WorldWideScience

Sample records for polarized helium ion

  1. Radioactive core ions of microclusters, ``snowballs`` in superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Shimoda, T. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Fujita, Y. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Miyatake, H. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Mizoi, Y. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Kobayashi, H. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Sasaki, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Shirakura, T. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Itahashi, T. [Research Center for Nuclear Physics, Osaka Univ., Ibaraki (Japan); Mitsuoka, S. [Research Center for Nuclear Physics, Osaka Univ., Ibaraki (Japan); Matsukawa, T. [Naruto Univ. of Education, Tokushima (Japan); Ikeda, N. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Morinobu, S. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Hinde, D.J. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences; Asahi, K. [Tokyo Inst. of Tech. (Japan). Dept. of Physics; Ueno, H. [Tokyo Inst. of Tech. (Japan). Dept. of Physics; Izumi, H. [Tokyo Inst. of Tech. (Japan). Dept. of Physics

    1996-12-01

    Short-lived beta-ray emitters, {sup 12}B, sustaining nuclear spin polarization were introduced into superfluid helium. The nuclear polarization of {sup 12}B was observed via measurement of beta-ray asymmetry. It was found that the nuclear polarization was preserved throughout the lifetime of {sup 12}B (20.3 ms). This suggests that the ``snowball``, an aggregation of helium atoms produced around an alien ion, constitutes a suitable milieu for freezing-out the nuclear spin of the core ion and that most likely the solidification takes place at the interior of the aggregation. (orig.).

  2. Radioactive core ions of microclusters, ''snowballs'' in superfluid helium

    International Nuclear Information System (INIS)

    Takahashi, N.; Mitsuoka, S.; Matsukawa, T.; Ikeda, N.; Morinobu, S.; Hinde, D.J.; Asahi, K.; Ueno, H.; Izumi, H.

    1996-01-01

    Short-lived beta-ray emitters, 12 B, sustaining nuclear spin polarization were introduced into superfluid helium. The nuclear polarization of 12 B was observed via measurement of beta-ray asymmetry. It was found that the nuclear polarization was preserved throughout the lifetime of 12 B (20.3 ms). This suggests that the ''snowball'', an aggregation of helium atoms produced around an alien ion, constitutes a suitable milieu for freezing-out the nuclear spin of the core ion and that most likely the solidification takes place at the interior of the aggregation. (orig.)

  3. Unexpected mobility of OH+ and OD+ molecular ions in cooled helium gas

    International Nuclear Information System (INIS)

    Isawa, R; Yamazoe, J; Tanuma, H; Ohtsuki, K

    2012-01-01

    Mobilities of OH + and OD + ions in cooled helium gas have been measured at gas temperature of 4.3 K. Measured mobilities of both ions as a function of an effective temperature T eff show a minimum around 80 K, and they are approaching to the polarization limits at very low T eff . These findings will be related to the extremely strong anisotropy of the interaction potential between the molecular ion and helium atom.

  4. Towards polarization measurements of laser-accelerated helium-3 ions

    Energy Technology Data Exchange (ETDEWEB)

    Engin, Ilhan

    2015-08-28

    In the framework of this thesis, preparatory investigations for the spin-polarization measurement of {sup 3}He ions from laser-induced plasmas have been performed. Therefore, experiments aiming at an efficient laser-induced ion acceleration out of a {sup 4}He gas target were carried out at two high-intensity laser facilities: the Arcturus laser at Heinrich-Heine-Universitaet Duesseldorf as well as PHELIX at GSI Darmstadt. The scientific goal of both experiments was to investigate the ion-acceleration process in underdense plasmas by measuring the ion energy spectra and the angular distribution of the ion signal around the gas-jet target. Laser-accelerated MeV-He-ions could successfully be detected. The main acceleration direction at large angles with regard to the laser propagation direction was determined. In a second step, unpolarized {sup 3}He gas was attached in order to cross-check the experimental results with those of {sup 4}He. With the help of the achieved ion yield data, the expected rates of the fusion reaction D({sup 3}He,p){sup 4}He in the polarized case have been estimated: the information regarding the fusion proton yield from this nuclear reaction allows an experimentally based estimation for future experiments with pre-polarized {sup 3}He gas as plasma target. The experimental data is in line with supporting Particle-in-Cell (PIC) simulations performed on the Juelich supercomputers. For this purpose, the simulated target was defined as a neutral gas. The use of pre-polarized {sup 3}He gas demands a special preparation of a polarized {sup 3}He target for laser-acceleration experiments. This layout includes an (external) homogeneous magnetic holding field (field strength of ∝1.4 mT) for storing the pre-polarized gas for long time durations inside the PHELIX target chamber. For this purpose, a precise Halbach array consisting of horizontally arranged rings with built-in permanent magnets had to be designed, optimized, and constructed to deliver high

  5. Backscattered Helium Spectroscopy in the Helium Ion Microscope: Principles, Resolution and Applications

    NARCIS (Netherlands)

    van Gastel, Raoul; Hlawacek, G.; Dutta, S.; Poelsema, Bene

    2015-01-01

    We demonstrate the possibilities and limitations for microstructure characterization using backscattered particles from a sharply focused helium ion beam. The interaction of helium ions with matter enables the imaging, spectroscopic characterization, as well as the nanometer scale modification of

  6. HEATHER - HElium Ion Accelerator for RadioTHERapy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Jordan [Huddersfield U.; Edgecock, Thomas [Huddersfield U.; Green, Stuart [Birmingham U.; Johnstone, Carol [Fermilab

    2017-05-01

    A non-scaling fixed field alternating gradient (nsFFAG) accelerator is being designed for helium ion therapy. This facility will consist of 2 superconducting rings, treating with helium ions (He²⁺ ) and image with hydrogen ions (H + 2 ). Currently only carbon ions are used to treat cancer, yet there is an increasing interest in the use of lighter ions for therapy. Lighter ions have reduced dose tail beyond the tumour compared to carbon, caused by low Z secondary particles produced via inelastic nuclear reactions. An FFAG approach for helium therapy has never been previously considered. Having demonstrated isochronous acceleration from 0.5 MeV to 900 MeV, we now demonstrate the survival of a realistic beam across both stages.

  7. Radioactive ions and atoms in superfluid helium

    NARCIS (Netherlands)

    Dendooven, P.G.; Purushothaman, S.; Gloos, K.; Aysto, J.; Takahashi, N.; Huang, W.; Harissopulos, S; Demetriou, P; Julin, R

    2006-01-01

    We are investigating the use of superfluid helium as a medium to handle and manipulate radioactive ions and atoms. Preliminary results on the extraction of positive ions from superfluid helium at temperatures close to 1 K are described. Increasing the electric field up to 1.2 kV/cm did not improve

  8. Relation between the conditions of helium ion implantation and helium void equilibrium parameters

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Rybalko, V.F.; Ruzhitskij, V.V.; Tolstolutskaya, G.D.

    1981-01-01

    The conditions of helium thermodynamic equilibrium in a system of voids produced by helium ion bombardment of a metal sample are studied. As an initial equation for description of the equilibrium the Clapeyron equation was used. The equation is obtained relating basic parameters of helium voids (average diameter and density) to irradiation parameters (dose, ion energy (straggling)) and properties of the metal (surface tension coefficient, yield strength). Comparison of the calculations with experimental data on helium in nickel found in literature shows that the equation yields satisfactory resutls for the dose range 1.10 16 -1x10 17 cm -2 and temperatures T [ru

  9. Effect of helium ion bombardment on hydrogen behaviour in stainless steel

    International Nuclear Information System (INIS)

    Guseva, M.I.; Stolyarova, V.G.; Gorbatov, E.A.

    1987-01-01

    The effect of helium ion bombardment on hydrogen behaviour in 12Kh18N10T stainless steel is investigated. Helium and hydrogen ion bombardment was conducted in the ILU-3 ion accelerator; the fluence and energy made up 10 16 -5x10 17 cm -2 , 30 keV and 10 16 -5x10 18 cm -2 , 10 keV respectively. The method of recoil nuclei was used for determination of helium and hydrogen content. Successive implantation of helium and hydrogen ions into 12Kh18N10T stainless steel results in hydrogen capture by defects formed by helium ions

  10. Ion source based on Penning discharge for production of doubly charged helium ions

    Directory of Open Access Journals (Sweden)

    V. I. Voznyi

    2017-11-01

    Full Text Available The article presents the results of operation of ion source with Penning discharge developed in the IAP of NAS of Ukraine to produce doubly charged helium ions He2+ beam and to increase the energy of accelerated ions up to 3.2 MeV. This energy is necessary for ERDA channel when measuring hydrogen concentration in the structural materials used in nuclear engineering. The ion source parameters are the following: discharge voltage is 6 kV, discharge current is 0.8 - 1.2 mA, the current of singly charged helium ions He+ 24 μA, the current of doubly charged helium ions He2+ 0.5 μA.

  11. Plasma polarization spectroscopy on the ECR helium plasma in a cusp magnetic field

    International Nuclear Information System (INIS)

    Sato, T.; Iwamae, A.; Fujimoto, T.; Uchida, M.; Maekawa, T.

    2004-01-01

    Helium emission lines have been observed on the ECR plasma in a cusp field with the polarized components resolved. The polarization map is constructed for the 501.6 nm (2 1 S-3 1 P) line emission. Lines from n 1 P and n 1 D levels are strongly polarized and those from n 3 D levels are weakly polarized. As the helium pressure increases the polarization degree decreases. (author)

  12. Calculation of helium-like ion dipole susceptibility with account for electron interaction

    International Nuclear Information System (INIS)

    Pal'chikov, V.G.; Tkachev, A.N.

    1989-01-01

    Numerical estimations of electron interaction effects are carried out for helium-like ions inserted in a homogeneous electric field. Statistical dipole polarizations and hyperpolarizations are calculated for the main state taking into account corrections of the first order to approximation of noninteracting electrons. Summation according to the full spectrum of intermediate states is carried out by the method of Coulomb-Green functions (CGF), that permitted to use analytical methods to calculate matrix elements of correlation diagrams. When calculating polarizations, relativistic corrections ∼(αZ) 2 , where α - the constant of a fine structure, Z-nucleus charge, are taken into account

  13. Observation of visible emission from the molecular helium ion in the afterglow of a dense helium Z-pinch plasma

    International Nuclear Information System (INIS)

    Tucker, J.E.; Brake, M.L.; Gilgenbach, R.M.

    1986-01-01

    The authors present the results of axial and radial time resolved visible emission spectroscopy from the afterglow of a dense helium Z-pinch. These results show that the visible emissions in the pinch afterglow are dominated by line emissions from molecular helium and He II. Axial spectroscopy measurements show the occurrence of several absorption bands which cannot be identified as molecular or atomic helium nor impurities from the discharge chamber materials. The authors believe that these absorption bands are attributable to the molecular helium ion which is present in the discharge. The molecular ion has been observed by others in low pressure and temperature helium discharges directly by means of mass spectrometry and indirectly by the presence of helium atoms in the 2/sup 3/S state, (the He 2/sup 3/S state is believed to result from molecular helium ion recombination). However, the molecular helium ion has not previously been observed spectroscopically

  14. Contribution to the experimental study of the polarized liquid helium-3; Contributions a l'etude experimentale de l'helium-3 liquide polarise

    Energy Technology Data Exchange (ETDEWEB)

    Villard, B

    1999-07-15

    Spin-polarized liquid helium-3 is prepared by laser optical pumping in low magnetic field and at room temperature, prior to fast liquefaction of the polarized sample. The use of a new helium-3 cryostat enabled us to obtain liquid helium-3 with polarization rates up to 25 % at well-stabilized temperatures (around 0.5 K). We could thereby study the effect of nuclear polarization on liquid-vapour equilibrium, and particularly on the saturated vapour pressure. Very sensitive capacitive gauges were developed. We estimated (to first order in M{sup 2}) the expected effects when the polarization M is suddenly destroyed. These effects were experimentally observed in helium-3/helium-4 mixtures, in pure helium-3, only a transient increase in pressure has been recorded. We then describe in a third part a preliminary experiment which aimed at determining the longitudinal relaxation time T1 in mixtures. Relaxation on the walls is efficiently reduced by a cesium coating and T1s of order 20 minutes were observed. A careful determination of the helium-3 concentration in the liquid phase was made. Finally we studied the effects of dipolar field on transverse polarisation decay in our strongly polarized samples. We observed the free precession of polarization after a NMR pulse, and analysed in detail its decay time constant as a function of different parameters. This time constant drastically varied with the tipping angle, an effect which could be linked to NMR dynamical instabilities. (author)

  15. The new BNL polarized negative ion source

    International Nuclear Information System (INIS)

    Hershcovitch, A.I.; Alessi, J.G.; DeVito, B.; Kponou, A.E.

    1991-01-01

    A new ground state source of negative hydrogen ions with polarized nuclei (rvec H - ) is being developed at BNL. Extensive developmental research has been aimed at improving each element of (rvec H - ) production: cold H degrees beam, spin selection and focusing magnets, and ionizer. These elements have recently been integrated into a source. A first test with the accommodator nozzle cooled only to liquid nitrogen temperatures resulted in 5 μA of H - . Tests at liquid helium temperatures are now beginning. 7 refs., 1 fig

  16. Biomolecular ions in superfluid helium nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Florez, Ana Isabel

    2016-07-01

    The function of a biological molecule is closely related to its structure. As a result, understanding and predicting biomolecular structure has become the focus of an extensive field of research. However, the investigation of molecular structure can be hampered by two main difficulties: the inherent complications that may arise from studying biological molecules in their native environment, and the potential congestion of the experimental results as a consequence of the large number of degrees of freedom present in these molecules. In this work, a new experimental setup has been developed and established in order to overcome the afore mentioned limitations combining structure-sensitive gas-phase methods with superfluid helium droplets. First, biological molecules are ionised and brought into the gas phase, often referred to as a clean-room environment, where the species of interest are isolated from their surroundings and, thus, intermolecular interactions are absent. The mass-to-charge selected biomolecules are then embedded inside clusters of superfluid helium with an equilibrium temperature of ∝0.37 K. As a result, the internal energy of the molecules is lowered, thereby reducing the number of populated quantum states. Finally, the local hydrogen bonding patterns of the molecules are investigated by probing specific vibrational modes using the Fritz Haber Institute's free electron laser as a source of infrared radiation. Although the structure of a wide variety of molecules has been studied making use of the sub-Kelvin environment provided by superfluid helium droplets, the suitability of this method for the investigation of biological molecular ions was still unclear. However, the experimental results presented in this thesis demonstrate the applicability of this experimental approach in order to study the structure of intact, large biomolecular ions and the first vibrational spectrum of the protonated pentapeptide leu-enkephalin embedded in helium

  17. Biomolecular ions in superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Gonzalez Florez, Ana Isabel

    2016-01-01

    The function of a biological molecule is closely related to its structure. As a result, understanding and predicting biomolecular structure has become the focus of an extensive field of research. However, the investigation of molecular structure can be hampered by two main difficulties: the inherent complications that may arise from studying biological molecules in their native environment, and the potential congestion of the experimental results as a consequence of the large number of degrees of freedom present in these molecules. In this work, a new experimental setup has been developed and established in order to overcome the afore mentioned limitations combining structure-sensitive gas-phase methods with superfluid helium droplets. First, biological molecules are ionised and brought into the gas phase, often referred to as a clean-room environment, where the species of interest are isolated from their surroundings and, thus, intermolecular interactions are absent. The mass-to-charge selected biomolecules are then embedded inside clusters of superfluid helium with an equilibrium temperature of ∝0.37 K. As a result, the internal energy of the molecules is lowered, thereby reducing the number of populated quantum states. Finally, the local hydrogen bonding patterns of the molecules are investigated by probing specific vibrational modes using the Fritz Haber Institute's free electron laser as a source of infrared radiation. Although the structure of a wide variety of molecules has been studied making use of the sub-Kelvin environment provided by superfluid helium droplets, the suitability of this method for the investigation of biological molecular ions was still unclear. However, the experimental results presented in this thesis demonstrate the applicability of this experimental approach in order to study the structure of intact, large biomolecular ions and the first vibrational spectrum of the protonated pentapeptide leu-enkephalin embedded in helium

  18. Helium retention in krypton ion pre-irradiated nanochannel W film

    Science.gov (United States)

    Qin, Wenjing; Ren, Feng; Zhang, Jian; Dong, Xiaonan; Feng, Yongjin; Wang, Hui; Tang, Jun; Cai, Guangxu; Wang, Yongqiang; Jiang, Changzhong

    2018-02-01

    Nanochannel tungsten (W) film is a promising candidate as an alternative to bulk W for use in fusion applications. In previous work it has been shown to have good radiation resistance under helium (He) irradiation. To further understand the influence of the irradiation-induced displacement cascade damage on helium retention behaviour in a fusion environment, in this work, nanochannel W film and bulk W were pre-irradiated by 800 keV Kr2+ ions to the fluence of 2.6  ×  1015 ions cm-2 and subsequently irradiated by 40 keV He+ ions to the fluence of 5  ×  1017 ions cm-2. The Kr2+ ion pre-irradiation greatly increases helium retention in the form of small clusters and retards the formation of large clusters. It can effectively inhibit surface helium blistering under high temperature annealing. Compared with bulk W, no cracks were found in the nanochannel W film post-irradiated by He+ ions at high fluence. The release of helium from the nanochannel W film is more than one order of magnitude higher than that of bulk W whether they are irradiated by single He+ ions or sequentially irradiated by Kr2+ and He+ ions. Moreover, swelling of the bulk W is more serious than that of the nanochannel film. Therefore, nanochannel W film has a higher radiation tolerance performance in the synergistic irradiation.

  19. Thermal release behavior of helium from copper irradiated by He+ ions

    International Nuclear Information System (INIS)

    Yamauchi, T.; Tokura, S.; Yamanaka, S.; Miyake, M.

    1988-01-01

    Thermal release behavior of helium from copper irradiated by 20 keV He + ions with a dose of 2x10 15 to 3x10 17 ions/cm 2 has been studied. The shape of the thermal release curves and thew number of helium release peaks strongly depend on the irradiation dose. Results from SEM surface observastion after post-irradiation heating suggested that helium release caused various surface damages such as blistering, flaking, and hole formation. Helium release resulting in small holes was analyzed and helium bubble growth mechanisms are discussed. (orig.)

  20. A compact quadrupole ion filter for helium detection

    International Nuclear Information System (INIS)

    Pereira, E.B.

    1981-01-01

    A compact quadrupole ion filter was conceived and constructed for optimum performance at the mass four region of the mass spectra. It was primarely designed for geological applications in the measurements of helium of soil-gases. The whole ion filter structure is 15 cm long by 3.5 cm diameter, including ion source and collecting plate. The sensitivity to helium is of the order of 10 - 2 A.torr - 1 measured at a total pressure of 6x10 - 6 torr and resolution 6. The system can be easily adapted to work as a dynamic residual gas analyser for other purposes. (Author) [pt

  1. Towards helium-3 neutron polarizers

    International Nuclear Information System (INIS)

    Tasset, F.

    1995-01-01

    With a large absorption cross-section entirely due to antiparallel spin capture, polarized helium-3 is presently the most promising broad-band polarizer for thermal and epithermal neutrons. Immediate interest was raised amongst the neutron community when a dense gaseous 3 He polarizer was used for the first time in 1988, on a pulsed neutron beam at Los Alamos. With 20 W of laser power on a 30 cm long, 8.6 atm target, 40% 3 He polarization was achieved in a recent polarized electron scattering experiment at SLAC. In this technique the 3 He nuclei are polarized directly at an appropriate high pressure through spin-exchange collisions with a thick, optically pumped rubidium vapor. A different and competitive approach is being presently developed at Mainz University in collaboration with ENS Paris and now the ILL. A discharge is established in pure 3 He at low pressure producing excited metastable atoms which can be optically pumped with infra-red light. Highly effective exchange collision with the atoms remaining in the ground state quickly produces 75% polarization at 1.5 mbar. A truly non-magnetic system then compresses the polarized gas up to several bars as required. The most recent machine comprises a two-stage glass-titanium compressor. In less than 1 h it can inflate a 100 cm 3 target cell with three bars of polarized gas. The very long relaxation times (several days) now being obtained at high pressure with a special metallic coating on the glass walls, the polarized cell can be detached and inserted in the neutron beam as polarizer. We expect 50% 3 He-polarization to be reached soon, allowing such filters to compete favorably with existing Heusler-crystal polarizers at thermal and short neutron wavelengths. It must be stressed that such a system based on a 3 He polarization factory able to feed several passive, transportable, polarizers is well matched to neutron scattering needs. (orig.)

  2. The production and extraction of polarized electrons from an optically pumped helium discharge

    International Nuclear Information System (INIS)

    Vandiver, R.J.; Schearer, L.D.; Gay, T.J.

    1992-01-01

    Polarized electrons are produced from interactions involving nearly 100% polarized helium 2 3 S 1 metastable atoms in a weak electrical discharge. The high metastable polarizations are obtained through the use of recently developed, high-power lasers tunable to the relevant helium transitions near 1083 nm and the development of a crossed beam pumping technique. The dominant interactions involving the 2 3 S 1 atoms and electrons are spin preserving; hence the electrons of the discharge attain a high polarization. The authors have extracted a well collimated electron beam with over 20 μA of current from the discharge. An optical polarimeter will be used to determine the polarization of the extracted electrons

  3. Deposition, milling, and etching with a focused helium ion beam

    NARCIS (Netherlands)

    Alkemade, P.F.A.; Veldhoven, E. van

    2012-01-01

    The recent successful development of the helium ion microscope has produced both a new type of microscopy and a new tool for nanoscale manufacturing. This chapter reviews the first explorations in this new field in nanofabrication. The studies that utilize the Orion helium ion microscope to grow or

  4. Focal depth measurement of scanning helium ion microscope

    International Nuclear Information System (INIS)

    Guo, Hongxuan; Itoh, Hiroshi; Wang, Chunmei; Zhang, Han; Fujita, Daisuke

    2014-01-01

    When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.

  5. Production of negative helium ions

    International Nuclear Information System (INIS)

    Toledo, A.S. de; Sala, O.

    1977-01-01

    A negative helium ion source using potassium charge exchange vapor has been developed to be used as an injector for the Pelletron accelerator. 3 He and α beam currents of up to 2μA have been extracted with 75% particle transmission through the machine [pt

  6. Four-body conversion of atomic helium ions

    International Nuclear Information System (INIS)

    de Vries, C.P.; Oskam, H.J.

    1980-01-01

    The conversion of atomic helium ions into molecular ions was studied in pure helium and in helium-neon mixtures containing between 0.1 at. % and 50 at. % neon. The experiments showed that the termolecular conversion reaction, He + +2He → He 2 + +He, is augmented by the four-body conversion reaction He + +3He → products, where the products could include either He 2 + or He 3 + ions. Conversion rate coefficients of (5.7 +- 0.8) x 10 -32 cm 6 sec -1 and (2.6 +- 0.4) x 10 -49 cm 9 sec -1 were found for the termolecular and four-body conversion reactions, respectively. In addition, rate coefficients for the following Ne + conversion reactions were measured: Ne + +He+He → (HeNe) + +He, (2.3 +- 0.1) x 10 -32 cm 6 sec -1 ; Ne + +He+Ne → (HeNe) + +Ne or Ne 2 + +He, (8.0 +- 0.8) x 10 -32 cm 6 sec -1 ; and Ne + +Ne+Ne → Ne 2 + +Ne, (5.1 +- 0.3) x 10 -32 cm 6 sec -1 . All rate coefficients are at a gas temperature of 295 K

  7. Determination of migration of ion-implanted helium in silica by proton backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Szakacs, G. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)], E-mail: szilagyi@rmki.kfki.hu; Paszti, F.; Kotai, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2008-04-15

    Understanding the processes caused by ion implantation of light ions in dielectric materials such as silica is important for developing the diagnostic systems used in fusion and fission environments. Recently, it has been shown that ion-implanted helium is able to escape from SiO{sub 2} films. To study this process in details, helium was implanted into the central part of a buried SiO{sub 2} island up to a fluence of 4 x 10{sup 17} He/cm{sup 2}. The implanted helium could be detected in the SiO{sub 2} island, if the oxide was insulated properly from the vacuum. The shape of the helium depth distributions was far from SRIM simulation because helium distributed in the whole 1 {mu}m thick oxide layer. After the ion implantation, helium was observed only on the implanted spot. After nine months the implanted helium filled out the whole oxide island as it was expected from the high diffusivity.

  8. Determination of migration of ion-implanted helium in silica by proton backscattering spectrometry

    International Nuclear Information System (INIS)

    Szakacs, G.; Szilagyi, E.; Paszti, F.; Kotai, E.

    2008-01-01

    Understanding the processes caused by ion implantation of light ions in dielectric materials such as silica is important for developing the diagnostic systems used in fusion and fission environments. Recently, it has been shown that ion-implanted helium is able to escape from SiO 2 films. To study this process in details, helium was implanted into the central part of a buried SiO 2 island up to a fluence of 4 x 10 17 He/cm 2 . The implanted helium could be detected in the SiO 2 island, if the oxide was insulated properly from the vacuum. The shape of the helium depth distributions was far from SRIM simulation because helium distributed in the whole 1 μm thick oxide layer. After the ion implantation, helium was observed only on the implanted spot. After nine months the implanted helium filled out the whole oxide island as it was expected from the high diffusivity

  9. The Erosion of Frozen Argon by Swift Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.

    1981-01-01

    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore unequivo......The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...... unequivocally associated with electronic processes generated by the bombarding particle. In the present energy region, it is found that Y scales approximately as the electronic stopping power squared, depends on the charge state of the incoming helium ions, and perhaps more important, is independent...

  10. Improvement of helium characteristics using argon in cylindrical ion source

    International Nuclear Information System (INIS)

    Abdel salam, F.W.; El-Khabeary, H.; Abdel reheem, A.M.; Kassem, N.E.; Ahmed, M.M.

    2004-01-01

    the discharge characteristics of pure helium gas were measured at different pressures in the range of 10 -4 torr. in order o improve its characteristics, argon gas was added . different percentages of argon gas ,1%,2%,3%,4%,5%,10% and 20% were used at constant values of pressures . Measurements of the efficiency of the cylindrical ion source in case of adding different percentages of argon gas to pure helium gas were made . an optimum value of the output ion beam current was obtained when 2% argon gas was added to pure helium gas . an output ion beam current of 105 μA was obtained at a pressure of 7X10 -4 torr inside the vacuum chamber and discharge current of 0.6 m A

  11. Characterization of polarized electrons coming from helium post-discharge source

    International Nuclear Information System (INIS)

    Zerhouni, R.O.

    1996-02-01

    The objective of this thesis is the characterization of the polarized electron source developed at Orsay and foreseen to be coupled to a cw accelerator for nuclear physics experiments. The principle of operation of this source relies on the chemo-ionization reaction between optically aligned helium triplet metastable atoms and CO 2 molecules. The helium metastable atoms are generated by injection of purified helium into a 2,45 GHz micro-wave discharge. They are optically pumped using two beams of 1,083 micro-meter resonant radiation, one circularly and the other linearly polarized. Both beams are delivered by a high power LNA laser. The metastable atomic beam interacts with a dense (10 13 cm -3 ) spin singlet CO 2 target. A fraction of the produced polarized electrons is extracted and collimated by electrostatic optics. Either to the Mott polarimeter or to the Faraday cup in order to measure the electron polarization and extracted current. For current intensities of 100 micro-Amperes, the electronic polarization reaches 62 % and shows that this type of source has reached the same high competitive level as the most performing GaAs ones. Additionally, the optical properties of the extracted beam are found to be excellent. These properties (energy spread and emittance) reflect the electron energy distribution at the chemo-ionization region. The upper limit of the beam's energy spread is 0.24 eV since this value characterizes our instrumental resolution. The average normalized emittance is found to be 0.6 pi mm-mrad. These values satisfy the requirements of most cw accelerators. All the measurements were performed at low electron beam transport energies (1 to 2 KeV). (author). 105 refs., 54 figs., 4 tabs

  12. The TEXTOR helium self-pumping experiment: Design, plans, and supporting ion-beam data on helium retention in nickel

    International Nuclear Information System (INIS)

    Brooks, J.N.; Krauss, A.; Mattas, R.F.; Smith, D.L.; Nygren, R.E.; Doyle, B.L.; McGrath, R.T.; Walsh, D.; Dippel, K.H.; Finken, K.H.

    1990-01-01

    A proof-of-principle experiment to demonstrate helium self-pumping in a tokamak is being undertaken in TEXTOR. The experiment will use a helium self-pumping module installed in a modified ALT-I limiter head. The module consists of two, ≅ 25x25 cm 2 heated nickel alloy trapping plates, a nickel deposition filament array, and associated diagnostics. Between plasma shots a coating of ≅ 50A nickel will be deposited on the two trapping plates. During a shot helium and hydrogen ions will impinge on the plates through a ≅ 3 cm wide entrance slot. The helium removal capability, due to trapping in the nickel, will be assessed for a variety of plasma conditions. In support of the tokamak experiment, the trapping of helium over a range of ion fluences and surface temperatures, and detrapping during subsequent exposure to hydrogen, were measured in ion beam experiments using evaporated nickel surfaces similar to that expected in TEXTOR. Also, the retention of H and He after exposure of a nickel surface to mixed He/H plasmas has been measured. The results appear favorable, showing high helium trapping (≅ 10-50% He/Ni) and little or no detrapping by hydrogen. The TEXTOR experiment is planned to begin in 1991. (orig.)

  13. The TEXTOR helium self-pumping experiment: Design, plans, and supporting ion-beam data on helium retention in nickel

    International Nuclear Information System (INIS)

    Brooks, J.N.; Krauss, A.; Mattas, R.F.; Smith, D.L.; Nygren, R.E.; Doyle, B.L.; McGrath, R.T.; Walsh, D.; Dippel, K.H.; Finken, K.H.

    1990-01-01

    A proof-of-principle experiment to demonstrate helium self-pumping in a tokamak is being undertaken in TEXTOR. The experiment will use a helium self-pumping module installed in a modified ALT-I limiter head. The module consists of two, ∼25 x 25 cm 2 heated nickel alloy trapping plates, a nickel deposition filament array, and associated diagnostics. Between plasma shots a coating of ∼50 angstrom nickel will be deposited on the two trapping plates. During a shot helium and hydrogen ions will impinge on the plates through a ∼3 cm wide entrance slot. The helium removal capability, due to trapping in the nickel, will be assessed for a variety of plasma conditions. In support of the tokamak experiment, the trapping of helium over a range of ion fluences and surface temperatures, and detrapping during subsequent exposure to hydrogen, were measured in ion beam experiments using evaporated nickel surfaces similar to that expected in TEXTOR. Also, the retention of H and He after exposure of a nickel surface to mixed He/H plasmas has bee measured. The results appear favorable, showing high helium trapping (∼10--50% He/Ni) and little or no detrapping by hydrogen. The TEXTOR experiment is planned to begin in 1991. 12 refs., 2 figs., 2 tabs

  14. Helium ion lithography principles and performance

    NARCIS (Netherlands)

    Drift, E. van der; Maas, D.J.

    2012-01-01

    Recent developments show that Scanning Helium Ion Beam Lithography (SHIBL) with a sub-nanometer beam diameter is a promising alternative fabrication technique for high-resolution nanostructures at high pattern densities. Key principles and critical conditions of the technique are explained. From

  15. Ion temperature anisotropy in high power helium neutral beam fuelling experiments in JET

    Energy Technology Data Exchange (ETDEWEB)

    Maas, A C; Core, W G.F.; Gerstel, U C; Von Hellermann, M G; Koenig, R W.T.; Marcus, F B [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    During helium beam fuelling experiments in JET, distinctive anisotropic features have been observed in the velocity distribution function describing both fast and thermal alpha particle populations. During the initial fuelling phase the central helium ion temperature observed perpendicular to the magnetic field is higher than the central electron temperature, while the central helium ion temperature observed parallel to the magnetic field is lower than or equal to the central electron temperature. In order to verify temperature measurements of both perpendicular and parallel lines of sight, other independent methods of deducing the ion temperature are investigated: deuterium ion temperature, deuterium density, comparison with neutron rates and profiles (influence of a possible metastable population of helium). 6 refs., 7 figs.

  16. Laser Induced Fluorescence of Helium Ions in a Helicon Plasma

    Science.gov (United States)

    Compton, C. S.; Biloui, C.; Hardin, R. A.; Keesee, A. M.; Scime, E. E.; Boivin, R.

    2003-10-01

    The lack of a suitable Laser Induced Fluorescence (LIF) scheme for helium ions at visible wavelengths has prevented LIF from being employed in helium plasmas for measurements of ion temperature and bulk ion flow speeds. In this work, we will discuss our attempts to perform LIF of helium ions in a helicon source plasma using an infrared, tunable diode laser operating at 1012.36 nm. The infrared transition corresponds to excitation from the n = 4 level (4f ^2F) to the n = 5 (5g ^2G) level of singly ionized helium and therefore requires substantial electron temperatures (> 10 eV) to maintain an adequate ion population in the n = 4 state. Calculations using a steady state coronal model predict that the n = 4 state population will be 25% larger than the n = 5 population for our experimental conditions. The fluorescence decay from the n = 5 (5f ^2F) level of singly ionized helium level to the n = 3 (3d ^2D) level at 320.31 nm is monitored as the diode laser is swept through 10 GHz around the 1012.36 nm line. Note that the fluorescence emission requires a collisionally coupled transition between two different n = 5 quantum states. We will also present measurements of the emission intensities of both the 1012.36 nm and the 320.31 nm lines as a function of source neutral pressure, rf power, and plasma density. This work supported by the U.S. DoE EPSCoR Lab Partnership Program.

  17. A review of polarized ion sources

    International Nuclear Information System (INIS)

    Schmor, P.W.

    1995-06-01

    The two main types of polarized ion sources in use on accelerators today are the Atomic Beam Polarized Ion Source (ABIS) source and the Optically Pumped Polarized Ion Source (OPPIS). Both types can provide beams of nuclearly polarized light ions which are either positively or negatively charged. Heavy ion polarized ion sources for accelerators are being developed. (author). 35 refs., 1 tab

  18. Hyperfine structure of the S levels of the muonic helium ion

    International Nuclear Information System (INIS)

    Martynenko, A. P.

    2008-01-01

    Corrections of the α 5 and α 6 orders to the energy spectrum of the hyperfine splitting of the 1S and 2S levels of the muonic helium ion are calculated with the inclusion of the electron vacuum polarization effects, nuclear-structure corrections, and recoil effects. The values ΔE hfs (1S) = -1334.56 meV and ΔE hfs (2S) = -166.62 meV obtained for hyperfine splitting values can be considered as reliable estimates for comparison with experimental data. The hyperfine structure interval Δ 12 = 8ΔE hfs (2S) - ΔE hfs (1S) = 1.64 meV can be used to verify QED predictions

  19. Damage studies on tungsten due to helium ion irradiation

    International Nuclear Information System (INIS)

    Dutta, N.J.; Buzarbaruah, N.; Mohanty, S.R.

    2014-01-01

    Highlights: • Used plasma focus helium ion source to study radiation induced damage on tungsten. • Surface analyses confirm formation of micro-crack, bubbles, blisters, pinholes, etc. • XRD patterns confirm development of compressive stress due to thermal load. • Reduction in hardness value is observed in the case of exposed sample. - Abstract: Energetic and high fluence helium ions emitted in a plasma focus device have been used successfully to study the radiation induced damage on tungsten. The reference and irradiated samples were characterized by optical microscopy, field emission scanning electron microscopy, X-ray diffraction and by hardness testers. The micrographs of the irradiated samples at lower magnification show uniform mesh of cracks of micrometer width. However at higher magnification, various types of crystalline defects such as voids, pinholes, bubbles, blisters and microcracks are distinctly noticed. The prominent peaks in X-ray diffraction spectrum of irradiated samples are seen shifted toward higher Bragg angles, thus indicating accumulation of compressive stress due to the heat load delivered by helium ions. A marginal reduction in hardness of the irradiated sample is also noticed

  20. Radiation blistering of niobium in sequence irradiated by helium ions with different energy

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminskij, M.S.; Guseva, M.I.; Gusev, V.M.; Krasulin, Yu.L.; Martynenko, Yu.V.; Rozina, I.A.

    1977-01-01

    The results of the investigation of the blistering of the surface of polycrystalline niobium foils subjected to successive irradiation by helium ions of energies of 3 to 50 keV are reported. The critical doses of irradiation, the types of blisters and the rate of erosion were determined. A comparative analysis of the formation of blisters on cold-rolled and annealed niobium has been made. On cold-rolled niobium the blistering is mainly due to ions with energies of 3 to 80 keV, on annealed niobium of 100 to 500 keV. The erosion of cold-rolled niobium takes place through blisters formed by the action of helium ions with energies of the order of 45 keV, and that of annealed niobium, through helium ions with energies of 100 to 500 keV. The observed differences in the formation of blisters on niobium irradiated with helium ions of a wide range of energies are explained by the change in the diffusion kinetics of implanted ions having a uniform distribution across the thickness of the target

  1. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2017-01-01

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10 24 –1.6 × 10 25 ions m −2 ), and flux (2.0 × 10 20 –5.5 × 10 20 ion m −2 s −1 ). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  2. Conductivity change of defective graphene by helium ion beams

    Directory of Open Access Journals (Sweden)

    Yuichi Naitou

    2017-04-01

    Full Text Available Applying a recently developed helium ion microscope, we demonstrated direct nano-patterning and Anderson localization of single-layer graphene (SLG on SiO2/Si substrates. In this study, we clarified the spatial-resolution-limitation factor of direct nano-patterning of SLG. Analysis of scanning capacitance microscopy measurements reveals that the conductivity of helium ion (H+-irradiated SLG nanostructures depends on their geometrical size, i.e., the smaller the H+-irradiated SLG region, the higher its conductivity becomes. This finding can be explained by the hopping carrier transport across strongly localized states of defective SLG.

  3. Impact of helium implantation and ion-induced damage on reflectivity of molybdenum mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Carrasco, A., E-mail: alvarogc@kth.se [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Teknikringen 31, 100 44 Stockholm (Sweden); Petersson, P.; Hallén, A. [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Teknikringen 31, 100 44 Stockholm (Sweden); Grzonka, J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw (Poland); Institute of Electronic Materials Technology, 133 Wolczynska Str., 01-919 Warsaw (Poland); Gilbert, M.R. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Fortuna-Zalesna, E. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw (Poland); Rubel, M. [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Teknikringen 31, 100 44 Stockholm (Sweden)

    2016-09-01

    Molybdenum mirrors were irradiated with Mo and He ions to simulate the effect of neutron irradiation on diagnostic first mirrors in next-generation fusion devices. Up to 30 dpa were produced under molybdenum irradiation leading to a slight decrease of reflectivity in the near infrared range. After 3 × 10{sup 17} cm{sup −2} of helium irradiation, reflectivity decreased by up to 20%. Combined irradiation by helium and molybdenum led to similar effects on reflectivity as irradiation with helium alone. Ion beam analysis showed that only 7% of the implanted helium was retained in the first 40 nm layer of the mirror. The structure of the near-surface layer after irradiation was studied with scanning transmission electron microscopy and the extent and size distribution of helium bubbles was documented. The consequences of ion-induced damage on the performance of diagnostic components are discussed.

  4. Helium ion beam induced electron emission from insulating silicon nitride films under charging conditions

    Science.gov (United States)

    Petrov, Yu. V.; Anikeva, A. E.; Vyvenko, O. F.

    2018-06-01

    Secondary electron emission from thin silicon nitride films of different thicknesses on silicon excited by helium ions with energies from 15 to 35 keV was investigated in the helium ion microscope. Secondary electron yield measured with Everhart-Thornley detector decreased with the irradiation time because of the charging of insulating films tending to zero or reaching a non-zero value for relatively thick or thin films, respectively. The finiteness of secondary electron yield value, which was found to be proportional to electronic energy losses of the helium ion in silicon substrate, can be explained by the electron emission excited from the substrate by the helium ions. The method of measurement of secondary electron energy distribution from insulators was suggested, and secondary electron energy distribution from silicon nitride was obtained.

  5. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ajlony, A., E-mail: montaserajlony@yahoo.com; Tripathi, J.K.; Hassanein, A.

    2017-05-15

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10{sup 24}–1.6 × 10{sup 25} ions m{sup −2}), and flux (2.0 × 10{sup 20}–5.5 × 10{sup 20} ion m{sup −2} s{sup −1}). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  6. Helium sequestration at nanoparticle-matrix interfaces in helium + heavy ion irradiated nanostructured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Parish, C.M., E-mail: parishcm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Unocic, K.A.; Tan, L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zinkle, S.J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States); Kondo, S. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011 (Japan); Snead, L.L. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Hoelzer, D.T.; Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2017-01-15

    We irradiated four ferritic alloys with energetic Fe and He ions: one castable nanostructured alloy (CNA) containing Ti-W-Ta-carbides, and three nanostructured ferritic alloys (NFAs). The NFAs were: 9Cr containing Y-Ti-O nanoclusters, and two Fe-12Cr-5Al NFAs containing Y-Zr-O or Y-Hf-O clusters. All four were subjected to simultaneous dual-beam Fe + He ion implantation (650 °C, ∼50 dpa, ∼15 appm He/dpa), simulating fusion-reactor conditions. Examination using scanning/transmission electron microscopy (STEM) revealed high-number-density helium bubbles of ∼8 nm, ∼10{sup 21} m{sup −3} (CNA), and of ∼3 nm, 10{sup 23} m{sup −3} (NFAs). STEM combined with multivariate statistical analysis data mining suggests that the precipitate-matrix interfaces in all alloys survived ∼50 dpa at 650 °C and serve as effective helium trapping sites. All alloys appear viable structural material candidates for fusion or advanced fission energy systems. Among these developmental alloys the NFAs appear to sequester the helium into smaller bubbles and away from the grain boundaries more effectively than the early-generation CNA.

  7. The mobility of Li+ and K+ ions in helium and argon at 294 and 80 K and derived interaction potentials

    International Nuclear Information System (INIS)

    Cassidy, R.A.; Elford, M.T.

    1983-01-01

    The analysis of mobility data is a valuable technique for deriving ion-atom interaction potentials or testing at initio potentials particularly at relatively large internuclear separations. In order to obtain the most complete information on the long range part of the potential it is necessary to have mobility data at sufficiently low gas temperatures and small values of E/N that the mobility is determined only by the dipole polarization force. Although this condition can be reasonably well met at room temperature for gases of high polarizability, this is not the case for ions in helium and in particular for the most well studied case, that of Li + in helium. The prime purpose of the present measurements was to obtain low temperature data for Li + in helium in order to determine more accurately the attractive long range tail of the potential. The measurements were also extended to argon to demonstrate the effect of the polarizability on the derivation of potentials. The mobility measurements were made using a drift tube-mass spectrometer system employing the Bradbury-Nielsen time of flight technique. Measurements were performed at 294 K and 80 K. The 'three temperature' theory of Lin, Viehland and Mason was used to fit interaction potentials to the present data. Detailed comparisons are made here only for the case of Li + ions in helium. The new data for 80 K provide additional information on the potential at internuclear separations which cover the range to 5 A. (Authors)

  8. Polarization phenomena in heavy-ion reactions

    International Nuclear Information System (INIS)

    Sugimoto, K.; Ishihara, M.; Takahashi, N.

    1984-01-01

    This chapter presents a few key experiments which provide direct evidence of the polarization phenomena in heavy-ion reactions. The theory of polarization observables and measurements is given with the necessary formulae. The polarization phenomena is described and studies of product nuclear polarization in heavy-ion reactions are discussed. Studies of heavy-ion reactions induced by polarized beams are examined

  9. Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures

    DEFF Research Database (Denmark)

    Chiriaev, Serguei; Dam Madsen, Nis; Rubahn, Horst-Günter

    2017-01-01

    electrode interface structure dependence on ionomer content, systematically studied by Helium Ion Microscopy (HIM). A special focus was on acquiring high resolution images of the electrode structure and avoiding interface damage from irradiation and tedious sample preparation. HIM demonstrated its....... In the hot-pressed electrodes, we found more closed contact between the electrode components, reduced particle size, polymer coalescence and formation of nano-sized polymer fiber architecture between the particles. Keywords: proton exchange membrane fuel cells (PEMFCs); Helium Ion Microscopy (HIM...

  10. Helium behaviour in UO{sub 2} through low fluence ion implantation studies

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, P., E-mail: philippe.garcia@cea.fr [CEA – DEN/DEC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Gilabert, E. [Centre d’Et' udes Nucleáires de Bordeaux-Gradignan, Le Haut Vigneau, 33175 Gradignan (France); Martin, G.; Carlot, G.; Sabathier, C. [CEA – DEN/DEC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Sauvage, T.; Desgardin, P.; Barthe, M.-F. [CNRS-CEMHTI, UPR3079, 45071 Orleáns (France)

    2014-05-01

    In this work we focus on experiments involving implantation of 500 keV {sup 3}He ions in sintered polycrystalline material. Samples are implanted at low fluences (∼2 ×10{sup 13} ions/cm{sup 2}) and subsequently isothermally annealed in a highly sensitive thermal desorption spectrometry (TDS) device PIAGARA (Plateforme Interdisciplinaire pour l’Analyse des GAz Rares en Aquitaine). The helium fluencies studied are two to three orders of magnitude lower than previous Nuclear Reaction Analysis (NRA) experiments carried out on identical samples implanted at identical energies. The fractional release of helium obtained in the TDS experiments is interpreted using a three-dimensional axisymmetric diffusion model which enables results to be quantitatively compared to previous NRA data. The analysis shows that helium behaviour is qualitatively independent of ion fluency over three orders of magnitude: helium diffusion appears to be strongly inhibited below 1273 K within the centre of the grains presumably as a result of helium bubble precipitation. The scenario involving diffusion at grain boundaries and in regions adjacent to them observed at higher fluencies is quantitatively confirmed at much lower doses. The main difference lies in the average width of the region in which uninhibited diffusion occurs.

  11. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    Science.gov (United States)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.

    2016-06-01

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.

  12. Helium ion distributions in a 4 kJ plasma focus device by 1 mm-thick large-size polycarbonate detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sohrabi, M., E-mail: dr_msohrabi@yahoo.com; Habibi, M.; Ramezani, V.

    2014-11-14

    Helium ion beam profile, angular and iso-ion beam distributions in 4 kJ Amirkabir plasma focus (APF) device were effectively observed by the unaided eyes and studied in single 1 mm-thick large-diameter (20 cm) polycarbonate track detectors (PCTD). The PCTDs were processed by 50 Hz–HV electrochemical etching using a large-size ECE chamber. The results show that helium ions produced in the APF device have a ring-shaped angular distribution peaked at an angle of ∼±60° with respect to the top of the anode. Some information on the helium ion energy and distributions is also provided. The method is highly effective for ion beam studies. - Highlights: • Helium iso-ion beam profile and angular distributions were studied in the 4 kJ APF device. • Large-area 1 mm-thick polycarbonate detectors were processed by 50 Hz-HV ECE. • Helium ion beam profile and distributions were observed by unaided eyes in a single detector. • Helium ion profile has ring-shaped distributions with energies lower at the ring location. • Helium iso-ion track density, diameter and energy distributions are estimated.

  13. Channeling in helium ion microscopy: Mapping of crystal orientation

    Directory of Open Access Journals (Sweden)

    Vasilisa Veligura

    2012-07-01

    Full Text Available Background: The unique surface sensitivity and the high resolution that can be achieved with helium ion microscopy make it a competitive technique for modern materials characterization. As in other techniques that make use of a charged particle beam, channeling through the crystal structure of the bulk of the material can occur.Results: Here, we demonstrate how this bulk phenomenon affects secondary electron images that predominantly contain surface information. In addition, we will show how it can be used to obtain crystallographic information. We will discuss the origin of channeling contrast in secondary electron images, illustrate this with experiments, and develop a simple geometric model to predict channeling maxima.Conclusion: Channeling plays an important role in helium ion microscopy and has to be taken into account when trying to achieve maximum image quality in backscattered helium images as well as secondary electron images. Secondary electron images can be used to extract crystallographic information from bulk samples as well as from thin surface layers, in a straightforward manner.

  14. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    Science.gov (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  15. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski

    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.

    Key words. Solar physics, astrophysics and astronomy

  16. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski

    2003-06-01

    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.Key words. Solar physics, astrophysics and astronomy

  17. Investigation of mixed ion fields in the forward direction for 220.5 MeV/u helium ion beams: comparison between water and PMMA targets

    Science.gov (United States)

    Aricò, G.; Gehrke, T.; Jakubek, J.; Gallas, R.; Berke, S.; Jäkel, O.; Mairani, A.; Ferrari, A.; Martišíková, M.

    2017-10-01

    Currently there is a rising interest in helium ion beams for radiotherapy. For benchmarking of the physical beam models used in treatment planning, there is a need for experimental data on the composition and spatial distribution of mixed ion fields. Of particular interest are the attenuation of the primary helium ion fluence and the build-up of secondary hydrogen ions due to nuclear interactions. The aim of this work was to provide such data with an enhanced precision. Moreover, the validity and limits of the mixed ion field equivalence between water and PMMA targets were investigated. Experiments with a 220.5 MeV/u helium ion pencil beam were performed at the Heidelberg Ion-Beam Therapy Center in Germany. The compact detection system used for ion tracking and identification was solely based on Timepix position-sensitive semiconductor detectors. In comparison to standard techniques, this system is two orders of magnitude smaller, and provides higher precision and flexibility. The numbers of outgoing helium and hydrogen ions per primary helium ion as well as the lateral particle distributions were quantitatively investigated in the forward direction behind water and PMMA targets with 5.2-18 cm water equivalent thickness (WET). Comparing water and PMMA targets with the same WET, we found that significant differences in the amount of outgoing helium and hydrogen ions and in the lateral particle distributions arise for target thicknesses above 10 cm WET. The experimental results concerning hydrogen ions emerging from the targets were reproduced reasonably well by Monte Carlo simulations using the FLUKA code. Concerning the amount of outgoing helium ions, significant differences of 3-15% were found between experiments and simulations. We conclude that if PMMA is used in place of water in dosimetry, differences in the dose distributions could arise close to the edges of the field, in particular for deep seated targets. The results presented in this publication are

  18. Some developments in polarized ion sources

    International Nuclear Information System (INIS)

    Witteveen, G.J.

    1979-01-01

    Investigations concerning an atomic beam source are presented and a new polarized ion source of a more universal type is introduced. Polarized and unpolarized beams of positively or negatively charged ions can be produced with this new version and the theoretical limits are a polarized negative hydrogen ion beam with an intensity of about 1 mH and a polarized proton beam with an intensity of 10 mH. (C.F.)

  19. The interaction of a nanoscale coherent helium-ion probe with a crystal

    International Nuclear Information System (INIS)

    D'Alfonso, A.J.; Forbes, B.D.; Allen, L.J.

    2013-01-01

    Thickness fringing was recently observed in helium ion microscopy (HIM) when imaging magnesium oxide cubes using a 40 keV convergent probe in scanning transmission mode. Thickness fringing is also observed in electron microscopy and is due to quantum mechanical, coherent, multiple elastic scattering attenuated by inelastic phonon excitation (thermal scattering). A quantum mechanical model for elastic scattering and phonon excitation correctly models the thickness fringes formed by the helium ions. However, unlike the electron case, the signal in the diffraction plane is due mainly to the channeling of ions which have first undergone inelastic thermal scattering in the first few atomic layers so that the origin of the thickness fringes is not due to coherent interference effects. This quantum mechanical model affords insight into the interaction of a nanoscale, focused coherent ion probe with the specimen and allows us to elucidate precisely what is needed to achieve atomic resolution HIM. - Highlights: • Thickness fringing has recently been observed imaging MgO cubes using helium ion microscopy. • A quantum mechanical model for elastic scattering and phonon excitation models the fringes. • The signal is due mainly to the coherent scattering of ions after inelastic thermal scattering. • We elucidate precisely what is needed to achieve atomic resolution HIM

  20. Anisotropic electron velocity distribution in an ECR helium plasma as determined from polarization of emission lines

    International Nuclear Information System (INIS)

    Iwamae, A; Sato, T; Horimoto, Y; Inoue, K; Fujimoto, T; Uchida, M; Maekawa, T

    2005-01-01

    A helium plasma is produced by electron-cyclotron resonance heating in a cusp-configuration magnetic field. Several neutral helium lines are found polarized in the direction perpendicular to the magnetic field; the maximum polarization degree exceeds 10%. The polarization degree and intensity of the emission lines yield, respectively, the alignment and population of the upper levels. The population-alignment collisional-radiative model is developed, and the experimental result is interpreted in terms of an anisotropic electron velocity distribution; it is of a Saturn-type with the central thermal component of 14 eV and the 'ring' component displaced by 9.2 eV from the central component. The relative number of 'ring' electrons is 40%. (letter to the editor)

  1. Neovascular glaucoma after helium ion irradiation for uveal melanoma

    International Nuclear Information System (INIS)

    Kim, M.K.; Char, D.H.; Castro, J.L.; Saunders, W.M.; Chen, G.T.; Stone, R.D.

    1986-01-01

    Neovascular glaucoma developed in 22 of 169 uveal melanoma patients treated with helium ion irradiation. Most patients had large melanomas; no eyes containing small melanomas developed anterior segment neovascularization. The mean onset of glaucoma was 14.1 months (range, 7-31 months). The incidence of anterior segment neovascularization increased with radiation dosage; there was an approximately three-fold increase at 80 GyE versus 60 GyE of helium ion radiation (23% vs. 8.5%) (P less than 0.05). Neovascular glaucoma occurred more commonly in larger tumors; the incidence was not affected by tumor location, presence of subretinal fluid, nor rate of tumor regression. Fifty-three percent of patients had some response with intraocular pressures of 21 mmHg or less to a combination of antiglaucoma treatments

  2. Radiolysis study of actinide complexing agent by irradiation with helium ion beam

    International Nuclear Information System (INIS)

    Sugo, Yumi; Taguchi, Mitsumasa; Sasaki, Yuji; Hirota, Koichi; Kimura, Takaumi

    2009-01-01

    α-Radiolysis of N,N,N',N'-tetraoctyldiglycolamide (TODGA) in n-dodecane was investigated by the irradiation with helium ion beam provided by a tandem accelerator. The radiation chemical yield for the degradation of TODGA by helium ion beam irradiation was less than that by γ-rays irradiation. It is considered that the radical cations of n-dodecane, which contribute to the charge transfer reaction with the TODGA molecules, decrease by recombination in track by high LET radiations such as α-particles.

