed using a gas analyzer system combining a quadrupole mass spectrometer with a gas chromatograph. One mol of HD gas with a purity better than 99.99% has been successfully obtained for the first time. The effective NTP (Number of Theoretical Plates), which is an indication of the distillation performances, is obtained to be 37.2{+-}0.6. This value is in good agreement with a designed value of 37.9. The HD target is expected to be efficiently polarized under a well-controlled condition by adding an optimal amount of ortho-H{sub 2} to the purified HD gas.

  14. Transverse polarization of Σ+(1189) in photoproduction on a hydrogen target in CLAS

    Science.gov (United States)

    Nepali, C. S.; Amaryan, M.; Adhikari, K. P.; Aghasyan, M.; Anefalos Pereira, S.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Crede, V.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Gabrielyan, M. Y.; Gevorgyan, N.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kvaltine, N. D.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Torayev, B.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2013-04-01

    Experimental results on the Σ+(1189) hyperon transverse polarization in photoproduction on a hydrogen target using the CLAS detector at Jefferson Laboratory are presented. The Σ+(1189) was reconstructed in the exclusive reaction γ+p→KS0+Σ+(1189) via the Σ+→pπ0 decay mode. The KS0 was reconstructed in the invariant mass of two oppositely charged pions with the π0 identified in the missing mass of the detected pπ+π- final state. Experimental data were collected in the photon energy range Eγ=1.0-3.5 GeV (s range 1.66-2.73 GeV). We observe a large negative polarization of up to 95%. As the mechanism of transverse polarization of hyperons produced in unpolarized photoproduction experiments is still not well understood, these results will help to distinguish between different theoretical models on hyperon production and provide valuable information for the searches of missing baryon resonances.

  15. Polarimetry of the polarized hydrogen deuteride HDice target under an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Laine, Vivien E. [Blaise Pascal Univ., Aubiere (France)

    2013-10-01

    The study of the nucleon structure has been a major research focus in fundamental physics in the past decades and still is the main research line of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). For this purpose and to obtain statistically meaningful results, having both a polarized beam and a highly efficient polarized target is essential. For the target, this means high polarization and high relative density of polarized material. A Hydrogen Deuteride (HD) target that presents both such characteristics has been developed first at Brookhaven National Lab (BNL) and brought to the Hall B of Jefferson Lab in 2008. The HD target has been shown to work successfully under a high intensity photon beam (BNL and Jefferson Lab). However, it remained to be seen if the target could stand an electron beam of reasonably high current (nA). In this perspective, the target was tested for the first time in its frozen spin mode under an electron beam at Jefferson Lab in 2012 during the g14 experiment. This dissertation presents the principles and usage procedures of this HD target. The polarimetry of this target with Nuclear Magnetic Resonance (NMR) during the electron beam tests is also discussed. In addition, this dissertation also describes another way to perform target polarimetry with the elastic scattering of electrons off a polarized target by using data taken on helium-3 during the E97-110 experiment that occurred in Jefferson Lab's Hall A in 2003.

  16. The E760 Jet Target: Measurements of performance at 77K

    International Nuclear Information System (INIS)

    Boero, G.; Macri, M.; Robutti, E.; Allspach, D.; Kendziora, C.; Marinelli, M.

    1994-11-01

    In this report we describe the measurements performed on the E760 hydrogen Jet Target in order to some of the basic parameters of the system. These measurements were performed in the context of the upgrade program of the target for the successor experiment E835. Fermilab experiment E760 studied charmonium states formed in antiproton-proton annihilations. The antiproton-proton interactions were produced in a jet of hydrogen gas which intersected the antiproton beam coasting in the Fermilab Antiproton Accumulator. The results from E760 have shown that an increase in integrated luminosity by a factor of more than 5 is needed to complete the study of the charmonium spectrum. The E835 experiment is designed to achieve this by increasing the intensity of the antiproton beam and the density of the hydrogen-cluster-jet. This report is concerned with preparations for the work needed to increase the density of the hydrogen-cluster-jet

  17. Charmonium Spectroscopy at the ISR using an Antiproton Beam and a Hydrogen Jet Target

    CERN Multimedia

    2002-01-01

    This experiment studies the formation of charmonium states not directly accessible in e|+e|- annihilation. The good momentum definition of the cooled @* beam allows a precise measurement of the width of these states. A hydrogen gas jet has been used, yielding a luminosity of 3.10|3|0 cm|-|2sec|-|1 with 10|1|1~@*. Three types of exclusive events are selected: e|+e|-~(J/@Y) for calibration of the energy of the machine, e|+e|-@g~(@c states) and @g@g~(@h^c, @h'^c). The experiment uses MWPC, scintillator hodoscopes, Freon Cerenkov counters for the e|+e|- determination and electromagnetic calorimeters (@g detection and energies of the electrons).

  18. Multiphoton ionization of the hydrogen atom by a circularly polarized electromagnetic field

    International Nuclear Information System (INIS)

    Prepelitsa, O.B.

    1999-01-01

    This paper examines the multiphoton ionization of the ground state of the hydrogen atom in the field of a circularly polarized intense electromagnetic wave. To describe the states of photoelectrons, quasiclassical wave functions are introduced that partially allow for the effect of an intense electromagnetic wave and that of the Coulomb potential. Expressions are derived for the angular and energy distributions of photoelectrons with energies much lower than the ionization potential of an unperturbed atom. It is found that, due to allowance for the Coulomb potential in the wave function of the final electron states, the transition probability near the ionization threshold tends to a finite value. In addition, the well-known selection rules for multiphoton transitions in a circularly polarized electromagnetic field are derived in a natural way. Finally, the results are compared with those obtained in the Keldysh-Faisal-Reiss approximation

  19. Two-color stabilization of atomic hydrogen in circularly polarized laser fields

    International Nuclear Information System (INIS)

    Bauer, D.; Ceccherini, F.

    2002-01-01

    The dynamic stabilization of atomic hydrogen against ionization in high-frequency single- and two-color, circularly polarized laser pulses is observed by numerically solving the three-dimensional, time-dependent Schroedinger equation. The single-color case is revisited and numerically determined ionization rates are compared with both, the exact and the approximate high-frequency Floquet rates. The positions of the peaks in the photoelectron spectra can be explained with the help of dressed initial states. In two-color laser fields of opposite circular polarization, the stabilized probability density may be shaped in various ways. For laser frequencies ω 1 and ω 2 =nω 1 , n=2,3,..., and sufficiently large excursion amplitudes (n+1) distinct probability density peaks are observed. This may be viewed as the generalization of the well-known 'dichotomy' in linearly polarized laser fields, i.e, as 'trichotomy', 'quatrochotomy', 'pentachotomy' etc. All those observed structures and their 'hula-hoop'-like dynamics can be understood with the help of high-frequency Floquet theory and the two-color Kramers-Henneberger transformation. The shaping of the probability density in the stabilization regime can be realized without additional loss in the survival probability, as compared to the corresponding single-color results

  20. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  1. Anomalous high-frequency wave activity flux preceding anomalous changes in the Northern polar jet

    Science.gov (United States)

    Nakamura, Mototaka; Kadota, Minoru; Yamane, Shozo

    2010-05-01

    show anomalous acceleration or deceleration of U in the polar region, accompanied by anomalies of the opposite sign in the subtropics throughout the troposphere and stratosphere. The anomalies are conspicuously large in the polar stratosphere. The composited anomalous Z and U in the preceding and following months indicate that these large anomalies in dZ and dU occur when the polar troposphere and stratosphere are relaxing back toward the climatology from strongly anomalous states that closely resemble the positive and negative phases of the NAM. In this process of relaxation, the atmosphere actually overshoots the climatology and develops anomalies of the sign opposite to those existed initially. The anomalous wave activity flux exhibit strong signals of anomalous upward (downward) propagation of high-frequency waves in the North Atlantic storm track from the bottom of the atmosphere, penetrating up to the stratosphere, when the polar jet is anomalously strong (weak) in the preceding month. The anomalous horizontal wave activity flux shows anomalous eastward (westward) flux emanating from the North Atlantic storm track when the polar jet is anomalously strong (weak) in the preceding month. These patterns suggest that anomalous high-frequency waves originating from the North Atlantic storm track in the lower troposphere contribute to the destruction of both phases of the NAM. However, the anomalous flux divergence is very noisy everywhere due to the noisiness of the advective horizontal flux, making it difficult to ascertain the role of the high-frequency transients in the destruction of the NAM.

  2. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VIII. Faraday Rotation in Parsec-scale AGN Jets

    Science.gov (United States)

    Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.; Aller, Hugh D.; Homan, Daniel C.; Kovalev, Yuri Y.; Pushkarev, Alexander B.; Savolainen, Tuomas

    2012-10-01

    We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure and the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal

  3. MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VIII. FARADAY ROTATION IN PARSEC-SCALE AGN JETS

    International Nuclear Information System (INIS)

    Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.; Aller, Hugh D.; Homan, Daniel C.; Kovalev, Yuri Y.; Pushkarev, Alexander B.; Savolainen, Tuomas

    2012-01-01

    We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure and the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal

  4. Solvent jet desorption capillary photoionization-mass spectrometry.

    Science.gov (United States)

    Haapala, Markus; Teppo, Jaakko; Ollikainen, Elisa; Kiiski, Iiro; Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2015-03-17

    A new ambient mass spectrometry method, solvent jet desorption capillary photoionization (DCPI), is described. The method uses a solvent jet generated by a coaxial nebulizer operated at ambient conditions with nitrogen as nebulizer gas. The solvent jet is directed onto a sample surface, from which analytes are extracted into the solvent and ejected from the surface in secondary droplets formed in collisions between the jet and the sample surface. The secondary droplets are directed into the heated capillary photoionization (CPI) device, where the droplets are vaporized and the gaseous analytes are ionized by 10 eV photons generated by a vacuum ultraviolet (VUV) krypton discharge lamp. As the CPI device is directly connected to the extended capillary inlet of the MS, high ion transfer efficiency to the vacuum of MS is achieved. The solvent jet DCPI provides several advantages: high sensitivity for nonpolar and polar compounds with limit of detection down to low fmol levels, capability of analyzing small and large molecules, and good spatial resolution (250 μm). Two ionization mechanisms are involved in DCPI: atmospheric pressure photoionization, capable of ionizing polar and nonpolar compounds, and solvent assisted inlet ionization capable of ionizing larger molecules like peptides. The feasibility of DCPI was successfully tested in the analysis of polar and nonpolar compounds in sage leaves and chili pepper.

  5. A turbulent radio jet

    International Nuclear Information System (INIS)

    Kahn, F.D.

    1983-01-01

    A relativistic plasma flow can explain many of the observations on the one-sided jets, which are associated with radio sources that show superluminal motions in their cores. The pressure from the ambient medium will communicate across the jet in a relatively short distance, typically 30 kpc. The friction between the jet and the external medium then makes the flow go turbulent. As a result the jet dissipates energy and will be brought to rest within a few hundred kpc, if it does not strike an obstacle before. The mean flow in the jet is strongly sheared and stretches the lines of force of any magnetic field frozen into the plasma. The dominant field direction, as seen from the rest frame of the plasma, is therefore parallel to the length of the jet. Polarization measurements have shown that this is in fact the case. (author)

  6. Jets in Hydrogen-poor Superluminous Supernovae: Constraints from a Comprehensive Analysis of Radio Observations

    Science.gov (United States)

    Coppejans, D. L.; Margutti, R.; Guidorzi, C.; Chomiuk, L.; Alexander, K. D.; Berger, E.; Bietenholz, M. F.; Blanchard, P. K.; Challis, P.; Chornock, R.; Drout, M.; Fong, W.; MacFadyen, A.; Migliori, G.; Milisavljevic, D.; Nicholl, M.; Parrent, J. T.; Terreran, G.; Zauderer, B. A.

    2018-03-01

    The energy source powering the extreme optical luminosity of hydrogen-stripped superluminous supernovae (SLSNe-I) is not known, but recent studies have highlighted the case for a central engine. Radio and/or X-ray observations are best placed to track the fastest ejecta and probe the presence of outflows from a central engine. We compile all the published radio observations of SLSNe-I to date and present three new observations of two new SLSNe-I. None were detected. Through modeling the radio emission, we constrain the subparsec environments and possible outflows in SLSNe-I. In this sample, we rule out on-axis collimated relativistic jets of the kind detected in gamma-ray bursts (GRBs). We constrain off-axis jets with opening angles of 5° (30°) to energies of {E}{{k}}values {ε }e=0.1 and {ε }B=0.01. The deepest limits rule out emission of the kind seen in faint uncollimated GRBs (with the exception of GRB 060218) and from relativistic SNe. Finally, for the closest SLSN-I, SN 2017egm, we constrain the energy of an uncollimated nonrelativistic outflow like those observed in normal SNe to {E}{{k}}≲ {10}48 erg.

  7. Spin-polarized hydrogen Rydberg time-of-flight: Experimental measurement of the velocity-dependent H atom spin-polarization

    International Nuclear Information System (INIS)

    Broderick, Bernadette M.; Lee, Yumin; Doyle, Michael B.; Chernyak, Vladimir Y.; Suits, Arthur G.; Vasyutinskii, Oleg S.

    2014-01-01

    We have developed a new experimental method allowing direct detection of the velocity dependent spin-polarization of hydrogen atoms produced in photodissociation. The technique, which is a variation on the H atom Rydberg time-of-flight method, employs a double-resonance excitation scheme and experimental geometry that yields the two coherent orientation parameters as a function of recoil speed for scattering perpendicular to the laser propagation direction. The approach, apparatus, and optical layout we employ are described here in detail and demonstrated in application to HBr and DBr photolysis at 213 nm. We also discuss the theoretical foundation for the approach, as well as the resolution and sensitivity we achieve

  8. Evidence of 9Be  +  p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas

    Science.gov (United States)

    Krasilnikov, A. V.; Kiptily, V.; Lerche, E.; Van Eester, D.; Afanasyev, V. I.; Giroud, C.; Goloborodko, V.; Hellesen, C.; Popovichev, S. V.; Mironov, M. I.; contributors, JET

    2018-02-01

    The intensity of 9Be  +  p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be  +  p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.

  9. Ten per cent polarized optical emission from GRB 090102.

    Science.gov (United States)

    Steele, I A; Mundell, C G; Smith, R J; Kobayashi, S; Guidorzi, C

    2009-12-10

    The nature of the jets and the role of magnetic fields in gamma-ray bursts (GRBs) remains unclear. In a baryon-dominated jet only weak, tangled fields generated in situ through shocks would be present. In an alternative model, jets are threaded with large-scale magnetic fields that originate at the central engine and that accelerate and collimate the material. To distinguish between the models the degree of polarization in early-time emission must be measured; however, previous claims of gamma-ray polarization have been controversial. Here we report that the early optical emission from GRB 090102 was polarized at 10 +/- 1 per cent, indicating the presence of large-scale fields originating in the expanding fireball. If the degree of polarization and its position angle were variable on timescales shorter than our 60-second exposure, then the peak polarization may have been larger than ten per cent.

  10. Intensification process of air-hydrogen mixture burning in the variable cross section channel by means of the air jet

    Science.gov (United States)

    Zamuraev, V. P.; Kalinina, A. P.

    2018-03-01

    The paper presents the results of numerical modeling of a transonic region formation in the flat channel. Hydrogen flows into the channel through the holes in the wall. The jet of compressed air is localized downstream the holes. The transonic region formation is formed by the burning of heterogeneous hydrogen-air mixture. It was considered in the framework of the simplified chemical kinetics. The interesting feature of the regime obtained is the following: the distribution of the Mach numbers is qualitatively similar to the case of pulse-periodic energy sources. This mode is a favorable prerequisite for the effective fuel combustion in the expanding part of the channel when injecting fuel into this part.

  11. Mapping of the atomic hydrogen density in combustion processes at atmospheric pressure by two-photon polarization spectroscopy

    International Nuclear Information System (INIS)

    Steiger, A.; Gruetzmacher, K.; Steiger, M.; Gonzalo, A.B.; Rosa, M.I. de la

    2001-01-01

    With laser spectroscopic techniques used so far, quantitative measurements of atomic number densities in flames and other combustion processes at atmospheric pressure yield no satisfying results because high quenching rates remarkably reduce the signal size and the results suffer from large uncertainties. Whereas, two-photon polarization spectroscopy is not limited by quenching, as the polarization signal is a direct measure of the two-photon absorption. This sensitive laser technique with high spatial and temporal resolution has been applied to determine absolute number densities and the kinetic temperatures of atomic hydrogen in flames for the first time. The great potential of this method of measurement comes into its own only in conjunction with laser radiation of highest possible spectral quality, i.e. single-frequency ns-pulses with peak irradiance of up to 1 GW/cm 2 tunable around 243 nm for 1S-2S two-photon transition of atomic hydrogen

  12. Polarimetric observations of the innermost regions of relativistic jets in X-ray binaries

    Directory of Open Access Journals (Sweden)

    Russell D.M.

    2013-12-01

    Full Text Available Synchrotron emission from the relativistic jets launched close to black holes and neutron stars can be highly linearly polarized, depending on the configuration of the magnetic field. In X-ray binaries, optically thin synchrotron emission from the compact jets resides at infrared–optical wavelengths. The polarimetric signature of the jets is detected in the infrared and is highly variable in some X-ray binaries. This reveals the magnetic geometry in the compact jet, in a region close enough to the black hole that it is influenced by its strong gravity. In some cases the magnetic field is turbulent and variable near the jet base. In Cyg X–1, the origin of the γ-ray, X-ray and some of the infrared polarization is likely the optically thin synchrotron power law from the inner regions of the jet. In order to reproduce the polarization properties, the magnetic field in this region must be highly ordered, in contrast to other sources.

  13. The nature of hydrogen-bonding interactions in nonsteroidal anti-inflammatory drugs revealed by polarized IR spectroscopy

    Science.gov (United States)

    Hachuła, Barbara

    2018-01-01

    The influence of hydrogen-bonding interactions in the solid phase on the IR spectroscopic pattern of the νOsbnd H band of nonsteroidal anti-inflammatory drugs (NSAIDs) was studied experimentally by IR spectroscopy with the use of polarized light at two temperatures (293 K and 77 K) and in isotopic dilution. The neat and deuterated crystals of (S)-naproxen ((S)-NPX), (R)-flurbiprofen ((R)-FBP), (RS)-flurbiprofen ((RS)-FBP) and (RS)-ketoprofen ((RS)-KTP) were obtained by melt crystallization between the two squeezed CaF2 plates. The vibrational spectra of selected α-aryl propionic acid derivatives (2APAs) reflected the characteristics of their hydrogen-bond networks, i.e., 2APAs were characterized by the chain ((S)-NPX, (R)-FBP) and by dimeric ((RS)-FBP, (RS)-KTP) arrangement of hydrogen bonds in the crystal lattice. Spectroscopic results showed that the interchain (through-space) exciton coupling, between two laterally-spaced hydrogen bonds, dominates in the crystals of four NSAIDs. The same exciton coupled hydrogen bonds were also responsible for the H/D isotopic recognition mechanism in the crystalline spectra of deuterated 2APAs. The presented spectral results may help to predict the hydrogen bond motifs in the crystalline NSAIDs, which structures are not yet known, based on their IR spectra of hydrogen bond in the crystals.

  14. An Optical Study of Processes in Hydrogen Flame in a Tube

    Science.gov (United States)

    2002-07-01

    growth of the hydrogen- flame length with the hydrogen flow rate was observed, whereas for a turbulent hydrogen jet (Reynolds number Re > 104 [5]), the... flame length remained almost constant and varied only weakly with the flow rate of hydrogen. For a subsonic jet flow, flame images display an...There are some data in the literature which show how the diffusive- flame length varies with the rate of hydrogen flow [4, 7]. The length of a

  15. Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air

    KAUST Repository

    Choi, Byungchul

    2012-04-01

    Autoignited lifted flame behavior in laminar jets of methane/hydrogen mixture fuels has been investigated experimentally in heated coflow air. Three regimes of autoignited lifted flames were identified depending on initial temperature and hydrogen to methane ratio. At relatively high initial temperature, addition of a small amount of hydrogen to methane improved ignition appreciably such that the liftoff height decreased significantly. In this hydrogen-assisted autoignition regime, the liftoff height increased with jet velocity, and the characteristic flow time - defined as the ratio of liftoff height to jet velocity - correlated well with the square of the adiabatic ignition delay time. At lower temperature, the autoignited lifted flame demonstrated a unique feature in that the liftoff height decreased with increasing jet velocity. Such behavior has never been observed in lifted laminar and turbulent jet flames. A transition regime existed between these two regimes at intermediate temperature. © 2011 The Combustion Institute.

  16. New directions in the theory of spin-polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Koelman, J.M.V.A.

    1988-01-01

    The three chapters of this thesis dealing with collisions between hydrogen (or deuterium) atoms in their ground state, each treat a different development in the theory of atomic hydrogen or deuterium gas. The decay due to interatomic collisions hindered till now all attempts to reach the low temperature, high-density regime where effects due to degeneracy are expected to show up. In ch. 2 a simple way out is presented for the case of Fermi gases: In spin-polarized Fermi systems at very low temperatures collisions are much effective than in Bose systems. For the Fermi gas, consisting of magnetically confined deuterium atoms, it appears that fast spin-exchange collisions automatically lead to a completely spin-polarized gas for which the spin-relaxation limited lifetime increases dramatically with decreasing temperature. As also the ratio of internal thermalization rate over decay rate increases with decreasing temperature, this gas can be cooled by forced evaporation down to very low temperatures. In ch. 3 it iis shown that the nuclear spin dynamics due to the hyperfine interaction during collisions, strongly limits the improvement in frequency stability attainable by H masers operating at low temperatures. In ch. 4 the phenomenon of spin waves is studied. It is shown that, despite the fact that interactions between two atoms are nuclear-spin independent, the outcome of a scattering event does not depend on the nuclear spins involved due to the particle indistinguishability effects at low collision energies. This effect gives rise to quantum phenomena on a macroscopic scale via the occurrence of spin waves. (author). 185 refs.; 34 figs

  17. Polarized semi-inclusive deep-inelastic scattering on transversely and longitudinally polarized nucleons at HERMES

    International Nuclear Information System (INIS)

    Hommes, B.

    2005-01-01

    The HERMES experiment has measured double spin asymmetries in the cross section for deep-inelastic scattering of longitudinal polarized positrons off longitudinal polarized hydrogen and deuterium targets. From these asymmetries, based on inclusive and semi-inclusive measurements, polarized quark distributions were extracted as a function of x. Single-spin azimuthal asymmetries in semi-inclusive pion production were measured by the HERMES experiment for the first time, with a transversely polarized hydrogen target. Two different sine-dependencies were extracted which can be related to the quark transversity distribution h q 1 (x) and the Sivers function (Author)

  18. Magnetic Flux Cancellation as the Origin of Solar Quiet-region Pre-jet Minifilaments

    Energy Technology Data Exchange (ETDEWEB)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L., E-mail: navdeep.k.panesar@nasa.gov [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2017-08-01

    We investigate the origin of 10 solar quiet-region pre-jet minifilaments , using EUV images from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) and magnetograms from the SDO Helioseismic and Magnetic Imager (HMI). We recently found that quiet-region coronal jets are driven by minifilament eruptions, where those eruptions result from flux cancellation at the magnetic neutral line under the minifilament. Here, we study the longer-term origin of the pre-jet minifilaments themselves. We find that they result from flux cancellation between minority-polarity and majority-polarity flux patches. In each of 10 pre-jet regions, we find that opposite-polarity patches of magnetic flux converge and cancel, with a flux reduction of 10%–40% from before to after the minifilament appears. For our 10 events, the minifilaments exist for periods ranging from 1.5 hr to 2 days before erupting to make a jet. Apparently, the flux cancellation builds a highly sheared field that runs above and traces the neutral line, and the cool transition region plasma minifilament forms in this field and is suspended in it. We infer that the convergence of the opposite-polarity patches results in reconnection in the low corona that builds a magnetic arcade enveloping the minifilament in its core, and that the continuing flux cancellation at the neutral line finally destabilizes the minifilament field so that it erupts and drives the production of a coronal jet. Thus, our observations strongly support that quiet-region magnetic flux cancellation results in both the formation of the pre-jet minifilament and its jet-driving eruption.

  19. Application of the Ursell-Mayer method in the theory of spin-polarized atomic hydrogen

    International Nuclear Information System (INIS)

    Kilic, S.; Radelja, T.

    1981-01-01

    Employing the Ursell-Mayer method and Ljolje semi-free gas model analytic relations describing ground state properties (energy, pressure, compressibility, sound velocity, radial distribution function and one-particle density matrix) of spin-polarized atomic hydrogen were derived. The expressions are valid up to density 2 10 26 atoms/m 3 . It was found out that at density of 2 10 26 atoms/m 3 the condensation of particle in momentum space is 88% (at absolute zero). (orig.)

  20. Polarization bremsstrahlung of a hydrogen-like ion in a single crystal

    International Nuclear Information System (INIS)

    Astapenko, V. A.

    2009-01-01

    Polarization bremsstrahlung (PB) that arises when a fast hydrogen-like ion is scattered in a single crystal is investigated theoretically. Four types of the process are analyzed that are caused by virtual excitation of electrons of the target and of the incident particle (IP), as well as by a coherent and incoherent interaction between the IP and the single crystal. The spectral, angular, and velocity (of the IP) characteristics of PB are calculated with regard to the spectral function of a photodetector. Optimal observation conditions and regions in which different types of PB are dominant are determined, and the dependence of these regions on the charge of the IP nucleus and of the target atoms is revealed

  1. The JET multi-pellet injector launcher

    International Nuclear Information System (INIS)

    Kupschus, P.; Bailey, W.; Gadeberg, M.; Hedley, L.; Twyman, P.; Szabo, T.; Evans, D.

    1987-01-01

    Under a collaborative agreement between the Joint European Torus JET and the United States Department of Energy US DOE, JET and Oak Ridge National Laboratory (ORNL) jointly built a multi-pellet injector for fuelling and re-fuelling of the JET plasma. A three-barrel repetitive pneumatic pellet Launcher - built by ORNL - is attached to a JET pellet launcher-machine interface (in short: Pellet Interface) which is the subject of this paper. The present Launcher-Interface combination provides deuterium or hydrogen injection at moderate pellet speeds for the next two operational periods on JET. The Pellet Interface, however, takes into account the future requirements of JET. It was designed to allow the attachment of the high speed pellet launchers now under development at JET and complies with the requirements of remote handling and tritium operation. In addition, the use of tritium pellets is being considered

  2. Calculation of nuclear-spin-relaxation rate for spin-polarized atomic hydrogen

    International Nuclear Information System (INIS)

    Ahn, R.M.C.; Eijnde, J.P.H.W.V.; Verhaar, B.J.

    1983-01-01

    Approximations introduced in previous calculations of spin relaxation for spin-polarized atomic hydrogen are investigated by carrying out a more exact coupled-channel calculation. With the exception of the high-temperature approximation, the approximations turn out to be justified up to the 10 -3 level of accuracy. It is shown that at the lowest temperatures for which experimental data are available, the high-temperature limit underestimates relaxation rates by a factor of up to 2. For a comparison with experimental data it is also of interest to pay attention to the expression for the atomic hydrogen relaxation rates in terms of transition amplitudes for two-particle collisions. Discrepancies by a factor of 2 among previous derivations of relaxation rates are pointed out. To shed light on these discrepancies we present two alternative derivations in which special attention is paid to identical-particle aspects. Comparing with experiment, we find our theoretical volume relaxation rate to be in better agreement with measured values than that obtained by other groups. The theoretical surface relaxation rate, however, still shows a discrepancy with experiment by a factor of order 50

  3. ROTATION MEASURES ACROSS PARSEC-SCALE JETS OF FANAROFF-RILEY TYPE I RADIO GALAXIES

    International Nuclear Information System (INIS)

    Kharb, P.; Gabuzda, D. C.; O'Dea, C. P.; Shastri, P.; Baum, S. A.

    2009-01-01

    We present the results of a parsec-scale polarization study of three FRI radio galaxies-3C66B, 3C78, and 3C264-obtained with Very Long Baseline Interferometry at 5, 8, and 15 GHz. Parsec-scale polarization has been detected in a large number of beamed radio-loud active galactic nuclei, but in only a handful of the relatively unbeamed radio galaxies. We report here the detection of parsec-scale polarization at one or more frequencies in all three FRI galaxies studied. We detect Faraday rotation measures (RMs) of the order of a few hundred rad m -2 in the nuclear jet regions of 3C78 and 3C264. In 3C66B, polarization was detected at 8 GHz only. A transverse RM gradient is observed across the jet of 3C78. The inner-jet magnetic field, corrected for Faraday rotation, is found to be aligned along the jet in both 3C78 and 3C264, although the field becomes orthogonal further from the core in 3C78. The RM values in 3C78 and 3C264 are similar to those previously observed in nearby radio galaxies. The transverse RM gradient in 3C78, the increase in the degree of polarization at the jet edge, the large rotation in the polarization angles due to Faraday rotation, and the low depolarization between frequencies suggest that a layer surrounding the jet with a sufficient number of thermal electrons and threaded by a toroidal or helical magnetic field is a good candidate for the Faraday rotating medium. This suggestion is tentatively supported by Hubble Space Telescope optical polarimetry but needs to be examined in a greater number of sources.

  4. Modeling leaks from liquid hydrogen storage systems.

    Energy Technology Data Exchange (ETDEWEB)

    Winters, William Stanley, Jr.

    2009-01-01

    This report documents a series of models for describing intended and unintended discharges from liquid hydrogen storage systems. Typically these systems store hydrogen in the saturated state at approximately five to ten atmospheres. Some of models discussed here are equilibrium-based models that make use of the NIST thermodynamic models to specify the states of multiphase hydrogen and air-hydrogen mixtures. Two types of discharges are considered: slow leaks where hydrogen enters the ambient at atmospheric pressure and fast leaks where the hydrogen flow is usually choked and expands into the ambient through an underexpanded jet. In order to avoid the complexities of supersonic flow, a single Mach disk model is proposed for fast leaks that are choked. The velocity and state of hydrogen downstream of the Mach disk leads to a more tractable subsonic boundary condition. However, the hydrogen temperature exiting all leaks (fast or slow, from saturated liquid or saturated vapor) is approximately 20.4 K. At these temperatures, any entrained air would likely condense or even freeze leading to an air-hydrogen mixture that cannot be characterized by the REFPROP subroutines. For this reason a plug flow entrainment model is proposed to treat a short zone of initial entrainment and heating. The model predicts the quantity of entrained air required to bring the air-hydrogen mixture to a temperature of approximately 65 K at one atmosphere. At this temperature the mixture can be treated as a mixture of ideal gases and is much more amenable to modeling with Gaussian entrainment models and CFD codes. A Gaussian entrainment model is formulated to predict the trajectory and properties of a cold hydrogen jet leaking into ambient air. The model shows that similarity between two jets depends on the densimetric Froude number, density ratio and initial hydrogen concentration.

  5. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target

    International Nuclear Information System (INIS)

    Chipps, K.A.; Greife, U.; Bardayan, D.W.; Blackmon, J.C.; Kontos, A.; Linhardt, L.E.; Matos, M.; Pain, S.D.; Pittman, S.T.; Sachs, A.; Schatz, H.; Schmitt, K.T.; Smith, M.S.; Thompson, P.

    2014-01-01

    New radioactive ion beam (RIB) facilities will push further away from stability and enable the next generation of nuclear physics experiments. Of great importance to the future of RIB physics are scattering, transfer, and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure. Targets must also accommodate the use of large area silicon detector arrays, high-efficiency gamma arrays, and heavy ion detector systems to efficiently measure the reaction products. To address these issues, the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration has designed, built, and characterized a supersonic gas jet target, capable of providing gas areal densities on par with commonly used solid targets within a region of a few millimeters diameter. Densities of over 5×10 18 atoms/cm 2 of helium have been achieved, making the JENSA gas jet target the most dense helium jet achieved so far

  6. MAGNETIC FLUX CANCELATION AS THE TRIGGER OF SOLAR QUIET-REGION CORONAL JETS

    Energy Technology Data Exchange (ETDEWEB)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L. [Heliophysics and Planetary Science Office, ZP13, Marshall Space Flight Center, Huntsville, AL 35812 (United States); Chakrapani, Prithi, E-mail: navdeep.k.panesar@nasa.gov [Hunter College High School, New York, NY (United States)

    2016-11-20

    We report observations of 10 random on-disk solar quiet-region coronal jets found in high-resolution extreme ultraviolet (EUV) images from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly and having good coverage in magnetograms from the SDO /Helioseismic and Magnetic Imager (HMI). Recent studies show that coronal jets are driven by the eruption of a small-scale filament (called a minifilament ). However, the trigger of these eruptions is still unknown. In the present study, we address the question: what leads to the jet-driving minifilament eruptions? The EUV observations show that there is a cool-transition-region-plasma minifilament present prior to each jet event and the minifilament eruption drives the jet. By examining pre-jet evolutionary changes in the line of sight photospheric magnetic field, we observe that each pre-jet minifilament resides over the neutral line between majority-polarity and minority-polarity patches of magnetic flux. In each of the 10 cases, the opposite-polarity patches approach and merge with each other (flux reduction between 21% and 57%). After several hours, continuous flux cancelation at the neutral line apparently destabilizes the field holding the cool-plasma minifilament to erupt and undergo internal reconnection, and external reconnection with the surrounding coronal field. The external reconnection opens the minifilament field allowing the minifilament material to escape outward, forming part of the jet spire. Thus, we found that each of the 10 jets resulted from eruption of a minifilament following flux cancelation at the neutral line under the minifilament. These observations establish that magnetic flux cancelation is usually the trigger of quiet-region coronal jet eruptions.

  7. Spatial and radiative properties of an open-flame hydrogen plume

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W.; Houf, W.G. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Bourne, B.; Colton, J. [SRI International, 333 Ravenwood Ave., Menlo Park, CA 94025 (United States)

    2006-08-15

    Considerable effort is being directed toward updating safety codes and standards in preparation for production, distribution, and retail of hydrogen as a consumer energy source. In the present study, measurements were performed in large-scale, vertical flames to characterize the dimensional and radiative properties of an ignited hydrogen jet. These data are relevant to the safety scenario of a sudden leak in a high-pressure hydrogen containment vessel. Specifically, the data will provide a technological basis for determining hazardous length scales associated with unintended releases at hydrogen storage and distribution centers. Visible and infrared video and ultraviolet flame luminescence imaging were used to evaluate flame length, diameter and structure. Radiometer measurements allowed determination of the radiant heat flux from the flame. The results show that flame length increases with total jet mass flow rate and jet nozzle diameter. When plotted as a function of Froude number, which measures the relative importance of jet momentum and buoyancy, the measured flame lengths for a range of operating conditions collapse onto the same curve. Good comparison with hydrocarbon jet flame lengths is found, demonstrating that the non-dimensional correlations are valid for a variety of fuel types. The radiative heat flux measurements for hydrogen flames show good agreement with non-dimensional correlations and scaling laws developed for a range of fuels and flame conditions. This result verifies that such correlations can be used to predict radiative heat flux from a wide variety of hydrogen flames and establishes a basis for predicting a priori the characteristics of flames resulting from accidental releases. (author)

  8. Future hydrogen markets for large-scale hydrogen production systems

    International Nuclear Information System (INIS)

    Forsberg, Charles W.

    2007-01-01

    The cost of delivered hydrogen includes production, storage, and distribution. For equal production costs, large users (>10 6 m 3 /day) will favor high-volume centralized hydrogen production technologies to avoid collection costs for hydrogen from widely distributed sources. Potential hydrogen markets were examined to identify and characterize those markets that will favor large-scale hydrogen production technologies. The two high-volume centralized hydrogen production technologies are nuclear energy and fossil energy with carbon dioxide sequestration. The potential markets for these technologies are: (1) production of liquid fuels (gasoline, diesel and jet) including liquid fuels with no net greenhouse gas emissions and (2) peak electricity production. The development of high-volume centralized hydrogen production technologies requires an understanding of the markets to (1) define hydrogen production requirements (purity, pressure, volumes, need for co-product oxygen, etc.); (2) define and develop technologies to use the hydrogen, and (3) create the industrial partnerships to commercialize such technologies. (author)

  9. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  10. An intense polarized beam by a laser ionization injection

    International Nuclear Information System (INIS)

    Ohmori, Chihiro; Hiramatsu, Shigenori; Nakamura, Takeshi.

    1990-12-01

    Accumulation of protons and polarized protons by photo-ionization injection are described. This method consists of (1)producing the neutral hydrogen beam by Lorentz stripping, (2)excitation of the neutral hydrogen beam with a laser, and (3)ionization of the hydrogen beam in the 2P excited state with another laser. When the laser for the excitation is circularly polarized, we can get a polarized proton beam. An ionization efficiency of 98% and a polarization of 80% can be expected by an intense laser beam from a FEL(Free Electron Laser). (author)

  11. A Thermodynamic, kinematic and microphysical analysis of a jet and gigantic jet-producing Florida thunderstorm

    Science.gov (United States)

    Lazarus, S. M.; Splitt, M. E.; Brownlee, James; Spiva, Nicholas; Liu, Ningyu

    2015-08-01

    This paper presents a meteorological analysis of a storm that produced two jets, four gigantic jets (GJ), and a starter, which were observed by two radars as well as the Kennedy Space Center 4-Dimensional Lightning Surveillance System on 3 August 2013 in Central Florida. The work is the first application of dual polarization data to a jet-producing storm and is the fifth case related to a tropical disturbance. The storm environment is consistent with the moist tropical paradigm that characterizes about three quarters of the surface and aircraft observed jet and GJ events. The most unstable (MU) convective available potential energy is not unusual for Florida summer convection and is below the climatological mean for these events. An unusual speed shear layer is located near the storm equilibrium level (EL) and the storm exhibits a tilted structure with CGs displaced upshear. The turbulence, as measured by the eddy dissipation rate, is extreme near the storm top during the event window, consistent with the GJ mixing hypothesis. The individual events are collocated with, and track along, the center axis of the divergent outflow at the EL and occur within the region of the coldest GOES IR temperatures—placing the events within the overshoot. The dual polarization data indicate a deep graupel column, extending above the mixed phase layer, to a 13 km altitude.

  12. A Rotation Measure Gradient on the M87 VLA Jet

    Directory of Open Access Journals (Sweden)

    Algaba Juan Carlos

    2013-12-01

    Full Text Available Rotation measures (RMs have proven to be an excellent tool to study magnetic field structures in AGNs. Here we study RM properties on kiloparsec scales of theM87 jet via stacked multi wavelength polarized VLA observations. Our results show for the first time an indication of the RM gradient transverse to the jet in knot A, and possibly knot C and HST-1. Motivated by the shape of the RM in knots A and B, we discuss that part of it may be a filamentary structure of higher RM due to an external Faraday screen, although we consider this unlikely The data presented here can be easily explained by a helical magnetic field. By combining this result together with polarization direction plus the shape and degree of the fractional polarization across the jet, we can fairly conclude the presence of systematically wrapped, possibly helical, magnetic fields tightly wounded in knots A and C, in agreement with an MHD quad shock model.

  13. Nuclear polarization and neutrons

    International Nuclear Information System (INIS)

    Glaettli, H.

    1985-01-01

    Different possibilities for the use of polarized nuclei in thermal neutron scattering on condensed matter are reviewed. Highly polarized nuclei are the starting point for studying dipolar magnetic order. Systematic measurement of spin-dependent scattering lengths is possible on samples with polarized nuclei. Highly polarized hydrogen should help to unravel complicated structures in chemistry and biology. The use of polarized proton targets as an energy-independent neutron polarizer in the thermal and epithermal region should be considered afresh. (author)

  14. Three gluon jets as a test of QCD

    International Nuclear Information System (INIS)

    Koller, K.; Walsh, T.F.

    1977-10-01

    As a test of quantum chromodynamics (QCD), we suggest looking for gluon jets in the decay of a heavy quark-antiquark bound state produced in e + e - -annihilation, Q anti Q → 3 gluons → 3 gluon jets. In particular, we point out that these events form a jet Dalitz plot, and we calculate the gluon or jet distributions (including the effect of polarized e + e - -beams). This process affords a test of the gluon spin. It is the analogue of two-jet angular distributions in e + e - %→ q anti q → 2 quark jets. We also estimate multiplicities and momentum distributions of hadrons in Q anti Q → 3 gluons → hadrons, using the recently discovered UPSILON (9.4) as an example. (orig.) [de

  15. On the inversion of the scattering polarization and the Hanle effect signals in the hydrogen Lyα line

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, R. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Asensio Ramos, A.; Manso Sainz, R.; Trujillo Bueno, J. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Belluzzi, L. [Istituto Ricerche Solari Locarno (IRSOL), via Patocchi, 6605 Locarno Monti (Switzerland); Štěpán, J. [Astronomical Institute of the Academy of Sciences, Fričova 298, 251 65 Ondřejov (Czech Republic); Goto, M. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Tsuneta, S., E-mail: ryoko.ishikawa@nao.ac.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan)

    2014-06-01

    Magnetic field measurements in the upper chromosphere and above, where the gas-to-magnetic pressure ratio β is lower than unity, are essential for understanding the thermal structure and dynamical activity of the solar atmosphere. Recent developments in the theory and numerical modeling of polarization in spectral lines have suggested that information on the magnetic field of the chromosphere-corona transition region could be obtained by measuring the linear polarization of the solar disk radiation at the core of the hydrogen Lyα line at 121.6 nm, which is produced by scattering processes and the Hanle effect. The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) sounding rocket experiment aims to measure the intensity (Stokes I) and the linear polarization profiles (Q/I and U/I) of the hydrogen Lyα line. In this paper, we clarify the information that the Hanle effect can provide by applying a Stokes inversion technique based on a database search. The database contains all theoretical Q/I and U/I profiles calculated in a one-dimensional semi-empirical model of the solar atmosphere for all possible values of the strength, inclination, and azimuth of the magnetic field vector, though this atmospheric region is highly inhomogeneous and dynamic. We focus on understanding the sensitivity of the inversion results to the noise and spectral resolution of the synthetic observations as well as the ambiguities and limitation inherent to the Hanle effect when only the hydrogen Lyα is used. We conclude that spectropolarimetric observations with CLASP can indeed be a suitable diagnostic tool for probing the magnetism of the transition region, especially when complemented with information on the magnetic field azimuth that can be obtained from other instruments.

  16. Development of Criteria for Flashback Propensity in Jet Flames for High Hydrogen Content and Natural Gas Type Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kalantari, Alireza [Univ. of California, Irvine, CA (United States); Sullivan-Lewis, Elliot [Univ. of California, Irvine, CA (United States); McDonell, Vincent [Univ. of California, Irvine, CA (United States)

    2016-10-17

    Due to increasingly stringent air quality requirements stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when hydrogen is used as the fuel. In fact, flashback is a key operability issue associated with low emission combustion of high hydrogen content fuels. Flashback can cause serious damage to the premixer hardware. Hence, design tools to predict flashback propensity are of interest. Such a design tool has been developed based on the data gathered by experimental study to predict boundary layer flashback using non-dimensional parameters. The flashback propensity of a premixed jet flame has been studied experimentally. Boundary layer flashback has been investigated under turbulent flow conditions at elevated pressures and temperatures (i.e. 3 atm to 8 atm and 300 K to 500 K). The data presented in this study are for hydrogen fuel at various Reynolds numbers, which are representative of practical gas turbine premixer conditions and are significantly higher than results currently available in the literature. Three burner heads constructed of different materials (stainless steel, copper, and zirconia ceramic) were used to evaluate the effect of tip temperature, a parameter found previously to be an important factor in triggering flashback. This study characterizes flashback systematically by developing a comprehensive non-dimensional model which takes into account all effective parameters in boundary layer flashback propensity. The model was optimized for new data and captures the behavior of the new results well. Further, comparison of the model with the single existing study of high pressure jet flame flashback also indicates good agreement. The model developed using the high pressure test rig is able to predict flashback tendencies for a commercial gas turbine engine and can thus serve as a

  17. EINOx scaling in a non-premixed turbulent hydrogen jet with swirled coaxial air

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jeongseog; Hwang, Jeongjae; Yoon, Youngbin [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742 (Korea)

    2010-08-15

    The effect of swirl flow on pollutant emission (nitrous oxide) was studied in a non-premixed turbulent hydrogen jet with coaxial air. A swirl vane was equipped in a coaxial air feeding line and the angle of the swirl vane was varied from 30 to 90 degrees. Under a fixed global equivalence ratio of {phi}{sub G} = 0.5, fuel jet air velocity and coaxial air velocity were varied in an attached flame region as u{sub F} = 85.7-160.2 m/s and u{sub A} = 7.4-14.4 m/s. In the present study, two mixing variables of coaxial air and swirl flow were considered: the flame residence time and global strain rate. The objective of the current study was to analyze the flame length behavior, and the characteristics of nitrous oxide emissions under a swirl flow conditions, and to suggest a new parameter for EINOx (the emission index of nitrous oxide) scaling. From the experimental results, EINOx decreased with the swirl vane angle and increased with the flame length (L). We found the scaling variables for the flame length and EINOx using the effective diameter (d{sub F,eff}) in a far-field concept. Normalized flame length (L divided by d{sub F,eff}) fitted well with the theoretical expectations. EINOx increased in proportion to the flame residence time ({proportional_to}{tau}{sub R}{sup 1/2.8}) and the global strain rate ({proportional_to}S{sub G}{sup 1/2.8}). (author)

  18. Polarization: A must for fusion

    Directory of Open Access Journals (Sweden)

    Didelez J.-P.

    2013-11-01

    Full Text Available The complete polarization of DT fuel would increase the fusion reactivity by 50% in magnetic as well as in inertial confinements. The persistence of polarization in a fusion process could be tested, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the emitted neutrons and the change in the corresponding total Cross Section (CS can sign the polarization persistence. The polarization of solid H2, D2 or T2 Hydrogen isotopes is very difficult. However, it has been possible to polarize HD, a hetero-molecular form of Hydrogen, by static polarization, at very low temperature and very high field. The radioactivity of DT molecules forbids there high polarization by the static method, therefore one has to develop the Dynamic Nuclear Polarization (DNP by RF transitions. The DNP of HD has been investigated in the past. The magnetic properties of HD and DT molecules are very similar, it is therefore expected that any polarization result obtained with HD could be extrapolated to DT.

  19. Quantum-chemical study of antioxidant additives for jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Poletaeva, O.Yu. [Ufa State Petroleum Technological Univ., Ufa (Russian Federation); Karimova, R.I. [Bashkir State Agrarian Univ., Ufa (Russian Federation); Movsumzade, E.M. [Institute of Education of Indigenous Small-Numbered Peoples of the North RAE, Moscow (Russian Federation)

    2012-07-01

    To obtain the necessary quality of jet fuels it can be used technological methods (hydrocracking, deep hydration, hydrogenation) that increases the cost of the finished product. The second way is to use less purified raw materials with the introduction of effective additives. Fuels obtained by direct distillation, in ambient air are oxidized with great difficulty and oxidation products accumulate in them is very slow. Fuels derived by hydrogenation processes, have high susceptibility to oxidation, as a result in 1-2 years of storage considerably reduced their quality. Antioxidant additives play an important role in improving the quality of jet fuel. (orig.)

  20. The influence of hydrogen bonding on partition coefficients

    Science.gov (United States)

    Borges, Nádia Melo; Kenny, Peter W.; Montanari, Carlos A.; Prokopczyk, Igor M.; Ribeiro, Jean F. R.; Rocha, Josmar R.; Sartori, Geraldo Rodrigues

    2017-02-01

    This Perspective explores how consideration of hydrogen bonding can be used to both predict and better understand partition coefficients. It is shown how polarity of both compounds and substructures can be estimated from measured alkane/water partition coefficients. When polarity is defined in this manner, hydrogen bond donors are typically less polar than hydrogen bond acceptors. Analysis of alkane/water partition coefficients in conjunction with molecular electrostatic potential calculations suggests that aromatic chloro substituents may be less lipophilic than is generally believed and that some of the effect of chloro-substitution stems from making the aromatic π-cloud less available to hydrogen bond donors. Relationships between polarity and calculated hydrogen bond basicity are derived for aromatic nitrogen and carbonyl oxygen. Aligned hydrogen bond acceptors appear to present special challenges for prediction of alkane/water partition coefficients and this may reflect `frustration' of solvation resulting from overlapping hydration spheres. It is also shown how calculated hydrogen bond basicity can be used to model the effect of aromatic aza-substitution on octanol/water partition coefficients.

  1. Curtain eruptions from Enceladus' south-polar terrain

    Science.gov (United States)

    Spitale, Joseph N.; Hurford, Terry A.; Rhoden, Alyssa R.; Berkson, Emily E.; Platts, Symeon S.

    2015-05-01

    Observations of the south pole of the Saturnian moon Enceladus revealed large rifts in the south-polar terrain, informally called `tiger stripes', named Alexandria, Baghdad, Cairo and Damascus Sulci. These fractures have been shown to be the sources of the observed jets of water vapour and icy particles and to exhibit higher temperatures than the surrounding terrain. Subsequent observations have focused on obtaining close-up imaging of this region to better characterize these emissions. Recent work examined those newer data sets and used triangulation of discrete jets to produce maps of jetting activity at various times. Here we show that much of the eruptive activity can be explained by broad, curtain-like eruptions. Optical illusions in the curtain eruptions resulting from a combination of viewing direction and local fracture geometry produce image features that were probably misinterpreted previously as discrete jets. We present maps of the total emission along the fractures, rather than just the jet-like component, for five times during an approximately one-year period in 2009 and 2010. An accurate picture of the style, timing and spatial distribution of the south-polar eruptions is crucial to evaluating theories for the mechanism controlling the eruptions.

  2. Imaging hydrogen flames by two-photon, laser-induced fluorescence

    Science.gov (United States)

    Miles, R.; Lempert, W.; Kumar, V.; Diskin, G.

    1991-01-01

    A nonintrusive multicomponent imaging system is developed which can image hydrogen, hot oxygen, and air simultaneously. An Ar-F excimer laser is injection-locked to cover the Q1 two-photon transition in molecular hydrogen which allows the observation of both hot oxygen and cold hydrogen. Rayleigh scattering from the water molecules occurs at the same frequency as the illuminating laser allowing analysis of the air density. Images of ignited and nonignited hydrogen jets are recorded with a high-sensitivity gated video camera. The images permit the analysis of turbulent hydrogen-core jet, the combustion zone, and the surrounding air, and two-dimensional spatial correlations can be made to study the turbulent structure and couplings between different regions of the flow field. The method is of interest to the study of practical combustion systems which employ hydrogen-air diffusion flames.

  3. Interaction of GaN epitaxial layers with atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Giangregorio, M.M.; Capezzuto, P.; Bruno, G.; Namkoong, G.; Doolittle, W.A.; Brown, A.S

    2004-08-15

    GaN surface passivation processes are still under development and among others hydrogen treatments are investigated. In this study, we use non-destructive optical and electrical probes such as spectroscopic ellipsometry (SE) and surface potential Kelvin probe microscopy (SP-KPM) in conjunction with non-contact atomic force microscopy (AFM) for the study of the different reactivity of Ga-polar and N-polar GaN epitaxial layers with atomic hydrogen. The GaN epitaxial layers are grown by molecular beam epitaxy on sapphire (0 0 0 1) substrates, and GaN and AlN buffer layers are used to grow N-polar and Ga-polar films, respectively. The atomic hydrogen is produced by a remote rf (13.56 MHz) H{sub 2} plasma in order to rule out any ion bombardment of the GaN surface and make the interaction chemical. It is found that the interaction of GaN surfaces with atomic hydrogen depends on polarity, with N-polar GaN exhibiting greater reactivity. Furthermore, it is found that atomic hydrogen is effective in the passivation of grain boundaries and surface defects states.

  4. Interaction of GaN epitaxial layers with atomic hydrogen

    International Nuclear Information System (INIS)

    Losurdo, M.; Giangregorio, M.M.; Capezzuto, P.; Bruno, G.; Namkoong, G.; Doolittle, W.A.; Brown, A.S.

    2004-01-01

    GaN surface passivation processes are still under development and among others hydrogen treatments are investigated. In this study, we use non-destructive optical and electrical probes such as spectroscopic ellipsometry (SE) and surface potential Kelvin probe microscopy (SP-KPM) in conjunction with non-contact atomic force microscopy (AFM) for the study of the different reactivity of Ga-polar and N-polar GaN epitaxial layers with atomic hydrogen. The GaN epitaxial layers are grown by molecular beam epitaxy on sapphire (0 0 0 1) substrates, and GaN and AlN buffer layers are used to grow N-polar and Ga-polar films, respectively. The atomic hydrogen is produced by a remote rf (13.56 MHz) H 2 plasma in order to rule out any ion bombardment of the GaN surface and make the interaction chemical. It is found that the interaction of GaN surfaces with atomic hydrogen depends on polarity, with N-polar GaN exhibiting greater reactivity. Furthermore, it is found that atomic hydrogen is effective in the passivation of grain boundaries and surface defects states

  5. The evaluation of the polarization resistance in a tubular electrode and its application to the hydrogen electrode reaction

    International Nuclear Information System (INIS)

    Montero, M.A.; Marozzi, C.A.; Chialvo, M.R. Gennero de; Chialvo, A.C.

    2007-01-01

    An alternative method for the determination of the kinetic parameters involved in the elementary steps of the reaction mechanism of the hydrogen electrode reaction is proposed. It is based on the determination of the variation of the polarization resistance in a tubular platinum electrode with a laminar flow of electrolyte as a function of the activity of protons of the electrolyte solution. A theoretical expression that relates the experimental variables and the equilibrium polarization resistance is developed, which takes into account the current distribution along the electrode surface. The results are compared with others obtained previously, contributing to the verification of the kinetic mechanism through a completely different experimental procedure

  6. The impact of hydrogen enrichment and bluff-body lip thickness on characteristics of blended propane/hydrogen bluff-body stabilized turbulent diffusion flames

    International Nuclear Information System (INIS)

    Kashir, Babak; Tabejamaat, Sadegh; Jalalatian, Nafiseh

    2015-01-01

    Highlights: • Characteristics of C 3 H 8 –H 2 bluff-body stabilized flames are investigated. • Decreasing the bluff-body lip thickness led into enhanced flame length. • CO mass fraction is increased with reducing hydrogen content in the fuel stream. • Augmenting hydrogen content increased the maximum temperature. • Jet-like zone in propane–hydrogen bluff-body stabilized flames is very unstable. - Abstract: At the beginning of this study, the well-known turbulent bluff-body stabilized diffusion flame of HM1 is simulated by a coupled flamelet/radiation approach. The HM1 flame comprises a CH 4 :H 2 [50:50 Vol.] jet flame at a Reynolds number of 15,800. The results showed reasonable agreement for the flow field and species. Afterwards, the abovementioned approach is employed to investigate the effects of hydrogen addition on bluff-body stabilized flames of propane–hydrogen. Adding hydrogen to the blended fuel of propane/hydrogen shifts the recirculation zone outwards the bluff-body and thus culminates in increased flame length. Besides this, the flame length is predicted to be enhanced with decreasing the lip thickness of the bluff-body configuration. The CO emission level is found to be decreased with hydrogen addition in near-burner and far field regions which might be attributed to the decrease of inflow carbon atoms. The local radiative heat power reveals higher values for fuel blends with decreased contents of hydrogen at the recirculation and jet-like zones. This might be attributed to the increased local heat release rate due to breaking further carbon bonds

  7. Experimental study of the orientation of three-jet events in e+e- annihilation at PETRA

    International Nuclear Information System (INIS)

    Braunschweig, W.; Gerhards, R.; Kirschfink, F.J.; Martyn, H.U.; Kolanoski, H.; Bowler, M.G.; Burrows, P.N.; Cashmore, R.; Veitch, M.E.; Brandt, S.; Holder, M.; Labarga, L.; Caldwell, A.; Muller, D.; Ritz, S.; Strom, D.; Takashima, M.; Wu Saulan; Zobernig, G.

    1990-01-01

    The full TASSO data have been used to study the orientation of three-jet events in e + e - annihilation. The polar angle distributions of the normal to the three-jet plane as well as the polar angle distribution of the most energetic jet have been measured as a function of the thrust cut-off used to select the three-jet sample. The data corrected for radiation and detector effects are compared to QCD predictions and fair agreement is found. As a consistency check we also present measurements of the azimuthal correlations between the lepton and hadron planes. A significant azimuthal dependence is found, consistent again with the QCD predictions. (orig.)

  8. A search for jet handedness in hadronic Z0 decays

    International Nuclear Information System (INIS)

    Hasegawa, Yoji.

    1995-03-01

    Transport of polarization through hadronization process is one of the fundamental interest in Quantum Chromodynamics which is a theory of strong interactions. In the low energy region where the hadronization occurs, QCD calculations are difficult, therefore at present the transport can be investigated experimentally. In this study the authors have searched for signatures of polarization of quarks and antiquarks in hadronic jets from Z 0 → q bar q decays. The polarization of quarks and antiquark produced by Z 0 decays are predicted by the Standard Model of elementary particle physics. The authors defined several quantities depending on open-quotes jet handednessclose quotes methods and studied the correlation between the predicted polarization and the quantities. The signal was estimated by analyzing power which represents degree of the polarization transport through the hadronization process. The Z 0 decays were measured by SLC Large Detector and the polarized electron beam provided by SLAC Linear Collider was useful for this study. The data from the 1993 run showed no signature of the transport of quark and antiquark polarization. Upper limits on magnitude of the analyzing power were set in the range 0.05-0.15 depending on the methods

  9. Hydrogen distribution in a containment with a high-velocity hydrogen-steam source

    International Nuclear Information System (INIS)

    Bloom, G.R.; Muhlestein, L.D.; Postma, A.K.; Claybrook, S.W.

    1982-09-01

    Hydrogen mixing and distribution tests are reported for a modeled high velocity hydrogen-steam release from a postulated small pipe break or release from a pressurizer relief tank rupture disk into the lower compartment of an Ice Condenser Plant. The tests, which in most cases used helium as a simulant for hydrogen, demonstrated that the lower compartment gas was well mixed for both hydrogen release conditions used. The gas concentration differences between any spatial locations were less than 3 volume percent during the hydrogen/steam release period and were reduced to less than 0.5 volume percent within 20 minutes after termination of the hydrogen source. The high velocity hydrogen/steam jet provided the dominant mixing mechanism; however, natural convection and forced air recirculation played important roles in providing a well mixed atmosphere following termination of the hydrogen source. 5 figures, 4 tables

  10. Numerical simulations of turbulent jet ignition and combustion

    Science.gov (United States)

    Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.

  11. Polarized Light from the Sun: Unification of the Corona and Analysis of the Second Solar Spectrum — Further Implications of a Liquid Metallic Hydrogen Solar Model

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2015-07-01

    Full Text Available In order to account for the slight polarization of the continuum towards the limb, propo- nents of the Standard Solar Model (SSM must have recourse to electron or hydrogen- based scattering of light, as no other mechanism is possible in a gaseous Sun. Con- versely, acceptance that the solar body is comprised of condensed matter opens up new avenues in the analysis of this problem, even if the photospheric surface itself is viewed as incapable of emitting polarized light. Thus, the increased disk polarization, from the center to the limb, can be explained by invoking the scattering of light by the at- mosphere above the photosphere. The former is reminiscent of mechanisms which are known to account for the polarization of sunlight in the atmosphere of the Earth. Within the context of the Liquid Metallic Hydrogen Solar Model (LMHSM, molecules and small particles, not electrons or hydrogen atoms as required by the SSM, would primarily act as scattering agents in regions also partially comprised of condensed hy- drogen structures (CHS. In addition, the well-known polarization which characterizes the K-corona would become a sign of emission polarization from an anisotropic source, without the need for scattering. In the LMHSM, the K, F, and T- coronas can be viewed as emissive and reflective manifestations of a single corona l entity adopting a radially anisotropic structure, while slowly cooling with altitude above the photosphere. The presence of “dust particles”, advanced by proponents of the SSM, would no longer be required to explain the F and T-corona, as a single cooling structure would account for the properties of the K, F, and T coronas. At the same time, the polarized “Second Solar Spectrum”, characterized by the dominance of certain elemental or ionic spectral lines and an abundance of molecular lines, could be explained in the LMHSM, by first invoking interface polarization and coordination of these species with condensed matter

  12. Review of polarized ammonium target

    International Nuclear Information System (INIS)

    Matsuda, Tatsuo

    1987-01-01

    Recently, ammonia (NH 3 ) and deutron ammonia (ND 3 ), instead of conventional alcohol substances, have been used more frequently as a polarized target substance for experiments of polarization at high energy regions. This article reviews major features of the polarized (deutron) ammonia targets. The dynamic nuclear polarization (DNT) method is widely used in high energy polarization experiments. While only a low polarization degree of hydrogen nucleus of 1.7 percent can be obtained by the Brute force method, DNP can produce polarization as high as ∼ 90 percent (2.5 T, ∼ 200 mK). In 1979, ammonia was irradiated with radiations to form NH 2 free radicals, resulting in the achievement of a high polarization degree of greater than 90 percent (hydrogen). Since then, ammonia and deutron ammonia have increasingly been replacing alcohols including butanol. Irradiation of a target substance with radiations destroys the structure of the substance, leading to a decrease in polarization degree. However, ammonia produces unpaired electrons as a result of irradiation, allowing it to be highly resistant to radiation. This report also present some study results, including observations on effects of radiation on the polarization degree of a target, effects of annealing, and polarization of 14 N. A process for producing an ammonia target is also described. (Nogami, K.)

  13. Multi-Frequency VLBA Polarimetry and the Twin-Jet Quasar 0850+581

    Directory of Open Access Journals (Sweden)

    Evgeniya Kravchenko

    2017-11-01

    Full Text Available We present the first multi-frequency VLBA study of the quasar 0850+581 which appears to have a two-sided relativistic jet. Apparent velocity in the approaching jet changes from 3.4c to 7c with the separation from the core. The jet-to-counter-jet ratio of about 5 and apparent superluminal velocities suggest that the observing angle of the inner jet is ≤ 17 ∘ . It is likely that this orientation significantly changes downstream due to an interaction of the jet with the surrounding medium; signs of this are seen in polarization. A dense inhomogeneous Faraday screen is detected in the innermost regions of this quasar. We suggest that there is a presence of ionized gas in its nucleus, which might be responsible for the free-free absorption of the synchrotron emission in the jet and counter-jet at frequencies below 8.4 GHz. The experiment makes use of slowly varying instrumental polarisation factors (polarization leakage or D-terms in time. We report application of the “D-term connection” technique for the calibration of an absolute orientation of electric vector position angle (EVPA observed by VLBA at 4.6, 5.0, 8.1, 8.4, 15.4, 22.3, and 43.3 GHz bands during the 2007–2011.

  14. Development of a hydrogen and deuterium polarized gas target for application in storage rings. Annual report, February 1, 1986-January 31, 1987

    International Nuclear Information System (INIS)

    Haeberli, W.

    1986-01-01

    Insertion of an internal polarized gas target into storage rings for protons, antiprotons or electrons would permit interesting new experiments, particularly if the circulating beam is polarized as well. The purpose of the present project is the development of a polarized gas target, based on injection of polarized hydrogen or deuterium atoms into a storage cell in order to build up the required target thickness. A method has been developed and tested, which permits measurement of the target polarization under realistic conditions (i.e., in the presence of an intense ion beam) without the need for a large accelerator. First measurements with an oxidized aluminum cell have been made. It is proposed to study wall depolarization in storage cells and to search for suitable wall conditions (wall material, coating, temperature, vacuum conditions) to permit eventual construction of a polarized gas target for a storage ring

  15. CORONAL JETS SIMULATED WITH THE GLOBAL ALFVÉN WAVE SOLAR MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Szente, J.; Toth, G.; Manchester IV, W. B.; Holst, B. van der; Landi, E.; Gombosi, T. I. [Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); DeVore, C. R.; Antiochos, S. K., E-mail: judithsz@umich.edu [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-01-10

    This paper describes a numerical modeling study of coronal jets to understand their effects on the global corona and their contribution to the solar wind. We implement jets into a well-established three-dimensional, two-temperature magnetohydrodynamic (MHD) solar corona model employing Alfvén-wave dissipation to produce a realistic solar-wind background. The jets are produced by positioning a compact magnetic dipole under the solar surface and rotating the boundary plasma around the dipole's magnetic axis. The moving plasma drags the magnetic field lines along with it, ultimately leading to a reconnection-driven jet similar to that described by Pariat et al. We compare line-of-sight synthetic images to multiple jet observations at EUV and X-ray bands, and find very close matches in terms of physical structure, dynamics, and emission. Key contributors to this agreement are the greatly enhanced plasma density and temperature in our jets compared to previous models. These enhancements arise from the comprehensive thermodynamic model that we use and, also, our inclusion of a dense chromosphere at the base of our jet-generating regions. We further find that the large-scale corona is affected significantly by the outwardly propagating torsional Alfvén waves generated by our polar jet, across 40° in latitude and out to 24 R {sub ⊙}. We estimate that polar jets contribute only a few percent to the steady-state solar-wind energy outflow.

  16. Two-photon polarization Fourier spectroscopy of metastable atomic hydrogen

    International Nuclear Information System (INIS)

    Duncan, A.J.; Beyer, H.-J.; Kleinpoppen, H.; Sheikh, Z.A,; B-Z Univ., Multan

    1997-01-01

    A novel Fourier-transform spectroscopic method using two-photon polarization to determine the spectral distribution of the two photons emitted in the spontaneous decay of metastable atomic hydrogen is described. The method uses birefringent retardation plates and takes advantage of the subtle interplay between the spectral properties and the entangled polarization properties of the radiation emitted in the decay. Assuming the validity of the theoretical spectral distribution, it is shown that the experimental results agree well with theory. On the other hand, success in solving the inverse problem of determining the spectral distribution from the experimental results is limited by the small number of experimental points. However, making reasonable assumptions it is deduced that the observed spectrum is characterized by a broadband signal of width (0.43 ± 0.06) x 10 16 rad s -1 and centre angular frequency (0.77 ± 0.03) x 10 16 rad s -1 in good agreement with the predictions of 0.489 x 10 16 rad s -1 and 0.775 x 10 16 rad s -1 , respectively, obtained from the theoretical spectral distribution modified to take account of the absorption of the two-photon radiation in air. The values of 1.5 fs for the coherence time and 440 nm for the coherence length for single photons of the two-photon pair which are obtained from the measured bandwidth imply that, in the ideal case, these values are determined by the essentially zero lifetime of the virtual intermediate state of the decay process rather than the long lifetime of the metastable state which, it is suggested, determines the coherence time and coherence length appropriate to certain types of fourth-order interference experiments. (Author)

  17. Simulations of hydrogen sorption in rht-MOF-1: identifying the binding sites through explicit polarization and quantum rotation calculations

    KAUST Repository

    Pham, Tony

    2014-01-01

    Grand canonical Monte Carlo (GCMC) simulations of hydrogen sorption were performed in rht-MOF-1, a metal-organic framework (MOF) that consists of isophthalate groups joined by copper paddlewheel clusters and Cu3O trimers through tetrazolate moeities. This is a charged rht-MOF that contains extra-framework nitrate counterions within the material. For the simulations performed herein, excellent agreement with experiment was achieved for the simulated hydrogen sorption isotherms and calculated isosteric heat of adsorption, Qst, values only when using a polarizable potential. Thermodynamic agreement is demonstrated via comparing to experimental isotherms and binding sites are revealed by combining simulation and inelastic neutron scattering (INS) data. Simulations involving explicit many-body polarization interactions assisted in the determination of the binding sites in rht-MOF-1 through the distribution of the induced dipoles that led to strong adsorbate interactions. Four distinct hydrogen sorption sites were determined from the polarization distribution: the nitrate ions located in the corners of the truncated tetrahedral cages, the Cu2+ ions of the paddlewheels that project into the truncated tetrahedral and truncated octahedral cages (Cu1 ions), the Cu2+ ions of the Cu3O trimers (Cu3 ions), and the sides of the paddlewheels in the cuboctahedral cage. The simulations revealed that the initial sorption sites for hydrogen in rht-MOF-1 are the nitrate ions; this site corresponds to the high initial Qst value for hydrogen (9.5 kJ mol-1) in the MOF. The radial distribution functions, g(r), about the Cu2+ ions at various loadings revealed that the Cu1 ions are the preferred open-metal sorption sites for hydrogen at low loading, while the Cu3 ions become occupied at higher loadings. The validation of the aforementioned sorption sites in rht-MOF-1 was confirmed by calculating the two-dimensional quantum rotational levels about each site and comparing the levels to the

  18. Stanford polarized atomic beam target

    International Nuclear Information System (INIS)

    Mavis, D.G.; Dunham, J.S.; Hugg, J.W.; Glavish, H.F.

    1976-01-01

    A polarized atomic beam source was used to produce an atomic hydrogen beam which was in turn used as a polarized proton target. A target density of 2 x 10'' atoms/cm 3 and a target polarization of 0.37 without the use of rf transitions were measured. These measurements indicate that a number of experiments are currently feasible with a variety of polarized target beams

  19. COST meeting - Polarization and AGN II - Abstracts and slides

    International Nuclear Information System (INIS)

    Kishimoto, M.; Rouan, D.; Tadhunter, C.; Lopez Rodriguez, E.; Braibant, L.; Pasetto, A.; Matt, G.; Afanasiev, V.; Lira, P.; Hutsemekers, D.; Sluse, D.; Marin, F.; Tamborra, F.; Yankova, K.; Laing, R.; Lico, R.; Agudo, I.; Hovatta, T.; Jermak, H.; Chen, X.; Myserlis, I.; Cellone, S.A.; Chidiac, C.; Chakraborty, N.; Bozhilov, V.

    2016-01-01

    This meeting is the 2. COST workshop on Polarization and Active Galactic Nuclei (AGN). Accreting supermassive black holes in active galactic nuclei are the most powerful, long-lasting sources in the universe. Emitting over ten orders of magnitude in photon energy or more, the radiation of AGN encodes information about a multitude of astrophysical processes: accretion, thermal and non-thermal radiative transfer, acceleration of outflows and jets, shock physics, special and general relativity. Observationally, AGN appear as numerous types and polarization studies have played a key role in establishing the idea of a unifying AGN geometry. The topics covered at the meeting include the following: 1) Polarimetry of AGN from the radio to gamma-rays; 2) Tools for modeling and data analysis of AGN polarization; 3) Polarization due to magnetic fields and dust in AGN; 4) Polarization of AGN inflows, outflows and jets; 5) Spectropolarimetry and polarization variability of AGN; and 6) From Sgr A* to the most luminous quasars: what can polarimetry do for AGN (super-)unification? This document is made up of the abstracts and slides of the presentations

  20. Examining the Properties of Jets in Coronal Holes

    Science.gov (United States)

    Gaulle, Owen; Adams, Mitzi L.; Tennant, A. F.

    2012-01-01

    We examined both X-ray and Magnetic field data in order to determine if there is a correlation between emerging magnetic flux and the production of Coronal jets. It was proposed that emerging flux can be a trigger to a coronal jet. The jet is thought to be caused when local bipoles reconnect or when a region of magnetic polarity emerges through a uniform field. In total we studied 15 different jets that occurred over a two day period starting 2011-02-27 00:00:00 UTC and ending 2011-02-28 23:59:55 UTC. All of the jets were contained within a coronal hole that was centered on the disk. Of the 15 that we studied 6 were shown to have an increase of magnetic flux within one hour prior to the creation of the jet and 10 were within 3 hours before the event.

  1. Discovery of Scattering Polarization in the Hydrogen Ly α Line of the Solar Disk Radiation

    International Nuclear Information System (INIS)

    Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Katsukawa, Y.; Kubo, M.; Giono, G.; Hara, H.; Suematsu, Y.; Bueno, J. Trujillo; Winebarger, A.; Kobayashi, K.; Auchère, F.; Ishikawa, S.; Shimizu, T.; Sakao, T.; Tsuneta, S.; Ichimoto, K.; Goto, M.; Belluzzi, L.

    2017-01-01

    There is a thin transition region (TR) in the solar atmosphere where the temperature rises from 10,000 K in the chromosphere to millions of degrees in the corona. Little is known about the mechanisms that dominate this enigmatic region other than the magnetic field plays a key role. The magnetism of the TR can only be detected by polarimetric measurements of a few ultraviolet (UV) spectral lines, the Ly α line of neutral hydrogen at 121.6 nm (the strongest line of the solar UV spectrum) being of particular interest given its sensitivity to the Hanle effect (the magnetic-field-induced modification of the scattering line polarization). We report the discovery of linear polarization produced by scattering processes in the Ly α line, obtained with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) rocket experiment. The Stokes profiles observed by CLASP in quiet regions of the solar disk show that the Q / I and U / I linear polarization signals are of the order of 0.1% in the line core and up to a few percent in the nearby wings, and that both have conspicuous spatial variations with scales of ∼10 arcsec. These observations help constrain theoretical models of the chromosphere–corona TR and extrapolations of the magnetic field from photospheric magnetograms. In fact, the observed spatial variation from disk to limb of polarization at the line core and wings already challenge the predictions from three-dimensional magnetohydrodynamical models of the upper solar chromosphere.

  2. Discovery of Scattering Polarization in the Hydrogen Ly α Line of the Solar Disk Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Katsukawa, Y.; Kubo, M.; Giono, G.; Hara, H.; Suematsu, Y. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Bueno, J. Trujillo [Instituto de Astrofísica de Canarias, La Laguna, Tenerife, E-38205 (Spain); Winebarger, A.; Kobayashi, K. [Marshall Space Flight Center, National Aeronautics and Space Administration (NASA), Huntsville, AL 35812 (United States); Auchère, F. [Institut d’Astrophysique Spatiale, Université Paris Sud, Batiment 121, F-91405 Orsay (France); Ishikawa, S.; Shimizu, T.; Sakao, T.; Tsuneta, S. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Ichimoto, K. [Hida Observatory, Kyoto University, Takayama, Gifu 506-1314 (Japan); Goto, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Belluzzi, L., E-mail: ryouhei.kano@nao.ac.jp [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland); and others

    2017-04-10

    There is a thin transition region (TR) in the solar atmosphere where the temperature rises from 10,000 K in the chromosphere to millions of degrees in the corona. Little is known about the mechanisms that dominate this enigmatic region other than the magnetic field plays a key role. The magnetism of the TR can only be detected by polarimetric measurements of a few ultraviolet (UV) spectral lines, the Ly α line of neutral hydrogen at 121.6 nm (the strongest line of the solar UV spectrum) being of particular interest given its sensitivity to the Hanle effect (the magnetic-field-induced modification of the scattering line polarization). We report the discovery of linear polarization produced by scattering processes in the Ly α line, obtained with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) rocket experiment. The Stokes profiles observed by CLASP in quiet regions of the solar disk show that the Q / I and U / I linear polarization signals are of the order of 0.1% in the line core and up to a few percent in the nearby wings, and that both have conspicuous spatial variations with scales of ∼10 arcsec. These observations help constrain theoretical models of the chromosphere–corona TR and extrapolations of the magnetic field from photospheric magnetograms. In fact, the observed spatial variation from disk to limb of polarization at the line core and wings already challenge the predictions from three-dimensional magnetohydrodynamical models of the upper solar chromosphere.

  3. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.

    Science.gov (United States)

    Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick

    2016-01-01

    Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.

  4. Relativistic jet with shock waves like model of superluminal radio source. Jet relativista con ondas de choque como modelo de radio fuentes superluminales

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A.; Gomez, J.L.; Marcaide, J.M.

    1993-01-01

    The structure of the compact radio sources at milliarcsecond angular resolution can be explained in terms of shock waves propagating along bent jets. These jets consist of narrow-angle cones of plasma flowing at bulk relativistic velocities, within tangled magnetic fields, emitting synchrotron radiation. We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kenimatic evolution and time flux density evolution of the superluminal radio source 4C 39.25 and to obtain its jet physical parameters. (Author) 23 ref.

  5. Isotope separation in crossed-jet systems

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, R.J.; Anderson, J.B.

    1978-11-01

    The separation of isotopes in crossed-jet systems was investigated with Monte Carlo calculations of the separation effects for jets of Ne/Ar and /sup 235/UF/sub 6///sup 238/UF/sub 6/ mixtures entering a hydrogen stream. For the ideal condition of uniform stream velocities at zero temperature, the separation factor ..cap alpha.. was found to be 16.0 for Ne/Ar and 1.17 for /sup 235/UF/sub 6///sup 238/UF/sub 6/. For less ideal but more practical conditions, Monte Carlo calculations of the complete crossed-jet systems gave separation factors as high as 3.3 for Ne/Ar and ..cap alpha.. = 1.046 - 1.078 for /sup 235/UF/sub 6///sup 238/UF/sub 6/.

  6. Highly polarized light from stable ordered magnetic fields in GRB 120308A.

    Science.gov (United States)

    Mundell, C G; Kopač, D; Arnold, D M; Steele, I A; Gomboc, A; Kobayashi, S; Harrison, R M; Smith, R J; Guidorzi, C; Virgili, F J; Melandri, A; Japelj, J

    2013-12-05

    After the initial burst of γ-rays that defines a γ-ray burst (GRB), expanding ejecta collide with the circumburst medium and begin to decelerate at the onset of the afterglow, during which a forward shock travels outwards and a reverse shock propagates backwards into the oncoming collimated flow, or 'jet'. Light from the reverse shock should be highly polarized if the jet's magnetic field is globally ordered and advected from the central engine, with a position angle that is predicted to remain stable in magnetized baryonic jet models or vary randomly with time if the field is produced locally by plasma or magnetohydrodynamic instabilities. Degrees of linear polarization of P ≈ 10 per cent in the optical band have previously been detected in the early afterglow, but the lack of temporal measurements prevented definitive tests of competing jet models. Hours to days after the γ-ray burst, polarization levels are low (P < 4 per cent), when emission from the shocked ambient medium dominates. Here we report the detection of P =28(+4)(-4) per cent in the immediate afterglow of Swift γ-ray burst GRB 120308A, four minutes after its discovery in the γ-ray band, decreasing to P = 16(+5)(-4) per cent over the subsequent ten minutes. The polarization position angle remains stable, changing by no more than 15 degrees over this time, with a possible trend suggesting gradual rotation and ruling out plasma or magnetohydrodynamic instabilities. Instead, the polarization properties show that GRBs contain magnetized baryonic jets with large-scale uniform fields that can survive long after the initial explosion.

  7. Searching for Jet Emission in LMXBs: A Polarimetric View

    Directory of Open Access Journals (Sweden)

    Maria Cristina Baglio

    2017-10-01

    Full Text Available We present results taken from a study aiming at detecting the emission from relativistic particles jets in neutron star-low mass X-ray binaries using optical polarimetric observations. First, we focus on a polarimetric study performed on the persistent LMXB 4U 0614+091. Once corrected for interstellar effects, we measured an intrinsic linear polarization in the r-band of ~3% at a 3σ confidence level. This is in-line with the observation of an infrared excess in the spectral energy distribution (SED of the source, reported in a previous work, which the authors linked to the optically thin synchrotron emission of a jet. We then present a study performed on the transitional millisecond pulsar PSR J1023+0038 during quiescence. We measured a linear polarization of 1.09 ± 0.27% and 0.90 ± 0.17% in the V and R bands, respectively. The phase-resolved polarimetric curve of the source in the R-band reveals a hint of a sinusoidal modulation at the source orbital period. The NIR -optical SED of the system did not suggest the presence of a jet. We conclude that the optical linear polarization observed for PSR J1023+0038 is possibly due to Thomson scattering with electrons in the disc, as also suggested by the hint of the modulation of the R-band linear polarization at the system orbital period.

  8. Sources of polarized negative ions: progress and prospects

    International Nuclear Information System (INIS)

    Haeberli, W.

    1980-01-01

    A summary of recent progress in the art of producing beams of polarized ions is given. In all sources of polarized ions, one first produces (or selects) neutral atoms which are polarized in electron spin. Those types of sources which use a beam of thermal polarized hydrogen atoms are discussed. Progress made in the preparation of the atomic beam and the methods used to convert the neutral atoms to polarized ions is summarized. The second type of source discussed is based on fast (keV) polarized hydrogen atoms. Conversion to negative ions is very simple because one only needs to pass the fast atoms through a suitable charge exchange medium (gas or vapor). However, the production of the polarized atoms is more difficult in this case. The proposal to employ polarized alkali vapor to form a beam of polarized fast H atoms, where the polarized alkali atoms are produced either by an atomic beam apparatus or by optical pumping is discussed

  9. Global kinetic theory of astrophysical jets

    International Nuclear Information System (INIS)

    Chang, T.

    1989-01-01

    We suggest that an astrophysical plasma stream flowing outward from a central object aling an open magnetic field line with decreasing field strength generally will have anisotropic velocity distributions. I particular, the electron distribution function of this type of plasma streams will contain a 'thermally populated' region and a stretche out high energy tail (or 'jet-like') region collimated in the utward direction of the magnetic field line. Our argument is based on a global, collisional, kinetic theory. Because the 'kinetic jets' are always pointed aling the outward direction of the field lines, thy are automatically collimated and will assume whatever the peculiar geometries dictated by the magnetic field. This result should be useful in the understanding of the basic structures of such diverse astrophysical objects as the extragalactic radio jets, stellar winds, the solar wind, planetary polar winds, and galactic jets. (author). 8 refs.; 2 figs

  10. Effect of hydrogen addition on autoignited methane lifted flames

    KAUST Repository

    Choin, Byung Chul; Chung, Suk-Ho

    2012-01-01

    Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial

  11. Measurement of inclusive lambda, k-short and lambda bar production and lambda polarization from interactions of 400 GeV/c protons with hydrogen

    International Nuclear Information System (INIS)

    Grobel, R.A.

    1980-01-01

    The Lorentz invariant cross sections have been measured for the inclusive production of lambdas, K-shorts and lambda bars with Feynman x ranging from .2 to .98 and transverse momentum values between 0 and 2 GeV/c. This was done by fully analyzing the decays of 1.3 million lambdas, 130,000 K-shorts and 42,000 lambda bars detected in he neutral hyperon beam at Fermilab. The transverse (parity conserving) component of the lambda spin polarization has been found to be non-zero, demonstrating that the polarization is not a complex nuclear effect. The polarization depends on Feynman x and transverse momentum. The global fit of these data shows that the polarization from hydrogen is the same as that from Be

  12. Tidal Control of Jet Eruptions Observed by Cassini ISS

    Science.gov (United States)

    Hurford, T. A.; Helfenstein, P.; Spitale, J. N.

    2012-01-01

    Observations by Cassini's Imaging Science Subsystem (ISS) of Enceladus' south polar region at high phase angles has revealed jets of material venting into space. Observations by Cassini's Composite Infrared Spectrometer (CIRS) have also shown that the south polar region is anomalously warm with hotspots associated with geological features called the Tiger Stripes. The Tiger Stripes are large rifts near the south pole of Enceladus, which are typically about 130 km in length, 2 km wide, with a trough 500 m deep, and are l1anked on each side by 100m tall ridges. Preliminary triangulation of jets as viewed at different times and with different viewing geometries in Cassini ISS images taken between 2005 and 2007 have constrained the locations of eight major eruptions of material and found all of them associated with the south polar fractures unofficially the 'Tiger Stripes', and found four of them coincident with the hotspots reported in 2006 by CIRS. While published ISS observations of jet activity suggest that individual eruption sites stay active on the timescale of years, any shorter temporal variability (on timescales of an orbital period, or 1.3 Earth days, for example) is more difficult to establish because of the spotty temporal coverage and the difficulty of visually isolating one jet from the forest of many seen in a typical image. Consequently, it is not known whether individual jets are continuously active, randomly active, or if they erupt on a predictable, periodic schedule. One mechanism that may control the timing of eruptions is diurnal tidal stress, which oscillates between compression/tension as well as right and left lateral shear at any given location throughout Enceladus' orbit and may allow the cracks to open and close regularly. We examine the stresses on the Tiger Stripe regions to see how well diurnal tidal stress caused by Enceladus' orbital eccentricity may possibly correlate with and thus control the observed eruptions. We then identify

  13. Direct Probes of Linearly Polarized Gluons inside Unpolarized Hadrons

    NARCIS (Netherlands)

    Boer, D.; Brodsky, S. J.; Mulders, P.J.G.; Pisano, C.

    2011-01-01

    We show that linearly polarized gluons inside unpolarized hadrons can be directly probed in jet or heavy quark pair production in electron-hadron collisions. We discuss the simplest cos2 asymmetries and estimate their maximal value, concluding that measurements of the unknown linearly polarized

  14. A study on the fire response of compressed hydrogen gas vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Yohsuke; Tomioka, Junichi; Suzuki, Jinji [Japan Automobile Research Institute (Japan)

    2010-07-01

    To investigate the events that could arise when fighting fires in vehicles with compressed hydrogen CFRP (carbon fiber reinforced plastic) composite cylinders, we conducted experiments to examine whether a hydrogen jet flame caused by the activation of the pressure relief device (PRD) can extinguished and how spraying water influences the cylinder and PRD. The experiments clarified that the hydrogen jet flame cannot be extinguished easily with water or dry powder extinguishers and that spraying water during activation of the PRD may result in closure of the PRD, but is useful for maintaining the strength of CFRP composite cylinders for vehicles. (orig.)

  15. Production method of hydrogen jet plasma process in hydro machinery

    International Nuclear Information System (INIS)

    Amini, F.

    2007-01-01

    The purpose of present paper is to the process of plasma formation in hydro machinery when a hydro turbine operates at various conditions and load rejection. By investigation the power, shock pressure , and impact effects of hydro machinery, it is revealed that energy and hydrogen are generated by the plasma process. The investigation on several turbines of various hydro power plants reveals that cold fusion process in hydro machinery generates hydrogen. The hypothesis concerning the participation of alkaline metals in river water and the atomic nuclei of the runner blade material in the formation of hydrogen are considered. It is possible to assume hydrogen, deuterium, helium, and tritium atoms (based on Dr. Mizuno and Dr. Kanarev theories) that are formed, diffuse into cavitation bubbles. The plasma is generated during the collapse of the bubble; thus, the quantity of burnt hydrogen determine the volume of generating hydrogen and the impact force caused by hydrogen explosion (noise).There are five main notions, which can determine hydrogen and plasma process: (1) turbine power effect, (2) high shock pressure, (3) crack on turbine parts, (4) impacts effects and (4) the lift of rotating parts. The frequency of the excitation lies in a range from 0.786 to 1.095 Hz.In future, it may be possible to design hydro turbines based on the plasma process that generates hydrogen; or there may exist turbines that rotate with a mixture of hydrogen explosion and water energies

  16. H- ion current from a polarized vapor target

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1984-01-01

    A method of determining the polarization transferred to hydrogen atoms in charge-exchange reactions is outlined. The method also provides a means of determining target polarizations once the polarization transfer function is known

  17. Simulations of Multi Combustion Modes Hydrogen Engines for Heavy Duty Trucks

    Directory of Open Access Journals (Sweden)

    Alberto A. Boretti

    2012-01-01

    Full Text Available The paper presents the numerical study of a diesel direct injection heavy duty truck engine converted to hydrogen. The engine has a power turbine connected through a clutch and a continuously variable transmission to the crankshaft. The power turbine may be disconnected and by-passed when it is inefficient or inconvenient to use. The conversion is obtained by replacing the Diesel injector with a hydrogen injector and the glow plug with a jet ignition device. The hydrogen engine operates different modes of combustion depending on the relative phasing of the main injection and the jet ignition. The engine generally operates mostly in Diesel-like mode, with the most part of the main injection following the suitable creation in cylinder conditions by jet ignition. For medium-low loads, better efficienciy is obtained with the gasoline-like mode jet igniting the premixed homogeneous mixture at top dead centre. It’s permitted at higher loads or at very low loads for the excessive peak pressure or the mixture too lean to burn rapidly. The hydrogen engine has better efficiency than Diesel outputs and fuel conversion. Thanks to the larger rate of heat release, it has the opportunity to run closer to stoichiometry and the multi mode capabilities. The critical area for this engine development is found in the design of a hydrogen injector delivering the amount of fuel needed to the large volume cylinder within a Diesel-like injection time.

  18. Symmetry tests in polarized Z0 decays to b anti bg

    International Nuclear Information System (INIS)

    Abe, K.; Abe, K.; Akagi, T.