  3. Transport and extraction of radioactive ions stopped in superfluid helium

    NARCIS (Netherlands)

    Huang, WX; Dendooven, P; Gloos, K; Takahashi, N; Arutyunov, K; Pekola, JP; Aysto, J

    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyvaskyla, Finland. An open Ra-223 alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium.

  4. Optically pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1986-01-01

    The current status and future prospects for the optically pumped polarized H - ion source are discussed. At the present time H - ion currents of 60 μA and with a polarization of 65% have been produced. The ion current and polarization can be increased significantly if the optically pumped Na charge exchange target density and polarization can be increased. Studies of wall surfaces that permit many bounces before depolarizing the Na electron spin and studies of radiation trapping in optically pumped Na indicate that the Na target density and polarization can be increased substantially. 27 refs., 6 figs., 2 tabs

  5. Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

    Directory of Open Access Journals (Sweden)

    Patrick Philipp

    2016-11-01

    Full Text Available The analysis of polymers by secondary ion mass spectrometry (SIMS has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM, which uses finely focussed He+ or Ne+ beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution. Irradiation induced damage and depth profiling capabilities obtained with these light rare gas species have been far less investigated than ion species used classically in SIMS. In this paper we simulated the sputtering of multi-layered polymer samples using the BCA (binary collision approximation code SD_TRIM_SP to study preferential sputtering and atomic mixing in such samples up to a fluence of 1018 ions/cm2. Results show that helium primary ions are completely inappropriate for depth profiling applications with this kind of sample materials while results for neon are similar to argon. The latter is commonly used as primary ion species in SIMS. For the two heavier species, layers separated by 10 nm can be distinguished for impact energies of a few keV. These results are encouraging for 3D imaging applications where lateral and depth information are of importance.

  6. Observations of energetic helium ions in the Earth's radiation belts during a sequence of geomagnetic storms

    International Nuclear Information System (INIS)

    Spjeldvik, W.N.; Fritz, T.A.

    1981-01-01

    Every year a significant number of magnetic storms disturb the earth's magnetosphere and the trapped particle populations. In this paper, we present observations of energetic (MeV) helium ions made with Explorer 45 during a sequence of magnetic storms during June through December of 1972. The first of these storms started on June 17 and had a Dst index excursion to approx.190 gamma, and the MeV helium ions were perturbed primarily beyond 3 earth radii in the equatorial radiation belts with a typical flux increase of an order of magnitude at L = 4. The second storm period took place during August and was associated with very major solar flare activity. Although the Dst extremum was at best 35 gamma less than the June storm, this period can be characterized as irregular (or multi-storm) with strong compression of the magnetosphere and very large (order of magnitude) MeV helium ion flux enhancements down to Lapprox.2. Following this injection the trapped helium ion fluxes showed positive spectral slope with the peak beyond 3.15 MeV at L = 2.5; and at the lowest observable L shells (Lapprox.2--3) little flux decay (tau>100 days) was seen during the rest of the year. Any effects of two subsequent major magnetic storms in September and November were essentially undetectable in the prolonged after-effect of the August solar flare associated MeV helium ion injection. The helium ion radial profile of the phase space density showed a significant negative slope during this period, and we infer that radial diffusion constitutes a significant loss of helium ions on L shells above Lapprox. =4 during the aftermath of the August 1972 magnetic storm

  7. Temperature dependent mobility measurements of alkali earth ions in superfluid helium

    Science.gov (United States)

    Putlitz, Gisbert Zu; Baumann, I.; Foerste, M.; Jungmann, K.; Riediger, O.; Tabbert, B.; Wiebe, J.; Zühlke, C.

    1998-05-01

    Mobility measurements of impurity ions in superfluid helium are reported. Alkali earth ions were produced with a laser sputtering technique and were drawn inside the liquid by an electric field. The experiments were carried out in the temperature region from 1.27 up to 1.66 K. The temperature dependence of the mobility of Be^+-ions (measured here for the first time) differs from that of the other alkali earth ions Mg^+, Ca^+, Sr^+ and Ba^+, but behaves similar to that of He^+ (M. Foerste, H. Günther, O. Riediger, J. Wiebe, G. zu Putlitz, Z. Phys. B) 104, 317 (1997). Theories of Atkins (A. Atkins, Phys. Rev.) 116, 1339 (1959) and Cole (M.W. Cole, R.A. Bachmann Phys. Rev. B) 15, 1388 (1977) predict a different defect structure for He^+ and the alkali earth ions: the helium ion is assumed to form a snowball like structure whereas for the alkali earth ions a bubble structure is assumed. If the temperature dependence is a characteristic feature for the different structures, then it seems likely that the Be^+ ion builds a snowball like structure.

  8. Stopping Power of Solid Argon for Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Grauersen, O.

    1981-01-01

    By means of the Rutherford-backscattering method, the stopping cross section of solid argon has been measured for 0.5–3 MeV helium ions to an accuracy of not, vert, similar3%. The results agree within the experimental accuracies with our earlier measurements for gaseous argon over the energy region...

  9. Multiple scattering effects in fast neutron polarization experiments using high-pressure helium-xenon gas scintillators as analyzers

    International Nuclear Information System (INIS)

    Tornow, W.; Mertens, G.

    1977-01-01

    In order to study multiple scattering effects both in the gas and particularly in the solid materials of high-pressure gas scintillators, two asymmetry experiments have been performed by scattering of 15.6 MeV polarized neutrons from helium contained in stainless steel vessels of different wall thicknesses. A monte Carlo computer code taking into account the polarization dependence of the differential scattering cross sections has been written to simulate the experiments and to calculate corrections for multiple scattering on helium, xenon and the gas containment materials. Besides the asymmetries for the various scattering processes involved, the code yields time-of-flight spectra of the scattered neutrons and pulse height spectra of the helium recoil nuclei in the gas scintillator. The agreement between experimental results and Monte Carlo calculations is satisfactory. (Auth.)

  10. Sputtering of solid nitrogen by keV helium ions

    DEFF Research Database (Denmark)

    Ellegaard, O.; Schou, Jørgen; Sørensen, H.

    1993-01-01

    Solid nitrogen has become a standard material among the frozen molecular gases for electronic sputtering. We have combined measurements of sputtering yields and energy spectra from nitrogen bombarded by 4-10 keV helium ions. The data show that the erosion is electronic rather than knockon...

  11. Low flux and low energy helium ion implantation into tungsten using a dedicated plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Pentecoste, Lucile [GREMI, CNRS/Université d’Orléans, 14 rue d’Issoudun, B.P. 6744, 45067 Orléans Cedex2 (France); Thomann, Anne-Lise, E-mail: anne-lise.thomann@univ-orleans.fr [GREMI, CNRS/Université d’Orléans, 14 rue d’Issoudun, B.P. 6744, 45067 Orléans Cedex2 (France); Melhem, Amer; Caillard, Amael; Cuynet, Stéphane; Lecas, Thomas; Brault, Pascal [GREMI, CNRS/Université d’Orléans, 14 rue d’Issoudun, B.P. 6744, 45067 Orléans Cedex2 (France); Desgardin, Pierre; Barthe, Marie-France [CNRS, UPR3079 CEMHTI, 1D avenue de la Recherche Scientifique, 45071 Orléans Cedex2 (France)

    2016-09-15

    The aim of this work is to investigate the first stages of defect formation in tungsten (W) due to the accumulation of helium (He) atoms inside the crystal lattice. To reach the required implantation conditions, i.e. low He ion fluxes (10{sup 11}–10{sup 14} ions.cm{sup 2}.s{sup −1}) and kinetic energies below the W atom displacement threshold (about 500 eV for He{sup +}), an ICP source has been designed and connected to a diffusion chamber. Implantation conditions have been characterized by means of complementary diagnostics modified for measurements in this very low density helium plasma. It was shown that lowest ion fluxes could only be reached for the discharge working in capacitive mode either in α or γ regime. Special attention was paid to control the energy gained by the ions by acceleration through the sheath at the direct current biased substrate. At very low helium pressure, in α regime, a broad ion energy distribution function was evidenced, whereas a peak centered on the potential difference between the plasma and the biased substrate was found at higher pressures in the γ mode. Polycrystalline tungsten samples were exposed to the helium plasma in both regimes of the discharge and characterized by positron annihilation spectroscopy in order to detect the formed vacancy defects. It was found that W vacancies are able to be formed just by helium accumulation and that the same final implanted state is reached, whatever the operating mode of the capacitive discharge.

  12. Projectile electron loss in collisions of light charged ions with helium

    International Nuclear Information System (INIS)

    Yin Yong-Zhi; Chen Xi-Meng; Wang Yun

    2014-01-01

    We investigate the single-electron loss processes of light charged ions (Li 1+,2+ , C 2+,3+,5+ , and O 2+,3+ ) in collisions with helium. To better understand the experimental results, we propose a theoretical model to calculate the cross section of projectile electron loss. In this model, an ionization radius of the incident ion was defined under the classical over-barrier model, and we developed ''strings'' to explain the processes of projectile electron loss, which is similar with the molecular over-barrier model. Theoretical calculations are in good agreement with the experimental results for the cross section of single-electron loss and the ratio of double-to-single ionization of helium associated with one-electron loss. (atomic and molecular physics)

  13. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning.

    Science.gov (United States)

    Thurber, Kent; Tycko, Robert

    2016-03-01

    We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states. Published by Elsevier Inc.

  14. Sources of polarized negative ions: progress and prospects

    International Nuclear Information System (INIS)

    Haeberli, W.

    1980-01-01

    A summary of recent progress in the art of producing beams of polarized ions is given. In all sources of polarized ions, one first produces (or selects) neutral atoms which are polarized in electron spin. Those types of sources which use a beam of thermal polarized hydrogen atoms are discussed. Progress made in the preparation of the atomic beam and the methods used to convert the neutral atoms to polarized ions is summarized. The second type of source discussed is based on fast (keV) polarized hydrogen atoms. Conversion to negative ions is very simple because one only needs to pass the fast atoms through a suitable charge exchange medium (gas or vapor). However, the production of the polarized atoms is more difficult in this case. The proposal to employ polarized alkali vapor to form a beam of polarized fast H atoms, where the polarized alkali atoms are produced either by an atomic beam apparatus or by optical pumping is discussed

  15. Characterization of polarized electrons coming from helium post-discharge source; Caracterisation du faisceau d`electrons polarises issus d`une source a post-decharge d`helium

    Energy Technology Data Exchange (ETDEWEB)

    Zerhouni, R.O.

    1996-02-01

    The objective of this thesis is the characterization of the polarized electron source developed at Orsay and foreseen to be coupled to a cw accelerator for nuclear physics experiments. The principle of operation of this source relies on the chemo-ionization reaction between optically aligned helium triplet metastable atoms and CO{sub 2} molecules. The helium metastable atoms are generated by injection of purified helium into a 2,45 GHz micro-wave discharge. They are optically pumped using two beams of 1,083 micro-meter resonant radiation, one circularly and the other linearly polarized. Both beams are delivered by a high power LNA laser. The metastable atomic beam interacts with a dense (10{sup 13} cm {sup -3}) spin singlet CO{sub 2} target. A fraction of the produced polarized electrons is extracted and collimated by electrostatic optics. Either to the Mott polarimeter or to the Faraday cup in order to measure the electron polarization and extracted current. For current intensities of 100 micro-Amperes, the electronic polarization reaches 62 % and shows that this type of source has reached the same high competitive level as the most performing GaAs ones. Additionally, the optical properties of the extracted beam are found to be excellent. These properties (energy spread and emittance) reflect the electron energy distribution at the chemo-ionization region. The upper limit of the beam`s energy spread is 0.24 eV since this value characterizes our instrumental resolution. The average normalized emittance is found to be 0.6 pi mm-mrad. These values satisfy the requirements of most cw accelerators. All the measurements were performed at low electron beam transport energies (1 to 2 KeV). (author). 105 refs., 54 figs., 4 tabs.

  16. Uses of laser optical pumping to produce polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1983-01-01

    Laser optical pumping can be used to produce polarized alkali atom beams or polarized alkali vapor targets. Polarized alkali atom beams can be converted into polarized alkali ion beams, and polarized alkali vapor targets can be used to produce polarized H - or 3 He - ion beams. In this paper the authors discuss how the polarized alkali atom beams and polarized alkali vapor targets are used to produce polarized ion beams with emphasis on the production of polarized negative ion beams

  17. The GOES-16 Energetic Heavy Ion Instrument Proton and Helium Fluxes for Space Weather Applications

    Science.gov (United States)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite, in geostationary Earth orbit. The EHIS measures energetic ions in space over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range. Though an operational satellite instrument, EHIS will supply high quality data for scientific studies. For the GOES Level 1-B and Level 2 data products, protons and helium are distinguished in the EHIS using discriminator trigger logic. Measurements are provided in five energy bands. The instrumental cadence of these rates is 3 seconds. However, the primary Level 1-B proton and helium data products are 1-minute and 5-minute averages. The data latency is 1 minute, so data products can be used for real-time predictions as well as general science studies. Protons and helium, comprising approximately 99% of all energetic ions in space are of great importance for Space Weather predictions. We discuss the preliminary EHIS proton and helium data results and their application to Space Weather. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  18. A dual-optically-pumped polarized negative deuterium ion source

    International Nuclear Information System (INIS)

    Kinsho, M.; Mori, Y.; Ikegami, K.; Takagi, A.

    1994-01-01

    An optically pumped polarized H - source (OPPIS), which is based on the charge exchange between H + ions and electron-spin-polarized alkali atoms has been developed at KEK. Just by applying this scheme to a deuteron beam, it is difficult to obtain a highly vector polarized deuteron beam. To obtain highly vector polarized D - ions, we have developed a 'dual optical pumping type' of polarized D - source. With this scheme, a 100% vector nuclear-spin polarization for D - ions is possible in principle. In a preliminary experiment, a 60% of vector nuclear-spin polarized D - ions was obtained. (author)

  19. Lithium atoms on helium nanodroplets: Rydberg series and ionization dynamics

    Science.gov (United States)

    Lackner, Florian; Krois, Günter; Ernst, Wolfgang E.

    2017-11-01

    The electronic excitation spectrum of lithium atoms residing on the surface of helium nanodroplets is presented and analyzed employing a Rydberg-Ritz approach. Utilizing resonant two-photon ionization spectroscopy, two different Rydberg series have been identified: one assigned to the nS(Σ) series and the other with predominantly nP(Π) character. For high Rydberg states, which have been resolved up to n = 13, the surrounding helium effectively screens the valence electron from the Li ion core, as indicated by the apparent red-shift of Li transitions and lowered quantum defects on the droplet with respect to their free atom counterparts. For low n states, the screening effect is weakened and the prevailing repulsive interaction gives rise to strongly broadened and blue-shifted transitions. The red-shifts originate from the polarization of nearby He atoms by the positive Li ion core. As a consequence of this effect, the ionization threshold is lowered by 116 ± 10 cm-1 for Li on helium droplets with a radius of about 40 Å. Upon single-photon ionization, heavy complexes corresponding to Li ions attached to intact helium droplets are detected. We conclude that ionization close to the on-droplet ionization threshold triggers a dynamic process in which the Li ion core undergoes a transition from a surface site into the droplet.

  20. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    DEFF Research Database (Denmark)

    Fuchs, Hermann; Alber, Markus; Schreiner, Thomas

    2015-01-01

    PURPOSE: Helium ions ((4)He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed...... published so far. The advantage of (4)He seems to lie in the reduction of dose to surrounding tissue and to OARs. Nevertheless, additional biological experiments and treatment planning studies with larger patient numbers and more tumor indications are necessary to study the possible benefits of helium ion...

  1. Direct nano-patterning of graphene with helium ion beams

    International Nuclear Information System (INIS)

    Naitou, Y.; Iijima, T.; Ogawa, S.

    2015-01-01

    Helium ion microscopy (HIM) was used for direct nano-patterning of single-layer graphene (SLG) on SiO 2 /Si substrates. This technique involves irradiation of the sample with accelerated helium ions (He + ). Doses of 2.0 × 10 16  He +  cm −2 from a 30 kV beam induced a metal-insulator transition in the SLG. The resolution of HIM patterning on SLG was investigated by fabricating nanoribbons and nanostructures. Analysis of scanning capacitance microscopy measurements revealed that the spatial resolution of HIM patterning depended on the dosage of He + in a non-monotonic fashion. Increasing the dose from 2.0 × 10 16 to 5.0 × 10 16  He +  cm −2 improved the spatial resolution to several tens of nanometers. However, doses greater than 1.0 × 10 17  He +  cm −2 degraded the patterning characteristics. Direct patterning using HIM is a versatile approach to graphene fabrication and can be applied to graphene-based devices

  2. Helium ion distributions in a 4 kJ plasma focus device by 1 mm-thick large-size polycarbonate detectors

    Science.gov (United States)

    Sohrabi, M.; Habibi, M.; Ramezani, V.

    2014-11-01

    Helium ion beam profile, angular and iso-ion beam distributions in 4 kJ Amirkabir plasma focus (APF) device were effectively observed by the unaided eyes and studied in single 1 mm-thick large-diameter (20 cm) polycarbonate track detectors (PCTD). The PCTDs were processed by 50 Hz-HV electrochemical etching using a large-size ECE chamber. The results show that helium ions produced in the APF device have a ring-shaped angular distribution peaked at an angle of ∼ ± 60 ° with respect to the top of the anode. Some information on the helium ion energy and distributions is also provided. The method is highly effective for ion beam studies.

  3. Trapping and re-emission of energetic hydrogen and helium ions in materials

    International Nuclear Information System (INIS)

    Yamaguchi, Sadae

    1981-01-01

    The experimental results on the trapping and re-emission of energetic hydrogen and helium ions in materials are explained. The trapping of deuterium and helium in graphite saturates at the concentration of 10 18 ions/cm 2 . The trapping rate of hydrogen depends on the kinds of target materials. In the case of the implantation in Mo over 3 x 10 16 H/cm 2 , hydrogen is hardly trapped. On the other hand, the trapping of hydrogen in Ti, Zr and Ta which form solid solution is easily made. The hydrogen in these metals can diffuse toward the inside of metals. The deuterium retained in 316 SS decreased with time. The trapping rate reached saturation more rapidly at higher implantation temperature. The effective diffusion constant for the explanation of the re-emission process is 1/100 as small as the ordinary value. The radiation damage due to helium irradiation affects on the trapping of deuterium in Mo. The temperature dependence of the trapping rate can be explained by the diffusion model based on the Sievert's law. The re-emission of helium was measured at various temperature. At low temperature, the re-emission was low at first, then the rate increased. At high temperature, the re-emission rate was high from the beginning. (Kato, T.)

  4. The multiple ionization of helium induced by partially stripped carbon ions

    International Nuclear Information System (INIS)

    Cai Xiaohong; Chen Ximeng; Shen Ziyong

    1996-01-01

    The ratios of the double to single ionization cross sections of helium impacted by partially stripped C q+ ions (q = 1,2,3,4) in energy range of 1.5-7.5 MeV were measured by using the time of flight procedure. The n-body classical trajectory Monte Carlo calculation was carried out to get the Olson-Schlachter scaling. The single and double ionization cross sections of helium were obtained by comparing the cross section ratios of the present work with the Olson-Schlachter scaling

  5. Polarization transfer between oriented metastable helium atoms and neon atoms. A comparison of even and odd isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D M; Wang, H T.M.

    1983-11-01

    Collision-induced polarization transfer from optically pumped helium to excited states of neon is studied using various combinations of even and odd isotopes. It is found that, within our experimental accuracy of 10%, the resultant polarization is independent of the isotopic composition of the binary mixture. Possible applications using this mechanism are discussed.

  6. The role of helium ion microscopy in the characterisation of complex three-dimensional nanostructures

    International Nuclear Information System (INIS)

    Rodenburg, C.; Liu, X.; Jepson, M.A.E.; Zhou, Z.; Rainforth, W.M.; Rodenburg, J.M.

    2010-01-01

    This work addresses two major issues relating to Helium Ion Microscopy (HeIM). First we show that HeIM is capable of solving the interpretation difficulties that arise when complex three-dimensional structures are imaged using traditional high lateral resolution techniques which are transmission based, such as scanning transmission electron microscopy (STEM). Secondly we use a nano-composite coating consisting of amorphous carbon embedded in chromium rich matrix to estimate the mean escape depth for amorphous carbon for secondary electrons generated by helium ion impact as a measure of HeIM depth resolution.

  7. Relaxation of helium levels excited by heavy ion impact: III.- Orientation by anisotropic relaxation of excited atoms in previously aligned states

    International Nuclear Information System (INIS)

    Chamoun, E.; Lombardi, M.; Carre, M.; Gaillard, M.L.

    1977-01-01

    In the last paper of this series devoted to relaxation phenomena in a low pressure cell of helium excited by an accelerated ion beam, experimental evidence is given for a new mechanism of transfer between alignment and orientation through anisotropic relaxation of initially aligned excited states. The theory predicting this effect is briefly outlined and then description is given of the exact experimental conditions to detect the circularly polarized component of the light emitted by the target excited in the 4 1 D level of He I by Na + impact [fr

  8. A pencil beam algorithm for helium ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Hermann; Stroebele, Julia; Schreiner, Thomas; Hirtl, Albert; Georg, Dietmar [Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria); PEG MedAustron, 2700 Wiener Neustadt (Austria); Department of Nuclear Medicine, Medical University of Vienna, 1090 Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria)

    2012-11-15

    Purpose: To develop a flexible pencil beam algorithm for helium ion beam therapy. Dose distributions were calculated using the newly developed pencil beam algorithm and validated using Monte Carlo (MC) methods. Methods: The algorithm was based on the established theory of fluence weighted elemental pencil beam (PB) kernels. Using a new real-time splitting approach, a minimization routine selects the optimal shape for each sub-beam. Dose depositions along the beam path were determined using a look-up table (LUT). Data for LUT generation were derived from MC simulations in water using GATE 6.1. For materials other than water, dose depositions were calculated by the algorithm using water-equivalent depth scaling. Lateral beam spreading caused by multiple scattering has been accounted for by implementing a non-local scattering formula developed by Gottschalk. A new nuclear correction was modelled using a Voigt function and implemented by a LUT approach. Validation simulations have been performed using a phantom filled with homogeneous materials or heterogeneous slabs of up to 3 cm. The beams were incident perpendicular to the phantoms surface with initial particle energies ranging from 50 to 250 MeV/A with a total number of 10{sup 7} ions per beam. For comparison a special evaluation software was developed calculating the gamma indices for dose distributions. Results: In homogeneous phantoms, maximum range deviations between PB and MC of less than 1.1% and differences in the width of the distal energy falloff of the Bragg-Peak from 80% to 20% of less than 0.1 mm were found. Heterogeneous phantoms using layered slabs satisfied a {gamma}-index criterion of 2%/2mm of the local value except for some single voxels. For more complex phantoms using laterally arranged bone-air slabs, the {gamma}-index criterion was exceeded in some areas giving a maximum {gamma}-index of 1.75 and 4.9% of the voxels showed {gamma}-index values larger than one. The calculation precision of the

  9. The RHIC polarized H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski, A., E-mail: zelenski@bnl.gov; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2016-02-15

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H{sup −} ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H{sup −} ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  10. The influence of autoionizing states on the excitation of helium by electrons

    International Nuclear Information System (INIS)

    Ittersum, T. van

    1976-01-01

    The work described in this thesis deals with resonance effects in the scattering of electrons by helium at energies near the threshold of the autoionizing states (50-70 eV). The investigation is performed by studying light emission following the excitation of singly excited states. In some cases, the polarization of the radiation was also investigated. The purpose of the research was (i) to enlarge our knowledge of triply excited negative ion states, i.e. resonance states which are formed by temporary binding of the incident electron to a doubly excited (autoionizing) state of neutral helium, and (ii) to clear up the nature of some resonance structures which could not be explained in terms of negative ion resonances

  11. Direct nano-patterning of graphene with helium ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Naitou, Y., E-mail: yu-naitou@aist.go.jp [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562 (Japan); Iijima, T.; Ogawa, S. [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2015-01-19

    Helium ion microscopy (HIM) was used for direct nano-patterning of single-layer graphene (SLG) on SiO{sub 2}/Si substrates. This technique involves irradiation of the sample with accelerated helium ions (He{sup +}). Doses of 2.0 × 10{sup 16 }He{sup + }cm{sup −2} from a 30 kV beam induced a metal-insulator transition in the SLG. The resolution of HIM patterning on SLG was investigated by fabricating nanoribbons and nanostructures. Analysis of scanning capacitance microscopy measurements revealed that the spatial resolution of HIM patterning depended on the dosage of He{sup +} in a non-monotonic fashion. Increasing the dose from 2.0 × 10{sup 16} to 5.0 × 10{sup 16 }He{sup + }cm{sup −2} improved the spatial resolution to several tens of nanometers. However, doses greater than 1.0 × 10{sup 17 }He{sup + }cm{sup −2} degraded the patterning characteristics. Direct patterning using HIM is a versatile approach to graphene fabrication and can be applied to graphene-based devices.

  12. Absolute charge-changing cross sections for fast helium ions-C sub 6 sub 0 collisions

    CERN Document Server

    Nose, K; Shiraishi, K; Keizaki, T; Itoh, A

    2003-01-01

    Absolute charge-changing cross sections for fast helium ions passing through a C sub 6 sub 0 gas target have been measured. The measurements were carried out for incident projectile energies at 1.0MeV and 1.5MeV. The measured cross sections are compared with calculated values from Bohr-Lindhard model and Bohr model. In addition, we have obtained equilibrium charge state fractions and average equilibrium charge of helium ions passing through C sub 6 sub 0 , by using the measured cross sections.

  13. Electron capture by fast protons from helium-like ions

    International Nuclear Information System (INIS)

    Samanta, R.; Purkait, M.

    2011-01-01

    Four-body formalism of boundary corrected continuum intermediate state (BCCIS-4B) approximation have been applied to calculate the single-electron capture cross sections by fast protons through some helium-like ions in a large energy range from 30-1000 keV. In this model, distortion has been taken into account in the entrance channel. In the final channel, the passive electron plays the role of screening of the target ion. However, continuum states of the projectile and the electron in the field of the residual target ion are included. The comparison of the results is made with those of other theoretical investigations and experimental findings. The present calculated results are found to be in good agreement with the available experimental findings. (authors)

  14. Effects of helium ions of an early embryo on postembryonic leaf development in Brassica napus L.

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Noboru [Tokyo Metropolitan Industrial Technology Research Institute, Tokyo (Japan); Minami, Harufumi [Tokyo Metropolitan Agricultural Experiment Station, Tachikawa, Tokyo (Japan); Shikazono, Naoya; Tanaka, Atsushi; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-12-01

    We examined postembryonic effects after helium ion and gamma ray irradiation of an isolated whole flower (a flower with pedicel) of Brassica napus through a flower organ culture, and estimated the effects of irradiation on embryogenesis in sexual reproductive stages. The whole flowers were irradiated with 30 Gy of helium ions and gamma rays in the early globular embryo and/or torpedo embryo stages. The helium ion and gamma ray irradiation of early globular embryos caused some drastic malformations in the first true leaves. Those malformations were classified into four types: cup-shaped, funnel-shaped, shrunk and the other varied leaves. The types were observed in 40% of plants that developed first true leaves. Both cup-shaped and funnel-shaped types were observed in over 15%. On the other hand, the irradiation of gamma rays of torpedo embryos caused sectors lacking chlorophyll in first true leaves. (author)

  15. High resolution helium ion scanning microscopy of the rat kidney.

    Directory of Open Access Journals (Sweden)

    William L Rice

    Full Text Available Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details

  16. Influence of ion implanted helium on deuterium trapping in Kh18N10T stainless steel

    International Nuclear Information System (INIS)

    Tolstolutskaya, G.D.; Ruzhitskij, V.V.; Kopanets, I.E.

    2004-01-01

    The results are presented on evolution of distribution profiles and helium and deuterium thermal desorption ion implanted in steel 18Cr10NiTi. Accumulation, trapping, retention and microstructure evolution are studied; effect helium and hydrogen simultaneous implantation on these processes is also studied

  17. InN{0001} polarity by ion scattering spectroscopy

    International Nuclear Information System (INIS)

    Walker, M.; Veal, T.D.; McConville, C.F.; Lu, Hai; Schaff, W.J.

    2005-01-01

    The polarity of a wurtzite InN thin film grown on a c-plane sapphire substrate with GaN and AlN buffer layers has been investigated by co-axial impact collision ion scattering spectroscopy (CAICISS). Time of flight (TOF) spectra of He + ions scattered from the surface of the InN film were taken as a function of the incident angles of the primary 3 keV He + ions. From the TOF spectra, the polar angle-dependence of the In scattered intensity was obtained. Comparison of the experimental polar-angle dependence of the In CAICISS signal intensity with simulated results for the various volume ratios of (0001)- and (000 anti 1)-polarity domains indicated that the InN film is approximately 75% In-polarity and 25% N-polarity. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Direct-write three-dimensional nanofabrication of nanopyramids and nanocones on Si by nanotumefaction using a helium ion microscope

    Science.gov (United States)

    Zhang, L.; Heinig, N. F.; Bazargan, S.; Abd-Ellah, M.; Moghimi, N.; Leung, K. T.

    2015-06-01

    The recently commercialized helium ion microscope (HIM) has already demonstrated its outstanding imaging capabilities in terms of resolution, surface sensitivity, depth of field and ease of charge compensation. Here, we show its exceptional patterning capabilities by fabricating dense lines and three-dimensional (3D) nanostructures on a Si substrate. Small focusing spot size and confined ion-Si interaction volume of a high-energy helium ion beam account for the high resolution in HIM patterning. We demonstrate that a set of resolvable parallel lines with a half pitch as small as 3.5 nm can be achieved. During helium ion bombardment of the Si surface, implantation outperforms milling due to the small mass of the helium ions, which produces tumefaction instead of depression in the Si surface. The Si surface tumefaction is the result of different kinetic processes including diffusion, coalescence and nanobubble formation of the implanted ions, and is found to be very stable structurally at room temperature. Under appropriate conditions, a linear dependence of the surface swollen height on the ion doses can be observed. This relation has enabled us to fabricate nanopyramids and nanocones, thus demonstrating that HIM patterning provides a new ‘bottom-up’ approach to fabricate 3D nanostructures. This surface tumefaction method is direct, both positioning and height accurate, and free of resist, etch, mode and precursor, and it promises new applications in nanoimprint mold fabrication and photomask clear defect reparation.

  19. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    Directory of Open Access Journals (Sweden)

    S. S. Bulanov

    2015-06-01

    Full Text Available The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He^{3} ions, having almost the same penetration depth as He^{4} with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.

  20. Recombination of positive helium ions in gaseous helium

    International Nuclear Information System (INIS)

    Shyu, J.S.

    1988-01-01

    The Wigner-Keck Monte Carlo trajectory method and the resonance complex theory are employed to calculate the rate coefficient k for H e + ions recombining in gaseous helium in the temperature range 80 2 + is obtained from a Morse potential and a long range ion-induced dipole interaction term. The three body He 3 + interaction is represented by an approximate expression which, for practical purpose, depends on the same parameters that determine the two body interaction. Russell had employed the Wigner-Keck Monte Carlo trajectory method to the same reaction. Unlike his calculation, in which the final quasibound states are treated as continuous, we apply the JWKB approximation to quantize those quasibound states. Both the values of k, calculated from two different quasibound state treatments, are found to be very close and give good agreement with experimental results obtained by Biondi, although they are still 10% to 20% lower than the experimental results. The resonance complex theory, developed by Roberts et al, is then employed to investigated de-excitation from the highest quasibound state, which can be populated by inward tunneling through the rotational (centrifugal) barrier. It is found that this strongly supports a suggestion proposed by Russell. He had suggested that the remaining difference between the Wigner-Keck method and experiment might be largely due to the formation of highly excited quasibound states. The statistical errors of the rate constants, which is the sun of results obtained from both methods, are kept less then 5% by running 2500 trajectories in the first method and 500 in the second

  1. Wien filter for a polarized ions source

    International Nuclear Information System (INIS)

    Perez A, P.I.

    1977-01-01

    In order to carry out investigation works about nuclear structure, the Nuclear Center of Mexico has an accelerator Tandem Van de Graff of 12 Mv. Now in this center there is a polarized ions source, in a setting phase, totally constructed in the workshop of the accelerator. This source, supplies an ion beam with a polarization whose propagation direction is not the adequate one for the dispersion and reaction processes wanted to be realized. A filter Wien was used to obtain the correct direction of the polarization vector. The purpose of this work is the study of the filter necessary conditions in order to reach the desirable objective. In the first part some generalities are given about: polarization phenomena, polarized ions source and description of the performance of the Wien filter. In the second part, the problem of the passage of a polarized beam through the filter is tried and solved. Finally, the design and construction of the filter is presented together with the results of the experimentation with the object to justify the suppositions which were taken into consideration in the solution of the filter problem. (author)

  2. Effect of helium on swelling and microstructural evolution in ion-irradiated V-15Cr-5Ti alloy

    International Nuclear Information System (INIS)

    Loomis, B.A.; Kestel, B.J.; Gerber, S.B.; Ayrault, G.

    1986-03-01

    An investigation was made on the effects of implanted helium on the swelling and microstructural evolution that results from energetic single- and dual-ion irradiation of the V-15Cr-5Ti alloy. Single-ion irradiations were utilized for a simulated production of the irradiation damage that might be expected from neutron irradiation of the alloy in a reactor with a fast neutron energy spectrum (E > 0.1 MeV). Dual-ion irradiations were utilized for a simulated production of the simultaneous creation of helium atoms and irradiation damage in the alloy in the MFR environment. Experimental results are also presented on the radiation-induced segregation of the constituent atoms in the single- and dual-ion irradiated alloy

  3. Direct-write three-dimensional nanofabrication of nanopyramids and nanocones on Si by nanotumefaction using a helium ion microscope

    International Nuclear Information System (INIS)

    Zhang, L; Heinig, N F; Bazargan, S; Abd-Ellah, M; Moghimi, N; Leung, K T

    2015-01-01

    The recently commercialized helium ion microscope (HIM) has already demonstrated its outstanding imaging capabilities in terms of resolution, surface sensitivity, depth of field and ease of charge compensation. Here, we show its exceptional patterning capabilities by fabricating dense lines and three-dimensional (3D) nanostructures on a Si substrate. Small focusing spot size and confined ion–Si interaction volume of a high-energy helium ion beam account for the high resolution in HIM patterning. We demonstrate that a set of resolvable parallel lines with a half pitch as small as 3.5 nm can be achieved. During helium ion bombardment of the Si surface, implantation outperforms milling due to the small mass of the helium ions, which produces tumefaction instead of depression in the Si surface. The Si surface tumefaction is the result of different kinetic processes including diffusion, coalescence and nanobubble formation of the implanted ions, and is found to be very stable structurally at room temperature. Under appropriate conditions, a linear dependence of the surface swollen height on the ion doses can be observed. This relation has enabled us to fabricate nanopyramids and nanocones, thus demonstrating that HIM patterning provides a new ‘bottom-up’ approach to fabricate 3D nanostructures. This surface tumefaction method is direct, both positioning and height accurate, and free of resist, etch, mode and precursor, and it promises new applications in nanoimprint mold fabrication and photomask clear defect reparation. (paper)

  4. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, W.M.; Char, D.H.; Quivey, J.M.; Castro, J.R.; Chen, G.T.Y.; Collier, J.M.; Cartigny, A.; Blakely, E.A.; Lyman, J.T.; Zink, S.R.

    1985-02-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons.

  5. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    International Nuclear Information System (INIS)

    Saunders, W.M.; Char, D.H.; Quivey, J.M.

    1985-01-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons

  6. Sources of polarized ions and atoms

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1988-01-01

    In this presentation we discuss methods of producing large quantities of polarized atoms and ions (Stern-Gerlach separation, optical pumping, and spin-exchange) as well as experimental methods of measuring the degree of polarization of atomic systems. The usefulness of polarized atoms in probing the microscopic magnetic surface properties of materials will also be discussed. 39 refs., 5 figs., 2 tabs

  7. Helium Ion Microscopy: A Promising Tool for Probing Biota-Mineral Interfaces

    Science.gov (United States)

    Lybrand, R.; Zaharescu, D. G.; Gallery, R. E.

    2017-12-01

    The study of biogeochemical interfaces in soil requires powerful technologies that can enhance our ability to characterize mineral surfaces and interacting organisms at micro- to nanoscale resolutions. We aim to demonstrate potential applications of Helium Ion Microscopy in the earth and ecological sciences using, as an example, samples from a field experiment. We assessed samples deployed for one year along climatic and topographic gradients in two Critical Zone Observatories (CZOs): a desert to mixed conifer forest gradient (Catalina CZO) and a humid hardwood forest (Calhoun CZO). Sterile ground rock (basalt, quartz, and granite; 53-250 µm) was sealed into nylon mesh bags and buried in the surface soils of both CZOs. We employed helium ion and scanning electron microscopies to compare retrieved ground rock samples with sterile unreacted mineral controls in conjunction with the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory, USA. Our work showed early colonization of mesh bag materials by fungal and bacterial organisms from the field systems and identified morphological changes in mineral grains following exposure to the soil environment. Biological specimens observed on grain surfaces exhibited contrasting features depending on mineral type and ecosystem location, including fungal hyphae that varied in length, diameter, and surface morphologies. We also present imagery that provides evidence for incipient stages of mineral transformation at the fungal-mineral interface. Our findings demonstrate that helium ion microscopy can be successfully used to characterize grain features and biological agents of weathering in experimental field samples, representing a promising avenue for research in the biogeosciences. Future directions of this work will couple high resolution imaging with measures of aqueous and solid geochemistry, fungal morphological characterization, and microbial profiling to better understand mineral

  8. Measurement of the hyperfine structure of the ground state of muonic helium(3)

    International Nuclear Information System (INIS)

    Arnold, K.P.

    1984-01-01

    Polarization measurements by the muon spin rotation method yielded the detection that in the formation of 3 Heμ - e - the hfs states are occupied differently. In pure helium(3) a residual polarization of 2.6(4)% of the ( 3 Heμ - ) + ion was found. At an admixture of 2% xenon the neutral 3 Heμ - e - atom is formed with a polarization of 1.8(4)%. The hfs measurements were performed by means of the high-frequency spectroscopy. By inducing of Δmsub(F)=+-1 transitions the muon polarization is changed. This effects a change of the asymmetric electron distribution which arises by the parity-violating muon decay and can be detected by plastic scintillators. The measurements were performed at a highly pure gas target of 19.90 bar helium(3) to which 1.6% Xe were admixed, at 20 0 C and in a magnetic zero field. The pressure shift for the hfs measurements of 3 Heμ - e - , extrapolated to the buffer gas pressure zero, is: Δνsub(hfs)=4166.41(5) MHz. (orig./HSI) [de

  9. Complementary study of the internal porous silicon layers formed under high-dose implantation of helium ions

    Energy Technology Data Exchange (ETDEWEB)

    Lomov, A. A., E-mail: lomov@ftian.ru; Myakon’kikh, A. V. [Russian Academy of Sciences, Institute of Physics and Technology (Russian Federation); Chesnokov, Yu. M. [National Research Centre “Kurchatov Institute” (Russian Federation); Shemukhin, A. A.; Oreshko, A. P. [Moscow State University (Russian Federation)

    2017-03-15

    The surface layers of Si(001) substrates subjected to plasma-immersion implantation of helium ions with an energy of 2–5 keV and a dose of 5 × 10{sup 17} cm{sup –2} have been investigated using high-resolution X-ray reflectivity, Rutherford backscattering, and transmission electron microscopy. The electron density depth profile in the surface layer formed by helium ions is obtained, and its elemental and phase compositions are determined. This layer is found to have a complex structure and consist of an upper amorphous sublayer and a layer with a porosity of 30–35% beneath. It is shown that the porous layer has the sharpest boundaries at a lower energy of implantable ions.

  10. submitter Data-driven RBE parameterization for helium ion beams

    CERN Document Server

    Mairani, A; Dokic, I; Valle, S M; Tessonnier, T; Galm, R; Ciocca, M; Parodi, K; Ferrari, A; Jäkel, O; Haberer, T; Pedroni, P; Böhlen, T T

    2016-01-01

    Helium ion beams are expected to be available again in the near future for clinical use. A suitable formalism to obtain relative biological effectiveness (RBE) values for treatment planning (TP) studies is needed. In this work we developed a data-driven RBE parameterization based on published in vitro experimental values. The RBE parameterization has been developed within the framework of the linear-quadratic (LQ) model as a function of the helium linear energy transfer (LET), dose and the tissue specific parameter ${{(\\alpha /\\beta )}_{\\text{ph}}}$ of the LQ model for the reference radiation. Analytic expressions are provided, derived from the collected database, describing the $\\text{RB}{{\\text{E}}_{\\alpha}}={{\\alpha}_{\\text{He}}}/{{\\alpha}_{\\text{ph}}}$ and ${{\\text{R}}_{\\beta}}={{\\beta}_{\\text{He}}}/{{\\beta}_{\\text{ph}}}$ ratios as a function of LET. Calculated RBE values at 2 Gy photon dose and at 10% survival ($\\text{RB}{{\\text{E}}_{10}}$ ) are compared with the experimental ones. Pearson's correlati...

  11. Reflection of slow hydrogen and helium ions from solid surfaces

    International Nuclear Information System (INIS)

    Akkerman, A.F.

    1978-01-01

    Some characteristics of the proton and helium ion flux (E < 10 keV), reflected from solid surfaces are presented. A 'condensed walk' scheme, previously used for electron transport calculations, was adapted. Results obtained either by the scheme or by a more detailed 'consequent' scheme agreed closely. The presented data permit calculations of the mean energy of reflected particles and other values for various energy and angular distributions of incident particles. (author)

  12. Single capture and transfer ionization in collisions of Clq+ projectile ions incident on helium

    International Nuclear Information System (INIS)

    Wong, K.L.; Ben-Itzhak, I.; Cocke, C.L.; Giese, J.P.; Richard, P.

    1995-01-01

    The Kansas State University linac has been used to measure the ratio of the cross sections for the processes of transfer ionization (TI) and single capture (SC) for 2 MeV/amu Cl q+ where q=7, 9, 13, 14, and 15 projectile ions incident on a helium target. The ratio was determined using a helium gas jet target by measuring coincidences between projectile-ion and recoil-ion final charge states. The σ TI /σ SC for Cl q+ were compared to measurements of bare F 9+ and hydrogenlike F 8+ and O 7+ taken at the same velocity. The ratios deviate from a q 2 scaling which is predicted in the perturbative regime. This deviation is attributed to screening by the projectile electrons for low q=7 and 9, and to the collision being non-perturbative for high q. A possible saturation effect in the ratio was observed for q similar 14. (orig.)

  13. Measurements of Cosmic-Ray Proton and Helium Spectra from the BESS-Polar Long-Duration Balloon Flights Over Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.; Kumazawa, T.; Kusumoto, A.; hide

    2016-01-01

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in December 2004 and December 2007, at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2-160 GeV and helium nuclei 0.15-80 GeV/nucleon. The corresponding magnetic rigidity ranges are 0.6-160 GV for protons and 1.1-160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 GV to 160 GV and compare to ratios from PAMELA and AMS-02.

  14. Colliding-beams polarized ion source

    International Nuclear Information System (INIS)

    Trainor, T.A.; Douglas, J.G.; Badt, D.; Christiensen, C.; Herron, A.; Leach, D.; Olsen, J.; Osborne, J.L.; Zeps, V.

    1985-01-01

    This ion source was to be purchased from ANAC, Inc., a New Zealand-based supplier of beam optics hardware and atomic beam polarized ion sources in December 1982. Shortly before scheduled delivery ANAC went into receivership. During 1983 little work was done on the project as various steps were taken by us, first to get the ion source completed at ANAC, and then, failing that, to obtain the existing parts. In early 1984 we began work to finish the ion source in Seattle. The project is nearly complete, and this article presents progress to date. 2 refs

  15. A MEASUREMENT OF THE ADIABATIC COOLING INDEX FOR INTERSTELLAR HELIUM PICKUP IONS IN THE INNER HELIOSPHERE

    International Nuclear Information System (INIS)

    Saul, Lukas; Wurz, Peter; Kallenbach, Reinald

    2009-01-01

    Interstellar neutral gas enters the inner heliosphere where it is ionized and becomes the pickup ion population of the solar wind. It is often assumed that this population will subsequently cool adiabatically, like an expanding ideal gas due, to the divergent flow of the solar wind. Here, we report the first independent measure of the effective adiabatic cooling index in the inner heliosphere from SOHO CELIAS measurements of singly charged helium taken during times of perpendicular interplanetary magnetic field. We use a simple adiabatic transport model of interstellar pickup helium ions, valid for the upwind region of the inner heliosphere. The time averaged velocity spectrum of helium pickup ions measured by CELIAS/CTOF is fit to this model with a single free parameter which indicates an effective cooling rate with a power-law index of γ = 1.35 ± 0.2. While this average is consistent with the 'ideal-gas' assumption of γ = 1.5, the analysis indicates that such an assumption will not apply in general, and that due to observational constraints further measurements are necessary to constrain the cooling process. Implications are discussed for understanding the transport processes in the inner heliosphere and improving this measurement technique.

  16. Charge-transfer collisions for polarized ion sources

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1983-06-01

    Charge-transfer processes relevant to polarized ion sources are discussed and results are summarized. The primary atom discussed is hydrogen, with particulr emphasis on H - formation. Heavier negative ions are briefly discussed

  17. Microstructural evolution in dual-ion irradiated 316SS under various helium injection schedules

    International Nuclear Information System (INIS)

    Kohyama, A.; Igata, N.; Ayrault, G.; Tokyo Univ.

    1984-01-01

    Dual-ion irradiated 316 SS samples with various helium injection schedules were studied. The intent of using different schedules was to either approximate the MFR condition, mimic the mixed spectrum reactor condition or mimic the fast reactor condition. The objective of this investigation is to study the influence of these different helium injection schedules on the microstructural development under irradiation. The materials for this study was 316 SS (MFE heat) with three thermomechanical pre-irradiation treatments: solution annealed, solution annealed and aged and 20% cold worked. The cavity nucleation and growth stages were investigated using high resolution TEM. (orig.)

  18. Comparison of multilayered nanowire imaging by SEM and Helium Ion Microscopy

    International Nuclear Information System (INIS)

    Inkson, B J; Peng, Y; Jepson, M A E; Rodenburg, C; Liu, X

    2010-01-01

    The helium ion microscope (HeIM) is capable of probe sizes smaller than SEM and, with intrinsically small ion/sample interaction volumes, may therefore potentially offer higher spatial resolution secondary electron (SE) imaging of nanostructures. Here 55 nm diameter CoPt/Pt multilayered nanowires have been imaged by HeIM, SEM and TEM. It is found that there is an increased resolution of nanowire surface topography in HeIM SE images compared to SEM, however there is a reduction of materials contrast of the alternating Pt and CoPt layers. This can be attributed to the increased contribution of surface contamination layers to the ion-induced SE signal, and carbon is also observed to grow on the nanowires under prolonged HeIM scanning.

  19. Parametric analysis of the soft electron emission in ion-helium collisions

    Energy Technology Data Exchange (ETDEWEB)

    Cravero, W.R. (Centro Atomico Bariloche and CONICET, S.C. de Bariloche (Argentina)); Garibotti, C.R. (Centro Atomico Bariloche and CONICET, S.C. de Bariloche (Argentina)); Gasaneo, G. (Centro Atomico Bariloche and CONICET, S.C. de Bariloche (Argentina))

    1994-03-01

    We studied the doubly differential cross section (DDCS) for ion-helium ionization, in the region of near zero emission velocity. We expanded the DDCS in powers of the electron emission velocity, with angle-dependent weight coefficients, which are determined from available experimental data and calculated using the CDW-EIS theory. We also compared this expansion with a previously used Legendre polynomials expansion of the DDCS. (orig.)

  20. Effect of helium on void formation in nickel

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1977-01-01

    This study examines the influence of helium on void formation in self-ion irradiated nickel. Helium was injected either simultaneously with, or prior to, the self-ion bombardment. The void microstructure was characterized as a function of helium deposition rate and the total heavy-ion dose. In particular, at 575 0 C and 5 X 10 -3 displacements per atom per second the void density is found to be proportional to the helium deposition rate. The dose dependence of swelling is initially dominated by helium driven nucleation. The void density rapidly saturates after which swelling continues with increasing dose only from void growth. It is concluded that helium promotes void nucleation in nickel with either helium implantation technique, pre-injection or simultaneous injection. Qualitative differences, however, are recognized. (Auth.)

  1. Parabolic heavy ion flow in the polar magnetosphere

    International Nuclear Information System (INIS)

    Horwitz, J.L.

    1987-01-01

    Recent observations by the Dynamics Explorer 1 satellite over the dayside polar cap magnetosphere have indicated downward flows of heavy ions (O + , O ++ , N + , N ++ ) with flow velocities of the order 1 km/s (Lockwood et al., 1985b). These downward flows were interpreted as the result of parabolic flow of these heavy ionospheric ions from a source region associated with the polar cleft topside ionosphere. Here the author utilizes a two-dimensional kinetic model to elicit features of the transport of very low energy O + ions from the cleft ionosphere. Bulk parameter (density, flux, thermal energies, etc.) distributions in the noon-midnight meridian plane illustrate the effects of varying convection electric fields and source energies. The results illustrate that particularly under conditions of weak convection electric fields and weak ion heating in the cleft region, much of the intermediate altitude polar cap magnetosphere may be populated by downward flowing heavy ions. It is further shown how two-dimensional transport effects may alter the characteristic vertical profiles of densities and fluxes from ordinary profiles computed in one-dimensional steady state models

  2. Determination of the spin polarization of a 4He+ ion beam

    International Nuclear Information System (INIS)

    Suzuki, T.; Yamauchi, Y.

    2008-01-01

    It was demonstrated that the spin polarization of a 4 He + ion beam (P He + ) can be determined from the spin dependence of the electron emission in the deexcitation process of spin-polarized He metastable atoms (He*, 2 3 S 1 ) and spin-polarized He + ions on Fe (100) surfaces. On Fe (100) surfaces, both He* and He + deexcite via Auger neutralization, and therefore, the spin asymmetry obtained from spin-polarized He + ion neutralization spectroscopy should be equal to that from spin-polarized metastable He* deexcitation spectroscopy. The spin polarization of He* was obtained from Stern-Gerlach measurements. P He + was finally determined to be 0.19±0.02

  3. Flaking and wave-like structure on metallic glasses induced by MeV-energy helium ions

    International Nuclear Information System (INIS)

    Paszti, F.; Fried, M.; Pogany, L.; Manuaba, A.; Mezey, G.; Kotai, E.; Lovas, I.; Lohner, T.; Pocs, L.

    1982-11-01

    Ten samples prepared from different kinds of metallic glasses (different in composition and manufacturing technology) were bombarded by 2 or 1 MeV helium ions with high fluence under different experimental circumstances. During bombardment the temperature increase of the samples caused by irradiation heating was estimated and kept below the temperature needed for the investigated metallic glass to be crystallized. In all cases the surface deformation processes were dominated by flaking i.e. nearly from the whole implanted area a layer suddenly flaked off with a uniform thickness of the applied ion projected range. The surface left behind the flaked layer can be characterized by a wave-like structure i.e. by a regular series of asymmetrical elevations. These elevations, which did not appear on the annealed samples, are caused by a mechanism developed during the bombardment of the amorphous structure (of metallic glasses) by high energy helium ions. Details of this unusual phenomenon are discussed. (author)

  4. Production of polarized negative deuterium ion beam with dual optical pumping in KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.

    1997-02-01

    To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)

  5. Pulsed diode source of polarized ions

    International Nuclear Information System (INIS)

    Katzenstein, J.; Rostoker, N.

    1983-01-01

    The advantages of polarized nuclei for fusion reactors have recently been described. We propose a pulsed source of polarized nuclei that consists of an ion diode with a polarized anode. With magnetic resonance techniques the nuclear spins of the protons of solid NH 3 can be made about 90 to 95% polarized. This material would be used for the anode. The diode would be pulsed with a voltage of 1-200K-volts for 1-2 μ sec. Flashover of the anode produces a surface plasma from which the polarized protons would be extracted to form a beam. Depolarization could be detected by comparing reaction cross sections and/or distribution of reaction products with similar results for unpolarized beams

  6. MEASUREMENTS OF COSMIC-RAY PROTON AND HELIUM SPECTRA FROM THE BESS-POLAR LONG-DURATION BALLOON FLIGHTS OVER ANTARCTICA

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Itazaki, A.; Kusumoto, A.; Matsukawa, Y.; Orito, R. [Kobe University, Kobe, Hyogo 657-8501 (Japan); Fuke, H. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Haino, S.; Hasegawa, M.; Horikoshi, A.; Kumazawa, T.; Makida, Y.; Matsuda, S.; Matsumoto, K.; Nozaki, M. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Hams, T.; Mitchell, J. W. [NASA-Goddard Space Flight Center (NASA-GSFC), Greenbelt, MD 20771 (United States); Kim, K. C.; Lee, M. H.; Myers, Z. [IPST, University of Maryland, College Park, MD 20742 (United States); Nishimura, J., E-mail: Kenichi.Sakai@nasa.gov [The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); and others

    2016-05-10

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in 2004 December and 2007 December at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2–160 GeV and helium nuclei in the range 0.15–80 GeV/nucleon. The corresponding magnetic-rigidity ranges are 0.6–160 GV for protons and 1.1–160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 to 160 GV and compare this to the ratios from PAMELA and AMS-02.

  7. On depth profiling of hydrogen and helium isotopes and its application to ion-implantation studies

    International Nuclear Information System (INIS)

    Boettiger, J.

    1979-01-01

    The thesis is divided into two parts, the first being a general review of the experimental methods for depth profiling of light isotopes, where ion beams are used. In the second part, studies of ion implantation of hydrogen and helium isotopes, applying the techniques discussed in the first part, are described. The paper summarizes recent experimental results and discusses recent developments. (Auth.)

  8. The formation of microvoids in MgO by helium ion implantation and thermal annealing

    International Nuclear Information System (INIS)

    Veen, A. van; Schut, H.; Fedorov, A.V.; Labohm, F.; Neeft, E.A.C.; Konings, R.J.M.

    1999-01-01

    The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV 3 He ions with doses varying from 10 15 to 10 16 cm -2 and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2x10 15 cm -2 annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed

  9. The formation of microvoids in MgO by helium ion implantation and thermal annealing

    Science.gov (United States)

    van Veen, A.; Schut, H.; Fedorov, A. V.; Labohm, F.; Neeft, E. A. C.; Konings, R. J. M.

    1999-01-01

    The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV 3He ions with doses varying from 10 15 to 10 16 cm -2 and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2 × 10 15 cm -2 annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed.