    1997-06-01

    Angular asymmetries have been measured in polarized Z 0 decays to b anti bg collected by the SLD experiment at the SLC. A high purity b anti bg event sample is selected utilizing lifetime information given by the SLD CCD pixel vertex detector and the stable micron-size SLC beams, and the b- and anti b-jets are identified using lifetime information and momentum-weighted track charge. The forward-backward asymmetry is observed in the b-jet polar angle distribution, and the parity-violation parameter is measured to test the Standard Model. Two angular correlations between the three-jet plane and the Z 0 polarization are studied. The CP-even and T-odd angular asymmetry, and the CP-odd and T-odd angular asymmetry are sensitive to physics beyond the Standard Model. The authors measure the expectation values of these quantities to be consistent with zero and set limits on the correlations

  19. Nickel brittling by hydrogen. Temperature effect

    International Nuclear Information System (INIS)

    Lapitz, P.A; Fernandez, S; Alvarez, M.G

    2006-01-01

    The results of a study on the effect of different variables on the susceptibility to brittling by hydrogen and the velocity of propagation of fissures in nickel wire (99.7% purity) are described. The hydrogen load was carried out by cathodic polarization in H 2 SO 4 0.5m solution. The susceptibility to brittling by hydrogen was determined with traction tests at slow deformation speed and constant cathodic potential, and the later observation of the fracture surface by scanning electron microscopy. The variables studied were: applied cathodic overpower, speed of initial deformation and temperature. The results showed that the speed of fissure propagation in the nickel by brittleness from hydrogen is a function of the applied potential and the speed of deformation used. Without tension, the hydrogen load by cathodic polarization at room temperature leads to the formation of cavities similar to those observed when the hydrogenation is performed in the presence of gaseous hydrogen at high pressure and temperature (CW)

  20. A search for jet handedness in hadronic Z{sup 0} decays

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yoji

    1995-03-01

    Transport of polarization through hadronization process is one of the fundamental interest in Quantum Chromodynamics which is a theory of strong interactions. In the low energy region where the hadronization occurs, QCD calculations are difficult, therefore at present the transport can be investigated experimentally. In this study the authors have searched for signatures of polarization of quarks and antiquarks in hadronic jets from Z{sup 0} {yields} q{bar q} decays. The polarization of quarks and antiquark produced by Z{sup 0} decays are predicted by the Standard Model of elementary particle physics. The authors defined several quantities depending on {open_quotes}jet handedness{close_quotes} methods and studied the correlation between the predicted polarization and the quantities. The signal was estimated by analyzing power which represents degree of the polarization transport through the hadronization process. The Z{sup 0} decays were measured by SLC Large Detector and the polarized electron beam provided by SLAC Linear Collider was useful for this study. The data from the 1993 run showed no signature of the transport of quark and antiquark polarization. Upper limits on magnitude of the analyzing power were set in the range 0.05-0.15 depending on the methods.

  1. Equilibrium chemical reaction of supersonic hydrogen-air jets (the ALMA computer program)

    Science.gov (United States)

    Elghobashi, S.

    1977-01-01

    The ALMA (axi-symmetrical lateral momentum analyzer) program is concerned with the computation of two dimensional coaxial jets with large lateral pressure gradients. The jets may be free or confined, laminar or turbulent, reacting or non-reacting. Reaction chemistry is equilibrium.

  2. Evidence for the Magnetic Breakout Model in an Equatorial Coronal-hole Jet

    Science.gov (United States)

    Kumar, Pankaj; Karpen, Judith T.; Antiochos, Spiro K.; Wyper, Peter F.; DeVore, C. Richard; DeForest, Craig E.

    2018-02-01

    Small, impulsive jets commonly occur throughout the solar corona, but are especially visible in coronal holes. Evidence is mounting that jets are part of a continuum of eruptions that extends to much larger coronal mass ejections and eruptive flares. Because coronal-hole jets originate in relatively simple magnetic structures, they offer an ideal testbed for theories of energy buildup and release in the full range of solar eruptions. We analyzed an equatorial coronal-hole jet observed by the Solar Dynamics Observatory (SDO)/AIA on 2014 January 9 in which the magnetic-field structure was consistent with the embedded-bipole topology that we identified and modeled previously as an origin of coronal jets. In addition, this event contained a mini-filament, which led to important insights into the energy storage and release mechanisms. SDO/HMI magnetograms revealed footpoint motions in the primary minority-polarity region at the eruption site, but show negligible flux emergence or cancellation for at least 16 hr before the eruption. Therefore, the free energy powering this jet probably came from magnetic shear concentrated at the polarity inversion line within the embedded bipole. We find that the observed activity sequence and its interpretation closely match the predictions of the breakout jet model, strongly supporting the hypothesis that the breakout model can explain solar eruptions on a wide range of scales.

  3. The jets in 3C 449 revisited

    International Nuclear Information System (INIS)

    Cornwell, T.J.; Perley, R.A.

    1982-01-01

    Bridle (this volume) has summarized the overall characteristics of the jets found in numerous low-luminosity and some high-luminosity radio sources. Previous observations made with the partially completed VLA at wavelengths of 6 and 2O cm indicated that 3C449 was an archetypal radio source obeying all the ''rules'' summarized by Bridle. New observations with the VLA of the polarization structure at 6 and 2O cm have destroyed this simple picture and identify 3C449 as a ''rogue'' jet source. (Auth.)

  4. SIGNATURES OF RELATIVISTIC HELICAL MOTION IN THE ROTATION MEASURES OF ACTIVE GALACTIC NUCLEUS JETS

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Loeb, Abraham [Institute for Theory and Computation, Harvard University, Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2009-10-01

    Polarization has proven to be an invaluable tool for probing magnetic fields in relativistic jets. Maps of the intrinsic polarization vectors have provided the best evidence to date for uniform, toroidally dominated magnetic fields within jets. More recently, maps of the rotation measure (RM) in jets have for the first time probed the field geometry of the cool, moderately relativistic surrounding material. In most cases, clear signatures of the toroidal magnetic field are detected, corresponding to gradients in RM profiles transverse to the jet. However, in many objects, these profiles also display marked asymmetries that are difficult to explain in simple helical jet models. Furthermore, in some cases, the RM profiles are strongly frequency and/or time dependent. Here we show that these features may be naturally accounted for by including relativistic helical motion in the jet model. In particular, we are able to reproduce bent RM profiles observed in a variety of jets, frequency-dependent RM profile morphologies, and even the time dependence of the RM profiles of knots in 3C 273. Finally, we predict that some sources may show reversals in their RM profiles at sufficiently high frequencies, depending upon the ratio of the components of jet sheath velocity transverse and parallel to the jet. Thus, multi-frequency RM maps promise a novel way in which to probe the velocity structure of relativistic outflows.

  5. Polarization in high Psub(trans) and cumulative hadron production

    International Nuclear Information System (INIS)

    Efremov, A.V.

    1978-01-01

    The final hadron polarization in the high Psub(trans) processes is analyzed in the parton hard scattering picture. Scaling assumption allows a correct qualitative description to be given for the Psub(trans)-behaviour of polarization or escape angle behaviour in cumulative production. The energy scaling and weak dependence on the beam and target type is predicted. A method is proposed for measuring the polarization of hadron jets

  6. Afterglow Imaging and Polarization of Misaligned Structured GRB Jets and Cocoons: Breaking the Degeneracy in GRB 170817A

    Science.gov (United States)

    Gill, Ramandeep; Granot, Jonathan

    2018-05-01

    The X-ray to radio afterglow emission of GRB 170817A / GW 170817 so far scales as Fν∝ν-0.6t0.8 with observed frequency and time, consistent with a single power-law segment of the synchrotron spectrum from the external shock going into the ambient medium. This requires the effective isotropic equivalent afterglow shock energy in the visible region to increase as ˜t1.7. The two main channels for such an energy increase are (i) radial: more energy carried by slower material (in the visible region) gradually catches up with the afterglow shock and energizes it, and (ii) angular: more energy in relativistic outflow moving at different angles to our line of sight, whose radiation is initially beamed away from us but its beaming cone gradually reaches our line of sight as it decelerates. One cannot distinguish between these explanations (or combinations of them) using only the X-ray to radio Fν(t). Here we demonstrate that the most promising way to break this degeneracy is through afterglow imaging and polarization, by calculating the predicted evolution of the afterglow image (its size, shape and flux centroid) and linear polarization Π(t) for different angular and/or radial outflow structures that fit Fν(t). We consider two angular profiles - a Gaussian and a narrow core with power-law wings in energy per solid angle, as well as a (cocoon motivated) (quasi-) spherical flow with radial velocity profile. For a jet viewed off-axis (and a magnetic field produced in the afterglow shock) Π(t) peaks when the jet's core becomes visible, at ≈2tp where the lightcurve peaks at tp, and the image can be elongated with aspect ratios ≳ 2. A quasi-spherical flow has an almost circular image and a much lower Π(t) (peaking at ≈tp) and flux centroid displacement θfc (a spherical flow has Π(t) = θfc = 0 and a perfectly circular image).

  7. The Use of Faraday Rotation Sign Maps as a Diagnostic for Helical Jet Magnetic Fields

    International Nuclear Information System (INIS)

    Reichstein, Andrea; Gabuzda, Denise

    2012-01-01

    We present maps of the sign of the Faraday Rotation measure obtained from multi-frequency radio observations made with the Very Long Baseline Array (VLBA). The Active Galactic Nuclei (AGN) considered have B-field structures with a central 'spine' of B-field orthogonal to the jet and/or a longitudinal B-field near one or both edges of the jet. This structure can plausibly be interpreted as being caused by a helical/toroidal jet magnetic field. Faraday Rotation is a rotation of the plane of polarization that occurs when the polarized radiation passes through a magnetized plasma. The sign of the RM is determined by the direction of the line-of-sight B-field in the region causing the Faraday Rotation, and an ordered toroidal or helical magnetic field associated with an AGN jet will thus produce a distinctive bilateral distribution of the RMs across the jet. We present and discuss RM-sign maps and their possible interpretation regarding the magnetic field geometries for several sources.

  8. Some developments in polarized ion sources

    International Nuclear Information System (INIS)

    Witteveen, G.J.

    1979-01-01

    Investigations concerning an atomic beam source are presented and a new polarized ion source of a more universal type is introduced. Polarized and unpolarized beams of positively or negatively charged ions can be produced with this new version and the theoretical limits are a polarized negative hydrogen ion beam with an intensity of about 1 mH and a polarized proton beam with an intensity of 10 mH. (C.F.)

  9. Combustion characteristics of natural gas-hydrogen hybrid fuel turbulent diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghafour, S.A.A.; El-dein, A.H.E.; Aref, A.A.R. [Mechanical Power Engineering Department, Faculty of Engineering, Suez Canal University, Port-Said (Egypt)

    2010-03-15

    Combustion characteristics of natural gas - hydrogen hybrid fuel were investigated experimentally in a free jet turbulent diffusion flame flowing into a slow co-flowing air stream. Experiments were carried out at a constant jet exit Reynolds number of 4000 and with a wide range of NG-H{sub 2} mixture concentrations, varied from 100%NG to 50%NG-50% H{sub 2} by volume. The effect of hydrogen addition on flame stability, flame length, flame structure, exhaust species concentration and pollutant emissions was conducted. Results showed that, hydrogen addition sustains a progressive improvement in flame stability and reduction in flame length, especially for relatively high hydrogen concentrations. Hydrogen-enriched flames found to have a higher combustion temperatures and reactivity than natural gas flame. Also, it was found that hydrogen addition to natural gas is an ineffective strategy for NO and CO reduction in the studied range, while a significant reduction in the %CO{sub 2} molar concentration by about 30% was achieved. (author)

  10. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    Science.gov (United States)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  11. Advanced hydrogen electrode for hydrogen-bromide battery

    Science.gov (United States)

    Kosek, Jack A.; Laconti, Anthony B.

    1987-01-01

    Binary platinum alloys are being developed as hydrogen electrocatalysts for use in a hydrogen bromide battery system. These alloys were varied in terms of alloy component mole ratio and heat treatment temperature. Electrocatalyst evaluation, performed in the absence and presence of bromide ion, includes floating half cell polarization studies, electrochemical surface area measurements, X ray diffraction analysis, scanning electron microscopy analysis and corrosion measurements. Results obtained to date indicate a platinum rich alloy has the best tolerance to bromide ion poisoning.

  12. ANTI-CORRELATED OPTICAL FLUX AND POLARIZATION VARIABILITY IN BL LAC

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Haritma [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Ganeshkhind, Pune 411 007 (India); Gupta, Alok C. [Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital 263 129 (India); Wiita, Paul J. [Department of Physics, The College of New Jersey, P.O. Box 7718, Ewing, NJ 08628-0718 (United States); Uemura, Makoto; Itoh, Ryosuke; Sasada, Mahito, E-mail: haritma@iucaa.ernet.in [Hiroshima Astrophysical Science Center, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan)

    2014-01-20

    We present the results of photometric (V band) and polarimetric observations of the blazar BL Lac during 2008-2010 using TRISPEC attached to the KANATA 1.5 m telescope in Japan. The data reveal a great deal of variability ranging from days to months with detection of strong variations in fractional polarization. The V band flux strongly anticorrelates with the degree of polarization during the first of two observing seasons but not during the second. The direction of the electric vector, however, remained roughly constant during all of our observations. These results are consistent with a model with at least two emission regions being present, with the more variable component having a polarization direction nearly perpendicular to that of the relatively quiescent region so that a rising flux can produce a decline in degree of polarization. We also computed models involving helical jet structures and single transverse shocks in jets and show that they might also be able to agree with the anticorrelations between flux and fractional polarization.

  13. Self-similarity of proton spin and asymmetry of jet production

    International Nuclear Information System (INIS)

    Tokarev, M.V.; Zborovsky, I.

    2014-01-01

    Self-similarity of jet production in polarized p + p collisions is studied. The concept of z-scaling is applied for description of inclusive spectra obtained with different orientations of proton spin. New data on the double longitudinal spin asymmetry, A LL , of jets produced in proton-proton collisions at √s = 200 GeV measured by the STAR Collaboration at RHIC are analyzed in the z-scaling approach. Hypotheses of self-similarity and fractality of internal spin structure are formulated. A possibility to extract information on spin-dependent fractal dimensions of proton from the asymmetry of jet production is justified. The spin-dependent fractal dimensions for the process p-bar+p-bar→jet+X are estimated.

  14. Measuring transverse spin correlations 4-particle correlations in e+e-→2 jets

    International Nuclear Information System (INIS)

    Artru, X.; Collins, J.

    1995-04-01

    The azimuthal distribution of pairs of particles in a jet is sensitive to the transverse polarization of the quark initiating the jet, but with a sensitivity that involves a nonperturbative analyzing power. We show in detail how to measure the analyzing power from 4-hadron correlations in e + e - → 2 jets. We explain the combination of particle flavor that are likely to give the biggest effect. (authors). 19 refs., 2 figs., 1 tab

  15. Low-Z material for limiters and wall surfaces in JET: beryllium and carbon

    International Nuclear Information System (INIS)

    Rebut, P.H.; Hugon, M.; Booth, S.J.; Dean, J.R.; Dietz, K.J.; Sonnenberg, K.; Watkins, M.L.

    1985-01-01

    The relative merits of graphite and beryllium, as a low-Z material for limiters and wall surfaces in JET, are compared. A consideration of data on thermomechanical properties, retention of hydrogen and gettering action, indicates that beryllium offers the best prospects as a material for the JET belt limiters and walls. (U.K.)

  16. The superluminal radio source 4c 39. 25 as relativistic jet prototype. El cuasar superluminal 4C 93. 25 como prototipo de jet relativistia

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A.; Gomez, J.L.; Marcaide, J.M.

    1993-01-01

    We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kinematic evolution of the superluminal radio source 4C 39.25 contains a bent relativistic jet which is misaligned relative to the observer near the core region, leading to a relatively low core brightness. (Author) 12 refs.

  17. Polarization as a tool for studying the physics of weak interactions

    International Nuclear Information System (INIS)

    Soffer, J.

    1983-01-01

    Realistic possibilities exist now to obtain high-energy polarized proton beams with high luminosity and to measure the polarization of a stored beam. This will be our motivation to discuss parity violating weak effects in inclusive hadron and jet production with polarized beams. There are also interesting predictions for helicity asymmetries in W +- and Z production in pp and pantip collisions

  18. Polarization as a tool for studying the physics of weak interactions

    International Nuclear Information System (INIS)

    Soffer, J.

    1983-01-01

    Realistic possibilities exist now to obtain high-energy polarized proton beams with high luminosity and to measure the polarization of a stored beam. This will be our motivation to discuss parity violating weak effects in inclusive hadron and jet production with polarized beams. There are also interesting predictions for helicity asymmetries in Wsup(+-) and Z production in pp and panti p collisions. (orig.)

  19. CP violation in the 3 jet and 4 jet decays of the Z boson at GigaZ

    International Nuclear Information System (INIS)

    Nachtmann, O.

    2003-08-01

    We review CP-violating effects in Z → 3 jet and Z → 4 jet decays, assuming the presence of CP-violating effective ZbbG and ZbbGG couplings. Longitudinal beam polarization is included in the studies. We propose a direct search for such CP-violating couplings by using various CP-odd observables. The data of a future linear collider running at the Z-resonance in the so-called GigaZ option should give significant information on the couplings. Finally we show that stringent bounds on the mass of excited b quarks can be derived if appropriate couplings are of a size characteristic of a strong interaction. (orig.)

  20. Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air

    KAUST Repository

    Choi, Byungchul; Chung, Suk-Ho

    2012-01-01

    Autoignited lifted flame behavior in laminar jets of methane/hydrogen mixture fuels has been investigated experimentally in heated coflow air. Three regimes of autoignited lifted flames were identified depending on initial temperature and hydrogen

  1. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    International Nuclear Information System (INIS)

    Zhang, Haocheng; Taylor, Greg; Li, Hui; Guo, Fan

    2017-01-01

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.

  2. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haocheng; Taylor, Greg [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Li, Hui; Guo, Fan [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-02-01

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.

  3. Energy conversion evolution at lunar polar sites

    Indian Academy of Sciences (India)

    robotic and human surface bases. Sunlight is nearly ... orientation and precession of its spin axis rela- tive to its orbit ... atoms, most likely hydrogen, that many people immediately .... to find out the real meaning of the excess polar hydrogen.

  4. Evolution of the polarization of the optical afterglow of the gamma-ray burst GRB030329.

    Science.gov (United States)

    Greiner, Jochen; Klose, Sylvio; Reinsch, Klaus; Schmid, Hans Martin; Sari, Re'em; Hartmann, Dieter H; Kouveliotou, Chryssa; Rau, Arne; Palazzi, Eliana; Straubmeier, Christian; Stecklum, Bringfried; Zharikov, Sergej; Tovmassian, Gaghik; Bärnbantner, Otto; Ries, Christoph; Jehin, Emmanuel; Henden, Arne; Kaas, Anlaug A; Grav, Tommy; Hjorth, Jens; Pedersen, Holger; Wijers, Ralph A M J; Kaufer, Andreas; Park, Hye-Sook; Williams, Grant; Reimer, Olaf

    2003-11-13

    The association of a supernova with GRB030329 strongly supports the 'collapsar' model of gamma-ray bursts, where a relativistic jet forms after the progenitor star collapses. Such jets cannot be spatially resolved because gamma-ray bursts lie at cosmological distances; their existence is instead inferred from 'breaks' in the light curves of the afterglows, and from the theoretical desire to reduce the estimated total energy of the burst by proposing that most of it comes out in narrow beams. Temporal evolution of the polarization of the afterglows may provide independent evidence for the jet structure of the relativistic outflow. Small-level polarization ( approximately 1-3 per cent) has been reported for a few bursts, but its temporal evolution has yet to be established. Here we report polarimetric observations of the afterglow of GRB030329. We establish the polarization light curve, detect sustained polarization at the per cent level, and find significant variability. The data imply that the afterglow magnetic field has a small coherence length and is mostly random, probably generated by turbulence, in contrast with the picture arising from the high polarization detected in the prompt gamma-rays from GRB021206 (ref. 18).

  5. Hydrogen isotope separation for fusion power applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R., E-mail: robert.smith@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Whittaker, D.A.J.; Butler, B.; Hollingsworth, A.; Lawless, R.E.; Lefebvre, X.; Medley, S.A.; Parracho, A.I.; Wakeling, B. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-10-05

    Highlights: • Summary of the tritium plant, the Active Gas Handling System (AGHS), at JET. • Review of the Water Detritiation System (WDS) under construction. • Design of the new Material Detritiation Facility (MDF). • Review of problems in fusion related to metal/hydrogen system. - Abstract: The invited talk given at MH2014 in Salford ranged over many issues associated with hydrogen isotope separation, fusion machines and the hydrogen/metal systems found in the Joint European Torus (JET) machine located near Oxford. As this sort of talk does not lend itself well to a paper below I have attempted to highlight some of the more pertinent information. After a description of the Active Gas Handling System (AGHS) a brief summary of isotope separation systems is described followed by descriptions of three major projects currently being undertaken by the Tritium Engineering and Science Group (TESG), the upgrade to the Analytical Systems (AN-GC) at the AGH, the construction of a Water Detritiation System (WDS) and a Material Detritiation Facility (MDF). Finally, a review of some of the challenges facing fusion with respect to metal/hydrogen systems is presented.

  6. Tungsten behaviour under anodic polarization

    International Nuclear Information System (INIS)

    Vas'ko, A.T.; Patsyuk, F.N.

    1980-01-01

    Electrochemical investigations have been carried out to identify the state of elements of the tungsten galvanic coating. Active zones on anode polarization curves in the hydrogen region of galvanic tungsten are established. The difference in the behaviour of monocrystal and galvanic tungsten electrodes is shown to be connected with the oxidation of hydrogen in the galvanic sediment

  7. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    KAUST Repository

    Gil, Michał; Kijak, Michał; Piwonski, Hubert Marek; Herbich, Jerzy; Waluk, Jacek

    2017-01-01

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters.We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donoracceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  8. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    KAUST Repository

    Gil, Michał

    2017-02-03

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters.We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donoracceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  9. and Jet Power/Emission in AGNs Zhongzu Wu1,∗ , Minfeng Gu2 ...

    Indian Academy of Sciences (India)

    Abstract. Neutral hydrogen (HI) 21-cm absorption has been detected against very powerful radio jets. In this paper, based on Gupta's sample. (Gupta et al. 2006), we present our preliminary study of the correlations between the HI column density N(HI) and the jet power, N(HI) versus the low frequency luminosity at 408 MHz, ...

  10. POLARIMETRY AND THE HIGH-ENERGY EMISSION MECHANISMS IN QUASAR JETS: THE CASE OF PKS 1136-135

    Energy Technology Data Exchange (ETDEWEB)

    Cara, Mihai; Perlman, Eric S. [Department of Physics and Space Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901 (United States); Uchiyama, Yasunobu [SLAC/KIPAC, Stanford University, 2575 Sand Hill Road, M/S 209, Menlo Park, CA 94025 (United States); Cheung, Chi C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Coppi, Paolo S. [Yale University, Department of Astronomy, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Georganopoulos, Markos [Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Worrall, Diana M.; Birkinshaw, Mark [Department of Physics, University of Bristol, Bristol, BS8 1TL (United Kingdom); Sparks, William B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marshall, Herman L. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Stawarz, Lukasz [Institute of Space Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-Ku, Sagamihara, Kanagawa 252-5210 (Japan); Begelman, Mitchell C. [Department of Astrophysical and Planetary Sciences, UCB 391, University of Colorado, Boulder, CO 80309-0391 (United States); O' Dea, Christopher P. [Laboratory for Multiwavelength Astrophysics, School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Dr., Rochester, NY 14623-5603 (United States); Baum, Stefi A. [Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Dr., Rochester, NY 14623-5604 (United States)

    2013-08-20

    Since the discovery of kiloparsec-scale X-ray emission from quasar jets, the physical processes responsible for their high-energy emission have been poorly defined. A number of mechanisms are under active debate, including synchrotron radiation, inverse-Comptonized cosmic microwave background (IC/CMB) emission, and other Comptonization processes. In a number of cases, the optical and X-ray emission of jet regions are inked by a single spectral component, and in those, high-resolution multi-band imaging and polarimetry can be combined to yield a powerful diagnostic of jet emission processes. Here we report on deep imaging photometry of the jet of PKS 1136-135 obtained with the Hubble Space Telescope. We find that several knots are highly polarized in the optical, with fractional polarization {Pi} > 30%. When combined with the broadband spectral shape observed in these regions, this is very difficult to explain via IC/CMB models, unless the scattering particles are at the lowest-energy tip of the electron energy distribution, with Lorentz factor {gamma} {approx} 1, and the jet is also very highly beamed ({delta} {>=} 20) and viewed within a few degrees of the line of sight. We discuss both the IC/CMB and synchrotron interpretation of the X-ray emission in the light of this new evidence, presenting new models of the spectral energy distribution and also the matter content of this jet. The high polarizations do not completely rule out the possibility of IC/CMB optical-to-X-ray emission in this jet, but they do strongly disfavor the model. We discuss the implications of this finding, and also the prospects for future work.

  11. Plasma polarization spectroscopy

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Horimoto, Yasuhiro; Fujimoto, Takashi; Hasegawa, Noboru; Sukegawa, Kouta; Kawachi, Tetsuya

    2005-01-01

    The electron velocity distribution function (EVDF) in plasma can be anisotropic in laser-produced plasmas. We have developed a new technique to evaluate the polarization degree of the emission lines in the extreme vacuum ultra violet wavelength region. The polarization of the emission lines and the continuums from the lithium-like nitrogen and from helium- and hydrogen-like carbon in recombining plasma is evaluated. Particle simulation in the velocity space gives the time scale for relaxation of anisotropic EVDFs. (author)

  12. Lagrangian Investigation of Auto-ignition in a Hydrogen Jet Flame in a Vitiated Co-flow: Animations of Particle Trajectories in Composition Space from PDF Model Calculations

    OpenAIRE

    Wang, Haifeng; Pope, Stephen B.

    2007-01-01

    PDF model calculations have been performed of the Cabra lifted hydrogen flame in a vitiated co-flow. Particle trajectories are extracted from the Lagrangian particle method used to solve the modeled PDF equation. The particle trajectories in the mixture fraction-temperature plane reveal (at successive downstream locations): essentially inert mixing between the cold fuel jet and the hot co-flow; the auto-ignition of very lean particles; and, subsequent mixing and reaction, leading to near-equi...

  13. Recent results from a high Pt jet experiment at Fermilab

    International Nuclear Information System (INIS)

    Cormell, L.; Corcoran, M.; Dris, M.

    1979-04-01

    Some recent results from a two-arm calorimeter experiment performed at Fermilab are presented. The properties of high P/sub t/ jets produced in hydrogen from incident pions and protons were studied. These studies lead to several important results: the high P/sub t/ jet events observed are produced by parton--parton (quark or gluon) scattering, and therefore: an effective parton structure function for the pion and the internal transverse momentum of these partons could be measured. 16 references

  14. Optical polarization studies of Herbig-Haro objects: Pt. 4

    International Nuclear Information System (INIS)

    Scarrott, S.M.

    1988-01-01

    Optical polarization maps are presented for the various nebulosities of the HH34 complex in the L1641 dark cloud. The Herbig-Haro object HH34 and its associated optical jet are unpolarized but their source of excitation (HH34-IRS) is the illuminating star of a reflection nebula which envelops the jet and extends as far as HH34. The optical polarization of HH34-IRS suggests that it is surrounded by a circumstellar disc which collimates the outflows in some manner. There is other reflection nebulosity in the region illuminated by a faint star which we identify as the optical counterpart of HH34-IRS5. We have also discovered a small bipolar reflection nebula approximately 20 arcsec west of HH34-IRS. (author)

  15. Probing the Magnetic Field Structure in Sgr A* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gold, Roman; McKinney, Jonathan C. [Department of Physics and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States); Johnson, Michael D.; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-10

    Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford–Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.

  16. MRI of Heterogeneous Hydrogenation Reactions Using Parahydrogen Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Burt, Scott Russell [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    The power of magnetic resonance imaging (MRI) is its ability to image the internal structure of optically opaque samples and provide detailed maps of a variety of important parameters, such as density, diffusion, velocity and temperature. However, one of the fundamental limitations of this technique is its inherent low sensitivity. For example, the low signal to noise ratio (SNR) is particularly problematic for imaging gases in porous materials due to the low density of the gas and the large volume occluded by the porous material. This is unfortunate, as many industrially relevant chemical reactions take place at gas-surface interfaces in porous media, such as packed catalyst beds. Because of this severe SNR problem, many techniques have been developed to directly increase the signal strength. These techniques work by manipulating the nuclear spin populations to produce polarized} (i.e., non-equilibrium) states with resulting signal strengths that are orders of magnitude larger than those available at thermal equilibrium. This dissertation is concerned with an extension of a polarization technique based on the properties of parahydrogen. Specifically, I report on the novel use of heterogeneous catalysis to produce parahydrogen induced polarization and applications of this new technique to gas phase MRI and the characterization of micro-reactors. First, I provide an overview of nuclear magnetic resonance (NMR) and how parahydrogen is used to improve the SNR of the NMR signal. I then present experimental results demonstrating that it is possible to use heterogeneous catalysis to produce parahydrogen-induced polarization. These results are extended to imaging void spaces using a parahydrogen polarized gas. In the second half of this dissertation, I demonstrate the use of parahydrogen-polarized gas-phase MRI for characterizing catalytic microreactors. Specifically, I show how the improved SNR allows one to map parameters important for characterizing the heat and mass

  17. CP violation in the 3 jet and 4 jet decays of the Z boson at GigaZ

    International Nuclear Information System (INIS)

    Nachtmann, O.; Schwanenberger, C.

    2004-01-01

    We review CP-violating effects in Z → 3 jet and Z → 4 jet decays, assuming the presence of CP-violating effective Zb anti bG and Zb anti bGG couplings. Longitudinal beam polarization is included in the studies. We propose a direct search for such CP-violating couplings by using various CP-odd observables. The data of a future linear collider running at the Z-resonance in the so-called GigaZ option should give significant information on the couplings. Finally we show that stringent bounds on the mass of excited b quarks can be derived if appropriate couplings are of a size characteristic of a strong interaction. (orig.)

  18. SYSTEMATIC STUDY OF GAMMA-RAY-BRIGHT BLAZARS WITH OPTICAL POLARIZATION AND GAMMA-RAY VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Ryosuke; Fukazawa, Yasushi; Kanda, Yuka; Shiki, Kensei; Kawabata, Miho; Nakaoka, Tatsuya; Takaki, Katsutoshi; Takata, Koji; Ui, Takahiro [Department of Physical Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Nalewajko, Krzysztof; Madejski, Greg M. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Uemura, Makoto; Tanaka, Yasuyuki T.; Kawabata, Koji S.; Akitaya, Hiroshi; Ohsugi, Takashi [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Schinzel, Frank K. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Moritani, Yuki [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Sasada, Mahito [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Yamanaka, Masayuki, E-mail: itoh@hep01.hepl.hiroshima-u.ac.jp, E-mail: itoh@hp.phys.titech.ac.jp [Department of Physics, Faculty of Science and Engineering, Konan University, Okamoto, Kobe, Hyogo 658-8501 (Japan); and others

    2016-12-10

    Blazars are highly variable active galactic nuclei that emit radiation at all wavelengths from radio to gamma rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies, and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition, and variability are still debated. We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between 2008 July and 2014 December to investigate the mechanisms of variability and search for a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), this result implies a systematic difference in the intrinsic alignment of magnetic fields in parsec-scale relativistic jets between different types of blazars (flat-spectrum radio quasars vs. BL Lacs) and consequently between different types of radio galaxies (FR I versus FR II).

  19. Polarization Effects in Attosecond Photoelectron Spectroscopy

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2010-01-01

    following the field instead. We show that polarization effects may lead to an apparent temporal shift that needs to be properly accounted for in the analysis. The effect may be isolated and studied by angle-resolved photoelectron spectroscopy from oriented polar molecules. We also show that polarization...... effects will lead to an apparent temporal shift of 50 as between photoelectrons from a 2p and 1s state in atomic hydrogen....

  20. RECONSTRUCTING THREE-DIMENSIONAL JET GEOMETRY FROM TWO-DIMENSIONAL IMAGES

    Science.gov (United States)

    Avachat, Sayali; Perlman, Eric S.; Li, Kunyang; Kosak, Katie

    2018-01-01

    Relativistic jets in AGN are one of the most interesting and complex structures in the Universe. Some of the jets can be spread over hundreds of kilo parsecs from the central engine and display various bends, knots and hotspots. Observations of the jets can prove helpful in understanding the emission and particle acceleration processes from sub-arcsec to kilo parsec scales and the role of magnetic field in it. The M87 jet has many bright knots as well as regions of small and large bends. We attempt to model the jet geometry using the observed 2 dimensional structure. The radio and optical images of the jet show evidence of presence of helical magnetic field throughout. Using the observed structure in the sky frame, our goal is to gain an insight into the intrinsic 3 dimensional geometry in the jets frame. The structure of the bends in jet's frame may be quite different than what we see in the sky frame. The knowledge of the intrinsic structure will be helpful in understanding the appearance of the magnetic field and hence polarization morphology. To achieve this, we are using numerical methods to solve the non-linear equations based on the jet geometry. We are using the Log Likelihood method and algorithm based on Markov Chain Monte Carlo (MCMC) simulations.

  1. Moeller polarimetry with atomic hydrogen targets

    International Nuclear Information System (INIS)

    Chudakov, E.; Luppov, V.

    2005-01-01

    A novel proposal of using polarized atomic hydrogen gas, stored in an ultra-cold magnetic trap, as the target for electron beam polarimetry based on Moeller scattering is discussed. Such a target of practically 100% polarized electrons could provide a superb systematic accuracy of about 0.5% for beam polarization measurements. Feasibility studies for the CEBAF electron beam have been performed. (orig.)

  2. Production of jet fuel from alternative source

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Zoltan; Papp, Anita; Hancsok, Jenoe [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon and Coal Processing

    2013-06-01

    Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Furthermore, the quality requirements have become more aggravated for jet fuels. Nowadays reduced aromatic hydrocarbon fractions are necessary for the production of jet fuels with good burning properties, which contribute to less harmful material emission. In the recent past the properties of gasolines and diesel gas oils were continuously severed, and the properties of jet fuels will be more severe, too. Furthermore, it can become obligatory to blend alternative components into jet fuels. With the aromatic content reduction there is a possibility to produce high energy content jet fuels with the desirable properties. One of the possibilities is the blending of biocomponents from catalytic hydrogenation of triglycerides. Our aim was to study the possibilities of producing low sulphur and aromatic content jet fuels in a catalytic way. On a CoMo/Al{sub 2}O{sub 3} catalyst we studied the possibilities of quality improving of a kerosene fraction and coconut oil mixture depending on the change of the process parameters (temperature, pressure, liquid hourly space velocity, volume ratio). Based on the quality parameters of the liquid products we found that we made from the feedstock in the adequate technological conditions products which have a high smoke point (> 35 mm) and which have reduced aromatic content and high paraffin content (90%), so these are excellent jet fuels, and their stack gases damage the environment less. (orig.)

  3. Transmission line analogy for relativistic Poynting-flux jets

    Science.gov (United States)

    Lovelace, R. V. E.; Kronberg, P. P.

    2013-04-01

    Radio emission, polarization and Faraday rotation maps of the radio jet of the galaxy 3C 303 have shown that one knot of this jet carries a galactic-scale electric current and that it is magnetically dominated. We develop the theory of magnetically dominated or Poynting-flux jets by making an analogy of a Poynting jet with a transmission line or waveguide carrying a net current and having a potential drop across it (from the jet's axis to its radius) and a definite impedance which we derive. The electromagnetic energy flow in the jet is the jet impedance times the square of the jet current. The observed current in 3C 303 can be used to calculate the electromagnetic energy flow in this magnetically dominated jet. Time dependent but not necessarily small perturbations of a Poynting-flux jet are described by the `telegrapher's equations'. These predict the propagation speed of disturbances and the effective wave impedance for forward and backward propagating wave components. A localized disturbance of a Poynting jet gives rise to localized dissipation in the jet which may explain the enhanced synchrotron radiation in the knots of the 3C 303 jet, and also in the apparently stationary knot HST-1 in the jet near the nucleus of the nearby galaxy M87. For a relativistic Poynting jet on parsec scales, the reflected voltage wave from an inductive termination or load can lead to a backward propagating wave which breaks down the magnetic insulation of the jet giving |{boldsymbol E}| /|{boldsymbol B}|ge 1. At the threshold for breakdown, |{boldsymbol E}|/|{boldsymbol B}|=1, positive and negative particles are directly accelerated in the {boldsymbol E} × {boldsymbol B} direction which is approximately along the jet axis. Acceleration can occur up to Lorentz factors ˜107. This particle acceleration mechanism is distinct from that in shock waves and that in magnetic field reconnection.

  4. Role of the reaction intermediates in determining PHIP (parahydrogen induced polarization) effect in the hydrogenation of acetylene dicarboxylic acid with the complex [Rh (dppb)]+ (dppb: 1,4-bis(diphenylphosphino)butane)

    International Nuclear Information System (INIS)

    Reineri, F.; Aime, S.; Gobetto, R.; Nervi, C.

    2014-01-01

    This study deals with the parahydrogenation of the symmetric substrate acetylene dicarboxylic acid catalyzed by a Rh(I) complex bearing the chelating diphosphine dppb (1,4-bis(diphenylphosphino)butane). The two magnetically equivalent protons of the product yield a hyperpolarized emission signal in the 1 H-NMR spectrum. Their polarization intensity varies upon changing the reaction solvent from methanol to acetone. A detailed analysis of the hydrogenation pathway is carried out by means of density functional theory calculations to assess the structure of hydrogenation intermediates and their stability in the two solvents. The observed polarization effects have been accounted on the basis of the obtained structures. Insights into the lifetime of a short-lived reaction intermediate are also obtained

  5. First observations of Gigantic Jets from Monsoon Thunderstorms over India

    Science.gov (United States)

    Singh, Rajesh; Maurya, Ajeet; Chanrion, Olivier; Neubert, Torsten; Cummer, Steven; Mlynarczyk, Janusz; Bór, József; Siingh, Devendraa; Cohen, Morris; Kumar, Sushil

    2016-04-01

    Gigantic Jets are electric discharges from thunderstorm cloud tops to the bottom of the ionosphere at ~80 km altitude. After their first discovery in 2001, relatively few observations have been reported. Most of these are from satellites at large distances and a few tens from the ground at higher spatial resolution. Here we report the first Gigantic Jets observed in India from two thunderstorm systems that developed over the land surface from monsoon activity, each storm producing two Gigantic Jets. The jets were recorded by a video camera system at standard video rate (20 ms exposure) at a few hundred km distance. ELF measurements suggest that the jets are of the usual negative polarity and that they develop in less than 40 ms, which is faster than most jets reported in the past. The jets originate from the leading edge of a slowly drifting convective cloud complex close to the highest regions of the clouds and carry ~25 Coulomb of charge to the ionosphere. One jet has a markedly horizontal displacement that we suggest is caused by a combination of close-range cloud electric fields at inception, and longer-range cloud fields at larger distances during full development. The Gigantic Jets are amongst the few that have been observed over land.

  6. POLARIMETRY AND THE HIGH-ENERGY EMISSION MECHANISMS IN QUASAR JETS: THE CASE OF PKS 1136–135

    International Nuclear Information System (INIS)

    Cara, Mihai; Perlman, Eric S.; Uchiyama, Yasunobu; Cheung, Chi C.; Coppi, Paolo S.; Georganopoulos, Markos; Worrall, Diana M.; Birkinshaw, Mark; Sparks, William B.; Marshall, Herman L.; Stawarz, Lukasz; Begelman, Mitchell C.; O'Dea, Christopher P.; Baum, Stefi A.

    2013-01-01

    Since the discovery of kiloparsec-scale X-ray emission from quasar jets, the physical processes responsible for their high-energy emission have been poorly defined. A number of mechanisms are under active debate, including synchrotron radiation, inverse-Comptonized cosmic microwave background (IC/CMB) emission, and other Comptonization processes. In a number of cases, the optical and X-ray emission of jet regions are inked by a single spectral component, and in those, high-resolution multi-band imaging and polarimetry can be combined to yield a powerful diagnostic of jet emission processes. Here we report on deep imaging photometry of the jet of PKS 1136–135 obtained with the Hubble Space Telescope. We find that several knots are highly polarized in the optical, with fractional polarization Π > 30%. When combined with the broadband spectral shape observed in these regions, this is very difficult to explain via IC/CMB models, unless the scattering particles are at the lowest-energy tip of the electron energy distribution, with Lorentz factor γ ∼ 1, and the jet is also very highly beamed (δ ≥ 20) and viewed within a few degrees of the line of sight. We discuss both the IC/CMB and synchrotron interpretation of the X-ray emission in the light of this new evidence, presenting new models of the spectral energy distribution and also the matter content of this jet. The high polarizations do not completely rule out the possibility of IC/CMB optical-to-X-ray emission in this jet, but they do strongly disfavor the model. We discuss the implications of this finding, and also the prospects for future work

  7. Crystal structure and characterization of the novel NH+⋯N hydrogen bonded polar crystal [NH2(CH2)4NH][BF4

    Science.gov (United States)

    Wojtaś, M.; Gaģor, A.; Czupiński, O.; Medycki, W.; Jakubas, R.

    2012-03-01

    Dielectric properties and phase transitions of the piperazinium tetrafluoroborate ([NH2(CH2)4NH][BF4], abbreviated as PFB) crystal are related to the one-dimensional arrangement of the cations linked by the bistable NH+⋯N hydrogen bonds and molecular motions of the [BF4]- units. The crystal structure of [NH2(CH2)4NH][BF4] is monoclinic at room temperature with the polar space group Pn. The polar/acentric properties of the room temperature phase IV have been confirmed by the piezoelectric and pyroelectric measurements. DSC measurements show that the compound undergoes three first-order structural phase transitions: at 421/411 K (heating/cooling), at 386/372 K and at 364/349 K. 1H and 19F NMR measurements indicate the reorientational motions of [BF4]- anions and piperazinium(+) cations as well as the proton motion in the hydrogen-bonded chains of piperazine along the [001] direction. Over the phase I the isotropic reorientational motions or even self-diffusion of the cations and anions are expected. The conductivity measurements in the vicinity of the II-I PT indicate a superionic phase over the phase I.

  8. Optical characteristics of a RF DBD plasma jet in various A r / O 2 ...

    Indian Academy of Sciences (India)

    Using the optical emission spectrum analysis of the RF plasma jet, the excitation temperature is determined based on the Boltzmann plot method. The electron density in the plasma medium of the RF plasma jet is obtained by the Stark broadening of the hydrogen Balmer H β . It is mostly seen that, the radiation intensity of Ar ...

  9. Study by optical spectroscopy of the interaction between a hydrogen multi-polar plasma and a gallium arsenide surface

    International Nuclear Information System (INIS)

    Ferdinand, Robin

    1990-01-01

    The objective of this research thesis has been to understand which are the involved species during the deoxidation-passivation stage of the processing of gallium arsenide platelets used in semiconductor industry. The author describes problems related to the presence of oxides, and highlights the benefit of using a hydrogen multi-polar plasma to softly remove surface oxides. The experimental set-up is notably characterised by the role of magnetic confinement and its influence on plasma. A theoretical model is then developed for a better understanding of chemical and physical-chemical reactions occurring in the hydrogen plasma. Based on the use of the Boltzmann equation, the model calculates the electron energy distribution function, and allows the follow-up of species present in the plasma with respect to available and accessible parameters (pressure, discharge current, discharge voltage). A spectroscopic study of the hydrogen plasma is then reported, and the numerical model is validated by interpreting line shapes of the hydrogen Balmer series. A second experimental approach, based on electrostatic probes, is implemented, and the Laframboise theory is applied to this technique and allows electronic and ionic densities, and electron temperature to be determined. Experimental and numerical results are compared. All this leads to the study of the interaction of plasma with a sample, with a first step of study of a mixture plasma containing 85 per cent of hydrogen and 15 per cent of arsine, in order to get a general knowledge of emissions related to the presence of AsH 3 . Finally, interaction studies are performed by using laser-induced fluorescence and conventional space-resolved optical spectroscopy

  10. Symmetry Tests in Polarized Z{sup 0} Decays to b{bar b}g

    Energy Technology Data Exchange (ETDEWEB)

    Muller, David

    1999-07-09

    Angular asymmetries have been measured in polarized Z{sup 0} decays to b{bar b}g collected by the SLD experiment at the SLC. A high purity b{bar b}g event sample is selected by utilizing B lifetime information given by the SLD CCD pixel vertex detector and the stable micron-size SLC beams, and the b- and {bar b}-jets are identified using lifetime information and momentum- weighted track charge. The forward-backward asymmetry is observed in the b-quark polar angle distribution, and the parity-violation parameter is measured to test the Standard Model. Two angular correlations between the three-jet plane and the Z{sup 0} polarization are studied. The CP-even and T-odd, and the CP-odd and T-odd, angular asymmetries are sensitive to physics beyond the Standard Model. The latter requires tagging both the b- and {bar b}-jet. We measure the expectation values of these quantities to be consistent with zero and set limits on the correlations at the 5% level.

  11. Autoignition of hydrogen in shear flows

    Science.gov (United States)

    Kalbhor, Abhijit; Chaudhuri, Swetaprovo; Chitilappilly, Lazar

    2018-05-01

    In this paper, we compare the autoignition characteristics of laminar, nitrogen-diluted hydrogen jets in two different oxidizer flow configurations: (a) co-flowing heated air and (b) wake of heated air, using two-dimensional numerical simulations coupled with detailed chemical kinetics. In both cases, autoignition is observed to initiate at locations with low scalar dissipation rates and high HO2 depletion rates. It is found that the induction stage prior to autoignition is primarily dominated by chemical kinetics and diffusion while the improved scalar mixing imparted by the large-scale flow structures controls the ignition progress in later stages. We further investigate the ignition transience and its connection with mixing by varying the initial wake conditions and fuel jet to oxidizer velocity ratios. These studies reveal that the autoignition delay times are independent of initial wake flow conditions. However, with increased jet velocity ratios, the later stages of ignition are accelerated, mainly due to enhanced mixing facilitated by the higher scalar dissipation rates. Furthermore, the sensitivity studies for the jet in wake configuration show a significant reduction in ignition delay even for about 0.14% (by volume) hydrogen dilution in the oxidizer. In addition, the detailed autoignition chemistry and the relative roles of certain radical species in the initiation of the autoignition process in these non-premixed jets are investigated by tracking the evolution of important chain reactions using a Lagrangian particle tracking approach. The reaction H2 + O2 ↔ HO2 + H is recognized to be the dominant chain initiation reaction that provides H radicals essential for the progress of subsequent elementary reactions during the pre-ignition stage.

  12. Jet observables without jet algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele; Chan, Tucker; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2014-04-02

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

  13. Experimental investigation on the thermal properties of hydrogen jet flame and hot currents in the downstream region

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Tomohiko; Mogi, Toshio; Wada, Yuji; Horiguchi, Sadashige [Research Core for Explosion Safety, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Hamada, Shota; Miyake, Atsumi; Ogawa, Terushige [Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2008-07-15

    A series of experiments were conducted to understand the thermal hazards of hydrogen jet flames. In particular, we focused on the temperature properties of hot currents in the downstream region, because it was expected that this involved the most serious thermal hazards. The flame length and width depended on the nozzle diameter and the spouting pressure, namely, the mass flow rate, with similar dependences that were reported by other researchers. The temperature rise from ambient air along the trajectory depended on the balance of the flame length and the traveling distance from the flame tip. The position of the trajectory depended not only on the balance of flame length and the traveling distance, but also on the horizontal momentum induced by the spouting pressure. Empirical formulae for predicting the position and temperature rise of the trajectory were developed by the flame length, traveling distance, spouting pressure, and nozzle diameter as variables. (author)

  14. Polarized radio outbursts in BL Lacertae. I. Polarized emission from a compact jet. II. The flux and polarization of a piston-driven shock

    International Nuclear Information System (INIS)

    Aller, H.D.; Aller, M.F.; Hughes, P.A.

    1985-01-01

    A second highly polarized burst in BL Lacertae observed in 1983 which has very similar properties to the earlier burst in 1981-82 is described, and it is shown that in both bursts the electric vector of the polarized emission is nearly parallel to the observed extended structure. A weak shock, moving relativistically close to the line of sight, appears to be a very effective means of producing the observed behavior. A simple model is developed to represent the outbursts as due to a piston-driven shock which exhibits polarized emission due to compression of the otherwise random magnetic field of a collimated flow. It is shown that the general features of total flux, polarized flux, and polarization position angle as a function of frequency and time can be understood in terms of such a model. 34 references

  15. Faraday rotation measures in 20 AGN jets at parsec scale

    Directory of Open Access Journals (Sweden)

    Kravchenko Evgeniya V.

    2013-12-01

    Full Text Available We present multi wavelength parsec-scale Faraday rotation measure properties of twenty active galactic nuclei, observed with the Very Long Baseline Array simultaneously at 1.4, 1.6, 2.2, 2.4, 4.6, 5.0, 8.1, 8.4 and 15.4 GHz in the full polarization mode. For the observed sources we construct Faraday rotation measure and Faraday-corrected linear polarization maps. Direction of electrical field in the optically thick core regions confirms bimodal distribution. No significant changes of a Faraday rotation measure transverse to the jet direction are found in any of the observed sources. We propose a new magnetic field spatial geometry reconstruction method based on core shift measurements. This technique is applied to the quasar 1004+141. Results indicate an existence of a large scale poloidal magnetic field in the jet of 1004+141.

  16. Small-scale reforming of diesel and jet fuels to make hydrogen and syngas for fuel cells: A review

    International Nuclear Information System (INIS)

    Xu, Xinhai; Li, Peiwen; Shen, Yuesong

    2013-01-01

    Highlights: • Issues of reforming of heavy hydrocarbon fuels are reviewed. • The advantages of autothermal reforming over other types of reforming are discussed. • The causes and solutions of the major problems for reforming reactors are studied. • Designs and startup strategies for autothermal reforming reactors are proposed. - Abstract: This paper reviews the technological features and challenges of autothermal reforming (ATR) of heavy hydrocarbon fuels for producing hydrogen and syngas onboard to supply fuels to fuel cells for auxiliary power units. A brief introduction at the beginning enumerates the advantages of using heavy hydrocarbon fuels onboard to provide hydrogen or syngas for fuel cells such as solid oxide fuel cells (SOFCs). A detailed review of the reforming and processing technologies of diesel and jet fuels is then presented. The advantages of ATR over steam reforming (SR) and partial oxidation reforming (POX) are summarized, and the ATR reaction is analyzed from a thermodynamic point of view. The causes and possible solutions to the major problems existing in ATR reactors, including hot spots, formation of coke, and inhomogeneous mixing of fuel, steam, and air, are reviewed and studied. Designs of ATR reactors are discussed, and three different reactors, one with a fixed bed, one with monoliths, and one with microchannels are investigated. Novel ideas for design and startup strategies for ATR reactors are proposed at the end of the review

  17. Hadron production in light and heavy, quark and antiquark jets

    International Nuclear Information System (INIS)

    Baird, K.G.

    1996-08-01

    The authors review four hadronization studies performed by the SLD experiment at SLAC, involving separation of light (Z 0 → u anti u, d anti d, s anti s), c, and b flavors using precision vertexing, and separation of q- and anti q-jets using the highly polarized SLC electron beam. They measured the differences between the average charged multiplicities in Z 0 → light, → c anti c, and →b anti b events, and found that the results were consistent with predictions of perturbative QCD. Next, they measured π/Κ/p/Κ 0 /Λ 0 production in light events for the first time, and compared with production in c- and b-flavor events. They then examined particle production differences in light quark and antiquark hemispheres, and observed more high momentum baryons and K - 's than antibaryons and K + 's in quark hemispheres, consistent with the leading particle hypothesis. Lastly, they performed a search for jet handedness in light q- and anti q-jets. Assuming Standard Model values of quark polarization in Z 0 decays, they have set an improved upper limit on the analyzing power of the handedness method

  18. Modelling of Turbulent Lifted Jet Flames using flamelets: a priori assessment and a posteriori validation

    OpenAIRE

    Ruan, S; Swaminathan, Nedunchezhian; Darbyshire, O

    2014-01-01

    This study focuses on the modelling of turbulent lifted jet flames using flamelets and presumed PDF approach with interests on both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes to the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction, Z, and progress ...

  19. Metastable hydrogen

    International Nuclear Information System (INIS)

    Dose, V.

    1982-01-01

    This paper deals with the basic physical properties of the metastable 2 2 sub(1/2) state of atomic hydrogen. Applications relying on its special properties, including measurement of the Lamb shift, production of spin-polarized protons and the measurement of molecular electric moments, are discussed. (author)

  20. W-jet tagging: Optimizing the identification of boosted hadronically-decaying W bosons

    International Nuclear Information System (INIS)

    Cui Yanou; Han Zhenyu; Schwartz, Matthew D.

    2011-01-01

    A method is proposed for distinguishing highly boosted hadronically-decaying W's (W jets) from QCD-jets using jet substructure. Previous methods, such as the filtering/mass-drop method, can give a factor of ∼2 improvement in S/√(B) for jet p T > or approx. 200 GeV. In contrast, a multivariate approach including new discriminants such as R cores, which characterize the shape of the W jet, subjet planar flow, and grooming-sensitivities is shown to provide a much larger factor of ∼5 improvement in S/√(B). For longitudinally polarized W's, such as those coming from many new physics models, the discrimination is even better. Comparing different Monte Carlo simulations, we observe a sensitivity of some variables to the underlying event; however, even with a conservative estimates, the multivariate approach is very powerful. Applications to semileptonic WW resonance searches and all-hadronic W+jet searches at the LHC are also discussed. Code implementing our W-jet tagging algorithm is publicly available at http://jets.physics.harvard.edu/wtag.

  1. Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways.

    Science.gov (United States)

    Han, Jeongwoo; Tao, Ling; Wang, Michael

    2017-01-01

    To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. This study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2 options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2 , and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2 e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol

  2. Self-similarity of proton spin and asymmetry of jet production

    Czech Academy of Sciences Publication Activity Database

    Tokarev, M. V.; Zborovský, Imrich

    2015-01-01

    Roč. 12, č. 2 (2015), s. 214-220 ISSN 1547-4771 R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : asymmetry * high energy * jets * polarization * proton-proton collisions * Self-similarity Subject RIV: BE - Theoretical Physics

  3. Measuring transverse spin correlations 4-particle correlations in e{sup +}e{sup -}{yields}2 jets

    Energy Technology Data Exchange (ETDEWEB)

    Artru, X. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; Collins, J. [Pennsylvania State Univ., University Park, PA (United States). Davey Lab.

    1995-04-01

    The azimuthal distribution of pairs of particles in a jet is sensitive to the transverse polarization of the quark initiating the jet, but with a sensitivity that involves a nonperturbative analyzing power. We show in detail how to measure the analyzing power from 4-hadron correlations in e{sup +} e{sup -} {yields} 2 jets. We explain the combination of particle flavor that are likely to give the biggest effect. (authors). 19 refs., 2 figs., 1 tab.

  4. Crystal structure and characterization of the novel NH+⋯N hydrogen bonded polar crystal [NH2(CH2)4NH][BF4

    International Nuclear Information System (INIS)

    Wojtaś, M.; Gagor, A.; Czupiński, O.; Medycki, W.; Jakubas, R.

    2012-01-01

    Dielectric properties and phase transitions of the piperazinium tetrafluoroborate ([NH 2 (CH 2 ) 4 NH][BF 4 ], abbreviated as PFB) crystal are related to the one-dimensional arrangement of the cations linked by the bistable NH + ⋯N hydrogen bonds and molecular motions of the [BF 4 ] − units. The crystal structure of [NH 2 (CH 2 ) 4 NH][BF 4 ] is monoclinic at room temperature with the polar space group Pn. The polar/acentric properties of the room temperature phase IV have been confirmed by the piezoelectric and pyroelectric measurements. DSC measurements show that the compound undergoes three first-order structural phase transitions: at 421/411 K (heating/cooling), at 386/372 K and at 364/349 K. 1 H and 19 F NMR measurements indicate the reorientational motions of [BF 4 ] − anions and piperazinium(+) cations as well as the proton motion in the hydrogen-bonded chains of piperazine along the [001] direction. Over the phase I the isotropic reorientational motions or even self-diffusion of the cations and anions are expected. The conductivity measurements in the vicinity of the II–I PT indicate a superionic phase over the phase I. - Graphical abstract: It must be emphasized that the titled compound represents the first organic–inorganic simple salt containing the single-protonated piperazinium cation which was studied by means of the wide variety of experimental techniques. A survey of Cambridge Structural Database (CSD version 5.32 (November 2010) and updates (May 2011)) for structure containing the piperazinium cations yields 248 compounds with the doubly protonated piperazinium(2+) cations and only eight compounds with the singly protonated piperazinium(+) cations. Among these structures only one is the hybrid organic–inorganic material. This is piperazinium nitrate characterized structurally. The crystal packing of [NH 2 (CH 2 ) 4 NH][BF 4 ], phase IV. The dashed lines stand for the hydrogen bonds. The hydrogen bonds to BF4 groups are not included for

  5. Very forward jet, Mueller Navelet jets and jet gap jet measurements in CMS

    CERN Document Server

    Cerci, Salim

    2018-01-01

    The measurements of very forward jet, Mueller-Navelet jets and jet-gap-jet events are presented for different collision energies. The analyses are based on data collected with the CMS detector at the LHC. Jets are defined through the anti-$k_\\mathrm{t}$ clustering algorithm for different cone sizes. Jet production studies provide stringent tests of quantum chromodynamics (QCD) and contribute to tune Monte Carlo (MC) simulations and phenomenological models. The measurements are compared to predictions from various Monte Carlo event generators.

  6. Hydrogen injection device in BWR type reactor

    International Nuclear Information System (INIS)

    Takagi, Jun-ichi; Kubo, Koji.

    1988-01-01

    Purpose: To reduce the increasing ratio of main steam system dose rate due to N-16 activity due to excess hydrogen injection in the hydrogen injection operation of BWR type reactors. Constitution: There are provided a hydrogen injection mechanism for injecting hydrogen into primary coolants of a BWR type reactor, and a chemical injection device for injecting chemicals such as methanol, which makes nitrogen radioisotopes resulted in the reactor water upon hydrogen injection non-volatile, into the pressure vessel separately from hydrogen. Injected hydrogen and the chemicals are not reacted in the feedwater system, but the reaction proceeds due to the presence of radioactive rays after the injection into the pressure vessel. Then, hydrogen causes re-combination in the downcomer portion to reduce the dissolved oxygen concentration. Meanwhile, about 70 % of the chemicals is supplied by means of a jet pump directly to the reactor core, thereby converting the chemical form of N-16 in the reactor core more oxidative (non-volatile). (Kawakami, Y.)

  7. Fast automated placement of polar hydrogen atoms in protein-ligand complexes

    Directory of Open Access Journals (Sweden)

    Lippert Tobias

    2009-08-01

    Full Text Available Abstract Background Hydrogen bonds play a major role in the stabilization of protein-ligand complexes. The ability of a functional group to form them depends on the position of its hydrogen atoms. An accurate knowledge of the positions of hydrogen atoms in proteins is therefore important to correctly identify hydrogen bonds and their properties. The high mobility of hydrogen atoms introduces several degrees of freedom: Tautomeric states, where a hydrogen atom alters its binding partner, torsional changes where the position of the hydrogen atom is rotated around the last heavy-atom bond in a residue, and protonation states, where the number of hydrogen atoms at a functional group may change. Also, side-chain flips in glutamine and asparagine and histidine residues, which are common crystallographic ambiguities must be identified before structure-based calculations can be conducted. Results We have implemented a method to determine the most probable hydrogen atom positions in a given protein-ligand complex. Optimality of hydrogen bond geometries is determined by an empirical scoring function which is used in molecular docking. This allows to evaluate protein-ligand interactions with an established model. Also, our method allows to resolve common crystallographic ambiguities such as as flipped amide groups and histidine residues. To ensure high speed, we make use of a dynamic programming approach. Conclusion Our results were checked against selected high-resolution structures from an external dataset, for which the positions of the hydrogen atoms have been validated manually. The quality of our results is comparable to that of other programs, with the advantage of being fast enough to be applied on-the-fly for interactive usage or during score evaluation.

  8. Time-dependent inhomogeneous jet models for BL Lac objects

    Science.gov (United States)

    Marlowe, A. T.; Urry, C. M.; George, I. M.

    1992-05-01

    Relativistic beaming can explain many of the observed properties of BL Lac objects (e.g., rapid variability, high polarization, etc.). In particular, the broadband radio through X-ray spectra are well modeled by synchrotron-self Compton emission from an inhomogeneous relativistic jet. We have done a uniform analysis on several BL Lac objects using a simple but plausible inhomogeneous jet model. For all objects, we found that the assumed power-law distribution of the magnetic field and the electron density can be adjusted to match the observed BL Lac spectrum. While such models are typically unconstrained, consideration of spectral variability strongly restricts the allowed parameters, although to date the sampling has generally been too sparse to constrain the current models effectively. We investigate the time evolution of the inhomogeneous jet model for a simple perturbation propagating along the jet. The implications of this time evolution model and its relevance to observed data are discussed.

  9. Measurement of top quark polarization in tt¯ lepton+jets final states

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Aushev, V.; Aushev, Y.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brochmann, M.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Cuth, J.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Franc, J.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M. -A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schott, M.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shkola, O.; Simak, V.; Skubic, P.; Slattery, P.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stefaniuk, N.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2017-01-09

    We present a measurement of top quark polarization in t ¯ t pair production in p ¯ p collisions at √ s = 1.96 TeV using data corresponding to 9.7 fb -1 of integrated luminosity recorded with the D0 detector at the Fermilab Tevatron Collider. We consider final states containing a lepton and at least three jets. The polarization is measured through the distribution of lepton angles along three axes: the beam axis, the helicity axis, and the transverse axis normal to the t ¯ t production plane. This is the first measurement of top quark polarization at the Tevatron using lepton + jet final states and the first measurement of the transverse polarization in t ¯ t production. The observed distributions are consistent with standard model predictions of nearly no polarization.

  10. Transonic Performance Characteristics of Several Jet Noise Suppressors

    Science.gov (United States)

    Schmeer, James W.; Salters, Leland B., Jr.; Cassetti, Marlowe D.

    1960-01-01

    An investigation of the transonic performance characteristics of several noise-suppressor configurations has been conducted in the Langley 16-foot transonic tunnel. The models were tested statically and over a Mach number range from 0.70 to 1.05 at an angle of attack of 0 deg. The primary jet total-pressure ratio was varied from 1.0 (jet off) to about 4.5. The effect of secondary air flow on the performance of two of the configurations was investigated. A hydrogen peroxide turbojet-engine simulator was used to supply the hot-jet exhaust. An 8-lobe afterbody with centerbody, short shroud, and secondary air had the highest thrust-minus-drag coefficients of the six noise-suppressor configurations tested. The 12-tube and 12-lobe afterbodies had the lowest internal losses. The presence of an ejector shroud partially shields the external pressure distribution of the 8-lobe after-body from the influence of the primary jet. A ring-airfoil shroud increased the static thrust of the annular nozzle but generally decreased the thrust minus drag at transonic Mach numbers.

  11. Hydrogen and Gaseous Fuel Safety and Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  12. Effect of hydrogen on hydrogen-methane turbulent non-premixed flame under MILD condition

    Energy Technology Data Exchange (ETDEWEB)

    Mardani, Amir; Tabejamaat, Sadegh [Department of Aerospace engineering, Amirkabir university of technology (Tehran polytechnic), Hafez Ave., PO. Box: 15875-4413, Tehran (Iran)

    2010-10-15

    Energy crises and the preservation of the global environment are placed man in a dilemma. To deal with these problems, finding new sources of fuel and developing efficient and environmentally friendly energy utilization technologies are essential. Hydrogen containing fuels and combustion under condition of the moderate or intense low-oxygen dilution (MILD) are good choices to replace the traditional ones. In this numerical study, the turbulent non-premixed CH{sub 4}+H{sub 2} jet flame issuing into a hot and diluted co-flow air is considered to emulate the combustion of hydrogen containing fuels under MILD conditions. This flame is related to the experimental condition of Dally et al. [Proc. Combust. Inst. 29 (2002) 1147-1154]. In general, the modelling is carried out using the EDC model, to describe turbulence-chemistry interaction, and the DRM-22 reduced mechanism and the GRI2.11 full mechanism to represent the chemical reactions of H{sub 2}/methane jet flame. The effect of hydrogen content of fuel on flame structure for two co-flow oxygen levels is studied by considering three fuel mixtures, 5%H{sub 2}+95%CH{sub 4}, 10%H{sub 2}+90%CH{sub 4} and 20% H{sub 2}+80%CH{sub 4}(by mass). In this study, distribution of species concentrations, mixture fraction, strain rate, flame entrainment, turbulent kinetic energy decay and temperature are investigated. Results show that the hydrogen addition to methane leads to improve mixing, increase in turbulent kinetic energy decay along the flame axis, increase in flame entrainment, higher reaction intensities and increase in mixture ignitability and rate of heat release. (author)

  13. Liquid jets for fast plasma termination in tokamaks

    International Nuclear Information System (INIS)

    Rosenbluth, M.N.; Putvinskij, S.V.; Parks, P.B.

    1997-01-01

    Recent simulations by Putvisnkij et al. (PSI Conference, 1996) have shown that introducing impurities into the plasma in order to mitigate adverse disruption effects in ITER may actually be deleterious because of a potentially unwelcome phenomenon: generation of multi-MeV runaway electrons by the collisional avalanche mechanism (Rosenbluth, M.N., et al., in Fusion Energy 1996 (Proc. 16th Int. Conf. Montreal, 1996) Vol. 2, IAEA, Vienna (in press) Paper FP-26). The injection of a liquid hydrogen jet to deliver a massive density increase is proposed as a means of avoiding runaways, while providing the same beneficial effects as impurities. A discussion of many jet related topics, such as ablation/penetration, jet breakup time and stability, is presented. Owing to an ablation pressure instability, it is predicted that the jet will quickly break up into a regular chain of droplets with dimensions of approximately the size of the jet radius. It is found that while deep penetration in the plasma can easily be achieved, bubble growth and disruptive boiling (flashing) during the propagation in the vacuum gap between the nozzle exit and the plasma are the main processes limiting the jet survival time. Calculations indicate that for ITER reference parameters, the jet can remain coherent in vacuum for a distance ∼ 1 m before disintegrating. On the basis of this present understanding, the prospect for the safe termination of ITER discharges by high density liquid jet injection appears promising. (author). 20 refs, 6 figs, 3 tabs

  14. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  15. Laser-driven polarized H/D sources and targets

    International Nuclear Information System (INIS)

    Clasie, B.; Crawford, C.; Dutta, D.; Gao, H.; Seely, J.; Xu, W.

    2005-01-01

    Traditionally, Atomic Beam Sources are used to produce targets of nuclear polarized hydrogen (H) or deuterium (D) for experiments using storage rings. Laser-Driven Sources (LDSs) offer a factor of 20-30 gain in the target thickness (however, with lower polarization) and may produce a higher overall figure of merit. The LDS is based on the technique of spin-exchange optical pumping where alkali vapor is polarized by absorbing circularly polarized laser photons. The H or D atoms are nuclear-polarized through spin-exchange collisions with the polarized alkali vapor and through subsequent hyperfine interactions during frequent H-H or D-D collisions

  16. LabVIEW-based control software for para-hydrogen induced polarization instrumentation.

    Science.gov (United States)

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-04-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ((13)C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (Bo), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of (13)C based endogenous contrast agents used in molecular imaging.

  17. LabVIEW-based control software for para-hydrogen induced polarization instrumentation

    International Nuclear Information System (INIS)

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-01-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ( 13 C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (B o ), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of 13 C based endogenous contrast agents used in molecular imaging

  18. MULTI-WAVELENGTH POLARIMETRY AND SPECTRAL STUDY OF THE M87 JET DURING 2002–2008

    Energy Technology Data Exchange (ETDEWEB)

    Avachat, Sayali S.; Perlman, Eric S. [Department of Physics and Space Sciences, 150 W. University Boulevard, Florida Institute of Technology, Melbourne, FL 32901 (United States); Adams, Steven C. [Department of Physics and Astronomy, University of Georgia, Athens, GA, 30605 (United States); Cara, Mihai; Sparks, William B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Owen, Frazer [National Radio Astronomy Observatory, Array Operations Center, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801-0387 (United States); Georganopoulos, Markos [Department of Physics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States)

    2016-11-20

    We present a multi-wavelength polarimetric and spectral study of the M87 jet obtained at sub-arcsecond resolution between 2002 and 2008. The observations include multi-band archival VLA polarimetry data sets along with Hubble Space Telescope ( HST ) imaging polarimetry. These observations have better angular resolution than previous work by factors of 2–3 and in addition, allow us to explore the time domain. These observations envelop the huge flare in HST-1 located 0.″86 from the nucleus. The increased resolution enables us to view more structure in each knot, showing several resolved sub-components. We also see apparent helical structure in the polarization vectors in several knots, with polarization vectors turning either clockwise or counterclockwise near the flux maxima in various places as well as showing filamentary undulations. Some of these characteristics are correlated with flux and polarization maxima while others are not. We also examine the total flux and fractional polarization and look for changes in both radio and optical since the observations of Perlman et al. (1999) and test them against various models based on shocks and instabilities in the jet. Our results are broadly consistent with previous spine-sheath models and recollimation shock models; however, they require additional combinations of features to explain the observed complexity, e.g., shearing of magnetic field lines near the jet surface and compression of the toroidal component near shocks. In particular, in many regions we find apparently helical features both in total flux and polarization. We discuss the physical interpretation of these features.

  19. Optimum injection and combustion for gaseous fuel engine : characteristics of hydrogen auto-ignition phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, T.; Mikami, S.; Senda, J.; Fujimoto, H. [Doshisha Univ. (Japan). Dept. of Mechanical Engineering; Nakatani, K. [Fuji Heavy Industries Ltd. (Japan); Tokunaga, Y. [Kawasaki Heavy Industries Ltd. (Japan)

    2002-07-01

    A study was conducted in which the auto-ignition characteristics of hydrogen were examined in order to determine which factors dominate auto-ignition delay of hydrogen jets. Experiments were performed in a rapid compression/expansion machine in order to study the effects of ambient gas density and oxygen concentration on the auto-ignition delays. The focus of research was on an inert gas circulation type cogeneration system to apply hydrogen to a medium-sized diesel engine. Freedom of fuel-oxidizer mixing, ignition and combustion in the system could be achieved for stable combustion, high thermal efficiency, and zero emission. The study also involved chemical analysis using a detailed hydrogen reaction model that could simulate auto-ignition delays under various temperature, pressures, equivalence ratio, and dilution. It is shown that auto-ignition delays of hydrogen jets are very dependent on the ambient gas temperature and less dependent on its density and oxygen concentration. Temperature and hydrogen concentrations have significant impacts on the production and consumption rates of H{sub 2}O{sub 2} and OH radicals. 21 refs., 1 tab., 10 figs.

  20. Drawing the Curtain on Enceladus' South-Polar Eruptions

    Science.gov (United States)

    Spitale, Joseph N.; Hurford, Terry A.; Rhoden, Alyssa R.; Berkson, Emily E.; Platts, Symeon S.

    2015-11-01

    For a comprehensive description of Enceladus' south-polar eruptions observed at high resolution, they must be represented as broad curtains rather than discrete jets. Meanders in the fractures from which the curtains of material erupt give rise to optical illusions that look like discrete jets, even along fractures with no local variations in eruptive activity, implying that many features previously identified as "jets" are in fact phantoms. By comparing Cassini images with model curtain eruptions, we are able to obtain maps of eruptive activity that are not biased by the presence of those phantom jets. The average of our activity maps over all times agrees well with thermal maps produced by Cassini CIRS. We can best explain the observed curtains by assuming spreading angles with altitude of up to 14° and zenith angles of up to 8°, for curtains observed in geometries that are sensitive to those quantities.

  1. Molecular hydrogen jets from the Orion nebula

    International Nuclear Information System (INIS)

    Taylor, K.N.R.; Storey, J.W.V.; Zealey, W.J.

    1984-01-01

    In an attempt to understand the relationship of the recently discovered complex of Herbig Haro objects in Orion to the IR sources in this region, the authors have carried out a survey of the molecular hydrogen S(1) line distribution. The observations have led to the discovery of a previously unsuspected structure of finger-like filaments of H 2 emission extending radially outwards from a common centre at IRC9. (author)

  2. MAGNETIC STRUCTURES IN GAMMA-RAY BURST JETS PROBED BY GAMMA-RAY POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Yonetoku, Daisuke; Murakami, Toshio; Morihara, Yoshiyuki; Takahashi, Takuya; Wakashima, Yudai; Yonemochi, Hajime; Sakashita, Tomonori; Fujimoto, Hirofumi; Kodama, Yoshiki [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192 (Japan); Gunji, Shuichi; Toukairin, Noriyuki [Department of Physics, Faculty of Science, Yamagata University, 1-4-12, Koshirakawa, Yamagata, Yamagata 990-8560 (Japan); Mihara, Tatehiro [Cosmic Radiation Laboratory, RIKEN, 2-1, Hirosawa, Wako City, Saitama 351-0198 (Japan); Toma, Kenji, E-mail: yonetoku@astro.s.kanazawa-u.ac.jp [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan)

    2012-10-10

    We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the gamma-ray burst polarimeter (GAP) on borad the IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of {Pi} = 70 {+-} 22% with statistical significance of 3.7{sigma} for GRB 110301A, and {Pi} = 84{sup +16}{sub -28}% with 3.3{sigma} confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. Synchrotron emission model can be consistent with the data of the three GRBs, while the photospheric quasi-thermal emission model is not favored. We suggest that magnetic field structures in the emission region are globally ordered fields advected from the central engine.

  3. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek

    2016-10-13

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  4. Construction of Polarized Carbon-Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions.

    Science.gov (United States)

    Zhou, Min; Weng, Qunhong; Popov, Zakhar I; Yang, Yijun; Antipina, Liubov Yu; Sorokin, Pavel B; Wang, Xi; Bando, Yoshio; Golberg, Dmitri

    2018-05-22

    Electrocatalytic hydrogen evolution reaction (HER) in alkaline solution is hindered by its sluggish kinetics toward water dissociation. Nickel-based catalysts, as low-cost and effective candidates, show great potentials to replace platinum (Pt)-based materials in the alkaline media. The main challenge regarding this type of catalysts is their relatively poor durability. In this work, we conceive and construct a charge-polarized carbon layer derived from carbon quantum dots (CQDs) on Ni 3 N nanostructure (Ni 3 N@CQDs) surfaces, which simultaneously exhibit durable and enhanced catalytic activity. The Ni 3 N@CQDs shows an overpotential of 69 mV at a current density of 10 mA cm -2 in a 1 M KOH aqueous solution, lower than that of Pt electrode (116 mV) at the same conditions. Density functional theory (DFT) simulations reveal that Ni 3 N and interfacial oxygen polarize charge distributions between originally equal C-C bonds in CQDs. The partially negatively charged C sites become effective catalytic centers for the key water dissociation step via the formation of new C-H bond (Volmer step) and thus boost the HER activity. Furthermore, the coated carbon is also found to protect interior Ni 3 N from oxidization/hydroxylation and therefore guarantees its durability. This work provides a practical design of robust and durable HER electrocatalysts based on nonprecious metals.

  5. Looking inside jets: optical polarimetry as a probe of Gamma-Ray Bursts physics

    Science.gov (United States)

    Kopac, D.; Mundell, C.

    2015-07-01

    It is broadly accepted that gamma-ray bursts (GRBs) are powered by accretion of matter by black holes, formed during massive stellar collapse, which launch ultra-relativistic, collimated outflows or jets. The nature of the progenitor star, the structure of the jet, and thus the underlying mechanisms that drive the explosion and provide collimation, remain some of the key unanswered questions. To approach these problems, and in particular the role of magnetic fields in GRBs, early time-resolved polarimetry is the key, because it is the only direct probe of the magnetic fields structure. Using novel fast RINGO polarimeter developed for use on the 2-m robotic optical Liverpool Telescope, we have made the first measurements of optical linear polarization of the early optical afterglows of GRBs, finding linear percentage polarization as high as 30% and, for the first time, making time-resolved polarization measurements. I will present the past 8 years of RINGO observations, discuss how the results fit into the GRB theoretical picture, and highlight recent data, in particular high-time resolution multi-colour optical photometry performed during the prompt GRB phase, which also provides some limits on polarization.

  6. Thunderstorm Charge Structures Producing Negative Gigantic Jets

    Science.gov (United States)

    Boggs, L.; Liu, N.; Riousset, J. A.; Shi, F.; Rassoul, H.

    2016-12-01

    Here we present observational and modeling results that provide insight into thunderstorm charge structures that produce gigantic jet discharges. The observational results include data from four different thunderstorms producing 9 negative gigantic jets from 2010 to 2014. We used radar, very high frequency (VHF) and low frequency (LF) lightning data to analyze the storm characteristics, charge structures, and lightning activity when the gigantic jets emerged from the parent thunderstorms. A detailed investigation of the evolution of one of the charge structures by analyzing the VHF data is also presented. The newly found charge structure obtained from the observations was analyzed with fractal modeling and compared with previous fractal modeling studies [Krehbiel et al., Nat. Geosci., 1, 233-237, 2008; Riousset et al., JGR, 115, A00E10, 2010] of gigantic jet discharges. Our work finds that for normal polarity thunderstorms, gigantic jet charge structures feature a narrow upper positive charge region over a wide middle negative charge region. There also likely exists a `ring' of negative screening charge located around the perimeter of the upper positive charge. This is different from previously thought charge structures of the storms producing gigantic jets, which had a very wide upper positive charge region over a wide middle negative charge region, with a very small negative screening layer covering the cloud top. The newly found charge structure results in leader discharge trees in the fractal simulations that closely match the parent flashes of gigantic jets inside and outside the thundercloud. The previously used charge structures, while vital to the understanding of gigantic jet initiation and the role of charge imbalances inside the cloud, do not produce leader discharge trees that agree with observed gigantic jet discharges.Finally, the newly discovered gigantic jet charge structures are formed near the end of a convective pulse [Meyer et al., JGR, 118

  7. The Trails of Superluminal Jet Components in 3C 111

    Science.gov (United States)

    Kadler, M.; Ros, E.; Perucho, M.; Kovalev, Y. Y.; Homan, D. C.; Agudo, I.; Kellermann, K. I.; Aller, M. F.; Aller, H. D.; Lister, M. L.; hide

    2007-01-01

    The parsec-scale radio jet of the broad-line radio galaxy 3C 111 has been monitored since 1995 as part of the 2cm Survey and MOJAVE monitoring observations conducted with the VLBA. Here, we present results from 18 epochs of VLBA observations of 3C 111 and from 18 years of radio flux density monitoring observations conducted at the University of Michigan. A major radio flux-density outburst of 3C 111 occurred in 1996 and was followed by a particularly bright plasma ejection associated with a superluminal jet component. This major event allows us to study a variety of processes associated with outbursts of radio-loud AGN in much greater detail than possible in other cases: the primary perturbation gives rise to the formation of a forward and a backward-shock, which both evolve in characteristically different ways and allow us to draw conclusions about the workflow of jet-production events; the expansion, acceleration and recollimation of the ejected jet plasma in an environment with steep pressure and density gradients are revealed; trailing components are formed in the wake of the primary perturbation as a result of Kelvin- Helmholtz instabilities from the interaction of the jet with the external medium. The jet-medium interaction is further scrutinized by the linear-polarization signature of jet components traveling along the jet and passing a region of steep pressure/density gradients.

  8. Investigation of polar and stereoelectronic effects on pure excited-state hydrogen atom abstractions from phenols and alkylbenzenes.

    Science.gov (United States)

    Pischel, Uwe; Patra, Digambara; Koner, Apurba L; Nau, Werner M

    2006-01-01

    The fluorescence quenching of singlet-excited 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by 22 phenols and 12 alkylbenzenes has been investigated. Quenching rate constants in acetonitrile are in the range of 10(8)-10(9) M(-1)s(-1) for phenols and 10(5)-10(6) M(-1)s(-1) for alkylbenzenes. In contrast to the quenching of triplet-excited benzophenone, no exciplexes are involved, so that a pure hydrogen atom transfer is proposed as quenching mechanism. This is supported by (1) pronounced deuterium isotope effects (kH/kD ca 4-6), which were observed for phenols and alkylbenzenes, and (2) a strongly endergonic thermodynamics for charge transfer processes (electron transfer, exciplex formation). In the case of phenols, linear free energy relationships applied, which led to a reaction constant of rho = -0.40, suggesting a lower electrophilicity of singlet-excited DBO than that of triplet-excited ketones and alkoxyl radicals. The reactivity of singlet-excited DBO exposes statistical, steric, polar and stereoelectronic effects on the hydrogen atom abstraction process in the absence of complications because of competitive exciplex formation.

  9. VERY LARGE ARRAY OBSERVATIONS OF DG TAU'S RADIO JET: A HIGHLY COLLIMATED THERMAL OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, C.; Mutel, R. L.; Gayley, K. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52240 (United States); Guedel, M. [Department of Astrophysics, University of Vienna, A-1180 Vienna (Austria); Ray, T. [Astronomy and Astrophysics Section, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Skinner, S. L. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States); Schneider, P. C. [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2013-03-20

    The active young protostar DG Tau has an extended jet that has been well studied at radio, optical, and X-ray wavelengths. We report sensitive new Very Large Array (VLA) full-polarization observations of the core and jet between 5 GHz and 8 GHz. Our high angular resolution observation at 8 GHz clearly shows an unpolarized inner jet with a size of 42 AU (0.''35) extending along a position angle similar to the optical-X ray outer jet. Using our nearly coeval 2012 VLA observations, we find a spectral index {alpha} = +0.46 {+-} 0.05, which combined with the lack of polarization is consistent with bremsstrahlung (free-free) emission, with no evidence for a non-thermal coronal component. By identifying the end of the radio jet as the optical depth unity surface, and calculating the resulting emission measure, we find that our radio results are in agreement with previous optical line studies of electron density and consequent mass-loss rate. We also detect a weak radio knot at 5 GHz located 7'' from the base of the jet, coincident with the inner radio knot detected by Rodriguez et al. in 2009 but at lower surface brightness. We interpret this as due to expansion of post-shock ionized gas in the three years between observations.

  10. FREQUENCY REDISTRIBUTION OF POLARIZED LIGHT IN THE Λ-TYPE MULTI-TERM POLARIZED ATOM

    Energy Technology Data Exchange (ETDEWEB)

    Casini, R. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Sainz, R. Manso [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-06-20

    We study the effects of Rayleigh and Raman scattering on the formation of polarized spectral lines in a Λ-type multi-term atom. We fully take into account the partial redistribution of frequency and the presence of atomic polarization in the lower states of the atomic model. Problems that can be modeled with this formalism include, for example, the formation of the Ca ii H–K and IR triplet, the analogous system of Ba ii, and the Ly β –H α system of hydrogenic ions.

  11. Nonlinear interaction of instability waves and vortex-pairing noise in axisymmetric subsonic jets

    Science.gov (United States)

    Yang, Hai-Hua; Zhou, Lin; Zhang, Xing-Chen; Wan, Zhen-Hua; Sun, De-Jun

    2016-10-01

    A direct simulation with selected inflow forcing is performed for an accurate description of the jet flow field and far-field noise. The effects of the Mach number and heating on the acoustic field are studied in detail. The beam patterns and acoustic intensities are both varied as the change of the Mach number and temperature. The decomposition of the source terms of the Lilley-Goldstein (L-G) equation shows that the momentum and thermodynamic components lead to distinctly different beam patterns. Significant cancellation is found between the momentum and thermodynamic components at low polar angles for the isothermal jet and large polar angles for the hot jet. The cancellation leads to the minimum values of the far-field sound. Based on linear parabolized stability equation solutions, the nonlinear interaction model for sound prediction is built in combination with the L-G equation. The dominant beam patterns and their original locations predicted by the nonlinear model are in good agreement with the direct simulation results, and the predictions of sound pressure level (SPL) by the nonlinear model are relatively reasonable.

  12. Nonlinear interaction of instability waves and vortex-pairing noise in axisymmetric subsonic jets

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hai-Hua; Zhang, Xing-Chen; Wan, Zhen-Hua; Sun, De-Jun [Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027 (China); Zhou, Lin, E-mail: wanzh@ustc.edu.cn [Institute of Structural Mechanics, Chinese Academy of Engineering Physics, Mianyang 623100 (China)

    2016-10-15

    A direct simulation with selected inflow forcing is performed for an accurate description of the jet flow field and far-field noise. The effects of the Mach number and heating on the acoustic field are studied in detail. The beam patterns and acoustic intensities are both varied as the change of the Mach number and temperature. The decomposition of the source terms of the Lilley–Goldstein (L–G) equation shows that the momentum and thermodynamic components lead to distinctly different beam patterns. Significant cancellation is found between the momentum and thermodynamic components at low polar angles for the isothermal jet and large polar angles for the hot jet. The cancellation leads to the minimum values of the far-field sound. Based on linear parabolized stability equation solutions, the nonlinear interaction model for sound prediction is built in combination with the L–G equation. The dominant beam patterns and their original locations predicted by the nonlinear model are in good agreement with the direct simulation results, and the predictions of sound pressure level (SPL) by the nonlinear model are relatively reasonable. (paper)

  13. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    CERN Document Server

    Svensson, K.; Wojda, F.; Senje, L.; Burza, M.; Aurand, B.; Genoud, G.; Persson, A.; Wahlström, C.-G.; Lundh, O.

    2016-01-01

    The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  14. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    K. Svensson

    2016-05-01

    Full Text Available The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  15. Direct Coal -to-Liquids (CTL) for Jet Fuel Using Biomass-Derived Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Satya P. [Battelle Memorial Inst., Columbus, OH (United States); Garbark, Daniel B. [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Peterson, Rick [Battelle Memorial Inst., Columbus, OH (United States)

    2017-09-30

    Battelle has demonstrated a novel and potentially breakthrough technology for a direct coal-to-liquids (CTL) process for producing jet fuel using biomass-derived coal solvents (bio-solvents). The Battelle process offers a significant reduction in capital and operating costs and a substantial reduction in greenhouse gas (GHG) emissions, without requiring carbon capture and storage (CCS). The results of the project are the advancement of three steps of the hybrid coal/biomass-to-jet fuel process to the technology readiness level (TRL) of 5. The project objectives were achieved over two phases. In Phase 1, all three major process steps were explored and refined at bench-scale, including: (1) biomass conversion to high hydrogen-donor bio-solvent; (2) coal dissolution in biomass-derived bio-solvent, without requiring molecular H2, to produce a synthetic crude (syncrude); and (3) two-stage catalytic hydrotreating/hydrogenation of syncrude to jet fuel and other distillates. In Phase 2, all three subsystems of the CTL process were scaled up to a pre-pilot scale, and an economic analysis was carried out. A total of over 40 bio-solvents were identified and prepared. The most unique attribute of Battelle’s bio-solvents is their ability to provide much-needed hydrogen to liquefy coal and thus increase its hydrogen content so much that the resulting syncrude is liquid at room temperature. Based on the laboratory-scale testing with bituminous coals from Ohio and West Virginia, a total of 12 novel bio-solvent met the goal of greater than 80% coal solubility, with 8 bio-solvents being as good as or better than a well-known but expensive hydrogen-donor solvent, tetralin. The Battelle CTL process was then scaled up to 1 ton/day (1TPD) at a pre-pilot facility operated in Morgantown, WV. These tests were conducted, in part, to produce enough material for syncrude-upgrading testing. To convert the Battelle-CTL syncrude into a form suitable as a blending stock for jet

  16. Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications.

    Science.gov (United States)

    Stephan, Karl D; McLean, Robert J C; DeLeon, Gian; Melnikov, Vadim

    2016-11-14

    We investigate the effect of feed-gas humidity on the oxidative properties of an atmospheric-pressure plasma jet using nitrogen gas. Plasma jets operating at atmospheric pressure are finding uses in medical and biological settings for sterilization and other applications involving oxidative stress applied to organisms. Most jets use noble gases, but some researchers use less expensive nitrogen gas. The feed-gas water content (humidity) has been found to influence the performance of noble-gas plasma jets, but has not yet been systematically investigated for jets using nitrogen gas. Low-humidity and high-humidity feed gases were used in a nitrogen plasma jet, and the oxidation effect of the jet was measured quantitatively using a chemical dosimeter known as FBX (ferrous sulfate-benzoic acid-xylenol orange). The plasma jet using high humidity was found to have about ten times the oxidation effect of the low-humidity jet, as measured by comparison with the addition of measured amounts of hydrogen peroxide to the FBX dosimeter. Atmospheric-pressure plasma jets using nitrogen as a feed gas have a greater oxidizing effect with a high level of humidity added to the feed gas.

  17. The Properties of a Giant Jet Reflected in a Simultaneous Sprite

    DEFF Research Database (Denmark)

    Neubert, Torsten; Chanrion, Olivier Arnaud; Arnone, E.

    2011-01-01

    Thunderstorm clouds may discharge directly to the ionosphere in spectacular luminous jets - the largest electric discharges of our planet. The properties of these "giants," such as their polarity, conductivity, and currents, have been predicted by models, but are poorly characterized by measureme...

  18. POLAMI: Polarimetric Monitoring of Active Galactic Nuclei at Millimetre Wavelengths - III. Characterization of total flux density and polarization variability of relativistic jets

    Science.gov (United States)

    Agudo, Iván; Thum, Clemens; Ramakrishnan, Venkatessh; Molina, Sol N.; Casadio, Carolina; Gómez, José L.

    2018-01-01

    We report on the first results of the POLAMI (Polarimetric Monitoring of AGNs with Millimetre Wavelengths) programme, a simultaneous 3.5 and 1.3 mm full-Stokes-polarization monitoring of a sample of 36 of the brightest active galactic nuclei in the northern sky with the IRAM 30 m telescope. Through a systematic statistical study of data taken from 2006 October (from 2009 December for the case of the 1.3 mm observations) to 2014 August, we characterize the variability of the total flux density and linear polarization. We find that all sources in the sample are highly variable in total flux density at both 3.5 and 1.3 mm, as well as in spectral index, which (except in particularly prominent flares) is found to be optically thin between these two wavelengths. The total flux-density variability at 1.3 mm is found, in general, to be faster, and to have larger fractional amplitude and flatter power-spectral-density slopes than at 3.5 mm. The polarization degree is on average larger at 1.3 mm than at 3.5 mm, by a factor of 2.6. The variability of linear polarization degree is faster and has higher fractional amplitude than for total flux density, with the typical time-scales during prominent polarization peaks being significantly faster at 1.3 mm than at 3.5 mm. The polarization angle at both 3.5 and 1.3 mm is highly variable. Most of the sources show one or two excursions of >180° on time-scales from a few weeks to about a year during the course of our observations. The 3.5 and 1.3 mm polarization angle evolution follows each other rather well, although the 1.3 mm data show a clear preference to more prominent variability on the short time-scales, i.e. weeks. The data are compatible with multizone models of conical jets involving smaller emission regions for the shortest-wavelength emitting sites. Such smaller emitting regions should also be more efficient in energising particle populations, as implied by the coherent evolution of the spectral index and the total flux

  19. Construction and test of a polarized proton target

    International Nuclear Information System (INIS)

    Aures, R.