  10. The formation of microvoids in MgO by helium ion implantation and thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Veen, A. van E-mail: avveen@iri.tudelft.nl; Schut, H.; Fedorov, A.V.; Labohm, F.; Neeft, E.A.C.; Konings, R.J.M

    1999-01-02

    The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV {sup 3}He ions with doses varying from 10{sup 15} to 10{sup 16} cm{sup -2} and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2x10{sup 15} cm{sup -2} annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed.

  11. Double ionization of atomic helium under heavy ion impact

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1995-01-01

    Cross sections for double ionization of helium by multiply-charged ion impact and the corresponding ratios of double-to-single ionization are presented as a sum of the contributions given by the one-step (shake-off) and two-step (TS) processes. An analytic form is found for the continuum wavefunction which is valid in both limiting cases of low and high velocities of the relative motion. Using this wavefunction, the TS cross sections are calculated within the independent-event model. The results for the ratios of double-to-single ionization show satisfactory agreement with the experimental data available. (author)

  12. Average equilibrium charge state of 278113 ions moving in a helium gas

    International Nuclear Information System (INIS)

    Kaji, D.; Morita, K.; Morimoto, K.

    2005-01-01

    Difficulty to identify a new heavy element comes from the small production cross section. For example, the production cross section was about 0.5 pb in the case of searching for the 112th element produced by the cold fusion reaction of 208 Pb( 70 Zn,n) 277 ll2. In order to identify heavier elements than element 112, the experimental apparatus with a sensitivity of sub-pico barn level is essentially needed. A gas-filled recoil separator, in general, has a large collection efficiency compared with other recoil separators as seen from the operation principle of a gas-filled recoil separator. One of the most important parameters for a gas-filled recoil separator is the average equilibrium charge state q ave of ions moving in a used gas. This is because the recoil ion can not be properly transported to the focal plane of the separator, if the q ave of an element of interest in a gas is unknown. We have systematically measured equilibrium charge state distributions of heavy ions ( 169 Tm, 208 Pb, 193,209 Bi, 196 Po, 200 At, 203,204 Fr, 212 Ac, 234 Bk, 245 Fm, 254 No, 255 Lr, and 265 Hs) moving in a helium gas by using the gas-filled recoil separator GARIS at RIKEN. Ana then, the empirical formula on q ave of heavy ions in a helium gas was derived as a function of the velocity and the atomic number of an ion on the basis of the Tomas-Fermi model of the atom. The formula was found to be applicable to search for transactinide nuclides of 271 Ds, 272 Rg, and 277 112 produced by cold fusion reactions. Using the formula on q ave , we searched for a new isotope of element 113 produced by the cold fusion reaction of 209 Bi( 70 Zn,n) 278 113. As a result, a decay chain due to an evaporation residue of 278 113 was observed. Recently, we have successfully observed the 2nd decay chain due to an evaporation residue of 278 113. In this report, we will present experimental results in detail, and will also discuss the average equilibrium charge sate of 278 113 in a helium gas by

  13. Interpretation of x-ray emission from lithium-like ions in collisions with helium

    International Nuclear Information System (INIS)

    Armen, G.B.; Aaberg, T.

    1994-01-01

    We consider the continuous x-ray distribution on the low-energy side of the K α line in projectile spectra coincident with single-electron loss in collision of lithium-like ions with helium. We demonstrate that the observed distributions are due to two-photon emission rather than to the radiative Auger effect. (author)

  14. Polarized positrons in Jefferson lab electron ion collider (JLEIC)

    Science.gov (United States)

    Lin, Fanglei; Grames, Joe; Guo, Jiquan; Morozov, Vasiliy; Zhang, Yuhong

    2018-05-01

    The Jefferson Lab Electron Ion Collider (JLEIC) is designed to provide collisions of electron and ion beams with high luminosity and high polarization to reach new frontier in exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches with proper cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) and electron can be easily preserved, manipulated and maintained by taking advantage of the unique figure-8 shape rings. With a growing physics interest, polarized positron-ion collisions are considered to be carried out in the JLEIC to offer an additional probe to study the substructure of nucleons and nuclei. However, the creation of polarized positrons with sufficient intensity is particularly challenging. We propose a dedicated scheme to generate polarized positrons. Rather than trying to accumulate "hot" positrons after conversion, we will accumulate "cold" electrons before conversion. Charge accumulation additionally provides a novel means to convert high repetition rate (>100 MHz) electron beam from the gun to a low repetition rate (<100 MHz) positron beam for broad applications. In this paper, we will address the scheme, provide preliminary estimated parameters and explain the key areas to reach the desired goal.

  15. Crystal orientation effects on helium ion depth distributions and adatom formation processes in plasma-facing tungsten

    International Nuclear Information System (INIS)

    Hammond, Karl D.; Wirth, Brian D.

    2014-01-01

    We present atomistic simulations that show the effect of surface orientation on helium depth distributions and surface feature formation as a result of low-energy helium plasma exposure. We find a pronounced effect of surface orientation on the initial depth of implanted helium ions, as well as a difference in reflection and helium retention across different surface orientations. Our results indicate that single helium interstitials are sufficient to induce the formation of adatom/substitutional helium pairs under certain highly corrugated tungsten surfaces, such as (1 1 1)-orientations, leading to the formation of a relatively concentrated layer of immobile helium immediately below the surface. The energies involved for helium-induced adatom formation on (1 1 1) and (2 1 1) surfaces are exoergic for even a single adatom very close to the surface, while (0 0 1) and (0 1 1) surfaces require two or even three helium atoms in a cluster before a substitutional helium cluster and adatom will form with reasonable probability. This phenomenon results in much higher initial helium retention during helium plasma exposure to (1 1 1) and (2 1 1) tungsten surfaces than is observed for (0 0 1) or (0 1 1) surfaces and is much higher than can be attributed to differences in the initial depth distributions alone. The layer thus formed may serve as nucleation sites for further bubble formation and growth or as a source of material embrittlement or fatigue, which may have implications for the formation of tungsten “fuzz” in plasma-facing divertors for magnetic-confinement nuclear fusion reactors and/or the lifetime of such divertors.

  16. Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun

    Science.gov (United States)

    Fu, Hui; Madjarska, M. S.; Li, Bo; Xia, LiDong; Huang, ZhengHua

    2018-05-01

    Two main models have been developed to explain the mechanisms of release, heating and acceleration of the nascent solar wind, the wave-turbulence-driven (WTD) models and reconnection-loop-opening (RLO) models, in which the plasma release processes are fundamentally different. Given that the statistical observational properties of helium ions produced in magnetically diverse solar regions could provide valuable information for the solar wind modelling, we examine the statistical properties of the helium abundance (AHe) and the speed difference between helium ions and protons (vαp) for coronal holes (CHs), active regions (ARs) and the quiet Sun (QS). We find bimodal distributions in the space of AHeand vαp/vA(where vA is the local Alfvén speed) for the solar wind as a whole. The CH wind measurements are concentrated at higher AHeand vαp/vAvalues with a smaller AHedistribution range, while the AR and QS wind is associated with lower AHeand vαp/vA, and a larger AHedistribution range. The magnetic diversity of the source regions and the physical processes related to it are possibly responsible for the different properties of AHeand vαp/vA. The statistical results suggest that the two solar wind generation mechanisms, WTD and RLO, work in parallel in all solar wind source regions. In CH regions WTD plays a major role, whereas the RLO mechanism is more important in AR and QS.

  17. Characteristics of 6.5 GHz ECR ion source for polarized H- ion source

    International Nuclear Information System (INIS)

    Ikegami, Kiyoshi; Mori, Yoshiharu; Takagi, Akira; Fukumoto, Sadayoshi.

    1983-04-01

    A 6.5 GHz ECR (electron cyclotron resonance) ion source has been developed for optically pumped polarized H - ion source at KEK. The properties of this ECR ion source such as beam intensities, proton ratios, plasma electron temperatures and beam emittances were measured. (author)

  18. Capillary Ion Concentration Polarization for Power-Free Salt Purification

    Science.gov (United States)

    Park, Sungmin; Jung, Yeonsu; Cho, Inhee; Kim, Ho-Young; Kim, Sung Jae

    2014-11-01

    In this presentation, we experimentally and theoretically demonstrated the capillary based ion concentration polarization for power-free salt purification system. Traditional ion concentration polarization phenomenon has been studied for a decade for both fundamental nanoscale fluid dynamics and novel engineering applications such as desalination, preconcentration and energy harvesting devices. While the conventional system utilizes an external power source, the system based on capillary ion concentration polarization is capable of perm-selective ion transportation only by capillarity so that the same ion depletion zone can be formed without any external power sources. An ion concentration profile near the nanostructure was tracked using fluorescent probes and analyzed by solving the modified Nernst-Planck equation. As a result, the concentration in the vicinity of the nanostructure was at least 10 times lower than that of bulk electrolyte and thus, the liquid absorbed into the nanostructure had the low concentration. This mechanism can be used for the power free salt purification system which would be significantly useful in underdeveloped and remote area. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1301-02.

  19. Progress in Polarized 3He Ion Source at RCNP

    International Nuclear Information System (INIS)

    Tanaka, M.; Takahashi, Y.; Shimoda, T.; Yasui, S.; Yosoi, M.; Takahisa, K.; Shimakura, N.; Plis, Yu. A.; Donets, E. D.

    2007-01-01

    A long history on the polarized 3He ion source developed at RCNP is presented. We started with an 'OPPIS' (Optical Pumping Polarized Ion Source) and later found the fundamental difficulties in the OPPIS. To overcome them an 'EPPIS' (Electron Pumping Polarized Ion Source) was proposed and its validity was experimentally proven. However, a serious technical disadvantage was also found in the EPPIS. To avoid this disadvantage we proposed a new concept, 'SEPIS' (Spin Exchange Polarized Ion Source), which uses an enhanced spin-exchange cross section theoretically expected at low 3He+ incident energies in the 3He+ + Rb system. Next, we describe the present status of the SEPIS development: construction of a bench test device allowing the measurements of not only the spin-exchange cross sections σse but also the electron capture cross sections σec for the 3He+ + Rb system. The latest experimental data on σec are presented and compared with other previous experimental data and the theoretical calculations.Finally, a design study of the SEPIS for practical use in nuclear (cyclotron) and particle physics (synchrotron) is shortly mentioned

  20. Electron induced formation and stability of molecular and cluster ions in gas phase and superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Aleem, M. A.

    2010-01-01

    The present PhD thesis represents a broad range study of electron induced formation and stability of positive and negative ions in gas phase and superfluid helium nanodroplets. The molecules studied are of industrial, environmental, plasma and biological relevance. The knowledge obtained from the study provides new insight for the proper understanding and control on energetics and dynamics of the reactions involved in the formation and fragmentation processes of the studied molecules and clusters. The experiments are accomplished and investigated using mass spectrometric techniques for the formation of molecular and cluster ions using different mass spectrometers available in our laboratory. One part of the work is focused on electron-induced reactions of the molecules in gas phase. Especially focus is laid to electron attachment to the isomers of mononitrotolouene used as an additive to explosives. The fragile nature and high internal energy of these molecules has lead to extensive fragmentation following the ionisation process. Dissociative electron attachment to the three different isomers has shown different resonances and therefore this process can be utilized to explicitly distinguish these isomers. Anion efficiency curves of the isomers have been studied using effusive molecular beam source in combination with a hemispherical electron monochromator as well as a Nier-type ion source attached to a sector field mass spectrometer. The outcome of the experiment is a reliable and effective detection method highly desirable for environmental and security reasons. Secondly, dissociative electron ionization of acetylene and propene is studied and their data is directly related to the plasma modelling for plasma fusion and processing reactors. Temperature effects for dissociative electron attachment to halo-hydrocarbons are also measured using a trochoidal electron monochromator. The second part of the work is concerned with the investigation of electron

  1. Versatile Ion-polarized Techniques On-line (VITO) experiment at ISOLDE-CERN

    Energy Technology Data Exchange (ETDEWEB)

    Stachura, M., E-mail: monika.stachura@cern.ch [CERN, 1211 Geneva 23 (Switzerland); Gottberg, A. [CERN, 1211 Geneva 23 (Switzerland); Johnston, K. [CERN, 1211 Geneva 23 (Switzerland); Universität des Saarlandes, Experimentalphysik, 66123 Saabrucken (Germany); Bissell, M.L.; Garcia Ruiz, R.F. [Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Martins Correia, J.; Granadeiro Costa, A.R. [Centro de Ciências e Tecnologias Nucleares - C" 2TN, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS (Portugal); Dehn, M. [Technische Universität München, Physics Department, James-Franck-Str. 1, 85748 Garching (Germany); Deicher, M. [Universität des Saarlandes, Experimentalphysik, 66123 Saabrucken (Germany); Fenta, A. [CICECO, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Hemmingsen, L. [Kemisk Institut, Københavns Universitet, Universtetsparken 5, 2100 København (Denmark); Mølholt, T.E. [CERN, 1211 Geneva 23 (Switzerland); Munch, M. [Institut for Fysik og Astronomi, Aarhus Universitet, Ny Munkegade 120, 8000 Aarhus C (Denmark); Neyens, G. [Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven (Belgium); and others

    2016-06-01

    The VITO (Versatile Ion-polarized Techniques Online) project is a new experimental setup at the ISOLDE facility at CERN. VITO is a dedicated beam line for producing laser-induced spin-polarized beams of both, atoms and ions, and it has been commissioned in response to the continuously growing demand for the use of spin-polarized beams. The new VITO beam line is a modification of the formerly existing ultra-high vacuum beam line, connecting ASPIC (Apparatus for Surface Physics and Interfaces at CERN), and it has been under construction since the beginning of 2014. Once fully commissioned, VITO will open up numerous possibilities for carrying out multidisciplinary experiments in the areas of nuclear and solid state physics, fundamental interaction physics and biophysics. In its final stage the VITO beam line will provide three fully independent experimental stations: UHV chamber for material science applications, a β-asymmetry station where highly-polarized ions will be available, and a central open-end station suitable for travelling experiments. The VITO beam line will operate in two different modes providing either beams of spin-polarized atoms or ions, or non-polarized ion beams to all three end stations operating from 10{sup −10} mbar to 50 mbar. Recent experimental campaigns with stable and radioactive beams have allowed for testing VITO’s constituent parts and have demonstrated 96% of ion beam transmission to the collection chamber installed on the central station. The first experimental results obtained with on-line Perturbed Angular Correlation (PAC) spectroscopy using {sup 68m}Cu ion-beams will be briefly discussed.

  2. Mechanical properties of tungsten following rhenium ion and helium plasma exposure

    Directory of Open Access Journals (Sweden)

    C.S. Corr

    2017-08-01

    Full Text Available Mechanical properties of Tungsten (W samples irradiated with 2 MeV Rhenium (Re ions and helium (He plasma were investigated using nanoindentation. It was found that there was an increase in hardness for all samples following separate irradiation with both Re ion and He plasma. A slight increase in hardness was obtained for combined exposures. A comparable increase in hardness was observed for a pure He plasma with a sample temperature of 473 K and 1273 K. Optical interferometry was employed to compare surface modification of the samples. Grazing incidence small angle x-ray scattering confirmed He nano-bubble formation of approximately 1 nm diameter in the higher temperature sample, which was not observed with samples at the lower temperatures.

  3. The adsorption of helium atoms on coronene cations

    Energy Technology Data Exchange (ETDEWEB)

    Kurzthaler, Thomas; Rasul, Bilal; Kuhn, Martin; Scheier, Paul, E-mail: Paul.Scheier@uibk.ac.at, E-mail: andrew.ellis@le.ac.uk [Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck (Austria); Lindinger, Albrecht [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Ellis, Andrew M., E-mail: Paul.Scheier@uibk.ac.at, E-mail: andrew.ellis@le.ac.uk [Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2016-08-14

    We report the first experimental study of the attachment of multiple foreign atoms to a cationic polycyclic aromatic hydrocarbon (PAH). The chosen PAH was coronene, C{sub 24}H{sub 12}, which was added to liquid helium nanodroplets and then subjected to electron bombardment. Using mass spectrometry, coronene cations decorated with helium atoms were clearly seen and the spectrum shows peaks with anomalously high intensities (“magic number” peaks), which represent ion-helium complexes with added stability. The data suggest the formation of a rigid helium layer consisting of 38 helium atoms that completely cover both faces of the coronene ion. Additional magic numbers can be seen for the further addition of 3 and 6 helium atoms, which are thought to attach to the edge of the coronene. The observation of magic numbers for the addition of 38 and 44 helium atoms is in good agreement with a recent path integral Monte Carlo prediction for helium atoms on neutral coronene. An understanding of how atoms and molecules attach to PAH ions is important for a number of reasons including the potential role such complexes might play in the chemistry of the interstellar medium.

  4. Recommendation for a injector-cyclotron and ion sources for the acceleration of heavy ions and polarized protons and deuterons

    International Nuclear Information System (INIS)

    Botha, A.H.; Cronje, P.M.; Du Toit, Z.B.; Nel, W.A.G.; Celliers, P.J.

    1984-01-01

    It was decided to accelerate both heavy and light ions with the open-sector cyclotron. The injector SPS1, was used for light ions and SPS2 for heavy ions. Provision was also made for the acceleration of polarized neutrons. To enable this, the injector must have an axial injection system. The working of a source of polarized ions and inflectors for an axial injection system is discussed. The limitations of the open-sector cyclotron on the acceleration of heavy ions are also dealt with. The following acceleration/ion source combinations are discussed: i) The open-sector cyclotron and a k=40 injector cyclotron with a Penning ion source, and a stripper between the injector and the open-sector cyclotron and also a source of polarized protons and deuterons; ii) The acceleration/ion source combination with the addition of electron beam ion sources; iii) The open-sector cyclotron and a k=11 injector cyclotron with a electron beam ion source and a source of polarized protons and deuterons

  5. Setup and proof of principle of SAPIS (Stored Atoms Polarized Ion Source), a novel source of polarized H-/D- ions

    International Nuclear Information System (INIS)

    Emmerich, R.

    2007-01-01

    The objective of this work was the setup and the proof-of-principle of a new type of negative polarized hydrogen or deuterium ion source, which is based on the charge-exchange reaction vectorH 0 +Cs 0 →vectorH - +Cs + , as for instance the Colliding-Beams-Source (CBS) at the Cooler Synchrotron COSY in Juelich. In contrast to the CBS, the use of a storage cell for the charge-exchange region promises an increase in H - current by at least an order of magnitude without considerable polarization losses. For these purposes, a new laboratory was equipped and both a polarized hydrogen/deuterium atomic beam source and an intense neutral cesium-beam source have been build-on. A Lambshift polarimeter, which allows the measurement of the nuclear polarization of the atomic as well as ionic beams, was completed with the construction of a new spin-filter. After commissioning and optimizing each of these sources, a storage cell was developed and installed in the charge-exchange region with a magnetic field. Additionally, components for the extraction, detection and analysis of the negative ion beam were installed. Following the decisive proof of principle, investigation of the properties of the storage cell, especially as to H recombination and depolarisation, was begun. Furthermore, a number of software programs was developed for the control and monitoring of different components of the sources as well as a universal measuring software for the complete installation, including the measurement and calculation of the beam polarization. At the same time, the remote control system of the Cologne source of polarized ions LASCO at the FN tandem accelerator was completely modernized. (orig.)

  6. Stereotactic helium-ion radiosurgery for the treatment of intracranial arteriovenous malformations

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Levy, R.P.; Frankel, K.A.; Phillips, M.H.; Lyman, J.T.; Chuang, F.Y.S.; Steinberg, G.K.; Marks, M.P.

    1989-12-01

    One of the more challenging problems of vascular neurosurgery is the management of surgically-inaccessible arteriovenous malformations (AVMs) of the brain. At Lawrence Berkeley Laboratory, we have developed the method of stereotactic heavy-charged-particle (helium-ion) Bragg peak radiosurgery for treatment of inoperable intracranial AVMs in over 300 patients since 1980 [Fabrikant et al. 1989, Fabrikant et al. 1985, Levy et al. 1989]. This report describes patient selection, treatment method, clinical and neuroradiologic results and complications encountered. 4 refs

  7. Helium ion microscopy of graphene: beam damage, image quality and edge contrast

    International Nuclear Information System (INIS)

    Fox, D; Zhou, Y B; O’Neill, A; Wang, J J; Coleman, J N; Donegan, J F; Zhang, H Z; Kumar, S; Duesberg, G S

    2013-01-01

    A study to analyse beam damage, image quality and edge contrast in the helium ion microscope (HIM) has been undertaken. The sample investigated was graphene. Raman spectroscopy was used to quantify the disorder that can be introduced into the graphene as a function of helium ion dose. The effects of the dose on both freestanding and supported graphene were compared. These doses were then correlated directly to image quality by imaging graphene flakes at high magnification. It was found that a high magnification image with a good signal to noise ratio will introduce very significant sample damage. A safe imaging dose of the order of 10 13 He + cm −2 was established, with both graphene samples becoming highly defective at doses over 5 × 10 14 He + cm −2 . The edge contrast of a freestanding graphene flake imaged in the HIM was then compared with the contrast of the same flake observed in a scanning electron microscope and a transmission electron microscope. Very strong edge sensitivity was observed in the HIM. This enhanced edge sensitivity over the other techniques investigated makes the HIM a powerful nanoscale dimensional metrology tool, with the capability of both fabricating and imaging features with sub-nanometre resolution. (paper)

  8. Modeling secondary electron emission from nanostructured materials in helium ion microscope

    International Nuclear Information System (INIS)

    Ohya, K.; Yamanaka, T.

    2013-01-01

    Charging of a SiO 2 layer on a Si substrate during helium (He) beam irradiation is investigated at an energy range relevant to a He ion microscope (HIM). A self-consistent calculation is performed to model the transport of the ions and secondary electrons (SEs), the charge accumulation in the layer, and the electric field below and above the surface. The calculated results are compared with those for gallium (Ga) ions at the same energy and 1 keV electrons corresponding to a low-voltage scanning electron microscope (SEM). The charging of thin layers ( 2 step formed on a Si substrate, a sharp increase in the number of SEs is observed, irrespective of whether a material is charged or not. When the He ions are incident on the bottom of the step, the re-entrance of SEs emitted from the substrate into the sidewall is clearly observed, but it causes the sidewall to be charged negatively. At the positions on the SiO 2 layer away from the step edge, the charging voltage becomes positive with increasing number of Ga ions and electrons. However, He ions do not induce such a voltage due to strong relaxation of positive and negative charges in the Si substrate and their recombination in the SiO 2 layer

  9. Helium mobility in advanced nuclear ceramics

    International Nuclear Information System (INIS)

    Agarwal, Shradha

    2014-01-01

    The main goal of this work is to improve our knowledge on the mechanisms able to drive the helium behaviour in transition metal carbides and nitrides submitted to thermal annealing or ion irradiation. TiC, TiN and ZrC polycrystals were implanted with 3 MeV 3 He ions at room temperature in the fluence range 2 * 10 15 et 6 * 10 16 cm -2 . Some of them have been pre-irradiated with self-ions (14 MeV Ti or Zr). Fully controlled thermal annealing tests were subsequently carried out in the temperature range 1000 - 1600 C for two hours. The evolution of the helium depth distribution in function of implantation dose, temperature and pre-irradiation dose was measured thanks to the deuteron-induced nuclear reaction 3 He(d, p 0 ) 4 He between 900 keV and 1.8 MeV. The microstructure of implanted and annealed samples was investigated by transmission electron microscopy on thin foils prepared using the FIB technique. Additional characterization tools, as X-ray diffraction and Raman microspectrometry, have been also applied in order to obtain complementary information. Among the most relevant results obtained, the following have to be outlined: - double-peak helium depth profile was measured on as implanted sample for the three compounds. The first peak is located near the end of range and includes the major part of helium, a second peak located close to the surface corresponds to the helium atoms trapped by the native vacancies; - the helium retention capacity in transition metal carbides and nitrides submitted to fully controlled thermal treatments varies according to ZrC 0.92 ≤ TiC 0.96 ≤ TiN 0.96 ; - whatever the investigated material, a self-ion-induced pre-damaging does not modify the initial helium profile extent. The influence of the post-implantation thermal treatment remains preponderant in any case; - the apparent diffusion coefficient of helium is in the range 4 * 10 -18 - 2 * 10 -17 m 2 s -1 in TiC0.96 and 3.5 * 10 -19 - 5.3 * 10 -18 m 2 s -1 in TiN 0.96 between

  10. Modeling of Jovian Auroral Polar Ion and Proton Precipitation

    Science.gov (United States)

    Houston, S. J.; Ozak, N. O.; Cravens, T.; Schultz, D. R.; Mauk, B.; Haggerty, D. K.; Young, J. T.

    2017-12-01

    Auroral particle precipitation dominates the chemical and physical environment of the upper atmospheres and ionospheres of the outer planets. Precipitation of energetic electrons from the middle magnetosphere is responsible for the main auroral oval at Jupiter, but energetic electron, proton, and ion precipitation take place in the polar caps. At least some of the ion precipitation is associated with soft X-ray emission with about 1 GW of power. Theoretical modeling has demonstrated that the incident sulfur and oxygen ion energies must exceed about 0.5 MeV/nucleon (u) in order to produce the measured X-ray emission. In this work we present a model of the transport of magnetospheric oxygen ions as they precipitate into Jupiter's polar atmosphere. We have revised and updated the hybrid Monte Carlo model originally developed by Ozak et al., 2010 to model the Jovian X-ray aurora. We now simulate a wider range of incident oxygen ion energies (10 keV/u - 5 MeV/u) and update the collision cross-sections to model the ionization of the atmospheric neutrals. The polar cap location of the emission and magnetosphere-ionosphere coupling both indicate the associated field-aligned currents must originate near the magnetopause or perhaps the distant tail. Secondary electrons produced in the upper atmosphere by ion precipitation could be accelerated upward to relativistic energies due to the same field-aligned potentials responsible for the downward ion acceleration. To further explore this, we simulate the effect of the secondary electrons generated from the heavy ion precipitation. We use a two-stream transport model that computes the secondary electron fluxes, their escape from the atmosphere, and characterization of the H2 Lyman-Werner band emission, including a predicted observable spectrum with the associated color ratio. Our model predicts that escaping electrons have an energy range from 1 eV to 6 keV, H2 band emission rates produced are on the order of 75 kR for an input

  11. Hydrogen retention properties of polycrystalline tungsten and helium irradiated tungsten

    International Nuclear Information System (INIS)

    Hino, T.; Koyama, K.; Yamauchi, Y.; Hirohata, Y.

    1998-01-01

    The hydrogen retention properties of a polycrystalline tungsten and tungsten irradiated by helium ions with an energy of 5 keV were examined by using an ECR ion irradiation apparatus and a technique of thermal desorption spectroscopy, TDS. The polycrystalline tungsten was irradiated at RT with energetic hydrogen ions, with a flux of 10 15 H cm -2 and an energy of 1.7 keV up to a fluence of 5 x 10 18 H cm -2 . Subsequently, the amount of retained hydrogen was measured by TDS. The heating temperature was increased from RT to 1000 C, and the heating rate was 50 C min -1 . Below 1000 C, two distinct hydrogen desorption peaks were observed at 200 C and 400 C. The retained amount of hydrogen was observed to be five times smaller than that of graphite, but the concentration in the implantation layer was comparable with that of graphite. Also, the polycrystalline tungsten was irradiated with 5 keV helium ions up to a fluence of 1.4 x 10 18 He cm -2 , and then re-irradiated with 1.7 keV hydrogen ions. The amount of retained hydrogen in this later experiment was close to the value in the case without prior helium ion irradiation. However, the amount of hydrogen which desorbed around the low temperature peak, 200 C, was largely enhanced. The desorption amount at 200 C saturated for the helium fluence of more than 5 x 10 17 He cm -2 . The present data shows that the trapping state of hydrogen is largely changed by the helium ion irradiation. Additionally, 5 keV helium ion irradiation was conducted on a sample pre-implanted with hydrogen ions to simulate a helium ion impact desorption of hydrogen retained in tungsten. The amount of the hydrogen was reduced as much as 50%. (orig.)

  12. Measurement of ion beam angular distribution at different helium gas pressures in a plasma focus device by large-area polycarbonate detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sohrabi, M.; Habibi, M., E-mail: mortezahabibi@gmail.com; Ramezani, V. [Amirkabir University of Technology, Energy Engineering and Physics Department (Iran, Islamic Republic of)

    2017-02-15

    The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of ~4.4 × 10{sup 4} tracks/cm{sup 2} was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due to the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.

  13. The adsorption of helium atoms on small cationic gold clusters.

    Science.gov (United States)

    Goulart, Marcelo; Gatchell, Michael; Kranabetter, Lorenz; Kuhn, Martin; Martini, Paul; Gitzl, Norbert; Rainer, Manuel; Postler, Johannes; Scheier, Paul; Ellis, Andrew M

    2018-04-04

    Adducts formed between small gold cluster cations and helium atoms are reported for the first time. These binary ions, Aun+Hem, were produced by electron ionization of helium nanodroplets doped with neutral gold clusters and were detected using mass spectrometry. For a given value of n, the distribution of ions as a function of the number of added helium atoms, m, has been recorded. Peaks with anomalously high intensities, corresponding to so-called magic number ions, are identified and interpreted in terms of the geometric structures of the underlying Aun+ ions. These features can be accounted for by planar structures for Aun+ ions with n ≤ 7, with the addition of helium having no significant effect on the structures of the underlying gold cluster ions. According to ion mobility studies and some theoretical predictions, a 3-D structure is expected for Au8+. However, the findings for Au8+ in this work are more consistent with a planar structure.

  14. Using ion production to monitor the birth and death of a metastable helium Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Seidelin, S; Sirjean, O; Gomes, J Viana; Boiron, D; Westbrook, C I; Aspect, A

    2003-01-01

    We discuss observations of the ion flux from a cloud of trapped 2 3 S 1 metastable helium atoms. Both Bose-Einstein condensates (BEC) and thermal clouds were investigated. The ion flux is compared with time-of-flight observations of the expanded cloud. We show data concerning BEC formation and decay, as well as measurements of two-and three-body ionization rate constants. We also discuss possible improvements and extensions of our results

  15. Polarization Studies in Fast-Ion Beam Spectroscopy

    International Nuclear Information System (INIS)

    Trabert, E

    2001-01-01

    In a historical review, the observations and the insight gained from polarization studies of fast ions interacting with solid targets are presented. These began with J. Macek's recognition of zero-field quantum beats in beam-foil spectroscopy as indicating alignment, and D.G. Ellis' density operator analysis that suggested the observability of orientation when using tilted foils. Lastly H. Winter's studies of the ion-beam surface interaction at grazing incidence yielded the means to produce a high degree of nuclear orientation in ion beams

  16. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions

    Science.gov (United States)

    Gonderman, S.; Tripathi, J. K.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.

    2017-08-01

    Currently, tungsten remains the best candidate for plasma-facing components (PFCs) for future fusion devices because of its high melting point, low erosion, and strong mechanical properties. However, continued investigation has shown tungsten to undergo severe morphology changes under fusion-like conditions. These results motivate the study of innovative PFC materials which are resistant to surface morphology evolution. The goal of this work is to examine tungsten-tantalum (W-Ta) alloys, a potential PFC material, and their response to low energy helium ion irradiation. Specifically, W-Ta samples are exposed to 100 eV helium irradiations with a flux of 1.15 × 1021 ions m-2 s-1, at 873 K, 1023 K, and 1173 K for 1 h duration. Scanning electron microscopy (SEM) reveals significant changes in surface deterioration due to helium ion irradiation as a function of both temperature and tantalum concentration in W-Ta samples. X-Ray Diffraction (XRD) studies show a slight lattice parameter expansion in W-Ta alloy samples compared to pure W samples. The observed lattice parameter expansion in W-Ta alloy samples (proportional to increasing Ta wt.% concentrations) reflect significant differences observed in the evolution of surface morphology, i.e., fuzz development processes for both increasing Ta wt.% concentration and target temperature. These results suggest a correlation between the observed morphology differences and the induced crystal structure change caused by the presence of tantalum. Shifts in the XRD peaks before and after 100 eV helium irradiation with a flux of 1.15 × 1021 ions m-2 s-1, 1023 K, for 1 h showed a significant difference in the magnitude of the shift. This has suggested a possible link between the atomic spacing of the material and the accumulated damage. Ongoing research is needed on W-Ta alloys and other innovative materials for their application as irradiation resistant materials in future fusion or irradiation environments.

  17. Operational experience with the TRIUMF optically pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Schmor, P.W.; Buchmann, L.; Jayamanna, K.; Levy, C.D.P.; McDonald, M.; Ruegg, R.

    1991-05-01

    The initial goal of a polarized proton beam extracted from the TRIUMF cyclotron, having a current of 5 μA with 60% polarization, has been achieved with the development of the optically pumped polarized H - ion source. This beam is now being used to produce an intense secondary beam of polarized neutrons for the TRIUMF experimental program. Much of the recent development effort has addressed the reliability requirements for routine operation. This paper describes the results with emphasis on the laser stabilization subsystem, the modifications to the electron cyclotron resonance proton ion source (ECRIS), the sodium charge exchange cells and the development of a low energy polarimeter. Also discussed are the developments which should lead to a higher polarization. (Author) 7 refs

  18. 2D imaging of helium ion velocity in the DIII-D divertor

    Science.gov (United States)

    Samuell, C. M.; Porter, G. D.; Meyer, W. H.; Rognlien, T. D.; Allen, S. L.; Briesemeister, A.; Mclean, A. G.; Zeng, L.; Jaervinen, A. E.; Howard, J.

    2018-05-01

    Two-dimensional imaging of parallel ion velocities is compared to fluid modeling simulations to understand the role of ions in determining divertor conditions and benchmark the UEDGE fluid modeling code. Pure helium discharges are used so that spectroscopic He+ measurements represent the main-ion population at small electron temperatures. Electron temperatures and densities in the divertor match simulated values to within about 20%-30%, establishing the experiment/model match as being at least as good as those normally obtained in the more regularly simulated deuterium plasmas. He+ brightness (HeII) comparison indicates that the degree of detachment is captured well by UEDGE, principally due to the inclusion of E ×B drifts. Tomographically inverted Coherence Imaging Spectroscopy measurements are used to determine the He+ parallel velocities which display excellent agreement between the model and the experiment near the divertor target where He+ is predicted to be the main-ion species and where electron-dominated physics dictates the parallel momentum balance. Upstream near the X-point where He+ is a minority species and ion-dominated physics plays a more important role, there is an underestimation of the flow velocity magnitude by a factor of 2-3. These results indicate that more effort is required to be able to correctly predict ion momentum in these challenging regimes.

  19. Radiation blistering in Inconel-625 due to 100 KeV helium ion irradiation

    International Nuclear Information System (INIS)

    Whitton, J.L.; Rao, A.S.; Kaminsky, M.

    1988-01-01

    The objective of this study was to determine whether the change of angle of incidence of an ion beam impinging on surface blisters during their growth phase (before exfoliation) could influence the blister skin thickness and the blister crater depth. Polished, polycrystalline Inconel-625 samples were irradiated at room temperature and at normal incidence to the major sample surface with 100 keV helium ions to a total dose of 6.24x10 18 ions/cm 2 . The results revealed that many exfoliated blisters leave craters which have two or three concentric pits. The blister skin thickness near the center of the blister was found to agree well with the calculated projected range of 100 keV He ions in nickel. However, the blister skin thickness of some exfoliated blisters along the edge of the fracture surface showed different thicknesses. A model is proposed to explain the observed blister crater/blister fracture features in terms of a change of angle of incidence of the incident ions to the surface during the growth phase of surface blisters. (orig.)

  20. Direct Detection of the Ion Pair to Free Ions Transformation upon Complexation with an Ion Receptor in Non-Polar Solvents by using Conductometry.

    Science.gov (United States)

    Iseda, Kazuya; Kokado, Kenta; Sada, Kazuki

    2018-03-01

    In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride ( TBACl ) ion-pair salt to the free ions through complexation with meso -octamethylcalix[4]pyrrole ( CP ), which is a well-known receptor for chloride anions. In the presence of CP , the conductivity of TBACl increases in various non-polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non-polar solvents. In other words, CP recognizes chloride as an ion-paired salt as well as a free anion in non-polar solvents. Additionally, the TBA(CP - Cl ) complex exhibited a considerably lower ion-pairing constant ( K ip ) than TBACl in non-polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli-responsive soft materials in organic solvents using coulombic forces.

  1. Structure and micro-mechanical properties of helium-implanted layer on Ti by plasma-based ion implantation

    International Nuclear Information System (INIS)

    Ma Xinxin; Li Jinlong; Sun Mingren

    2008-01-01

    The present paper concentrates on structure and micro-mechanical properties of the helium-implanted layer on titanium treated by plasma-based ion implantation with a pulsed voltage of -30 kV and doses of 3, 6, 9 and 12 x 10 17 ions/cm 2 , respectively. X-ray photoelectron spectroscopy and transmission electron microscopy are employed to characterize the structure of the implanted layer. The hardnesses at different depths of the layer were measured by nano-indentation. We found that helium ion implantation into titanium leads to the formation of bubbles with a diameter from a few to more than 10 nm and the bubble size increases with the increase of dose. The primary existing form of Ti is amorphous in the implanted layer. Helium implantation also enhances the ingress of O, C and N and stimulates the formations of TiO 2 , Ti 2 O 3 , TiO, TiC and TiN in the near surface layer. And the amount of the ingressed oxygen is obviously higher than those of nitrogen and carbon due to its higher activity. At the near surface layer, the hardnesses of all implanted samples increases remarkably comparing with untreated one and the maximum hardness has an increase by a factor of up to 3.7. For the samples implanted with higher doses of 6, 9 and 12 x 10 17 He/cm 2 , the local displacement bursts are clearly found in the load-displacement curves. For the samples implanted with a lower dose of 3 x 10 17 He/cm 2 , there is no obvious displacement burst found. Furthermore, the burst width increases with the increase of the dose

  2. The BNL polarized H- ion source development program

    International Nuclear Information System (INIS)

    Kponou, A.; Alessi, J.; Hershcovitch, A.; DeVito, B.

    1992-01-01

    Polarized protons have been available for acceleration in the AGS for the high energy physics program since 1984. The polarized H - source, PONI-1, has routinely supplied a 0.4 Hz, 400 μsec pulse having a nominal intensity of 40 μA. Polarization is ∼80% out of the ion source. After PONI- 1 became operational, a program was initiated to develop a more intense source based on a cold ground state atomic beam source, followed by ionization of the polarized H degrees beam by D - charge exchange. Various phases of this work have been fully reported elsewhere, and only a summary is given here

  3. Quantitative calculations of helium ion escape fluxes from the polar ionospheres

    International Nuclear Information System (INIS)

    Raitt, W.J.; Schunk, R.W.; Banks, P.M.

    1978-01-01

    Recent experimental measurements of He + outward fluxes have been obtained for winter and summer hemispheres. The observed fluxes indicate an average He + escape flux of 2 x 10 7 cm -2 s -1 in the winter hemisphere and a factor of 10-20 lower in the summer hemisphere. Earlier theoretical calculations had yielded winter fluxes a factor of 4 lower than the measured values and summer fluxes a further factor of 20 below the winter fluxes. We have attempted to reduce this discrepancy between our earlier theoretical model and the experimental observations by improving our theoretical model in the following ways. The helium photoionization cross sections used are accurate to 10%, the latest solar EUV fluxes measured by the Atmosphere Explorer satellites have been incorporated, and the most recent MSIS model of the neutral atmosphere is contained in the model. A range of conditions covering solar cycle, seasonal, and geomagnetic conditions were studied. The results show a maximum He + escape flux of 1.4 x 10 7 cm -2 s -1 for solar maximum, winter, low magnetic activity conditions, which is within the scatter of the measured fluxes. The computed summer He + escape flux is a factor of 20 lower than the winter value, a result which is in reasonable agreement with the summer experimental observations. Possible reasons for the slight discrepancy between theory and experiment in summer are discussed

  4. A multi-satellite study of accelerated ionospheric ion beams above the polar cap

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2006-07-01

    Full Text Available This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 RE. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio EO+ / EH+, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity. In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.

  5. Connection experiments with a hollow cathode ion source and a helium gas jet system for on-line isotope separation

    International Nuclear Information System (INIS)

    Mazumdar, A.K.; Wagner, H.; Walcher, W.; Lund, T.

    1976-01-01

    A helium jet system was connected to a hollow cathode ion source. Using fission products the efficiencies of the different steps were measured by β-, X-ray and γ-counting while the mass spectrum and the focussing of the extracted ion beam were observed with a small deflecting magnet. Mean transport efficiencies of 50% through the 12 m capillary were obtained and ion source efficiencies in the percent range for several elements. (Auth.)

  6. Effect of helium on void swelling in vanadium

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1975-01-01

    Little difference in void microstructural swelling of vanadium is observed when helium is injected simultaneously with a 46- or 5-MeV nickel beam as compared to no helium injection, at least at high dose rates. At lower dose rates, a strong helium effect is seen when the helium is injected prior to heavy ion bombardment. The effect of the helium is shown to be a strong function of the overall displacement damage rate

  7. Helium ion microscopy based wall thickness and surface roughness analysis of polymer foams obtained from high internal phase emulsion

    International Nuclear Information System (INIS)

    Rodenburg, C.; Viswanathan, P.; Jepson, M.A.E.; Liu, X.; Battaglia, G.

    2014-01-01

    Due to their wide range of applications, porous polymers obtained from high internal phase emulsions have been widely studied using scanning electron microscopy. However, due to their lack of electrical conductivity, quantitative information of wall thicknesses and surface roughness, which are of particular interest to tissue engineering, has not been obtained. Here, Helium Ion Microscopy is used to examine uncoated polymer foams and some very strong but unexpected contrast is observed, the origin of which is established here. Based on this analysis, a method for the measurement of wall thickness variations and wall roughness measurements has been developed, based on the modeling of Helium ion transmission. The results presented here indicate that within the walls of the void structure there exist small features with height variations of ∼30 nm and wall thickness variations from ∼100 nm to larger 340 nm in regions surrounding interconnecting windows within the structure. The suggested imaging method is applicable to other porous carbon based structures with wall thicknesses in the range of 40–340 nm. - Highlights: • The first helium ion microscopy image of uncoated structures formed from HIPEs is presented. • Unusually high contrast features that change with accelerating voltage are observed. • The origin of the observed contrast is determined to be mass thickness contrast. • A new method for quantitative wall thickness variation/roughness measurements is demonstrated

  8. Helium ion microscopy based wall thickness and surface roughness analysis of polymer foams obtained from high internal phase emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Rodenburg, C., E-mail: c.rodenburg@sheffield.ac.uk [Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Viswanathan, P. [Department of Biomedical Sciences, University of Sheffield, Firth Court, Western Bank Sheffield, Sheffield S10 2 TN (United Kingdom); Jepson, M.A.E. [Department of Materials, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Liu, X. [Carl Zeiss Microscopy GmbH, Carl-Zeiss-Strasse 22, 73447 Oberkochen (Germany); Battaglia, G. [Department of Chemistry University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); The MRC/UCL Centre for Medical Molecular Virology, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2014-04-01

    Due to their wide range of applications, porous polymers obtained from high internal phase emulsions have been widely studied using scanning electron microscopy. However, due to their lack of electrical conductivity, quantitative information of wall thicknesses and surface roughness, which are of particular interest to tissue engineering, has not been obtained. Here, Helium Ion Microscopy is used to examine uncoated polymer foams and some very strong but unexpected contrast is observed, the origin of which is established here. Based on this analysis, a method for the measurement of wall thickness variations and wall roughness measurements has been developed, based on the modeling of Helium ion transmission. The results presented here indicate that within the walls of the void structure there exist small features with height variations of ∼30 nm and wall thickness variations from ∼100 nm to larger 340 nm in regions surrounding interconnecting windows within the structure. The suggested imaging method is applicable to other porous carbon based structures with wall thicknesses in the range of 40–340 nm. - Highlights: • The first helium ion microscopy image of uncoated structures formed from HIPEs is presented. • Unusually high contrast features that change with accelerating voltage are observed. • The origin of the observed contrast is determined to be mass thickness contrast. • A new method for quantitative wall thickness variation/roughness measurements is demonstrated.

  9. Dipole moments of molecules solvated in helium nanodroplets

    International Nuclear Information System (INIS)

    Stiles, Paul L.; Nauta, Klaas; Miller, Roger E.

    2003-01-01

    Stark spectra are reported for hydrogen cyanide and cyanoacetylene solvated in helium nanodroplets. The goal of this study is to understand the influence of the helium solvent on measurements of the permanent electric dipole moment of a molecule. We find that the dipole moments of the helium solvated molecules, calculated assuming the electric field is the same as in vacuum, are slightly smaller than the well-known gas-phase dipole moments of HCN and HCCCN. A simple elliptical cavity model quantitatively accounts for this difference, which arises from the dipole-induced polarization of the helium

  10. Comparative effects of 60Co γ-rays and neon and helium ions on cycle duration and division probability of EMT 6 cells. A time-lapse cinematography study

    International Nuclear Information System (INIS)

    Collyn-d'Hooghe, M.; Hemon, D.; Gilet, R.

    1981-01-01

    Exponentially growing cultures of EMT 6 cells were irradiated in vitro with neon ions, helium ions or 60 Co γ-rays. Time-lapse cinematography allowed the determination, for individual cells, of cycle duration, success of the mitotic division and the age of the cell at the moment of irradiation. Irradiation induced a significant mitotic delay increasing proportionally with the delivered dose. Using mitotic delay as an endpoint, the r.b.e. for neon ions with respect to 60 Co γ-rays was 3.3 +- 0.2 while for helium ions it was 1.2 +- 0.1. Mitotic delay was greatest in those cells that had progressed furthest in their cycle at the time of irradiation. No significant mitotic delay was observed in the post-irradiation generation. Division probability was significantly reduced by irradiation both in the irradiated and in the post-irradiated generation. The reduction in division probability obtained with 3 Gy of neon ions was similar to that obtained after irradiation with 6 Gy of helium ions or 60 Co γ-rays. (author)

  11. Comparative effects of 60Co gamma-rays and neon and helium ions on cycle duration and division probability of EMT 6 cells. A time-lapse cinematography study.

    Science.gov (United States)

    Collyn-d'Hooghe, M; Hemon, D; Gilet, R; Curtis, S B; Valleron, A J; Malaise, E P

    1981-03-01

    Exponentially growing cultures of EMT 6 cells were irradiated in vitro with neon ions, helium ions or 60Co gamma-rays. Time-lapse cinematography allowed the determination, for individual cells, of cycle duration, success of the mitotic division and the age of the cell at the moment of irradiation. Irradiation induced a significant mitotic delay increasing proportionally with the delivered dose. Using mitotic delay as an endpoint, the r.b.e. for neon ions with respect to 60Co gamma-rays was 3.3 +/- 0.2 while for helium ions it was 1.2 +/- 0.1. Mitotic delay was greatest in those cells that had progressed furthest in their cycle at the time of irradiation. No significant mitotic delay was observed in the post-irradiation generation. Division probability was significantly reduced by irradiation both in the irradiated and in the post-irradiated generation. The reduction in division probability obtained with 3 Gy of neon ions was similar to that obtained after irradiation with 6 Gy of helium ions or 60Co gamma-rays.

  12. Optically pumped polarized 23Na vapor target for use in polarized ion source. Technical progress report

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1984-01-01

    We are currently measuring relaxation times in an optically pumped 23 Na vapor target. Our research is directed toward improvements in the optically pumped Na vapor targets used for the production of polarized H - ions. In this progress report we review the properties of the optically pumped polarized H - ion source and especially the optically pumped Na vapor target employed in this source as well as discussing the progress of our research on relaxation times in an optically pumped Na vapor target. 30 references, 6 figures, 3 tables

  13. TH-A-19A-05: Modeling Physics Properties and Biologic Effects Induced by Proton and Helium Ions

    Energy Technology Data Exchange (ETDEWEB)

    Taleei, R; Titt, U; Peeler, C; Guan, F; Mirkovic, D; Grosshans, D; Mohan, R [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: Currently, proton and carbon ions are used for cancer treatment. More recently, other light ions including helium ions have shown interesting physical and biological properties. The purpose of this work is to study the biological and physical properties of helium ions (He-3) in comparison to protons. Methods: Monte Carlo simulations with FLUKA, GEANT4 and MCNPX were used to calculate proton and He-3 dose distributions in water phantoms. The energy spectra of proton and He-3 beams were calculated with high resolution for use in biological models. The repair-misrepairfixation (RMF) model was subsequently used to calculate the RBE. Results: The proton Bragg curve calculations show good agreement between the three general purpose Monte Carlo codes. In contrast, the He-3 Bragg curve calculations show disagreement (for the magnitude of the Bragg peak) between FLUKA and the other two Monte Carlo codes. The differences in the magnitude of the Bragg peak are mainly due to the discrepancy in the secondary fragmentation cross sections used by the codes. The RBE for V79 cell lines is about 0.96 and 0.98 at the entrance of proton and He-3 ions depth dose respectively. The RBE increases to 1.06 and 1.59 at the Bragg peak of proton and He-3 ions. The results demonstrated that LET, microdosimetric parameters (such as dose-mean lineal energy) and RBE are nearly constant along the plateau region of Bragg curve, while all parameters increase within the Bragg peak and at the distal edge for both proton and He-3 ions. Conclusion: The Monte Carlo codes should revise the fragmentation cross sections to more accurately simulate the physical properties of He-3 ions. The increase in RBE for He-3 ions is higher than for proton beams at the Bragg peak.

  14. Formation of excited states in high-Z helium-like systems

    International Nuclear Information System (INIS)

    Fritzsche, S.; Fricke, B.; Brinzanescu, O.

    1999-12-01

    High-Z helium-like ions represent the simplest multi-electron systems for studying the interplay between electron-electron correlations, relativistic as well as quantum electrodynamical effects in strong fields. In contrast to the adjacent lithium-like ions, however, almost no experimental information is available about the excited states in the high-Z domain of the helium sequence. Here, we present a theoretical analysis of the X-ray production and decay dynamics of the excited states in helium-like uranium. Emphasize has been paid particularly to the formation of the 3 P 0 and 3 P 2 levels by using electron capture into hydrogen-like U 91+ . Both states are of interest for precise measurements on high-Z helium-like ions in the future. (orig.)

  15. Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System: Modeling Ion Outflow

    Science.gov (United States)

    Schunk, R. W.; Barakat, A. R.; Eccles, V.; Karimabadi, H.; Omelchenko, Y.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.

    2014-12-01

    A Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is being developed in order to provide a rigorous approach to modeling the interaction of hot and cold particle interactions. The framework will include ion and electron kinetic species in the ionosphere, plasmasphere and polar wind, and kinetic ion, super-thermal electron and fluid electron species in the magnetosphere. The framework is ideally suited to modeling ion outflow from the ionosphere and plasmasphere, where a wide range for fluid and kinetic processes are important. These include escaping ion interactions with (1) photoelectrons, (2) cusp/auroral waves, double layers, and field-aligned currents, (3) double layers in the polar cap due to the interaction of cold ionospheric and hot magnetospheric electrons, (4) counter-streaming ions, and (5) electromagnetic wave turbulence. The kinetic ion interactions are particularly strong during geomagnetic storms and substorms. The presentation will provide a brief description of the models involved and discuss the effect that kinetic processes have on the ion outflow.

  16. The TRIUMF optically-pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Levy, C.D.P.; Jayamanna, K.; McDonald, M.; Schmor, P.W.; Van Oers, W.T.H.; Welz, J.; Wight, G.W.; Dutto, G.; Zelenski, A.N.; Sakae, T.

    1995-09-01

    The TRIUMF dc optically-pumped polarized H - ion source (OPPIS) produces 200 μA dc H - current at 85% polarization within a normalized emittance (90%) of 0.8 π mm mrad, for operations at the TRIUMF cyclotron. As a result of development of the ECR primary proton source, 1.6 mA dc polarized H - current is produced within a normalized emittance of 2 π mm mrad, suitable for high energy accelerators. The OPPIS has also been developed for use in a parity non-conservation experiment which has very severe limits on permissible helicity-correlated changes in beam current and energy. (author)

  17. The TRIUMF optically-pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Levy, C.D.P.; Jayamanna, K.; McDonald, M.

    1995-09-01

    The TRIUMF dc optically-pumped polarized H - ion source (OPPIS) produces 200 microA dc H - current at 85% polarization within a normalized emittance (90%) of 0.8 π mm mrad, for operations at the TRIUMF cyclotron. As a result of development of the ECR primary proton source, 1.6 mA dc polarized H - current is produced within a normalized emittance of 2 π mm mrad, suitable for high energy accelerators. The OPPIS has also been developed for use in a parity non-conservation experiment which has very severe limits on permissible helicity-correlated changes in beam current and energy

  18. A multi-satellite study of accelerated ionospheric ion beams above the polar cap

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2006-07-01

    Full Text Available This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 RE. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio EO+ / EH+, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity.

    In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.

  19. Helium ion microscopy and energy selective scanning electron microscopy - two advanced microscopy techniques with complementary applications

    Science.gov (United States)

    Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.

    2014-06-01

    Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.

  20. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    Science.gov (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  1. Polar cap ion beams during periods of northward IMF: Cluster statistical results

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2011-05-01

    Full Text Available Above the polar caps and during prolonged periods of northward IMF, the Cluster satellites detect upward accelerated ion beams with energies up to a few keV. They are associated with converging electric field structures indicating that the acceleration is caused by a quasi-static field-aligned electric field that can extend to altitudes higher than 7 RE (Maggiolo et al., 2006; Teste et al., 2007. Using the AMDA science analysis service provided by the Centre de Données de la Physique des Plasmas, we have been able to extract about 200 events of accelerated upgoing ion beams above the polar caps from the Cluster database. Most of these observations are taken at altitudes lower than 7 RE and in the Northern Hemisphere. We investigate the statistical properties of these ion beams. We analyze their geometry, the properties of the plasma populations and of the electric field inside and around the beams, as well as their dependence on solar wind and IMF conditions. We show that ~40 % of the ion beams are collocated with a relatively hot and isotropic plasma population. The density and temperature of the isotropic population are highly variable but suggest that this plasma originates from the plasma sheet. The ion beam properties do not change significantly when the isotropic, hot background population is present. Furthermore, during one single polar cap crossing by Cluster it is possible to detect upgoing ion beams both with and without an accompanying isotropic component. The analysis of the variation of the IMF BZ component prior to the detection of the beams indicates that the delay between a northward/southward turning of IMF and the appearance/disappearance of the beams is respectively ~2 h and 20 min. The observed electrodynamic characteristics of high altitude polar cap ion beams suggest that they are closely connected to polar cap auroral arcs. We discuss the implications of these Cluster observations above the polar cap on the magnetospheric

  2. ESTAR, PSTAR, ASTAR. A PC package for calculating stopping powers and ranges of electrons, protons and helium ions. Version 2

    International Nuclear Information System (INIS)

    Berger, M.J.

    1993-01-01

    A PC package is documented for calculating stopping powers and ranges of electrons, protons and helium ions in matter for energies from 1 keV up to 10 GeV. Stopping powers and ranges for electrons can be calculated for any element, compound or mixture. Stopping powers and ranges of protons and helium ions can be calculated for 74 materials (26 elements and 48 compounds and mixtures). The files are stored on two HD diskettes in compressed form. Both executable files for IBM PC and Fortran-77 source files are provided. All three programs require 5.2 Mb of disk space. This set of two diskettes with detailed documentation is available upon request, cost free, from the IAEA Nuclear Data Section. (author). 25 refs, 4 tabs

  3. Modeling charge polarization voltage for large lithium-ion batteries in electric vehicles

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    2013-06-01

    Full Text Available Purpose: Polarization voltage of the lithium-ion battery is an important parameter that has direct influence on battery performance. The paper aims to analyze the impedance characteristics of the lithium-ion battery based on EIS data. Design/methodology/approach: The effects of currents, initial SOC of the battery on charge polarization voltage are investigated, which is approximately linear function of charge current. The change of charge polarization voltage is also analyzed with the gradient analytical method in the SOC domain. The charge polarization model with two RC networks is presented, and parts of model parameters like Ohmic resistance and charge transfer impedance are estimated by both EIS method and battery constant current testing method. Findings: This paper reveals that the Ohmic resistance accounts for much contribution to battery total polarization compared to charge transfer impedance. Practical implications: Experimental results demonstrate the efficacy of the model with the proposed identification method, which provides the foundation for battery charging optimization. Originality/value: The paper analyzed the impedance characteristics of the lithium-ion battery based on EIS data, presented a charge polarization model with two RC networks, and estimated parameters like Ohmic resistance and charge transfer impedance.

  4. Graphene nanoribbon superlattices fabricated via He ion lithography

    International Nuclear Information System (INIS)

    Archanjo, Braulio S.; Fragneaud, Benjamin; Gustavo Cançado, Luiz; Winston, Donald; Miao, Feng; Alberto Achete, Carlos; Medeiros-Ribeiro, Gilberto

    2014-01-01

    Single-step nano-lithography was performed on graphene sheets using a helium ion microscope. Parallel “defect” lines of ∼1 μm length and ≈5 nm width were written to form nanoribbon gratings down to 20 nm pitch. Polarized Raman spectroscopy shows that crystallographic orientation of the nanoribbons was partially maintained at their lateral edges, indicating a high-fidelity lithography process. Furthermore, Raman analysis of large exposure areas with different ion doses reveals that He ions produce point defects with radii ∼ 2× smaller than do Ga ions, demonstrating that scanning-He + -beam lithography can texture graphene with less damage

  5. Graphene nanoribbon superlattices fabricated via He ion lithography

    Energy Technology Data Exchange (ETDEWEB)

    Archanjo, Braulio S., E-mail: bsarchanjo@inmetro.gov.br [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Fragneaud, Benjamin [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-330 (Brazil); Gustavo Cançado, Luiz [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30123-970 (Brazil); Winston, Donald [Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States); Miao, Feng [Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States); National Laboratory of Solid State Microstructures, School of Physics, National Center of Microstructures and Quantum Manipulation, Nanjing University, Nanjing 210093 (China); Alberto Achete, Carlos [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de janeiro, Rio de Janeiro RJ 21941-972 (Brazil); Medeiros-Ribeiro, Gilberto [Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30123-970 (Brazil); Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States)

    2014-05-12

    Single-step nano-lithography was performed on graphene sheets using a helium ion microscope. Parallel “defect” lines of ∼1 μm length and ≈5 nm width were written to form nanoribbon gratings down to 20 nm pitch. Polarized Raman spectroscopy shows that crystallographic orientation of the nanoribbons was partially maintained at their lateral edges, indicating a high-fidelity lithography process. Furthermore, Raman analysis of large exposure areas with different ion doses reveals that He ions produce point defects with radii ∼ 2× smaller than do Ga ions, demonstrating that scanning-He{sup +}-beam lithography can texture graphene with less damage.

  6. submitter Biologically optimized helium ion plans: calculation approach and its in vitro validation

    CERN Document Server

    Mairani, A; Magro, G; Tessonnier, T; Kamp, F; Carlson, D J; Ciocca, M; Cerutti, F; Sala, P R; Ferrari, A; Böhlen, T T; Jäkel, O; Parodi, K; Debus, J; Abdollahi, A; Haberer, T

    2016-01-01

    Treatment planning studies on the biological effect of raster-scanned helium ion beams should be performed, together with their experimental verification, before their clinical application at the Heidelberg Ion Beam Therapy Center (HIT). For this purpose, we introduce a novel calculation approach based on integrating data-driven biological models in our Monte Carlo treatment planning (MCTP) tool. Dealing with a mixed radiation field, the biological effect of the primary $^4$He ion beams, of the secondary $^3$He and $^4$He (Z  =  2) fragments and of the produced protons, deuterons and tritons (Z  =  1) has to be taken into account. A spread-out Bragg peak (SOBP) in water, representative of a clinically-relevant scenario, has been biologically optimized with the MCTP and then delivered at HIT. Predictions of cell survival and RBE for a tumor cell line, characterized by ${{(\\alpha /\\beta )}_{\\text{ph}}}=5.4$ Gy, have been successfully compared against measured clonogenic survival data. The mean ...

  7. Determining the Interstellar Wind Longitudinal Inflow Evolution Using Pickup Ions in the Helium Focusing Cone

    Science.gov (United States)

    Spitzer, S. A.; Gilbert, J. A.; Lepri, S. T.

    2017-12-01

    We propose to determine the longitudinal inflow direction of the local interstellar medium through the Heliosphere. This longitudinal inflow direction directly correlates to the longitudinal direction of the helium focusing cone with respect to the Sun. We can calculate this direction by finding the He+ pickup ion density peak as mass spectrometers such as ACE/SWICS, Wind/STICS, and Helios/Micrometeoroid Detector and Analyzer pass through the focusing cone. Mapping from the location of this density peak to the Sun, around which the helium is focused, will directly yield the desired longitudinal direction. We will find this direction for each year since the first measurements in the 1970s through the present and thereby analyze its evolution over time. This poster outlines our proposed method and initial results.

  8. ERDA with an external helium ion micro-beam: Advantages and potential applications

    International Nuclear Information System (INIS)

    Calligaro, T.; Castaing, J.; Dran, J.-C.; Moignard, B.; Pivin, J.-C.; Prasad, G.V.R.; Salomon, J.; Walter, P.

    2001-01-01

    Preliminary ERDA experiments at atmospheric pressure have been performed with our external microprobe set-up currently used for the analysis of museum objects by PIXE, RBS and NRA. The objective was to check the feasibility of hydrogen (and deuterium) profiling with an external beam of 3-MeV helium ions. The standard scattering geometry (incident beam at 15 deg. with respect to sample surface and emerging protons or deuterons at 15 deg. in the forward direction) was kept, but the thin foil absorber was replaced by helium gas filling the space between the beam spot and the detector over a distance of about 84 mm. Several standards prepared by ion implantation, with well known H or D depth profiles, were first analysed, which indicated that the analytical capability was as good as under vacuum. A striking feature is the much lower surface peak than under vacuum, a fact that enhances the sensitivity for H analysis near the surface. The same type of measurement was then performed on different materials to show the usefulness of the technique. As a first example, we have checked that the incorporation of H or D into sapphire crystals during mechanical polishing is below the detection limit. Another example is the measurement of the H content in emeralds which can be used as an additional compositional criterion for determining the provenance of emeralds set in museum jewels. The advantages and limitations of our set-up are discussed and several possible applications in the field of cultural heritage are described

  9. MESSENGER Observations of the Spatial Distribution of Planetary Ions Near Mercury

    Science.gov (United States)

    Zurbuchen, Thomas H.; Raines, Jim M.; Slavin, James A.; Gershman, Daniel J.; Gilbert, Jason A.; Gloeckler, George; Anderson, Brian J.; Baker, Daniel N.; Korth, Haje; Krimigis, Stamatios M.; hide

    2011-01-01

    Global measurements by MESSENGER of the fluxes of heavy ions at Mercury, particularly sodium (Na(+)) and oxygen (O(+)), exhibit distinct maxima in the northern magnetic-cusp region, indicating that polar regions are important sources of Mercury's ionized exosphere, presumably through solar-wind sputtering near the poles. The observed fluxes of helium (He(+)) are more evenly distributed, indicating a more uniform source such as that expected from evaporation from a helium-saturated surface. In some regions near Mercury, especially the nightside equatorial region, the Na(+) pressure can be a substantial fraction of the proton pressure.

  10. Analysis of visible spectral lines in LHD helium discharge

    International Nuclear Information System (INIS)

    Wan, B.N.; Goto, M.; Morita, S.

    1999-06-01

    In this study, visible spectral lines in LHD helium discharges are analyzed and it was found that they could be well fitted with gaussian profile. The results reveal a simple mechanism of helium atom recycling. Ion temperatures were also derived from the fitting. A typical value of the ion temperature obtained was about 6 eV. (author)

  11. Informal workshop on intense polarized ion sources: a summary

    International Nuclear Information System (INIS)

    Schultz, P.F.

    1980-01-01

    An Informal Workshop on Intense Polarized Ion Sources was held on March 6, 1980, at the O'Hare Hilton Hotel, Chicago, Illinois. The purpose of the Workshop was to discuss problems in developing higher-intensity polarized proton sources, particularly the optically-pumped source recently proposed by L.W. Anderson of the University of Wisconsin. A summary of the discussions is reported

  12. Electrostatic charging and levitation of helium II drops

    International Nuclear Information System (INIS)

    Niemela, J.J.

    1997-01-01

    Liquid Helium II drops, of diameter 1 mm or less, are charged with positive helium ions and subsequently levitated by static electric fields. Stable levitation was achieved for drops of order 100-150 micrometers in diameter. The suspended drops could be translated to arbitrary positions within the levitator using additional superimposed DC electric fields, and also could be made to oscillate stably about their average positions by means of an applied time-varying electric field. A weak corona discharge was used to produce the necessary ions for levitation. A novel superfluid film flow device, developed for the controlled deployment of large charged drops, is described. Also discussed is an adjustable electric fountain that requires only a field emission tip operating at modest potentials, and works in both Helium I and Helium II

  13. Quantum properties of spin polarized helium 3 optically oriented by a LNA laser

    International Nuclear Information System (INIS)

    Leduc, M.; Laloe, F.; Nacher, P.J.; Tastevin, G.; Daniels, J.M.; Betts, D.

    1986-01-01

    Spin polarized helium 3 (/sup 3/He increasing) and also atomic hydrogen (H decreasing) are systems exhibiting a number of unusual and interesting properties at low temperature. This is true even for dilute polarized gases in spite of the weakness of the nuclear magnetic interaction between atoms. The changes in the macroscopic properties of the gas with the nuclear polarization P are pure consequences of the indistinguishability of the particles and of the symmetrization principle in quantum mechanics. The transport properties of the gas, such as viscosity and thermal conductivity, have been calculated and found to be strongly dependent on P below a few kelvins. Spin transport in /sup 3/He increasing gives rise at low temperature to collective oscillatory modes: the transverse spin waves. Large changes are also expected with P in the case of more dense /sup 3/He fluids, such as an increase with P in the saturated vapor pressure. Optical pumping is a convenient technique for efficient polarization of the nuclear spins in /sup 3/He gas/sup 2/ making use of the 2/sup 3/S-2/sup 3/P atomic line at 1.08 μm. The arrival of cw tunable lasers in the near IR in the early 1980s gave a strong impulse to the buildup of experiments with a view to measuring quantum properties of /sup 3/He increasing at low temperature. Color center lasers (F/sup +//sub 2/ in NaF) provide P values up to 70%. They are now being replaced by more easy to handle LNA lasers which have given so far P in excess of 50% at room temperature. At low temperature, direct optical pumping of a /sup 3/He cell leads to poor P values; for that reason a different technique is used

  14. In-situ observation of damage evolution in TiC crystals during helium ion irradiation

    International Nuclear Information System (INIS)

    Hojou, K.; Otsu, H.; Furuno, S.; Izui, K.; Tsukamoto, T.

    1994-01-01

    In-situ observations were performed on bubble formation and growth in TiC during 20 keV helium ion irradiation over the wide range of irradiation temperatures from 12 to 1523 K. No amorphization occurred over this temperature range. The bubble densities and sizes were almost independent of irradiation temperatures from 12 to 1273 K. Remarkable growth and coalescence occurred during irradiation at high temperature above 1423 K and during annealing above 1373 K after irradiation. ((orig.))

  15. Effective interactions, elementary excitations, and transport in the helium liquids

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    Polarization potentials, the self-consistent fields which describe the primary consequences of the strong atom-atom interaction in the helium liquids, are developed for liquid 4 He and 3 He. Emphasis is placed on the common physical origin of the effective interactions in all helium liquids, and the hierarchy of physical effects (very short-range atomic correlations, zero point motion, and the Pauli principle) which determine their strength is reviewed. An overview is then given of the application of polarization potential theory to experiment, including the phonon-maxon-roton spectra of 4 He and 3 He- 4 He mixtures, the phonon-maxon spectrum of normal and spin-polarized 3 He, and the transport properties of superfluid 4 He and of normal and spin-polarized 3 He

  16. Electronic Transport in Helium Beam Modified Graphene and Ballistic Josephson Junctions

    NARCIS (Netherlands)

    Nanda, G.

    2017-01-01

    This thesis describes the capabilities of the helium ion microscope (HIM) and that of graphene to explore fundamental physics and novel applications. While graphene offers superior electronic properties, the helium ion microscope allows us to combine imaging and modification of materials at the

  17. Optically pumped electron spin polarized targets for use in the production of polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1979-01-01

    The production of relatively dense electron spin polarized alkali metal vapor targets by optical pumping with intense cw dye lasers is discussed. The target density and electron spin polarization depend on the dye laser intensity and bandwidth, the magnetic field at the target, and the electron spin depolarization time. For example in a magnetic field of 1.5 x 10 3 G, and using 1 W dye laser with a bandwidth of 10 10 Hz one can construct an electron spin polarized Na vapor target with a target thickness of 1.6 x 10 13 atoms/cm 2 and an average electron spin polarization of about 90% even though the Na atoms are completely depolarized at every wall collision. Possible uses of the electron spin polarized targets for the production of intense beams of polarized H - or 3 He - ions are discussed. (orig.)

  18. Method of generating intense nuclear polarized beams by selective photodetachment of negative ions

    International Nuclear Information System (INIS)

    Hershcovitch, A.

    1986-01-01

    A novel method for production of nuclear polarized negative hydrogen ions by selective neutralization with a laser of negative hydrogen ions in a magnetic field is described. This selectivity is possible since a final state of the neutralized atom, and hence the neutralization energy, depends on its nuclear polarization. The main advantages of this scheme are the availability of multi-ampere negative ion sources and the possibility of neutralizing negative ions with very high efficiency. An assessment of the required laser power indicates that this method is in principle feasible with today's technology

  19. Atmospheric helium and geomagnetic field reversals.

    Science.gov (United States)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  20. Setup and proof of principle of SAPIS (Stored Atoms Polarized Ion Source), a novel source of polarized H{sup -}/D{sup -} ions; Aufbau und Funktionsnachweis von SAPIS (Stored Atoms Polarized Ion Source), einer neuartigen Quelle polarisierter H{sup -}/D{sup -}-Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Emmerich, R.

    2007-02-14

    The objective of this work was the setup and the proof-of-principle of a new type of negative polarized hydrogen or deuterium ion source, which is based on the charge-exchange reaction (vector)H{sup 0}+Cs{sup 0}{yields}(vector)H{sup -}+Cs{sup +}, as for instance the Colliding-Beams-Source (CBS) at the Cooler Synchrotron COSY in Juelich. In contrast to the CBS, the use of a storage cell for the charge-exchange region promises an increase in H{sup -} current by at least an order of magnitude without considerable polarization losses. For these purposes, a new laboratory was equipped and both a polarized hydrogen/deuterium atomic beam source and an intense neutral cesium-beam source have been build-on. A Lambshift polarimeter, which allows the measurement of the nuclear polarization of the atomic as well as ionic beams, was completed with the construction of a new spin-filter. After commissioning and optimizing each of these sources, a storage cell was developed and installed in the charge-exchange region with a magnetic field. Additionally, components for the extraction, detection and analysis of the negative ion beam were installed. Following the decisive proof of principle, investigation of the properties of the storage cell, especially as to H recombination and depolarisation, was begun. Furthermore, a number of software programs was developed for the control and monitoring of different components of the sources as well as a universal measuring software for the complete installation, including the measurement and calculation of the beam polarization. At the same time, the remote control system of the Cologne source of polarized ions LASCO at the FN tandem accelerator was completely modernized. (orig.)

  1. Development of high-polarization Fe/Ge neutron polarizing supermirror: Possibility of fine-tuning of scattering length density in ion beam sputtering

    Science.gov (United States)

    Maruyama, R.; Yamazaki, D.; Akutsu, K.; Hanashima, T.; Miyata, N.; Aoki, H.; Takeda, M.; Soyama, K.

    2018-04-01

    The multilayer structure of Fe/Si and Fe/Ge systems fabricated by ion beam sputtering (IBS) was investigated using X-ray and polarized neutron reflectivity measurements and scanning transmission electron microscopy with energy-dispersive X-ray analysis. The obtained result revealed that the incorporation of sputtering gas particles (Ar) in the Ge layer gives rise to a marked reduction in the neutron scattering length density (SLD) and contributes to the SLD contrast between the Fe and Ge layers almost vanishing for spin-down neutrons. Bundesmann et al. (2015) have shown that the implantation of primary Ar ions backscattered at the target is responsible for the incorporation of Ar particles and that the fraction increases with increasing ion incidence angle and increasing polar emission angle. This leads to a possibility of fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. Fe/Ge polarizing supermirror with m = 5 fabricated under the same condition showed a spin-up reflectivity of 0.70 at the critical momentum transfer. The polarization was higher than 0.985 for the qz range where the correction for the polarization inefficiencies of the beamline works properly. The result of the polarized neutron reflectivity measurement suggests that the "magnetically-dead" layers formed at both sides of the Fe layer, together with the SLD contrast, play a critical role in determining the polarization performance of a polarizing supermirror.

  2. Initial operating experience and recent development on the TRIUMF optically pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Schmor, P.W.; Law, W.M.; Levy, C.D.P.; McDonald, M.

    1988-01-01

    A polarized H - ion source using optical pumping techniques has been developed at TRIUMF. This source was used to demonstrate (on an ion source test stand) the feasibility of producing 10- μA of ∼ 60% polarized H - ion beam in a dc mode suitable for injection into the TRIUMF cyclotron. The source has been installed in a 300 kV high voltage terminal connected to the cyclotron via a recently constructed beam transport line. A polarization of 80% is anticipated near the end of 1988 after the installation of a superconducting solenoid to the source. In this paper the authors describe the initial operating experience, recent developments, and the future plans for the TRIUMF optically pumped polarized ion source

  3. New views of the Toxoplasma gondii parasitophorous vacuole as revealed by Helium Ion Microscopy (HIM).

    Science.gov (United States)

    de Souza, Wanderley; Attias, Marcia

    2015-07-01

    The Helium Ion Microscope (HIM) is a new technology that uses a highly focused helium ion beam to scan and interact with the sample, which is not coated. The images have resolution and depth of field superior to field emission scanning electron microscopes. In this paper, we used HIM to study LLC-MK2 cells infected with Toxoplasma gondii. These samples were chemically fixed and, after critical point drying, were scraped with adhesive tape to expose the inner structure of the cell and parasitophorous vacuoles. We confirmed some of the previous findings made by field emission-scanning electron microscopy and showed that the surface of the parasite is rich in structures suggestive of secretion, that the nanotubules of the intravacuolar network (IVN) are not always straight, and that bifurcations are less frequent than previously thought. Fusion of the tubules with the parasite membrane or the parasitophorous vacuole membrane (PVM) was also infrequent. Tiny adhesive links were observed for the first time connecting the IVN tubules. The PVM showed openings of various sizes that even allowed the observation of endoplasmic reticulum membranes in the cytoplasm of the host cell. These findings are discussed in relation to current knowledge on the cell biology of T. gondii. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Source of polarized ions for the JINR accelerator complex

    Science.gov (United States)

    Belov, A. S.; Donets, D. E.; Fimushkin, V. V.; Kovalenko, A. D.; Kutuzova, L. V.; Prokofichev, Yu V.; Shutov, V. B.; Turbabin, A. V.; Zubets, V. N.

    2017-12-01

    The JINR atomic beam type polarized ion source is described. Results of tests of the plasma ionizer with a storage cell and of tuning of high frequency transition units are presented. The source was installed in a linac injector hall of NUCLOTRON in May 2016. The source has been commissioned and used in the NUCLOTRON runs in 2016 and February - March 2017. Polarized and unpolarized deuteron beams were produced as well as polarized protons for acceleration in the NUCLOTRON. Polarized deuteron beam with pulsed current up to 2 mA has been produced. Deuteron beam polarization of 0.6-0.9 of theoretical values for different modes of high frequency transition units operation has been measured with the NUCLOTRON ring internal polarimeter for the accelerated deuteron and proton beams.

  5. RBE of heavy ions (carbon, neon, helium, proton) for acute cell death of pancreatic islet cells

    International Nuclear Information System (INIS)

    Tsubouchi, Susumu; Fukutsu, Kumiko; Itsukaichi, Hiromi

    2003-01-01

    At this fiscal year, only two times irradiation experiments with neon and helium beams were performed to obtain relative biological effectiveness (RBE) of heavy ions (carbon, neon, helium, proton) for acute cell death of pancreatic islet cells in vivo. First of all this project was designed to obtain RBE of 290 MeV carbon and 400 MeV neon beams in the high linear energy transfer (LET) region for acute cell death of pancreatic islets of golden hamster (Mesocricetus auratus) in the condition of in both in vivo and in vitro systems. As mentioned in previous report, in vitro system, however, resulted in ill success. This in vitro experiment was tentatively shelved for the time being. In return in vivo experiments for low LET region of neon beams (32.5 KeV/u), carbon beams (15.0 KeV/u) and helium beams (2 KeV/u) were performed in these two years. Last year these results together with those previously obtained for 200 KeV X-ray, 70 MeV proton, 290 MeV carbon (60 KeV/u), and neon (100 KeV/u) beams were reconsidered. At this year dose response relations (25, 50, 100, 150, and 200 Gy respectively) in acute cell death of pancreatic islets studied histologically after whole body irradiation of 3 weeks young male golden hamster with lower LET helium beams (2 KeV/u) and neon beams (32.5 KeV/u). Results indicated that mean cell lethal dose (Do) of helium beams (2 KeV/u) and neon beams (32.5 KeV/u) were 38 Gy and 49 Gy, respectively. Previously obtained Do data for 200 KeV x-ray, 70 MeV proton, 290 MeV carbon (15 KeV/u), 400 MeV neon (32.5 KeV/u), 290 MeV carbon (60 KeV/u), and 400 MeV neon (100 KeV/u) beams were 37 Gy, 38 Gy, 38 Gy, 49 Gy, 75 Gy, and 200 Gy, respectively. From these data estimated RBE of neon (100 KeV/u and 32.5 KeV/u), carbon (60 KeV/u and 15.0 KeV/u), 70 MeV proton and 150 MeV helium (2 KeV/u) beams were 0.19, 0.76, 0.49, 0.97, 0.97, 0.97, respectively. Therefore the order of RBE (or radiosensitivities) of islets cells with these various heavy ion beams was

  6. Stopping power accuracy and achievable spatial resolution of helium ion imaging using a prototype particle CT detector system

    Directory of Open Access Journals (Sweden)

    Volz Lennart

    2017-09-01

    Full Text Available A precise relative stopping power map of the patient is crucial for accurate particle therapy. Charged particle imaging determines the stopping power either tomographically – particle computed tomography (pCT – or by combining prior knowledge from particle radiography (pRad and x-ray CT. Generally, multiple Coulomb scattering limits the spatial resolution. Compared to protons, heavier particles scatter less due to their lower charge/mass ratio. A theoretical framework to predict the most likely trajectory of particles in matter was developed for light ions up to carbon and was found to be the most accurate for helium comparing for fixed initial velocity. To further investigate the potential of helium in particle imaging, helium computed tomography (HeCT and radiography (HeRad were studied at the Heidel-berg Ion-Beam Therapy Centre (HIT using a prototype pCT detector system registering individual particles, originally developed by the U.S. pCT collaboration. Several phantoms were investigated: modules of the Catphan QA phantom for analysis of spatial resolution and achievable stopping power accuracy, a paediatric head phantom (CIRS and a custom-made phantom comprised of animal meat enclosed in a 2 % agarose mixture representing human tissue. The pCT images were reconstructed applying the CARP iterative reconstruction algorithm. The MTF10% was investigated using a sharp edge gradient technique. HeRad provides a spatial resolution above that of protons (MTF1010%=6.07 lp/cm for HeRad versus MTF10%=3.35 lp/cm for proton radiography. For HeCT, the spatial resolution was limited by the number of projections acquired (90 projections for a full scan. The RSP accuracy for all inserts of the Catphan CTP404 module was found to be 2.5% or better and is subject to further optimisation. In conclusion, helium imaging appears to offer higher spatial resolution compared to proton imaging. In future studies, the advantage of helium imaging compared to other

  7. The study on the electrical resistivity of Cu/V multilayer films subjected to helium (He) ion irradiation

    Science.gov (United States)

    Wang, P. P.; Xu, C.; Fu, E. G.; Du, J. L.; Gao, Y.; Wang, X. J.; Qiu, Y. H.

    2018-05-01

    Sputtering-deposited Cu/V multilayer films with the individual layer thickness varying from 2.5 nm to 100 nm were irradiated by 1 MeV helium (He) ion at the fluence of 6 ×1016 ions ·cm-2 at room temperature. The resistivity of Cu/V multilayer films after ion irradiation was evaluated as a function of individual layer thickness at 300 K and compared with their resistivity before ion irradiation. The results show that the resistivity change before and after ion irradiation is largely determined by the interface structure, grain boundary and radiation induced defects. A model amended based on the model used in describing the resistivity of as-deposited Cu/V multilayer films was proposed to describe the resistivity of ion irradiated Cu/V multilayer films by considering the point defects induced by ion irradiation, the effect of interface absorption on defects and the effect of interface microstructure in the multilayer films.

  8. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  9. Non-uniform 3He polarization formed by multiple collisions of a fast 3He+ ion with polarized Rb vapor in a strong magnetic field

    International Nuclear Information System (INIS)

    Arimoto, Y.; Yonehara, K.; Yamagata, T.; Tanaka, M.

    2001-01-01

    We investigated the spatial distribution of a polarization in 3 He beam expected from a novel polarized 3 He ion source based on electron pumping, i.e., multiple electron capture and stripping collisions of an incident fast 3 He + ion with a polarized Rb vapor in a strong axial magnetic field. For this purpose, a Monte Carlo simulation was carried out for 19 keV 3 He + ions with varying Rb vapor thickness, magnetic field, and beam emittance. The calculated results showed a distribution of the 3 He polarization that we call a 'polarization hole', which has a low polarization area around the beam axis. The parameters characterizing the polarization hole, i.e., the polarization and radius of the hole, were found to depend on the Rb vapor thickness, the magnetic field, the beam size, and the angular divergence of the initial beam. These parameters were successfully reproduced with analytical functions deduced from a probability density function prescription. This provides a powerful tool to treat complex phenomena of multiple collisions in strong magnetic fields without performing time-consuming Monte Carlo calculations

  10. Effect of initial-state target polarization on the single ionization of helium by 1-keV electron impact

    International Nuclear Information System (INIS)

    Sun Shi-Yan; Ma Xiao-Yan; Li Xia; Miao Xiang-Yang; Jia Xiang-Fu

    2012-01-01

    We report new results of triple differential cross sections for the single ionization of helium by 1-KeV electron impact at the ejection energy of 10 eV. Investigations have been made for both the perpendicular plane and the plane perpendicular to the momentum transfer geometries. The present calculation is based on the three-Coulomb wave function. Here we have also incorporated the effect of target polarization in the initial state. A comparison is made between the present calculation with the results of other theoretical methods and a recent experiment [Dürr M, Dimopoulou C, Najjari B, Dorn A, Bartschat K, Bray I, Fursa D V, Chen Z, Madison D H and Ullrich J 2008 Phys. Rev. A 77 032717]. At an impact energy of 1 KeV, the target polarization is found to induce a substantial change of the cross section for the ionization process. We observe that the effect of target polarization plays a dominant role in deciding the shape of triple differential cross sections. (atomic and molecular physics)

  11. Complete momentum balance for single ionization of helium by fast ion impact: I. Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Moshammer, R.; Kollmus, H.; Unverzagt, M.; Schmidt-Boecking, H. [Frankfurt Univ. (Germany). Inst. fuer Kernphysik; Ullrich, J.; Schmitt, W. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Wood, C.J.; Olson, R.E. [Missouri Univ., Rolla, MO (United States). Dept. of Physics

    1997-02-01

    The collision dynamics of He single ionization by 3.6 MeV/u Se{sup 28+} impact was explored using the GSI-reaction microscope, a high resolution integrated multi electron - recoil-ion momentum spectrometer. The complete three particle final state momentum distribution (9 cartesian components p{sub i}) was imaged with a resolution of {Delta}p{sub i} {approx} {+-}0.1 a.u. by measuring the three momentum components of the emitted electron and the recoiling target-ion in coincidence. The projectile energy loss has been determined on a level of {Delta}E{sub p}/E{sub p} {approx} 10{sup -7} and projectile scattering angles as small as {Delta}{theta} {approx} 10{sup -7}rad became accessible. The experimental data which are compared with results of classical trajectory Monte-Carlo (CTMC) calculations reveal an unprecedented insight into the details of the electron emission and the collision dynamics for ionization of helium by fast heavy-ion impact. (orig.)

  12. Complete momentum balance for single ionization of helium by fast ion impact: I. Experiment

    International Nuclear Information System (INIS)

    Moshammer, R.; Kollmus, H.; Unverzagt, M.; Schmidt-Boecking, H.; Wood, C.J.; Olson, R.E.

    1997-02-01

    The collision dynamics of He single ionization by 3.6 MeV/u Se 28+ impact was explored using the GSI-reaction microscope, a high resolution integrated multi electron - recoil-ion momentum spectrometer. The complete three particle final state momentum distribution (9 cartesian components p i ) was imaged with a resolution of Δp i ∼ ±0.1 a.u. by measuring the three momentum components of the emitted electron and the recoiling target-ion in coincidence. The projectile energy loss has been determined on a level of ΔE p /E p ∼ 10 -7 and projectile scattering angles as small as Δθ ∼ 10 -7 rad became accessible. The experimental data which are compared with results of classical trajectory Monte-Carlo (CTMC) calculations reveal an unprecedented insight into the details of the electron emission and the collision dynamics for ionization of helium by fast heavy-ion impact. (orig.)

  13. Spin polarization of a magnetic electron gas induced by a van Vleck ion

    International Nuclear Information System (INIS)

    Palermo, L.; Silva, X.A. do

    1978-11-01

    The mutual polarization of a magnetic electron gas and a van Vleck ion, interacting via exchange, are theoretically investigated using the double-time Green function method. A pair of equations describing the dynamics of the electron gas and the ion are conveniently decoupled and an analytic expression for the electron gas polarization, which depends on the square of the exchange parameter, is obtained. Besides a RKKY-like term, a new term associated to the process of formation of the magnetic moment of the ion appears [pt

  14. Polarized Parton Distributions at an Electron-Ion Collider

    CERN Document Server

    Ball, Richard D.; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan

    2014-01-01

    We study the potential impact of inclusive deep-inelastic scattering data from a future electron-ion collider (EIC) on longitudinally polarized parton distribution (PDFs). We perform a PDF determination using the NNPDF methodology, based on sets of deep-inelastic EIC pseudodata, for different realistic choices of the electron and proton beam energies. We compare the results to our current polarized PDF set, NNPDFpol1.0, based on a fit to fixed-target inclusive DIS data. We show that the uncertainties on the first moments of the polarized quark singlet and gluon distributions are substantially reduced in comparison to NNPDFpol1.0, but also that more measurements may be needed to ultimately pin down the size of the gluon contribution to the nucleon spin.

  15. Polarized parton distributions at an electron–ion collider

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Richard D. [Tait Institute, University of Edinburgh, JCMB, KB, Mayfield Rd, Edinburgh EH9 3JZ, Scotland (United Kingdom); Forte, Stefano [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Guffanti, Alberto [The Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Nocera, Emanuele R. [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Genova (Italy); Rojo, Juan [PH Department, TH Unit, CERN, CH-1211 Geneva 23 (Switzerland)

    2014-01-20

    We study the potential impact of inclusive deep-inelastic scattering data from a future electron–ion collider (EIC) on longitudinally polarized parton distributions (PDFs). We perform a PDF determination using the NNPDF methodology, based on sets of deep-inelastic EIC pseudodata, for different realistic choices of the electron and proton beam energies. We compare the results to our current polarized PDF set, NNPDFpol1.0, based on a fit to fixed-target inclusive DIS data. We show that the uncertainties on the first moments of the polarized quark singlet and gluon distributions are substantially reduced in comparison to NNPDFpol1.0, but also that more measurements may be needed to ultimately pin down the size of the gluon contribution to the nucleon spin.

  16. Polarized parton distributions at an electron–ion collider

    International Nuclear Information System (INIS)

    Ball, Richard D.; Forte, Stefano; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan

    2014-01-01

    We study the potential impact of inclusive deep-inelastic scattering data from a future electron–ion collider (EIC) on longitudinally polarized parton distributions (PDFs). We perform a PDF determination using the NNPDF methodology, based on sets of deep-inelastic EIC pseudodata, for different realistic choices of the electron and proton beam energies. We compare the results to our current polarized PDF set, NNPDFpol1.0, based on a fit to fixed-target inclusive DIS data. We show that the uncertainties on the first moments of the polarized quark singlet and gluon distributions are substantially reduced in comparison to NNPDFpol1.0, but also that more measurements may be needed to ultimately pin down the size of the gluon contribution to the nucleon spin

  17. An omnipotent Li-ion battery charger with multimode control and polarity reversible techniques

    Science.gov (United States)

    Chen, Jiann-Jong; Ku, Yi-Tsen; Yang, Hong-Yi; Hwang, Yuh-Shyan; Yu, Cheng-Chieh

    2016-07-01

    The omnipotent Li-ion battery charger with multimode control and polarity reversible techniques is presented in this article. The proposed chip is fabricated with TSMC 0.35μm 2P4M complementary metal-oxide- semiconductor processes, and the chip area including pads is 1.5 × 1.5 mm2. The structure of the omnipotent charger combines three charging modes and polarity reversible techniques, which adapt to any Li-ion batteries. The three reversible Li-ion battery charging modes, including trickle-current charging, large-current charging and constant-voltage charging, can charge in matching polarities or opposite polarities. The proposed circuit has a maximum charging current of 300 mA and the input voltage of the proposed circuit is set to 4.5 V. The maximum efficiency of the proposed charger is about 91% and its average efficiency is 74.8%. The omnipotent charger can precisely provide the charging current to the battery.

  18. Monte Carlo calculation of energy loss of hydrogen and helium ions transmitted under channelling conditions in silicon single crystal

    International Nuclear Information System (INIS)

    El Bounagui, O.; Erramli, H.

    2010-01-01

    In this work, we report on calculations of the electronic channelling energy loss of hydrogen and helium ions along Si and Si axial directions for the low energy range by using the Monte Carlo simulation code. Simulated and experimental data are compared for protons and He ions in the and axis of silicon. A reasonable agreement was found. Computer simulation was also employed to study the angular dependence of energy loss for 0.5, 0.8, 1, and 2 MeV channelled 4 He ions transmitted through a silicon crystal of 3 μm thickness along the axis.

  19. Characterization of high flux magnetized helium plasma in SCU-PSI linear device

    Science.gov (United States)

    Xiaochun, MA; Xiaogang, CAO; Lei, HAN; Zhiyan, ZHANG; Jianjun, WEI; Fujun, GOU

    2018-02-01

    A high-flux linear plasma device in Sichuan University plasma-surface interaction (SCU-PSI) based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the plasma-facing components in fusion reactors. In this paper, the helium plasma has been characterized by a double-pin Langmuir probe. The results show that the stable helium plasma beam with a diameter of 26 mm was constrained very well at a magnetic field strength of 0.3 T. The core density and ion flux of helium plasma have a strong dependence on the applied current, magnetic field strength and gas flow rate. It could reach an electron density of 1.2 × 1019 m-3 and helium ion flux of 3.2 × 1022 m-2 s-1, with a gas flow rate of 4 standard liter per minute, magnetic field strength of 0.2 T and input power of 11 kW. With the addition of -80 V applied to the target to increase the helium ion energy and the exposure time of 2 h, the flat top temperature reached about 530 °C. The different sizes of nanostructured fuzz on irradiated tungsten and molybdenum samples surfaces under the bombardment of helium ions were observed by scanning electron microscopy. These results measured in the SCU-PSI linear device provide a reference for International Thermonuclear Experimental Reactor related PSI research.

  20. Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band

    Directory of Open Access Journals (Sweden)

    B. Lundin

    Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.

    Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous

  1. Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band

    Directory of Open Access Journals (Sweden)

    B. Lundin

    2002-08-01

    Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous

  2. Steady state ion acceleration by a circularly polarized laser pulse

    International Nuclear Information System (INIS)

    Zhang Xiaomei; Shen Baifei; Cang Yu; Li Xuemei; Jin Zhangying; Wang Fengchao

    2007-01-01

    The steady state ion acceleration at the front of a cold solid target by a circularly polarized flat-top laser pulse is studied with one-dimensional particle-in-cell (PIC) simulation. A model that ions are reflected by a steady laser-driven piston is used by comparing with the electrostatic shock acceleration. A stable profile with a double-flat-top structure in phase space forms after ions enter the undisturbed region of the target with a constant velocity

  3. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  4. Investigation of helium-induced embrittlement

    International Nuclear Information System (INIS)

    Sabelova, V.; Slugen, V.; Krsjak, V.

    2014-01-01

    In this work, the hardness of Fe-9%(wt.) Cr binary alloy implanted by helium ions up to 1000 nm was investigated. The implantations were performed using linear accelerator at temperatures below 80 grad C. Isochronal annealing up to 700 grad C with the step of 100 grad C was applied on the helium implanted samples in order to investigate helium induced embrittlement of material. Obtained results were compared with theoretical calculations of dpa profiles. Due to the results, the nano-hardness technique results to be an appropriate approach to the hardness determination of thin layers of implanted alloys. Both, experimental and theoretical calculation techniques (SRIM) show significant correlation of measured results of induced defects. (authors)

  5. Helium trapping in aluminum and sintered aluminum powders

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  6. Ionic magnetic fluids in polar solvents with tuned counter-ions

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Filomeno, C. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Grupo de Fluidos Complexos Inst. de Quimica, Univ. de Brasília, Brasília (DF) (Brazil); Kouyaté, M. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Cousin, F. [Lab. Léon Brillouin – CE-Saclay, Gif-sur-Yvette (France); Demouchy, G. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Dpt de physique, Univ. de Cergy Pontoise, Cergy-Pontoise (France); Dubois, E.; Michot, L.; Mériguet, G. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Perzynski, R., E-mail: regine.perzynski@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Peyre, V.; Sirieix-Plénet, J. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Tourinho, F.A. [Grupo de Fluidos Complexos Inst. de Quimica, Univ. de Brasília, Brasília (DF) (Brazil)

    2017-06-01

    The aim of the present study is to propose a new reproducible method for preparing colloidal dispersions of electrostatically charged nanoparticles (NPs) in polar solvents with different kinds of counter-ions. Maghemite NPs are here dispersed in solvents of different dielectric constant, namely water, dimethylsulfoxide (DMSO) and an ionic liquid, ethylammonium nitrate (EAN). If the existence of a NP superficial charge happens to be necessary for the colloidal stability of the dispersions in these three solvents, the standard DLVO theory cannot be used any more to describe the colloidal stability in EAN. The structure of the dispersions and the strength of the interparticle repulsion are investigated by small angle X-ray scattering measurements, in association with Ludwig–Soret coefficient determinations. Specificities, associated to the nature of the counter-ions are identified in this work on the colloidal stability, on the interparticle repulsion and on the Ludwig–Soret coefficient. - Highlights: • A controlled synthesis of ionic magnetic fluids in three polar solvents is proposed. • Colloidal repulsion in the magnetic fluids depends on the counter-ion nature. • Soret coefficient of citrate-coated maghemite nanoparticles is probed in water-pH7. • Thermophilicity of nanoparticles depends on the nature of their counter-ions. • Nanoparticles dressed with same counter-ions have solvent-dependent thermoproperties.

  7. Effect of helium preinjection and prior thermomechanical treatment on the microstructure of Type 316 SS

    International Nuclear Information System (INIS)

    Kohyama, A.; Ayrault, G.; Turner, A.P.L.; Igata, N.

    1982-10-01

    Samples of 316 SS were preinjected with 15 appM helium either hot (650 0 C) or cold (room temperature) and irradiated with 3 MeV Ni + ions to a dose level of 25 dpa at 625 0 C in order to test the validity of helium preinjection as a means of simulation of transmutant helium production. Results for preinjected and single-ion irradiated samples were compared to samples irradiated with 3 MeV Ni + and simultaneously injected with helium at a rate of 15 appM He/dpa (dual-ion irradiated samples). Preinjected samples exhibited bimodal cavity size distributions. Preinjected samples of solution annealed or solution annealed and aged material showed lower swelling than dual-ion irradiated samples. However, He preinjection in 20% cold worked samples showed greater swelling than dual-ion irradiated samples 9 figures, 1 table

  8. Helium Ion Microscope: A New Tool for Sub-nanometer Imaging of Soft Materials

    Science.gov (United States)

    Shutthanandan, V.; Arey, B.; Smallwood, C. R.; Evans, J. E.

    2017-12-01

    High-resolution inspection of surface details is needed in many biological and environmental researches to understand the Soil organic material (SOM)-mineral interactions along with identifying microbial communities and their interactions. SOM shares many imaging characteristics with biological samples and getting true surface details from these materials are challenging since they consist of low atomic number materials. FE-SEM imaging is the main imagining technique used to image these materials in the past. These SEM images often show loss of resolution and increase noise due to beam damage and charging issues. Newly developed Helium Ion Microscope (HIM), on the other hand can overcome these difficulties and give very fine details. HIM is very similar to scanning electron microscopy (SEM) but instead of using electrons as a probe beam, HIM uses helium ions with energy ranges from 5 to 40 keV. HIM offers a series of advantages compared to SEM such as nanometer and sub-nanometer image resolutions (about 0.35 nm), detailed surface topography, high surface sensitivity, low Z material imaging (especially for polymers and biological samples), high image contrast, and large depth of field. In addition, HIM also has the ability to image insulating materials without any conductive coatings so that surface details are not modified. In this presentation, several scientific applications across biology and geochemistry will be presented to highlight the effectiveness of this powerful microscope. Acknowledgements: Research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. Work was supported by DOE-BER Mesoscale to Molecules Bioimaging Project FWP# 66382.

  9. Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC

    Science.gov (United States)

    Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.; Derbenev, Ya S.; Lin, F.; Morozov, V. S.; Zhang, Y.

    2017-07-01

    The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider’s lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of “interference peaks”. The beam polarization depends on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.

  10. Performance of the polarized ion source POLIS used at the AGOR accelerator facility.

    NARCIS (Netherlands)

    Kremers, H.R.; Drentje, A.G.; Holt, R.J.; Miller, M.A.

    1998-01-01

    The operation of the KVI polarized ion source POLIS presently running on proton beams is discussed. The best polarization values which have been measured, are 70 +/-0.5 % and -56 +/-0.5 %. The asymmetry is due to 7 +/-1 % offset in polarization, which originates from state mixing in the magnetic

  11. Direct energy recovery from helium ion beams by a beam direct converter with secondary electron suppressors

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Yamamoto, Y.; Toku, H.; Kobayashi, A.; Okazaki, T.

    1989-01-01

    A 5-yr study of beam direct energy conversion was performed at the Kyoto University Institute of Atomic Energy to clarify the essential features of direct energy recovery from monoenergetic ion beams so that the performance characteristics of energy recovery can be predicted reasonably well by numerical calculations. The study used an improved version of an electrostatically electron-suppressed beam direct converter. Secondary electron suppressor grids were added, and a helium ion beam was used with typical parameters of 15.4 keV, 90 mA, and 100 ms. This paper presents a comparison of experimental results with numerical results by the two-dimensional Kyoto University Advanced Dart (KUAD) code, including evaluation of atomic processes

  12. Correlation of blister diameter and blister skin thickness in helium-ion-irradiated Nb

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Fenske, G.

    1979-01-01

    A systematic study of the correlation between blister diameter and blister skin thickness has been performed for helium-ion irradiation of monocrystalline and polycrystalline Nb for ion energies ranging from 20 to 500 keV. The results indicate that a relationship Datsub mpatproportionaltatsup 1.50at between the most probable blister diameter, Datsub mpat, and blister skin thickness, t, which has been suggested by other authors, does not exist for the various types of Nb targets studied. For example, for room-temperature irradiation of annealed polycrystalline Nb the experimentally determined relationship is Datsub mpat<10.3tatsup 1.22at. Furthermore, the D-t relationship was found to depend on the irradiation temperature in contrast to theoretical predictions by the lateral stress model of blister formation. These results do not appear to support the lateral stress model which predicts the relationship Dproportionaltatsup 1.5at. However, the experimentally determined relationships can be explained in part by the gas pressure model of blister formation

  13. Helium-induced hardening effect in polycrystalline tungsten

    Science.gov (United States)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang

    2017-09-01

    In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.

  14. 15 years experience with helium ion radiotherapy for uveal melanoma

    International Nuclear Information System (INIS)

    Castro, J.R.; Char, D.H.; Petti, P.L.; Daftari, I.K.; Quivey, J.M.; Singh, R.P.; Phillips, T.L.

    1996-01-01

    Purpose/Objective: In this study we review our long term experience with helium ion therapy in treating uveal melanoma. Materials and Methods: At UCSF-LBL, 347 patients with uveal melanoma were treated with helium ions from December 1978 - May 1992. A non randomized dose searching study was undertaken beginning with 80 GyE in 5 fractions and subsequently lowered through several levels to 48 GyE in 4 fractions. The treatment period ranged from 3 to 15 days, with a mean of 7 days. The various dose groups were similar in tumor characteristics and size. Results: An overall local control rate of 96% has been achieved, with no dose response being seen at 80, 70, 60 or 50 GyE in 5 fxs. At the lowest dose level of 48 GyE in 4 fxs, the local control rate fell to 87%. Fifteen patients (4%) had local failure in the eye requiring enucleation (12 pts), laser (1 pt) or reirradiation (2 pts). The time of appearance of local failures ranges from 4 to 64 months with most occurring within 2 years. Eight of the 15 patients with local failure are dead of distant metastases. Of the 347 patients, 308 had (20(200)) vision or better in the affected eye prior to treatment. Of these, 125 (41%) have retained at least(20(200)) vision in the treated eye. Patients with tumors greater than 5 mm in ultrasound height or close to the optic nerve or fovea have a reduced chance of retaining useful vision. The total enucleation rate is 15%, 1% for local failure and 14% because of complications of the helium RT, mostly secondary to severe glaucoma. Of the 347 patients, 230 are still alive. The median follow up is 75 months, range 3-206 months. Kaplan-Maier (K-M) survival for all 347 patients was 80% at 5 years, 77% at 10 years and 68% at 15 years post treatment. Results for patients whose tumor involves the ciliary body is much worse with a 15 year K-M survival of 42%, whereas patients not having ciliary involvement have a 15 year K-M survival of 75%. The K-M survival in patients with local failure in

  15. Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms

    International Nuclear Information System (INIS)

    Nakajima, Takashi; Yonekura, Nobuaki; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2003-01-01

    We demonstrate the simultaneous production of spin-polarized ions/electrons using two-color, two-photon ionization of laser-ablated metallic atoms. Specifically, we have applied the developed technique to laser-ablated Sr atoms, and found that the electron-spin polarization of Sr + ions, and accordingly, the spin polarization of photoelectrons is 64%±9%, which is in good agreement with the theoretical prediction we have recently reported [T. Nakajima and N. Yonekura, J. Chem. Phys. 117, 2112 (2002)]. Our experimental results open up a simple way toward the construction of a spin-polarized dual ion/electron source

  16. Nuclear physics with polarized heavy ions

    International Nuclear Information System (INIS)

    Fick, D.; Grawert, G.; Turkiewicz, I.M.

    1992-01-01

    Polarized heavy ion beams ( 6 Li, 7 Li, 23 Na) have been in use as tools for the investigation of nuclear scattering and nuclear reactions for almost two decades. This review attempts to survey the research activities in this field with reference to nuclear structure, nuclear dynamics and reaction mechanisms. Besides reviewing the results from full quantum mechanical coupled channels analyses of data, special attention is paid to handwaving arguments and semiclassical pictures as a complementary way of obtaining a better understanding of the relevant physics. (orig.)

  17. Data on ionization, excitation, dissociation and dissociative ionization of targets by helium ion bombardments, (1)

    International Nuclear Information System (INIS)

    Oda, Nobuo; Urakawa, Junji

    1984-03-01

    This report presents a compilation of the experimental data on cross sections for the ionization, excitation, dissociation and dissociative ionization processes of targets in helium ion impacts on atoms and molecules under a single collision condition. These measurements were carried out in the energy range from several keV to 3.5 MeV. A systematic survey has been made on the literatures from 1975 to the end of 1982. A list of references is also given, including relevant papers published before 1975. (author)

  18. The rotational temperature of polar molecular ions in Coulomb crystals

    International Nuclear Information System (INIS)

    Bertelsen, Anders; Joergensen, Solvejg; Drewsen, Michael

    2006-01-01

    With MgH + ions as a test case, we investigate to what extent the rotational motion of smaller polar molecular ions sympathetically cooled into Coulomb crystals in linear Paul traps couples to the translational motions of the ion ensemble. By comparing the results obtained from rotational resonance-enhanced multiphoton photo-dissociation experiments with data from theoretical simulations, we conclude that the effective rotational temperature exceeds the translational temperature (<100 mK) by more than two orders of magnitude, indicating a very weak coupling. (letter to the editor)

  19. Radiation blistering of Nb implanted sequentially with helium ions of different energies (3-500 keV)

    International Nuclear Information System (INIS)

    Guseva, M.I.; Gusev, V.; Krasulin, U.L.; Martinenko, U.V.; Das, S.K.; Kaminsky, M.S.

    1976-01-01

    Cold rolled, polycrystalline niobium samples were irradiated at room temperature with 4 He + ions sequentially at 14 different energies over an energy range from 3 keV--500 keV in steps of 50 keV. The dose for each energy was chosen to give an approximately uniform concentration of helium between the implant depths corresponding to 3 keV and 500 keV. In one set of experiments the irradiations were started at the Kurchatov Institute with 3 keV 4 He + ions and extended up to 80 keV in several steps. Subsequently, the same target area was irradiated with 4 He + ions at Argonne National Laboratory (ANL) starting at 100 keV and increased to 500 keV in steps of 50 keV. Another set of irradiations were started at ANL with 500 keV 4 He + ions and continued with decreasing ion energies to 100 keV. Subsequently, the same area was irradiated at the Kurchatov Institute starting at 80 keV and continued with decreasing ion energies to 3 keV. Both sets of irradiations were completed for two different total doses, 0.5 C cm -2 and 1.0 C cm -2

  20. Hyperion II: a heavy ion pre-injector for Saturne

    International Nuclear Information System (INIS)

    Olivier, M.; Auclair, J.P.; Courtois, A.

    1983-01-01

    Since 1978, the 3GeV synchrotron Saturne is routinely operated with proton, deuteron, helium beams and, since 1981 with polarized protons and deuterons. Heavy ions are expected in 1983 by using a new pre-injector presently under construction. The marriage of an EBIS and an RFQ can be looked upon generally as a very good means of production of heavy ion beams at low energy. In the first paragraph, the cryogenic version of EBIS, called CRYEBIS, is described, while the RFQ design is studied in detail in paragraph two. The construction status is given in a third paragraph

  1. Polarization mechanism for Bremsstrahlung and radiative recombination in a plasma with heavy ions

    International Nuclear Information System (INIS)

    Astapenko, V.A.; Bureeva, L.A.; Lisitsa, V.S.

    2002-01-01

    Contribution of polarization channel into radiation and recombination of electrons in plasma with heavy ions is investigated. Cases of hot plasma with temperature T e = 0.5 keV and Fe, Mo, W, U ions and relatively cold plasma with temperature 0.1-10 eV are considered. Calculations of spectral characteristics, full cross sections and recombination rates in plasma are made, bearing in mind its real ionization equilibrium. The calculations are made on the basis of quasiclassical approximation for electron scattering and statistical model of ions. It is shown that contribution of polarization channel is essential both for effective radiation and full rate of radiative recombination [ru

  2. Classical-trajectory simulation of accelerating neutral atoms with polarized intense laser pulses

    Science.gov (United States)

    Xia, Q. Z.; Fu, L. B.; Liu, J.

    2013-03-01

    In the present paper, we perform the classical trajectory Monte Carlo simulation of the complex dynamics of accelerating neutral atoms with linearly or circularly polarized intense laser pulses. Our simulations involve the ion motion as well as the tunneling ionization and the scattering dynamics of valence electron in the combined Coulomb and electromagnetic fields, for both helium (He) and magnesium (Mg). We show that for He atoms, only linearly polarized lasers can effectively accelerate the atoms, while for Mg atoms, we find that both linearly and circularly polarized lasers can successively accelerate the atoms. The underlying mechanism is discussed and the subcycle dynamics of accelerating trajectories is investigated. We have compared our theoretical results with a recent experiment [Eichmann Nature (London)NATUAS0028-083610.1038/nature08481 461, 1261 (2009)].

  3. Rate coefficients for the reactions of ions with polar molecules at interstellar temperatures

    International Nuclear Information System (INIS)

    Adams, N.G.; Smith, D.; Clary, D.C.