    1983-12-01

    This work describes experiments in which for the first time a proton target has been constructed which is polarized by the ''brute-force'' method. This method requires very low temperatures and high magnetic fields. The low temperatures (down to 10 mK) are obtained by a 3 He/ 4 He dilution refrigerator, the magnetic field (up to 9 T) is produced by a superconducting split pair magnet. The proton target has a volume of about 18 cm 3 and consists of pressed titaniumhydride powder, which has a titanium/-hydrogen ratio of 1:1,96. The hydrogen content is 1,3 mol. Titaniumhydride has the advantage of sufficient heat conductivity at low temperatures and a very high proton density. The heat conductivity of the sample is measured, with and without the presence of a magnetic field. Thermodynamical measurements and adiabatic demagnetisation experiments proved quantitatively the polarization of the protons. The polarization of the proton has been measured in a transmission experiment using polarized neutrons of 1.2 MeV. The result shows a good agreement of theoretical and actual polarization. From the results it can be concluded, that this sample can be used successfully as a polarized proton target for neutron scattering experiments to measure spin-correlations. (orig.) [de

  20. Analysis of the elastic scattering of negative muons from atomic hydrogen

    International Nuclear Information System (INIS)

    Muller, R.J.

    1977-01-01

    The total elastic cross section and the transport cross section for the scattering of negative muons from the hydrogen atom is determined by making a partial wave analysis of the elastic scattering amplitude. An effective Schrodinger equation for the muon-hydrogen system is obtained, using a static model of the field of the hydrogen atom, and its numerical solution allows the phase shifts for fifty partial waves to be obtained over a wide range of energies. A polarization potential term is then included, and the results of the scattering from the effective potential obtained are compared with the results from the static field. The results show a substantial effect of the polarization in the cross sections at low energy. The analysis of the low energy behavior of the phase shifts indicates that a substantial number of bound states for the muon exist in both the static and the static + polarization fields of hydrogen

  1. Electrochemical permeation tests on the kinetics of the hydrogen absorption of palladium and iron

    International Nuclear Information System (INIS)

    Dafft, E.G.

    1977-01-01

    Electrochemical permeation tests were performed to investigate the kinetics of the hydrogen development and hydrogen absorption. The cathode side of the samples was galvanostatically cathodically polarized in different electrolyte solutions with and without additions. THe hydrogen atoms diffusing out of the opposite side for iron and α-palladium were oxidized with potentiostatic, sufficiently anodic polarization. The thus registered stationary current is proportional to the hydrogen activity on the cathode side. Test apparatus and conditions are described. The measurements on iron are discussed. (orig./HPOE) [de

  2. External electric field and hydrostatic pressure effects on the binding energy and self-polarization of an off-center hydrogenic impurity confined in a GaAs/AlGaAs square quantum well wire

    International Nuclear Information System (INIS)

    Rezaei, G.; Mousavi, S.; Sadeghi, E.

    2012-01-01

    Based on the effective-mass approximation within a variational scheme, binding energy and self-polarization of hydrogenic impurity confined in a finite confining potential square quantum well wire, under the action of external electric field and hydrostatic pressure, are investigated. The binding energy and self-polarization are computed as functions of the well width, impurity position, electric field, and hydrostatic pressure. Our results show that the external electric field and hydrostatic pressure as well as the well width and impurity position have a great influence on the binding energy and self-polarization.

  3. Pneumatic pellet injectors for TFTR and JET

    International Nuclear Information System (INIS)

    Combs, S.K.; Milora, S.L.

    1986-01-01

    This paper describes the development of pneumatic hydrogen pellet injectors for plasma fueling applications on the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET). The performance parameters of these injectors represent an extension of previous experience and include pellet sizes in the range 2-6 mm in diameter and speeds approaching 2 km/s. Design features and operating characteristics of these pneumatic injectors are presented

  4. Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bamberger, Judith A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    satisfies these criteria when vigorous breakthrough is achieved, not all available data follow the free jet profile for the central upwell, particularly at lower nozzle velocities. Alternative flow regimes are considered and new models for cloud height, “cavern height,” and the rate of jet penetration (jet celerity) are benchmarked against data to anchor scaling analyses. This analytical modeling effort to provide a technical basis for scaling PJM mixed vessels has significant implications for vessel mixing, because jet physics underlies “cavern” height, cloud height, and the volume of mixing considerations. A new four-parameter cloud height model compares favorably to experimental results. This model is predictive of breakthrough in 8 ft vessel tests with the two-part simulant. Analysis of the upwell in the presence of yield stresses finds evidence of expanding turbulent jets, confined turbulent jets, and confined laminar flows. For each, the critical elevation at which jet momentum depletes is predicted, which compare favorably to experimental cavern height data. Partially coupled momentum and energy balances suggest that these are limiting cases of a gradual transition from a turbulent expanding flow to a confined laminar flow. This analysis of the central upwell alone lays essential groundwork for complete analysis of mode three mixing (i.e., breakthrough with slow peripheral mixing). Consideration of jet celerity shows that the rate of jet penetration is a governing consideration in breakthrough to the surface. Estimates of the volume of mixing are presented. This analysis shows that flow along the vessel wall is sluggish such that the central upwell governs the volume of mixing. This analysis of the central upwell alone lays essential groundwork for complete analysis of mode three mixing and estimates of hydrogen release rates from first principles.

  5. A Design of Experiments Investigation of Offset Streams for Supersonic Jet Noise Reduction

    Science.gov (United States)

    Henderson, Brenda; Papamoschou, Dimitri

    2014-01-01

    An experimental investigation into the noise characteristics of a dual-stream jet with four airfoils inserted in the fan nozzle was conducted. The intent of the airfoils was to deflect the fan stream relative to the core stream and, therefore, impact the development of the secondary potential core and noise radiated in the peak jet-noise direction. The experiments used a full-factorial Design of Experiments (DoE) approach to identify parameters and parameter interactions impacting noise radiation at two azimuthal microphone array locations, one of which represented a sideline viewing angle. The parameters studied included airfoil angle-of-attack, airfoil azimuthal location within the fan nozzle, and airfoil axial location relative to the fan-nozzle trailing edge. Jet conditions included subsonic and supersonic fan-stream Mach numbers. Heated jets conditions were simulated with a mixture of helium and air to replicate the exhaust velocity and density of the hot jets. The introduction of the airfoils was shown to impact noise radiated at polar angles in peak-jet noise direction and to have no impact on noise radiated at small and broadside polar angles and to have no impact on broadband-shock-associated noise. The DoE analysis showed the main effects impacting noise radiation at sideline-azimuthal-viewing angles included airfoil azimuthal angle for the airfoils on the lower side of the jet near the sideline array and airfoil trailing edge distance (with airfoils located at the nozzle trailing edge produced the lowest sound pressure levels). For an array located directly beneath the jet (and on the side of the jet from which the fan stream was deflected), the main effects impacting noise radiation included airfoil angle-of-attack and airfoil azimuthal angle for the airfoils located on the observation side of the jet as well and trailing edge distance. Interaction terms between multiple configuration parameters were shown to have significant impact on the radiated

  6. Experiments with cold hydrogen atoms

    International Nuclear Information System (INIS)

    Leonas, V.B.

    1981-01-01

    Numerous investigations of atomic processes in Waseous phase on the surface with participation of ''cold'' hydrogen atoms, made during the last years, are considered. The term ''cold atom'' means the range of relative collision energies E<10 MeV (respectively 'ultracold ' atoms at E< or approximately 1 MeV) which corresponds to the range of temperatures in tens (units) of K degrees. Three main ranges of investigations where extensive experimental programs are realized are considered: study of collisional processes with hydrogen atom participation, hydrogen atoms being of astrophysical interest; study of elastic atom-molecular scattering at superlow energies and studies on the problem of condensed hydrogen. Hydrogen atoms production is realized at dissociation in non-electrode high-frequency or superhigh-frequency discharge. A method of hydrogen quantum generator and of its modifications appeared to be rather an effective means to study collisional changes of spin state of hydrogen atoms. First important results on storage and stabilization of the gas of polarized hydrogen atoms are received

  7. Design of a Cryogenic Distillation Column for JET Water Detritiation System for Tritium Recovery

    International Nuclear Information System (INIS)

    Parracho, A.I.; Camp, P.; Dalgliesh, P.; Hollingsworth, A.; Lefebvre, X.; Lesnoj, S.; Sacks, R.; Shaw, R.; Smith, R.; Wakeling, B.

    2015-01-01

    A Water Detritiation System (WDS) is currently being designed and manufactured to be installed in the Active Gas Handling System (AGHS) of JET, currently the largest magnetic fusion experiment in the world. JET has been designed and built to study fusion operating conditions with the plasma fuelling done by means of a deuterium-tritium gas mixture. AGHS is a plant designed and built to safely process gas mixtures and impurities containing tritium recovered from the JET torus exhaust gases. Tritium is removed from these gas mixtures and recycled. Tritium depleted gases are sent to Exhaust Detritiation System (EDS) for final tritium removal prior to discharge into the environment. In EDS, tritium and tritiated species are catalytically oxidized into water, this tritiated water is then adsorbed onto molecular sieve beds (MSB). After saturation the MSBs are heated and the water is desorbed and collected for tritium recovery. The WDS facility is designed to recover tritium from water with an average activity of 1.9 GBq/l, and is able to process water with activities of 85 GBq/l and higher. Tritiated water is filtered and supplied to the electrolyser where the water is converted into gaseous oxygen and tritiated hydrogen. The hydrogen stream is first purified by selective diffusion through membranes of palladium alloy and then is fed to two cryogenic distillation columns (CD). These operate in parallel or in series depending on the water activity. In the CD columns, hydrogen isotopes containing tritium are recovered as the bottom product and hydrogen, the top product, is safely discarded to a stack. The CD columns are foreseen to have a throughput between 200 and 300 mole/h of hydrogen isotopes vapour and they operate at approximately ≈21.2K and 105 kPa. The design of the CD columns will be presented in this work. This work has been carried out within the framework of the Contract for the Operation of the JET Facilities and has received funding from the European Union

  8. Faraday rotation in jets of AGN: the case of 3C 120

    International Nuclear Information System (INIS)

    Gómez, José L; Roca-Sogorb, Mar; Agudo, Iván; Marscher, Alan P; Jorstad, Svetlana G

    2012-01-01

    The source of Faraday rotation in the jet of the radio galaxy 3C 120 is analyzed through Very Long Baseline Array observations carried out between 1999 and 2007 at 15, 22 and 43 GHz. Uncorrelated changes in the linear polarization of the underlying jet emission and the Faraday rotation screen indicate that the emitting jet and the source of Faraday rotation are not closely connected physically and have different configurations for the magnetic field and/or kinematical properties. Furthermore, the existence of a region of enhanced rotation measure whose properties remain constant over three years requires a localized source of Faraday rotation, favoring a model in which a significant fraction of the rotation measure originates in foreground clouds.

  9. Electronic Structure Calculations of Hydrogen Storage in Lithium-Decorated Metal-Graphyne Framework.

    Science.gov (United States)

    Kumar, Sandeep; Dhilip Kumar, Thogluva Janardhanan

    2017-08-30

    Porous metal-graphyne framework (MGF) made up of graphyne linker decorated with lithium has been investigated for hydrogen storage. Applying density functional theory spin-polarized generalized gradient approximation with the Perdew-Burke-Ernzerhof functional containing Grimme's diffusion parameter with double numeric polarization basis set, the structural stability, and physicochemical properties have been analyzed. Each linker binds two Li atoms over the surface of the graphyne linker forming MGF-Li 8 by Dewar coordination. On saturation with hydrogen, each Li atom physisorbs three H 2 molecules resulting in MGF-Li 8 -H 24 . H 2 and Li interact by charge polarization mechanism leading to elongation in average H-H bond length indicating physisorption. Sorption energy decreases gradually from ≈0.4 to 0.20 eV on H 2 loading. Molecular dynamics simulations and computed sorption energy range indicate the high reversibility of H 2 in the MGF-Li 8 framework with the hydrogen storage capacity of 6.4 wt %. The calculated thermodynamic practical hydrogen storage at room temperature makes the Li-decorated MGF system a promising hydrogen storage material.

  10. Experimental techniques and physics in a polarized storage ring

    International Nuclear Information System (INIS)

    Dueren, M.

    1995-01-01

    In May 1994 spin rotators were brought into operation at HERA and for the first time longitudinal electron polarization was produced in a high energy storage ring. A Compton polarimeter is used for empirical optimization of the polarization to values of up to 70%. HERMES makes use of the stored polarized beam with an internal polarized target. The density of a gas target is increased by a storage cell by two orders of magnitude compared to a free gas jet. Data taking begins in 1995 with measurements on polarized spin structure functions and also on semi-inclusive polarized hadron production. The inclusive physics program is in competition with experiments at CERN and SLAC. The semi-inclusive physics program promises to solve basic questions of the spin structure of matter by decomposing the spin contributions of the different quark flavors. (author) 24 figs., 3 tabs., 44 refs

  11. Significant and variable linear polarization during the prompt optical flash of GRB 160625B.

    Science.gov (United States)

    Troja, E.; Lipunov, V. M.; Mundell, C. G.; Butler, N. R.; Watson, A. M.; Kobayashi, S.; Cenko, S. B.; Marshall, F. E.; Ricci, R.; Fruchter, A.; Wieringa, M. H.; Gorbovskoy, E. S.; Kornilov, V.; Kutyrev, A.; Lee, W. H.; Toy, V.; Tyurina, N. V.; Budnev, N. M.; Buckley, D. A. H.; González, J.; Gress, O.; Horesh, A.; Panasyuk, M. I.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rebolo Lopez, R.; Richer, M. G.; Roman-Zuniga, C.; Serra-Ricart, M.; Yurkov, V.; Gehrels, N.

    2017-07-01

    Newly formed black holes of stellar mass launch collimated outflows (jets) of ionized matter that approach the speed of light. These outflows power prompt, brief and intense flashes of γ-rays known as γ-ray bursts (GRBs), followed by longer-lived afterglow radiation that is detected across the electromagnetic spectrum. Measuring the polarization of the observed GRB radiation provides a direct probe of the magnetic fields in the collimated jets. Rapid-response polarimetric observations of newly discovered bursts have probed the initial afterglow phase, and show that, minutes after the prompt emission has ended, the degree of linear polarization can be as high as 30 per cent - consistent with the idea that a stable, globally ordered magnetic field permeates the jet at large distances from the central source. By contrast, optical and γ-ray observations during the prompt phase have led to discordant and often controversial results, and no definitive conclusions have been reached regarding the origin of the prompt radiation or the configuration of the magnetic field. Here we report the detection of substantial (8.3 ± 0.8 per cent from our most conservative simulation), variable linear polarization of a prompt optical flash that accompanied the extremely energetic and long-lived prompt γ-ray emission from GRB 160625B. Our measurements probe the structure of the magnetic field at an early stage of the jet, closer to its central black hole, and show that the prompt phase is produced via fast-cooling synchrotron radiation in a large-scale magnetic field that is advected from the black hole and distorted by dissipation processes within the jet.

  12. Hydrogen effects in anodic grinding of WC-Co sintered alloy

    International Nuclear Information System (INIS)

    Lunarska, E.; Zaborski, St.

    2001-01-01

    The effects of anodic polarization applied in grinding of sintered WC C o alloy on properties of surface layer, quality of ground surface and efficiency of the treatment were studied. The nonmonotonical change of the surface roughness, the energy consumption and the wear of tool was stated at increasing anodic polarization. The optimum values of above parameters were achieved at application of anodic polarization at which the Co selective dissolution and hydrogen ingress into the ground metal. affecting the internal friction spectra were stated. The assistance of hydrogen induced deterioration and Co selective dissolution in the surface layer in the anodic grinding of WC-Co alloy has been discussed. (author)

  13. Analyzing polarization swings in 3C 279

    Directory of Open Access Journals (Sweden)

    Kiehlmann S.

    2013-12-01

    Full Text Available Quasar 3C 279 is known to exhibit episodes of optical polarization angle rotation. We present new, well-sampled optical polarization data for 3C 279 and introduce a method to distinguish between random and deterministic electric vector position angle (EVPA variations. We observe EVPA rotations in both directions with different amplitudes and find that the EVPA variation shows characteristics of both random and deterministic cases. Our analysis indicates that the EVPA variation is likely dominated by a random process in the low brightness state of the jet and by a deterministic process in the flaring state.

  14. Tidal Control of Jet Eruptions on Enceladus as Observed by Cassini ISS between 2005 and 2007

    Science.gov (United States)

    Hurford, T. A.; Helfenstein, P.; Spitale, J. N.

    2012-01-01

    Observations of Enceladus have revealed active jets of material erupting from cracks on its south polar surface. It has previously been proposed that diurnal tidal stress, driven by Enceladus' orbital eccentricity, may actively produce surface movement along these cracks daily and thus may regulate when eruptions occur. Our analysis of the stress on jet source regions identified in Cassini ISS images reveals tidal stress as a plausible controlling mechanism of jet activity. However, the evidence available in the published and preliminary observations of jet activity between 2005 and 2007 may not be able to solidify the link between tidal stress and eruptions from fissures. Ongoing, far more comprehensive analyses based on recent, much higher resolution jetting observations have the potential to prove otherwise.

  15. A small-scale eruption leading to a blowout macrospicule jet in an on-disk coronal hole

    International Nuclear Information System (INIS)

    Adams, Mitzi; Sterling, Alphonse C.; Moore, Ronald L.; Gary, G. Allen

    2014-01-01

    We examine the three-dimensional magnetic structure and dynamics of a solar EUV-macrospicule jet that occurred on 2011 February 27 in an on-disk coronal hole. The observations are from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) and the SDO Helioseismic and Magnetic Imager (HMI). The observations reveal that in this event, closed-field-carrying cool absorbing plasma, as in an erupting mini-filament, erupted and opened, forming a blowout jet. Contrary to some jet models, there was no substantial recently emerged, closed, bipolar-magnetic field in the base of the jet. Instead, over several hours, flux convergence and cancellation at the polarity inversion line inside an evolved arcade in the base apparently destabilized the entire arcade, including its cool-plasma-carrying core field, to undergo a blowout eruption in the manner of many standard-sized, arcade-blowout eruptions that produce a flare and coronal mass ejection. Internal reconnection made bright 'flare' loops over the polarity inversion line inside the blowing-out arcade field, and external reconnection of the blowing-out arcade field with an ambient open field made longer and dimmer EUV loops on the outside of the blowing-out arcade. That the loops made by the external reconnection were much larger than the loops made by the internal reconnection makes this event a new variety of blowout jet, a variety not recognized in previous observations and models of blowout jets.

  16. A small-scale eruption leading to a blowout macrospicule jet in an on-disk coronal hole

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Mitzi; Sterling, Alphonse C.; Moore, Ronald L. [Space Science Office, ZP13, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Gary, G. Allen, E-mail: mitzi.adams@nasa.gov, E-mail: alphonse.sterling@nasa.gov, E-mail: ron.moore@nasa.gov, E-mail: gag0002@uah.edu [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35805, USA. (United States)

    2014-03-01

    We examine the three-dimensional magnetic structure and dynamics of a solar EUV-macrospicule jet that occurred on 2011 February 27 in an on-disk coronal hole. The observations are from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) and the SDO Helioseismic and Magnetic Imager (HMI). The observations reveal that in this event, closed-field-carrying cool absorbing plasma, as in an erupting mini-filament, erupted and opened, forming a blowout jet. Contrary to some jet models, there was no substantial recently emerged, closed, bipolar-magnetic field in the base of the jet. Instead, over several hours, flux convergence and cancellation at the polarity inversion line inside an evolved arcade in the base apparently destabilized the entire arcade, including its cool-plasma-carrying core field, to undergo a blowout eruption in the manner of many standard-sized, arcade-blowout eruptions that produce a flare and coronal mass ejection. Internal reconnection made bright 'flare' loops over the polarity inversion line inside the blowing-out arcade field, and external reconnection of the blowing-out arcade field with an ambient open field made longer and dimmer EUV loops on the outside of the blowing-out arcade. That the loops made by the external reconnection were much larger than the loops made by the internal reconnection makes this event a new variety of blowout jet, a variety not recognized in previous observations and models of blowout jets.

  17. Circular polarization in the optical afterglow of GRB 121024A

    NARCIS (Netherlands)

    Wiersema, K.; Covino, S.; Toma, K.; van der Horst, A.J.; Varela, K.; Min, M.; Greiner, J.; Starling, R.L.C.; Tanvir, N.R.; Wijers, R.A.M.J.; Campana, S.; Curran, P.A.; Fan, Y.; Fynbo, J.P.U.; Gorosabel, J.; Gomboc, A.; Götz, D.; Hjorth, J.; Jin, Z.P.; Kobayashi, S.; Kouveliotou, C.; Mundell, C.; O’Brien, P.T.; Pian, E.; Rowlinson, A.; Russell, D.M.; Salvaterra, R.; di Serego Alighieri, S.; Tagliaferri, G.; Vergani, S.D.; Elliott, J.; Fariña, C.; Hartoog, O.E.; Karjalainen, R.; Klose, S.; Knust, F.; Levan, A.J.; Schady, P.; Sudilovsky, V.; Willingale, R.

    2014-01-01

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the

  18. Circular polarization in the optical afterglow of GRB 121024A

    DEFF Research Database (Denmark)

    Wiersema, K.; Covino, S.; Toma, K.

    2014-01-01

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of th...

  19. Cryogenic system for liquid hydrogen polarimeter

    International Nuclear Information System (INIS)

    Kitami, T.; Chiba, M.; Hirabayashi, H.; Ishii, T.; Kato, S.

    1979-01-01

    A cryogenic system has been constructed for a liquid hydrogen polarimeter in order to measure polarization of high energy proton at the 1.3 GeV electron synchrotron of Institute for Nuclear Study, University of Tokyo. The system principally consists of a cryogenerator with a cryogenic transfer line, a liquid hydrogen cryostat, and a 14.5 l target container of thin aluminum alloy where liquid hydrogen is served for the experiment. The refrigeration capacity is about 54 W at 20.4 K without a target container. (author)

  20. Arctic amplification: does it impact the polar jet stream?

    Directory of Open Access Journals (Sweden)

    Valentin P. Meleshko

    2016-10-01

    Full Text Available It has been hypothesised that the Arctic amplification of temperature changes causes a decrease in the northward temperature gradient in the troposphere, thereby enhancing the oscillation of planetary waves leading to extreme weather in mid-latitudes. To test this hypothesis, we study the response of the atmosphere to Arctic amplification for a projected summer sea-ice-free period using an atmospheric model with prescribed surface boundary conditions from a state-of-the-art Earth system model. Besides a standard global warming simulation, we also conducted a sensitivity experiment with sea ice and sea surface temperature anomalies in the Arctic. We show that when global climate warms, enhancement of the northward heat transport provides the major contribution to decrease the northward temperature gradient in the polar troposphere in cold seasons, causing more oscillation of the planetary waves. However, while Arctic amplification significantly enhances near-surface air temperature in the polar region, it is not large enough to invoke an increased oscillation of the planetary waves.

  1. Energy: the solar hydrogen alternative

    Energy Technology Data Exchange (ETDEWEB)

    Bocheris, J O.M.

    1977-01-01

    The author argues that nuclear and solar energy should begin replacing conventional fossil sources as soon as possible because oil, gas and even coal supplies will be depleted within decades. A hydrogen economy would introduce major technical problems but its chief benefits are that it permits energy storage in a post fossil fuel era when electricity is expected to play a major role. It can be converted to electricity, cleanly and efficiently with fuel cells and in liquid form can be burnt as jet fuel. Hydrogen can also be burnt in internal combustion engines although less efficiently in fuel cells. However, although hydrogen is clean and efficient, technical development is still needed to reduce its cost and to cope with safety problems. The book contains a wealth of technical information and is a valuable reference on a topic of growing importance.

  2. Theory of surface recombination of spin-polarized hydrogen

    International Nuclear Information System (INIS)

    Christou, C.T.; Haftel, M.I.

    1989-01-01

    A theory is presented, based on the Faddeev equations, for direct two-body recombination of hydrogen atoms on a liquid helium surface. The equations developed are applicable to hydrogen or deuterium atoms in any spin state, but are applied in particular to dipolar recombination of b state hydrogen atoms. The equations yield terms corresponding to one- and two-step processes. These terms are calculated for low temperatures (T = 0.1 to 1.1 K) and high field strengths (B = 4 to 14 T). The one-step term increases slowly with B, while the two-step term is rapidly decreasing. While the overall rate is quite small (∼5 x 10 -18 cm 2 /s) compared to recombination by two-body spin-relaxation, the results have important consequences in understanding the experimentally measured three-atom dipolar surface recombination rates. In three-atom recombination, where the role of spin-relaxation and the two-atom one-step processes are repressed, the role of the underlying two-atom, two-step process is enhanced. The field dependence of the process relevant to the three-atom system is calculated and found to be in fairly good agreement with the experimental three-atom data. The role of possible liquid excitations in enhancing the contribution of the two-step processes is also discussed. 33 refs.; 1 figure; 6 tabs

  3. Atmospheric Pressure Plasma Jet as an Accelerator of Tooth Bleaching

    Directory of Open Access Journals (Sweden)

    Vedran Šantak

    2014-01-01

    Full Text Available Objective: To study the effect of atmospheric pressure plasma (APP jet as a potential accelerator of the degradation of hydrogen peroxide in bleaching gels which could lead to better and faster bleaching. Material and Methods: 25 pastilles of hydroxylapatite were colored in green tea for 8 hours and were randomly divided into five groups (n = 5. The bleaching process was performed with 30% and 40% hydrogen peroxide (HP gel alone and in conjunction with helium APP jet. During the bleaching treatment, optical emission spectroscopy and non-contact surface temperature measurement using pyrometer were performed. Color of the pastilles was determined by a red– green–blue (RGB colorimeter. PH values of bleaching gels were measured before and after the plasma treatment on additional 10 pastilles using a pH meter with contact pH electrode. Results: The color measurements of pastilles before and after the treatment showed that treatment with APP jet improved the bleaching effect by 32% and 15% in the case of 30 % and 40% HP gel. Better results were obtained approximately six times faster than with a procedure suggested by the bleaching gel manufacturer. Optical emission spectroscopy proved that plasma has a chemically active role on the gel. After the APP treatment, pH values of bleaching gels dropped to about 50–75% of their initial value while the surface temperature increased by 8–10˚C above baseline. Conclusion: The use of plasma jet provides more effective bleaching results in a shorter period of time without a significant temperature increase which may cause damage of the surrounding tissue.

  4. Impurity line emission due to thermal charge exchange in JET edge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maggi, C F; Horton, L D; Koenig, R; Stamp, M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Summers, H P [Strathclyde Univ., Glasgow (United Kingdom)

    1994-07-01

    High n-shell emission from hydrogen-like carbon (C VI, n=8-7) has been routinely observed from the plasma edge of JET. By comparing the measured spectral line intensities with the signals predicted by advanced atomic physics modelling of carbon and hydrogen radiation, integrated with modelling of the divertor and edge plasma, it is concluded that charge transfer from excited state hydrogen donors into fully stripped carbon ions can account for the observed spectral emission, but that the hydrogen distribution and to a lesser extent the carbon distribution away from the strike zone predicted by the transport model are too low. Data presented are those of three upper X-point discharges, where the target material was carbon. 5 refs., 1 fig., 3 tabs.

  5. Longitudinal double-spin asymmetry for inclusive jet production in p+p collisions at √ps=200 GeV

    NARCIS (Netherlands)

    Abelev, B.I.; Bai, Y.; Benedosso, F.; Botje, M.A.J.; Grebenyuk, O.; Mischke, A.; Peitzmann, T.; Russcher, M.J.; Snellings, R.J.M.; van der Kolk, N.

    2008-01-01

    We report a new STAR measurement of the longitudinal double-spin asymmetry A_LL for inclusive jet production at mid-rapidity in polarized p+p collisions at a center-of-mass energy of sqrt(s) = 200 GeV. The data, which cover jet transverse momenta 5

  6. Experimental techniques and physics in a polarized storage ring

    International Nuclear Information System (INIS)

    Dueren, M.

    1994-12-01

    In May 1994 spin rotators were brought into operation at HERA and for the first time longitudinal electron polarization was produced in a high energy storage ring. A Compton polarimeter is used for optimization of the polarization to values of up to 70%. HERMES is a new experiment designed to study the spin structure of the nucleon by deep inelastic scattering from the proton and neutron using the longitudinally polarized electron beam at HERA and internal polarized gas targets. The density of the gas targets is increased by a storage cell by two orders of magnitude compared to a free gas jet. Data taking begins in 1995 with measurements on polarized spin structure functions and also on semi-inclusive polarized hadron production. The inclusive physics program is in competition with experiments at CERN and SLAC. The semi-inclusive physics program promises to solve basic questions of the spin structure of matter by decomposing the spin contributions of the different quark flavors. (orig.)

  7. Charge-transfer collisions for polarized ion sources

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1983-06-01

    Charge-transfer processes relevant to polarized ion sources are discussed and results are summarized. The primary atom discussed is hydrogen, with particulr emphasis on H - formation. Heavier negative ions are briefly discussed

  8. Polarized H- source development at BNL

    International Nuclear Information System (INIS)

    Alessi, J.G.; Hershcovitch, A.; Kponou, A.; Niinikoski, T.; Sluyters, T.

    1986-01-01

    The AGS polarized H - source (PONI-1) now produces currents of 25-40 μA, and has operated reliably during polarized physics runs. A new polarized source, having as its goal mA's of H-vector, is now under development. An atomic hydrogen beam has been cooled to about 20 K with a forward flux of approx.10 19 atoms/s/sr. A superconducting solenoid having a calculated acceptance angle of 0.1 sr for the cold H 0 beam, is now being built. An ionizer for the resulting polarized H 0 beam based on resonant charge exchange of H 0 with D - , is being tested. 500 μA of H - have been produced by ionizing an unpolarized H 0 beam using this ionizer

  9. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    Energy Technology Data Exchange (ETDEWEB)

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  10. Direct Imaging of a Toroidal Magnetic Field in the Inner Jet of NRAO 150

    Directory of Open Access Journals (Sweden)

    Sol N. Molina

    2016-11-01

    Full Text Available Most formation models and numerical simulations cause a helical magnetic field to form, accelerate and collimate jets in active galactic nuclei (AGN. For this reason, observational direct evidence for the existence of these helical magnetic fields is of special relevance. In this work, we present ultra- high-resolution observations of the innermost regions of the jet in the quasar NRAO150. We study the polarization structure and report evidence of a helical magnetic field.

  11. DNS and LES/FMDF of turbulent jet ignition and combustion

    Science.gov (United States)

    Validi, Abdoulahad; Jaberi, Farhad

    2014-11-01

    The ignition and combustion of lean fuel-air mixtures by a turbulent jet flow of hot combustion products injected into various geometries are studied by high fidelity numerical models. Turbulent jet ignition (TJI) is an efficient method for starting and controlling the combustion in complex propulsion systems and engines. The TJI and combustion of hydrogen and propane in various flow configurations are simulated with the direct numerical simulation (DNS) and the hybrid large eddy simulation/filtered mass density function (LES/FMDF) models. In the LES/FMDF model, the filtered form of the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar field. The DNS and LES/FMDF data are used to study the physics of TJI and combustion for different turbulent jet igniter and gas mixture conditions. The results show the very complex and different behavior of the turbulence and the flame structure at different jet equivalence ratios.

  12. Cross sections and transverse single-spin asymmetries in forward jet production from proton collisions at s=500 GeV

    Directory of Open Access Journals (Sweden)

    L.C. Bland

    2015-11-01

    Full Text Available Measurements of the production of forward jets from transversely polarized proton collisions at s=500 GeV conducted at the Relativistic Heavy Ion Collider (RHIC are reported. Our measured jet cross section is consistent with hard scattering expectations. Our measured analyzing power for forward jet production is small and positive, and provides constraints on the Sivers functions that are related to partonic orbital angular momentum through theoretical models.

  13. RECONNECTION-DRIVEN CORONAL-HOLE JETS WITH GRAVITY AND SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Karpen, J. T.; DeVore, C. R.; Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt MD 20771 (United States); Pariat, E. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France)

    2017-01-01

    Coronal-hole jets occur ubiquitously in the Sun's coronal holes, at EUV and X-ray bright points associated with intrusions of minority magnetic polarity. The embedded-bipole model for these jets posits that they are driven by explosive, fast reconnection between the stressed closed field of the embedded bipole and the open field of the surrounding coronal hole. Previous numerical studies in Cartesian geometry, assuming uniform ambient magnetic field and plasma while neglecting gravity and solar wind, demonstrated that the model is robust and can produce jet-like events in simple configurations. We have extended these investigations by including spherical geometry, gravity, and solar wind in a nonuniform, coronal hole-like ambient atmosphere. Our simulations confirm that the jet is initiated by the onset of a kink-like instability of the internal closed field, which induces a burst of reconnection between the closed and external open field, launching a helical jet. Our new results demonstrate that the jet propagation is sustained through the outer corona, in the form of a traveling nonlinear Alfvén wave front trailed by slower-moving plasma density enhancements that are compressed and accelerated by the wave. This finding agrees well with observations of white-light coronal-hole jets, and can explain microstreams and torsional Alfvén waves detected in situ in the solar wind. We also use our numerical results to deduce scaling relationships between properties of the coronal source region and the characteristics of the resulting jet, which can be tested against observations.

  14. INVESTIGATING PARTICLE ACCELERATION IN PROTOSTELLAR JETS: THE TRIPLE RADIO CONTINUUM SOURCE IN SERPENS

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Kamenetzky, Adriana; Valotto, Carlos [Instituto de Astronomía Teórica y Experimental, (IATE-UNC), X5000BGR Córdoba (Argentina); Carrasco-González, Carlos; Rodríguez, Luis F. [Instituto de Radioastronomía y Astrofísica (IRyA-UNAM), 58089 Morelia, México (Mexico); Araudo, Anabella [University of Oxford, Astrophysics, Keble Road, Oxford OX1 3RH (United Kingdom); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Anglada, Guillem [Instituto de Astrofísica de Andalucía, CSIC, Camino Bajo de Huétor 50, E-18008 Granada (Spain); Martí, Josep [Dept. de Física, EPS de Jaén, Universidad de Jaén, Campus Las Lagunillas s/n, A3-402, E-23071 Jaén (Spain)

    2016-02-10

    While most protostellar jets present free–free emission at radio wavelengths, synchrotron emission has also been proposed to be present in a handful of these objects. The presence of nonthermal emission has been inferred by negative spectral indices at centimeter wavelengths. In one case (the HH 80-81 jet arising from a massive protostar), its synchrotron nature was confirmed by the detection of linearly polarized radio emission. One of the main consequences of these results is that synchrotron emission implies the presence of relativistic particles among the nonrelativistic material of these jets. Therefore, an acceleration mechanism should be taking place. The most probable scenario is that particles are accelerated when the jets strongly impact against the dense envelope surrounding the protostar. Here we present an analysis of radio observations obtained with the Very Large Array of the triple radio source in the Serpens star-forming region. This object is known to be a radio jet arising from an intermediate-mass protostar. It is also one of the first protostellar jets where the presence of nonthermal emission was proposed. We analyze the dynamics of the jet and the nature of the emission and discuss these issues in the context of the physical parameters of the jet and the particle acceleration phenomenon.

  15. Nitric oxide formation in H2/CO syngas non-premixed jet flames

    NARCIS (Netherlands)

    Ranga Dinesh, K.K.J.; Richardson, E.S.; van Oijen, J.A.; Luo, K.H.; Jiang, X.

    2015-01-01

    Direct numerical simulations (DNS) of high hydrogen content (HHC) syngas nonpremixed jet flames have been carried out to study the nitric oxide (NO) formation. The detailed chemistry employed is the GRI 3.0 updated with the influence of the NCN radical chemistry using flamelet generated manifolds

  16. Effects of hydrogen-charging on the properties of S235JR steel

    Science.gov (United States)

    Pietkun-Greber, Izabela

    2017-10-01

    The paper presents the test results of the S235JR steel susceptibility to damage under the influence of hydrogen. The test of mechanical properties was performed on the basis of a static stretch test of non-hydrogenated samples and after cathodic polarization. Electrochemical measurements for the assessment of corrosion resistance of non-hydrogenated and hydrogenated steels were carried out using open circuit potential measurement and registering of potentiodynamic polarization curves in a three-electrode measuring system. Hydrogenation was carried out for between 3 and 24 hours in a solution of 0.1 N sulfuric acid (VI) with the addition of 2 mg/dm 3 of arsenic oxide (III) at an electric current density of 10 mA/cm2. The hydrogen content in the steel before and after saturation with hydrogen was determined using the analyzer. Fracture samples after tensile test were observed using scanning electron microscope. The results of the research showed that as the hydrogen concentration in the examined steel increased (the lengthening of the saturation time), the deterioration of its mechanical and electrochemical properties occurred.

  17. Enhanced hydrogen entry into iron from 0.1 M NaOH at definite potentials

    International Nuclear Information System (INIS)

    Flis-Kabulska, I.; Flis, J.; Zakroczymski, T.

    2008-01-01

    This work aimed at explaining the enhancement of hydrogen entry into iron from alkaline solution occurring at definite potentials. Hydrogen permeation rate (HPR) through a 35-μm thick iron membrane was measured with the electrochemical technique in 0.1 M NaOH at 25 deg. C during cathodic and anodic polarizations. Enhanced HPR was observed at potentials of oxide reduction or iron oxidation, and potentials more cathodic than about -1.65 V NHE during prolonged galvanostatic polarization. XPS analysis showed that after the polarization, surface layers contained hydrated iron oxides and that amount of these products increased with the polarization time. It is suggested that the enhanced hydrogen entry can be explained by acidification of the near-metal solution due to iron oxidation and/or oxide reduction, and probably by a promoting effect of some Fe-O species. It is proposed that these effects are associated with surface layers. They can affect hydrogen entry as a source of protons in the oxide reduction, as a diffusion barrier making the near-metal acidification possible, and as a resistance causing an IR drop. Strong enhancement of HPR after prolonged galvanostatic polarizations can be associated with the formation of thick surface layers with IR drop enabling anodic oxidation of iron under these layers

  18. The RHIC polarized H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski, A., E-mail: zelenski@bnl.gov; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2016-02-15

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H{sup −} ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H{sup −} ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  19. Moller Polarimetry with Atomic Hydrogen Targets

    International Nuclear Information System (INIS)

    Chudakov, Eugene; Luppov, V.

    2012-01-01

    A proposal to use polarized atomic hydrogen gas as the target for electron beam polarimetry based on the Moller scattering is described. Such a gas, stored in an ultra-cold magnetic trap, would provide a target of practically 100% polarized electrons. It is conceivable to reach a ∼0.3% systematic accuracy of the beam polarimetry with such a target. Feasibility studies for the CEBAF electron beam have been performed

  20. Pulsar-driven Jets In Sne, Grbs, Lmxbs, Ss 433, And The Universe

    Science.gov (United States)

    Middleditch, John

    2011-05-01

    The model of pulsar emission through superluminally induced polarization currents, (SLIP), predicts that pulsations produced by such currents at many light cylinder radii by a rotating, magnetized body, will drive pulsations close to the axis of rotation. In SN 1987A, the possible Rosetta Stone for 99% of SNe, GRBs, ms pulsars, and SS 433, such highly collimated (>1 in 10,000) 2.14 ms pulsations, and the similarly collimated jets of particles which they drove, including 1e-6 solar masses with velocities 0.95 c, were responsible for its very early light curve (days 3-20), its "Mystery Spot," observed slightly later (0.5 to 0.3 c, at days 30-50 and after), and still later, in less collimated form, its bipolarity. The axially driven pulsations enforce a toroidal geometry onto all early SNRs, rendering even SNe Ia unsuitable as standard candles. The numbers for Sco X-1's jet are identical, while those for SS 433 are lower (0.26 c), because of the absence of velocity "boosting" via collisions of heavy elements with lighter ones, due to the nearly pure hydrogen content of the supercritical accretion. SLIP also drives positrons from SNe to high energies, possibly accounting for the excess seen by PAMELA at scores of GeV, and predicts that almost all pulsars with very sharp single pulses have been detected because the Earth is in a favored direction where their fluxes diminish only as 1/distance, and this has been verified in the laboratory as well as for the Parkes Multibeam Survey. SLIP also predicts that GRB afterglows will be 100% pulsed at 500 Hz in their proper frame. Finally, SLIP jets from SNe of the first stars may allow galaxies to form without the need for dark matter. This work was supported in part by the Department of Energy through the Los Alamos Directed Research Grant DR20080085.

  1. Recent results of the STAR high-energy polarized proton-proton program at RHIC at BNL

    International Nuclear Information System (INIS)

    Surrow, Bernd

    2007-01-01

    The STAR experiment at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is carrying out a spin physics program colliding transverse or longitudinal polarized proton beams at √(s) 200 - 500GeV to gain a deeper insight into the spin structure and dynamics of the proton. These studies provide fundamental tests of Quantum Chromodynamics (QCD).One of the main objectives of the STAR spin physics program is the determination of the polarized gluon distribution function through a measurement of the longitudinal double-spin asymmetry, ALL, for various processes. Recent results will be shown on the measurement of ALL for inclusive jet production, neutral pion production and charged pion production at √(s) = 200GeV. In addition to these measurements involving longitudinal polarized proton beams, the STAR collaboration has performed several important measurements employing transverse polarized proton beams. New results on the measurement of the transverse single-spin asymmetry, AN, for forward neutral pion production and the first measurement of AN for mid-rapidity di-jet production will be discussed

  2. Thermal reorientation of hydrogenic Pr3+ centers

    International Nuclear Information System (INIS)

    Jones, G. D.

    1996-01-01

    Sets of five multi-hydrogenic centers of both CaF 2 :Pr 3+ and SrF 2 :Pr 3 + show bleaching under selective polarized-light irradiation. Two forms of bleaching behaviour are observed. In reversible polarized bleaching, irradiation creates re-oriented equivalent centers, which can be restored to the original orientation by switching the laser polarization by 90 deg. Indefinite sequences of bleaching and recovery can be established. In photoproduct bleaching, inequivalent centers are produced, which can be reverted by subsequently selectively exciting their absorption lines. Thermal recovery of the bleached centers on warming the crystals occurs abruptly over a 5 K range around 100 K and is noteworthy in occurring at essentially identical temperatures for H - , D - and T - centers. The simplest model for this thermal recovery is thermal activation of the mobile hydrogenic ions over a double well potential barrier. An alternative model proposed by Universitaet Regensburg requires the involvement of high frequency excitations in scattering processes for surmounting the barrier

  3. Development of a cluster-jet target for PANDA

    International Nuclear Information System (INIS)

    Gruber, A.; Marton, J.; Widmann, E.; Zmeskal, J.; Orth, H.; Luehning, J.

    2008-01-01

    Full text: The Stefan Meyer Institut (SMI) is part of the international PANDA collaboration. The universal detector will be constructed at the future high-energy antiproton storage ring HESR at FAIR (Facility for Antiproton and Ion Research, GSI/Darmstadt). PANDA will use antiproton beams (1.5 to 15 GeV/c) for hadron physics in the charmonium region. The physics program of PANDA will encompass charmonium spectroscopy below and above open charm threshold, search for exotics (glueballs, hybrids), lambda and double-lambda hypernuclei studies and the investigation of in-medium modifications of charmed mesons - an experimentally unexplored field. SMI contributes to major parts of the PANDA detector like the hydrogen cluster-jet target and the vacuum system of the antiproton - target interaction zone. In order to reach the desired target density, an optimization of the cold head, the nozzle and the skimmer arrangement is essential. A density-profile monitor for the cluster-jet was designed and built at SMI. Several nozzle types will be studied using different gases, temperatures and inlet pressures. Additionally we, together with the cluster-jet target group at GSI, are carrying out R and D for improving the jet-density. The Genova/Fermilab cluster-jet target used for these measurements has been in use at Fermilab for the experiments E760 and E835 and has been transferred to GSI for this purpose. The setup of the density-profile monitor at SMI and several measurements at GSI will be presented. (author)

  4. Pulsar-Driven Jets in Supernovae, Gamma-Ray Bursts, and the Universe

    Directory of Open Access Journals (Sweden)

    John Middleditch

    2012-01-01

    Full Text Available The bipolarity of Supernova 1987A can be understood through its very early light curve from the CTIO 0.4 m telescope and IUE FES and following speckle observations of the “Mystery Spot”. These indicate a beam/jet of light/particles, with initial collimation factors >104 and velocities >0.95 c, involving up to 10−5 M⊙ interacting with circumstellar material. These can be produced by a model of pulsar emission from polarization currents induced/(modulated faster than c beyond the pulsar light cylinder by the periodic electromagnetic field (supraluminally induced polarization currents (SLIP. SLIP accounts for the disruption of supernova progenitors and their anomalous dimming at cosmological distances, jets from Sco X-1 and SS 433, the lack/presence of pulsations from the high-/low-luminosity low-mass X-ray binaries, and long/short gamma-ray bursts, and it predicts that their afterglows are the pulsed optical-/near-infrared emission associated with these pulsars. SLIP may also account for the TeV e+/e− results from PAMELA and ATIC, the WMAP “Haze”/Fermi “Bubbles,” and the r-process. SLIP jets from SNe of the first stars may allow galaxies to form without dark matter and explain the peculiar nongravitational motions between pairs of distant galaxies observed by GALEX.

  5. Recent developments in laser-driven polarized sources

    International Nuclear Information System (INIS)

    Young, L.; Coulter, K.P.; Holt, R.J.; Kinney, E.R.; Kowalczyk, R.S.; Potterveld, D.H.; Zghiche, A.

    1990-01-01

    Recent progress in the performance of laser-driven sources of polarized hydrogen and deuterium is described. The current status of the prototype source, I = 2.5 x 10 17 s -1 , polarization = 0.29 (including atomic fraction), is comparable to classical Stern-Gerlach sources. A scheme to improve source performance by approximately an order of magnitude, using a combination of optical-pumping spin-exchange and RF transitions, is outlined. 8 refs., 2 figs., 1 tab

  6. Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaokun [Univ. of Nevada, Reno, NV (United States); Li, Teng [Washington State Univ., Pullman, WA (United States); Tang, Kan [Washington State Univ., Pullman, WA (United States); Zhou, Xinpei [Univ. of Nevada, Reno, NV (United States); Lu, Mi [Univ. of Nevada, Reno, NV (United States); Ounkham, Whalmany L. [Univ. of Nevada, Reno, NV (United States); Spain, Stephen M. [Univ. of Nevada, Reno, NV (United States); Frost, Brian J. [Univ. of Nevada, Reno, NV (United States); Lin, Hongfei [Washington State Univ., Pullman, WA (United States)

    2017-06-12

    The demand for bio-jet fuels to reduce carbon emissions is increasing substantially in the aviation sector, while the scarcity of high-density jet fuel components limits the use of bio-jet fuels in high-performance aircrafts compared with conventional jet fuels. In this paper, we report a novel biphasic tandem catalytic process (biTCP) for synthesizing cycloalkanes from renewable terpenoid biomass, such as 1,8-cineole. Multistep tandem reactions, including C–O ring opening by hydrolysis, dehydration, and hydrogenation, were carried out in the “one-pot” biTCP. 1,8-Cineole was efficiently converted to p-menthane at high yields (>99%) in the biTCP under mild reaction conditions. Finally, the catalytic reaction mechanism is discussed.

  7. DETECTION OF GAMMA-RAY POLARIZATION IN PROMPT EMISSION OF GRB 100826A

    Energy Technology Data Exchange (ETDEWEB)

    Yonetoku, Daisuke; Murakami, Toshio; Sakashita, Tomonori; Morihara, Yoshiyuki; Takahashi, Takuya; Fujimoto, Hirofumi; Kodama, Yoshiki [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192 (Japan); Gunji, Shuichi; Toukairin, Noriyuki [Department of Physics, Faculty of Science, Yamagata University, 1-4-12, Koshirakawa, Yamagata, Yamagata 990-8560 (Japan); Mihara, Tatehiro [Cosmic Radiation Laboratory, RIKEN, 2-1, Hirosawa, Wako City, Saitama 351-0198 (Japan); Toma, Kenji [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan); Kubo, Shin, E-mail: yonetoku@astro.s.kanazawa-u.ac.jp [Clear Pulse Co. Ltd., 6-25-17, Chuo, Ohta-ku, Tokyo 143-0024 (Japan); Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1, Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan)

    2011-12-20

    We report the polarization measurement in prompt {gamma}-ray emission of GRB 100826A with the Gamma-Ray Burst Polarimeter on board the small solar-power-sail demonstrator IKAROS. We detected the firm change of polarization angle (PA) during the prompt emission with 99.9% (3.5{sigma}) confidence level, and the average polarization degree ({Pi}) of 27% {+-} 11% with 99.4% (2.9{sigma}) confidence level. Here the quoted errors are given at 1{sigma} confidence level for the two parameters of interest. The systematic errors have been carefully included in this analysis, unlike other previous reports. Such a high {Pi} can be obtained in several emission models of gamma-ray bursts (GRBs), including synchrotron and photospheric models. However, it is difficult to explain the observed significant change of PA within the framework of axisymmetric jet as considered in many theoretical works. The non-axisymmetric (e.g., patchy) structures of the magnetic fields and/or brightness inside the relativistic jet are therefore required within the observable angular scale of {approx}{Gamma}{sup -1}. Our observation strongly indicates that the polarization measurement is a powerful tool to constrain the GRB production mechanism, and more theoretical works are needed to discuss the data in more detail.

  8. Ammonia chemistry in a flameless jet

    Energy Technology Data Exchange (ETDEWEB)

    Zieba, Mariusz; Schuster, Anja; Scheffknecht, Guenter [Institute of Process Engineering and Power Plant Technology, University of Stuttgart, Pfaffenwaldring 23, D-70569 Stuttgart (Germany); Brink, Anders; Hupa, Mikko [Process Chemistry Centre, Aabo Akademi University, Biskopsgatan 8, 20500 Aabo (Finland)

    2009-10-15

    In this paper, the nitrogen chemistry in an ammonia (NH{sub 3}) doped flameless jet is investigated using a kinetic reactor network model. The reactor network model is used to explain the main differences in ammonia chemistry for methane (CH{sub 4})-containing fuels and methane-free fuels. The chemical pathways of nitrogen oxides (NO{sub x}) formation and destruction are identified using rate-of-production analysis. The results show that in the case of natural gas, ammonia reacts relatively late at fuel lean condition leading to high NO{sub x} emissions. In the pre-ignition zone, the ammonia chemistry is blocked due to the absence of free radicals which are consumed by methane-methyl radical (CH{sub 3}) conversion. In the case of methane-free gas, the ammonia reacted very rapidly and complete decomposition was reached in the fuel rich region of the jet. In this case the necessary radicals for the ammonia conversion are generated from hydrogen (H{sub 2}) oxidation. (author)

  9. Measurements of the movement of the jet streams at mid-latitudes, in the Northern and Southern Hemispheres, 1979 to 2010

    Directory of Open Access Journals (Sweden)

    R. D. Hudson

    2012-08-01

    Full Text Available Previous studies have shown that the mean latitude of the sub-tropical jet streams in both hemispheres have shifted toward the poles over the last few decades. This paper presents a study of the movement of both the subtropical and Polar fronts, the location of the respective jet streams, between 1979 and 2010 at mid-latitudes, using total ozone measurements to identify the sharp horizontal boundary that occurs at the position of the fronts. Previous studies have shown that the two fronts are the boundaries of three distinct regimes in the stratosphere, corresponding to the Hadley, Ferrel, and polar meridionally overturning circulation cells in the troposphere. Over the period of study the horizontal area of the Hadley cell has increased at latitudes between 20 and 60 degrees while the area of the Polar cell has decreased. A linear regression analysis was performed to identify the major factors associated with the movement of the subtropical jet streams. These were: (1 changes in the Tropical land plus ocean temperature, (2 direct radiative forcing from greenhouse gases in the troposphere, (3 changes in the temperature of the lower tropical stratosphere, (4 the Quasi-Biennial Oscillation, and (5 volcanic eruptions. The dominant mechanism was the direct radiative forcing from greenhouse gases. Between 1979 and 2010 the poleward movement of the subtropical jet streams was 3.7 ± 0.3 degrees in the Northern Hemisphere and 6.5 ± 0.2 degrees in the Southern Hemisphere. Previous studies have shown that weather systems tend to follow the jet streams. The observed poleward movement in both hemispheres over the past thirty years represents a significant change in the position of the sub-tropical jet streams, which should lead to significant latitudinal shifts in the global weather patterns and the hydrologic cycle.

  10. Vehicle driving cycle performance of the spark-less di-ji hydrogen engine

    Energy Technology Data Exchange (ETDEWEB)

    Boretti, Alberto A. [School of Science and Engineering, University of Ballarat, PO Box663, Ballarat, VIC 3353 (Australia)

    2010-05-15

    The paper describes coupled CFD combustion simulations and CAE engine performance computations to describe the operation over the full range of load and speed of an always lean burn, Direct Injection Jet Ignition (DI-JI) hydrogen engine. Jet ignition pre-chambers and direct injection are enablers of high efficiencies and load control by quantity of fuel injected. Towards the end of the compression stroke, a small quantity of hydrogen is injected within the spark-less pre-chamber of the DI-JI engine, where it mixes with the air entering from the main chamber and auto-ignites because of the high temperature of the hot glow plug. Then, jets of partially combusted hot gases enter the main chamber igniting there in the bulk, over multiple ignition points, lean stratified mixtures of air and fuel. Engine maps of brake specific fuel consumption vs. speed and brake mean effective pressure are computed first. CAE vehicle simulations are finally performed evaluating the fuel consumption over emission cycles of a vehicle equipped with this engine. (author)

  11. Dinamics of hydrogen in terrestrial atmosphere

    International Nuclear Information System (INIS)

    Roamntan, A.; Mercea, V.; Ristoiu, D.; Ursu, D.

    1981-01-01

    Thishs monographic study presents the dynamics of hydrogen in t e Earth's atmosphere. Atomic hydrogen is produced in the homosphere through a complex system of chemical reaction in wich molecules of 2 , H 2 O, C 4 s ''parent '' molecules are involved. The maximum production of H appears at 8O km resulting a concentration of the order of 10 8 cm -3 . There is a correlation between the total mixing ratio of hydrogen in the homosphere and the global escape flux from the Earth's atmosphere. Two new physical mechanisms which may have a substantial contribution to the total escape flux are presented: ''polar wind'' and charge exchange of H with ''hot'' protons. The possibilities of accretion of hydrogen, as atomic hydrogen or as water from the Earth's atmosphere, are analysed in brief. (authors)

  12. Effect of chevron nozzle penetration on aero-acoustic characteristics of jet at M = 0.8

    Science.gov (United States)

    Nikam, S. R.; Sharma, S. D.

    2017-12-01

    Aero-acoustic characteristics of a high-speed jet with chevron nozzles are experimentally investigated at a Mach number of 0.8. The main focus is to examine the effects of the extent of chevron penetration and its position in the mixing layer. Chevron nozzles with three different levels of penetration employed at three different longitudinal locations from the nozzle lip are tested, and the results are compared with those of a plain baseline nozzle. The chevrons are found to produce a lobed shear layer through the notched region, thereby increasing the surface area of the jet, particularly in the close vicinity of the nozzle, which increases the mixing and reduces the potential core length. This effect becomes more prominent with increasing penetration closer to the nozzle lip in the thinner mixing layer. Near field and far field noise measurements show distinctly different acoustic features due to chevrons. The chevrons are found to effectively shift the dominant noise source upstream closer to the nozzle. Present investigation proposes a simpler method for locating the dominant noise source from the peak of the centerline velocity decay rate. The overall noise levels registered along the jet edge immediately downstream of the chevrons are higher, but further downstream they are reduced in comparison with the plain baseline nozzle. Also, the chevrons beam the noise towards higher polar angles at higher frequencies. At shallow polar angles with respect to the jet axis in the far field, chevrons suppress the noise at low frequencies with increasing penetration, but for higher polar angles, while they continue to suppress the low frequency noise, at higher frequencies the trend is found to reverse. The noise measured in the near field close to the jet edge is composed of two components: acoustic and hydrodynamic. Of these two components, the chevrons are found to reduce the hydrodynamic component in comparison with the acoustic one.

  13. Measurement of pzz of the laser-driven polarized deuterium target

    International Nuclear Information System (INIS)

    Jones, C.E.; Coulter, K.P.; Holt, R.J.; Poelker, M.; Potterveld, D.P.; Kowalczyk, R.S.; Buchholz, M.; Neal, J.; van den Brand, J.F.J.

    1993-01-01

    The question of whether nuclei are polarized as a result of H-H (D-D) spin-exchange collisions within the relatively dense gas of a laser-driven source of polarized hydrogen (deuterium) can be addressed directly by measuring the nuclear polarization of atoms from the source. The feasibility of using a polarimeter based on the D + T → n + 4 He reaction to measure the tensor polarization of deuterium in an internal target fed by the laser-driven source has been tested. The device and the measurements necessary to test the spin-exchange polarization theory are described

  14. Jet mass spectra in Higgs+one jet at NNLL

    International Nuclear Information System (INIS)

    Jouttenus, Teppo T.; Stewart, Iain W.; Waalewijn, Wouter J.

    2013-02-01

    The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m 2 jet /p jet T scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in Pythia. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

  15. Impurity induced neutralization of MeV energy protons in JET plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gondhalekar, A [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Korotkov, A A [AF Ioffe Institute, Saint Petersburg (Russian Federation)

    1994-07-01

    A model elucidating the role of carbon and beryllium, the main impurities in JET plasmas, in neutralizing MeV energy protons, which arise during ICRF heating of deuterium plasmas in the hydrogen minority heating mode D(H), and from D-D fusion reactions, is presented. The model establishes charge transfer from hydrogen-like impurity ions to protons as the main process for neutralization. Calculations for deducing the proton energy distribution function from measured hydrogen flux are described. The validity of the model is tested by using it to described the measured flux in different conditions of plasma heating and fueling. Further, it is used to deduce the background thermal deuterium atom density at the plasma center. 9 refs., 6 figs.

  16. Three-dimensional simulations of cellular non-premixed jet flames

    Energy Technology Data Exchange (ETDEWEB)

    Valaer, A.L.; Frouzakis, C.E.; Boulouchos, K. [Aerothermochemistry and Combustion System Laboratory, Swiss Federal Institute of Technology, CH-8092 Zurich (Switzerland); Papas, P. [Division of Engineering, Colorado School of Mines, Golden, CO 80401 (United States); Tomboulides, A.G. [Department of Engineering and Management of Energy Resources, University of Western Macedonia, 50100 Kozani (Greece)

    2010-04-15

    The formation, dynamics and structure of cellular flames in circular non-premixed jets are examined with three-dimensional numerical simulations incorporating detailed descriptions of chemistry and transport. Similar to past experiments reported in the literature, CO{sub 2}-diluted hydrogen in diluted or pure oxygen co-flowing streams in the proximity of the extinction limit are considered. As in the experiments, several preferred cellular states are found to co-exist with the particular state realized depending on initial conditions as well as on the jet characteristics. The simulations provide additionally the temporal transitions to different stationary or rotating cellular flames, their detailed structure, and the dependence of the scaling of the realized number of cells with the vorticity thickness. (author)

  17. Thrust distribution of two-jet like events at a photon-photon collider

    International Nuclear Information System (INIS)

    Kanakubo, Fumiko

    1995-01-01

    One of the advantages of using a photon-photon collision with the same helicity is that the continuum qq-bar production is suppressed at the lowest order (α s 0 ). However, the helicity suppression does not take place for the gluon radiation process, and qq-barg can be two-jet like. We evaluate the cross sections of the two-jet like events in a photon-photon collision, and present the thrust distributions. We take into account the QCD effect to all orders in α s in the leading-double-log approximation, and show the suppression due to this effect. The evaluation with the energy and the polarization distributions of the photon suggests that the contaminating photons with the opposite helicity contribute dominantly to the two-jet like process. (author)

  18. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    International Nuclear Information System (INIS)

    Papell, S.S.; Nyland, T.W.; Saiyed, N.H.

    1992-07-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band. 3 refs

  19. Jet angularity measurements for single inclusive jet production

    Science.gov (United States)

    Kang, Zhong-Bo; Lee, Kyle; Ringer, Felix

    2018-04-01

    We study jet angularity measurements for single-inclusive jet production at the LHC. Jet angularities depend on a continuous parameter a allowing for a smooth interpolation between different traditional jet shape observables. We establish a factorization theorem within Soft Collinear Effective Theory (SCET) where we consistently take into account in- and out-of-jet radiation by making use of semi-inclusive jet functions. For comparison, we elaborate on the differences to jet angularities measured on an exclusive jet sample. All the necessary ingredients for the resummation at next-to-leading logarithmic (NLL) accuracy are presented within the effective field theory framework. We expect semiinclusive jet angularity measurements to be feasible at the LHC and we present theoretical predictions for the relevant kinematic range. In addition, we investigate the potential impact of jet angularities for quark-gluon discrimination.

  20. Control of radial propagation and polarity in a plasma jet in surrounding Ar

    KAUST Repository

    Gong, W.; Yue, Y.; Ma, F.; Yu, F.; Wan, J.; Nie, L.; Bazaka, K.; Xian, Y.; Lu, X.; Ostrikov, K.

    2018-01-01

    In recent years, the use of shielding gas to prevent the diffusion of the ambient air, particularly oxygen and nitrogen species, into the effluent of the atmospheric pressure plasma jet, and thus control the nature of chemical species used

  1. Jet mass spectra in Higgs+one jet at NNLL

    Energy Technology Data Exchange (ETDEWEB)

    Jouttenus, Teppo T.; Stewart, Iain W. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Waalewijn, Wouter J. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    2013-02-15

    The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m{sup 2}{sub jet}/p{sup jet}{sub T} scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in Pythia. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

  2. Flux rope breaking and formation of a rotating blowout jet

    Science.gov (United States)

    Joshi, Navin Chandra; Nishizuka, Naoto; Filippov, Boris; Magara, Tetsuya; Tlatov, Andrey G.

    2018-05-01

    We analysed a small flux rope eruption converted into a helical blowout jet in a fan-spine configuration using multiwavelength observations taken by Solar Dynamics Observatory, which occurred near the limb on 2016 January 9. In our study, first, we estimated the fan-spine magnetic configuration with the potential-field calculation and found a sinistral small filament inside it. The filament along with the flux rope erupted upwards and interacted with the surrounding fan-spine magnetic configuration, where the flux rope breaks in the middle section. We observed compact brightening, flare ribbons, and post-flare loops underneath the erupting filament. The northern section of the flux rope reconnected with the surrounding positive polarity, while the southern section straightened. Next, we observed the untwisting motion of the southern leg, which was transformed into a rotating helical blowout jet. The sign of the helicity of the mini-filament matches the one of the rotating jets. This is consistent with recent jet models presented by Adams et al. and Sterling et al. We focused on the fine thread structure of the rotating jet and traced three blobs with the speed of 60-120 km s- 1, while the radial speed of the jet is ˜400 km s- 1. The untwisting motion of the jet accelerated plasma upwards along the collimated outer spine field lines, and it finally evolved into a narrow coronal mass ejection at the height of ˜9Rsun. On the basis of detailed analysis, we discussed clear evidence of the scenario of the breaking of the flux rope and the formation of the helical blowout jet in the fan-spine magnetic configuration.

  3. Miniature Filament Eruptions and their Reconnections in X-Ray Jets: Evidence for a New Paradigm

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.

    2014-01-01

    We investigate the onset of approximately10 random X-ray jets observed by Hinode/XRT. Each jet was near the limb in a polar coronal hole, and showed a ``bright point'' in an edge of the base of the jet, as is typical for previously-observed X-ray jets. We examined SDO/AIA EUV images of each of the jets over multiple AIA channels, including 304 Ang, which detects chromospheric emissions, and 171, 193, and 211 Ang, which detect cooler-coronal emissions. We find the jets to result from eruptions of miniature (size less than approximately 10 arcsec) filaments from the bases of the jets. Much of the erupting-filament material forms a chromospheric-temperature jet. In the cool-coronal channels, often the filament appears in absorption and the jet in emission. The jet bright point forms at the location from which the miniature filament is ejected, analogous to the formation of a standard solar flare in the wake of the eruption of a typical larger-scale chromospheric filament. Thus these X-ray jets and their bright points are made by miniature filament eruptions. They are evidently produced the same way as an on-disk coronal jet we observed in Adams et al. (2014); that on-disk jet had no obvious emerging magnetic field in its base. We conclude that, for many jets, the standard idea of X-ray jets forming from reconnection between emerging flux and preexisting coronal field is incorrect. ACS and RLM were supported by funding from NASA/LWS, Hinode, and ISSI.

  4. First Symmetry Tests in Polarized Z0 Decays to b anti-bg

    International Nuclear Information System (INIS)

    Burrows, Phil

    2000-01-01

    The authors have made the first direct symmetry tests in the decays of polarized Z 0 bosons into fully-identified b anti-bg states, collected in the SLD experiment at SLAC. The authors searched for evidence of parity violation at the b anti-bg vertex by studying the asymmetries in the b-quark polar- and azimuthal-angle distributions, and for evidence of T-odd, CP-even or odd, final-state interactions by measuring angular correlations between the three-jet plane and the Z 0 polarization. They found results consistent with Standard Model expectations and set 95% C.L. limits on anomalous contributions

  5. Quark jets, gluon jets and the three-gluon vertex

    International Nuclear Information System (INIS)

    Fodor, Z.

    1989-11-01

    Using hadronic jets in electron-positron annihilation, we suggest a simple and model-independent method to see the differences between quark and gluon jets. We define and analyse special energy dependent moments of jets and choose those which are the most characteristic to the jet type. The method handles the energy of a jet in an adequate way. We discuss new methods using jet flavor tagging, ordinary flavor tagging of a definite quark jet or discrimination between quark and gluon jets, to test the triple-gluon vertex in electron-positron annihilation. An enriched sample of gluon jets, jets with the smallest energy in four-jet events, as well as a continuous tagging variable are also studied. 21 refs., 6 figs. (Author)

  6. MINIFILAMENT ERUPTIONS THAT DRIVE CORONAL JETS IN A SOLAR ACTIVE REGION

    International Nuclear Information System (INIS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    We present observations of eruptive events in an active region adjacent to an on-disk coronal hole on 2012 June 30, primarily using data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), and STEREO - B . One eruption is of a large-scale (∼100″) filament that is typical of other eruptions, showing slow-rise onset followed by a faster-rise motion starting as flare emissions begin. It also shows an “EUV crinkle” emission pattern, resulting from magnetic reconnections between the exploding filament-carrying field and surrounding field. Many EUV jets, some of which are surges, sprays and/or X-ray jets, also occur in localized areas of the active region. We examine in detail two relatively energetic ones, accompanied by GOES M1 and C1 flares, and a weaker one without a GOES signature. All three jets resulted from small-scale (∼20″) filament eruptions consistent with a slow rise followed by a fast rise occurring with flare-like jet-bright-point brightenings. The two more-energetic jets showed crinkle patters, but the third jet did not, perhaps due to its weakness. Thus all three jets were consistent with formation via erupting minifilaments, analogous to large-scale filament eruptions and to X-ray jets in polar coronal holes. Several other energetic jets occurred in a nearby portion of the active region; while their behavior was also consistent with their source being minifilament eruptions, we could not confirm this because their onsets were hidden from our view. Magnetic flux cancelation and emergence are candidates for having triggered the minifilament eruptions.

  7. Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U 1630-47.

    Science.gov (United States)

    Trigo, María Díaz; Miller-Jones, James C A; Migliari, Simone; Broderick, Jess W; Tzioumis, Tasso

    2013-12-12

    Accreting black holes are known to power relativistic jets, both in stellar-mass binary systems and at the centres of galaxies. The power carried away by the jets, and, hence, the feedback they provide to their surroundings, depends strongly on their composition. Jets containing a baryonic component should carry significantly more energy than electron-positron jets. Energetic considerations and circular-polarization measurements have provided conflicting circumstantial evidence for the presence or absence of baryons in jets, and the only system in which they have been unequivocally detected is the peculiar X-ray binary SS 433 (refs 4, 5). Here we report the detection of Doppler-shifted X-ray emission lines from a more typical black-hole candidate X-ray binary, 4U 1630-47, coincident with the reappearance of radio emission from the jets of the source. We argue that these lines arise from baryonic matter in a jet travelling at approximately two-thirds the speed of light, thereby establishing the presence of baryons in the jet. Such baryonic jets are more likely to be powered by the accretion disk than by the spin of the black hole, and if the baryons can be accelerated to relativistic speeds, the jets should be strong sources of γ-rays and neutrino emission.

  8. Vector boson tagged jets and jet substructure

    Directory of Open Access Journals (Sweden)

    Vitev Ivan

    2018-01-01

    Full Text Available In these proceedings, we report on recent results related to vector boson-tagged jet production in heavy ion collisions and the related modification of jet substructure, such as jet shapes and jet momentum sharing distributions. Z0-tagging and γ-tagging of jets provides new opportunities to study parton shower formation and propagation in the quark-gluon plasma and has been argued to provide tight constrains on the energy loss of reconstructed jets. We present theoretical predictions for isolated photon-tagged and electroweak boson-tagged jet production in Pb+Pb collisions at √sNN = 5.02 TeV at the LHC, addressing the modification of their transverse momentum and transverse momentum imbalance distributions. Comparison to recent ATLAS and CMS experimental measurements is performed that can shed light on the medium-induced radiative corrections and energy dissipation due to collisional processes of predominantly quark-initiated jets. The modification of parton splitting functions in the QGP further implies that the substructure of jets in heavy ion collisions may differ significantly from the corresponding substructure in proton-proton collisions. Two such observables and the implication of tagging on their evaluation is also discussed.

  9. High kinetic energy plasma jet generation and its injection into the Globus-M spherical tokamak

    International Nuclear Information System (INIS)

    Voronin, A.V.; Gusev, V.K.; Petrov, Yu.V.; Sakharov, N.V.; Abramova, K.B.; Sklyarova, E.M.; Tolstyakov, S.Yu.

    2005-01-01

    Progress in the theoretical and experimental development of the plasma jet source and injection of hydrogen plasma and neutral gas jets into the Globus-M spherical tokamak is discussed. An experimental test bed is described for investigation of intense plasma jets that are generated by a double-stage plasma gun consisting of an intense source for neutral gas production and a conventional pulsed coaxial accelerator. A procedure for optimizing the accelerator parameters so as to achieve the maximum possible flow velocity with a limited discharge current and a reasonable length of the coaxial electrodes is presented. The calculations are compared with experiment. Plasma jet parameters, among them pressure distribution across the jet, flow velocity, plasma density, etc, were measured. Plasma jets with densities of up to 10 22 m -3 , total numbers of accelerated particles (1-5) x 10 19 , and flow velocities of 50-100 km s -1 were successfully injected into the plasma column of the Globus-M tokamak. Interferometric and Thomson scattering measurements confirmed deep jet penetration and a fast density rise ( 19 to 1 x 10 19 ) did not result in plasma degradation

  10. Magnetized jets driven by the Sun: The structure of the heliosphere revisited—Updates

    Energy Technology Data Exchange (ETDEWEB)

    Opher, M., E-mail: mopher@bu.edu [Astronomy Department, Boston University, Boston, Massachusetts 02215 (United States); Drake, J. F.; Swisdak, M. [University of Maryland, College Park, Maryland 20742 (United States); Zieger, B. [Center for Space Physics, Boston University, Massachusetts 02215 (United States); Toth, G. [Department of Climate and Space, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2016-05-15

    As the solar system moves through the interstellar medium, the solar wind is deflected forming the heliosphere. The standard picture of the heliosphere is a comet-shape like structure with the tail extending for 1000s of astronomical units. This standard picture stems from a view where magnetic forces are negligible and the solar magnetic field is convected passively down the tail. Recently, we showed that the magnetic tension of the solar magnetic field plays a crucial role on organizing the solar wind in the heliosheath into two jet-like structures. The two jets are separated by the interstellar medium that flows between them. The heliosphere then has a “croissant”-like shape where the distance to the heliopause downtail is almost the same as towards the nose. This new view of the heliosphere is in agreement with the energetic neutral atoms maps taken by the Interstellar Boundary Explorer and INCA/CASSINI. We developed as well an analytic model of the heliosheath in the axisymmetric limit that shows how the magnetic tension force is the driver for the north and south jets. We confirmed that the formation of these jets with magnetohydrodynamic (MHD) simulations. The main reason why previous global MHD simulations did not see these jets is due to spurious magnetic dissipation that was present at the heliospheric current sheet. We instead kept the same polarity for the interplanetary (solar) magnetic field in both the northern and southern hemispheres, eliminating spurious magnetic dissipation effects at the heliospheric current sheet. In this paper, we extend these previous results to include additional cases where we used: (a) weaker solar magnetic field; (b) solar magnetic field that reverses polarity at the solar equator in the axisymmetric limit; and (c) slower motion through the interstellar system. We discuss as well future challenges regarding the structure of the heliosphere.

  11. Filament Channel Formation, Eruption, and Jet Generation

    Science.gov (United States)

    DeVore, C. Richard; Antiochos, Spiro K.; Karpen, Judith T.

    2017-08-01

    The mechanism behind filament-channel formation is a longstanding mystery, while that underlying the initiation of coronal mass ejections and jets has been studied intensively but is not yet firmly established. In previous work, we and collaborators have investigated separately the consequences of magnetic-helicity condensation (Antiochos 2013) for forming filament channels (Zhao et al. 2015; Knizhnik et al. 2015, 2017a,b) and of the embedded-bipole model (Antiochos 1996) for generating reconnection-driven jets (Pariat et al. 2009, 2010, 2015, 2016; Wyper et al. 2016, 2017). Now we have taken a first step toward synthesizing these two lines of investigation. Our recent study (Karpen et al. 2017) of coronal-hole jets with gravity and wind employed an ad hoc, large-scale shear flow at the surface to introduce magnetic free energy and form the filament channel. In this effort, we replace the shear flow with an ensemble of local rotation cells, to emulate the Sun’s ever-changing granules and supergranules. As in our previous studies, we find that reconnection between twisted flux tubes within the closed-field region concentrates magnetic shear and free energy near the polarity inversion line, forming the filament channel. Onset of reconnection between this field and the external, unsheared, open field releases stored energy to drive the impulsive jet. We discuss the results of our new simulations with implications for understanding solar activity and space weather.

  12. Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1

    Science.gov (United States)

    Laurent, P.; Rodriquez, J.; Wilms, J.; Bel, M. Cadolle; Pottschmidt, K.; Grinberg, V.

    2011-01-01

    Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-I with the INTEGRAL/IBIS telescope. Spectral modeling ofthe data reveals two emission mechanisms: The 250-400 keY data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.

  13. Investigation of low emission combustors using hydrogen lean direct injection

    Directory of Open Access Journals (Sweden)

    Robert ISAC

    2011-09-01

    Full Text Available One of the key technology challenges for the use of hydrogen in gas turbine engines is the performance of the combustion system, in particular the fuel injectors. Tests were conducted to measure the nitrogen oxide (NOx emissions and combustion performance at inlet conditions of 588 to 811 K, 0.4 to 1.4 MPa, and equivalence ratios up to 0.48. All the injectors were based on Lean Direct Injection (LDI technology with multiple injection points and quick mixing. One challenge to hydrogen-based premixing combustion systems is flashback since hydrogen has a reaction rate over 7 times that of Jet-A.

  14. Effect of chevron nozzle penetration on aero-acoustic characteristics of jet at M = 0.8

    Energy Technology Data Exchange (ETDEWEB)

    Nikam, S R [K. J. Somaiya college of Engineering, Mumbai (India); Sharma, S D, E-mail: srnikam12@gmail.com [I.I.T. Bombay, Mumbai (India)

    2017-12-15

    Aero-acoustic characteristics of a high-speed jet with chevron nozzles are experimentally investigated at a Mach number of 0.8. The main focus is to examine the effects of the extent of chevron penetration and its position in the mixing layer. Chevron nozzles with three different levels of penetration employed at three different longitudinal locations from the nozzle lip are tested, and the results are compared with those of a plain baseline nozzle. The chevrons are found to produce a lobed shear layer through the notched region, thereby increasing the surface area of the jet, particularly in the close vicinity of the nozzle, which increases the mixing and reduces the potential core length. This effect becomes more prominent with increasing penetration closer to the nozzle lip in the thinner mixing layer. Near field and far field noise measurements show distinctly different acoustic features due to chevrons. The chevrons are found to effectively shift the dominant noise source upstream closer to the nozzle. Present investigation proposes a simpler method for locating the dominant noise source from the peak of the centerline velocity decay rate. The overall noise levels registered along the jet edge immediately downstream of the chevrons are higher, but further downstream they are reduced in comparison with the plain baseline nozzle. Also, the chevrons beam the noise towards higher polar angles at higher frequencies. At shallow polar angles with respect to the jet axis in the far field, chevrons suppress the noise at low frequencies with increasing penetration, but for higher polar angles, while they continue to suppress the low frequency noise, at higher frequencies the trend is found to reverse. The noise measured in the near field close to the jet edge is composed of two components: acoustic and hydrodynamic. Of these two components, the chevrons are found to reduce the hydrodynamic component in comparison with the acoustic one. (paper)

  15. Observations of Seven Blue/Gigantic Jets above One Storm over the Atlantic Ocean

    Science.gov (United States)

    Liu, N.; Spiva, N.; Dwyer, J. R.; Rassoul, H.; Free, D. L.; Cummer, S. A.

    2013-12-01

    Blue/gigantic jets are electrical discharges developing from thundercloud tops and propagating to the upper atmosphere [e.g., Pasko et al., Nature, 416, 152, 2002; Su et al., Nature, 423, 973, 2003]. Not just producing an impressive display, gigantic jets establish a direct path of electrical contact between the upper troposphere and the lower ionosphere, capable of transferring a large amount of charge between them [Cummer et al., Nat. Geosci., 2, 617, 2009]. It has been suggested that they may play an important role in the earth's electrical environment [e. g., Pasko, Nature, 423, 927, 2003]. Upward discharges from thunderstorms like blue/gigantic jets are believed to originate from lightning leaders escaping from thunderclouds when the cloud's charges of different polarities are not balanced [Krehbiel et al., Nat. Geosci., 1, 233, 2008; Riousset et al., JGR, 115, A00E10, 2010]. On the evening of August 2, 2013, 4 gigantic jets, 2 blue jets and 1 blue starter were recorded within 26 min above a storm over the Atlantic Ocean by a low light level camera from the campus of Florida Institute of Technology. The events were also captured by two all-sky cameras: one again from the Florida Tech campus and the other from a nearby location. According to the NLDN data, positive intra-cloud flashes preceded all events except one gigantic jet. The distance between the observation site to the locations of the NLDN lightning discharges varies from 77 to 82 km. Optical signatures of intra-cloud discharge activities accompanied the events are clearly visible in the videos. The duration of each jet varies from about 300 ms to 1.2 s, and the 1.2 s duration is probably the longest that has been reported to date for jets. Rebrightening of gigantic jet structures occurs for at least two of the events. The upper terminal altitude of the 4 gigantic jets is greater than 76-81 km, the 2 blue jets reach about 48 and 51 km altitude, respectively, and the blue starter reaches 24 km altitude

  16. Direct-injection strategies for a hydrogen-fueled engine : an optical and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, S.; Salazar, V. [Sandia National Labs, Albuquerque, NM (United States); Scarcelli, R.; Wallner, T. [Argonne National Lab, Argonne, IL (United States)

    2009-07-01

    Vehicles with hydrogen-fueled engines are competitive with systems based on fuel cells. There is a lack of fundamental knowledge about in-cylinder processes in hydrogen direct injection engines. This presentation discussed a study that used a variety of injector configurations to establish a broad database. A light-load conditions that can profit from stratification was investigated. Several results were presented, including the 5-hole nozzle produced an asymmetric jet pattern which may be good for late injection. Very lean regions in the wake of the transient jets were found to be similar to those found in diesel injection. The 13-hole nozzle demonstrated complete jet collapse, consistent with Schlieren imaging by Petersen. Stratification made efficiency sensitive to the targeting of the single-hole injector. Computational fluid dynamics with a commercially available code aimed to improve the process of design optimization. The simulation predicted less fuel dispersion than was experimentally measured. Details of the fuel penetration were captured. It was concluded that for the single-hole nozzle, the pre-spark fuel distribution is consistent with results from the fired engine. tabs., figs.

  17. Laser driven pellet refuelling for JET (and reactor) uses

    International Nuclear Information System (INIS)

    Spalding, I.J.

    1978-11-01

    Published estimates of pellet sizes and velocities required to refuel JET and post-JET experiments are summarized. Possible advantages and difficulties of accelerating solid, unconstrained hydrogenic (and also jacketed) pellets to these velocities using laser techniques are then discussed. An essential problem to be solved is adequate axial guidance of the pellet during its acceleration, since laser pulse durations of many sound-transit times (in the solid D 2 ) are necessary to avoid shock-heating the pellet. It is shown that Culham's multikilojoule CO 2 TROJAN laser facility is well suited to testing many of the concepts proposed. In particular it is shown that successful verification, and subsequent optimization, of such (novel) techniques would permit single shot tests of contemporary pellet ablation theories by the injection of approximately 1 mm diameter D 2 pellets at velocities 6 cm s -1 into the JET plasma. Means for scaling these techniques to repetition rates of order 10 Hz, and to the 1 cm pellet diameters possibly required in a working Tokamak reactor, are also discussed. (author)

  18. MISALIGNMENT OF THE JET AND THE NORMAL TO THE DUSTY TORUS IN THE BROAD ABSORPTION LINE QSO FIRST J155633.8+351758

    International Nuclear Information System (INIS)

    Reynolds, Cormac; Punsly, Brian; O'Dea, Christopher P.

    2013-01-01

    We performed Very Long Baseline Array observations of the broad absorption line quasar FIRST J155633.8+351758, ''the first radio loud BALQSO''. Our observations at 15.3 GHz partially resolved a secondary component at position angle (P.A.) ≈35°. We combine this determination of the radio jet projection on the sky plane, with the constraint that the jet is viewed within 14.°3 of the line of sight (as implied by the high variability brightness temperature) and with the P.A. of the optical/UV continuum polarization in order to study the quasar geometry. Within the context of the standard model, the data indicates a ''dusty torus'' (scattering surface) with a symmetry axis tilted relative to the accretion disk normal and a polar broad absorption line outflow aligned with the accretion disk normal. We compare this geometry to that indicated by the higher resolution radio data, brightness temperature, and optical/UV continuum polarization P.A. of a similar high optical polarization BALQSO, Mrk 231. A qualitatively similar geometry is found in these two polar BALQSOs; the continuum polarization is determined primarily by the tilt of the dusty torus

  19. Top quark polarization in t-channel single top-quark events with the ATLAS detector

    CERN Document Server

    Chitishvili, Mariam

    2017-01-01

    This summary presents the measurement of the top‐quark polarization in t-channel single top quarks with the ATLAS detector at the LHC. Monte Carlo simulated events are used. Selected events contain one lepton, large missing transverse momentum and exactly two jets, with one of them identified as b-jet. Selection cuts are used to identify the t-channel topology at reconstruction level. The polarization is measured, from an asymmetry in an angular distribution, at parton level by correcting the reconstructed angular distribution for detector effects. This project provides an overview on how a "standard" physics analysis is performed within ATLAS. The analysis is performed in ROOT. Simulation data is reconstructed to perform an unfolded measurement of a given property of a fundamental particle within the Standard Model. Finally results are compared with theoretical predictions.

  20. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    Science.gov (United States)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  1. Spatial variations of brightness, colour and polarization of dust in comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Rosenbush, Vera K.; Ivanova, Oleksandra V.; Kiselev, Nikolai N.; Kolokolova, Ludmilla O.; Afanasiev, Viktor L.

    2017-07-01

    We present post-perihelion photometric and polarimetric observations of comet 67P/Churyumov-Gerasimenko performed at the 6-m telescope of the SAO RAS in the g-sdss (465/65 nm), r-sdss (620/60 nm) and R filters. Observations in November and December 2015 and April 2016 covered the range of heliocentric distance 1.62-2.72 au and phase angle 33.2°-10.4°. The comet was very active. Two persistent jets and long dust tail were observed during the whole observing period; one more jet was detected only in December. The radial profiles of surface brightness, colour and polarization significantly differed for the coma, jets and tail, and changed with increasing heliocentric distance. The dust production Afρ decreased from 162 cm at r = 1.62 au to 51 cm at r = 2.72 au. The dust colour (g-r) gradually changed from 0.8 mag in the innermost coma to about 0.4 mag in the outer coma. The spectral slope was 8.2 ± 1.7 per cent/100 nm in the 465 to 620 nm wavelength domain. In November and December, the polarization in the near-nucleus area was about 8 per cent, dropped sharply to 2 per cent at the distance above 5000 km and then gradually increased with distance from the nucleus, reaching ˜8 per cent at 40 000 km. In April, at a phase angle 10.4°, the polarization varied between -0.6 per cent in the near-nucleus area and -4 per cent in the outer coma. Circular polarization was not detected in the comet. The spatial variations of brightness, colour and polarization in different structural features suggest some evolution of particle properties, most likely decreasing the size of dust particles.

  2. A magnetodynamic mechanism for the formation of astrophysical jets, 2

    International Nuclear Information System (INIS)

    Shibata, Kazunari; Uchida, Yutaka.

    1986-01-01

    We present a nonsteady magnetodynamic mechanism for the formation of astrophysical jets in a magnetized accretion disk system. The dynamical processes in the contraction of a rotating disk, which is penetrated by a magnetic field parallel to the rotation axis, are investigated by using axially symmetric 2.5-dimensional MHD numerical simulations. As the rotating disk contracts, it pulls the magnetic field towards the center as well as to the azimuthal direction, producing a helically twisted magnetic field, and as the magnetic twist is accumulated and begins to relax along the poloidal field, the gas in the surface layers of the disk is pushed out to the polar directions by the J x B force with the relaxing magnetic twist. It is shown that the accelerated gas is collimated by the magnetic field and forms a supersonic bipolar jet which has a hollow cylindrical shell structure with helical motion in it. A considerable fraction of the gravitational potential energy released in the contraction of the disk is transformed to the kinetic energy of the jet through the action of the magnetic field. Also, angular momentum is carried away from the disk by the magnetic torque especially in the phase of the jet formation, and this allows the disk to keep contracting towards the gravitating center and can continue the ejection of the jet. (author)

  3. Theoretical analysis and semianalytical solutions for a turbulent buoyant hydrogen-air jet

    KAUST Repository

    El-Amin, Mohamed; Sun, S.; Salama, Amgad

    2012-01-01

    Semianalytical solutions are developed for turbulent hydrogen-air plume. We derived analytical expressions for plume centerline variables (radius, velocity, and density deficit) in terms of a single universal function, called plume function. By combining the obtained analytical expressions of centerline variables with empirical Gaussian expressions of the mean variables, we obtain semianalytical expressions for mean quantities of hydrogen-air plume (velocity, density deficit, and mass fraction).

  4. Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode

    International Nuclear Information System (INIS)

    Yu Lin; Duan Jizhou; Zhao Wei; Huang Yanliang; Hou Baorong

    2011-01-01

    Highlights: → The sulphate-reducing bacteria (SRB) have the ability to catalyze the hydrogen evolution and oxidation on pyrolytic graphite electrode. → The SRB biofilm decreases the overpotential and electron transfer resistance by the CV and EIS detection. → The SRB biofilm can transfer electrons to the 0.24 V polarized pyrolytic graphite electrode and the maximum current is 0.035 mA, which is attributed to SRB catalyzed hydrogen oxidation. → The SRB biofilm also can obtain electron from the -0.61 V polarized PGE to catalyze the hydrogen evolution. - Abstract: Hydrogenase, an important electroactive enzyme of sulphate-reducing bacteria (SRB), has been discovered having the capacity to connect its activity to solid electrodes by catalyzing hydrogen evolution and oxidation. However, little attention has been paid to similar electroactive characteristics of SRB. In this study, the electroactivities of pyrolytic graphite electrode (PGE) coated with SRB biofilm were investigated. Two corresponding redox peaks were observed by cyclic voltammetry detection, which were related to the hydrogen evolution and oxidation. Moreover, the overpotential for the reactions decreased by about 0.2 V in the presence of the SRB biofilm. When the PGE coated with the SRB biofilm was polarized at 0.24 V (vs. SHE), an oxidation current related to the hydrogen oxidation was found. The SRB biofilm was able to obtain electrons from the -0.61 V (vs. SHE) polarized PGE to form hydrogen, and the electron transfer resistance also decreased with the formation of SRB biofilm, as measured by the non-destructive electrochemical impendence spectroscopy detection. It was concluded that the hydrogen evolution and oxidation was an important way for the electron transfer between SRB biofilm and solid electrode in anaerobic environment.