    1985-01-01

    A theory has been developed recently which predicts that the rate coefficients, k, for the reactions of ions with polar molecules at low temperatures will be much greater than the canonical value of 10 -9 cm 3 s -1 . The new theory indicates that k is greatest for low-lying rotational sates and increases rapidly with decreasing temperature. We refer to recent laboratory measurements which validate the theory, present calculated values of k for the reactions of H + 3 ions with several polar molecules, and discuss their significance to interstellar chemistry. For the reactions of ions with molecules having large dipole moments, we recommend that k values as large as 10 -7 cm 3 s -1 should be used in ion-chemical models of low-temperature interstellar clouds

  4. Analysis of helium-ion scattering with a desktop computer

    Science.gov (United States)

    Butler, J. W.

    1986-04-01

    This paper describes a program written in an enhanced BASIC language for a desktop computer, for simulating the energy spectra of high-energy helium ions scattered into two concurrent detectors (backward and glancing). The program is designed for 512-channel spectra from samples containing up to 8 elements and 55 user-defined layers. The program is intended to meet the needs of analyses in materials sciences, such as metallurgy, where more than a few elements may be present, where several elements may be near each other in the periodic table, and where relatively deep structure may be important. These conditions preclude the use of completely automatic procedures for obtaining the sample composition directly from the scattered ion spectrum. Therefore, efficient methods are needed for entering and editing large amounts of composition data, with many iterations and with much feedback of information from the computer to the user. The internal video screen is used exclusively for verbal and numeric communications between user and computer. The composition matrix is edited on screen with a two-dimension forms-fill-in text editor and with many automatic procedures, such as doubling the number of layers with appropriate interpolations and extrapolations. The control center of the program is a bank of 10 keys that initiate on-event branching of program flow. The experimental and calculated spectra, including those of individual elements if desired, are displayed on an external color monitor, with an optional inset plot of the depth concentration profiles of the elements in the sample.

  5. Role of Helium-Hydrogen ratio on energetic interchange mode behaviour and its effect on ion temperature and micro-turbulence in LHD

    Science.gov (United States)

    Michael, C. A.; Tanaka, K.; Akiyama, T.; Ozaki, T.; Osakabe, M.; Sakakibara, S.; Yamaguchi, H.; Murakami, S.; Yokoyama, M.; Shoji, M.; Vyacheslavov, L. N.; LHD Experimental Group

    2018-04-01

    In the Large helical device, a change of energetic particle mode is observed as He concentration is varied in ion-ITB type experiments, having constant electron density and input heating power but with a clear increase of central ion temperature in He rich discharges. This activity consists of bursty, but damped energetic interchange modes (EICs, Du et al 2015 Phys. Rev. Lett. 114 155003), whose occurrence rate is dramatically lower in the He-rich discharges. Mechanisms are discussed for the changes in drive and damping of the modes with He concentration. These EIC bursts consist of marked changes in the radial electric field, which is derived from the phase velocity of turbulence measured with the 2D phase contrast imaging (PCI) system. Similar bursts are detected in edge fast ion diagnostics. Ion thermal transport by gyro-Bohm scaling is recognised as a contribution to the change in ion temperature, though fast ion losses by these EIC modes may also contribute to the ion temperature dependence on He concentration, most particularly controlling the height of an ‘edge-pedestal’ in the Ti profile. The steady-state level of fast ions is shown to be larger in helium rich discharges on the basis of a compact neutral particle analyser (CNPA), and the fast-ion component of the diamagnetic stored energy. These events also have an influence on turbulence and transport. The large velocity shear induced produced during these events transiently improves confinement and suppresses turbulence, and has a larger net effect when bursts are more frequent in hydrogen discharges. This exactly offsets the increased gyro-Bohm related turbulence drive in hydrogen which results in the same time-averaged turbulence level in hydrogen as in helium.

  6. Helium cosmic ray flux measurements at Mars

    International Nuclear Information System (INIS)

    Lee, Kerry; Pinsky, Lawrence; Andersen, Vic; Zeitlin, Cary; Cleghorn, Tim; Cucinotta, Frank; Saganti, Premkumar; Atwell, William; Turner, Ron

    2006-01-01

    The helium energy spectrum in Martian orbit has been observed by the MARIE charged particle spectrometer aboard the 2001 Mars Odyssey spacecraft. The orbital data were taken from March 13, 2002 to October 28, 2003, at which time a very intense Solar Particle Event caused a loss of communication between the instrument and the spacecraft. The silicon detector stack in MARIE is optimized for the detection of protons and helium in the energy range below 100MeV/n, which typically includes almost all of the flux during SPEs. This also makes MARIE an efficient detector for GCR helium in the energy range of 50-150MeV/n. We will present the first fully normalized flux results from MARIE, using helium ions in this energy range

  7. Helium cosmic ray flux measurements at Mars

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kerry [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States)]. E-mail: ktlee@ems.jsc.nasa.gov; Pinsky, Lawrence [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States); Andersen, Vic [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States); Zeitlin, Cary [National Space Biomedical Research Institute, Baylor College of Medicine, Houston, TX (United States); Cleghorn, Tim [NASA Johnson Space Center, 2101 NASA Road 1, Houston, TX 77058 (United States); Cucinotta, Frank [NASA Johnson Space Center, 2101 NASA Road 1, Houston, TX 77058 (United States); Saganti, Premkumar [Prairie View A and M University, P.O. Box 519, Prairie View, TX 77446-0519 (United States); Atwell, William [The Boeing Company, Houston, TX (United States); Turner, Ron [Advancing National Strategies and Enabling Results (ANSER), Arlington, Virginia (United States)

    2006-10-15

    The helium energy spectrum in Martian orbit has been observed by the MARIE charged particle spectrometer aboard the 2001 Mars Odyssey spacecraft. The orbital data were taken from March 13, 2002 to October 28, 2003, at which time a very intense Solar Particle Event caused a loss of communication between the instrument and the spacecraft. The silicon detector stack in MARIE is optimized for the detection of protons and helium in the energy range below 100MeV/n, which typically includes almost all of the flux during SPEs. This also makes MARIE an efficient detector for GCR helium in the energy range of 50-150MeV/n. We will present the first fully normalized flux results from MARIE, using helium ions in this energy range.

  8. A simulation assessment of the thermodynamics of dense ion-dipole mixtures with polarization

    International Nuclear Information System (INIS)

    Bastea, Sorin

    2014-01-01

    Molecular dynamics (MD) simulations are employed to ascertain the relative importance of various electrostatic interaction contributions, including induction interactions, to the thermodynamics of dense, hot ion-dipole mixtures. In the absence of polarization, we find that an MD-constrained free energy term accounting for the ion-dipole interactions, combined with well tested ionic and dipolar contributions, yields a simple, fairly accurate free energy form that may be a better option for describing the thermodynamics of such mixtures than the mean spherical approximation (MSA). Polarization contributions induced by the presence of permanent dipoles and ions are found to be additive to a good approximation, simplifying the thermodynamic modeling. We suggest simple free energy corrections that account for these two effects, based in part on standard perturbative treatments and partly on comparisons with MD simulation. Even though the proposed approximations likely need further study, they provide a first quantitative assessment of polarization contributions at high densities and temperatures and may serve as a guide for future modeling efforts

  9. Formation of Pyrylium from Aromatic Systems with a Helium:Oxygen Flowing Atmospheric Pressure Afterglow (FAPA) Plasma Source

    Science.gov (United States)

    Badal, Sunil P.; Ratcliff, Tyree D.; You, Yi; Breneman, Curt M.; Shelley, Jacob T.

    2017-06-01

    The effects of oxygen addition on a helium-based flowing atmospheric pressure afterglow (FAPA) ionization source are explored. Small amounts of oxygen doped into the helium discharge gas resulted in an increase in abundance of protonated water clusters by at least three times. A corresponding increase in protonated analyte signal was also observed for small polar analytes, such as methanol and acetone. Meanwhile, most other reagent ions (e.g., O2 +·, NO+, etc.) significantly decrease in abundance with even 0.1% v/v oxygen in the discharge gas. Interestingly, when analytes that contained aromatic constituents were subjected to a He:O2-FAPA, a unique (M + 3)+ ion resulted, while molecular or protonated molecular ions were rarely detected. Exact-mass measurements revealed that these (M + 3)+ ions correspond to (M - CH + O)+, with the most likely structure being pyrylium. Presence of pyrylium-based ions was further confirmed by tandem mass spectrometry of the (M + 3)+ ion compared with that of a commercially available salt. Lastly, rapid and efficient production of pyrylium in the gas phase was used to convert benzene into pyridine. Though this pyrylium-formation reaction has not been shown before, the reaction is rapid and efficient. Potential reactant species, which could lead to pyrylium formation, were determined from reagent-ion mass spectra. Thermodynamic evaluation of reaction pathways was aided by calculation of the formation enthalpy for pyrylium, which was found to be 689.8 kJ/mol. Based on these results, we propose that this reaction is initiated by ionized ozone (O3 +·), proceeds similarly to ozonolysis, and results in the neutral loss of the stable CHO2 · radical. [Figure not available: see fulltext.

  10. A forward model for the helium plume effect and the interpretation of helium charge exchange measurements at ASDEX Upgrade

    Science.gov (United States)

    Kappatou, A.; McDermott, R. M.; Pütterich, T.; Dux, R.; Geiger, B.; Jaspers, R. J. E.; Donné, A. J. H.; Viezzer, E.; Cavedon, M.; the ASDEX Upgrade Team

    2018-05-01

    The analysis of the charge exchange measurements of helium is hindered by an additional emission contributing to the spectra, the helium ‘plume’ emission (Fonck et al 1984 Phys. Rev. A 29 3288), which complicates the interpretation of the measurements. The plume emission is indistinguishable from the active charge exchange signal when standard analysis of the spectra is applied and its intensity is of comparable magnitude for ASDEX Upgrade conditions, leading to a significant overestimation of the He2+ densities if not properly treated. Furthermore, the spectral line shape of the plume emission is non-Gaussian and leads to wrong ion temperature and flow measurements when not taken into account. A kinetic model for the helium plume emission has been developed for ASDEX Upgrade. The model is benchmarked against experimental measurements and is shown to capture the underlying physics mechanisms of the plume effect, as it can reproduce the experimental spectra and provides consistent values for the ion temperature, plasma rotation, and He2+ density.

  11. IBA studies of helium mobility in nuclear materials revisited

    Energy Technology Data Exchange (ETDEWEB)

    Trocellier, P., E-mail: patrick.trocellier@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Agarwal, S.; Miro, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Vaubaillon, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); CEA, INSTN, UEPTN, F-91191 Gif-sur-Yvette (France); Leprêtre, F.; Serruys, Y. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2015-12-15

    The aim of this paper is to point out and to discuss some features extracted from the study of helium migration in nuclear materials performed during the last fifteen years using ion beam analysis (IBA) measurements. The first part of this paper is devoted to a brief description of the two main IBA methods used, i.e. deuteron induced nuclear reaction for {sup 3}He depth profiling and high-energy heavy-ion induced elastic recoil detection analysis for {sup 4}He measurement. In the second part, we provide an overview of the different studies carried out on model nuclear waste matrices and model nuclear reactor structure materials in order to illustrate and discuss specific results in terms of key influence parameters in relation with thermal or radiation activated migration of helium. Finally, we show that among the key parameters we have investigated as able to influence the height of the helium migration barrier, the following can be considered as pertinent: the experimental conditions used to introduce helium (implanted ion energy and implantation fluence), the grain size of the matrix, the lattice cell volume, the Young's modulus, the ionicity degree of the chemical bond between the transition metal atom M and the non-metal atom X, and the width of the band gap.

  12. The repetitive flaking of Inconel 625 by 100 keV helium bombardment

    International Nuclear Information System (INIS)

    Whitton, J.L.; Chen, H.M.; Littmark, U.

    1981-01-01

    Repetitive flaking of Inconel 625 occurs with ion bombardment doses of > than 10 18 100 keV helium ions cm -2 , with up to 39 exfoliations being observed after bombardment with 3 x 10 19 ions cm -2 . The thickness of the flakes, measured by scanning electron microscopy, is some 30% greater than when measured by Rutherford backscattering (RBS) of 1.8 MeV helium ions. These RBS measurements compare well with the thickness of the remaining layers in the resultant craters and to the most probable range of the 100 keV helium. The area of the flakes is dictated by the grain boundaries, and when one flake is ejected, the adjacent grains are prevented from doing so since there now exists an escape route for the injected helium. A strong dose rate dependence is observed; decreasing the beam current from 640 μA cm -2 to 64 μA cm -2 results in a factor 20 fewer flakes being exfoliated (for the same total dose of 3 x 10 19 ions cm -2 ). Successive flakes decrease in area, suggesting that eventually a cratered, but stable, surface will result with the only erosion being by the much less effective mechanism of sputtering. (orig.)

  13. Modeling Secondary Neutral Helium in the Heliosphere

    International Nuclear Information System (INIS)

    Müller, Hans-Reinhard; Möbius, Eberhard; Wood, Brian E.

    2016-01-01

    An accurate, analytic heliospheric neutral test-particle code for helium atoms from the interstellar medium (ISM) is coupled to global heliospheric models dominated by hydrogen and protons from the solar wind and the ISM. This coupling enables the forward-calculation of secondary helium neutrals from first principles. Secondaries are produced predominantly in the outer heliosheath, upwind of the heliopause, by charge exchange of helium ions with neutral atoms. The forward model integrates the secondary production terms along neutral trajectories and calculates the combined neutral helium phase space density in the innermost heliosphere where it can be related to in-situ observations. The phase space density of the secondary component is lower than that of primary neutral helium, but its presence can change the analysis of primaries and the ISM, and can yield valuable insight into the characteristics of the plasma in the outer heliosheath. (paper)

  14. Cross Sections for K-shell X-ray Production by Hydrogen and Helium Ions in Elements from Beryllium to Uranium

    International Nuclear Information System (INIS)

    Lapicki, G.

    1989-01-01

    Experimental cross sections for K-shell x-ray production by hydrogen and helium ions (Z 1 = 1,2) in target atoms from beryllium to uranium (Z 2 = 4--92 ) are tabulated as compiled (7418 cross sections) from the literature (161 references were found) with the search for the data terminated in January 1988. These cross sections are compared with predictions of the first Born approximation and ECPSSR theory for inner-shell ionization. The ECPSSR accounts for the energy loss (E) and Coulomb deflection (C) of the projectile ion as well as for the perturbed stationary state (PSS) and relativistic (R) nature of the target's inner-shell electron.While the first Born approximation generally overestimates the data by orders of magnitude, the ECPSSR theory is confirmed to be, on the average, in agreement with the experiment to within 10%--20%. For light and heavy target atoms, however, systematic and opposite deviations are found in the low projectile-velocity regime. These deviations are associated with the influence of multiple outer-shell ionizations on the fluorescence yields of light elements, particularly in ionization by helium ions, and with the inaccuracy of the ECPSSR theory in the reproduction of relativistic calculations for ionization of heavy elements. The remaining discrepancies at moderate projectile velocities are prima facie attributed to inadequacies of a screened hydrogenic description for the K-shell electron

  15. Helium atoms and molecules in strong magnetic fields

    Science.gov (United States)

    Mori, K.

    Recent theoretical studies have shown that the neutron star surface may be composed of helium or heavier elements as hydrogen may be quickly depleted by diffuse nuclear burning Chang Bildsten However while Hydrogen atmospheres have been studied in great details atomic data for helium is available only for He ion Pavlov Bezchastnov 2005 We performed Hartree-Fock type calculation for Helium atom and molecules and computed their binding ionization and dissociation energies in strong magnetic fields B sim10 12 -- 10 15 G We will present ionization balance of Helium atmospheres at typical magnetic field strengths and temperatures to radio-quiet neutron stars and AXPs We will also discuss several implications of helium atmosphere to X-ray data of isolated neutron stars focusing on the detected spectral features

  16. Exotic helium molecules

    International Nuclear Information System (INIS)

    Portier, M.

    2007-12-01

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range 4 He 2 (2 3 S 1 -2 3 P 0 ) molecule, or a 4 He 2 (2 3 S 1 -2 3 S 1 ) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 ± 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range 4 He 2 (2 3 S 1 -2 3 S 1 ) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime τ = (1.4 ± 0.3) μs is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  17. Elastic scattering of helium ions on 9Be nuclei and exchange mechanisms

    International Nuclear Information System (INIS)

    Burtebaev, N.; Dujsebaev, B.A.

    1999-01-01

    Among nuclei of 1p-shell 9 Be is an extremely deformed nucleus with cluster structure. This considerably impedes determination of nucleus-nucleus potential of interaction. The latter relates to the fact that cross-section of 3 He ion and ?-particle elastic scattering on light nuclei is formed by not only mechanism of mere potential nature but also by other processes of heavy breakaway and displacement as well as by effects of channel relation. Final probability of 6 He+ and 3 He and 5 He+? cluster existence in 9 Be nucleus can be determined in the processes of 3 He or ?-particle ion scattering. As a result, it can cause considerable growth of cross-section under backward angles due to exchange of impinging particle with identical cluster in a nucleus. In order to study the contribution of different mechanisms into formation of cross-section of elastic scattering of helium nuclides on 9 Be nucleus we have performed series of experiments in broad angular range at energies 8-20 MeV/nucleon at derived beams of isochronous cyclotron of the Institute of Nuclear Physics of Kazakhstan national Nuclear Centre

  18. The scattering of low energy helium ions and atoms from a copper single crystal, ch. 2

    International Nuclear Information System (INIS)

    Verheij, L.K.; Poelsema, B.; Boers, A.L.

    1976-01-01

    The scattering of 4-10 keV helium ions from a copper surface cannot be completely described with elastic, single collisions. The general behaviour of the measured energy and width of the surface peak can be explained by differences in inelastic energy losses for scattering from an ideal surface and from surface structures (damage). Multiple scattering effects have a minor influence. Additional information about the inelastic processes is obtained from scattering experiments with a primary atom beam. For large angles of incidence, the energy of the reflected ions is reduced about 20 eV if the primary beam consists of atoms instead of ions. An explanation of this effect and an explanation of the different behaviour of small angles is given. In the investigated energy range, the electronic stopping power might depend on the charge state of the primary particles. The experimental results are rather well explained by the Lindhard, Scharff, Schioett theory

  19. Tritium Decay Helium-3 Effects in Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  20. Scaling of cross-sections for asymmetric (e, 3e) process on helium ...

    Indian Academy of Sciences (India)

    An approximate simple scaling law is obtained for asymmetric (, 3) process on helium-like ions for double ionization by fast electrons. It is based on the equation ( Z ′ 3 / ) exp [ − Z ′ ( r 1 + r 2 ) ] , Z ′ = Z − ( 5 / 16 ) for ground state wave function of helium- like ions and Z ′ 2 scaling of energies. The scaling law is ...

  1. Charged condensate and helium dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Gabadadze, Gregory; Rosen, Rachel A, E-mail: gg32@nyu.edu, E-mail: rar339@nyu.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

    2008-10-15

    White dwarf stars composed of carbon, oxygen and heavier elements are expected to crystallize as they cool down below certain temperatures. Yet, simple arguments suggest that the helium white dwarf cores may not solidify, mostly because of zero-point oscillations of the helium ions that would dissolve the crystalline structure. We argue that the interior of the helium dwarfs may instead form a macroscopic quantum state in which the charged helium-4 nuclei are in a Bose-Einstein condensate, while the relativistic electrons form a neutralizing degenerate Fermi liquid. We discuss the electric charge screening, and the spectrum of this substance, showing that the bosonic long-wavelength fluctuations exhibit a mass gap. Hence, there is a suppression at low temperatures of the boson contribution to the specific heat-the latter being dominated by the specific heat of the electrons near the Fermi surface. This state of matter may have observational signatures.

  2. Excitation of the n=2 states of He+ in the ionization of helium

    International Nuclear Information System (INIS)

    Dixon, A.J.; McCarthy, I.E.; Weigold, E.

    1976-03-01

    The cross section ratio for the symmetric (e,2e) reaction on helium leading to the n = 2 and ground states of the helium ion has been calculated as a function of the ion recoil momentum q, using a correlated helium wave function, and compared with the results of a 1200eV noncoplanar experiment and some previous results at 800eV. The calculation agrees well with the measured (e,2e) cross section ratios and at high q with ratios measured in photoelectron spectroscopy experiments. (author)

  3. Computer aided control of the Bonn Penning polarized ion source

    International Nuclear Information System (INIS)

    He, N.W.; VonRossen, P.; Eversheim, P.D.; Busch, R.

    1984-01-01

    A CBM computer system is described which has been set up to control the Bonn Polarized Ion Source. The controlling program, besides setting and logging parameters, performs an optimization of the ion source output. A free definable figure of merit, being composed of the current of the ionizer and its variance, has proven to be an effective means in directing the source optimization. The performance that has been reached during the first successful tests is reported

  4. Standard Guide for Simulation of Helium Effects in Irradiated Metals

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This guide provides advice for conducting experiments to investigate the effects of helium on the properties of metals where the technique for introducing the helium differs in some way from the actual mechanism of introduction of helium in service. Simulation techniques considered for introducing helium shall include charged particle implantation, exposure to α-emitting radioisotopes, and tritium decay techniques. Procedures for the analysis of helium content and helium distribution within the specimen are also recommended. 1.2 Two other methods for introducing helium into irradiated materials are not covered in this guide. They are the enhancement of helium production in nickel-bearing alloys by spectral tailoring in mixed-spectrum fission reactors, and isotopic tailoring in both fast and mixed-spectrum fission reactors. These techniques are described in Refs (1-5). Dual ion beam techniques (6) for simultaneously implanting helium and generating displacement damage are also not included here. This lat...

  5. Hydration of magnesia cubes: a helium ion microscopy study

    Directory of Open Access Journals (Sweden)

    Ruth Schwaiger

    2016-02-01

    Full Text Available Physisorbed water originating from exposure to the ambient can have a strong impact on the structure and chemistry of oxide nanomaterials. The effect can be particularly pronounced when these oxides are in physical contact with a solid substrate such as the ones used for immobilization to perform electron or ion microscopy imaging. We used helium ion microscopy (HIM and investigated morphological changes of vapor-phase-grown MgO cubes after vacuum annealing and pressing into foils of soft and high purity indium. The indium foils were either used as obtained or, for reference, subjected to vacuum drying. After four days of storage in the vacuum chamber of the microscope and at a base pressure of p −7 mbar, we observed on these cubic particles the attack of residual physisorbed water molecules from the indium substrate. As a result, thin magnesium hydroxide layers spontaneously grew, giving rise to characteristic volume expansion effects, which depended on the size of the particles. Rounding of the originally sharp cube edges leads to a significant loss of the morphological definition specific to the MgO cubes. Comparison of different regions within one sample before and after exposure to liquid water reveals different transformation processes, such as the formation of Mg(OH2 shells that act as diffusion barriers for MgO dissolution or the evolution of brucite nanosheets organized in characteristic flower-like microstructures. The findings underline the significant metastability of nanomaterials under both ambient and high-vacuum conditions and show the dramatic effect of ubiquitous water films during storage and characterization of oxide nanomaterials.

  6. Progress on the design of the polarized Medium-energy Electron Ion Collider at JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F.; Bogacz, A.; Brindza, P.; Camsonne, A.; Daly, E.; Derbenev, Ya. S.; Douglas, D.; Ent, R.; Gaskell, D.; Geng, R.; Grames, J.; Guo, J.; Harwood, L.; Hutton, A.; Jordan, K.; Kimber, A.; Krafft, G.; Li, R.; Michalski, T.; Morozov, V. S.; Nadel-Turonski, P.; /Jefferson Lab /Argonne /DESY /Moscow , Inst. Phys. Tech., Dolgoprydny /Dubna, JINR /Northern Illinois U. /Old Doominion U. /Novosibirsk, GOO Zaryad /SLAC /Texas A-M

    2015-07-14

    The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design.

  7. Spin effects in the screening and Auger neutralization of He+ ions in a spin-polarized electron gas

    International Nuclear Information System (INIS)

    Alducin, M.; Diez Muino, R.; Juaristi, J.I.

    2005-01-01

    The screening of a He + ion embedded in a free electron gas is studied for different spin-polarizations of the medium. Density functional theory and the local spin density approximation are used to calculate the induced electronic density for each spin orientation, i.e. parallel or antiparallel to the spin of the electron bound to the ion. Since both the He + ion and the electron gas are spin-polarized, we analyze in detail the spin state of the screening cloud for the two different possibilities: the spin of the bound electron can be parallel to either the majority spin or the minority spin in the medium. Finally, the spin-dependent Kohn-Sham orbitals are used to calculate the Auger neutralization rate of the He + ion. The polarization of the Auger excited electron is influenced by the spin-polarization of the medium. The results are discussed in terms of the spin-dependent screening and the indistinguishability of electrons with the same spin state

  8. Double ionisation of helium in fast ion collisions: the role of momentum transfer

    International Nuclear Information System (INIS)

    Bapat, B.; Moshammer, R.; Schmitt, W.; Kollmus, H.; Ullrich, J.; Doerner, R.; Weber, T.; Khayyat, K.

    1999-01-01

    Double ionisation of helium in the perturbative regime has been explored in a kinematically complete collision experiment using 100 MeV/u C 6+ ions. Different ionisation mechanisms are identified by inspecting the angular distribution of the electrons as a function of the momentum transfer q to the target by the projectile. For q 1.2 a.u., the faster electron resulting from a binary encounter with the projectile is emitted along the direction of momentum transfer, while the other electron is distributed uniformly. Experimental data are compared with various model calculations based on the Bethe-Born approximation with shake-off. Surprisingly, the effect of the final state interaction is found to depend decisively on the choice of the initial state wave function. (orig.)

  9. Heavy metal incorporated helium ion active hybrid non-chemically amplified resists: Nano-patterning with low line edge roughness

    Directory of Open Access Journals (Sweden)

    Pulikanti Guruprasad Reddy

    2017-08-01

    Full Text Available Helium (He ion lithography is being considered as one of the most promising and emerging technology for the manufacturing of next generation integrated circuits (ICs at nanolevel. However, He-ion active resists are rarely reported. In this context, we are introducing a new non-chemically amplified hybrid resist (n-CAR, MAPDSA-MAPDST, for high resolution He-ion beam lithography (HBL applications. In the resist architecture, 2.15 % antimony is incorporated as heavy metal in the form of antimonate. This newly developed resists has successfully used for patterning 20 nm negative tone features at a dose of 60 μC/cm2. The resist offered very low line edge roughness (1.27±0.31 nm for 20 nm line features. To our knowledge, this is the first He-ion active hybrid resist for nanopatterning. The contrast (γ and sensitivity (E0 of this resist were calculated from the contrast curve as 0.73 and 7.2 μC/cm2, respectively.

  10. Heavy metal incorporated helium ion active hybrid non-chemically amplified resists: Nano-patterning with low line edge roughness

    Science.gov (United States)

    Reddy, Pulikanti Guruprasad; Thakur, Neha; Lee, Chien-Lin; Chien, Sheng-Wei; Pradeep, Chullikkattil P.; Ghosh, Subrata; Tsai, Kuen-Yu; Gonsalves, Kenneth E.

    2017-08-01

    Helium (He) ion lithography is being considered as one of the most promising and emerging technology for the manufacturing of next generation integrated circuits (ICs) at nanolevel. However, He-ion active resists are rarely reported. In this context, we are introducing a new non-chemically amplified hybrid resist (n-CAR), MAPDSA-MAPDST, for high resolution He-ion beam lithography (HBL) applications. In the resist architecture, 2.15 % antimony is incorporated as heavy metal in the form of antimonate. This newly developed resists has successfully used for patterning 20 nm negative tone features at a dose of 60 μC/cm2. The resist offered very low line edge roughness (1.27±0.31 nm) for 20 nm line features. To our knowledge, this is the first He-ion active hybrid resist for nanopatterning. The contrast (γ) and sensitivity (E0) of this resist were calculated from the contrast curve as 0.73 and 7.2 μC/cm2, respectively.

  11. A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten

    Science.gov (United States)

    Harrison, R. W.; Greaves, G.; Hinks, J. A.; Donnelly, S. E.

    2017-11-01

    Transmission electron microscopy (TEM) with in-situ He ion irradiation has been used to examine the damage microstructure of W when varying the helium concentration to displacement damage ratio, irradiation temperature and total dose. Irradiations employed 15, 60 or 85 keV He ions, at temperatures between 500 and 1000 °C up to doses of ∼3.0 DPA. Once nucleated and grown to an observable size in the TEM, bubble diameter as a function of irradiation dose did not measurably increase at irradiation temperatures of 500 °C between 1.0 and 3.0 DPA; this is attributed to the low mobility of vacancies and He/vacancy complexes at these temperatures. Bubble diameter increased slightly for irradiation temperatures of 750 °C and rapidly increased when irradiated at 1000 °C. Dislocation loops were observed at irradiation temperatures of 500 and 750 °C and no loops were observed at 1000 °C. Burgers vectors of the dislocations were determined to be b = ±½ type only and both vacancy and interstitial loops were observed. The proportion of interstitial loops increased with He-appm/DPA ratio and this is attributed to the concomitant increase in bubble areal density, which reduces the vacancy flux for both the growth of vacancy-type loops and the annihilation of interstitial clusters.

  12. Dependence of proton beam polarization on ion source transition configurations; Determination de la polarisation du faisceau de protons pour les quatre configurations des transitions de la source d`ions

    Energy Technology Data Exchange (ETDEWEB)

    Arvieux, J.; Ausset, P.; Ball, J.; Beauvais, P.Y.; Bedfer, Y.; Chamouard, P.A.; Fontaine, J.M.; Kunne, R.; Lagniel, J.M.; Sans, J.L. [Laboratoire National Saturne - Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Allgower, Ch.; Kasprzyk, T.E.; Spinka, H.M. [ANL-HEP, Argonne (United States); Bystricky, J.; Lehar, F.; Lesquen, A. de [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Demiere, Ph.; Rapin, D.; Teglia, A. [Geneva Univ. (Switzerland). Dept. de Physique Nucleaire et Corpusculaire; Janout, Z. [Czech Technical Univ., Prague (Czech Republic). Faculty of Civil Engineering; Kalinnikov, V.A.; Khachaturov, B.A.; Popov, A.A. [Laboratory of Nuclear Problems, JINR, Moscow (Russian Federation); Prokofiev, A.N.; Vikhrov, V.V.; Zhdanov, A.A. [Nuclear Physics Inst., St. Petersburg (Russian Federation)

    1997-12-31

    Considerable anomalies were observed in recorded pp elastic scattering spin dependent data at several proton beam energies at SATURNE II. These results suggested that the discrepancies are related to the polarized ion source. In order to understand the observed effects, the proton beam polarizations for each ion source state were determined separately. Convenient procedures, allowing to determine the beam polarization from a beam-line polarimeter are presented. Two distinct experiments are necessary for this purpose. In the first one the LEFT-RIGHT instrumental asymmetry of the beam polarimeter arms is determined. In the second one this correction factor is applied to asymmetries measured with the beam from the polarized ion source in different polarization states. Both experiments determined the scattering asymmetries for all four polarized source states as functions of different source parameters. The measurements were carried out at the proton beam kinetic energy 0.80 GeV, where the pp elastic scattering analyzing power is at its maximum. Results show that the so called `unpolarized states` of the source are polarized, whereas the absolute values of the beam polarizations in `polarized states` are equal. It was observed that the hexapole lens of the ion source provides some beam polarization in the absence of any transition. The beam polarization as function of the hexapole current, of the transition efficiencies and of the rotation solenoid current has been studied. It is also shown, how one way obtain a strictly unpolarized beam using the polarized source only. The results obtained with the SATURNE II ion source HYPERION may be also valid for other accelerators and sources. (authors) 10 refs.

  13. Angle-resolved imaging of single-crystal materials with MeV helium ions

    Energy Technology Data Exchange (ETDEWEB)

    Strathman, M D; Baumann, S [Charles Evans and Associates, Redwood City, CA (United States)

    1992-02-01

    The simplest form of angle-resolved mapping for single-crystal materials is the creation of a channeling angular scan. Several laboratories have expanded this simple procedure to include mapping as a function of two independent tilts. These angle-resolved images are particularly suited to the assessment of crystal parameters including disorder, lattice location of impurities, and lattice stress. This paper will describe the use of the Charles Evans and Associates RBS-400 scattering chamber for acquisition, display, and analysis of angle-resolved images obtained from backscattered helium ions. Typical data acquisition times are 20 min for a {+-}2deg X-Y tilt scan with 2500 pixels (8/100deg resolution), and 10 nC per pixel. In addition, we will present a method for automatically aligning crystals for channeling measurements based on this imaging technology. (orig.).

  14. Angle-resolved imaging of single-crystal materials with MeV helium ions

    International Nuclear Information System (INIS)

    Strathman, M.D.; Baumann, S.

    1992-01-01

    The simplest form of angle-resolved mapping for single-crystal materials is the creation of a channeling angular scan. Several laboratories have expanded this simple procedure to include mapping as a function of two independent tilts. These angle-resolved images are particularly suited to the assessment of crystal parameters including disorder, lattice location of impurities, and lattice stress. This paper will describe the use of the Charles Evans and Associates RBS-400 scattering chamber for acquisition, display, and analysis of angle-resolved images obtained from backscattered helium ions. Typical data acquisition times are 20 min for a ±2deg X-Y tilt scan with 2500 pixels (8/100deg resolution), and 10 nC per pixel. In addition, we will present a method for automatically aligning crystals for channeling measurements based on this imaging technology. (orig.)

  15. Comment on theories for helium-assisted void nucleation

    International Nuclear Information System (INIS)

    Russell, K.C.

    1976-01-01

    Voids form by agglomeration of irradiation-induced vacancies which remain after preferential absorption of self interstitials at dislocation lines. Helium which is formed by (n,α) transmutations and, in simulation studies, may be ion-implanted, often plays an important, but puzzling role. In some materials, very few voids form in the absence of helium, even after intense irradiation. In many other materials , voids form readily under a variety of irradiation conditions, even in the absence of helium. Why some materials require helium - typically in the 10 -6 apa (atom per atom) range - and others do not, and the reason for that particular level are by no means clear. The physics of void nucleation, particularly the role of helium, have been the subject of several theoretical papers. This note presents a critique of these theories, and then briefly outlines a new analysis which is not subject to their limitations. (Auth.)

  16. Core Technology Development of Nuclear spin polarization

    International Nuclear Information System (INIS)

    Yoo, Byung Duk; Gwon, Sung Ok; Kwon, Duck Hee; Lee, Sung Man

    2009-12-01

    In order to study nuclear spin polarization, we need several core technologies such as laser beam source to polarize the nuclear spin, low pressured helium cell development whose surface is essential to maintain polarization otherwise most of the polarized helium relaxed in short time, development of uniform magnetic field system which is essential for reducing relaxation, efficient vacuum system, development of polarization measuring system, and development of pressure raising system about 1000 times. The purpose of this study is to develop resonable power of laser system, that is at least 5 watt, 1083 nm, 4GHz tuneable. But the limitation of this research fund enforce to develop amplifying system into 5 watt with 1 watt system utilizing laser-diod which is already we have in stock. We succeeded in getting excellent specification of fiber laser system with power of 5 watts, 2 GHz linewidth, more than 80 GHz tuneable

  17. Spectroscopy of helium hydride and triatomic hydrogen molecules

    International Nuclear Information System (INIS)

    Ketterle, W.

    1986-07-01

    Helium hydride and triatomic hydrogen has been produced by charge exchange between fast mass selected beams of molecular ions and alkali vapor. Using this method, the first discrete spectra of helium hydride were obtained. Fine electronic transitions with resolved rotational structure were observed in the visible and near infrared. Four isotopic mixtures were studied. Furthermore the first lifetime measurement of triatomic hydrogen states were performed and compared to theoretical predictions. (orig.)

  18. Electron emission in the Auger neutralization of a spin-polarized He+ ion embedded in a free electron gas

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Alducin, M.; Diez Muino, R.; Roesler, M.

    2005-01-01

    Results are presented for the energy distribution and spin polarization of the electrons excited during the Auger neutralization of a spin polarized He + ion embedded in a paramagnetic free electron gas. The screening of the He + ion is calculated using density functional theory within the local spin density approximation. The Auger rates, the energy distribution and the spin polarization of the excited electrons are obtained using the Fermi golden rule. The transport of the electrons is calculated within the Boltzmann transport equation formalism. The spin-polarization of the initially excited electrons is very high (>70%) and parallel to that of the electron bound to the He + ion. Nevertheless, the emitted electrons show a much lower degree of polarization, mainly in the low energy range, due to the creation of the unpolarized cascade of secondaries in the transport process

  19. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  20. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    International Nuclear Information System (INIS)

    Abeyratne, S.; Accardi, A.; Ahmed, S.; Barber, D.; Bisognano, J.; Bogacz, A.; Castilla, A.; Chevtsov, P.; Corneliussen, S.; Deconinck, W.; Degtiarenko, P.; Delayen, J.; Derbenev, Ya.; DeSilva, S.; Douglas, D.; Dudnikov, V.; Ent, R.; Erdelyi, B.; Evtushenko, P.; Fujii, Yu; Filatov, Yury; Gaskell, D.; Geng, R.; Guzey, V.; Horn, T.; Hutton, A.; Hyde, C.; Johnson, R.; Kim, Y.; Klein, F.; Kondratenko, A.; Kondratenko, M.; Krafft, G.; Li, R.; Lin, F.; Manikonda, S.; Marhauser, F.; McKeown, R.; Morozov, V.; Dadel-Turonski, P.; Nissen, E.; Ostroumov, P.; Pivi, M.; Pilat, F.; Poelker, M.; Prokudin, A.; Rimmer, R.; Satogata, T.; Sayed, H.; Spata, M.; Sullivan, M.; Tennant, C.; Terzic, B.; Tiefenback, M.; Wang, H.; Wang, S.; Weiss, C.; Yunn, B.; Zhang, Y.

    2012-01-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  1. Electric response in superfluid helium

    Czech Academy of Sciences Publication Activity Database

    Chagovets, Tymofiy

    2016-01-01

    Roč. 488, May (2016), s. 62-66 ISSN 0921-4526 R&D Projects: GA ČR GP13-03806P Institutional support: RVO:68378271 Keywords : superfluid helium * electric response * second sound * ions in He II Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2016

  2. Sequential double photodetachment of He- in elliptically polarized laser fields

    Science.gov (United States)

    Génévriez, Matthieu; Dunseath, Kevin M.; Terao-Dunseath, Mariko; Urbain, Xavier

    2018-02-01

    Four-photon double detachment of the helium negative ion is investigated experimentally and theoretically for photon energies where the transient helium atom is in the 1 s 2 s 3S or 1 s 2 p P3o states, which subsequently ionize by absorption of three photons. Ionization is enhanced by intermediate resonances, giving rise to series of peaks in the He+ spectrum, which we study in detail. The He+ yield is measured in the wavelength ranges from 530 to 560 nm and from 685 to 730 nm and for various polarizations of the laser light. Double detachment is treated theoretically as a sequential process, within the framework of R -matrix theory for the first step and effective Hamiltonian theory for the second step. Experimental conditions are accurately modeled, and the measured and simulated yields are in good qualitative and, in some cases, quantitative agreement. Resonances in the double detachment spectra can be attributed to well-defined Rydberg states of the transient atom. The double detachment yield exhibits a strong dependence on the laser polarization which can be related to the magnetic quantum number of the intermediate atomic state. We also investigate the possibility of nonsequential double detachment with a two-color experiment but observe no evidence for it.

  3. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  4. Proton polarizing system with Ar-ion laser for p-vector-RI scattering experiments

    International Nuclear Information System (INIS)

    Wakui, T.; Hatano, M.; Sakai, H.; Uesaka, T.; Tamii, A.

    2005-01-01

    A proton polarizing system for use in scattering experiments with radioactive isotope beams is described. Protons in a naphthalene crystal doped with pentacene are polarized in a magnetic field of 0.3T at 100K by transferring a large population difference among the photo-excited triplet states of pentacene to the hydrogen nuclei. An Ar-ion laser, which demands minimal maintenance during scattering experiments, is employed to excite the pentacene molecules. A proton polarization of 37% is obtained

  5. Helium ion damage in an amorphous Fe-Ni-Mo-B alloy

    International Nuclear Information System (INIS)

    Swijgenhoven, H. van; Stals, L.M.; Knuyt, G.

    1983-01-01

    Data are presented on helium gas bubble and helium blister formation for Metglas 2826MB during 5 keV He + -implantation in the temperature range 200K-600K and dose range 5.10 20 -10 22 He + /m 2 . It is concluded that amorphous alloys are less radiation resistant as has been thought earlier. (author)

  6. Polarization transfer in x-ray transitions due to photoionization in highly charged copper-like ions

    Science.gov (United States)

    Ma, Kun; Chen, Zhan-Bin; Xie, Lu-You; Dong, Chen-Zhong

    2018-02-01

    Using the density matrix theory and the multi-configuration Dirac-Fock method, the 3{d}3/2 subshell photoionization of highly charged ions is studied, together with their subsequent radiative decay. The effects of polarization transfer on the linear polarization and angular distribution of the 3{d}94{s}2{}2{D}3/2\\to 3{d}104p{}2{P}1/2 characteristic line photoemission for selected Cu-like Zn+, Ba27+, {{{W}}}45+, and {{{U}}}63+ ions are investigated. Our results show that the polarization transfer, arising from the originally polarized incident light, may lead to a considerable change in the alignment parameters and the polarization properties of the radiation, the character of which is highly sensitive to the initial photon polarization, yet virtually independent of the photon energy. These characteristics are very similar to those of the electron bremsstrahlung process reported by Märtin et al (2012 Phys. Rev. Lett. 108 264801). The present results are compared with available experimental results and show a good quantitative agreement.

  7. Construction and testing of a source for the production of polarized heavy ions at the Heidelberg MP tandem

    International Nuclear Information System (INIS)

    Kraemer, H.D.

    1983-01-01

    At the Heidelberg MP tandem a source for the production of nuclear-spin polarized lithium and sodium ions was constructed. The ion source works according to the atomic beam principle. By a furnace a thermal atomic beam is produced the electron shell of which is polarized in a quadrupole magnet. This beam passes then three high frequency passages in which by exchange of suitable hyperfine structure levels the nuclear spin is partly polarized. The atoms are ionized on a hot tungsten surface and transcharged in cesium vapour to negative ions. The alignment of the spin in the desired spatial direction is rendered possible by means of a Wien filter rotable around the beam axis. For the beam transport until the accelerator exclusively electrostatic lenses and deviation elements are used. For the checking of the function modus of the different source parts the polarization of the atomic beam and low energy ion beams was studied. The polarization of the accelerated sup(7->)Li beam was measured by the reaction 1 H(sup(7->)Li, α) 4 He at Esub(Li) = 44 MeV. The tensor polarization was determined to Psub(zz) = 0.35 +- 0.01. The polarization of odd stages was determined to >= 80% of the theoretically reachable values. For a tensor polarized 23 Na 9+ beam accelerated to 110 MeV could be shown that during the acceleration 50% of the polarization remains conserved. With this at the first time a powerful source for the production of polarized Na beams of an accelerator is available which permits nuclear physics studies inthe energy range Esub(Na) [de

  8. Ion Outflow and Convection in the Polar Cap and Cleft as Measured by Tide, EFI, MFE and Timas

    Science.gov (United States)

    Elliott, H. A.; Craven, P. D.; Chandler, M. O.; Moore, T. E.; Maynard, N. C.; Peterson, W. K.; Lennartsson, O. W.; Shelley, E. G.; Mozer, F. S.; Russell, C. T.

    1997-01-01

    This study examines high-latitude ion outflows and velocities perpendicular to the magnetic field derived from moments of ion distributions measured by the TIDE (Thermal Ion Dynamics Experiment) instrument on the Polar satellite. Hydrogen and oxygen ions are shown to be E X B drifting in the polar cap and cleft regions with a speed of about 5-20 km/s at apogee (approximately 9 Re) and a speed of 1-2 km/s at perigee (approximately 1. 8 Re). E X B drifts are calculated from electric fields measured by EFI (Electric Field Instrument) and magnetic fields measured by MFE (Magnetic Field Experiment) both of which are also on Polar. How convection at Polar's perigee relates to potential patterns of the ionosphere will be discussed. In the cusp/cleft the distribution of hydrogen extends over a large enough range of energy to be measured by both TIDE and the Toroidal Imaging Mass-Angle Spectrograph (TIMAS). Such comparisons will be also be presented.

  9. The g-u interference oscillations observed in the emission cross sections and the optical polarizations in He+-He collisions

    International Nuclear Information System (INIS)

    Tani, M.; Hishikawa, A.; Okasaka, R.

    1991-01-01

    We have observed emission radiation from helium atoms excited in He + -He collisions by the direct and electron capture processes over the energy range 0.5-20 keV. The relative emission cross sections for transitions 2 1,3 P-3 1,3 S, 2 1,3 S-3 1,3 P and 2 1,3 P-2 1,3 D have been determined. Degrees of optical polarization have also been determined for the P- and D-state excitations. The emission cross section of the direct excitation and that of the electron capture excitation show oscillations against impact energy, which are in antiphase with each other. The polarization degrees for both processes are nearly the same magnitude and show weak oscillations in antiphase with each other. The oscillations of the cross section and those of the polarization degree are in phase in some cases and in antiphase in other cases. These oscillations are interpreted as due to the interference between the gerade and ungerade states of the helium quasimolecular ion. From the amplitude ratio and the phase correlation between the oscillations of the cross section and those of the polarization degree we find that the predominant g-u interference pair is Π g -Π u . (author)

  10. Modeling Space-Time Dependent Helium Bubble Evolution in Tungsten Armor under IFE Conditions

    International Nuclear Information System (INIS)

    Qiyang Hu; Shahram Sharafat; Nasr Ghoniem

    2006-01-01

    The High Average Power Laser (HAPL) program is a coordinated effort to develop Laser Inertial Fusion Energy. The implosion of the D-T target produces a spectrum of neutrons, X-rays, and charged particles, which arrive at the first wall (FW) at different times within about 2.5 μs at a frequency of 5 to 10 Hz. Helium is one of several high-energy charged particle constituents impinging on the candidate tungsten armored low activation ferritic steel First Wall. The spread of the implanted debris and burn helium energies results in a unique space-time dependent implantation profile that spans about 10 μm in tungsten. Co-implantation of X-rays and other ions results in spatially dependent damage profiles and rapid space-time dependent temperature spikes and gradients. The rate of helium transport and helium bubble formation will vary significantly throughout the implanted region. Furthermore, helium will also be transported via the migration of helium bubbles and non-equilibrium helium-vacancy clusters. The HEROS code was developed at UCLA to model the spatial and time-dependent helium bubble nucleation, growth, coalescence, and migration under transient damage rates and transient temperature gradients. The HEROS code is based on kinetic rate theory, which includes clustering of helium and vacancies, helium mobility, helium-vacancy cluster stability, cavity nucleation and growth and other microstructural features such as interstitial loop evolution, grain boundaries, and precipitates. The HEROS code is based on space-time discretization of reaction-diffusion type equations to account for migration of mobile species between neighboring bins as single atoms, clusters, or bubbles. HAPL chamber FW implantation conditions are used to model helium bubble evolution in the implanted tungsten. Helium recycling rate predictions are compared with experimental results of helium ion implantation experiments. (author)

  11. Dynamic polarization by coulomb excitation in the closed formalism for heavy ion scattering

    International Nuclear Information System (INIS)

    Frahn, W.E.; Hill, T.F.

    1978-01-01

    We present a closed-form treatment of the effects of dynamic polarization by Coulomb excitation on the elastic scattering of deformed heavy ions. We assume that this interaction can be represented by an absorptive polarization potential. The relatively long range of this potential entails a relatively slow variation of the associated reflection function in l-space. This feature leads to a simple generalization of the closed formula derived previously for the elastic scattering amplitude of spherical heavy nuclei. We use both the polarization potential of Love et al. and the recent improved potential of Baltz et al. to derive explicit expressions for the associated reflection functions in a Coulomb-distorted eikonal approximation. As an example we analyze the elastic scattering of 90-MeV 18 O ions by 184 W and show that both results give a quantitative description of the data. (orig.) [de

  12. Exfoliation on stainless steel and inconel produced by 0.8-4 MeV helium ion bombardment

    International Nuclear Information System (INIS)

    Paszti, F.; Mezey, G.; Pogany, L.; Fried, M.; Manuaba, A.; Kotai, E.; Lohner, T.; Pocs, L.

    1982-11-01

    Trying to outline the energy dependence of surface deformations such as exfoliation and flaking on candidate CTR first-wall materials, stainless steel and two types of inconels were bombarded by 0.8, 1 and 4 MeV helium ions. All the bombarded spots could be characterized by by large exfoliations covering almost the total implanted area. No spontaneous rupture was observed except on one type of inconel where flaking took place right after reaching the critical dose. After mechanical opening of the formations, similar inner morphology was found as in our previous studies on gold. (author)

  13. On the distribution of electrons in the double ionization of helium-like ions by Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Drukarev, E G [Petersburg Nuclear Physics Institute, Gatchina, St Petersburg 188300 (Russian Federation)

    2003-06-28

    The Compton scattering of a high energy photon by a helium-like ion, followed by the ionization of two electrons, is considered outside of the Bethe surface of Compton scattering with the knock-out of a single electron. The role of shake-off (SO), of final state interactions (FSI) and of the quasi-free mechanism (QFM) is analysed. The triple and double differential distributions are calculated. It is demonstrated for the first time that in certain kinematical regions the process is dominated by the FSI and by the QFM, while the SO contribution is much smaller.

  14. Blowing smoke rings in superfluid helium

    International Nuclear Information System (INIS)

    Allum, D.R.; McClintock, P.V.E.

    1977-01-01

    Among experiments designed to investigate the properties of superfluids, measurements are discussed which aim at determining the variation in the speed of an ion with the size of the electric field propelling it through liquid helium. The experimental set up using helium ions is described. The velocity-field characteristic shows an initial rise but at a higher electric field the ions exhibit the curious behaviour of slowing down before again increasing speed with force. The reason for this region of slowing down is here explained as being due to the fact that the charge is no longer carried by a free ion but, rather, by a charged vortex ring. As the ion speeds thorugh the liquid it suddenly creates a vortex ring and as one of the fundamental characteristics of a vortex ring is that its velocity is inversely proportional to its radius the speed reduction is explained. The subsequent rise in the characteristic indicates that the charge carriers are no longer straightforward charged vortex rings. This behaviour is attributed to ions 'falling off' their rings soon after creating them. It would appear that the force exerted by the electric field is so large that it overcomes the hydrodynamic force which binds the ion to the slowly moving vortex, enabling the ion to escape and accelerate away. In a final levelling off part of the characteristic curve it is considered that the ions are travelling faster than the critical velocity for roton creation, but are moving far below that for phonon creation. One may therefore conclude that the ion, as it travels through the liquid, transforms energy extracted from the electric field into rotons, which fan out forming a sort of wake behind it. (U.K.)

  15. ERDA, RBS, TEM and SEM characterization of microstructural evolution in helium-implanted Hastelloy N alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jie [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China); Bao, Liangman [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Huang, Hefei, E-mail: huanghefei@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Yan, E-mail: liyan@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Lei, Qiantao [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Deng, Qi [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Liu, Zhe; Yang, Guo [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China); Shi, Liqun [Institute of Modern Physics, Fudan University, Shanghai 200433 (China)

    2017-05-15

    Hastelloy N alloy was implanted with 30 keV, 5 × 10{sup 16} ions/cm{sup 2} helium ions at room temperature, and subsequent annealed at 600 °C for 1 h and further annealed at 850 °C for 5 h in vacuum. Using elastic recoil detection analysis (ERDA) and transmission electron microscopy (TEM), the depth profiles of helium concentration and helium bubbles in helium-implanted Hastelloy N alloy were investigated, respectively. The diffusion of helium and molybdenum elements to surface occurred during the vacuum annealing at 850 °C (5 h). It was also observed that bubbles in molybdenum-enriched region were much larger in size than those in deeper region. In addition, it is worth noting that plenty of nano-holes can be observed on the surface of helium-implanted sample after high temperature annealing by scanning electron microscope (SEM). This observation provides the evidence for the occurrence of helium release, which can be also inferred from the results of ERDA and TEM analysis.

  16. Helium behaviour in nuclear glasses

    International Nuclear Information System (INIS)

    Fares, T.

    2011-01-01

    The present thesis focuses on the study of helium behavior in R7T7 nuclear waste glass. Helium is generated by the minor actinides alpha decays incorporated in the glass matrix. Therefore, four types of materials were used in this work. These are non radioactive R7T7 glasses saturated with helium under pressure, glasses implanted with 3 He + ions, glasses doped with curium and glasses irradiated in nuclear reactor. The study of helium solubility in saturated R7T7 glass has shown that helium atoms are inserted in the glass free volume. The results yielded a solubility of about 10 16 at. cm -3 atm. -1 . The incorporation limit of helium in this type of glass has been determined; its value amounted to about 2*10 21 at. cm -3 , corresponding to 2.5 at.%. Diffusion studies have shown that the helium migration is controlled by the single population dissolved in the glass free volume. An ideal diffusion model was used to simulate the helium release data which allowed to determine diffusion coefficients obeying to the following Arrhenius law: D = D 0 exp(-E a /kBT), where D 0 = 2.2*10 -2 and 5.4*10 -3 cm 2 s -1 and E a = 0.61 eV for the helium saturated and the curium doped glass respectively. These results reflect a thermally activated diffusion mechanism which seems to be not influenced by the glass radiation damage and helium concentrations studied in the present work (up to 8*10 19 at. g -1 , corresponding to 0.1 at.%). Characterizations of the macroscopic, structural and microstructural properties of glasses irradiated in nuclear reactor did not reveal any impact associated with the presence of helium at high concentrations. The observed modifications i.e. a swelling of 0.7 %, a decrease in hardness by 38 %, an increase between 8 and 34 % of the fracture toughness and a stabilization of the glass structure under irradiation, were attributed to the glass nuclear damage induced by the irradiation in reactor. Characterizations by SEM and TEM of R7T7 glasses implanted

  17. Detection of nitro-based and peroxide-based explosives by fast polarity-switchable ion mobility spectrometer with ion focusing in vicinity of Faraday detector.