  5. The Role of the JET Project in Global Fusion Research

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla

    1983-01-01

    The aim of nuclear fusion research is to make fusion energy available as a new energy source. Fusion processes occur naturally in the sun, where hydrogen nuclei release energy by combining to form helium. A fusion reactor on earth will require even higher temperatures than in the interior...... of the sun, and it will be based on deuterium and tritium reactions. JET (Joint European Torus) is a major fusion experiment now under construction near Abingdon in the UK It is aimed at producing conditions approximating those necessary in a fusion reactor. The results expected from JET should permit...... a realistic evaluation of the prospects for fusion power and serve as a basis for the design of the next major fusion experiment....

  6. A first unbiased global determination of polarized PDFs and their uncertainties

    International Nuclear Information System (INIS)

    Nocera, Emanuele R.; Ball, Richard D.; Forte, Stefano; Ridolfi, Giovanni; Rojo, Juan

    2014-01-01

    We present a first global determination of spin-dependent parton distribution functions (PDFs) and their uncertainties using the NNPDF methodology: NNPDFpol1.1. Longitudinally polarized deep-inelastic scattering data, already used for the previous NNPDFpol1.0 PDF set, are supplemented with the most recent polarized hadron collider data for inclusive jet and W boson production from the STAR and PHENIX experiments at RHIC, and with open-charm production data from the COMPASS experiment, thereby allowing for a separate determination of the polarized quark and antiquark PDFs, and an improved determination of the medium- and large-x polarized gluon PDF. We study the phenomenological implications of the NNPDFpol1.1 set, and we provide predictions for the longitudinal double-spin asymmetry for semi-inclusive pion production at RHIC

  7. A first unbiased global determination of polarized PDFs and their uncertainties

    Directory of Open Access Journals (Sweden)

    Emanuele R. Nocera

    2014-10-01

    Full Text Available We present a first global determination of spin-dependent parton distribution functions (PDFs and their uncertainties using the NNPDF methodology: NNPDFpol1.1. Longitudinally polarized deep-inelastic scattering data, already used for the previous NNPDFpol1.0 PDF set, are supplemented with the most recent polarized hadron collider data for inclusive jet and W boson production from the STAR and PHENIX experiments at RHIC, and with open-charm production data from the COMPASS experiment, thereby allowing for a separate determination of the polarized quark and antiquark PDFs, and an improved determination of the medium- and large-x polarized gluon PDF. We study the phenomenological implications of the NNPDFpol1.1 set, and we provide predictions for the longitudinal double-spin asymmetry for semi-inclusive pion production at RHIC.

  8. A first unbiased global determination of polarized PDFs and their uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Nocera, Emanuele R. [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ball, Richard D. [Higgs Centre, University of Edinburgh, JCMB, KB, Mayfield Rd, Edinburgh EH9 3JZ, Scotland (United Kingdom); Forte, Stefano [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Genova (Italy); Rojo, Juan [PH Department, TH Unit, CERN, CH-1211 Geneva 23 (Switzerland); Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, University of Oxford, OX1 3NP Oxford (United Kingdom)

    2014-10-15

    We present a first global determination of spin-dependent parton distribution functions (PDFs) and their uncertainties using the NNPDF methodology: NNPDFpol1.1. Longitudinally polarized deep-inelastic scattering data, already used for the previous NNPDFpol1.0 PDF set, are supplemented with the most recent polarized hadron collider data for inclusive jet and W boson production from the STAR and PHENIX experiments at RHIC, and with open-charm production data from the COMPASS experiment, thereby allowing for a separate determination of the polarized quark and antiquark PDFs, and an improved determination of the medium- and large-x polarized gluon PDF. We study the phenomenological implications of the NNPDFpol1.1 set, and we provide predictions for the longitudinal double-spin asymmetry for semi-inclusive pion production at RHIC.

  9. A first unbiased global determination of polarized PDFs and their uncertainties

    CERN Document Server

    Nocera, Emanuele R.; Forte, Stefano; Ridolfi, Giovanni; Rojo, Juan

    2014-01-01

    We present a first global determination of spin-dependent parton distribution functions (PDFs) and their uncertainties using the NNPDF methodology: NNPDFpol1.1. Longitudinally polarized deep-inelastic scattering data, already used for the previous NNPDFpol1.0 PDF set, are supplemented with the most recent polarized hadron collider data for inclusive jet and $W$ boson production from the STAR and PHENIX experiments at RHIC, and with open-charm production data from the COMPASS experiment, thereby allowing for a separate determination of the polarized quark and anti-quark PDFs, and an improved determination of the medium- and large-$x$ polarized gluon PDF. We study the phenomenological implications of the NNPDFpol1.1 set, and we provide predictions for the longitudinal double-spin asymmetry for semi-inclusive pion production at RHIC.

  10. Method of generating intense nuclear polarized beams by selective photodetachment of negative ions

    International Nuclear Information System (INIS)

    Hershcovitch, A.

    1986-01-01

    A novel method for production of nuclear polarized negative hydrogen ions by selective neutralization with a laser of negative hydrogen ions in a magnetic field is described. This selectivity is possible since a final state of the neutralized atom, and hence the neutralization energy, depends on its nuclear polarization. The main advantages of this scheme are the availability of multi-ampere negative ion sources and the possibility of neutralizing negative ions with very high efficiency. An assessment of the required laser power indicates that this method is in principle feasible with today's technology

  11. Transverse polarization of lambda(anti) hyperons from quasireal photoproduction on nuclei at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Hayrapetyan, Avetik; Brodski, Irina; Etzelmueller, Erik; Dueren, Michael; Zagrebalny, Vitaly [II. Physikalisches Inst., JLU Giessen (Germany)

    2015-07-01

    The transverse polarization of Λ(anti Λ) hyperons was measured in inclusive quasireal photoproduction for various target nuclei ranging from hydrogen to xenon. These data were taken at the HERMES Experiment at HERA/DESY using the 27.6 GeV lepton beam. They are compared to results from previous measurements of the HERMES experiment on hydrogen (H) and deuteron (D) targets. In comparison with earlier measurement a new improved track-fitting algorithm has been used leading to better vertex and momentum resolution. The HERMES data complement extensive transverse polarization studies of hyperons, using hadron beams.

  12. Setup and proof of principle of SAPIS (Stored Atoms Polarized Ion Source), a novel source of polarized H-/D- ions

    International Nuclear Information System (INIS)

    Emmerich, R.

    2007-01-01

    The objective of this work was the setup and the proof-of-principle of a new type of negative polarized hydrogen or deuterium ion source, which is based on the charge-exchange reaction vectorH 0 +Cs 0 →vectorH - +Cs + , as for instance the Colliding-Beams-Source (CBS) at the Cooler Synchrotron COSY in Juelich. In contrast to the CBS, the use of a storage cell for the charge-exchange region promises an increase in H - current by at least an order of magnitude without considerable polarization losses. For these purposes, a new laboratory was equipped and both a polarized hydrogen/deuterium atomic beam source and an intense neutral cesium-beam source have been build-on. A Lambshift polarimeter, which allows the measurement of the nuclear polarization of the atomic as well as ionic beams, was completed with the construction of a new spin-filter. After commissioning and optimizing each of these sources, a storage cell was developed and installed in the charge-exchange region with a magnetic field. Additionally, components for the extraction, detection and analysis of the negative ion beam were installed. Following the decisive proof of principle, investigation of the properties of the storage cell, especially as to H recombination and depolarisation, was begun. Furthermore, a number of software programs was developed for the control and monitoring of different components of the sources as well as a universal measuring software for the complete installation, including the measurement and calculation of the beam polarization. At the same time, the remote control system of the Cologne source of polarized ions LASCO at the FN tandem accelerator was completely modernized. (orig.)

  13. Carbon deposition and hydrogen retention in tokamak

    International Nuclear Information System (INIS)

    Tanabe, Tetsuo

    2006-01-01

    The results of measurements on co-deposition of hydrogen isotopes and wall materials, hydrogen retention, redeposition of carbon and deposition of hydrogen on PMI of JT-60U are described. From above results, selection of plasma facing material and ability of carbon wall is discussed. Selection of plasma facing materials in fusion reactor, characteristics of carbon materials as the plasma facing materials, erosion, transport and deposition of carbon impurity, deposition of tritium in JET, results of PMI in JT-60, application of carbon materials to PFM of ITER, and future problems are stated. Tritium co-deposition in ITER, erosion and transport of carbon in tokamak, distribution of tritium deposition on graphite tile used as bumper limiter of TFTR, and measurement results of deposition of tritium on the Mark-IIA divertor tile and comparison between them are described. (S.Y.)

  14. The GRB-SLSN connection: misaligned magnetars, weak jet emergence, and observational signatures

    Science.gov (United States)

    Margalit, Ben; Metzger, Brian D.; Thompson, Todd A.; Nicholl, Matt; Sukhbold, Tuguldur

    2018-04-01

    Multiple lines of evidence support a connection between hydrogen-poor superluminous supernovae (SLSNe) and long-duration gamma-ray bursts (GRBs). Both classes of events require a powerful central energy source, usually attributed to a millisecond magnetar or an accreting black hole. The GRB-SLSN link raises several theoretical questions: What distinguishes the engines responsible for these different phenomena? Can a single engine power both a GRB and a luminous SN in the same event? We propose a unifying model for magnetar thermalization and jet formation: misalignment between the rotation (Ω) and magnetic dipole (μ) axes dissipates a fraction of the spin-down power by reconnection in the striped equatorial wind, providing a guaranteed source of `thermal' emission to power the supernova. The remaining unthermalized power energizes a relativistic jet. We show that even weak relativistic jets of luminosity ˜1046 erg s-1 can escape the expanding SN ejecta implying that escaping relativistic jets may accompany many SLSNe. We calculate the observational signature of these jets. We show that they may produce transient ultraviolet (UV) cocoon emission lasting a few hours when the jet breaks out of the ejecta surface. A longer lived optical/UV signal may originate from a mildly relativistic wind driven from the interface between the jet and the ejecta walls, which could explain the secondary early-time maximum observed in some SLSNe light curves, such as LSQ14bdq. Our scenario predicts a population of GRB from on-axis jets with extremely long durations, potentially similar to the population of `jetted-tidal disruption events', in coincidence with a small subset of SLSNe.

  15. Electrode polarization studies in hot corrosion systems. Progress report, 1 July 1978--31 May 1979

    Energy Technology Data Exchange (ETDEWEB)

    Devereux, O.F.

    1979-02-01

    Work is reported on thermodynamic analysis of gasifier models, equilibrium calculations performed on two and thre phase equilibrium involving components of coal gas, sodium salts, and carbon. Electrode polarization studies in molten sodium carbonate and polarization tests were performed on iron, steel, nickel, and on 304 and 316 stainless steel in molten sodium carbonate under a variety of exploratory environments. Gas/metal reactions studies, initial evaluation studies iron in hydrogen-hydrogen sulfide mixtures, pertaining to a new gravimetric facility are presented. Evaluation was made of reaction kinetics from polarization. A visual regression procedure utilizing interactive computer graphics is described for the fitting of multiparameter, nonlinear equations to experimental curves.

  16. The Geissen polarization facility. I

    International Nuclear Information System (INIS)

    Arnold, W.; Berg, H.; Krause, H.H.; Ulbricht, J.; Clausnitzer, G.

    1977-01-01

    A source for the production of polarized negative hydrogen or deuterium ions following the Lambshift method is described. A duoplasmatron with expansion cup and extended ion optics is used. The polarization is generated by a diabetic zero field passage of the metastable atoms. For precision experiments the polarization can be switched 'on' and 'off' with a frequency of 1 kHz by a disturbance with a transverse magnetic field. The quantization axis can be rotated with a Wien filter. All source components are installed in a compact vacuum chamber, which allows high effective pumping speeds. The overal length of the source including the Wien filter is 1.7m. With a 10mm diameter cesium canal typical H - currents of 0.6-0.75 μA (P=0.7-0.75) and maximum currents of 0.9μA are obtained. (Auth.)

  17. Exploring Jets from a Supermassive Black Hole

    Science.gov (United States)

    Kohler, Susanna

    2018-06-01

    What are the feeding and burping habits of the supermassive black holes peppering the universe? In a new study, observations of one such monster reveal more about the behavior of its powerful jets.Beams from BehemothsAcross the universe, supermassive black holes of millions to billions of solar masses lie at the centers of galaxies, gobbling up surrounding material. But not all of the gas and dust that spirals in toward a black hole is ultimately swallowed! A large fraction of it can instead be flung out into space again, in the form of enormous, powerful jets that extend for thousands or even millions of light-years in opposite directions.M87, shown in this Hubble image, is a classic example of a nearby (55 million light-years distant) supermassive black hole with a visible, collimated jet. Its counter-jet isnt seen because relativistic effects make the receding jet appear less bright. [The Hubble Heritage Team (STScI/AURA) and NASA/ESA]What causes these outflows to be tightly beamed collimated in the form of jets, rather than sprayed out in all directions? Does the pressure of the ambient medium the surrounding gas and dust that the jet is injected into play an important role? In what regions do these jets accelerate and decelerate? There are many open questions that scientists hope to understand by studying some of the active black holes with jets that live closest to us.Eyes on a Nearby GiantIn a new study led by Satomi Nakahara (The Graduate University for Advanced Studies in Japan), a team of scientists has used multifrequency Very Long Baseline Array (VLBA) and Very Long Array (VLA) images to explore jets emitted from a galaxy just 100 million light-years away: NGC 4261.This galaxys (relatively) close distance as well as the fact that were viewing it largely from the side, so we can clearly see both of its polar jets allows us to observe in detail the structure and intensity of its jets as a function of their distance from the black hole. Nakahara and

  18. Vorticity generation and jetting caused by a laser-induced optical breakdown

    Science.gov (United States)

    Wang, Jonathan; Buchta, David; Freund, Jonathan

    2017-11-01

    A focused laser can cause optical breakdown of a gas that absorbs energy and can seed ignition. The local hydrodynamics are complex. The breakdown is observed to produce vorticity that subsequently collects into a jetting flow towards the laser source. The strength and the very direction of the jet is observed to be sensitive to the plasma kernel geometry. We use detailed numerical simulations to examine the short-time (inverse Bremsstrahlung, and 11 charged and neutral species for air. We quantify the early-time contributions of different thermodynamic and gas-dynamic effects to the baroclinic torque. It is found that the breakdown produces compression waves within the plasma kernel, and that the mismatch in their strengths precipitates the involution of the plasma remnants and yields the net vorticity that ultimately develops into the jet. We also quantify the temperature distribution and local strain rates and demonstrate their importance in seeding ignition in non-homogeneous hydrogen/air mixtures.

  19. Parametric study on density stratification erosion caused by a horizontal steam jet interacting with a vertical plate obstruction

    Energy Technology Data Exchange (ETDEWEB)

    Paranjape, S., E-mail: Sidharth.paranjape@psi.ch; Kapulla, R., E-mail: ralf.kapulla@psi.ch; Mignot, G., E-mail: guillaume.mignot@psi.ch; Paladino, D., E-mail: domenico.paladino@psi.ch

    2017-02-15

    Highlights: • Helium layer breakup by horizontal steam jet impinging on vertical plate. • A small change in geometric configuration lead to a large change in flow pattern. • The functional dependence of erosion front motion on time. • Creation of a concentration stratification in adjacent vessel. - Abstract: During postulated severe accident scenarios in nuclear power plants, a hydrogen-rich layer might form at the top of the reactor containment. Various flow patterns resulting from the release of steam from the primary circuit might break the layer and redistribute hydrogen in the containment. The prediction of the gas transport during the accident requires detailed modeling of the processes involved. Advanced lumped parameter codes or computational fluid dynamics codes are used for this purpose. These codes need to be validated against experimental data obtained in large scale experimental facilities, where scale distortions are reduced. In order to obtain the required data with high spatial and temporal resolution, experiments were carried out in the PANDA facility in Switzerland as a part of OECD/HYMERES (HYdrogen Mitigation Experiments for Reactor Safety) project. The present experiments address the breakup of a layer rich in helium (used as simulant for hydrogen), under steam environment and its redistribution in two interconnected vessels (total volume of 183.3 m{sup 3}) under the action of a diffused flow resulting from the interaction of a horizontal steam jet with a vertical plate obstruction. The influence of the distance between the jet exit and the obstruction on the flow pattern was investigated. Spatial and temporal distribution of the gas concentration, the temperature and local gas velocity field were measured. It was found that a small change in the geometric configuration lead to a large change in the flow pattern. Reducing the jet-obstruction distance slowed down the helium-layer erosion process by a factor of two. Additionally, the

  20. DeepJet: a deep-learned multiclass jet-tagger for slim and fat jets

    CERN Multimedia

    CERN. Geneva; Qu, Huilin; Stoye, Markus; Kieseler, Jan; Verzetti, Mauro

    2018-01-01

    We present a customized neural network architecture for both, slim and fat jet tagging. It is based on the idea to keep the concept of physics objects, like particle flow particles, as a core element of the network architecture. The deep learning algorithm works for most of the common jet classes, i.e. b, c, usd and gluon jets for slim jets and W, Z, H, QCD and top classes for fat jets. The developed architecture promising gains in performance as shown in simulation of the CMS collaboration. Currently the tagger is under test in real data in the CMS experiment.

  1. HOMOLOGOUS HELICAL JETS: OBSERVATIONS BY IRIS, SDO, AND HINODE AND MAGNETIC MODELING WITH DATA-DRIVEN SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Mark C. M.; Pontieu, B. De; Tarbell, T. D.; Fu, Y.; Martínez-Sykora, J.; Boerner, P.; Wülser, J. P.; Lemen, J.; Title, A. M.; Hurlburt, N. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street Bldg. 252, Palo Alto, CA 94304 (United States); Tian, H.; Testa, P.; Reeves, K. K.; Golub, L.; McKillop, S.; Saar, S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kleint, L. [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstr. 6, 5210 Windisch (Switzerland); Kankelborg, C.; Jaeggli, S. [Department of Physics, Montana State University, Bozeman, P.O. Box 173840, Bozeman, MT 59717 (United States); Carlsson, M., E-mail: cheung@lmsal.com [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); and others

    2015-03-10

    We report on observations of recurrent jets by instruments on board the Interface Region Imaging Spectrograph, Solar Dynamics Observatory (SDO), and Hinode spacecraft. Over a 4 hr period on 2013 July 21, recurrent coronal jets were observed to emanate from NOAA Active Region 11793. Far-ultraviolet spectra probing plasma at transition region temperatures show evidence of oppositely directed flows with components reaching Doppler velocities of ±100 km s{sup −1}. Raster Doppler maps using a Si iv transition region line show all four jets to have helical motion of the same sense. Simultaneous observations of the region by SDO and Hinode show that the jets emanate from a source region comprising a pore embedded in the interior of a supergranule. The parasitic pore has opposite polarity flux compared to the surrounding network field. This leads to a spine-fan magnetic topology in the coronal field that is amenable to jet formation. Time-dependent data-driven simulations are used to investigate the underlying drivers for the jets. These numerical experiments show that the emergence of current-carrying magnetic field in the vicinity of the pore supplies the magnetic twist needed for recurrent helical jet formation.

  2. Studying AGN Jets At Extreme Angular Resolution

    Science.gov (United States)

    Bruni, Gabriele

    2016-10-01

    RadioAstron is a 10m antenna orbiting on the Russian Speckt-R spacecraft, launched in 2011. Performing radio interferometry with a global array of ground telescopes, it is providing record angular resolution. The Key Science Project on AGN polarization is exploiting it to study in great detail the configuration of magnetic fields in AGN jets, and understand their formation and collimation. To date, the project has already achieved the highest angular resolution image ever obtained in Astronomy, and detected brightness temperatures exceeding the ones predicted by theory of AGN.

  3. Experimental investigation of the formation and propagation of plasma jets created by a power laser: application to laboratory astrophysics

    International Nuclear Information System (INIS)

    Loupias, B.

    2008-10-01

    Plasma jets are often observed in the polar regions of Young Stellar Objects (YSO). For a better understanding of the whole processes at the origin of their formation and evolution, this research thesis aims at demonstrating the feasibility of a plasma jet generation by a power laser, and at investigating its characteristics. After a detailed description of Young Stellar Objects jets and an overview of theoretical models, the author describes some experiments performed with gas guns, pulsed machines and power lasers. He describes means of generation of a jet by laser interaction via strong shock propagation. He reports experimental work, describing the target, laser operating conditions and the determination of jet parameters: speed, temperature, density. Then, he introduces results obtained for plasma jet propagation in vacuum, describes their evolution with respect to initial conditions (target type, laser operating conditions), and identifies optimal conditions for generating a jet similar to that in astrophysical conditions. He considers their propagation in ambient medium like for YSO jets in interstellar medium. Two distinct cases are investigated: collision of two successive shocks in a gaseous medium, and propagation of a plasma jet in a gas jet

  4. Polarized Photocathode R&D for Future Linear Collliders

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F; Brachmann, A.; Maruyama, T.; Sheppard, J.C.; /SLAC

    2009-01-23

    It is a challenge to generate full charge electrons from the electron sources without compromising polarization for the proposed ILC and CLIC. It is essential to advance polarized photocathodes to meet the requirements. SLAC has worldwide unique dedicated test facilities, Cathode Test System and dc-Gun Test Laboratory, to fully characterize polarized photocathodes. Recent systematic measurements on a strained-well InAlGaAs/AlGaAs cathode at the facilities show that 87% polarization and 0.3% QE are achieved. The QE can be increased to {approx}1.0% with atomic hydrogen cleaning. The surface charge limit at a very low current intensity and the clear dependence of the polarization on the surface charge limit are observed for the first time. On-going programs to develop photocathodes for the ILC and CLIC are briefly introduced.

  5. Electron's anomalous magnetic-moment effects on electron-hydrogen elastic collisions in the presence of a circularly polarized laser field

    International Nuclear Information System (INIS)

    Elhandi, S.; Taj, S.; Attaourti, Y.; Manaut, B.; Oufni, L.

    2010-01-01

    The effect of the electron's anomalous magnetic moment on the relativistic electronic dressing for the process of electron-hydrogen atom elastic collisions is investigated. We consider a laser field with circular polarization and various electric field strengths. The Dirac-Volkov states taking into account this anomaly are used to describe the process in the first order of perturbation theory. The correlation between the terms coming from this anomaly and the electric field strength gives rise to the strong dependence of the spinor part of the differential cross section (DCS) with respect to these terms. A detailed study has been devoted to the nonrelativistic regime as well as the moderate relativistic regime. Some aspects of this dependence as well as the dynamical behavior of the DCS in the relativistic regime have been addressed.

  6. Final state polarization effectsin e-e+ → γ, Z → q anti qg

    International Nuclear Information System (INIS)

    Koller, K.; Schiller, D.H.; Waehner, D.

    1980-10-01

    We discuss the polarization of the quark and/or antiquark in e - e + → γ, Z → q anti qg, and of the hadrons (baryons or vector mesons) belonging to the most energetic jet initiated either by the quark or the antiquark. (orig.)

  7. Quark and gluon jet properties in symmetric three-jet events

    Science.gov (United States)

    Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    Quark and gluon jets with the same energy, 24 GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on a track impact parameter method. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity, Evidence is presented which shows that the corresponding differences between gluon and b jets are significantly smaller. In a statistically limited comparison the multiplicity in c jets was found to be comparable with that observed for the jets of mixed quark flavour.

  8. Jet production in hardronic collisions

    International Nuclear Information System (INIS)

    Di Lella, L.

    1985-01-01

    An experiment was performed at the CERN Super Proton Synchrotron (SPS) using a calorimeter with full azimuthal coverage and subtending the interval of polar angles 45 0 0 in the center-of-mass frame. This experiment selected hadronic collisions depositing large amounts of energy in the calorimeter, and found that these final states consisted mostly of many low-rho/sub T/ particles distributed symmetrically in azimuth, in disagreement with the structure expected for high-rho/sub T/jets. The same conclusions were reached by a similar experiment. These negative results were in sharp contrast with the case of e/sup +/e/sup -/ annihilation into hadrons. The azimuthally symmetric structure of these events was interpreted either as the effect of multiple gluon bremsstrahlung from the initial-state partons; or as the effect of the tails of the multiplicity distributions in ordinary soft collisions. This pessimistic view has been contradicted by the dramatic emergence of unambiguous jets at the CERN pp-bar Collider. The purpose of this article is to review the main experimental results obtained recently on this subject, and to discuss their interpretation in the theoretical framework of QCD

  9. Vacuum ultraviolet spectropolarimeter design for precise polarization measurements.

    Science.gov (United States)

    Narukage, Noriyuki; Auchère, Frédéric; Ishikawa, Ryohko; Kano, Ryouhei; Tsuneta, Saku; Winebarger, Amy R; Kobayashi, Ken

    2015-03-10

    Precise polarization measurements in the vacuum ultraviolet (VUV) region provide a new means for inferring weak magnetic fields in the upper atmosphere of the Sun and stars. We propose a VUV spectropolarimeter design ideally suited for this purpose. This design is proposed and adopted for the NASA-JAXA chromospheric lyman-alpha spectropolarimeter (CLASP), which will record the linear polarization (Stokes Q and U) of the hydrogen Lyman-α line (121.567 nm) profile. The expected degree of polarization is on the order of 0.1%. Our spectropolarimeter has two optically symmetric channels to simultaneously measure orthogonal linear polarization states with a single concave diffraction grating that serves both as the spectral dispersion element and beam splitter. This design has a minimal number of reflective components with a high VUV throughput. Consequently, these design features allow us to minimize the polarization errors caused by possible time variation of the VUV flux during the polarization modulation and by statistical photon noise.

  10. Polarization of fast neutrons in VVR-M reactor

    International Nuclear Information System (INIS)

    Garusov, E.A.; Lifshits, E.P.; Petrov, Yu.V.

    1987-01-01

    Neutron polarization in the reactor leads to circular polarization of γ quanta emitted both in radiational capture of neutrons and in the transition of nuclei excited as a result of inelastic scattering to the ground state. This may be used to determine the polarization of reactor neutrons. The circular polarization of γ quanta at light-water and graphite targets at the center of the active zone of the VVR-M reactor at the B.P. Konstantinov Leningrad Institute of Nuclear Physics was recently measured. A simplified experimental scheme is shown. Fast neutrons leaving the active zone of the reactor were excited in the inelastic scattering at the target nuclei. The polarization of the γ quanta emitted by nuclei in transitions to the ground state was measured by a polarimeter positioned above the active zone. The reason for the circular polarization of γ quanta may also be nonconservation of P parity on account of weak interaction in the capture of a neutron by hydrogen

  11. Development of a cluster-jet target for PANDA

    International Nuclear Information System (INIS)

    Gruber, A.; Marton, J.; Widmann, E.; Zmeskal, J.; PANDA Cluster Jet Target Group

    2006-01-01

    Full text: The Stefan Meyer Institute (SMI) is part of the international PANDA collaboration. The universal detector will be constructed for the future high-energy antiproton storage ring HESR at FAIR (Facility for Antiproton and Ion Research, GSI/Darmstadt). PANDA will use antiproton beams (1.5 to 15 GeV/c) for hadron physics in the charmonium region. The physics program of PANDA will comprehend charmonium spectroscopy below and above open charm threshold, search for exotics (glueballs, hybrids), lambda and double-lambda hypernuclei studies and the investigation of in-medium modifications of charmed mesons - an experimentally unexplored field. SMI contributes to major parts of the PANDA detector like the hydrogen cluster-jet target and the antiproton - cluster jet interaction zone: in order to reach the desired target density, an optimization of the nozzle and the skimmer arrangement is essential. A density-profile monitor for the cluster-jet was designed and built at SMI. Several nozzle types have been studied using different gases, temperatures and inlet pressures. To ensure low background the residual gas load in the interaction zone has to be minimized. The installation of NEG (non-evaporative-getter) coated beam pipes is planned. A prototype of the interaction zone has been set up at SMI. The pumping capacity of NEG and the reactivation cycles were tested. The status of the development of the cluster-jet target and studies of the interaction region will be presented (author)

  12. Jet substructure using semi-inclusive jet functions in SCET

    International Nuclear Information System (INIS)

    Kang, Zhong-Bo; Ringer, Felix; Vitev, Ivan

    2016-01-01

    We propose a new method to evaluate jet substructure observables in inclusive jet measurements, based upon semi-inclusive jet functions in the framework of Soft Collinear Effective Theory (SCET). As a first example, we consider the jet fragmentation function, where a hadron h is identified inside a fully reconstructed jet. We introduce a new semi-inclusive fragmenting jet function G_i"h(z=ω_J/ω,z_h=ω_h/ω_J,ω_J,R,μ), which depends on the jet radius R and the large light-cone momenta of the parton ‘i’ initiating the jet (ω), the jet (ω_J), and the hadron h (ω_h). The jet fragmentation function can then be expressed as a semi-inclusive observable, in the spirit of actual experimental measurements, rather than as an exclusive one. We demonstrate the consistency of the effective field theory treatment and standard perturbative QCD calculations of this observable at next-to-leading order (NLO). The renormalization group (RG) equation for the semi-inclusive fragmenting jet function G_i"h(z,z_h,ω_J,R,μ) are also derived and shown to follow exactly the usual timelike DGLAP evolution equations for fragmentation functions. The newly obtained RG equations can be used to perform the resummation of single logarithms of the jet radius parameter R up to next-to-leading logarithmic (NLL_R) accuracy. In combination with the fixed NLO calculation, we obtain NLO+NLL_R results for the hadron distribution inside the jet. We present numerical results for pp→(jet h)X in the new framework, and find excellent agreement with existing LHC experimental data.

  13. Surface Magnetism of Cobalt Nanoislands Controlled by Atomic Hydrogen.

    Science.gov (United States)

    Park, Jewook; Park, Changwon; Yoon, Mina; Li, An-Ping

    2017-01-11

    Controlling the spin states of the surface and interface is key to spintronic applications of magnetic materials. Here, we report the evolution of surface magnetism of Co nanoislands on Cu(111) upon hydrogen adsorption and desorption with the hope of realizing reversible control of spin-dependent tunneling. Spin-polarized scanning tunneling microscopy reveals three types of hydrogen-induced surface superstructures, 1H-(2 × 2), 2H-(2 × 2), and 6H-(3 × 3), with increasing H coverage. The prominent magnetic surface states of Co, while being preserved at low H coverage, become suppressed as the H coverage level increases, which can then be recovered by H desorption. First-principles calculations reveal the origin of the observed magnetic surface states by capturing the asymmetry between the spin-polarized surface states and identify the role of hydrogen in controlling the magnetic states. Our study offers new insights into the chemical control of magnetism in low-dimensional systems.

  14. PARSEC-SCALE FARADAY ROTATION MEASURES FROM GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS

    International Nuclear Information System (INIS)

    Broderick, Avery E.; McKinney, Jonathan C.

    2010-01-01

    It is now possible to compare global three-dimensional general relativistic magnetohydrodynamic (GRMHD) jet formation simulations directly to multi-wavelength polarized VLBI observations of the pc-scale structure of active galactic nucleus (AGN) jets. Unlike the jet emission, which requires post hoc modeling of the nonthermal electrons, the Faraday rotation measures (RMs) depend primarily upon simulated quantities and thus provide a direct way to confront simulations with observations. We compute RM distributions of a three-dimensional global GRMHD jet formation simulation, extrapolated in a self-consistent manner to ∼10 pc scales, and explore the dependence upon model and observational parameters, emphasizing the signatures of structures generic to the theory of MHD jets. With typical parameters, we find that it is possible to reproduce the observed magnitudes and many of the structures found in AGN jet RMs, including the presence of transverse RM gradients. In our simulations, the RMs are generated in the circum-jet material, hydrodynamically a smooth extension of the jet itself, containing ordered toroidally dominated magnetic fields. This results in a particular bilateral morphology that is unlikely to arise due to Faraday rotation in distant foreground clouds. However, critical to efforts to probe the Faraday screen will be resolving the transverse jet structure. Therefore, the RMs of radio cores may not be reliable indicators of the properties of the rotating medium. Finally, we are able to constrain the particle content of the jet, finding that at pc scales AGN jets are electromagnetically dominated, with roughly 2% of the comoving energy in nonthermal leptons and much less in baryons.

  15. PARSEC-SCALE FARADAY ROTATION MEASURES FROM GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E [Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON M5S 3H8 (Canada); McKinney, Jonathan C., E-mail: aeb@cita.utoronto.c, E-mail: jmckinne@stanford.ed [Department of Physics and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305-4060 (United States)

    2010-12-10

    It is now possible to compare global three-dimensional general relativistic magnetohydrodynamic (GRMHD) jet formation simulations directly to multi-wavelength polarized VLBI observations of the pc-scale structure of active galactic nucleus (AGN) jets. Unlike the jet emission, which requires post hoc modeling of the nonthermal electrons, the Faraday rotation measures (RMs) depend primarily upon simulated quantities and thus provide a direct way to confront simulations with observations. We compute RM distributions of a three-dimensional global GRMHD jet formation simulation, extrapolated in a self-consistent manner to {approx}10 pc scales, and explore the dependence upon model and observational parameters, emphasizing the signatures of structures generic to the theory of MHD jets. With typical parameters, we find that it is possible to reproduce the observed magnitudes and many of the structures found in AGN jet RMs, including the presence of transverse RM gradients. In our simulations, the RMs are generated in the circum-jet material, hydrodynamically a smooth extension of the jet itself, containing ordered toroidally dominated magnetic fields. This results in a particular bilateral morphology that is unlikely to arise due to Faraday rotation in distant foreground clouds. However, critical to efforts to probe the Faraday screen will be resolving the transverse jet structure. Therefore, the RMs of radio cores may not be reliable indicators of the properties of the rotating medium. Finally, we are able to constrain the particle content of the jet, finding that at pc scales AGN jets are electromagnetically dominated, with roughly 2% of the comoving energy in nonthermal leptons and much less in baryons.

  16. Measurement of W Boson Polarization in Top Quark Decay

    Energy Technology Data Exchange (ETDEWEB)

    Vickey, Trevor Neil [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2004-01-01

    A measurement of the polarization of the W boson from top quark decay is an excellent test of the V-A form of the charged-current weak interaction in the standard model. Since the longitudinal W boson is intimately related to the electroweak symmetry breaking mechanism, and the standard model gives a specific prediction for the fraction of longitudinal W bosons from top decays, it is of particular interest for study. This thesis presents a measurement of W boson polarization in top quark decays through an analysis of the cosθ* distribution in the lepton-plus-jets channel of t$\\bar{t}$ candidate events from p$\\bar{p}$ collisions at √s = 1.96 TeV. This measurement uses an integrated luminosity of ~ 162 pb-1 of data collected with the CDF Run II detector, resulting in 31 t$\\bar{t}$ candidate events with at least one identified b jet. Using a binned likelihood fit to the cosθ* distribution from the t$\\bar{t}$ candidate events found in this sample, the fraction of W bosons with longitudinal polarization is determined to be F0 = 0.99$+0.29\\atop{-0.35}$stat.) ± 0.19(syst.), F0 > 0.33 @ 95% CL. This result is consistent with the standard model prediction, given a top quark mass of 174.3 GeV/c2, of F0 = 0.701 ± 0.012.

  17. Jets from jets: re-clustering as a tool for large radius jet reconstruction and grooming at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Nachman, Benjamin; Nef, Pascal; Schwartzman, Ariel; Swiatlowski, Maximilian [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Wanotayaroj, Chaowaroj [Center for High Energy Physics, University of Oregon,1371 E. 13th Ave, Eugene, OR 97403 (United States)

    2015-02-12

    Jets with a large radius R≳1 and grooming algorithms are widely used to fully capture the decay products of boosted heavy particles at the Large Hadron Collider (LHC). Unlike most discriminating variables used in such studies, the jet radius is usually not optimized for specific physics scenarios. This is because every jet configuration must be calibrated, insitu, to account for detector response and other experimental effects. One solution to enhance the availability of large-R jet configurations used by the LHC experiments is jet re-clustering. Jet re-clustering introduces an intermediate scale rjets are calibrated and used as the inputs to reconstruct large radius jets. In this paper we systematically study and propose new jet re-clustering configurations and show that re-clustered large radius jets have essentially the same jet mass performance as large radius groomed jets. Jet re-clustering has the benefit that no additional large-R calibration is necessary, allowing the re-clustered large radius parameter to be optimized in the context of specific precision measurements or searches for new physics.

  18. Jets from jets: re-clustering as a tool for large radius jet reconstruction and grooming at the LHC

    International Nuclear Information System (INIS)

    Nachman, Benjamin; Nef, Pascal; Schwartzman, Ariel; Swiatlowski, Maximilian; Wanotayaroj, Chaowaroj

    2015-01-01

    Jets with a large radius R≳1 and grooming algorithms are widely used to fully capture the decay products of boosted heavy particles at the Large Hadron Collider (LHC). Unlike most discriminating variables used in such studies, the jet radius is usually not optimized for specific physics scenarios. This is because every jet configuration must be calibrated, insitu, to account for detector response and other experimental effects. One solution to enhance the availability of large-R jet configurations used by the LHC experiments is jet re-clustering. Jet re-clustering introduces an intermediate scale rjets are calibrated and used as the inputs to reconstruct large radius jets. In this paper we systematically study and propose new jet re-clustering configurations and show that re-clustered large radius jets have essentially the same jet mass performance as large radius groomed jets. Jet re-clustering has the benefit that no additional large-R calibration is necessary, allowing the re-clustered large radius parameter to be optimized in the context of specific precision measurements or searches for new physics.

  19. The probability of heterogeneous recombination of hydrogen atoms in low-temperature hydrogen plasma

    International Nuclear Information System (INIS)

    Islyaikin, A.; Rybkin, V.; Svetsov, V.

    2000-01-01

    In the group of the optical methods, the investigations of the process of recombination of the hydrogen atoms were studied mainly by the jet procedure, based on the measurement of the dependence of the intensity of radiation of the discharge on the speed of flow of particles which makes it possible to obtain information on the processes of annihilation of active particles on the surface of the discharge device both in the zone of plasma at outside to the zone (in the post glow region). However, to realise this method, it is necessary to use higher linear speed of the flow of the particles and this creates additional technical difficulties. A similar disadvantage is not found in the calculation methods of technical application with special reference to the examination of the processes of heterogeneous recombination of the atoms in the low-temperature hydrogen plasma is the main task of this work

  20. Influence of electrolyte nature on steel membrane hydrogen permeability

    International Nuclear Information System (INIS)

    Lisovskij, A.P.; Nazarov, A.P.; Mikhajlovskij, Yu.N.

    1993-01-01

    Effect of electrolyte nature on hydrogen absorption of carbonic steel membrane at its cathode polarization is studied. Electrolyte buffering by anions of subdissociated acids is shown to increase hydrogen flow though the membrane in acid electrolytes. Mechanisms covering dissociation of proton-bearing anion in the electrolyte near-the-electron layer or dissociative adsorption on steel surface are suggested. Effect of proton-bearing bases forming stable complex compounds with iron, is studied. Activation of anode process of iron solution is shown to increase the rate of hydrogen penetration

  1. Techniques for tritium recovery from carbon flakes and dust at the JET active gas handling system

    International Nuclear Information System (INIS)

    Gruenhagen, S.; Perevezentsev, A.; Brennan, P. D.; Camp, P.; Knipe, S.; Miller, A.; Yorkshades, J.

    2008-01-01

    Detritiation of highly tritium contaminated carbon and metal material used as first wall armour is a key issue for fusion machines like JET and ITER. Re-deposited carbon and hydrogen in the form of flakes and dust can lead to a build-up of the tritium inventory and therefore this material must be removed and processed. The high tritium concentration of the flake and dust material collected from the JET vacuum vessel makes it unsuitable for direct waste disposal without detritiation. A dedicated facility to process the tritiated carbon flake material and recover the tritium has been designed and built. In several test runs active material was successfully processed and de-tritiated in the new facility. Samples containing only carbon and hydrogen isotopes have been completely oxidized without any residue. Samples containing metallic impurities, e.g. beryllium, require longer processing times, adjusted processing parameters and yield an oxide residue. The detritiation factor was 2x10 4 . In order to simulate in-vessel and ex-vessel detritiation techniques, the detritiation of a carbon flake sample by isotopic exchange in a hydrogen atmosphere was investigated. 2.8% of tritium was recovered by this means. (authors)

  2. Experimental studies of collisional plasma shocks and plasma interpenetration via merging supersonic plasma jets

    Science.gov (United States)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.

    2015-11-01

    Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.

  3. Jet substructure using semi-inclusive jet functions in SCET

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhong-Bo [Theoretical Division, Los Alamos National Laboratory,Los Alamos, NM 87545 (United States); Department of Physics and Astronomy, University of California,Los Angeles, CA 90095 (United States); Ringer, Felix; Vitev, Ivan [Theoretical Division, Los Alamos National Laboratory,Los Alamos, NM 87545 (United States)

    2016-11-25

    We propose a new method to evaluate jet substructure observables in inclusive jet measurements, based upon semi-inclusive jet functions in the framework of Soft Collinear Effective Theory (SCET). As a first example, we consider the jet fragmentation function, where a hadron h is identified inside a fully reconstructed jet. We introduce a new semi-inclusive fragmenting jet function G{sub i}{sup h}(z=ω{sub J}/ω,z{sub h}=ω{sub h}/ω{sub J},ω{sub J},R,μ), which depends on the jet radius R and the large light-cone momenta of the parton ‘i’ initiating the jet (ω), the jet (ω{sub J}), and the hadron h (ω{sub h}). The jet fragmentation function can then be expressed as a semi-inclusive observable, in the spirit of actual experimental measurements, rather than as an exclusive one. We demonstrate the consistency of the effective field theory treatment and standard perturbative QCD calculations of this observable at next-to-leading order (NLO). The renormalization group (RG) equation for the semi-inclusive fragmenting jet function G{sub i}{sup h}(z,z{sub h},ω{sub J},R,μ) are also derived and shown to follow exactly the usual timelike DGLAP evolution equations for fragmentation functions. The newly obtained RG equations can be used to perform the resummation of single logarithms of the jet radius parameter R up to next-to-leading logarithmic (NLL{sub R}) accuracy. In combination with the fixed NLO calculation, we obtain NLO+NLL{sub R} results for the hadron distribution inside the jet. We present numerical results for pp→(jet h)X in the new framework, and find excellent agreement with existing LHC experimental data.

  4. Advanced Hydrogen Transport Membrane for Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph [Praxair, Inc., Tonawanda, NY (United States); Porter, Jason [Colorado School of Mines, Golden, CO (United States); Patki, Neil [Colorado School of Mines, Golden, CO (United States); Kelley, Madison [Colorado School of Mines, Golden, CO (United States); Stanislowski, Josh [Univ. of North Dakota, Grand Forks, ND (United States); Tolbert, Scott [Univ. of North Dakota, Grand Forks, ND (United States); Way, J. Douglas [Colorado School of Mines, Golden, CO (United States); Makuch, David [Praxair, Inc., Tonawanda, NY (United States)

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  5. Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging

    Science.gov (United States)

    Flores Orozco, Adrián; Kemna, Andreas; Oberdörster, Christoph; Zschornack, Ludwig; Leven, Carsten; Dietrich, Peter; Weiss, Holger

    2012-08-01

    Broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz (NE Germany) to investigate the potential of SIP imaging to delineate areas with different BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations. Conductivity images reveal a poor correlation with the distribution of contaminants; whereas phase images exhibit two main anomalies: low phase shift values (product (BTEX concentrations > 1.7 g/l), and higher phase values for lower BTEX concentrations. Moreover, the spectral response of the areas with high BTEX concentration and free-phase products reveals a flattened spectrum in the low frequencies (< 40 Hz), while areas with lower BTEX concentrations exhibit a response characterized by a frequency peak. The SIP response was modelled using a Debye decomposition to compute images of the median relaxation-time. Consistent with laboratory studies, we observed an increase in the relaxation-time associated with an increase in BTEX concentrations. Measurements were also collected in the time domain (TDIP), revealing imaging results consistent with those obtained for frequency domain (SIP) measurements. Results presented here demonstrate the potential of the SIP imaging method to discriminate source and plume of dissolved contaminants at BTEX contaminated sites.