    Science.gov (United States)

    Zhou, Qinghua; Peng, Liying; Jiang, Dandan; Wang, Xin; Wang, Haiyan; Li, Haiyang

    2015-05-29

    Ion mobility spectrometer (IMS) has been widely deployed for on-site detection of explosives. The common nitro-based explosives are usually detected by negative IMS while the emerging peroxide-based explosives are better detected by positive IMS. In this study, a fast polarity-switchable IMS was constructed to detect these two explosive species in a single measurement. As the large traditional Faraday detector would cause a trailing reactant ion peak (RIP), a Faraday detector with ion focusing in vicinity was developed by reducing the detector radius to 3.3 mm and increasing the voltage difference between aperture grid and its front guard ring to 591 V, which could remove trailing peaks from RIP without loss of signal intensity. This fast polarity-switchable IMS with ion focusing in vicinity of Faraday detector was employed to detect a mixture of 10 ng 2,4,6-trinitrotoluene (TNT) and 50 ng hexamethylene triperoxide diamine (HMTD) by polarity-switching, and the result suggested that [TNT-H](-) and [HMTD+H](+) could be detected in a single measurement. Furthermore, the removal of trailing peaks from RIP by the Faraday detector with ion focusing in vicinity also promised the accurate identification of KClO4, KNO3 and S in common inorganic explosives, whose product ion peaks were fairly adjacent to RIP.

  18. Cluster observations of ion dispersion discontinuities in the polar cusp

    Science.gov (United States)

    Escoubet, C. P.; Berchem, J.; Pitout, F.; Richard, R. L.; Trattner, K. J.; Grison, B.; Taylor, M. G.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.

    2009-12-01

    The reconnection between the interplanetary magnetic field (IMF) and the Earth’s magnetic field is taking place at the magnetopause on magnetic field lines threading through the polar cusp. When the IMF is southward, reconnection occurs near the subsolar point, which is magnetically connected to the equatorward boundary of the polar cusp. Subsequently the ions injected through the reconnection point precipitate in the cusp and are dispersed poleward. If reconnection is continuous and operates at constant rate, the ion dispersion is smooth and continuous. On the other hand if the reconnection rate varies, we expect interruption in the dispersion forming energy steps or staircase. Similarly, multiple entries near the magnetopause could also produce steps at low or mid-altitude when a spacecraft is crossing subsequently the field lines originating from these multiple sources. In addition, motion of the magnetopause induced by solar wind pressure changes or erosion due to reconnection can also induce a motion of the polar cusp and a disruption of the ions dispersion observed by a spacecraft. Cluster with four spacecraft following each other in the mid-altitude cusp can be used to distinguish between these “temporal” and “spatial” effects. We will present a cusp crossing with two spacecraft, separated by around two minutes. The two spacecraft observed a very similar dispersion with a step in energy in its centre and two other dispersions poleward. We will show that the steps could be temporal (assuming that the time between two reconnection bursts corresponds to the time delay between the two spacecraft) but it would be a fortuitous coincidence. On the other hand the steps and the two poleward dispersions could be explained by spatial effects if we take into account the motion of the open-closed boundary between the two spacecraft crossings.

  19. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions

    OpenAIRE

    Nefiodov, A. V.; Plunien, G.; Soff, G.

    2002-01-01

    The influence of nuclear polarization on the bound-electron $g$ factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron $g$ factor in highly charged ions.

  20. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    Science.gov (United States)

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions.

  1. Generation of intense polarized beams by selective neutralization of negative ions

    International Nuclear Information System (INIS)

    Hershcovitch, A.I.; Hinds, E.A.

    1983-01-01

    A novel scheme is proposed. This method is based on selective neutralization by laser negative hydrogen ions in a magnetic field. This selectivity is based on the fact that the final state of the neutralized atom depends on nuclear polarization in the magnetic field. A two-scenario approach is to be followed: one in which the resulting neutral atom is in the ground state, and in the other the neutral atom is in the n = 2 level. Limiting factors are discussed. The main advantages of this scheme are the availability of multi-ampere negative ion sources and the possibility to neutralize negative ions with very high efficiency. 15 references, 2 figures

  2. Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He+ implantation

    Science.gov (United States)

    Chen, Da; Tong, Y.; Li, H.; Wang, J.; Zhao, Y. L.; Hu, Alice; Kai, J. J.

    2018-04-01

    Face-centered cubic (FCC) high-entropy alloys (HEA), as emerging alloys with equal-molar or near equal-molar constituents, show a promising radiation damage resistance under heavy ion bombardment, making them potential for structural material application in next-generation nuclear reactors, but the accumulation of light helium ions, a product of nuclear fission reaction, has not been studied. The present work experimentally studied the helium accumulation and bubble formation at implantation temperatures of 523 K, 573 K and 673 K in a homogenized FCC FeCoNiCr HEA, a HEA showing excellent radiation damage resistance under heavy ion irradiation. The size and population density of helium bubbles in FeCoNiCr samples were quantitatively analyzed through transmission electron microscopy (TEM), and the helium content existing in bubbles were estimated from a high-pressure Equation of State (EOS). We found that the helium diffusion in such condition was dominated by the self-interstitial/He replacement mechanism, and the corresponding activation energy in FeCoNiCr is comparable with the vacancy migration energy in Ni and austenitic stainless steel but only 14.3%, 31.4% and 51.4% of the accumulated helium precipitated into helium bubbles at 523 K, 573 K and 673 K, respectively, smaller than the pure Ni case. Importantly, the small bubble size suggested that FeCoNiCr HEA has a high resistance of helium bubble formation compared with Ni and steels.

  3. A metastable helium trap for atomic collision physics

    International Nuclear Information System (INIS)

    Colla, M.; Gulley, R.; Uhlmann, L.; Hoogerland, M.D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Full text: Metastable helium in the 2 3 S state is an important species for atom optics and atomic collision physics. Because of its large internal energy (20eV), long lifetime (∼8000s) and large collision cross section for a range of processes, metastable helium plays an important role in atmospheric physics, plasma discharges and gas laser physics. We have embarked on a program of studies on atom-atom and electron-atom collision processes involving cold metastable helium. We confine metastable helium atoms in a magneto-optic trap (MOT), which is loaded by a transversely collimated, slowed and 2-D focussed atomic beam. We employ diode laser tuned to the 1083 nm (2 3 S 1 - 2 3 P2 1 ) transition to generate laser cooling forces in both the loading beam and the trap. Approximately 10 million helium atoms are trapped at temperatures of ∼ 1mK. We use phase modulation spectroscopy to measure the trapped atomic density. The cold, trapped atoms can collide to produce either atomic He + or molecular He 2 + ions by Penning Ionisation (PI) or Associative Ionisation (AI). The rate of formation of these ions is dependant upon the detuning of the trapping laser from resonance. A further laser can be used to connect the 2 3 S 1 state to another higher lying excited state, and variation of the probe laser detuning used to measure interatomic collision potential. Electron-atom collision processes are studied using a monochromatic electron beam with a well defined spatial current distribution. The total trap loss due to electron collisions is measured as a function of electron energy. Results will be presented for these atomic collision physics measurements involving cold, trapped metastable helium atoms. Copyright (1999) Australian Optical Society

  4. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    International Nuclear Information System (INIS)

    Kyrie, N. P.; Markov, V. S.; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V.

    2016-01-01

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  5. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    Energy Technology Data Exchange (ETDEWEB)

    Kyrie, N. P., E-mail: kyrie@fpl.gpi.ru; Markov, V. S., E-mail: natalya.kyrie@yandex.ru; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-06-15

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  6. A new atomic beam polarized ion source for the Triangle Universities Nuclear Laboratory: overview, operating experience, and performance

    International Nuclear Information System (INIS)

    Clegg, T.B.; Karwowski, H.J.; Lemieux, S.K.; Sayer, R.W.; Crosson, E.R.; Hooke, W.M.; Howell, C.R.; Lewis, H.W.; Lovette, A.W.; Pfutzner, H.J.; Sweeton, K.A.; Wilburn, W.S.

    1995-01-01

    A newly constructed source of polarized H ± and D ± ions is described. Atomic H or D beams from a dissociator with a cooled nozzle enter a system of two sextupole magnets and several radio-frequency transitions where they are focused and polarized. They enter a downstream electron-cyclotron-resonance-heated plasma ionizer from which positive ions are extracted. When negative ions are desired, they may be produced from the positive beam by charge-exchange in cesium vapor. Emerging beams are intense, have good polarization, low energy spread, and good optical quality. Descriptions are included for all major systems and for diagnostic procedures used to optimize both the intensity and the polarization of the output H ± or D ± beams obtained. Typical operating experience, performance figures, and a description of routine maintenance procedures are given. ((orig.))

  7. Energetic ion emission in a positive polarity nanosecond plasma opening switch

    Energy Technology Data Exchange (ETDEWEB)

    Sarfaty, M [Univ. of Wisconsin, Madison, WI (United States); Krasik, Ya E; Weingarten, A; Fruchtman, A; Maron, Y [Weizmann Institute of Science, Rehovot (Israel). Department of Physics

    1997-12-31

    The emission was studied of energetic ions from the plasma in a coaxial Plasma Opening Switch (POS) powered by a 300 kV, 15 kA, 90 ns positive polarity pulse. Fluxes lasting 2 - 3 ns of ions flowing radially onto the cathode were observed at all axial locations of the switch plasma within 5 ns of the beginning of the upstream POS current. It is suggested that the termination of this ion flux is due to the formation of a cathode plasma, which is consistent with our spectroscopic measurements. Later in the pulse, longer duration (100 ns) ion fluxes were observed radially, first appearing in the generator side of the switch plasma. Fluxes 30 - 40 ns long of ions flowing axially towards the POS load at velocities (2{+-}1) x 10{sup 8} cm/s were also observed. The dependences of the start time of the axial ion flow, of the ion velocities, and of the ion flux on the POS operation parameters were studied. (author). 6 figs., 5 refs.

  8. Energetic ion emission in a positive polarity nanosecond plasma opening switch

    International Nuclear Information System (INIS)

    Sarfaty, M.; Krasik, Ya.E.; Weingarten, A.; Fruchtman, A.; Maron, Y.

    1996-01-01

    The emission was studied of energetic ions from the plasma in a coaxial Plasma Opening Switch (POS) powered by a 300 kV, 15 kA, 90 ns positive polarity pulse. Fluxes lasting 2 - 3 ns of ions flowing radially onto the cathode were observed at all axial locations of the switch plasma within 5 ns of the beginning of the upstream POS current. It is suggested that the termination of this ion flux is due to the formation of a cathode plasma, which is consistent with our spectroscopic measurements. Later in the pulse, longer duration (100 ns) ion fluxes were observed radially, first appearing in the generator side of the switch plasma. Fluxes 30 - 40 ns long of ions flowing axially towards the POS load at velocities (2±1) x 10 8 cm/s were also observed. The dependences of the start time of the axial ion flow, of the ion velocities, and of the ion flux on the POS operation parameters were studied. (author). 6 figs., 5 refs

  9. Vorticity and particle polarization in heavy ion collisions (experimental perspective

    Directory of Open Access Journals (Sweden)

    Voloshin Sergei A.

    2018-01-01

    Full Text Available The recent measurements of the global polarization and vector meson spin alignment along the system orbital momentum in heavy ion collisions are briefly reviewed. A possible connection between the global polarization and the chiral anomalous effects is discussed along with possible experimental checks. Future directions, in particular those aimed on the detailed mapping of the vorticity fields, are outlined. The Blast Wave model is used for an estimate of the anisotropic flow effect on the vorticity component along the beam direction. We also point to a possibility of a circular pattern in the vorticity field in asymmetric, e.g. Cu+Au, central collisions.

  10. Polarization effects in radiative recombination of an electron with a highly charged ion

    International Nuclear Information System (INIS)

    Klasnikov, A.E.; Shabaev, V.M.; Artemyev, A.N.; Kovtun, A.V.; Stoehlker, T.

    2005-01-01

    The radiative recombination of an unpolarized electron with a polarized highly charged H-like ion in its ground state is studied. The absolute and relative values of the electron spin-flip contribution to the cross section of the process for various scattering angles and photon polarizations are calculated. It is shown that, in addition to the forward and backward directions, there are some other scattering angles of the emitted photon, where, at a fixed linear photon polarization, the spin-flip transition gives a dominant contribution to the differential cross section

  11. Transport of deuterium, tritium and helium in a tokamak

    International Nuclear Information System (INIS)

    Potters, J.H.H.M.

    1984-02-01

    A one-dimensional numerical model for determining steady-state radial profiles of the densities of the particles, including neutrals, in a multispecies toroidal plasma is described. For prescribed temperature profiles, the coupled momentum and particle balances of the ions are solved numerically with a newly developed compact finite difference scheme for a non-equidistant mesh. Neutral densities are obtained by solving the Boltzmann equations, using a collocation method. The model is applied to deuterium-tritium plasmas without and with a helium admixture. For the charged particles, Pfirsch-Schlueter transport, including the highly collisional extension, and either of two anomalous transport models are adopted. For equal densities of deuterons and tritons in the plasma centre, the neutral tritium density in front of the wall is found to be 1.3 to 1.6 times higher than that of deuterium, depending on the plasma density, the temperature profile and the transport model. Secondly, it is found that pumping neutral helium, originating from fusion alpha particles, out of a cold plasma/gas blanket surrounding the hot plasma is not feasible, as the helium gas density, corresponding to a relative abundance of alpha-particles in the plasma core below 10%, is very low. Although depending strongly on the ion transport model and being increased by elastic collisions between neutral helium and charged hydrogen isotopes, the neutral helium enrichment ratio is always much less than unity. (Auth.)

  12. Lithium concentration dependence of implanted helium retention in lithium silicates

    Energy Technology Data Exchange (ETDEWEB)

    Szocs, D.E., E-mail: szocsd@rmki.kfki.h [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Szilagyi, E.; Bogdan, Cs.; Kotai, E. [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Horvath, Z.E. [Research Institute for Technical Physics and Materials Science, H-1525 Budapest, P.O. Box 49 (Hungary)

    2010-06-15

    Helium ions of 500 keV were implanted with a fluence of 1.4 x 10{sup 17} ion/cm{sup 2} into various lithium silicates to investigate whether a threshold level of helium retention exists in Li-containing silicate ceramics similar to that found in SiO{sub x} in previous work. The composition and phases of the as prepared lithium silicates were determined by proton backscattering spectrometry (p-BS) and X-ray diffraction (XRD) methods with an average error of {+-}10%. Electrostatic charging of the samples was successfully eliminated by wrapping the samples in Al foil. The amounts of the retained helium within the samples were determined by subtracting the non-implanted spectra from the implanted ones. The experimental results show a threshold in helium retention depending on the Li concentration. Under 20 at.% all He is able to escape from the material; at around 30 at.% nearly half of the He, while over 65 at.% all implanted He is retained. With compositions expressed in SiO{sub 2} volume percentages, a trend similar to those reported of SiO{sub x} previously is found.

  13. High resistivity in InP by helium bombardment

    International Nuclear Information System (INIS)

    Focht, M.W.; Macrander, A.T.; Schwartz, B.; Feldman, L.C.

    1984-01-01

    Helium implants over a fluence range from 10 11 to 10 16 ions/cm 2 , reproducibly form high resistivity regions in both p- and n-type InP. Average resistivities of greater than 10 9 Ω cm for p-type InP and of 10 3 Ω cm for n-type InP are reported. Results are presented of a Monte Carlo simulation of helium bombardment into the compound target InP that yields the mean projected range and the range straggling

  14. Observation of reduction of secondary electron emission from helium ion impact due to plasma-generated nanostructured tungsten fuzz

    International Nuclear Information System (INIS)

    Hollmann, E M; Doerner, R P; Nishijima, D; Pigarov, A Yu

    2017-01-01

    Growth of nanostructured fuzz on a tungsten target in a helium plasma is found to cause a significant (∼3×) reduction in ion impact secondary electron emission in a linear plasma device. The ion impact secondary electron emission is separated from the electron impact secondary electron emission by varying the target bias voltage and fitting to expected contributions from electron impact, both thermal and non-thermal; with the non-thermal electron contribution being modeled using Monte-Carlo simulations. The observed (∼3×) reduction is similar in magnitude to the (∼2×) reduction observed in previous work for the effect of tungsten fuzz formation on secondary electron emission due to electron impact. It is hypothesized that the observed reduction results from re-absorption of secondary electrons in the tungsten fuzz. (paper)

  15. Control of helium effects in irradiated materials based on theory and experiment

    International Nuclear Information System (INIS)

    Mansur, L.K.; Lee, E.H.; Maziasz, P.J.; Rowcliffe, A.F.

    1986-01-01

    Helium produced in materials by (n,α) transmutation reactions during neutron irradiations or subjected in ion bombardment experiments causes substantial changes in the response to displacement damage. In particular, swelling, phase transformations and embrittlement are strongly affected. Present understanding of the mechanisms underlying these effects is reviewed. Key theoretical relationships describing helium effects on swelling and helium diffusion are described. Experimental data in the areas of helium effects on swelling and precipitation is reviewed with emphasis on critical experiments that have been designed and evaluated in conjunction with theory. Confirmed principles for alloy design to control irradiation performance are described

  16. Collection of ions in a plasma by magnetic field acceleration with selective polarization

    International Nuclear Information System (INIS)

    Forsen, H.K.

    1976-01-01

    Method and apparatus are described for generating and accelerating ions in a vapor by use of relatively polarized laser radiation and a magnetic field. As applied to uranium isotope enrichment, a flowing uranium vapor has particles of the 235 U isotope type selectively ionized by laser radiation and the ionized flow is subjected to a transverse gradient in a magnetic field. The magnetic field gradient induces an acceleration on the ionized particles of 235 U which deflects them from their normal flow path toward a collecting structure. High magnetic field and corresponding high ion accelerations are achieved without loss in ionization selectivity by maintaining a polarization between the applied laser radiation and magnetic field which minimizes Zeeman splitting of the uranium energy states

  17. Distinct ion population in the polar cusp: possible signature of transient reconnection

    International Nuclear Information System (INIS)

    Escoubet, C.P.; Smith, M.F.; Bosqued, J.M.

    1992-01-01

    Observations of ion energy dispersion are a common feature of the polar cusp. Normally these dispersions show a continuous decrease in energy. However, they occasionally show step-like features in the dispersion. On 15 October 1981 Dynamics Explorer 2 (DE2) crossed the polar cusp at 1015 MLT and observed three distinct ion populations as the spacecraft moved poleward. These three populations had peak-flux energy around 2.7 keV, 850 eV and 360 eV. The first step coincided with a rotation of the flow; the flow being directed westward on the equatorward edge, poleward in the center and eastward on the poleward edge. The second and third steps showed a flow directed principally poleward. Furthermore, the magnetic and electric perturbations in the first step are well fitted by an elongated FTE footprint model. These results suggest that three consecutive Flux Transfer Events (FTEs) have injected solar wind plasma into the ionosphere forming the polar cusp. The small latitudinal size of these FTE footprints (∼ 40 km) and their short recurrence rate (3 and 6 min) would be consistent with an intermittent reconnection taking place at the subsolar point on a short time scale

  18. In-situ observation system for dual ion irradiation damage

    International Nuclear Information System (INIS)

    Furuno, Shigemi; Hojou, Kiichi; Otsu, Hitoshi; Sasaki, T.A.; Izui, Kazuhiko; Tukamoto, Tetsuo; Hata, Takao.

    1992-01-01

    We have developed an in-situ observation and analysis system during dual ion beam irradiation in an electron microscope. This system consists of an analytical electron microscope of JEM-4000FX type equipped with a parallel EELS and an EDS attachments and linked with two sets of ion accelerators of 40 kV. Hydrogen and helium dual-ion beam irradiation experiments were performed for SiC crystals. The result of dual-ion beam irradiation was compared with those of helium and hydrogen single ion irradiations. It is clearly seen that the dual-ion irradiation has the effect of suppressing bubble formation and growth in comparison with the case of single helium ion irradiation. (author)

  19. NUCLEAR CONDENSATE AND HELIUM WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Bedaque, Paulo F.; Berkowitz, Evan [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD (United States); Cherman, Aleksey, E-mail: bedaque@umd.edu, E-mail: evanb@umd.edu, E-mail: a.cherman@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA (United Kingdom)

    2012-04-10

    We consider a high-density region of the helium phase diagram, where the nuclei form a Bose-Einstein condensate rather than a classical plasma or a crystal. Helium in this phase may be present in helium-core white dwarfs. We show that in this regime there is a new gapless quasiparticle not previously noticed, arising when the constraints imposed by gauge symmetry are taken into account. The contribution of this quasiparticle to the specific heat of a white dwarf core turns out to be comparable in a range of temperatures to the contribution from the particle-hole excitations of the degenerate electrons. The specific heat in the condensed phase is two orders of magnitude smaller than in the uncondensed plasma phase, which is the ground state at higher temperatures, and four orders of magnitude smaller than the specific heat that an ion lattice would provide, if formed. Since the specific heat of the core is an important input for setting the rate of cooling of a white dwarf star, it may turn out that such a change in the thermal properties of the cores of helium white dwarfs has observable implications.

  20. NUCLEAR CONDENSATE AND HELIUM WHITE DWARFS

    International Nuclear Information System (INIS)

    Bedaque, Paulo F.; Berkowitz, Evan; Cherman, Aleksey

    2012-01-01

    We consider a high-density region of the helium phase diagram, where the nuclei form a Bose-Einstein condensate rather than a classical plasma or a crystal. Helium in this phase may be present in helium-core white dwarfs. We show that in this regime there is a new gapless quasiparticle not previously noticed, arising when the constraints imposed by gauge symmetry are taken into account. The contribution of this quasiparticle to the specific heat of a white dwarf core turns out to be comparable in a range of temperatures to the contribution from the particle-hole excitations of the degenerate electrons. The specific heat in the condensed phase is two orders of magnitude smaller than in the uncondensed plasma phase, which is the ground state at higher temperatures, and four orders of magnitude smaller than the specific heat that an ion lattice would provide, if formed. Since the specific heat of the core is an important input for setting the rate of cooling of a white dwarf star, it may turn out that such a change in the thermal properties of the cores of helium white dwarfs has observable implications.

  1. Spectroscopic Study of Recombination in the Early Afterglow of a Helium Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Stevefelt, J

    1968-02-15

    Some properties of a decaying helium plasma have been studied using time resolved spectroscopy and probe diagnostics. The plasma was produced in a pulsed, repetitive, hot cathode discharge in helium at a pressure 11 torr , and the light emitted in the afterglow of the discharge was measured by means of a spectrometer-photomultiplier combination. Single photoelectrons were counted on a scaler during a preset gate time of each discharge cycle, and after a preset number of cycles recorded on punched tape. The spectrometer was calibrated for absolute intensity measurements of the spectral lines of atomic helium. The overall conductance of the positive column was determined by measuring the voltage difference between two probes inserted into the plasma, passing a very small current pulse between the anode and cathode in the afterglow. Heavier current pulses were used to heat the free electrons selectively, thus providing so-called 'afterglow quenching'. From the measured absolute intensities of the helium lines, the number densities of the excited states of helium were calculated. All levels with principal quantum number n {>=} 8 were found to be in near Saha equilibrium with the free electrons at a temperature 1,275 deg K in the early afterglow (15-35 {mu}s after end of the discharge). By measuring the absolute intensities of some of the molecular helium bands, an estimate of the rate of conversion of atomic helium ions into molecular helium ions was obtained. The atomic line radiation, as well as the molecular band radiation, was assumed to result from collisional-radiative recombination of atomic and molecular helium ions, respectively. The rate of recombination down to the metastable level n = 2 was obtained from the measured line intensities. By adding the rate of ambipolar diffusion, calculated from known literature data, quite good agreement with the measured decay rate for the electron density was found. The measured line intensities were also used to calculate

  2. Electron cyclotron resonance hydrogen/helium plasma characterization and simulation of pumping in tokamaks

    International Nuclear Information System (INIS)

    Outten, C.A.

    1992-01-01

    Electron Cyclotron Resonance (ECR) plasmas have been employed to simulate the plasma conditions at the edge of a tokamak in order to investigate hydrogen/helium uptake in thin metal films. The process of microwave power absorption, important to characterizing the ECR plasma source, was investigated by measuring the electron density and temperature with a Langmuir probe and optical spectroscopy as a function of the magnetic field gradient and incident microwave power. A novel diagnostic, carbon resistance probe, provided a direct measure of the ion energy and fluence while measurements from a Langmuir probe were used for comparison. The Langmuir probe gave a plasma potential minus floating potential of 30 ± 5 eV, in good agreement with the carbon resistance probe result of ion energy ≤ 40 eV. The measured ion energy was consistent with the ion energy predicted from a model based upon divergent magnetic field extraction. Also, based upon physical sputtering of the carbon, the hydrogen fluence rate was determined to be 1 x 10 16 /cm 2 -sec for 50 Watts of incident microwave power. ECR hydrogen/helium plasmas were used to study preferential pumping of helium in candidate materials for tokamak pump-limiters: nickel, vanadium, aluminum, and nickel/aluminum multi-layers. Nickel and vanadium exhibited similar pumping capacities whereas aluminum showed a reduced capacity due to increased sputtering. A helium retention model based upon ion implantation ranges and sputtering rates agreed with the experimental data. A new multilayer/bilayer pumping concept showed improved pumping above that for single element films

  3. Stable Trapping of Multielectron Helium Bubbles in a Paul Trap

    Science.gov (United States)

    Joseph, E. M.; Vadakkumbatt, V.; Pal, A.; Ghosh, A.

    2017-06-01

    In a recent experiment, we have used a linear Paul trap to store and study multielectron bubbles (MEBs) in liquid helium. MEBs have a charge-to-mass ratio (between 10^{-4} and 10^{-2} C/kg) which is several orders of magnitude smaller than ions (between 10^6 and 10^8 C/kg) studied in traditional ion traps. In addition, MEBs experience significant drag force while moving through the liquid. As a result, the experimental parameters for stable trapping of MEBs, such as magnitude and frequency of the applied electric fields, are very different from those used in typical ion trap experiments. The purpose of this paper is to model the motion of MEBs inside a linear Paul trap in liquid helium, determine the range of working parameters of the trap, and compare the results with experiments.

  4. Plasma polarization spectroscopy

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Horimoto, Yasuhiro; Fujimoto, Takashi; Hasegawa, Noboru; Sukegawa, Kouta; Kawachi, Tetsuya

    2005-01-01

    The electron velocity distribution function (EVDF) in plasma can be anisotropic in laser-produced plasmas. We have developed a new technique to evaluate the polarization degree of the emission lines in the extreme vacuum ultra violet wavelength region. The polarization of the emission lines and the continuums from the lithium-like nitrogen and from helium- and hydrogen-like carbon in recombining plasma is evaluated. Particle simulation in the velocity space gives the time scale for relaxation of anisotropic EVDFs. (author)

  5. Nuclear polarization study: new frontiers for tests of QED in heavy highly charged ions.

    Science.gov (United States)

    Volotka, Andrey V; Plunien, Günter

    2014-07-11

    A systematic investigation of the nuclear polarization effects in one- and few-electron heavy ions is presented. The nuclear polarization corrections in the zeroth and first orders in 1/Z are evaluated to the binding energies, the hyperfine splitting, and the bound-electron g factor. It is shown that the nuclear polarization contributions can be substantially canceled simultaneously with the rigid nuclear corrections. This allows for new prospects for probing the QED effects in a strong electromagnetic field and the determination of fundamental constants.

  6. Polarization of X rays of multiply charged ions in dense high-temperature plasma

    NARCIS (Netherlands)

    Baronova, EO; Dolgov, AN; Yakubovskii, LK

    2004-01-01

    The development of a method for studying the features of X-ray emission by multiply charged ions in a dense hot plasma is considered. These features are determined by the radiation polarization phenomenon.

  7. The pumping of hydrogen and helium by sputter-ion pumps

    International Nuclear Information System (INIS)

    Welch, K.M.; Pate, D.J.; Todd, R.J.

    1992-01-01

    The pumping of hydrogen in diode and triode sputter-ion pumps is discussed. The type of cathode material used in these pumps is shown to have a significant impact on the effectiveness with which hydrogen is pumped. Examples of this include data for pumps with aluminum and titanium-alloy cathodes. Diode pumps with aluminum cathodes are shown to be no more effective in the pumping of hydrogen than in the pumping of helium. The use of titanium or titanium alloy anodes is also shown to measurably impact on the speed of these pumps at.very low pressures. This stems from the fact that hydrogen is x10 6 more soluble in titanium than in stainless steel. Hydrogen becomes resident in the anodes because of fast neutral burial. Lastly, quantitative data are given for the He speeds and capacities of both noble and conventional diode and triode pumps. The effectiveness of various pump regeneration procedures, subsequent to the pumping of He, is reported.These included bakeout and N 2 glow discharge cleaning. The comparative desorption of He with the subsequent pumping of N 2 is reported on. The N 2 speed of these pumps was used as the benchmark for defining the size of the pumps vs. their respective He speeds

  8. Research and development on optically pumped polarized ion sources. Technical progress report, February 1, 1985-January 31, 1986

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1985-07-01

    During the past year we have studied the relaxation times in an optically pumped 23 Na vapor target, studied the effects of radiation trapping on the polarization in a Na vapor target, and have studied the effects of spin exchange collisions on a beam of fast H 0 atoms as they pass through a polarized alkali target. This research is directed toward improvements in the optically pumped Na or other alkali vapor targets used for the production of polarized H - ions. In this progress report we review the properties of the optically pumped polarized H - ion source as well as discussing the progress of our research on optically pumped Na or other alkali vapor targets. 81 refs., 9 figs

  9. Selective area growth of InAs nanowires from SiO2/Si(1 1 1) templates direct-written by focused helium ion beam technology

    Science.gov (United States)

    Yang, Che-Wei; Chen, Wei-Chieh; Chou, Chieh; Lin, Hao-Hsiung

    2018-02-01

    We report on the selective area growth of InAs nanowires on patterned SiO2/Si (1 1 1) nano-holes, prepared by focused helium ion beam technology. We used a single spot mode, in which the focused helium ion beam was fixed on a single point with a He+-ion dosage, ranging from 1.5 pC to 8 pC, to drill the nano-holes. The smallest hole diameter achieved is ∼8 nm. We found that low He+-ion dosage is able to facilitate the nucleation of (1 1 1)B InAs on the highly mismatched Si, leading to the vertical growth of InAs nanowires (NWs). High He-ion dosage, on the contrary, severely damaged Si surface, resulting in tilted and stripe-like NWs. In addition to titled NW grown from (1 1 1)A InAs domain, a new titled growth direction due to defect induced twinning was observed. Cross-sectional TEM images of vertical NWs show mixed wurtizite (WZ) and zincblende (ZB) phases, while WZ phase dominants. The stacking faults resulting from the phase change is proportional to NW diameter, suggesting that the critical diameter of phase turning is larger than 110 nm, the maximum diameter of our NWs. Period of misfit dislocation at the InAs/Si interface of vertical NW is also found larger than the theoretical value when the diameter of heterointerface is smaller than 50 nm, indicating that the small contact area is able to accommodate the large lattice and thermal mismatch between InAs and Si.

  10. The effect of doping crystals of tgs with some di- and trivalent ions on its: (ii) polarization and piezoelectricity

    OpenAIRE

    Gaffar, M. A [محمد عبد العزيز جعفر; Mohamed, A. A.; Al-Muraikhi, M.; Al-Houty, L. I.

    1987-01-01

    The polarization, coercive field,piezoelectricity and electromechanical coupling for pure and doped single crystals of TGS arp investigated in the temperature range 77-325 K. The influence of the divalent ions Ni 2+, Cu2 and Co2 and the trivalent ions Cr34^ and Fe3'1' on the temperature of phase transition, the hysteresis loops of polarization and the seconed coefficient in the expansion of the free energy in powers of polarization is examined. The temperature dependence of the spontaneous po...

  11. Direct seawater desalination by ion concentration polarization

    Science.gov (United States)

    Kim, Sung Jae; Ko, Sung Hee; Kang, Kwan Hyoung; Han, Jongyoon

    2010-04-01

    A shortage of fresh water is one of the acute challenges facing the world today. An energy-efficient approach to converting sea water into fresh water could be of substantial benefit, but current desalination methods require high power consumption and operating costs or large-scale infrastructures, which make them difficult to implement in resource-limited settings or in disaster scenarios. Here, we report a process for converting sea water (salinity ~500 mM or ~30,000 mg l-1) to fresh water (salinity water is divided into desalted and concentrated streams by ion concentration polarization, a phenomenon that occurs when an ion current is passed through ion-selective membranes. During operation, both salts and larger particles (cells, viruses and microorganisms) are pushed away from the membrane (a nanochannel or nanoporous membrane), which significantly reduces the possibility of membrane fouling and salt accumulation, thus avoiding two problems that plague other membrane filtration methods. To implement this approach, a simple microfluidic device was fabricated and shown to be capable of continuous desalination of sea water (~99% salt rejection at 50% recovery rate) at a power consumption of less than 3.5 Wh l-1, which is comparable to current state-of-the-art systems. Rather than competing with larger desalination plants, the method could be used to make small- or medium-scale systems, with the possibility of battery-powered operation.

  12. Effects of displacement damage and helium production rates on the nucleation and growth of helium bubbles - Positron annihilation spectroscopy aspects

    Science.gov (United States)

    Krsjak, Vladimir; Degmova, Jarmila; Sojak, Stanislav; Slugen, Vladimir

    2018-02-01

    Fe-12 wt% Cr model alloy samples were implanted by 250 keV He2+ ions to three different fluencies (3 × 1017, 9 × 1017 and 1.5 × 1018 cm-2) at T steel samples [1] irradiated in the frame of a two-years irradiation program of the Swiss Spallation Neutron Source. Bi-modal defect distribution represented by two defect components in positron lifetime spectrum reveals two distinct helium bubbles growth mechanisms. While at the lower helium production rate of the spallation environment, the bubbles grow primarily by migration and coalescence, at the high production rates of helium in the implanted samples, the results indicate this growth is driven by Ostwald ripening mechanism. A competitive growth process via emission of interstitial atoms (clusters) is discussed in terms of low-temperature He implantations.

  13. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    Science.gov (United States)

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  14. Helium, iron and electron particle transport and energy transport studies on the TFTR tokamak

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Grek, B.; Hill, K.W.; Hulse, R.A.; Johnson, D.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Redi, M.H.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor

  15. Effect of multi-ions on electromagnetic ion-cyclotron waves with a hot plasma around the polar cusp

    International Nuclear Information System (INIS)

    Patel, Soniya; Varma, P; Tiwari, M S

    2011-01-01

    Electromagnetic ion cyclotron (EMIC) instabilities with an isotropic ion beam and general loss-cone distribution of hot core plasmas are discussed. The growth rate of the wave, perpendicular heating of ions, parallel resonant energy and marginal instability of the EMIC waves in homogeneous plasmas are obtained using the dispersion relation for hot plasmas consisting of H + , He + ,O + ions and electrons. The wave is assumed to propagate parallel to the static magnetic field. The whole plasma is considered to consist of resonant and non-resonant particles permeated by the isotropic ion beam. It is assumed that the resonant particles and the ion beam participate in energy exchange with the wave, whereas the non-resonant particles support the oscillatory motion of the wave. We determined the variation in energies and growth rate in hot plasmas by the energy conservation method with a general loss-cone distribution function. We also discuss the effect of positive and negative ion beam velocity on the growth rate of the wave. The thermal anisotropy of the ions of the core plasma acts as a source of free energy for EMIC waves and enhances the growth rate. Heating of ions perpendicular to the magnetic field is discussed along with EMIC wave emission in the polar cusp region.

  16. Polarity effects and apparent ion recombination in microionization chambers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jessica R., E-mail: miller@humonc.wisc.edu [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 and Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Hooten, Brian D. [Standard Imaging, Middleton, Wisconsin 53562 (United States); Micka, John A.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2016-05-15

    Purpose: Microchambers demonstrate anomalous voltage-dependent polarity effects. Existing polarity and ion recombination correction factors do not account for these effects. As a result, many commercial microchamber models do not meet the specification of a reference-class ionization chamber as defined by the American Association of Physicists in Medicine. The purpose of this investigation is to determine the cause of these voltage-dependent polarity effects. Methods: A series of microchamber prototypes were produced to isolate the source of the voltage-dependent polarity effects. Parameters including ionization-chamber collecting-volume size, stem and cable irradiation, chamber assembly, contaminants, high-Z materials, and individual chamber components were investigated. Measurements were performed with electrodes coated with graphite to isolate electrode conductivity. Chamber response was measured as the potential bias of the guard electrode was altered with respect to the collecting electrode, through the integration of additional power supplies. Ionization chamber models were also simulated using COMSOL Multiphysics software to investigate the effect of a potential difference between electrodes on electric field lines and collecting volume definition. Results: Investigations with microchamber prototypes demonstrated that the significant source of the voltage-dependent polarity effects was a potential difference between the guard and collecting electrodes of the chambers. The voltage-dependent polarity effects for each prototype were primarily isolated to either the guard or collecting electrode. Polarity effects were reduced by coating the isolated electrode with a conductive layer of graphite. Polarity effects were increased by introducing a potential difference between the electrodes. COMSOL simulations further demonstrated that for a given potential difference between electrodes, the collecting volume of the chamber changed as the applied voltage was altered

  17. Impulsive Laser Induced Alignment of Molecules Dissolved in Helium Nanodroplets

    DEFF Research Database (Denmark)

    Pentlehner, Dominik; H. Nielsen, Jens; Slenczka, Alkwin

    2013-01-01

    We show that a 450 fs nonresonant, moderately intense, linearly polarized laser pulse can induce field-free molecular axis alignment of methyliodide (CH3I) molecules dissolved in a helium nanodroplet. Time-resolved measurements reveal rotational dynamics much slower than that of isolated molecules...

  18. Irradiation hardening of Fe–9Cr-based alloys and ODS Eurofer: Effect of helium implantation and iron-ion irradiation at 300 °C including sequence effects

    Energy Technology Data Exchange (ETDEWEB)

    Heintze, C. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Bergner, F., E-mail: f.bergner@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Hernández-Mayoral, M. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Kögler, R.; Müller, G.; Ulbricht, A. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany)

    2016-03-15

    Single-beam, dual-beam and sequential iron- and/or helium-ion irradiations are widely accepted to emulate more application-relevant but hardly accessible irradiation conditions of generation-IV fission and fusion candidate materials for certain purposes such as material pre-selection, identification of basic mechanisms or model calibration. However, systematic investigations of sequence effects capable to critically question individual approaches are largely missing. In the present study, sequence effects of iron-ion irradiations at 300 °C up to 5 dpa and helium implantations up to 100 appm He are investigated by means of post-irradiation nanoindentation of an Fe9%Cr model alloy, ferritic/martensitic 9%Cr steels T91 and Eurofer97 and oxide dispersion strengthened (ODS) Eurofer. Different types of sequence effects, both synergistic and antagonistic, are identified and tentative interpretations are suggested. It is found that different accelerated irradiation approaches have a great impact on the mechanical hardening. This stresses the importance of experimental design in attempts to emulate in-reactor conditions. - Highlights: • The single-beam He-ion implantations do not give rise to significant hardening. • The single-beam Fe-ion irradiations give rise to significant hardening, ΔH{sub Fe}. • Hardening due to sequential He-/Fe-ion irradiation is smaller than ΔH{sub Fe}. • Hardening due to simultaneous He-/Fe-ion irradiation is larger than ΔH{sub Fe}. • The He–Fe synergism for ODS-Eurofer is less pronounced than for Eurofer97.

  19. On the Scattering of the Electron off the Hydrogen Atom and the Helium Ion Below and Above the Ionization Threshold: Temkin–Poet Model

    International Nuclear Information System (INIS)

    Yarevsky, E.; Yakovlev, S. L.; Volkov, M. V.; Elander, N.

    2014-01-01

    We generalize here the splitting approach to the long range (Coulomb) interaction for the three body scattering problem. With this approach, the exterior complex rotation technique can be applied for systems with asymptotic Coulomb interaction. We illustrate the method with calculations of the electron scattering on the hydrogen atom and positive helium ion in the frame of the Temkin–Poet model. (author)

  20. On the Scattering of the Electron off the Hydrogen Atom and the Helium Ion Below and Above the Ionization Threshold: Temkin-Poet Model

    Science.gov (United States)

    Yarevsky, E.; Yakovlev, S. L.; Elander, N.; Volkov, M. V.

    2014-08-01

    We generalize here the splitting approach to the long range (Coulomb) interaction for the three body scattering problem. With this approach, the exterior complex rotation technique can be applied for systems with asymptotic Coulomb interaction. We illustrate the method with calculations of the electron scattering on the hydrogen atom and positive helium ion in the frame of the Temkin-Poet model.

  1. Research and development of groundwater dating (Part 3). A proposal of determination method for diffusion coefficients of dissolved helium in rock and applicability of estimation of diffusion coefficients using anions

    International Nuclear Information System (INIS)

    Higashihara, Tomohiro; Nakata, Kotaro; Hasegawa, Takuma

    2006-01-01

    Dissolved helium in groundwater is one of the most suitable tracers for the groundwater dating. The diffusion coefficients in aquitard and aquifer were important to estimate an accumulation of the helium in groundwater. However, few papers have been reported about the diffusion of helium in rocks. In this study, effective diffusion coefficients of the helium in sandstones and mudstone were determined using a through-diffusion method. The effective diffusion coefficients of helium were in the range of 1.5 x 10 -10 to 1.1 x 10 -9 m 2 s -1 and larger than those of Br - ions. Geometrical factors for the diffusion of helium were also larger than those for the diffusion of Br - ions. This fact suggests that diffusion path of helium in the rocks is not more restricted than that of Br - ions. The diffusion coefficients of helium were also estimated using the diffusion coefficient of helium in bulk water and formation factors for diffusion of Br - ions. The estimated diffusion coefficients of helium were larger than the effective diffusion coefficients. It is clarified that the effective diffusion coefficients of helium are underestimated by the estimation method using anions. (author)

  2. Helium-plasma heating with a powerful proton beam for spectroscopic applications

    International Nuclear Information System (INIS)

    Arteev, M.S.; Kuznetsov, A.A.; Sulakshin, S.S.

    1986-01-01

    In this work the authors consider an ion gun which was especially developed for producing a gas plasma and report on the details of an experiment on (ELLIGIBLE) plasma spectroscopy. The current density of the proton beam was measured in the experiments on the axis of the gas tube with the aid of a collimating current collector with the wave impedance of a 75 omega cable. The ion gun was tested in the excitation of a helium plasma. Extremely pure helium with a pressure P = (0.2-1).10 5 Pa was employed. The proton gun which was developed satifies the requirements of spectroscopic plasma experiments and makes it possible to excite a plasma of inert gases under atmospheric pressure over a length of up to 100 cm, with the plasma having high homogeneity and stability. They obtained first results of spectroscopic measurements of the electron concentration of a helium plasma and the results agree with the theoretical predictions

  3. Genetic changes in Mammalian cells transformed by helium cells

    Energy Technology Data Exchange (ETDEWEB)

    Durante, M.; Grossi, G. (Naples Univ. (Italy). Dipt. di Scienze Fisiche); Yang, T.C.; Roots, R. (Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    Midterm Syrian Hamster embryo (SHE) cells were employed to study high LET-radiation induced tumorigenesis. Normal SHE cells (secondary passage) were irradiated with accelerated helium ions at an incident energy of 22 MeV/u (9--10 keV/{mu}m). Transformed clones were isolated after growth in soft agar of cells obtained from the foci of the initial monolayer plated postirradiation. To study the progression process of malignant transformation, the transformed clones were followed by monolayer subculturing for prolonged periods of time. Subsequently, neoplasia tests in nude mice were done. In this work, however, we have focused on karyotypic changes in the banding patterns of the chromosomes during the early part of the progressive process of cell transformation for helium ion-induced transformed cells. 26 refs., 5 figs., 2 tabs.

  4. Direct acceleration of ions to low and medium energies by a crossed-laser-beam configuration

    Directory of Open Access Journals (Sweden)

    Yousef I. Salamin

    2011-07-01

    Full Text Available Calculations show that 10 keV helium and carbon ions, injected midway between two identical 1 TW-power crossed laser beams of radial polarization, can be accelerated in vacuum to energies of utility in ion lithography. As examples, identical laser beams, crossed at 10° and focused to waist radii of 7.42  μm, accelerate He^{2+} and C^{6+} ions to average kinetic energies near 75 and 165 keV over distances averaging less than 7 and 6 mm, respectively. The spread in kinetic energy in both cases is less than 1% and the particle average angular deflection is less than 7 mrad. More energy-demanding industrial applications require higher-power laser beams for their direct ion laser acceleration.

  5. Calculated L-shell x-ray line intensities for proton and helium ion impact

    International Nuclear Information System (INIS)

    Cohen, D.D.; Harrigan, M.

    1986-01-01

    Theoretical L-shell X-ray line intensities have been calculated for proton and helium bombardment of atoms from nickel (Z 2 = 28) to curium (Z 2 = 96). The ionization cross sections for the three L subshells were obtained from the recent calculations by Cohen and Harrigan in the ECPSSR theory, which uses the plane-wave Born approximation (PWBA) with corrections for energy loss (E), Coulomb deflection (C), perturbed-stationary-state (PSS), and relativistic (R) effects. The fluorescence yields and Coster-Kronig transition probabilities were taken from M. O. Krause (Phys. Chem. Ref. Data 8, 307 (1979)) and the L-subshell emission rates from S. I. Salem, S. L. Panosian, and R. A. Krause (Atomic Data and Nuclear Data Tables 14, 91 (1974)). The line intensities Ll, Lα, Leta, Lβ 1 to Lβ 6 , Lβ/sub 9,10/, and Lγ 1 to Lgg 6 are tabulated for selected ion energies from 0.2 to 10 MeV

  6. Optimization of the performance of rf transitions for the TUNL atomic beam polarized ion source

    International Nuclear Information System (INIS)

    Crosson, E.R.; Clegg, T.B.; Karwowski, H.J.; Lemieux, S.K.

    1991-01-01

    We have utilized the spin-dependence of the cross section for electron impact ionization of H 0 and D 0 atoms in the ionizer of our atomic beam polarized ion source to study the performance of the rf transitions which provide the nuclear polarization of the atomic beam. Switching the rf transitions on and off modulates the output polarized current. This modulation is observed using a lock-in amplifier and provides a fast and reliable method for optimization of transition unit parameters. (orig.)

  7. Mobility of Rb{sup +} and Cs{sup +} ions in gases at high pressures; Mobilite des ions Rb{sup +} et Cs{sup +} dans les gaz a haute pression

    Energy Technology Data Exchange (ETDEWEB)

    Bacconnet, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    A theoretical study and mobility measurements have been made of Rb{sup +} and Cs{sup +} ions moving in gases at high pressures (10{sup -2} to 25 kg/cm{sup 2}). The theoretical study has been effected using the results of P. Langevin who considers the ions and molecules as elastic spheres and takes into account the electrical polarization forces. The practical work has been carried out using the Rb{sup +} and Cs{sup +} ions emitted by a thermal source; for the measurement of their velocity the method using an ionic beam cut by four grids was employed. Since the source does not work in atmospheres containing oxygen (even in the combined state) the tests only involved pure gases: nitrogen, argon, helium at pressures of from 10{sup -2} to 12 kg/cm{sup 2}. The overall results show that the Rb{sup +} and Cs{sup +} ionic mobilities are very similar and that for fairly-short times spent by the ions in the gas, the measurement results are in agreement with theory. An increase in these times favours a degradation of the ions, which always leads to a decrease in the mobility. This effect is most marked in helium. The gases argon and nitrogen behave identically towards Rb{sup +} and Cs{sup +} ions. (author) [French] Une etude theorique et des mesures de mobilite ont ete effectuees pour des ions Rb{sup +} et Cs{sup +} se deplacant dans des gaz a haute pression (10{sup -2} a 25 kg/cm{sup 2}). L'etude theorique a ete effectuee en utilisant les resultats de P. Langevin qui assimile les ions et les molecules a des spheres elastiques et tient compte des forces de polarisation electrique. L'etude pratique a ete realisee en utilisant des ions Rb{sup +} et Cs{sup +} emis par une source thermique et pour la mesure de leur vitesse, la methode de coupure du faisceau ionique au moyen de quatre grilles a ete adoptee. La source ne fonctionnant pas dans des atmospheres contenant de l'oxygene (meme a l'etat combine) les essais ont seulement porte sur des gaz purs: azote, argon, helium et pour

  8. Horizontal cryostat for polarized proton targets; Cryostat horizontal pour cibles de protons polarises

    Energy Technology Data Exchange (ETDEWEB)

    Roubeau, P M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-11-15

    Continuously fed horizontal cryostat to be used for polarized proton targets; includes: 1 standard storage dewar commercially available; 2 shifting of dewar requiring 10 minutes, without any warming of the target; 3 no conventional nitrogen cooled shield but rather taking advantage of the cold helium vapours evaporated in the transfer line and/or the helium evaporated to cool the polarized crystal; 4 a heat exchanger which reduces by a factor of two the consumption of helium lowering in the same ratio the transfer line and/or the helium evaporated to cool the polarized crystal; 5 regulation of the temperature by means of a needle valve included in the superfluid helium line. This cryostat, used in conjunction with a 1000 l/s pump allows one to maintain at 1.06 deg. K a target, in which is dissipated 1 watt hyper frequency power, with an helium consumption of 40 litres/day (measured directly in the storage dewar). (author) [French] Description d'un cryostat horizontal, a alimentation continue, pour cible de protons polarises, presentant les caracteristiques suivantes: 1 utilisation de vases de stockage de modele commercial; 2 echange de vase en 10 minutes sans rechauffement; 3 absence d'azote liquide remplace par les vapeurs froides de l'helium evapore dans la canalisation de transfert et/ou les vapeurs de l'helium evapore pour refroidir le cristal polarise; 4 utilisation d'un echangeur qui aboutit a reduire de moitie la consommation d'helium, donc la pression d'evaporation, et qui permet, pour une pompe donnee, d'abaisser la temperature de fonctionnement de 0.1 degre environ; 5 reglage de la temperature au moyen d'une vanne a aiguille placee sur le circuit d'helium prerefroidi (superfluide). Ce cryostat, utilise avec une pompe de 1000 l/s permet de maintenir a une temperature de 1.06 deg. K une cible dans laquelle est dissipee une puissance d'hyperfrequence de 1 watt, moyennant une consommation d'helium de 40 litres/jour (mesuree dans le vase de stockage). (auteur)

  9. The EBIS-RFQ couple: a fully matched heavy ion 3rd pre-injector for Saturne

    International Nuclear Information System (INIS)

    Olivier, M.; Faure, J.; Laclare, J.L.; Lefebvre, J.M.; Leleux, G.; Ropert, A.; Tkatchenko, A.; Tkatchenko, M.

    1983-01-01

    Since 1978, the 3 GeV Synchrotron Saturne is routinely operated with proton, deuteron, helium beams and, since 1981 with polarized protons and deuterons. Heavy ions are expected in the Summer of 1983 by using a new pre-injector presently under construction. As already proposed by R.W.Hamm, the marriage of an EBIS and an RFQ can be looked upon generally as a very good means of production of heavy ion beams at low energy because it combines high charges states, therefore low voltage on the terminal, and low velocity acceleration. After the RFQ, the beam is injected into Saturne through 20 MeV Alvarez linac

  10. Direct Detection of the Ion Pair to Free Ions Transformation upon Complexation with an Ion Receptor in Non‐Polar Solvents by using Conductometry

    Science.gov (United States)

    Iseda, Kazuya

    2018-01-01

    Abstract In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride (TBACl) ion‐pair salt to the free ions through complexation with meso‐octamethylcalix[4]pyrrole (CP), which is a well‐known receptor for chloride anions. In the presence of CP, the conductivity of TBACl increases in various non‐polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non‐polar solvents. In other words, CP recognizes chloride as an ion‐paired salt as well as a free anion in non‐polar solvents. Additionally, the TBA(CP–Cl) complex exhibited a considerably lower ion‐pairing constant (K ip) than TBACl in non‐polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli‐responsive soft materials in organic solvents using coulombic forces. PMID:29610717

  11. Defects in TiN and HfN studied by helium thermal desorption spectrometry

    International Nuclear Information System (INIS)

    Hoondert, W.H.B.; Thijsse, B.J.; Beuckel, A. van den

    1994-01-01

    Point defects in sub-stoichiometric TiN 1-x and HfN 1-x were investigated by helium thermal desorption spectrometry (300-1800K) following He + ion implantation at energies up to 3000eV. It was found that the low energy spectra are dominated by helium dissociating from the structural vacancies on the nitrogen sublattice; the activation energy for dissociation is 2.2eV for TiN. Above a few hundred electron volts the ions begin to produce several other types of defects, from which helium dissociates with activation energies in the range 2.6-4.0eV. The identity of these defects is discussed. The results for the two nitrides were similar in many respects. The most significant difference observed is that in TiN low energy He + ions generate damage on the N sublattice of a type that is not observed for HfN. Activation energies for HfN are found to be consistently 0.7eV lower than for TiN. ((orig.))

  12. Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fiflis, P., E-mail: fiflis1@illinois.edu; Connolly, N.; Ruzic, D.N.

    2016-12-15

    Helium ion bombardment of tungsten at temperatures between approximately one third and one half of its melting point has shown growth of nanostructures colloquially referred to as “fuzz”. The nanostructures take the form of thin tendrils of diameter about 30 nm and grow out of the bulk material. Tungsten will and does compose one of the key materials for plasma facing components (PFCs) in fusion reactors. The formation of nanostructured fuzz layers on PFCs would be detrimental to the performance of the reactor, and must therefore be avoided. Previous experiments have shown evidence that tungsten fuzz is initially grown by loop punching of helium bubbles created in the bulk. However, once the tendrils grow to sufficient length, the tendrils should intercept the entire helium flux, halting the production of fuzz. Fuzz continues to grow though. To increase the understanding of the mechanisms of tungsten fuzz formation, and thereby aid the avoidance of its production, a series of tests were performed to examine the validity of several theories regarding later stage tungsten fuzz growth. Tests showed that the fuzz formation was dependent solely on the bombardment of helium ions, and not on electric fields, or adatom diffusion. Experiments employing a tungsten coated molybdenum sample indicate the presence of a strong mixing layer and strongly suggest that tungsten fuzz growth continues to occur from the bottom up even as the tendrils grow in size. Tests also show a similarity between different metals exposed to helium ion fluxes where the ratio of bubble diameter to tendril diameter is constant.

  13. Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas

    International Nuclear Information System (INIS)

    Fiflis, P.; Connolly, N.; Ruzic, D.N.