  6. Resonance scattering formalism for the hydrogen lines in the presence of magnetic and electric fields

    International Nuclear Information System (INIS)

    Casini, Roberto

    2005-01-01

    We derive a formalism for the computation of resonance-scattering polarization of hydrogen lines in the presence of simultaneous magnetic and electric fields, within a framework of the quantum theory of polarized line formation in the limit of complete frequency redistribution and of collisionless regime. Quantum interferences between fine-structure levels are included in this formalism. In the presence of a magnetic field, these interferences affect, together with the magnetic Hanle effect, the polarization of the atomic levels. In the presence of an electric field, interferences between distinct orbital configurations are also induced, further affecting the polarization of the hydrogen levels. In turn, the electric field is expected to affect the polarization of the atomic levels (electric Hanle effect), in a way analogous to the magnetic Hanle effect. We find that the simultaneous action of electric and magnetic fields give rise to complicated patterns of polarization and depolarization regimes, for varying geometries and field strengths

  7. Analytic tests and their relation to jet fuel thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Heneghan, S.P.; Kauffman, R.E. [Univ. of Dayton Research Institute, OH (United States)

    1995-05-01

    The evaluation of jet fuel thermal stability (TS) by simple analytic procedures has long been a goal of fuels chemists. The reason is obvious: if the analytic chemist can determine which types of material cause his test to respond, the refiners will know which materials to remove to improve stability. Complicating this quest is the lack of an acceptable quantitative TS test with which to compare any analytic procedures. To circumvent this problem, we recently compiled the results of TS tests for 12 fuels using six separate test procedures. The results covering a range of flow and temperature conditions show that TS is not as dependent on test conditions as previously thought. Also, comparing the results from these tests with several analytic procedures shows that either a measure of the number of phenols or the total sulfur present in jet fuels is strongly indicative of the TS. The phenols have been measured using a cyclic voltammetry technique and the polar material by gas chromatography (atomic emission detection) following a solid phase extraction on silica gel. The polar material has been identified as mainly phenols (by mass spectrometry identification). Measures of the total acid number or peroxide concentration have little correlation with TS.

  8. Non-catalytic transfer hydrogenation in supercritical CO2 for coal liquefaction

    Science.gov (United States)

    Elhussien, Hussien

    This thesis presents the results of the investigation on developing and evaluating a low temperature (coal dissolution in supercritical CO2. The main idea behind the thesis was that one hydrogen atom from water and one hydrogen atom from the hydrogen transfer agent (HTA) were used to hydrogenate the coal. The products of coal dissolution were non-polar and polar while the supercritical CO2, which enhanced the rates of hydrogenation and dissolution of the non-polar molecules and removal from the reaction site, was non-polar. The polar modifier (PM) for CO2 was added to the freed to aid in the dissolution and removal of the polar components. The addition of a phase transfer agent (PTA) allowed a seamless transport of the ions and by-product between the aqueous and organic phases. DDAB, used as the PTA, is an effective phase transfer catalyst and showed enhancement to the coal dissolution process. COAL + DH- +H 2O → COAL.H2 + DHO-- This process has a great feature due to the fact that the chemicals were obtained without requir-ing to first convert coal to CO and H2 units as in indirect coal liquefaction. The experiments were conducted in a unique reactor set up that can be connected through two lines. one line to feed the reactor with supercritical CO 2 and the other connected to gas chromatograph. The use of the supercritical CO2 enhanced the solvent option due to the chemical extraction, in addition to the low environmental impact and energy cost. In this thesis the experiment were conducted at five different temperatures from atmos-pheric to 140°C, 3000 - 6000 psi with five component of feed mixture, namely water, HTA, PTA, coal, and PM in semi batch vessels reactor system with a volume of 100 mL. The results show that the chemicals were obtained without requiring to first convert coal to CO and H2 units as in indirect coal liquefaction. The results show that the conversion was found to be 91.8% at opti-mum feed mixtures values of 3, 1.0 and 5.4 for water: PM

  9. Analysis of flame shapes in turbulent hydrogen jet flames with coaxial air

    International Nuclear Information System (INIS)

    Moon, Hee Jang

    2009-01-01

    This paper addresses the characteristics of flame shapes and flame length in three types of coaxial air flames realizable by varying coaxial air and/or fuel velocity. Forcing coaxial air into turbulent jet flames induces substantial changes in flame shapes and NOx emissions through the complex flow interferences that exist within the mixing region. Mixing enhancement driven by coaxial air results in flame volume decrease, and such a diminished flame volume finally reduces NOx emissions significantly by decreasing NOx formation zone where a fuel/air mixture burns. It is found that mixing in the vicinity of high temperature zone mainly results from the increase of diffusive flux than the convective flux, and that the increase of mass diffusion is amplified as coaxial air is increased. Besides, it is reaffirmed that nonequilibrium chemistry including HO 2 /H 2 O 2 should be taken into account for NOx prediction and scaling analysis by comparing turbulent combustion models. In addition, it is found that coaxial air can break down the self-similarity law of flames by changing mixing mechanism, and that EINOx scaling parameters based on the self-similarity law of simple jet flames may not be eligible in coaxial air flames

  10. Boosted Jet Tagging with Jet-Images and Deep Neural Networks

    International Nuclear Information System (INIS)

    Kagan, Michael; Oliveira, Luke de; Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel

    2016-01-01

    Building on the jet-image based representation of high energy jets, we develop computer vision based techniques for jet tagging through the use of deep neural networks. Jet-images enabled the connection between jet substructure and tagging with the fields of computer vision and image processing. We show how applying such techniques using deep neural networks can improve the performance to identify highly boosted W bosons with respect to state-of-the-art substructure methods. In addition, we explore new ways to extract and visualize the discriminating features of different classes of jets, adding a new capability to understand the physics within jets and to design more powerful jet tagging methods

  11. Quark and gluon jet properties in symmetric three-jet events

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Nicod, D; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Rankin, C; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    Quark and gluon jets with the same energy, 24GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on either a track impact parameter method or a high transverse momentum lepton tag. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity. Evidence is also presented which shows that the corresponding differences between gluon and heavy flavour jets are significantly smaller.

  12. Is the polarization of NGC1068 evidence for a non-thermal source

    International Nuclear Information System (INIS)

    McLean, I.S.; Aspin, C.; Heathcote, S.R.; McCaughrean, M.J.

    1983-01-01

    NGC1068 is one of the brightest galaxies included by Seyfert in his list of extragalactic objects having compact, luminous nuclei within which broad, high-excitation emission lines occur. It has been the subject of intensive studies at UV, optical, IR and radio wavelengths. Unresolved questions concern the nature and relationship of the sources of the excess flux seen in the UV and IR, their connection with the collimated jets apparent in high-resolution radio maps and their association with the extended region responsible for the broad emission lines. A further question is the location of any dust and its role in modifying the optical and UV spectrum. Observations are reported with two high-resolution optical spectro-polarimeters which throw new light on these questions. From detailed structure found in the linear polarization spectrum of the nucleus it is concluded that dilution by starlight modifies the polarization to an extent not previously appreciated. In fact the polarization of the non-stellar flux in the optical and near IR is approximately independent of wavelength (as expected for synchrotron emission or electron scattering) with a direction orthogonal to that of the radio jets; such an arrangement is reminiscent of certain quasars and radio galaxies. (author)

  13. The impact of Faraday effects on polarized black hole images of Sagittarius A*.

    Science.gov (United States)

    Jiménez-Rosales, Alejandra; Dexter, Jason

    2018-05-01

    We study model images and polarization maps of Sagittarius A* at 230 GHz. We post-process GRMHD simulations and perform a fully relativistic radiative transfer calculation of the emitted synchrotron radiation to obtain polarized images for a range of mass accretion rates and electron temperatures. At low accretion rates, the polarization map traces the underlying toroidal magnetic field geometry. At high accretion rates, we find that Faraday rotation internal to the emission region can depolarize and scramble the map. We measure the net linear polarization fraction and find that high accretion rate "jet-disc" models are heavily depolarized and are therefore disfavoured. We show how Event Horizon Telescope measurements of the polarized "correlation length" over the image provide a model-independent upper limit on the strength of these Faraday effects, and constrain plasma properties like the electron temperature and magnetic field strength.

  14. Jet-images: computer vision inspired techniques for jet tagging

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel [SLAC National Accelerator Laboratory,Menlo Park, CA 94028 (United States)

    2015-02-18

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  15. Jet-images: computer vision inspired techniques for jet tagging

    International Nuclear Information System (INIS)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel

    2015-01-01

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  16. Effect of hydroprocessing severity on characteristics of jet fuel from OSCO 2 and Paraho distillates

    Science.gov (United States)

    Prok, G. M.; Flores, F. J.; Seng, G. T.

    1981-01-01

    Jet A boiling range fuels and broad-property research fuels were produced by hydroprocessing shale oil distillates, and their properties were measured to characterize the fuels. The distillates were the fraction of whole shale oil boiling below 343 C from TOSCO 2 and Paraho syncrudes. The TOSCO 2 was hydroprocessed at medium severity, and the Paraho was hydroprocessed at high, medium, and low severities. Fuels meeting Jet A requirements except for the freezing point were produced from the medium severity TOSCO 2 and the high severity Paraho. Target properties of a broad property research fuel were met by the medium severity TOSCO 2 and the high severity Paraho except for the freezing point and a high hydrogen content. Medium and low severity Paraho jet fuels did not meet thermal stability and freezing point requirements.

  17. Hydrogen Absorption in Metal Thin Films and Heterostructures Investigated in Situ with Neutron and X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Sara J. Callori

    2016-05-01

    Full Text Available Due to hydrogen possessing a relatively large neutron scattering length, hydrogen absorption and desorption behaviors in metal thin films can straightforwardly be investigated by neutron reflectometry. However, to further elucidate the chemical structure of the hydrogen absorbing materials, complementary techniques such as high resolution X-ray reflectometry and diffraction remain important too. Examples of work on such systems include Nb- and Pd-based multilayers, where Nb and Pd both have strong affinity to hydrogen. W/Nb and Fe/Nb multilayers were measured in situ with unpolarized and polarized neutron reflectometry under hydrogen gas charging conditions. The gas-pressure/hydrogen-concentration dependence, the hydrogen-induced macroscopic film swelling as well as the increase in crystal lattice plane distances of the films were determined. Ferromagnetic-Co/Pd multilayers were studied with polarized neutron reflectometry and in situ ferromagnetic resonance measurements to understand the effect of hydrogen absorption on the magnetic properties of the system. This electronic effect enables a novel approach for hydrogen sensing using a magnetic readout scheme.

  18. Bipolar Jets Launched by a Mean-field Accretion Disk Dynamo

    Science.gov (United States)

    Fendt, Christian; Gaßmann, Dennis

    2018-03-01

    By applying magnetohydrodynamic simulations, we investigate the launching of jets driven by a disk magnetic field generated by a mean-field disk dynamo. Extending our earlier studies, we explore the bipolar evolution of the disk α 2Ω-dynamo and the outflow. We confirm that a negative dynamo-α leads to a dipolar field geometry, whereas positive values generate quadrupolar fields. The latter remain mainly confined to the disk and cannot launch outflows. We investigate a parameter range for the dynamo-α ranging from a critical value below which field generation is negligible, {α }0,{crit}=-0.0005, to α 0 = ‑1.0. For weak | {α }0| ≤slant 0.07, two magnetic loop structures with opposite polarity may arise, which leads to reconnection and disturbs the field evolution and accretion-ejection process. For a strong dynamo-α, a higher poloidal magnetic energy is reached, roughly scaling with {E}mag}∼ | {α }0| , which also leads to higher accretion and ejection rates. The terminal jet speed is governed by the available magnetic energy and increases with the dynamo-α. We find jet velocities on the order of the inner disk Keplerian velocity. For a strong dynamo-α, oscillating dynamo modes may occur that can lead to a pulsed ejection. This is triggered by an oscillating mode in the toroidal field component. The oscillation period is comparable to the Keplerian timescale in the launching region, thus too short to be associated with the knots in observed jets. We find a hemispherically asymmetric evolution for the jet and counter-jet in the mass flux and field structure.

  19. Investigation of hydrogen adsorption centers on Y2O3 by IR-spectroscopy method in diffusive-scattered light

    International Nuclear Information System (INIS)

    Zubkov, S.A.; Borovkov, V.Yu.

    1985-01-01

    Adsorption of hydrogen and carbon oxide at the yttrium oxide at 80 K (5x30 3 PaH 2 ) and 300 K (6.5x10 2 PaCO) respectively are studied by the method of IR spectroscopy. It is shown, that at the surface of yttrium oxide trained in vacuum at 970 K, at least four types of centres of hydrogen adsorption, able to polarize H-H bond in a molecule, exist. Acid-base couple is the highest polarized centre, in the content of which there is a coordination-unsaturated highly-charged yttrium cation. Low-temperature dissociation of hydrogen on Y 2 O 3 surface occurs on the centres which polarized H-H bond in molecule comparatively slow

  20. First experiments in JET

    International Nuclear Information System (INIS)

    Rebut, P.H.; Bartlett, D.V.; Baeumel, G.

    1985-01-01

    Results obtained from JET since June 1983 are described which show that this large tokamak behaves in a similar manner to smaller tokamaks, but with correspondingly improved plasma parameters. Long-duration hydrogen and deuterium plasmas (>10 s) have been obtained with electron temperatures reaching >4 keV for power dissipations =1.6), loss of vertical stability occurred, as expected from previous calculations. Forces of several hundred tonnes (at Isub(p)=2.7 MA) were transmitted to the vacuum vessel. Measured confinement times are larger than the corresponding INTOR values. The maximum achievable density is limited by disruptions. Impurity levels determine this limiting density, and the paper concludes with proposals to reduce these. In addition, progress in neutral injection and RF heating is described, as well as preparations for D-T operation. (author)

  1. A Complex Solar Coronal Jet with Two Phases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jie; Su, Jiangtao; Deng, Yuanyong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Priest, E. R., E-mail: chenjie@bao.ac.cn [Mathematical Institute, University of St Andrews, North Haugh, St Andrews, KY16 9SS (United Kingdom)

    2017-05-01

    Jets often occur repeatedly from almost the same location. In this paper, a complex solar jet was observed with two phases to the west of NOAA AR 11513 on 2012 July 2. If it had been observed at only moderate resolution, the two phases and their points of origin would have been regarded as identical. However, at high resolution we find that the two phases merge into one another and the accompanying footpoint brightenings occur at different locations. The phases originate from different magnetic patches rather than being one phase originating from the same patch. Photospheric line of sight (LOS) magnetograms show that the bases of the two phases lie in two different patches of magnetic flux that decrease in size during the occurrence of the two phases. Based on these observations, we suggest that the driving mechanism of the two successive phases is magnetic cancellation of two separate magnetic fragments with an opposite-polarity fragment between them.

  2. Creating intense polarized electron beam via laser stripping and spin-orbit interaction

    International Nuclear Information System (INIS)

    Danilov, V.; Ptitsyn, V.; Gorlov, T.

    2010-01-01

    The recent advance in laser field make it possible to excite and strip electrons with definite spin from hydrogen atoms. The sources of hydrogen atoms with orders of magnitude higher currents (than that of the conventional polarized electron cathods) can be obtained from H - sources with good monochromatization. With one electron of H - stripped by a laser, the remained electron is excited to upper state (2P 3/2 and 2P 1/2 ) by a circular polarization laser light from FEL. Then, it is excited to a high quantum number (n=7) with mostly one spin direction due to energy level split of the states with a definite direction of spin and angular momentum in an applied magnetic field and then it is stripped by a strong electric field of an RF cavity. This paper presents combination of lasers and fields to get high polarization and high current electron source.

  3. Geissen polarization facility. I. Lambshift source

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W; Berg, H; Krause, H H; Ulbricht, J; Clausnitzer, G [Giessen Univ. (Germany, F.R.). Strahlenzentrum

    1977-06-15

    A source for the production of polarized negative hydrogen or deuterium ions following the Lambshift method is described. A duoplasmatron with expansion cup and extended ion optics is used. The polarization is generated by a diabetic zero field passage of the metastable atoms. For precision experiments the polarization can be switched 'on' and 'off' with a frequency of 1 kHz by a disturbance with a transverse magnetic field. The quantization axis can be rotated with a Wien filter. All source components are installed in a compact vacuum chamber, which allows high effective pumping speeds. The overal length of the source including the Wien filter is 1.7m. With a 10mm diameter cesium canal typical H/sup -/ currents of 0.6-0.75 ..mu..A (P=0.7 to 0.75) and maximum currents of 0.9..mu..A are obtained.

  4. Vitamin E Circular Dichroism Studies: Insights into Conformational Changes Induced by the Solvent’s Polarity

    Directory of Open Access Journals (Sweden)

    Drew Marquardt

    2016-12-01

    Full Text Available We used circular dichroism (CD to study differences in CD spectra between α-, δ-, and methylated-α-tocopherol in solvents with different polarities. CD spectra of the different tocopherol structures differ from each other in intensity and peak locations, which can be attributed to chromanol substitution and the ability to form hydrogen bonds. In addition, each structure was examined in different polarity solvents using the Reichardt index—a measure of the solvent’s ionizing ability, and a direct measurement of solvent–solute interactions. Differences across solvents indicate that hydrogen bonding is a key contributor to CD spectra at 200 nm. These results are a first step in examining the hydrogen bonding abilities of vitamin E in a lipid bilayer.

  5. Intense field stabilization in circular polarization: Three-dimensional time-dependent dynamics

    International Nuclear Information System (INIS)

    Choi, Dae-Il; Chism, Will

    2002-01-01

    We investigate the stabilization of hydrogen atoms in a circularly polarized laser field. We use a three-dimensional, time-dependent approach to study the quantum dynamics of hydrogen atoms subject to high-intensity, short-wavelength, laser pulses. We find an enhanced survival probability as the field is increased under fixed envelope conditions. We also confirm wave packet behaviors previously seen in two-dimensional time-dependent computations

  6. Development of a Hydrogen Møller Polarimeter for Precision Parity-Violating Electron Scattering

    Science.gov (United States)

    Gray, Valerie M.

    2013-10-01

    Parity-violating electron scattering experiments allow for testing the Standard Model at low energy accelerators. Future parity-violating electron scattering experiments, like the P2 experiment at the Johannes Gutenberg University, Mainz, Germany, and the MOLLER and SoLID experiments at Jefferson Lab will measure observables predicted by the Standard Model to high precision. In order to make these measurements, we will need to determine the polarization of the electron beam to sub-percent precision. The present way of measuring the polarization, with Møller scattering in iron foils or using Compton laser backscattering, will not easily be able to reach this precision. The novel Hydrogen Møller Polarimeter presents a non-invasive way to measure the electron polarization by scattering the electron beam off of atomic hydrogen gas polarized in a 7 Tesla solenoidal magnetic trap. This apparatus is expected to be operational by 2016 in Mainz. Currently, simulations of the polarimeter are used to develop the detection system at College of William & Mary, while the hydrogen trap and superconducting solenoid magnet are being developed at the Johannes Gutenberg University, Mainz. I will discuss the progress of the design and development of this novel polarimeter system. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1206053.

  7. Carbon-tuned bonding method significantly enhanced the hydrogen storage of BN-Li complexes.

    Science.gov (United States)

    Deng, Qing-ming; Zhao, Lina; Luo, You-hua; Zhang, Meng; Zhao, Li-xia; Zhao, Yuliang

    2011-11-01

    Through first-principles calculations, we found doping carbon atoms onto BN monolayers (BNC) could significantly strengthen the Li bond on this material. Unlike the weak bond strength between Li atoms and the pristine BN layer, it is observed that Li atoms are strongly hybridized and donate their electrons to the doped substrate, which is responsible for the enhanced binding energy. Li adsorbed on the BNC layer can serve as a high-capacity hydrogen storage medium, without forming clusters, which can be recycled at room temperature. Eight polarized H(2) molecules are attached to two Li atoms with an optimal binding energy of 0.16-0.28 eV/H(2), which results from the electrostatic interaction of the polarized charge of hydrogen molecules with the electric field induced by positive Li atoms. This practical carbon-tuned BN-Li complex can work as a very high-capacity hydrogen storage medium with a gravimetric density of hydrogen of 12.2 wt%, which is much higher than the gravimetric goal of 5.5 wt % hydrogen set by the U.S. Department of Energy for 2015.

  8. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    Science.gov (United States)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  9. Simulation of the Mechanism of Gas Sorption in a Metal–Organic Framework with Open Metal Sites: Molecular Hydrogen in PCN-61

    KAUST Repository

    Forrest, Katherine A.

    2012-07-26

    Grand canonical Monte Carlo (GCMC) simulations were performed to investigate hydrogen sorption in an rht-type metal-organic framework (MOF), PCN-61. The MOF was shown to have a large hydrogen uptake, and this was studied using three different hydrogen potentials, effective for bulk hydrogen, but of varying sophistication: a model that includes only repulsion/dispersion parameters, one augmented with charge-quadrupole interactions, and one supplemented with many-body polarization interactions. Calculated hydrogen uptake isotherms and isosteric heats of adsorption, Q st, were in quantitative agreement with experiment only for the model with explicit polarization. This success in reproducing empirical measurements suggests that modeling MOFs that have open metal sites is feasible, though it is often not considered to be well described via a classical potential function; here it is shown that such systems may be accurately described by explicitly including polarization effects in an otherwise traditional empirical potential. Decomposition of energy terms for the models revealed deviations between the electrostatic and polarizable results that are unexpected due to just the augmentation of the potential surface by the addition of induction. Charge-quadrupole and induction energetics were shown to have a synergistic interaction, with inclusion of the latter resulting in a significant increase in the former. Induction interactions strongly influence the structure of the sorbed hydrogen compared to the models lacking polarizability; sorbed hydrogen is a dipolar dense fluid in the MOF. This study demonstrates that many-body polarization makes a critical contribution to gas sorption structure and must be accounted for in modeling MOFs with polar interaction sites. © 2012 American Chemical Society.

  10. Analysis of flame shapes in turbulent hydrogen jet flames with coaxial air

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hee Jang [Korea Aerospace University, Goyang (Korea, Republic of)

    2009-06-15

    This paper addresses the characteristics of flame shapes and flame length in three types of coaxial air flames realizable by varying coaxial air and/or fuel velocity. Forcing coaxial air into turbulent jet flames induces substantial changes in flame shapes and NOx emissions through the complex flow interferences that exist within the mixing region. Mixing enhancement driven by coaxial air results in flame volume decrease, and such a diminished flame volume finally reduces NOx emissions significantly by decreasing NOx formation zone where a fuel/air mixture burns. It is found that mixing in the vicinity of high temperature zone mainly results from the increase of diffusive flux than the convective flux, and that the increase of mass diffusion is amplified as coaxial air is increased. Besides, it is reaffirmed that nonequilibrium chemistry including HO{sub 2}/H{sub 2}O{sub 2} should be taken into account for NOx prediction and scaling analysis by comparing turbulent combustion models. In addition, it is found that coaxial air can break down the self-similarity law of flames by changing mixing mechanism, and that EINOx scaling parameters based on the self-similarity law of simple jet flames may not be eligible in coaxial air flames

  11. Radio-continuum jets around the peculiar galaxy pair ESO 295-IG022

    Directory of Open Access Journals (Sweden)

    Filipović M.D.

    2010-01-01

    Full Text Available We report new radio-continuum observations with the Australia Telescope Compact Array (ATCA of the region surrounding the peculiar galaxy pair ESO 295-IG022 at the centre of the poor cluster Abell S0102. We observed this cluster at wavelengths of λ=20/13 and 6/3 cm with the ATCA 6 km array. With these configurations, we achieved a resolution of ~2'' at 3 cm which is sufficient to resolve the jet-like structure of ~3' length detected at 20 cm. From our new high resolution images at 6 and 3 cm we confirm the presence of a double jet structure, most likely originating from the northern galaxy (ESO 295-IG022-N, bent and twisted towards the south. We found the spectral index of the jet to be very steep (α=-1.32. No point source was detected that could be associated with the core of ESO 295-IG022-N. On the other hand, ESO 295-IG022-S does not show any jet structure, but does show a point radio source. This source has variable flux and spectral index, and appears to be superposed on the line-of-sight of the jets (seen at 20-cm originating from the northern galaxy ESO 295-IG022-N. Finally, regions of very high and somewhat well ordered polarization were detected at the level of 70%.

  12. Probing the Innermost Regions of AGN Jets and Their Magnetic Fields with RadioAstron. I. Imaging BL Lacertae at 21 Microarcsecond Resolution

    Science.gov (United States)

    Gómez, José L.; Lobanov, Andrei P.; Bruni, Gabriele; Kovalev, Yuri Y.; Marscher, Alan P.; Jorstad, Svetlana G.; Mizuno, Yosuke; Bach, Uwe; Sokolovsky, Kirill V.; Anderson, James M.; Galindo, Pablo; Kardashev, Nikolay S.; Lisakov, Mikhail M.

    2016-02-01

    We present the first polarimetric space very long baseline interferometry (VLBI) imaging observations at 22 GHz. BL Lacertae was observed in 2013 November 10 with the RadioAstron space VLBI mission, including a ground array of 15 radio telescopes. The instrumental polarization of the space radio telescope is found to be less than 9%, demonstrating the polarimetric imaging capabilities of RadioAstron at 22 GHz. Ground-space fringes were obtained up to a projected baseline distance of 7.9 Earth diameters in length, allowing us to image the jet in BL Lacertae with a maximum angular resolution of 21 μas, the highest achieved to date. We find evidence for emission upstream of the radio core, which may correspond to a recollimation shock at about 40 μas from the jet apex, in a pattern that includes other recollimation shocks at approximately 100 and 250 μas from the jet apex. Polarized emission is detected in two components within the innermost 0.5 mas from the core, as well as in some knots 3 mas downstream. Faraday rotation analysis, obtained from combining RadioAstron 22 GHz and ground-based 15 and 43 GHz images, shows a gradient in rotation measure and Faraday-corrected polarization vector as a function of position angle with respect to the core, suggesting that the jet in BL Lacertae is threaded by a helical magnetic field. The intrinsic de-boosted brightness temperature in the unresolved core exceeds 3× {10}12 K, suggesting, at the very least, departure from equipartition of energy between the magnetic field and radiating particles.

  13. Effects of the fermionic vacuum polarization in QED

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, M.F.X.P.; Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil); Barone, F.E.

    2018-01-15

    Some effects of vacuum polarization in QED due to the presence of field sources are investigated. We focus on effects with no counter-part in Maxwell electrodynamics. The Uehling interaction energy between two stationary point-like charges is calculated exactly in terms of Meijer-G functions. Effects induced on a hydrogen atom by the vacuum polarization in the vicinity of a Dirac string are considered. We also calculate the interaction between two parallel Dirac strings and corrections to the energy levels of a quantum particle constrained to move on a ring circumventing a solenoid. (orig.)

  14. Hydrogenation and hydrodeoxygenation of biomass-derived oxygenates to liquid alkanes for transportation fuels.

    Science.gov (United States)

    Sun, Shaohui; Yang, Ruishu; Wang, Xin; Yan, Shaokang

    2018-04-01

    An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C 5 -C 20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA) can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.

  15. Elucidating Jet Energy Loss Using Jets: Prospects from ATLAS

    International Nuclear Information System (INIS)

    Grau, N.

    2009-01-01

    Jets at the LHC are expected to provide the testing ground for studying QCD energy loss. In this contribution, we briefly outline the strategy that will be used to measure jets in ATLAS and how we will go about studying energy loss. We describe the utility of measuring the jet R AA , the fragmentation function, and heavy flavor jets. Utilizing the collision energy provided by the LHC and the nearly hermetic and highly segmented calorimeter, ATLAS is expected to make important contributions to the understanding of parton energy loss using fully reconstructed jets.

  16. Elucidating Jet Energy Loss Using Jets Prospects from ATLAS

    CERN Document Server

    Grau, N

    2009-01-01

    Jets at the LHC are expected to provide the testing ground for studying QCD energy loss. In this contribution, we briefly outline the strategy that will be used to measure jets in ATLAS and how we will go about studying energy loss. We describe the utility of measuring the jet $R_{AA}$, the fragmentation function, and heavy flavor jets. Utilizing the collision energy provided by the LHC and the nearly hermetic and highly segmented calorimeter, ATLAS is expected to make important contributions to the understanding of parton energy loss using fully reconstructed jets.

  17. Polarimeters for the AGS polarized-proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed.

  18. Polarimeters for the AGS polarized-proton beam

    International Nuclear Information System (INIS)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed

  19. Polarization observables of the d-vector p-vector → p-vector d reaction and one-neutron-exchange approximation

    International Nuclear Information System (INIS)

    Kobushkin, A.P.; Syamtomov, A.I.; Perdrisat, C.F.; Punjabi, V.

    1994-01-01

    The polarization observables in the elastic scattering of polarized deuterons on a polarized hydrogen target, with measurement of the recoil proton polarization, are considered. The observables are calculated in the one-neutron exchange approximation, for the special case of backward scattering (Θ c.m = 180 degree). Several new relations between polarization observables of the reaction are derived within the framework of this approximation. (author). 20 refs., 3 figs

  20. Recursive model for the fragmentation of polarized quarks

    Science.gov (United States)

    Kerbizi, A.; Artru, X.; Belghobsi, Z.; Bradamante, F.; Martin, A.

    2018-04-01

    We present a model for Monte Carlo simulation of the fragmentation of a polarized quark. The model is based on string dynamics and the 3P0 mechanism of quark pair creation at string breaking. The fragmentation is treated as a recursive process, where the splitting function of the subprocess q →h +q' depends on the spin density matrix of the quark q . The 3P0 mechanism is parametrized by a complex mass parameter μ , the imaginary part of which is responsible for single spin asymmetries. The model has been implemented in a Monte Carlo program to simulate jets made of pseudoscalar mesons. Results for single hadron and hadron pair transverse-spin asymmetries are found to be in agreement with experimental data from SIDIS and e+e- annihilation. The model predictions on the jet-handedness are also discussed.

  1. Jets from jets: re-clustering as a tool for large radius jet reconstruction and grooming at the LHC

    Science.gov (United States)

    Nachman, Benjamin; Nef, Pascal; Schwartzman, Ariel; Swiatlowski, Maximilian; Wanotayaroj, Chaowaroj

    2015-02-01

    Jets with a large radius R ≳ 1 and grooming algorithms are widely used to fully capture the decay products of boosted heavy particles at the Large Hadron Collider (LHC). Unlike most discriminating variables used in such studies, the jet radius is usually not optimized for specific physics scenarios. This is because every jet configuration must be calibrated, insitu, to account for detector response and other experimental effects. One solution to enhance the availability of large- R jet configurations used by the LHC experiments is jet re-clustering. Jet re-clustering introduces an intermediate scale r groomed jets. Jet re-clustering has the benefit that no additional large-R calibration is necessary, allowing the re-clustered large radius parameter to be optimized in the context of specific precision measurements or searches for new physics.

  2. Hydrogen effects in duplex stainless steel welded joints - electrochemical studies

    Science.gov (United States)

    Michalska, J.; Łabanowski, J.; Ćwiek, J.

    2012-05-01

    In this work results on the influence of hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel (DSS) welded joints are described. The results were discussed by taking into account three different areas on the welded joint: weld metal (WM), heat-affected zone (HAZ) and parent metal. The corrosion resistance was qualified with the polarization curves registered in a synthetic sea water. The conclusion is that, hydrogen may seriously deteriorate the passive film stability and corrosion resistance to pitting of 2205 DSS welded joints. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen degradation was dependent on the hydrogen charging conditions. WM region has been revealed as the most sensitive to hydrogen action.

  3. A new method of thermal protection by opposing jet for a hypersonic aeroheating strut

    Science.gov (United States)

    Qin, Jiang; Ning, Dongpo; Feng, Yu; Zhang, Junlong; Feng, Shuo; Bao, Wen

    2017-06-01

    This paper presents the numerical investigation of thermal protection of scramjet strut by opposing jet in supersonic stream of Mach number 6 with a hydrogen fueled scramjet strut model using CFD software. Simulation results indicate that when a small amount of fuel is injected from the nose of the strut, the bow shock is pushed away from the strut, and the heat flux is reduced in the strut, especially at the leading edge. Opposing jet forms a recirculation region near the nozzle so that the strut is covered with low temperature fuel and separated from free stream. An appropriate total pressure ratio can be used to reduce not only aerodynamic heating but also the drag of strut. It is therefore concluded that thermal protection of scramjet strut by opposing jet is one of the promising ways to protect scramjet strut in high enthalpy stream.

  4. Results of Using the Global Positioning System to Maintain the Time and Frequency Synchronization in the Jet Propulsion Laboratory's Deep Space Network

    National Research Council Canada - National Science Library

    Clements, P. A; Kirk, A; Unglaub, R

    1986-01-01

    The Jet Propulsion Laboratory's Deep Space Network (DSN) consists of three tracking stations located in California, Australia, and Spain, each with two hydrogen maser clocks as the time and frequency standard...

  5. Proton polarizing system with Ar-ion laser for p-vector-RI scattering experiments

    International Nuclear Information System (INIS)

    Wakui, T.; Hatano, M.; Sakai, H.; Uesaka, T.; Tamii, A.

    2005-01-01

    A proton polarizing system for use in scattering experiments with radioactive isotope beams is described. Protons in a naphthalene crystal doped with pentacene are polarized in a magnetic field of 0.3T at 100K by transferring a large population difference among the photo-excited triplet states of pentacene to the hydrogen nuclei. An Ar-ion laser, which demands minimal maintenance during scattering experiments, is employed to excite the pentacene molecules. A proton polarization of 37% is obtained

  6. Polarized IR spectra of resonance assisted hydrogen bond (RAHB) in 2-hydroxyazobenzenes

    International Nuclear Information System (INIS)

    Rospenk, Maria; Majewska, Paulina; Czarnik-Matusewicz, Boguslawa; Sobczyk, Lucjan

    2006-01-01

    The polarized IR spectra in the region 4000-400 cm -1 over the temperature range 298-370 K of liquid crystalline (LC) 4-chloro-2'-hydroxy-4'-pentyloxyazobenzene (CHPAB) containing strong O-H...N RAHBs were studied. It has been established that molecules of this compound undergoes a spontaneous ordering in thin layers (10-20 μm) between the KRS-5 plates. The order degree expressed by the S parameter exceeds 0.6 for the Smectic A and crystalline phases. The best indicator of orientation is the mode at 1084 cm -1 as its transition dipole moment is oriented parallel to the long axis of the molecule. A good marker is also the γ(OH) band with the transition dipole moment nearly perpendicular to the long axis. The intramolecular O-H...N hydrogen bonding shows features characteristic of RAHB. The transition dipole moment of the ν(OH) vibrations forms with the long axis of the molecule the angle equal to 43 ± 3 deg. (the OH bond is oriented to this axis at the angle of 9 deg.) that convincingly speaks in favour of a coupling between the proton and π-electron motions. Similar behaviour is manifested by a broad absorption in the finger print region that can be interpreted in terms of the modification of the potential energy shape due to the plane-to-plane intermolecular interaction and appearance of the second minimum. A marked ordering of molecules in the isotropic phase is also observed evidencing some alignment of molecules extended far beyond the monomolecular layers on the surfaces of the KRS-5 windows

  7. North Polar Cap

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour. In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime. The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap. Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen

  8. First attempt of the measurement of the beam polarization at an accelerator with the optical electron polarimeter POLO

    CERN Document Server

    Collin, B; Essabaa, S; Frascaria, R; Gacougnolle, R; Kunne, Ronald Alexander; Aulenbacher, K; Tioukine, V

    2004-01-01

    The conventional methods for measuring the polarization of electron beams are either time consuming, invasive or accurate only to a few percent. We developped a method to measure electron beam polarization by observing the light emitted by argon atoms following their excitation by the impact of polarized electrons. The degree of circular polarization of the emitted fluorescence is directly related to the electron polarization. We tested the polarimeter on a test GaAs source available at the MAMI electron accelerator in Mainz, Germany. The polarimeter determines the polarization of a 50 keV electron beam decelerated to a few eV and interacting with an effusive argon gas jet. The resulting decay of the excited states produces the emission of a circularly polarized radiation line at 811.5 nm which is observed and analyzed.

  9. Global analysis and parametric dependencies for potential unintended hydrogen-fuel releases

    Energy Technology Data Exchange (ETDEWEB)

    Harstad, Kenneth; Bellan, Josette [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, M/S 125-109, Pasadena, CA 91109-8099 (United States)

    2006-01-01

    Global, simplified analyses of gaseous-hydrogen releases from a high-pressure vessel and liquid-hydrogen pools are conducted for two purposes: (1) establishing order-of-magnitude values of characteristic times and (2) determining parametric dependencies of these characteristic times on the physical properties of the configuration and on the thermophysical properties of hydrogen. According to the ratio of the characteristic release time to the characteristic mixing time, two limiting configurations are identified: (1) a rich cloud exists when this ratio is much smaller than unity, and (2) a jet exists when this ratio is much larger than unity. In all cases, it is found that the characteristic release time is proportional to the total released mass and inversely proportional to a characteristic area. The approximate size, convection velocity, and circulation time of unconfined burning-cloud releases scale with the cloud mass at powers 1/3, 1/6, and 1/6, respectively, multiplied by an appropriately dimensional constant; the influence of cross flow can only be important if its velocity exceeds that of internal convection. It is found that the fireball lifetime is approximately the maximum of the release time and thrice the convection-associated characteristic time. Transition from deflagration to detonation can occur only if the size of unconfined clouds exceeds by a factor of O(10) that of a characteristic detonation cell, which ranges from 0.015 m under stoichiometric conditions to approximately 1 m under extreme rich/lean conditions. For confined vapor pockets, transition occurs only for pocket sizes larger than the cell size. In jets, the release time is inversely proportional to the initial vessel pressure and has a square root dependence on the vessel temperature. Jet velocities are a factor of 10 larger than convective velocities in fireballs and combustion is possible only in the subsonic, downstream region where entrainment may occur.

  10. Vacuum polarization in Coulomb field revisited

    Energy Technology Data Exchange (ETDEWEB)

    Zamastil, J., E-mail: zamastil@karlov.mff.cuni.cz; Šimsa, D.

    2017-04-15

    Simplified derivation of Wichmann–Kroll term is presented. The derivation uses two formulas for hypergeometric functions, but otherwise is elementary. It is found that Laplace transform of the vacuum charge density diverges at zero momentum transfer. This divergence has nothing to do with known ultraviolet divergence. The latter is related to the large momentum behavior of the pertinent integral, while the former to the small momentum behavior. When these divergences are removed, the energy shift caused by vacuum polarization for an ordinary hydrogen obtained here is in an exact agreement with the result obtained by Wichmann and Kroll. Also, for muonic hydrogen the result obtained here reasonably agrees with that given in literature.

  11. Hydrogen bond dynamics in bulk alcohols

    International Nuclear Information System (INIS)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-01-01

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics–quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid—alcohols—has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups

  12. Hydrogen bond dynamics in bulk alcohols.

    Science.gov (United States)

    Shinokita, Keisuke; Cunha, Ana V; Jansen, Thomas L C; Pshenichnikov, Maxim S

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid--alcohols--has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  13. Status of the hydrogen and deuterium atomic beam polarized target for NEPTUN experiment

    International Nuclear Information System (INIS)

    Balandikov, N.I.; Ershov, V.P.; Fimushkin, V.V.; Kulikov, M.V.; Pilipenko, Y.K.; Shutov, V.B.

    1995-01-01

    NEPTUN-NEPTUN-A is a polarized experiment at Accelerating and Storage Complex (UNK, IHEP) with two internal targets. Status of the atomic beam polarized target that is being developed at the Joint Institute for Nuclear Research, Dubna is presented. copyright 1995 American Institute of Physics

  14. Delayed hydrogen cracking test design for pressure tubes

    International Nuclear Information System (INIS)

    Haddad, Roberto; Loberse, Antonio N.; Yawny, Alejandro A.; Riquelme, Pablo

    1999-01-01

    CANDU nuclear power stations pressure tubes of alloy Zr-2,5 % Nb present a cracking phenomenon known as delayed hydrogen cracking (DHC). This is a brittle fracture of zirconium hydrides that are developed by hydrogen due to aqueous corrosion on the metal surface. This hydrogen diffuses to the crack tip where brittle zirconium hydrides develops and promotes the crack propagation. A direct current potential decay (DCPD) technique has been developed to measure crack propagation rates on compact test (CT) samples machined from a non irradiated pressure tube. Those test samples were hydrogen charged by cathodic polarization in an acid solution and then pre cracked in a fatigue machine. This technique proved to be useful to measure crack propagation rates with at least 1% accuracy for DHC in pressure tubes. (author)

  15. Gravitomagnetic acceleration of accretion disk matter to polar jets

    Science.gov (United States)

    Poirier, John; Mathews, Grant

    2016-03-01

    The motion of the masses of an accretion disk around a black hole creates a general relativistic, gravitomagnetic field (GEM) from the moving matter (be it charged or uncharged) of the accretion disk. This GEM field accelerates moving masses (neutral or charged) near the accretion disk vertically upward and away from the disk, and then inward toward the axis of the disk. As the accelerated material nears the axis with approximately vertical angles, a frame dragging effect contributes to the formation of narrow jets emanating from the poles. This GEM effect is numerically evaluated in the first post Newtonian (1PN) approximation from observable quantities like the mass and velocity of the disk. This GEM force is linear in the total mass of the accretion disk matter and quadratic in the velocity of matter near to the disk with approximately the same velocity. Since these masses and velocities can be quite high in astrophysical contexts, the GEM force, which in other contexts is weak, is quite significant. This GEM effect is compared to the ordinary electromagnetic effects applied to this problem in the past.

  16. Quasi-particle energies and optical excitations of hydrogenated and fluorinated germanene.

    Science.gov (United States)

    Shu, Huabing; Li, Yunhai; Wang, Shudong; Wang, Jinlan

    2015-02-14

    Using density functional theory, the G0W0 method and Bethe-Salpeter equation calculations, we systematically explore the structural, electronic and optical properties of hydrogenated and fluorinated germanene. The hydrogenated/fluorinated germanene tends to form chair and zigzag-line configurations and its electronic and optical properties show close geometry dependence. The chair hydrogenated/fluorinated and zigzag-line fluorinated germanene are direct band-gap semiconductors, while the zigzag-line hydrogenated germanene owns an indirect band-gap. Moreover, the quasi-particle corrections are significant and strong excitonic effects with large exciton binding energies are observed. Moreover, the zigzag-line hydrogenated/fluorinated germanene shows highly anisotropic optical responses, which may be used as a good optical linear polarizer.

  17. Measurement and Theory of Hydrogen Bonding Contribution to Isosteric DNA Base Pairs

    OpenAIRE

    Khakshoor, Omid; Wheeler, Steven E.; Houk, K. N.; Kool, Eric T.

    2012-01-01

    We address the recent debate surrounding the ability of 2,4-difluorotoluene (F), a low-polarity mimic of thymine (T), to form a hydrogen-bonded complex with adenine in DNA. The hydrogen bonding ability of F has been characterized as small to zero in various experimental studies, and moderate to small in computational studies. However, recent X-ray crystallographic studies of difluorotoluene in DNA/RNA have indicated, based on interatomic distances, possible hydrogen bonding interactions betwe...

  18. Combustion of a high-velocity hydrogen microjet effluxing in air

    Science.gov (United States)

    Kozlov, V. V.; Grek, G. R.; Korobeinichev, O. P.; Litvinenko, Yu. A.; Shmakov, A. G.

    2016-09-01

    This study is devoted to experimental investigation of hydrogen-combustion modes and the structure of a diffusion flame formed at a high-velocity efflux of hydrogen in air through round apertures of various diameters. The efflux-velocity range of the hydrogen jet and the diameters of nozzle apertures at which the flame is divided in two zones with laminar and turbulent flow are found. The zone with the laminar flow is a stabilizer of combustion of the flame as a whole, and in the zone with the turbulent flow the intense mixing of fuel with an oxidizer takes place. Combustion in these two zones can occur independently from each other, but the steadiest mode is observed only at the existence of the flame in the laminar-flow zone. The knowledge obtained makes it possible to understand more deeply the features of modes of microjet combustion of hydrogen promising for various combustion devices.

  19. QCD tests with SLD and polarized beams

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, M.G. [Univ. of Massachusetts, Amherst, MA (United States)

    1994-12-01

    The author presents a measurement of the strong coupling {alpha}{sub s} derived from multijet rates using data collected by the SLD experiment at SLAC and find that {alpha}{sub s}(M{sub Z}{sup 2}) = 0.118 {+-} 0.002(stat.) {+-} 0.003(syst.) {+-} 0.010(theory). He presents tests of the flavor independence of strong interactions via preliminary measurements of the ratios {alpha}{sub s}(b)/{alpha}{sub s}(udsc) and {alpha}{sub s}(uds)/{alpha}{sub s}(bc). In addition, the group has measured the difference in charged particle multiplicity between Z{sup 0} {yields} b{bar b} and Z{sup 0} {yields} u{bar u}, d{bar d}, s{bar s} events, and find that it supports the prediction of perturbative QCD that the multiplicity difference be independent of center-of-mass energy. Finally, the group has made a preliminary study of jet polarization using the jet handedness technique.

  20. Impurity production and transport at the JET belt limiter

    International Nuclear Information System (INIS)

    Pitcher, C.S.; McCracken, G.M.; Strangeby, P.C.; Toronto Univ., ON; Summers, D.D.R.

    1989-01-01

    Under certain operating conditions in JET the impurity content of the discharge can be high, thus reducing the fusion reaction rate through the dilution of the hydrogenic fuel. The dilution in most discharges is predominantly due to carbon impurities. In order to understand how carbon impurities are produced and transported into the plasma, detailed measurements with interference filters centered on intense spectral lines of the low ionization states of carbon (C I, C II, C III) as well as the fuel species (Dα) and helium (He I). (author) 6 refs., 4 figs