    2016-01-01

    Helium ion bombardment of tungsten at temperatures between approximately one third and one half of its melting point has shown growth of nanostructures colloquially referred to as “fuzz”. The nanostructures take the form of thin tendrils of diameter about 30 nm and grow out of the bulk material. Tungsten will and does compose one of the key materials for plasma facing components (PFCs) in fusion reactors. The formation of nanostructured fuzz layers on PFCs would be detrimental to the performance of the reactor, and must therefore be avoided. Previous experiments have shown evidence that tungsten fuzz is initially grown by loop punching of helium bubbles created in the bulk. However, once the tendrils grow to sufficient length, the tendrils should intercept the entire helium flux, halting the production of fuzz. Fuzz continues to grow though. To increase the understanding of the mechanisms of tungsten fuzz formation, and thereby aid the avoidance of its production, a series of tests were performed to examine the validity of several theories regarding later stage tungsten fuzz growth. Tests showed that the fuzz formation was dependent solely on the bombardment of helium ions, and not on electric fields, or adatom diffusion. Experiments employing a tungsten coated molybdenum sample indicate the presence of a strong mixing layer and strongly suggest that tungsten fuzz growth continues to occur from the bottom up even as the tendrils grow in size. Tests also show a similarity between different metals exposed to helium ion fluxes where the ratio of bubble diameter to tendril diameter is constant.

  14. Microstructure of HIPed and SPSed 9Cr-ODS steel and its effect on helium bubble formation

    International Nuclear Information System (INIS)

    Lu, Chenyang; Lu, Zheng; Xie, Rui; Liu, Chunming; Wang, Lumin

    2016-01-01

    Two 9Cr-ODS steels with the same nominal composition were consolidated by hot isostatic pressing (HIP, named COS-1) and spark plasma sintering (SPS, named COS-2). Helium ions were implanted into COS-1, COS-2 and non-ODS Eurofer 97 steels up at 673 K. Microstructures before and after helium ion implantations were carefully characterized. The results show a bimodal grain size distribution in COS-2 and a more uniform grain size distribution in COS-1. Nanoscale clusters of GP-zone type Y–Ti–O and Y_2Ti_2O_7 pyrochlore as well as large spinel Mn(Ti)Cr_2O_4 particles are all observed in the two ODS steels. The Y–Ti-enriched nano-oxides in COS-1 exhibit higher number density and smaller size than in COS-2. The Y–Ti-enriched nano-oxides in fine grains of COS-2 show higher number density and smaller size than that in coarse grains of COS-2. Nano-oxides effectively trap helium atoms and lead to the formation of high density and ultra-fine helium bubbles. - Highlights: • The microstructure changes of two ODS steels before and after helium ion implantation have been elucidated. • The mechanism of the microstructures of ODS steels under varied thermal mechanical processing paths have been explored. • The dependence of the size, density and distribution of helium bubbles on the specific microstructure features are explored.

  15. Microstructure of HIPed and SPSed 9Cr-ODS steel and its effect on helium bubble formation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chenyang [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, Liaoning (China); Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI, 48109 (United States); Lu, Zheng, E-mail: luz@atm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, Liaoning (China); Xie, Rui; Liu, Chunming [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, Liaoning (China); Wang, Lumin, E-mail: lmwang@umich.edu [Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI, 48109 (United States)

    2016-06-15

    Two 9Cr-ODS steels with the same nominal composition were consolidated by hot isostatic pressing (HIP, named COS-1) and spark plasma sintering (SPS, named COS-2). Helium ions were implanted into COS-1, COS-2 and non-ODS Eurofer 97 steels up at 673 K. Microstructures before and after helium ion implantations were carefully characterized. The results show a bimodal grain size distribution in COS-2 and a more uniform grain size distribution in COS-1. Nanoscale clusters of GP-zone type Y–Ti–O and Y{sub 2}Ti{sub 2}O{sub 7} pyrochlore as well as large spinel Mn(Ti)Cr{sub 2}O{sub 4} particles are all observed in the two ODS steels. The Y–Ti-enriched nano-oxides in COS-1 exhibit higher number density and smaller size than in COS-2. The Y–Ti-enriched nano-oxides in fine grains of COS-2 show higher number density and smaller size than that in coarse grains of COS-2. Nano-oxides effectively trap helium atoms and lead to the formation of high density and ultra-fine helium bubbles. - Highlights: • The microstructure changes of two ODS steels before and after helium ion implantation have been elucidated. • The mechanism of the microstructures of ODS steels under varied thermal mechanical processing paths have been explored. • The dependence of the size, density and distribution of helium bubbles on the specific microstructure features are explored.

  16. Influence of displacement damage on deuterium and helium retention in austenitic and ferritic-martensitic alloys considered for ADS service

    Energy Technology Data Exchange (ETDEWEB)

    Voyevodin, V.N.; Karpov, S.A.; Kopanets, I.E.; Ruzhytskyi, V.V. [National Science Center “Kharkov Institute of Physics and Technology” Kharkov, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Tolstolutskaya, G.D., E-mail: g.d.t@kipt.kharkov.ua [National Science Center “Kharkov Institute of Physics and Technology” Kharkov, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Garner, F.A. [Radiation Effects Consulting, Richland, WA (United States)

    2016-01-15

    The behavior of ion-implanted hydrogen (deuterium) and helium in austenitic 18Cr10NiTi stainless steel, EI-852 ferritic steel and ferritic/martensitic steel EP-450 and their interaction with displacement damage were investigated. Energetic argon irradiation was used to produce displacement damage and bubble formation to simulate nuclear power environments. The influence of damage morphology and the features of radiation-induced defects on deuterium and helium trapping in structural alloys was studied using ion implantation, the nuclear reaction D({sup 3}He,p){sup 4}He, thermal desorption spectrometry and transmission electron microscopy. It was found in the case of helium irradiation that various kinds of helium-radiation defect complexes are formed in the implanted layer that lead to a more complicated spectra of thermal desorption. Additional small changes in the helium spectra after irradiation with argon ions to a dose of ≤25 dpa show that the binding energy of helium with these traps is weakly dependent on the displacement damage. It was established that retention of deuterium in ferritic and ferritic-martensitic alloys is three times less than in austenitic steel at damage of ∼1 dpa. The retention of deuterium in steels is strongly enhanced by presence of radiation damages created by argon ion irradiation, with a shift in the hydrogen release temperature interval of 200 K to higher temperature. At elevated temperatures of irradiation the efficiency of deuterium trapping is reduced by two orders of magnitude.

  17. Liquid helium plant in Dubna

    International Nuclear Information System (INIS)

    Agapov, N.N.; Baldin, A.M.; Kovalenko, A.D.

    1995-01-01

    The liquid-helium cooling capacity installed at the Laboratory of High Energies is about 5 kw at a 4.5 K temperature level. It is provided with four industrial helium liquefiers of 1.6 kw/4.5 K each. They have been made by the Russian enterprise NPO GELYMASH and upgraded by the specialists of the Laboratory. The first one was put into operation in 1980, the two others in 1991, and the last one is under commissioning. The development of the LHE cryoplant was concerned with the construction of the new superconducting accelerator Nuclotron aimed to accelerate nuclei and heavy ions up to energies of 6 GeV/u. The first test run at the Nuclotron was carried out in March 1993, and the total running time has been about 2000 hours up to now. Since 1992 the cryoplant has been intensively used by the users outside the Laboratory. More than a million liters of liquid helium was provided in 1993 for such users. The reliability of the cryoplant system was as high as 98 percent for 4500 hours of operation in 1993-1994. 7 refs., 4 figs., 1 tab

  18. Resonant absorption effects induced by polarized laser ligth irradiating thin foils in the tnsa regime of ion acceleration

    International Nuclear Information System (INIS)

    Torrisi, L.; Badziak, J.; Rosinski, M.; Zaras-Szydlowska, A.; Pfeifer, M.; Torrisi, A.

    2016-01-01

    Thin foils were irradiated by short pulsed lasers at intensities of 10 16−19 W/cm 2 in order to produce non-equilibrium plasmas and ion acceleration from the target-normal-sheath-acceleration (TNSA) regime. Ion acceleration in forward direction was measured by SiC detectors and ion collectors used in the time-of-flight configuration. Laser irradiations were employed using p-polarized light at different incidence angles with respect to the target surface and at different focal distances from the target surface. Measurements demonstrate that resonant absorption effects, due to the plasma wave excitations, enhance the plasma temperature and the ion acceleration with respect to those performed without to use of p-polarized light. Dependences of the ion flux characteristics on the laser energy, wavelength, focal distance and incidence angle will be reported and discussed

  19. The Chalk River helium jet and skimmer system

    International Nuclear Information System (INIS)

    Schmeing, H.; Koslowsky, V.; Wightman, M.; Hardy, J.C.; MacDonald, J.A.; Faestermann, T.; Andrews, H.R.; Geiger, J.S.; Graham, R.L.

    1976-01-01

    A helium jet and skimmer system intended as an interface between a target location at the Chalk River tandem accelerator and the ion source of an on-line separator presently under construction has been developed. The system consists of a target chamber, a 125 cm long capillary, and a one stage skimmer chamber. The designs of the target and skimmer chambers allow one to vary a large number of independent flow and geometrical parameters with accurate reproducibility. Experiments with the β-delayed proton emitter 25 Si (tsub(1/2)=218 ms) produced in the reaction 24 Mg( 3 He,2n) 25 Si show that under optimized conditions about 75% of the reaction products leaving the target are transported to the skimmer. Of those, more than 90% pass through the skimmer orifice, which separates off 97.5% of the transport gas, helium. By introducing an additional helium flow across the skimming orifice the amount of helium separated off the transport jet can be increased to beyond 99.85%, leaving the high throughput of recoils unaffected. (Auth.)

  20. DNA-functionalized gold nanoparticle-based fluorescence polarization for the sensitive detection of silver ions.

    Science.gov (United States)

    Wang, Gongke; Wang, Shuangli; Yan, Changling; Bai, Guangyue; Liu, Yufang

    2018-04-05

    Despite their practical applications, Ag + ions are environmental pollutants and affect human health. So the effective detection methods of Ag + ions are imperative. Herein, we developed a simple, sensitive, selective, and cost-effective fluorescence polarization sensor for Ag + detection in aqueous solution using thiol-DNA-functionalized gold nanoparticles (AuNPs). In this sensing strategy, Ag + ions can specifically interact with a cytosine-cytosine (CC) mismatch in DNA duplexes and form stable metal-mediated cytosine-Ag + -cytosine (C-Ag + -C) base pairs. The formation of the C-Ag + -C complex results in evident changes in the molecular volume and fluorescence polarization signal. To achieve our aims, we prepared two complementary DNA strands containing C-base mismatches (probe A: 5'-SH-A 10 -TACCACTCCTCAC-3' and probe B: 5'-TCCTCACCAGTCCTA-FAM-3'). The stable hybridization between probe A and probe B occurs with the formation of the C-Ag + -C complex in the presence of Ag + ions, leading to obvious fluorescence quenching in comparison to the system without AuNP enhancement. The assay can be used to identify nanomolar levels of Ag + within 6 min at room temperature, and has extremely high specificity for Ag + , even in the presence of higher concentrations of interfering metal ions. Furthermore, the sensor was successfully applied to the detection of Ag + ions in environmental water samples and showed excellent selectivity and high sensitivity, implying its promising application in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution

    Science.gov (United States)

    Joens, Matthew S.; Huynh, Chuong; Kasuboski, James M.; Ferranti, David; Sigal, Yury J.; Zeitvogel, Fabian; Obst, Martin; Burkhardt, Claus J.; Curran, Kevin P.; Chalasani, Sreekanth H.; Stern, Lewis A.; Goetze, Bernhard; Fitzpatrick, James A. J.

    2013-12-01

    Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.

  2. Polarized secondary radioactive beams

    International Nuclear Information System (INIS)

    Zaika, N.I.

    1992-01-01

    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  3. Inferring Polar Ion Outflows from Topside Ionograms

    Science.gov (United States)

    Sojka, J. J.; Rice, D. D.; Eccles, V.; Schunk, R. W.; David, M.; Benson, R. F.; James, H. G.

    2017-12-01

    The high-latitude topside ionosphere is dominated by O+ ions from the F-region peak around 300 km to over 1000 km altitude. The O+ profile shape provides information on the thermal structure, field aligned plasma dynamics, and outflows into the magnetosphere. Topside electron density profiles (EDP) are either obtained from topside sounders or Incoherent Scatter Radars. There is a large archive of topside sounder ionograms and hand scaled EDPs from the Alouette and ISIS satellites between 1962 and 1990. Recent NASA data enhancement efforts have augmented these EDP archives by producing digital topside ionograms both from the 7-track analog telemetry tapes and from 35 mm topside film ionograms. Rice et al [2017] in their 35 mm ionogram recovery emphasized high latitude ionograms taken during disturbed conditions. The figure below contrasts ISIS-II EDPs extracted from 35 mm films before and during a major storm (Dst -200nT) on 9 April 1972 (left panel: quiet period before the storm; right panel: during the peak of the storm). Both satellite passes used for these EDPs were centered on the Resolute Bay location that in 1972 was close to the magnetic pole. They begin at auroral latitudes around 2100 MLT and end on the dayside around 0900MLT. We will present results of how ionospheric models replicate both the quiet and disturbed conditions shown in the figure. Three types of models will be contrasted: an empirical ionosphere (IRI), a physics based ionospheric model (TDIM), and a fluid-based polar-wind model (PW). During the storm pass, when it is expected that substantial heating is present, the ISIS-II topside EDPs provide severe constraints on the usage of these models. These constraints enable estimates of the outflow fluxes as well as the heating that has occurred. The comparisons with the empirical model establish how well the pre-storm topside is modeled and identifies the challenges as the storm magnitude increases. The physics-based TDIM does have storm drivers

  4. Defects and morphological changes in nanothin Cu films on polycrystalline Mo analyzed by thermal helium desorption spectrometry

    International Nuclear Information System (INIS)

    Venugopal, V.; Seijbel, L.J.; Thijsse, B.J.

    2005-01-01

    Thermal helium desorption spectrometry (THDS) has been used for the investigation of defects and thermal stability of thin Cu films (5-200 A ) deposited on a polycrystalline Mo substrate in ultrahigh vacuum. These films are metastable at room temperature. On heating, the films transform into islands, giving rise to a relatively broad peak in the helium desorption spectra. The temperature of this island formation is dependent on film thickness, being 417 K for 10 A and 1100 K for a 200 A film. The activation energy for island formation was found to be 0.3±0.1 eV for 75 A film. Grain boundaries have a strong effect on island formation. The defect concentration in the as-deposited films is ∼5x10 -4 , for films thicker than 50 A and more for thinner films. Helium release from monovacancies was identified in the case of a 200 A film. Helium release was also seen during sublimation of the Cu film (∼1350 K). Overlayer experiments were used to identify helium trapped close to the film surface. An increase of the substrate temperature during deposition resulted in a film that had already formed islands. Argon-ion assistance (250 eV) during film deposition with an ion/atom ratio of ∼0.1 resulted in a significant enhancement of helium trapping in the films. The argon concentration in the films was found to be 10 -3 . The temperature of island formation was increased due to argon-ion assistance. The helium and argon desorption spectra are found to be similar, which is due to most of the helium becoming trapped in the defects created by the argon beam. The role of the Mo surface in affecting the defects at the film-substrate interface is investigated. The effect of variation of helium fluence and helium implantation energy is also considered. The present THDS results of Cu/poly-Mo are compared to those of Cu/Mo(100) and Cu/Mo(100) reported earlier

  5. Line Emission and X-ray Line Polarization of Multiply Ionized Mo Ions

    Science.gov (United States)

    Petkov, E. E.; Safronova, A. S.; Kantsyrev, V. L.; Shlyaptseva, V. V.; Stafford, A.; Safronova, U. I.; Shrestha, I. K.; Schultz, K. A.; Childers, R.; Cooper, M. C.; Beiersdorfer, P.; Hell, N.; Brown, G. V.

    2016-10-01

    We present a comprehensive experimental and theoretical study of the line emission from multiply ionized Mo ions produced by two different sets of experiments: at LLNL EBIT and the pulsed power generator Zebra at UNR. Mo line emission and polarization measurements were accomplished at EBIT for the first time. In particular, benchmarking experiments at the LLNL EBIT with Mo ions produced at electron beam energies from 2.75 keV up to 15 keV allowed us to break down these very complicated spectra into spectra with only few ionization stages and to select processes that influence them as well as to measure line polarization. The EBIT data were recorded using the EBIT Calorimeter Spectrometer and a crystal spectrometer with a Ge crystal. X-ray Mo spectra and pinhole images were collected from Z-pinch plasmas produced from various wire loads. Non-LTE modeling, high-precision relativistic atomic and polarization data were used to analyze L-shell Mo spectra. The influence of different plasma processes including electron beams on Mo line radiation is summarized. This work was supported by NNSA under DOE Grant DE-NA0002954. Experiments at the NTF/UNR were funded in part by DE-NA0002075. Work at LLNL was performed under the auspices of the U.S. DOE under contract DE-AC52-07NA27344.

  6. Helium desorption in EFDA iron materials for use in nuclear fusion reactors

    International Nuclear Information System (INIS)

    Salazar R, A. R.; Pinedo V, J. L.; Sanchez, F. J.; Ibarra, A.; Vila, R.

    2015-09-01

    In this paper the implantation with monoenergetic ions (He + ) was realized with an energy of 5 KeV in iron samples (99.9999 %) EFDA (European Fusion Development Agreement) using a collimated beam, after this a Thermal Desorption Spectrometry of Helium (THeDS) was made using a leak meter that detects amounts of helium of up to 10 - - 12 mbar l/s. Doses with which the implantation was carried out were 2 x 10 15 He + /cm 2 , 1 x 10 16 He + /cm 2 , 2 x 10 16 He + /cm 2 , 1 x 10 17 He + /cm 2 during times of 90 s, 450 s, 900 s and 4500 s, respectively. Also, using the SRIM program was calculated the depth at which the helium ions penetrate the sample of pure ion, finding that the maximum distance is 0.025μm in the sample. For this study, 11 samples of Fe EFDA were prepared to find defects that are caused after implantation of helium in order to provide valuable information to the manufacture of materials for future fusion reactors. However understand the effects of helium in the micro structural evolution and mechanical properties of structural materials are some of the most difficult questions to answer in materials research for nuclear fusion. When analyzing the spectra of THeDS was found that five different groups of desorption peaks existed, which are attributed to defects of He caused in the material, these defects are He n V (2≤n≤6), He n V m , He V for the groups I, II and IV respectively. These results are due to the comparison of the peaks presented in the desorption spectrum of He, with those of other authors who have made theoretical calculations. Is important to note that the thermal desorption spectrum of helium was different depending on the dose with which the implantation of He + was performed. (Author)

  7. Simulation study of radiation damage induced by energetic helium nuclei

    CERN Document Server

    Hoang Dac Luc; Hoang Dac Dat

    2003-01-01

    High energy alpha particles produced by neutron-induced nuclear reactions can damage severely reactor materials. Simulation of this process is described using theoretical calculation and ion irradiation experiments at different displacement doses and Helium doses.

  8. Multiply charged negative ions of hydrogen in linearly polarized laser fields

    International Nuclear Information System (INIS)

    van Duijn, E.; Muller, H.G.

    1997-01-01

    Motivated by the prediction of the appearance of atomic multiply charged negative ions (AMCNI) of hydrogen, induced by a linearly polarized laser field, we present an analytical quantum mechanical treatment of the appearance and structure of AMCNI in a linearly polarized field, based on high-frequency Floquet theory (HFFT). For the simplest AMCNI of hydrogen, H 2- and H 3- , the values of α 0 at which the first bound state appears are α 0 =1.62x10 2 and α 0 =1.02x10 4 , where α 0 =I 1/2 /ω 2 is the amplitude of the oscillation of a free electron in the field with frequency ω and intensity I (unless stated otherwise, we use atomic units throughout this paper). Whereas in vacuum at least one of the electrons of an AMCNI autodetaches, an intense high-frequency field can change the character of the ion dramatically, such that bound states of AMCNI can appear. Due to the interaction with the field, the electrons of the AMCNI oscillate in phase along the polarization axis. This open-quotes quiverclose quotes motion enables the electrons to be spatially separated over distances of order α 0 , reducing the repulsive e-e interaction as α 0 increases. In other words, for α 0 large enough, the field enables a configuration in which the electrons, while widely separated, are bound to one proton. For the prediction of bound states of H N- with N>3, however, a relativistic description or low-frequency theory is required. copyright 1997 The American Physical Society

  9. The influence of low-energy helium plasma on bubble formation in micro-engineered tungsten

    Science.gov (United States)

    Gao, Edward; Nadvornick, Warren; Doerner, Russ; Ghoniem, Nasr M.

    2018-04-01

    Four different types of micro-engineered tungsten surfaces were exposed to low energy helium plasma, with a planar surface as control. These samples include two surfaces covered with uniform W-coated rhenium micro-pillars; one with cylindrical pillars 1 μm in diameter and 25 μm in height, and one with dendritic conical pillars 4-10 μm in diameter and 20 μm in height. Additionally, two samples with reticulated open-cell foam geometry, one at 45 pores per inch (PPI), and the other at 80 PPI were fabricated with Chemical Vapor Deposition (CVD). The samples were exposed to helium plasma at 30-100 eV ion energy, 823-1123 K temperature, and 5 × 1025 - 2 × 1026 m-2 ion fluence. It is shown that the formation of nanometer-scale tendrils (fuzz) on micro-engineered W surfaces is greatly reduced as compared to planar surfaces. This is attributed to more significant ion backscattering and the increased effective surface area that intercept incident ions in micro-engineered W. A 20% decrease in the average ion incident angle on pillar type surfaces leads to ∼30% decrease in bubble size, down to 30 nm in diameter. W fuzz was found to be absent from pillar sides due to high ion backscattering rates from pillar sides. In foam samples, 28% higher PPI is observed to have 24.7%-36.7% taller fuzz, and 17.0%-25.0% larger subsurface bubbles. These are found to be an order of magnitude smaller than those found in planar surfaces of similar environment. The helium bubble density was found to increase with ion energy in pillars, roughly from 8.2% to 48.4%, and to increase with increasing PPI, from 36.4% to 116.2%, and with bubble concentrations up to 9.1 × 1021 m-3. Geometric shadowing effects in or near surface ligaments are observed in all foam samples, with near absence of helium bubbles or fuzz in deeper layers of the foam.

  10. Interaction of cysteine and copper ions on the surface of iron: EIS, polarization and XPS study

    International Nuclear Information System (INIS)

    El-Deab, Mohamed S.

    2011-01-01

    Highlights: → The current study demonstrates a comprehensive study for Cysteine + Cu(II) ions as an efficient inhibitor as demonstrated by EIS, XPS and potentiodynamic polarization measurements, in addition to traditional weight loss measurements. → The novelty of the current work originates from the combined use of an eco-friendly compound (i.e., cysteine) with a minute amount of copper ions (in the micro molar range) as a corrosion inhibitor for low carbon steel in acidic medium. To this end, cysteine shows only moderate inhibition ca. 60% for iron which jumps up to more than 95% in the presence of micro molar range of Cu(II) ions. → Cysteine-Cu(II) blends are found superior to benzotriazole (BTAH)-Cu(II) blends in terms of their long-term stability in addition to the avoidance of the use of the well-reported highly toxic BTAH. - Abstract: This study addresses the enhancing effect of copper ions on the inhibition efficiency (IE) of cysteine (an eco-friendly compound) against the corrosion of iron in 0.5 M sulphuric acid. Electrochemical impedance spectroscopy (EIS) data revealed a significant increase in the polarization resistance (R p ) of the iron/solution interface in the presence of cysteine and Cu(II) ions instead of cysteine alone. That is, IE of 95% is obtained in the presence of 5 mM cysteine and 25 μM Cu(II) ions, compared to 66% in absence of Cu(II) ions. Moreover, electrochemical polarization measurements indicate that cysteine and Cu(II) ions blends act as mixed-type inhibitors for the corrosion of iron. The formation of Cu(I)-cysteinate complex and/or cysteine SAM at Cu atop the iron surface (as evident from X-ray photoelectron spectroscopy (XPS)) blocks the underlying iron surface and imparts a pronounced protection against its corrosion. IE of cysteine-Cu(II) blend remains effectively unchanged with immersion time indicating its high stability in the used acidic medium.

  11. Effect of Fe and C doping on the thermal release of helium from aluminum

    International Nuclear Information System (INIS)

    Xiang, X.; Chen, C.A.; Liu, K.Z.; Peng, L.X.; Rao, Y.C.

    2010-01-01

    The effect of Fe and C doping on the thermal release of helium from Al implanted with 10 keV, 4.0 x 10 21 ion/m 2 He at room temperature (RT) has been investigated by thermal helium desorption spectrometry (THDS) and transmission electron microscope (TEM). The results show that Fe and C doping have significant impact on the release of helium from Al and the extent depends on the doping fluence. Proper fluence of Fe and C doping would lead to the retardation of the release of helium from Al, while excessive fluence of Fe and C doping would result in more desorption peaks and the release of helium in lower temperature ranges. Fe and C doping have different influence on the release of helium from Al, and the difference is related with the secondary phases forming in the samples.

  12. In situ investigation of helium fuzz growth on tungsten in relation to ion flux, fluence, surface temperature and ion energy using infrared imaging in PSI-2

    International Nuclear Information System (INIS)

    Möller, S; Kachko, O; Rasinski, M; Kreter, A; Linsmeier, Ch

    2017-01-01

    Tungsten is a candidate material for plasma-facing components in nuclear fusion reactors. In operation it will face temperatures >800 K together with an influx of helium ions. Previously, the evolution of special surface nanostructures called fuzz was found under these conditions in a limited window of surface temperature, ion flux and ion energy. Fuzz potentially leads to lower heat load tolerances, enhanced erosion and dust formation, hence should be avoided in a fusion reactor. Here the fuzz growth is reinvestigated in situ during its growth by considering its impact on the surfaces infrared emissivity at 4 μ m wavelength with an infrared camera in the linear plasma device PSI-2. A hole in the surface serves as an emissivity reference to calibrate fuzz thickness versus infrared emissivity. Among new data on the above mentioned relations, a lower fuzz growth threshold of 815 ± 24 K is found. Fuzz is seen to grow on rough and polished surfaces and even on the hole’s side walls alike. Literature scalings for thickness, flux and time relations of the fuzz growth rate could not be reproduced, but for the temperature scaling a good agreement to the Arrhenius equation was found. (paper)

  13. Simulation study of radiation damage induced by energetic helium nuclei

    International Nuclear Information System (INIS)

    Hoang Dac Luc; Vo Tuong Hanh; Hoang Dac Dat

    2003-01-01

    High energy alpha particles produced by neutron-induced nuclear reactions can damage severely reactor materials. Simulation of this process is described using theoretical calculation and ion irradiation experiments at different displacement doses and Helium doses. (author)

  14. Impact and effects of simultaneous MeV-ion irradiation and helium plasma exposure to the formation of tungsten nano-tendrils

    Science.gov (United States)

    Wright, Graham; Kesler, Leigh Ann; Whyte, Dennis

    2013-10-01

    The extrusion of nano-tendrils from high temperature (>1000 K) tungsten (W) targets exposed to helium (He) plasma ions remains a concern for future fusion reactors. Previous work on the Alcator C-Mod tokamak has demonstrated it is possible to form these structures in a tokamak environment. However, one area where Alcator C-Mod and a fusion reactor differ is total neutron flux at the wall and the displacement damage these neutrons produce in the plasma-facing materials. This dsiplacement damage may affect the size and number He bubbles precipitating in the W target, which is a key factor in the formation and growth of the nano-tendrils. The DIONISOS experiment directly measures the impact of the displacement damage by simultaneously bombarding high temperature W targets with MeV-range ions (to simulate the displacement damage caused by neutron flux) and high flux of He plasma ions. Different combinations of irradiating ion species and W target temperatures are used to vary the different processes and rates that are involved such as He trapping rate, vacancy production and annealing rates, and nano-tendril growth rate. The nano-tendril growth is characterized by SEM imaging and focused ion beam (FIB) cross-sectioning and compared to nano-tendril formation without the presence of the irradiating ion beam. This work is supported by US DOE award DE-SC00-02060.

  15. Study of damage and helium diffusion in fluoro-apatites

    International Nuclear Information System (INIS)

    Miro, S.

    2004-12-01

    This work lies within the scope of the study of the radionuclides containment matrices. The choice of the fluoro-apatites as potential matrices of containment was suggested by the notable properties of these latter (thermal and chemical stability even under radioactive radiation). By irradiations with heavy ions and a helium implantation we simulated the effects related to the alpha radioactivity and to the spontaneous nuclear fission of the radionuclides. Thanks to the study of Durango fluoro-apatite single crystals and fluoro-apatite sintered ceramics, we evidenced that the damage fraction as well as the unit cell deformations increase with the electronic energy loss and with the substitution. These effects are followed at high fluences by a phenomenon of re-crystallization. The study of the helium diffusion points out that the thermal diffusion process improves with the substitution and strongly increases with heavy ions irradiation. (author)

  16. Influence of helium-ion bombardment on the optical properties of ZnO nanorods/p-GaN light-emitting diodes

    Science.gov (United States)

    Alvi, Naveed Ul Hassan; Hussain, Sajjad; Jensen, Jen; Nur, Omer; Willander, Magnus

    2011-12-01

    Light-emitting diodes (LEDs) based on zinc oxide (ZnO) nanorods grown by vapor-liquid-solid catalytic growth method were irradiated with 2-MeV helium (He+) ions. The fabricated LEDs were irradiated with fluencies of approximately 2 × 1013 ions/cm2 and approximately 4 × 1013 ions/cm2. Scanning electron microscopy images showed that the morphology of the irradiated samples is not changed. The as-grown and He+-irradiated LEDs showed rectifying behavior with the same I-V characteristics. Photoluminescence (PL) measurements showed that there is a blue shift of approximately 0.0347 and 0.082 eV in the near-band emission (free exciton) and green emission of the irradiated ZnO nanorods, respectively. It was also observed that the PL intensity of the near-band emission was decreased after irradiation of the samples. The electroluminescence (EL) measurements of the fabricated LEDs showed that there is a blue shift of 0.125 eV in the broad green emission after irradiation and the EL intensity of violet emission approximately centered at 398 nm nearly disappeared after irradiations. The color-rendering properties show a small decrease in the color-rendering indices of 3% after 2 MeV He+ ions irradiation.

  17. A simple method to produce quasi-simultaneous multiple energy helium implantation

    International Nuclear Information System (INIS)

    Paszti, F.; Fried, M.; Manuaba, A.; Mezey, G.; Kotai, E.; Lohner, T.

    1982-11-01

    If a monoenergetic ion beam is bombarding a target through an absorber foil tilted continuously (i.e. its effective thickness changing continuously), the depth distribution of the implanted ions in the sample depends on the way the absorber is moving. The present paper describes a way of absorber tilting for obtaining a uniform depth distribution and its experimental verification in the case of MeV energy helium ions implanted into aluminium target. (author)

  18. Mobility of Rb{sup +} and Cs{sup +} ions in gases at high pressures; Mobilite des ions Rb{sup +} et Cs{sup +} dans les gaz a haute pression

    Energy Technology Data Exchange (ETDEWEB)

    Bacconnet, E. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    A theoretical study and mobility measurements have been made of Rb{sup +} and Cs{sup +} ions moving in gases at high pressures (10{sup -2} to 25 kg/cm{sup 2}). The theoretical study has been effected using the results of P. Langevin who considers the ions and molecules as elastic spheres and takes into account the electrical polarization forces. The practical work has been carried out using the Rb{sup +} and Cs{sup +} ions emitted by a thermal source; for the measurement of their velocity the method using an ionic beam cut by four grids was employed. Since the source does not work in atmospheres containing oxygen (even in the combined state) the tests only involved pure gases: nitrogen, argon, helium at pressures of from 10{sup -2} to 12 kg/cm{sup 2}. The overall results show that the Rb{sup +} and Cs{sup +} ionic mobilities are very similar and that for fairly-short times spent by the ions in the gas, the measurement results are in agreement with theory. An increase in these times favours a degradation of the ions, which always leads to a decrease in the mobility. This effect is most marked in helium. The gases argon and nitrogen behave identically towards Rb{sup +} and Cs{sup +} ions. (author) [French] Une etude theorique et des mesures de mobilite ont ete effectuees pour des ions Rb{sup +} et Cs{sup +} se deplacant dans des gaz a haute pression (10{sup -2} a 25 kg/cm{sup 2}). L'etude theorique a ete effectuee en utilisant les resultats de P. Langevin qui assimile les ions et les molecules a des spheres elastiques et tient compte des forces de polarisation electrique. L'etude pratique a ete realisee en utilisant des ions Rb{sup +} et Cs{sup +} emis par une source thermique et pour la mesure de leur vitesse, la methode de coupure du faisceau ionique au moyen de quatre grilles a ete adoptee. La source ne fonctionnant pas dans des atmospheres contenant de l'oxygene (meme a l'etat combine) les essais ont seulement porte sur des gaz purs: azote

  19. On the size and structure of helium snowballs formed around charged atoms and clusters of noble gases.

    Science.gov (United States)

    Bartl, Peter; Leidlmair, Christian; Denifl, Stephan; Scheier, Paul; Echt, Olof

    2014-09-18

    Helium nanodroplets doped with argon, krypton, or xenon are ionized by electrons and analyzed in a mass spectrometer. HenNgx(+) ions containing up to seven noble gas (Ng) atoms and dozens of helium atoms are identified; the high resolution of the mass spectrometer combined with advanced data analysis make it possible to unscramble contributions from isotopologues that have the same nominal mass but different numbers of helium or Ng atoms, such as the magic He20(84)Kr2(+) and the isobaric, nonmagic He41(84)Kr(+). Anomalies in these ion abundances reveal particularly stable ions; several intriguing patterns emerge. Perhaps most astounding are the results for HenAr(+), which show evidence for three distinct, solid-like solvation shells containing 12, 20, and 12 helium atoms. This observation runs counter to the common notion that only the first solvation shell is solid-like but agrees with calculations by Galli et al. for HenNa(+) [J. Phys. Chem. A 2011, 115, 7300] that reveal three shells of icosahedral symmetry. HenArx(+) (2 ≤ x ≤ 7) ions appear to be especially stable if they contain a total of n + x = 19 atoms. A sequence of anomalies in the abundance distribution of HenKrx(+) suggests that rings of six helium atoms are inserted into the solvation shell each time a krypton atom is added to the ionic core, from Kr(+) to Kr3(+). Previously reported strong anomalies at He12Kr2(+) and He12Kr3(+) [Kim , J. H.; et al. J. Chem. Phys. 2006, 124, 214301] are attributed to a contamination. Only minor local anomalies appear in the distributions of HenXex(+) (x ≤ 3). The distributions of HenKr(+) and HenXe(+) show strikingly similar, broad features that are absent from the distribution of HenAr(+); differences are tentatively ascribed to the very different fragmentation dynamics of these ions.

  20. A polarized alkali ion source

    International Nuclear Information System (INIS)

    Boettger, R.; Tungate, G.; Bauer, B.; Egelhof, P.; Moebius, K.H.; Steffens, E.

    1978-01-01

    The beam foil technique has been applied to detect nuclear vector polarization of a 10 keV 23 Na + beam. The result was about 70% of the atomic beam polarization thus limiting the depolarization by the surface ionizer to at most 30%. In a Coulomb excitation experiment with a tensor polarized 42 MeV 23 Na 7+ beam an effect of 0.011 +- 0.003 was measured yielding a value of t 20 approx. 0.04 for the beam polarization. The depolarization during the acceleration process can be estimated to be about 0.8. (orig.) [de

  1. Production of zero energy radioactive beams through extraction across superfluid helium surface

    NARCIS (Netherlands)

    Takahashi, N; Huang, WX; Gloos, K; Dendooven, P; Pekola, JP; Aysto, J

    A radioactive Ra-223 source was immersed in superfluid helium at 1.2-1.7 K. Electric fields transported recoiled Rn-219 ions in the form of snowballs to the surface and further extracted them across the surface. The ions were focussed onto an aluminium foil and alpha particle spectra were taken with

  2. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Energy Technology Data Exchange (ETDEWEB)

    Bandara, R.; Khachan, J. [Plasma Physics, School of Physics, University of Sydney, Camperdown, New South Wales 2006 (Australia)

    2013-07-15

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  3. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Science.gov (United States)

    Bandara, R.; Khachan, J.

    2013-07-01

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  4. Searches for fractional electric charge on niobium samples exposed to liquid helium

    International Nuclear Information System (INIS)

    Smith, P.F.; Homer, G.J.; Lewin, J.D.; Walford, H.E.; Jones, W.G.

    1986-01-01

    Levitation measurements at room temperature described in a previous paper did not confirm the apparent fractional electric charges reported by the Stanford Group for niobium samples at liquid helium temperature. To simulate possible effects of a low-temperature environment, both niobium and steel samples have been exposed to liquid helium for periods of typically 48 h, both with and without the assistance of electric fields to extract possible fractionally charged ions. Subsequent levitation tests show no indication of fractional charge. With some additional assumptions regarding ionic mobility and surface energy, an upper limit ∝10 -2 fractional charges/g is inferred for the liquid helium itself. (orig.)

  5. Solution of the Dirac Coulomb equation for helium-like ions in the Poet-Temkin model.

    Science.gov (United States)

    Tang, Li-Yan; Tang, Yong-Bo; Shi, Ting-Yun; Mitroy, J

    2013-10-07

    The Dirac-Coulomb equation for the helium atom is studied under the restrictions of the Poet-Temkin model which replaces the 1/r12 interaction by the simplified 1/r> form. The effective reduction in the dimensionality made it possible to obtain binding energies for the singlet and triplet states in this model problem with a relative precision from 10(-8) to 10(-10). The energies for the singlet state were consistent with a previous configuration interaction calculation [H. Tatewaki and Y. Watanabe, Chem. Phys. 389, 58 (2011)]. Manifestations of Brown-Ravenhall disease were noted at higher values of nuclear charge and ultimately limited the accuracy of the Poet-Temkin model energy. The energies from a no-pair configuration interaction (CI) calculation (the negative-energy states for the appropriate hydrogen-like ion were excluded from the CI expansion) were found to be different from the unrestricted B-spline calculation.

  6. Solution of the Dirac Coulomb equation for helium-like ions in the Poet-Temkin model

    Science.gov (United States)

    Tang, Li-Yan; Tang, Yong-Bo; Shi, Ting-Yun; Mitroy, J.

    2013-10-01

    The Dirac-Coulomb equation for the helium atom is studied under the restrictions of the Poet-Temkin model which replaces the 1/r12 interaction by the simplified 1/r> form. The effective reduction in the dimensionality made it possible to obtain binding energies for the singlet and triplet states in this model problem with a relative precision from 10-8 to 10-10. The energies for the singlet state were consistent with a previous configuration interaction calculation [H. Tatewaki and Y. Watanabe, Chem. Phys. 389, 58 (2011)]. Manifestations of Brown-Ravenhall disease were noted at higher values of nuclear charge and ultimately limited the accuracy of the Poet-Temkin model energy. The energies from a no-pair configuration interaction (CI) calculation (the negative-energy states for the appropriate hydrogen-like ion were excluded from the CI expansion) were found to be different from the unrestricted B-spline calculation.

  7. Hyperon polarization in heavy-ion collisions and holographic gravitational anomaly

    Science.gov (United States)

    Baznat, Mircea; Gudima, Konstantin; Sorin, Alexander; Teryaev, Oleg

    2018-04-01

    We study the energy dependence of global polarization of Λ hyperons in peripheral Au-Au collisions. We combine the calculation of vorticity and strange chemical potential in the framework of the kinetic quark-gluon-string model with the anomalous mechanism related to the axial vortical effect. We pay special attention to the temperature-dependent contribution related to the holographic gravitational anomaly and find that the preliminary data from the BNL Relativistic Heavy Ion Collider are compatible with its suppression discovered earlier in lattice calculations.

  8. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Hermann, E-mail: hermann.fuchs@meduniwien.ac.at [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090, Austria and Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Alber, Markus [Department for Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Schreiner, Thomas [PEG MedAustron, Wiener Neustadt 2700 (Austria); Georg, Dietmar [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria)

    2015-09-15

    Purpose: Helium ions ({sup 4}He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed and integrated into the treatment planning system Hyperion. Methods: Current knowledge on RBE of {sup 4}He together with linear energy transfer considerations motivated an empirical depth-dependent “zonal” RBE model. In the plateau region, a RBE of 1.0 was assumed, followed by an increasing RBE up to 2.8 at the Bragg-peak region, which was then kept constant over the fragmentation tail. To account for a variable proton RBE, the same model concept was also applied to protons with a maximum RBE of 1.6. Both RBE models were added to a previously developed pencil beam algorithm for physical dose calculation and included into the treatment planning system Hyperion. The implementation was validated against Monte Carlo simulations within a water phantom using γ-index evaluation. The potential benefits of {sup 4}He based treatment plans were explored in a preliminary treatment planning comparison (against protons) for four treatment sites, i.e., a prostate, a base-of-skull, a pediatric, and a head-and-neck tumor case. Separate treatment plans taking into account physical dose calculation only or using biological modeling were created for protons and {sup 4}He. Results: Comparison of Monte Carlo and Hyperion calculated doses resulted in a γ{sub mean} of 0.3, with 3.4% of the values above 1 and γ{sub 1%} of 1.5 and better. Treatment plan evaluation showed comparable planning target volume coverage for both particles, with slightly increased coverage for {sup 4}He. Organ at risk (OAR) doses were generally reduced using {sup 4}He, some by more than to 30%. Improvements of {sup 4}He over protons were more pronounced for treatment plans taking biological effects into account. All

  9. Origin of energetic ions in the polar cusp inferred from ion composition measurements by the Viking satellite

    Directory of Open Access Journals (Sweden)

    G. Kremser

    1995-06-01

    Full Text Available The magnetospheric ion composition spectrometer MICS on the Swedish Viking satellite provided measurements of the ion composition in the energy range 10.1 keV/e\\leqE/Q\\leq326.0 keV/e. Data obtained during orbit 842 were used to investigate the ion distribution in the northern polar cusp and its vicinity. The satellite traversed the outer ring current, boundary region, cusp proper and plasma mantle during its poleward movement. H+ and He++ ions were encountered in all of these regions. He+ ions were present only in the ring current. The number of O+ and O++ ions was very small. Heavy high-charge state ions typical for the solar wind were observed for the first time, most of them in the poleward part of the boundary region and in the cusp proper. The H+ ions exhibited two periods with high intensities. One of them, called the BR/CP event, appeared at energies up to 50 keV. It started at the equatorward limit of the boundary region and continued into the cusp proper. Energy spectra indicate a ring current origin for the BR/CP event. Pitch angle distributions show downward streaming of H+ ions at its equatorward limit and upward streaming on the poleward side. This event is interpreted as the result of pitch angle scattering of ring current ions by fluctuations in the magnetopause current layer in combination with poleward convection. The other of the two periods with high H+ ion intensities, called the accelerated ion event, was superimposed on the BR/CP event. It was restricted to energies \\leq15 keV and occurred in the poleward part of the boundary region. This event is regarded as the high-energy tail of magnetosheath ions that were accelerated while penetrating into the magnetosphere. The cusp region thus contains ions of magnetospheric as well as of magnetosheath origin. The appearance of the ions depends, in addition to the ion source, on the magnetic field configuration and dynamic processes inside and close to the cusp.

  10. An investigation of polarized atomic photofragments using the ion imaging technique

    Energy Technology Data Exchange (ETDEWEB)

    Bracker, A.S.

    1997-12-01

    This thesis describes measurement and analysis of the recoil angle dependence of atomic photofragment polarization (atomic v-J correlation). This property provides information on the electronic rearrangement which occurs during molecular photodissociation. Chapter 1 introduces concepts of photofragment vector correlations and reviews experimental and theoretical progress in this area. Chapter 2 described the photofragment ion imaging technique, which the author has used to study the atomic v-J correlation in chlorine and ozone dissociation. Chapter 3 outlines a method for isolating and describing the contribution to the image signal which is due exclusively to angular momentum alignment. Ion imaging results are presented and discussed in Chapter 4. Chapter 5 discusses a different set of experiments on the three-fragment dissociation of azomethane. 122 refs.

  11. Quantum transition and decoherence of levitating polaron on helium film thickness under an electromagnetic field

    Science.gov (United States)

    Kenfack, S. C.; Fotue, A. J.; Fobasso, M. F. C.; Djomou, J.-R. D.; Tiotsop, M.; Ngouana, K. S. L.; Fai, L. C.

    2017-12-01

    We have studied the transition probability and decoherence time of levitating polaron in helium film thickness. By using a variational method of Pekar type, the ground and the first excited states of polaron are calculated above the liquid-helium film placed on the polar substrate. It is shown that the polaron transits from the ground to the excited state in the presence of an external electromagnetic field in the plane. We have seen that, in the helium film, the effects of the magnetic and electric fields on the polaron are opposite. It is also shown that the energy, transition probability and decoherence time of the polaron depend sensitively on the helium film thickness. We found that decoherence time decreases as a function of increasing electron-phonon coupling strength and the helium film thickness. It is seen that the film thickness can be considered as a new confinement in our system and can be adjusted in order to reduce decoherence.

  12. Local charge exchange of He{sup +} ions at Aluminum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, P., E-mail: pierfrancesco.riccardi@fis.unical.it [Dipartimento di Fisica, Università della Calabria and INFN – Gruppo collegato di Cosenza, Via P. Bucci cubo 33C, Arcavacata di Rende, Cosenza (Italy); Sindona, A. [Dipartimento di Fisica, Università della Calabria and INFN – Gruppo collegato di Cosenza, Via P. Bucci cubo 33C, Arcavacata di Rende, Cosenza (Italy); Dukes, C.A. [Laboratory for Astrophysics and Surface Physics, Materials Science and Engineering University of Virginia, Charlottesville, VA 22904 (United States)

    2017-04-04

    We report on experiments designed to observe the correlation between the autoionization of doubly excited helium atoms and the Auger decay of 2p vacancies in Al. The autoionizing states are formed when incident He{sup +*} and He{sup ++} are neutralized by resonant electron capture at the surface. 2p excitation in Al occurs in dielectronic charge transfer during the close encounter of an excited helium ion and an Al atom. These results clarify the mechanism for Al-2p excitation in the case of singly charged ground state He{sup +}(1s) ion impact, where the dielectronic transition occurs after promotion of the 1s electron of incoming ions. - Highlights: • We observe the correlation between autoionization of doubly excited helium atoms and the Auger decay of 2p vacancies in Al. • 2p excitation in Al occurs in dielectronic charge transfer during the close encounter of an excited helium ion and an Al atom. • These results clarify the mechanism for Al-2p excitation in the case of singly charged ground state He{sup +}(1s) ion impact.

  13. Triple differential cross section for the ionization of helium by electronic impact

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, Saidou, E-mail: saidou40@yahoo.fr [Laboratoire de Physique des Plasmas et de Recherches Interdisciplinaires, Universite Cheikh Anta Diop, Faculte des Sciences et Techniques, Departement de Physique, BP: 5005 Dakar-Fann (Senegal); Faye, I.G.; Diedhiou, I.A.; Tall, M.S.; Gomis, L.; Diatta, C.S. [Laboratoire de Physique des Plasmas et de Recherches Interdisciplinaires, Universite Cheikh Anta Diop, Faculte des Sciences et Techniques, Departement de Physique, BP: 5005 Dakar-Fann (Senegal)

    2011-12-01

    We report results of analytical triple differential cross sections (TDCS) for the single ionization of the helium iso-electronic ions by the electron impact. A two variational parameters wave function is used to evaluate the TDCS. This study shows the accuracy of the TDCS for helium atom and helium like ions in the first Born approximation (FBA) at high incident energy domain. The theory is quite acceptable as a fast calculation of the triple differential cross section, particularly at high energies where other theories and methods are cumbersome. A comparison is made of our calculations with previous results of the other theoretical methods and experiment. The FBA results obtained here with the two variational parameters wave function are in good agreement with the experiment data at high incident energy. The results show that the electron correlation effects are important around the maxima and influence only the extrema magnitude but not their positions. The calculations presented here are extanded to the cases where the energies of the outgoing electrons are more equal.

  14. Effects of finite coverage on global polarization observables in heavy ion collisions

    Science.gov (United States)

    Lan, Shaowei; Lin, Zi-Wei; Shi, Shusu; Sun, Xu

    2018-05-01

    In non-central relativistic heavy ion collisions, the created matter possesses a large initial orbital angular momentum. Particles produced in the collisions could be polarized globally in the direction of the orbital angular momentum due to spin-orbit coupling. Recently, the STAR experiment has presented polarization signals for Λ hyperons and possible spin alignment signals for ϕ mesons. Here we discuss the effects of finite coverage on these observables. The results from a multi-phase transport and a toy model both indicate that a pseudorapidity coverage narrower than | η | value for the extracted ϕ-meson ρ00 parameter; thus a finite coverage can lead to an artificial deviation of ρ00 from 1/3. We also show that a finite η and pT coverage affect the extracted pH parameter for Λ hyperons when the real pH value is non-zero. Therefore proper corrections are necessary to reliably quantify the global polarization with experimental observables.

  15. Particle energy loss spectroscopy and SEM studies of topography development in thin aluminium films implanted with high doses of helium

    International Nuclear Information System (INIS)

    Barfoot, K.M.; Webb, R.P.; Donnelly, S.E.

    1984-01-01

    Development of topography in thin (55.5 μg cm -2 ) self-supporting aluminium films, caused by high fluence (approx. 10 17 ions cm -2 ) irradiation with 5 keV helium ions, has been observed. This has been achieved by measuring the topography-enhanced energy straggling of 0.40 MeV 4 He + ions transmitted through the foils and detected with an electrostatic analyser of resolution 0.2 keV. Features, about 0.7 μm in width, are observed with scanning electron microscopy. TRIM Monte Carlo calculations of the implantation processes are performed in order to follow the helium implantation and damage depth distributions. It is deduced that a form of thin film micro-wrinkling has occurred which is caused by the relief of stress brought about by the implantation of helium. (author)

  16. Double photoionization of helium at an excess energy of 60 eV using left- and right-elliptically-polarized light

    International Nuclear Information System (INIS)

    Collins, S.A.; Cvejanovic, S.; Dawson, C.; Reddish, T.J.; Seccombe, D.P.; Huetz, A.; Malegat, L.; Selles, P.; Kazansky, A.K.; Danjo, A.; Soejima, K.; Okuno, K.; Yagishita, A.

    2002-01-01

    Helium double photoionization (γ,2e) triple differential cross sections (TDCSs) were measured at an excess energy of 60 eV using a dual toroidal spectrometer and synchrotron radiation from a helical undulator (BL-28A, Photon Factory, Japan). Energy-sharing ratios (R=E 2 /E 1 ) for the two ejected electrons of 5 and 11 are studied with both right- and left-handed elliptically polarized light. The TDCSs are found to be in good agreement with those obtained using the hyperspherical R matrix with semiclassical outgoing waves theory. The circular dichroism for a limited mutual angular range (φ 12 ≅110 deg. -200 deg.) is determined from the experimental data for both R=5 and 11, and compared to theoretical calculations performed over the complete range of mutual angles. No dynamic nodes are found in either the experimental (within the explored φ 12 range) or theoretical circular dichroism for these R values at this excess energy

  17. Depth-dependence recovery of helium-implanted 18 carats gold-silver alloy

    Energy Technology Data Exchange (ETDEWEB)

    Thome, T.; Grynszpan, R.I. [DCE-CTA-LOT, Arcueil (France); Lab. de Chimie Metallurgique des Terres Rares, Thiais (France); Fradin, J. [DCE-CTA-LOT, Arcueil (France); SINUMEF, Ecole Nationale Superieure d' Arts et Metiers, Paris (France); Anwand, W.; Brauer, G. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany)

    2001-07-01

    Helium diffusion in Au{sub 60}Ag{sub 40} is investigated using a variable energy positron beam. The positron diffusion length of the annealed material (66 {+-} 1 nm) is reduced after implantation of 2.2 x 10{sup 14} He ions/cm{sup 2} at 300 keV. During isochronal annealing up to 600 K, the recovery rate of the Doppler broadening lineshape parameter S strongly depends on the distance to the helium implantation peak, indicating an increase of the defect stabilization by He atoms. In contrast, for subsequent annealing, and irrespective of the depth, a maximum in S occurs at 670 K (around 0.5 T{sub m}) resulting from competing processes of growth and breaking up of helium bubbles. (orig.)

  18. Triple differential cross section for the near threshold single ionization of helium atoms for equal energy sharing

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, G., E-mail: ghanshyam.purohit@spsu.ac.in [Department of Physics, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur 313 601 (India); Singh, P. [Department of Physics, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur 313 601 (India); Dorn, A.; Ren, X. [Max Planck Institute for Nuclear Physics, 69117 Heidelberg (Germany); Patidar, V. [Department of Physics, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur 313 601 (India)

    2016-05-15

    Highlights: • Present paper describes electron impact single ionization of helium atoms near threshold. • This energy range provided challenges to theoretical models due to presence of several physical effects at low energies such as second order processes, PCI, polarization, etc. • Inclusion of second Born term and target polarization is helpful to analyze the measurements. • Present paper also describes usefulness of post collisional interaction in the collision dynamics at low energies. - Abstract: Low energy electron impact single ionization triple differential cross section (TDCS) results are reported for the helium atoms in the threshold regime at 1 eV, 3 eV and 5 eV excess energy. TDCSs are calculated in the doubly symmetric kinematics for the coplanar to perpendicular emission of electrons. Present attempt to calculate TDCS in the second Born approximation and treating target polarization and post collision interaction is helpful to analyze the available measurements. The second order processes, target polarization and post collision interaction (PCI) have been found to be significant in describing the trends of TDCS and helpful to produce reasonably good agreement with measurements.

  19. Triple differential cross section for the near threshold single ionization of helium atoms for equal energy sharing

    International Nuclear Information System (INIS)

    Purohit, G.; Singh, P.; Dorn, A.; Ren, X.; Patidar, V.

    2016-01-01

    Highlights: • Present paper describes electron impact single ionization of helium atoms near threshold. • This energy range provided challenges to theoretical models due to presence of several physical effects at low energies such as second order processes, PCI, polarization, etc. • Inclusion of second Born term and target polarization is helpful to analyze the measurements. • Present paper also describes usefulness of post collisional interaction in the collision dynamics at low energies. - Abstract: Low energy electron impact single ionization triple differential cross section (TDCS) results are reported for the helium atoms in the threshold regime at 1 eV, 3 eV and 5 eV excess energy. TDCSs are calculated in the doubly symmetric kinematics for the coplanar to perpendicular emission of electrons. Present attempt to calculate TDCS in the second Born approximation and treating target polarization and post collision interaction is helpful to analyze the available measurements. The second order processes, target polarization and post collision interaction (PCI) have been found to be significant in describing the trends of TDCS and helpful to produce reasonably good agreement with measurements.

  20. Ion-neutral potential models in atmospheric pressure ion mobility time-of-flight mass spectrometry IM(tof)MS.

    Science.gov (United States)

    Steiner, Wes E; English, William A; Hill, Herbert H

    2006-02-09

    The ion mobilities and their respective masses of several classes of amines (primary, secondary, and tertiary) were measured by electrospray ionization atmospheric pressure ion mobility time-of-flight mass spectrometry IM(tof)MS. The experimental data obtained were comparatively analyzed by the one-temperature kinetic theory of Chapman-Enskog. Several theoretical models were used to estimate the collision cross-sections; they include the rigid-sphere, polarization-limit, 12-6-4, and 12-4 potential models. These models were investigated to represent the interaction potentials contained within the collision integral that occurs between the polyatomic ions and the neutral drift gas molecules. The effectiveness of these collision cross-section models on predicting the mobility of these amine ions was explored. Moreover, the effects of drift gas selectivity on the reduced-mass term and in the collision cross-section term was examined. Use of a series of drift gases, namely, helium, neon, argon, nitrogen, and carbon dioxide, made it possible to distinguish between mass effects and polarizability effects. It was found that the modified 12-4 potential that compensates for the center of charge not being at the same location as the centers of mass showed improved agreement over the other collision cross-section models with respect to experimental data.

  1. Cluster-assistant generation of multiply charged atomic ions in nanosecond laser ionization of seeded methyl iodide beam

    International Nuclear Information System (INIS)

    Luo Xiaolin; Niu Dongmei; Kong Xianglei; Wen Lihua; Liang Feng; Pei Kemei; Wang Bin; Li Haiyang

    2005-01-01

    The photoionization of methyl iodide beam seeded in argon and helium is studied by time-of-flight mass spectrometry using a 25 ns, 532 nm Nd-YAG laser with intensities in the range of 2 x 10 10 -2 x 10 11 W/cm 2 . Multiply charged ions of I q+ (q = 2-3) and C 2+ with tens of eV kinetic energies have been observed when laser interacts with the middle part of the pulsed molecular beam, whose peak profiles are independent on the laser polarization directions. Strong evidences show that these ions are coming from the Coulomb explosion of multiply charged CH 3 I clusters, and laser induced inverse bremsstrahlung absorption of caged electrons plays a key role in the formation of multiply charged ions

  2. Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8-12% Cr ferritic-martensitic steels

    Science.gov (United States)

    Kupriiyanova, Y. E.; Bryk, V. V.; Borodin, O. V.; Kalchenko, A. S.; Voyevodin, V. N.; Tolstolutskaya, G. D.; Garner, F. A.

    2016-01-01

    In accelerator-driven spallation (ADS) devices, some of the structural materials will be exposed to intense fluxes of very high energy protons and neutrons, producing not only displacement damage, but very high levels of helium and hydrogen. Unlike fission flux-spectra where most helium and hydrogen are generated by transmutation in nickel and only secondarily in iron or chromium, gas production in ADS flux-spectra are rather insensitive to alloy composition, such that Fe-Cr base ferritic alloys also generate very large gas levels. While ferritic alloys are known to swell less than austenitic alloys in fission spectra, there is a concern that high gas levels in fusion and especially ADS facilities may strongly accelerate void swelling in ferritic alloys. In this study of void swelling in response to helium and hydrogen generation, irradiation was conducted on three ferritic-martensitic steels using the Electrostatic Accelerator with External Injector (ESUVI) facility that can easily produce any combination of helium to dpa and/or hydrogen to dpa ratios. Irradiation was conducted under single, dual and triple beam modes using 1.8 MeV Cr+3, 40 keV He+, and 20 keV H+. In the first part of this study we investigated the response of dual-phase EP-450 to variations in He/dpa and H/dpa ratio, focusing first on dual ion studies and then triple ion studies, showing that there is a diminishing influence on swelling with increasing total gas content. In the second part we investigated the relative response of three alloys spanning a range of starting microstructure and composition. In addition to observing various synergisms between He and H, the most important conclusion was that the tempered martensite phase, known to lag behind the ferrite phase in swelling in the absence of gases, loses much of its resistance to void nucleation when irradiated at large gas/dpa levels.

  3. Study of damage and helium diffusion in fluoro-apatites; Etude de l'endommagement et de la diffusion de l'helium dans des fluoroapatites

    Energy Technology Data Exchange (ETDEWEB)

    Miro, S

    2004-12-15

    This work lies within the scope of the study of the radionuclides containment matrices. The choice of the fluoro-apatites as potential matrices of containment was suggested by the notable properties of these latter (thermal and chemical stability even under radioactive radiation). By irradiations with heavy ions and a helium implantation we simulated the effects related to the alpha radioactivity and to the spontaneous nuclear fission of the radionuclides. Thanks to the study of Durango fluoro-apatite single crystals and fluoro-apatite sintered ceramics, we evidenced that the damage fraction as well as the unit cell deformations increase with the electronic energy loss and with the substitution. These effects are followed at high fluences by a phenomenon of re-crystallization. The study of the helium diffusion points out that the thermal diffusion process improves with the substitution and strongly increases with heavy ions irradiation. (author)

  4. Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, Michael, E-mail: m.kraemer@gsi.de; Scifoni, Emanuele; Schuy, Christoph; Rovituso, Marta; Maier, Andreas; Kaderka, Robert; Kraft-Weyrather, Wilma [Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Tinganelli, Walter; Durante, Marco [Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany and Trento Institute for Fundamental Physics and Application (TIFPA-INFN), 38123, via Sommarive 14, Trento (Italy); Brons, Stephan; Tessonnier, Thomas [Heidelberger Ionenstrahl-Therapiezentrum (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany and Radioonkologie und Strahlentherapie, Universitätsklinikums Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Parodi, Katia [Heidelberger Ionenstrahl-Therapiezentrum (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg (Germany); Radioonkologie und Strahlentherapie, Universitätsklinikums Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Ludwig-Maximilians-Universitaet Muenchen (LMU Munich), Department of Medical Physics, Am Coulombwall 1, 85748 Munich (Germany)

    2016-04-15

    Purpose: Modern facilities for actively scanned ion beam radiotherapy allow in principle the use of helium beams, which could present specific advantages, especially for pediatric tumors. In order to assess the potential use of these beams for radiotherapy, i.e., to create realistic treatment plans, the authors set up a dedicated {sup 4}He beam model, providing base data for their treatment planning system TRiP98, and they have reported that in this work together with its physical and biological validations. Methods: A semiempirical beam model for the physical depth dose deposition and the production of nuclear fragments was developed and introduced in TRiP98. For the biological effect calculations the last version of the local effect model was used. The model predictions were experimentally verified at the HIT facility. The primary beam attenuation and the characteristics of secondary charged particles at various depth in water were investigated using {sup 4}He ion beams of 200 MeV/u. The nuclear charge of secondary fragments was identified using a ΔE/E telescope. 3D absorbed dose distributions were measured with pin point ionization chambers and the biological dosimetry experiments were realized irradiating a Chinese hamster ovary cells stack arranged in an extended target. Results: The few experimental data available on basic physical processes are reproduced by their beam model. The experimental verification of absorbed dose distributions in extended target volumes yields an overall agreement, with a slight underestimation of the lateral spread. Cell survival along a 4 cm extended target is reproduced with remarkable accuracy. Conclusions: The authors presented a simple simulation model for therapeutical {sup 4}He beams which they introduced in TRiP98, and which is validated experimentally by means of physical and biological dosimetries. Thus, it is now possible to perform detailed treatment planning studies with {sup 4}He beams, either exclusively or in

  5. Helium Energetic Neutral Atoms from the Heliosphere: Perspectives for Future Observations

    Energy Technology Data Exchange (ETDEWEB)

    Swaczyna, Paweł; Grzedzielski, Stan; Bzowski, Maciej, E-mail: pswaczyna@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Bartycka 18A, 00-716 Warsaw (Poland)

    2017-05-10

    Observations of energetic neutral atoms (ENAs) allow for remote sensing of plasma properties in distant regions of the heliosphere. So far, most of the observations have concerned only hydrogen atoms. In this paper, we present perspectives for observations of helium energetic neutral atoms (He ENAs). We calculated the expected intensities of He ENAs created by the neutralization of helium ions in the inner heliosheath and through the secondary ENA mechanism in the outer heliosheath. We found that the dominant source region for He ENAs is the inner heliosheath. The obtained magnitudes of intensity spectra suggest that He ENAs can be observed with future ENA detectors, as those planned on Interstellar Mapping and Acceleration Probe . Observing He ENAs is most likely for energies from a few to a few tens of keV/nuc. Estimates of the expected count rates show that the ratio of helium to hydrogen atoms registered in the detectors can be as low as 1:10{sup 4}. Consequently, the detectors need to be equipped with an appropriate mass spectrometer capability, allowing for recognition of chemical elements. Due to the long mean free paths of helium ions in the inner heliosheath, He ENAs are produced also in the distant heliospheric tail. This implies that observations of He ENAs can resolve its structure, which seems challenging from observations of hydrogen ENAs since energetic protons are neutralized before they progress deeper in the heliospheric tail.

  6. Photon-ion spectrometer PIPE at the Variable Polarization XUV Beamline of PETRA III

    International Nuclear Information System (INIS)

    Schippers, S; Ricz, S; Buhr, T; Hellhund, J; Müller, A; Klumpp, S; Martins, M; Flesch, R; Rühl, E; Lower, J; Jahnke, T; Metz, D; Schmidt, L Ph H; Dörner, R; Ullrich, J; Wolf, A

    2012-01-01

    The photon-ion spectrometer PIPE is currently being installed as a permanent end station at beamline P04 of the PETRA III synchrotron radiation source. Various state-of-the-art experimental techniques will be available for studies of gaseous matter with circularly and linearly polarized synchrotron radiation with photon energies in range the 100–3000 eV.

  7. Positron annihilation investigation and nuclear reaction analysis of helium and oxygen-implanted zirconia

    International Nuclear Information System (INIS)

    Grynszpan, R.I.; Saude, S.; Anwand, W.; Brauer, G.

    2005-01-01

    Since irradiation affects in-service properties of zirconia, we investigated the fluence dependence on production and thermal stability of defects induced by helium and oxygen-ion implantation in single crystals of yttria-fully-stabilized zirconia. In either case, depth profiling by slow positron implantation spectroscopy (SPIS) detects a distribution of vacancy-type defects peaking at 60% of the projected ion range R p . Owing to the saturation of positron-trapping occurring for low fluences, which depends on the ion mass, we could estimate a critical size of clusters ranging from 0.4 to 1.6 nm. The lack of SPIS-evidence of an open-volume excess at R p is explained by the presence of over-pressurized gas bubbles. This assumption is confirmed by Nuclear Reaction Analysis of 3 He concentration profiles, which shows that helium remains partly trapped at R p , even after annealing above 400 o C

  8. An efficient cooling loop for connecting cryocooler to a helium reservoir

    International Nuclear Information System (INIS)

    Taylor, C.E.; Abbott, C.S.R.; Leitner, D.; Leitner, M.; Lyneis, C.M.

    2003-01-01

    The magnet system of the VENUS ECR Ion Source at LBNL has two 1.5-watt cryocoolers suspended in the cryostat vacuum. Helium vapor from the liquid reservoir is admitted to a finned condenser bolted to the cryocooler 2nd stage and returns as liquid via gravity. Small-diameter flexible tubes allow the cryocoolers to be located remotely from the reservoir. With 3.1 watts load, the helium reservoir is maintained at 4.35 K, 0.05K above the cryocooler temperature. Design, analysis, and performance are presented

  9. Effect of preliminary neutron irradiation on helium blistering of 0Kh16N15M3B steel

    International Nuclear Information System (INIS)

    Chernov, I.I.; Kalin, B.A.; Skorov, D.M.; Shishkin, G.N.; Ivanov, M.V.

    1982-01-01

    The method of electron microscopy has been applied to investigate the effect of preliminary neutron irradiation on the OKh16N15M3B steel blistering under irradiation by 20 keV helium ions with (1-10)x10 21 ion/m 2 doses at the temperature below 373 K. It is shown that neutron irradiation shifts critical doses of blister formation and intense scaling towards higher doses. But after the incubation period the erosion of steel preliminary neutron irradiated grows with the increase of helium ion dose above 7x10 21 ion/m 2 . Short-term heating of neutron irradiated samples during 15 min at 1173 K does not practically affect the beginning of intense scaling of the surface

  10. THE EXPANDING BIPOLAR SHELL OF THE HELIUM NOVA V445 PUPPIS

    International Nuclear Information System (INIS)

    Woudt, P. A.; Warner, B.; Steeghs, D.; Marsh, T. R.; Karovska, M.; Roelofs, G. H. A.; Groot, P. J.; Nelemans, G.; Nagayama, T.; Smits, D. P.; O'Brien, T.

    2009-01-01

    From multi-epoch adaptive optics imaging and integral field unit spectroscopy, we report the discovery of an expanding and narrowly confined bipolar shell surrounding the helium nova V445 Puppis (Nova Puppis 2000). An equatorial dust disc obscures the nova remnant, and the outflow is characterized by a large polar outflow velocity of 6720 ± 650 km s -1 and knots moving at even larger velocities of 8450 ± 570 km s -1 . We derive an expansion parallax distance of 8.2 ± 0.5 kpc and deduce a pre-outburst luminosity of the underlying binary of log L/L sun = 4.34 ± 0.36. The derived luminosity suggests that V445 Puppis probably contains a massive white dwarf accreting at high rate from a helium star companion making it part of a population of binary stars that potentially lead to supernova Ia explosions due to accumulation of helium-rich material on the surface of a massive white dwarf.

  11. The Expanding Bipolar Shell of the Helium Nova V445 Puppis

    Science.gov (United States)

    Woudt, P. A.; Steeghs, D.; Karovska, M.; Warner, B.; Groot, P. J.; Nelemans, G.; Roelofs, G. H. A.; Marsh, T. R.; Nagayama, T.; Smits, D. P.; O'Brien, T.

    2009-11-01

    From multi-epoch adaptive optics imaging and integral field unit spectroscopy, we report the discovery of an expanding and narrowly confined bipolar shell surrounding the helium nova V445 Puppis (Nova Puppis 2000). An equatorial dust disc obscures the nova remnant, and the outflow is characterized by a large polar outflow velocity of 6720 ± 650 km s-1 and knots moving at even larger velocities of 8450 ± 570 km s-1. We derive an expansion parallax distance of 8.2 ± 0.5 kpc and deduce a pre-outburst luminosity of the underlying binary of log L/L sun = 4.34 ± 0.36. The derived luminosity suggests that V445 Puppis probably contains a massive white dwarf accreting at high rate from a helium star companion making it part of a population of binary stars that potentially lead to supernova Ia explosions due to accumulation of helium-rich material on the surface of a massive white dwarf.

  12. Polarized source upgrading

    International Nuclear Information System (INIS)

    Clegg, T.B.; Rummel, R.L.; Carter, E.P.; Westerfeldt, C.R.; Lovette, A.W.; Edwards, S.E.

    1985-01-01

    The decision was made this past year to move the Lamb-shift polarized ion source which was first installed in the laboratory in 1970. The motivation was the need to improve the flexibility of spin-axis orientation by installing the ion source with a new Wien-filter spin precessor which is capable of rotating physically about the beam axis. The move of the polarized source was accomplished in approximately two months, with the accelerator being turned off for experiments during approximately four weeks of this time. The occasion of the move provided the opportunity to rewire completely the entire polarized ion source frame and to rebuild approximately half of the electronic chassis on the source. The result is an ion source which is now logically wired and carefully documented. Beams obtained from the source are much more stable than those previously available

  13. Origin of energetic ions in the polar cusp inferred from ion composition measurements by the Viking satellite

    Directory of Open Access Journals (Sweden)

    G. Kremser

    Full Text Available The magnetospheric ion composition spectrometer MICS on the Swedish Viking satellite provided measurements of the ion composition in the energy range 10.1 keV/eleqE/Qleq326.0 keV/e. Data obtained during orbit 842 were used to investigate the ion distribution in the northern polar cusp and its vicinity. The satellite traversed the outer ring current, boundary region, cusp proper and plasma mantle during its poleward movement. H+ and He++ ions were encountered in all of these regions. He+ ions were present only in the ring current. The number of O+ and O++ ions was very small. Heavy high-charge state ions typical for the solar wind were observed for the first time, most of them in the poleward part of the boundary region and in the cusp proper. The H+ ions exhibited two periods with high intensities. One of them, called the BR/CP event, appeared at energies up to 50 keV. It started at the equatorward limit of the boundary region and continued into the cusp proper. Energy spectra indicate a ring current origin for the BR/CP event. Pitch angle distributions show downward streaming of H+ ions at its equatorward limit and upward streaming on the poleward side. This event is interpreted as the result of pitch angle scattering of ring current ions by fluctuations in the magnetopause current layer in combination with poleward convection. The other of the two periods with high H+ ion intensities, called the accelerated ion event, was superimposed on the BR/CP event. It was restricted to energies leq15 keV and occurred in the poleward part of the boundary region. This event is regarded as the high-energy tail of magnetosheath ions that were accelerated while penetrating into the magnetosphere. The cusp region thus contains ions of magnetospheric as well as of magnetosheath origin. The appearance of the ions depends, in addition to the ion source, on the

  14. Interactions of solid and liquid lithium with steady state hydrogen and helium plasmas

    International Nuclear Information System (INIS)

    Hirooka, Y.; Nishikawa, M.; Ohgaki, H.; Ohtsuka, Y.

    2005-01-01

    A variety of innovative Plasma-Facing Component (PFC) concepts, employing moving solid or liquid surfaces, have recently been proposed in order to resolve technical issues, associated with the applications of currently used PFCs in future steady state fusion devices. As the first step to evaluate the concept using flowing-liquids for PFCs, steady state hydrogen and helium plasma interactions with solid and standing liquid lithium have been investigated in the present work, using the H α and He-I spectroscopy at the ion bombarding energies up to 150eV and at the lithium temperatures between room temperature and 480 deg C. Data indicate that hydrogen recycling over liquid lithium is clearly reduced, relative to that over solid lithium, whereas helium recycling does not show the same trend. From the kinetic analysis of these recycling time constant data, the activation energies for the overall recycling processes have been evaluated to be 0.02±0.01eV, both for hydrogen and helium plasmas. Also, it has been found that the activation energy is nearly independent of ion bombarding energy. (author)

  15. The observation of helium gas bubble lattices in copper, nickel and stainless steel

    International Nuclear Information System (INIS)

    Johnson, P.B.; Mazey, D.J.

    1978-10-01

    Transmission electron microscopy is used to investigate the spatial arrangement of the small gas bubbles produced in several fcc metals by 30 keV helium ion irradiation to high dose at 300K. In what is a new result for this important class of metals it is found that the helium gas bubbles lie on a superlattice having an fcc structure with principal axes aligned with those of the metal matrix. The bubble lattice constant, asub(l), is measured for a helium fluence just below the critical dose for radiation blistering of the metal surface. Implantation rates are typically approximately 10 14 He ions cm -2 sec -1 . The values of asub(l) obtained for copper, nickel and stainless steel are given. Above the critical dose the bubble lattice is seen to survive in some blister caps as well as in the region between blisters. Bubble alignment is also observed in the case of hydrogen bubbles produced in copper by low energy proton irradiation to high fluence at 300K. (author)

  16. Cryogenic filter method produces super-pure helium and helium isotopes

    Science.gov (United States)

    Hildebrandt, A. F.

    1964-01-01

    Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.

  17. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    Science.gov (United States)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  18. Effects of sequential helium and hydrogen ion irradiation on the nucleation and evolution of bubbles in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Zhenyu; Zheng, Zhongcheng [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072 (China); Luo, Fengfeng [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072 (China); Institute of Applied Physics, Jiangxi Academy of Science, Nanchang, 330029 (China); Hu, Wenhui [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Zhang, Weiping [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072 (China); Ren, Yaoyao [Center for Electron Microscopy, Wuhan University, Wuhan, 430072 (China)

    2017-02-15

    Highlights: • The effect of H{sup +} irradiation on formation and evolution of helium bubbles is explored. • The growth of hydrogen bubbles under He{sup +} irradiation is observed. • Mechanism of synergistic effect between He and H is discussed. - Abstract: Irradiations of He{sup +} and H{sup +} have been performed to investigate the effect of H{sup +} irradiation on existing helium bubbles and the effect of pre-irradiation of H{sup +} on the formation of helium bubbles in tungsten. The specimens were irradiated at 800 °C with either 10kev-H{sup +}, 20kev-He{sup +}, or sequentially irradiated with both H{sup +} and He{sup +}. After H{sup +} irradiation, the growth of existing helium bubbles was observed. It was also found that pre- or post- irradiation of H{sup +} enhanced the nucleation of helium bubbles. The growth of hydrogen bubbles was also observed after post irradiation of He{sup +}. The possible mechanism is discussed.

  19. Damage, trapping and desorption at the implantation of helium and deuterium in graphite, diamond and silicon carbide

    International Nuclear Information System (INIS)

    Lopez, G.A.R.

    1995-07-01

    The production, thermal stability and structure of ion induced defects have been studied by Rutherford backscattering in channeling geometry for the implantation of helium and deuterium in graphite, diamond and silicon carbide with energies of 8 and 20 keV. At the implantation of deuterium and helium ions more defects were measured in graphite than in diamond or silicon carbide at equal experimental conditions. This is due to increased backscattering in graphite, which is caused by the splitting and tilting of crystallites and a local reordering of lattice atoms around defects. At 300 K, Helium produces more defects in all three materials than deuterium with equal depth distribution of defects. The ratio of the defects produced by helium and deuterium agrees very well with the corresponding ratio of the energy deposited in nuclear collisions. In graphite, only small concentrations of deuterium induced defects anneal below 800 K, while in diamond small concentrations of deuterium as well as of helium induced defects anneal mostly below 800 K. This annealing behavior is considered to be due to recombination of point defects. The buildup of helium and deuterium in graphite is different. The trapping of deuterium proceeds until saturation is reached, while in the case of helium trapping is interrupted by flaking. In diamond, deuterium as well as helium are trapped almost completely until at higher fluences reemission starts and saturation is reached. Two desorption mechanisms were identified for the thermal desorption of helium from base-oriented graphite. Helium implanted at low fluences desorbs diffusing to the surface, while for the implantation of high fluences the release of helium due to blistering dominates. The desorption of deuterium from graphite and diamond shows differences. While in graphite the desorption starts already at 800 K, in diamond up to 1140 K only little desorption can be observed. These differences can be explained by the different transport

  20. Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures

    Directory of Open Access Journals (Sweden)

    Serguei Chiriaev

    2017-12-01

    Full Text Available Characterization of composite materials with microscopy techniques is an essential route to understanding their properties and degradation mechanisms, though the observation with a suitable type of microscopy is not always possible. In this work, we present proton exchange membrane fuel cell electrode interface structure dependence on ionomer content, systematically studied by Helium Ion Microscopy (HIM. A special focus was on acquiring high resolution images of the electrode structure and avoiding interface damage from irradiation and tedious sample preparation. HIM demonstrated its advantages in surface imaging, which is paramount in studies of the interface morphology of ionomer covered or absorbed catalyst structures in a combination with electrochemical characterization and accelerated stress test. The electrode porosity was found to depend on the ionomer content. The stressed electrodes demonstrated higher porosity in comparison to the unstressed ones on the condition of no external mechanical pressure. Moreover, formation of additional small grains was observed for the electrodes with the low ionomer content, indicating Pt redeposition through Ostwald ripening. Polymer nanofiber structures were found in the crack regions of the catalyst layer, which appear due to the internal stress originated from the solvent evaporation. These fibers have fairly uniform diameters of a few tens of nanometers, and their density increases with the increasing ionomer content in the electrodes. In the hot-pressed electrodes, we found more closed contact between the electrode components, reduced particle size, polymer coalescence and formation of nano-sized polymer fiber architecture between the particles.

  1. A study of ion damage in Al, Al/Cu and Al/Ag

    International Nuclear Information System (INIS)

    Marikar, P.

    1979-06-01

    Specimens of pure aluminium, aluminium-copper and aluminium-silver have been irradiated with 20 keV helium ions and/or 100 keV aluminium ions and the nature of the damage assessed using transmission electron microscopy. Irradiation with 20 keV helium ions to a dose of 2.7 x 10 15 ions cm -2 results in the formation of interstitial loops and helium gas bubbles. The helium bubbles were detectable only after annealing at a high temperature following irradiation. When the helium preinjected aluminium specimens were irradiated with 100 keV Al + ions to a dose of 84 dpa at temperatures above 150 0 C, voids were observed to form. At a lower dose of 64 dpa, only a high density of dislocation loops was observed. Al-1 wt% Cu alloy containing partially coherent theta' precipitates resists void formation to a considerable extent, and Al-10 wt% Ag alloy containing coherent G.P. zones offers complete resistance to both dislocation loop nucleation and void formation. The experimental results are discussed in the light of the current theories of irradiation induced damage in metals. The importance of the dislocation-sink efficiency for point defects, the gaseous impurity and the alloying elements in determining void formation is highlighted. (author)

  2. Meas.of the Ratio Between Double and Single Ionization of Helium for Antiprotons

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to measure the ratio between double and single ionization of helium by antiprotons in the energy range $>$~3~MeV. Comparison with already existing proton data will yield information on the mechanisms for double ionization, which could not be extracted from previous comparisons between ratios measured for equivelocity electrons and protons. The most basic information to be obtained from an antiproton experiment will be the amount of correlation existing between the two electrons in the ground-state helium atom.\\\\ \\\\ The equipment consists of a gas cell, which employs slow-ion collection via the so-called condenser-plate method for the absolute sum of partial-ionization cross sections and determination of the relative contribution of multiple charged ions by TOF. The gas cell has movable entrance and exit slits and a grid system to account for secondary emission from the collection of slow ions. Together with a field of 800~V/cm in the collision region, the potentials of the TOF sp...

  3. Production of spin-polarized unstable nuclei by using polarized electron capture process

    International Nuclear Information System (INIS)

    Shimizu, S.

    1998-01-01

    Measurements of emitted radiation from spin polarized nuclei are used to get information on electromagnetic moment of ground state unstable nuclei together with spin or parity state of excited states of their decayed (daughter) nuclei. These data are known to be useful for experimental investigation into the structure of unstable nuclei far from the stability line. The present study aims to establish a general method applicable to 11 Be and 16 N nuclei. To produce spin polarization, a new method in which the electron spin polarization of Rb is firstly produced by laser pumping, then the electron is transferred to the unstable nuclear beam (RNB) when they passes through the Rb vapor is proposed. Finally the polarized RNB will be implanted into superfluid helium to remain with a long spin-relaxation time. Future experimental set up for the above measurement adopted in the available radioactive nuclear beam facilities is briefly described. (Ohno, S.)

  4. Scaling of cross-sections for asymmetric (e,3e) process on helium ...

    Indian Academy of Sciences (India)

    , India ... (e, 3e) process; five-fold differential cross-section; scaling; helium isoelec- tronic ions. ... ration and experimental control of the target and the intensity related problems make the measurements extremely difficult. The scaling laws of ...

  5. Multiphoton polarization Bremsstrahlung effect

    International Nuclear Information System (INIS)

    Golovinskij, P.A.

    2001-01-01

    A general approach to induced polarization effects was formulated on the basis of theory of many particles in a strong periodic field. Correlation with the perturbation theory is shown and the types of effective polarization potentials both for isolated atoms and ions, and for ions in plasma, are provided. State of art in the theory of forced polarization Bremsstrahlung effect is analyzed and some outlooks for further experimental and theoretical studies are outlined [ru

  6. Fuel and helium confinement in fusion reactors

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Attenberger, S.E.

    1993-01-01

    An expanded macroscopic model for particle confinement is used to investigate both fuel and helium confinement in reactor plasmas. The authors illustrate the relative effects of external sources of fuel, divertor pumping, and wall and divertory recycle on core, edge and scrape-off layer densities by using separate particle confinement times for open-quote core close-quote fueling (deep pellet or beam penetration, τ c ), open-quote shallow close-quote fueling (shallow pellet penetration or neutral atoms that penetrate the scrape-off layer, τ s ) and fueling in the scrape-off layer (τ sol ). Because τ s is determined by the parallel flow velocity and characteristic distance to the divertor plate, it can be orders of magnitude lower than either τ c or τ sol . A dense scrape-off region, desirable for reduced divertor erosion, leads to a high fraction of the recycled neutrals being ionized in the scrape-off region and poor core fueling efficiency. The overall fueling efficiency can then be dramatically improved with either shallow or deep auxillary fueling. Helium recycle is nearly always coupled to the scrape-off region and does not lead to strong core accumulation unless the helium pumping efficiency is much less than the fuel pumping efficiency, or the plasma preferentially retains helium over hydrogenic ions. Differences between the results of this model, single-τ p macroscopic models, and 1-D and 2-D models are discussed in terms of assumptions and boundary conditions

  7. Determination of helium and oxygen abundances in gaseous nebulae

    International Nuclear Information System (INIS)

    Pronik, V.I.

    1975-01-01

    A new method of determining the abudance of helium and oxygen is proposed. It is based on the statement that functions of atomic distribution with states of ionization may be determined to the sufficient precision by the amount of atoms in two states of ionization. The abudance of helium atoms in nebulae is determined with most probability, since of three possible states of ionization two states with the overwhelming majority atoms may be directly observed. The amount of He++ ions is determined from He 2 recombination lines, and the amount of He+ ions is from He1 lines. The total abudance of He atoms can be found from the observed ratios of I(4686)/I(Hsub(β)) and I(4471)/I(Hsub(β)) at any degree of ionization. These ratios slightly depend on the electron temperature. For oxygen, unlike helium, the observed ratios depend on the electron temperature of gas, and at high densities they also depend on the density of electrons (it is necessary to take account of deactivation of the excited level by electron impacts). Constructed are curves of equal abundance He/H=const for determining He/H according to the ratios observed I(4686)/I(Hsub(β)) and I(4471)/I(Hsub(β)) and curves of equal abudance O/H=const for determining O/H according to the ratios observed I(3727)/I(Hsub(/b)) and I(Nsub(1)+Nsub(2))/I(Hsub(β)), corrected preliminarily for density and temperature

  8. Americium-241 and -243 as an ion-engine propellant

    International Nuclear Information System (INIS)

    Schachter, M.M.

    1994-01-01

    Commercially available americium-241 and -243 can be obtained as the mixture of the two isotopes in 100-gram quantities--a product of reprocessing spent nuclear powerplant fuel elements along with plutonium. The half-lives of the isotopes are 450 years for the -241 and 8,000 years for the -243 (the plutonium half-life isotope so obtained is 24,000 years). Americium rolled out in thin foil sheets emits alpha-rays (helium-4 ions) and beta-rays--2 valence electrons for each helium ion. Electrons are also considered as ions. As a foil, the americium radiates only a minimal amount of gamma-rays via the Curie effect. With appropriately designed permanent magnet rings insulated with Wood's alloy, the + and - ions can be accelerated from their already 5.5 million electron-Volts to billion and even trillions of electron-Volts by electronic control grids powered by the magnetohydrodynamic effect of electrons and helium ions streaming at the post-rocket nozzle of the ion engine. Protocol for the estimated thrust of this ion rocket engine is more than ten kilograms continuously sustainable for several thousand years

  9. SIMS as a new methodology to depth profile helium in as-implanted and annealed pure bcc metals?

    Energy Technology Data Exchange (ETDEWEB)

    Gorondy-Novak, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Jomard, F. [Groupe d' Etude de la Matière Condensée, CNRS, UVSQ, 45 avenue des Etats-Unis, 78035 Versailles cedex (France); Prima, F. [PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Lefaix-Jeuland, H., E-mail: helene.lefaix@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-05-01

    Reliable He profiles are highly desirable for better understanding helium behavior in materials for future nuclear applications. Recently, Secondary Ions Mass Spectrometry (SIMS) allowed the characterization of helium distribution in as-implanted metallic systems. The Cs{sup +} primary ion beam coupled with CsHe{sup +} molecular detector appeared to be a promising technique which overcomes the very high He ionization potential. In this study, {sup 4}He depth profiles in pure body centered cubic (bcc) metals (V, Fe, Ta, Nb and Mo) as-implanted and annealed, were obtained by SIMS. All as-implanted samples exhibited a projected range of around 200 nm, in agreement with SRIM theoretical calculations. After annealing treatment, SIMS measurements evidenced the evolution of helium depth profile with temperature. The latter SIMS results were compared to the helium bubble distribution obtained by Transmission Electron Microscopy (TEM). This study confirmed the great potential of this experimental procedure as a He-depth profiling technique in bcc metals. Indeed, the methodology described in this work could be extended to other materials including metallic and non-metallic compounds. Nevertheless, the quantification of helium concentration after annealing treatment by SIMS remains uncertain probably due to the non-uniform ionization efficiency in samples containing large bubbles.

  10. Electron impact ionization-excitation of Helium

    Science.gov (United States)

    Ancarani, Lorenzo Ugo; Gomez, A. I.; Gasaneo, G.; Mitnik, D. M.; Ambrosio, M. J.

    2016-09-01

    We calculate triple differential cross sections (TDCS) for the process of ionization-excitation of Helium by fast electron impact in which the residual ion is left in the n =2 excited state. We chose the strongly asymmetric kinematics used in the experiment performed by Dupré et al.. In a perturbative scheme, for high projectile energies the four-body problem reduces to a three-body one and, within that framework, we solve the time- independent Schrödinger equation with a Sturmian approach. The method, based on Generalized Sturmian Functions (GSF), is employed to obtain the initial ground state of Helium, the single-continuum state and the scattering wave function; for each of them, the GSF basis is constructed with the corresponding adequate asymptotic conditions. Besides, the method presents the following advantage: the scattering amplitudes can be extracted directly in the asymptotic region of the scattering solution, and thus the TDCS can be obtained without requiring a matrix element evaluation.

  11. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  12. Evaluation of defect formation in helium irradiated Y2O3 doped W-Ti alloys by positron annihilation and nanoindentation

    Science.gov (United States)

    Richter, Asta; Anwand, Wolfgang; Chen, Chun-Liang; Böttger, Roman

    2017-10-01

    Helium implanted tungsten-titanium ODS alloys are investigated using positron annihilation spectroscopy and nanoindentation. Titanium reduces the brittleness of the tungsten alloy, which is manufactured by mechanical alloying. The addition of Y2O3 nanoparticles increases the mechanical properties at elevated temperature and enhances irradiation resistance. Helium ion implantation was applied to simulate irradiation effects on these materials. The irradiation was performed using a 500 kV He ion implanter at fluences around 5 × 1015 cm-2 for a series of samples both at room temperature and at 600 °C. The microstructure and mechanical properties of the pristine and irradiated W-Ti-ODS alloy are compared with respect to the titanium and Y2O3 content. Radiation damage is studied by positron annihilation spectroscopy analyzing the lifetime and the Doppler broadening. Three types of helium-vacancy defects were detected after helium irradiation in the W-Ti-ODS alloy: small defects with high helium-to-vacancy ratio (low S parameter) for room temperature irradiation, larger open volume defects with low helium-to-vacancy ratio (high S parameter) at the surface and He-vacancy complexes pinned at nanoparticles deeper in the material for implantation at 600 °C. Defect induced hardness was studied by nanoindentation. A drastic hardness increase is observed after He ion irradiation both for room temperature and elevated irradiation temperature of 600 °C. The Ti alloyed tungsten-ODS is more affected by the hardness increase after irradiation compared to the pure W-ODS alloy.

  13. Polarized 3He Gas Circulating Technologies for Neutron Analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Watt, David [Xemed LLC, Durham, NH (United States); Hersman, Bill [Xemed LLC, Durham, NH (United States)

    2014-12-10

    We describe the development of an integrated system for quasi-continuous operation of a large volume neutron analyzer. The system consists of a non-magnetic diaphragm compressor, a prototype large volume helium polarizer, a surrogate neutron analyzer, a non-depolarizing gas storage reservoir, a non-ferrous valve manifold for handling gas distribution, a custom rubidium-vapor gas return purifier, and wire-wound transfer lines, all of which are immersed in a two-meter external magnetic field. Over the Phase II period we focused on three major tasks required for the successful deployment of these types of systems: 1) design and implementation of gas handling hardware, 2) automation for long-term operation, and 3) improvements in polarizer performance, specifically fabrication of aluminosilicate optical pumping cells. In this report we describe the design, implementation, and testing of the gas handling hardware. We describe improved polarizer performance resulting from improved cell materials and fabrication methods. These improvements yielded valved 8.5 liter cells with relaxation times greater than 12 hours. Pumping this cell with 1500W laser power with 1.25nm linewidth yielded peak polarizations of 60%, measured both inside and outside the polarizer. Fully narrowing this laser to 0.25nm, demonstrated separately on one stack of the four, would have allowed 70% polarization with this cell. We demonstrated the removal of 5 liters of polarized helium from the polarizer with no measured loss of polarization. We circulated the gas through a titanium-clad compressor with polarization loss below 3% per pass. We also prepared for the next phase of development by refining the design of the polarizer so that it can be engineer-certified for pressurized operation. The performance of our system far exceeds comparable efforts elsewhere.

  14. Effects of low energy helium plasma irradiation on potassium doped tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Xiaoyan [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu (China); Key Subject Laboratory of National Defense for Radioactive Waste and Environmental Security, Southwest University of Science and Technology, Mianyang (China); Huang, Bo [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu (China); Liu, Dongping; Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China); Liu, Ning [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu (China); Tang, Jun, E-mail: tangjun@scu.edu.cn [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu (China)

    2017-04-15

    Effects of helium plasma irradiation on spark plasma sintering (SPS) W-K, pure W and traditionally sintered commercial W-K have been studied, concerning the density, grain size and potassium content as the influence factors. Pinholes are formed under 120 eV He ions at 600 °C and 1 × 10{sup 23} m{sup −2} fluence on the surface of all samples. It is found that SPS-sintered W-K shows the best irradiation resistance among the present samples, and SPS-sintered pure W exhibits higher irradiation tolerance than commercial W-K. Different He-plasma tolerance was observed among the SPS-sintered W-K samples due to varied potassium content and grain size. In addition, the microstructure evolution under helium irradiation, the growth-migration of helium bubbles and their interactions of potassium bubbles have also been discussed.

  15. Ionic polarization

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1992-01-01

    Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory

  16. Liquid helium

    CERN Document Server

    Atkins, K R

    1959-01-01

    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  17. Prompt ignition of a unipolar arc on helium irradiated tungsten

    International Nuclear Information System (INIS)

    Kajita, Shin; Takamura, Shuichi; Ohno, Noriyasu

    2009-01-01

    A fibreform nanostructured layer is formed on a tungsten surface by helium plasma bombardment. The helium fluence was of the order of 10 26 m -2 , and the surface temperature and incident ion energy during helium irradiation were, respectively, 1900 K and 75 eV. By irradiating a laser pulse to the surface in the plasma, a unipolar arc, which many people have tried to verify in well-defined experiments, is promptly initiated and continued for a much longer time than the laser pulse width. The laser pulse width (∼0.6 ms) and power (∼5 MJ m -2 ) are similar to the heat load accompanied by type-I edge localized modes (ELMs) in ITER. The unipolar arc is verified from an increase in the floating potential, a moving arc spot detected by a fast camera and arcing traces on the surface. This result suggests that the nanostructure on the tungsten surface formed by the bombardment of helium, which is a fusion product, could significantly change the ignition property of arcing, and ELMs become a trigger of unipolar arcing, which would be a great impurity source in fusion devices. (letter)

  18. Dynamics of the reaction of the N+ ion with hydrogen isotopes and helium

    International Nuclear Information System (INIS)

    Ruska, W.E.W.

    1976-01-01

    Molecular beam techniques were used to study the reactive and non-reactive scattering of the nitrogen positive ion from hydrogen isotopes and helium, at energies above the stability limit for spectator stripping. Reactive scattering was observed from H 2 and HD targets. Non-reactive scattering was observed from H 2 and D 2 targets, and from He at one energy. A correlation diagram for the system is presented and compared with the available a priori calculations. Two surfaces are expected to lead to reaction. One is a 3 A 2 - 3 PI surface, the other, a 3 B 1 - 3 Σ - surface. Collinear approaches are expected to be most reactive on the 3 B 1 - 3 Σ - surface; noncollinear, on the 3 A 1 - 3 PI surface. Theoretical models are presented in which an incident hard sphere A, representing the projectile ion, strikes one of a pair of hard spheres B-C representing the B hydrogen molecule. After an impulsive A-B collision, an impulsive B-C collision may take place. The relative energy of A to B is then examined, and a reactive event is considered to have occurred if the energy is less than the dissociation energy for the A-B molecule. This model is treated both in the collinear case and in three dimensions. A graphical technique for the collinear case is summarized and applied to reaction on the 3 B 1 - 3 Σ - surface. An integral equation for the three-dimensional case is developed. A synthesis of two treatments, representing the behavior of the system on both reactive surfaces, and considering the charge-exchange channel, correctly predicts the observed product distribution. Predictions are also presented for the as yet unobserved case of reactive scattering from a D 2 target

  19. Co-Registered In Situ Secondary Electron and Mass Spectral Imaging on the Helium Ion Microscope Demonstrated Using Lithium Titanate and Magnesium Oxide Nanoparticles.

    Science.gov (United States)

    Dowsett, D; Wirtz, T

    2017-09-05

    The development of a high resolution elemental imaging platform combining coregistered secondary ion mass spectrometry and high resolution secondary electron imaging is reported. The basic instrument setup and operation are discussed and in situ image correlation is demonstrated on a lithium titanate and magnesium oxide nanoparticle mixture. The instrument uses both helium and neon ion beams generated by a gas field ion source to irradiate the sample. Both secondary electrons and secondary ions may be detected. Secondary ion mass spectrometry (SIMS) is performed using an in-house developed double focusing magnetic sector spectrometer with parallel detection. Spatial resolutions of 10 nm have been obtained in SIMS mode. Both the secondary electron and SIMS image data are very surface sensitive and have approximately the same information depth. While the spatial resolutions are approximately a factor of 10 different, switching between the different images modes may be done in situ and extremely rapidly, allowing for simple imaging of the same region of interest and excellent coregistration of data sets. The ability to correlate mass spectral images on the 10 nm scale with secondary electron images on the nanometer scale in situ has the potential to provide a step change in our understanding of nanoscale phenomena in fields from materials science to life science.

  20. Fine Structure in Helium-like Fluorine by Fast-Beam Laser Spectroscopy

    Science.gov (United States)

    Myers, E. G.; Thompson, J. K.; Silver, J. D.

    1998-05-01

    With the aim of providing an additional precise test of higher-order corrections to high precision calculations of fine structure in helium and helium-like ions(T. Zhang, Z.-C. Yan and G.W.F. Drake, Phys. Rev. Lett. 77), 1715 (1996)., a measurement of the 2^3P_2,F - 2^3P_1,F' fine structure in ^19F^7+ is in progress. The method involves doppler-tuned laser spectroscopy using a CO2 laser on a foil-stripped fluorine ion beam. We aim to achieve a higher precision, compared to an earlier measurement(E.G. Myers, P. Kuske, H.J. Andrae, I.A. Armour, H.A. Klein, J.D. Silver, and E. Traebert, Phys. Rev. Lett. 47), 87 (1981)., by using laser beams parallel and anti-parallel to the ion beam, to obtain partial cancellation of the doppler shift(J.K. Thompson, D.J.H. Howie and E.G. Myers, Phys. Rev. A 57), 180 (1998).. A calculation of the hyperfine structure, allowing for relativistic, QED and nuclear size effects, will be required to obtain the ``hyperfine-free'' fine structure interval from the measurements.

  1. Theoretical and experimental comparison of proton and helium-beam radiography using silicon pixel detectors

    Science.gov (United States)

    Gehrke, T.; Amato, C.; Berke, S.; Martišíková, M.

    2018-02-01

    Ion-beam radiography (iRAD) could potentially improve the quality control of ion-beam therapy. The main advantage of iRAD is the possibility to directly measure the integrated stopping power. Until now there is no clinical implementation of iRAD. Topics of ongoing research include developing dedicated detection systems to achieve the desired spatial resolution (SR) and investigating different ion types as imaging radiation. This work focuses on the theoretical and experimental comparison of proton (pRAD) and helium-beam radiography (αRAD). The experimental comparison was performed with an in-house developed detection system consisting of silicon pixel detectors. This system enables the measurement of energy deposition of single ions, their tracking, and the identification of the ion type, which is important for αRAD due to secondary fragments. A 161 mm-thick PMMA phantom with an air gap of 1 mm placed at different depths was imaged with a 168 MeV u-1 proton/helium-ion beam at the Heidelberg ion-beam therapy center. The image quality in terms of SR and contrast-to-noise ratio (CNR) was evaluated. After validating MC simulations against experiments, pRAD and αRAD were compared to carbon-beam radiography (cRAD) in simulations. The theoretical prediction that the CNR of pRAD and αRAD is equal at similar imaging doses was experimentally confirmed. The measured SR of αRAD was 55% better compared to pRAD. The simulated cRads showed the expected improvement in SR and the decreased CNR at the same dose compared to the αRads, however only at dose levels exceeding typical doses of diagnostic x-ray projections. For clinically applicable dose levels, the cRads suffered from an insufficient number of carbon ions per pixel (220 μm  ×  220 μm). In conclusion, it was theoretically and experimentally shown that αRAD provides a better SR than pRAD without any disadvantages concerning the CNR. Using carbon ions instead of helium ions leads to a better SR at the

  2. CALCULATED REGENERATOR PERFORMANCE AT 4 K WITH HELIUM-4 AND HELIUM-3

    International Nuclear Information System (INIS)

    Radebaugh, Ray; Huang Yonghua; O'Gallagher, Agnes; Gary, John

    2008-01-01

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transport properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies

  3. High frequency way of helium ash removal from stellarator-reactor

    International Nuclear Information System (INIS)

    Grekov, D.L.

    2005-01-01

    The paper deals with the problem of helium ash removal from stellarator-reactor. The lower hybrid heating of ash ions is proposed to solve this problem. The theory of ion stochastic heating, developed earlier by Karney, is generalized on the case of heating in stellarators. The features of the lower hybrid waves propagation and the ions motion in the stellarator confining field are taken into account. With proper choice of wave parameters (such as frequency, antenna position and initial spectrum of longitudinal refractive index) the slow mode of LH waves penetrates from the launching system to plasma core (and back) without conversion to kinetic plasma mode or to fast mode. With all these going on, the LH wave is absorbed by alpha particles only. The electron Landau damping is negligibly small, and there is no bulk ions stochastic heating. The motion of high energy (>100 keV) ions in the LHD heliotron with inwardly shifted magnetic axis, as an example of stellarator type device, is calculated numerically using the single particle simulation code which couples modified Karney's ion stochastic heating theory. The effect of collisions was taken into account through the Monte Carlo equivalent of the Lorentz collision operator. It is shown, that due to interaction with lower hybrid wave, initially well-confined alpha particles are expelled from the plasma during the time period less then collision time. At the same time, the low hybrid heating does not remove the ions with energy higher than 500 keV. Therefore, it is possible to use this method of RF heating for helium ash removal in stellarator-reactor. The required LH power is estimated to be of the order of 10 MW. (author)

  4. A statistical study of coronal densities from X-ray line ratios of helium-like ions - Ne IX and Mg XI

    Science.gov (United States)

    Linford, G. A.; Lemen, J. R.; Strong, K. T.

    1988-01-01

    Since the repair of the Solar Maximum Mission (SMM) spacecraft, the Flat Crystal Spectrometer (FCS) has recorded many high temperature spectra of helium-like ions under a wide variety of coronal conditions including active regions, long duration events, compact events, and double flares. The plasma density and temperature are derived from the ratios R and G, where R = f/i, G = (f + i)/r, and r, f, and i denote the resonance, forbidden, and intercombination line fluxes. A new method for obtaining the density and temperature for events observed with the FCS aboard SMM is presented. The results for these events are presented and compared to earlier results, and the method is evaluated based on these comparisons.

  5. Lifetime and quenching of CO /a super 3 pi/ produced by recombination of CO2 ions in a helium afterglow.

    Science.gov (United States)

    Wauchop, T. S.; Broida, H. P.

    1972-01-01

    Demonstration that rapid dissociative recombination of CO2(+) in a flowing, helium afterglow is an efficient source of CO in the a super 3 pi metastable state. Ions produced by mixing CO2 with He(2 super 3 S) recombine to produce a CO metastable afterglow with a number density as great as 10 to the 9th per sq cm. Monitoring of the (a super 3 pi-X super 1 sigma) Cameron transition in CO was used to study the lifetime and quenching of CO (a super 3 pi) by CO2, N2, NO, and He. Recombination of CO2(+) also produces CO in the d super 3 delta and a' super 3 sigma states.

  6. Polarization preservation and control in a figure-8 ring

    Energy Technology Data Exchange (ETDEWEB)

    Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kondratenko, A. M. [GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058; Kondratenko, M. A. [GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058; Filatov, Yuri [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058

    2016-02-01

    We present a complete scheme for managing the polarization of ion beams in Jefferson Lab's proposed Medium-energy Electron-Ion Collider (MEIC). It provides preservation of the ion polarization during all stages of beam acceleration and polarization control in the collider's experimental straights. We discuss characteristic features of the spin motion in accelerators with Siberian snakes and in accelerators of figure-8 shape. We propose 3D spin rotators for polarization control in the MEIC ion collider ring. We provide polarization calculations in the collider with the 3D rotator for deuteron and proton beams. The main polarization control features of the figure-8 design are summarized.

  7. Anisotropy and linear polarization of radiative processes in energetic ion-atom collisions; Untersuchung zur Anisotropie und linearen Polarisation radiativer Prozesse in energiereichen Ion-Atom-Stoessen

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Guenter

    2010-06-16

    In the present thesis the linear polarization of radiation emitted in energetic ion-atom collisions at the ESR storage ring was measured by applying a novel type of position, timing and energy sensitive X-ray detector as a Compton polarimeter. In contrast to previous measurements, that mainly concentrate on studies of the spectral and angular distribution, the new detectors allowed the first polarization study of the Ly-{alpha}{sub 1} radiation (2p{sub 3/2}{yields}1s{sub 1/2}) in U{sup 91+}. Owing to the high precision of the polarimeters applied here, the experimental results indicate a significant depolarization of the Ly-{alpha}{sub 1} radiation caused by the interference of the E1 and M2 transition branches. Moreover, the current investigation shows that measurements of the linear polarization in combination with angular distribution studies provide a model-independent probe for the ratio of the E1 and M2 transition amplitudes and, consequently, of the corresponding transition probabilities. In addition, a first measurement of the linear polarization as well as an angular distribution study of the electron-nucleus Bremsstrahlung arising from ion-atom collisions was performed. The experimental results obtained were compared to exact relativistic calculations and, in case of the Bremsstrahlung, to a semirelativistic treatment. In general, good agreement was found between theoretical predictions and experimental findings. (orig.)

  8. submitter Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams

    CERN Document Server

    Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Chaudhri, Naved; Krunic, Damir; Tessonnier, Thomas; Ferrari, Alfredo; Parodi, Katia; Jäkel, Oliver; Debus, Jürgen; Haberer, Thomas; Abdollahi, Amir

    2016-01-01

    The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break ...

  9. New helium spectrum variable and a new helium-rich star

    International Nuclear Information System (INIS)

    Walborn, N.R.

    1974-01-01

    HD 184927, known previously as a helium-rich star, has been found to have a variable helium spectrum; the equivalent widths of five He I lines are larger by an average of 46 percent on a 1974 spectrogram than on one obtained with the same equipment in 1970. HD 186205 has been found to be a new, pronounced helium-rich star. (auth)

  10. Tritium decay helium-3 effects in tungsten

    Directory of Open Access Journals (Sweden)

    M. Shimada

    2017-08-01

    Full Text Available Tritium (T implanted by plasmas diffuses into bulk material, especially rapidly at elevated temperatures, and becomes trapped in neutron radiation-induced defects in materials that act as trapping sites for the tritium. The trapped tritium atoms will decay to produce helium-3 (3He atoms at a half-life of 12.3 years. 3He has a large cross section for absorbing thermal neutrons, which after absorbing a neutron produces hydrogen (H and tritium ions with a combined kinetic energy of 0.76 MeV through the 3He(n,HT nuclear reaction. The purpose of this paper is to quantify the 3He produced in tungsten by tritium decay compared to the neutron-induced helium-4 (4He produced in tungsten. This is important given the fact that helium in materials not only creates microstructural damage in the bulk of the material but alters surface morphology of the material effecting plasma-surface interaction process (e.g. material evolution, erosion and tritium behavior of plasma-facing component materials. Effects of tritium decay 3He in tungsten are investigated here with a simple model that predicts quantity of 3He produced in a fusion DEMO FW based on a neutron energy spectrum found in literature. This study reveals that: (1 helium-3 concentration was equilibrated to ∼6% of initial/trapped tritium concentration, (2 tritium concentration remained approximately constant (94% of initial tritium concentration, and (3 displacement damage from 3He(n,HT nuclear reaction became >1 dpa/year in DEMO FW.

  11. Dopant profiling based on scanning electron and helium ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chee, Augustus K.W., E-mail: kwac2@cam.ac.uk [Centre for Advanced Photonics and Electronics, Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Boden, Stuart A. [University of Southampton, Electronics and Computer Science, Highfield, Southampton SO17 1BJ (United Kingdom)

    2016-02-15

    In this paper, we evaluate and compare doping contrast generated inside the scanning electron microscope (SEM) and scanning helium ion microscope (SHIM). Specialised energy-filtering techniques are often required to produce strong doping contrast to map donor distributions using the secondary electron (SE) signal in the SEM. However, strong doping contrast can be obtained from n-type regions in the SHIM, even without energy-filtering. This SHIM technique is more sensitive than the SEM to donor density changes above its sensitivity threshold, i.e. of the order of 10{sup 16} or 10{sup 17} donors cm{sup −3} respectively on specimens with or without a p–n junction; its sensitivity limit is well above 2×10{sup 17} acceptors cm{sup −3} on specimens with or without a p–n junction. Good correlation is found between the widths and slopes of experimentally measured doping contrast profiles of thin p-layers and the calculated widths and slopes of the potential energy distributions across these layers, at a depth of 1 to 3 nm and 5 to 10 nm below the surface in the SHIM and the SEM respectively. This is consistent with the mean escape depth of SEs in silicon being about 1.8 nm and 7 nm in the SHIM and SEM respectively, and we conclude that short escape depth, low energy SE signals are most suitable for donor profiling. - Highlights: • Strong doping contrast from n-type regions in the SHIM without energy-filtering. • Sensitivity limits are established of the SHIM and SEM techniques. • We discuss the impact of SHIM imaging conditions on quantitative dopant profiling. • Doping contrast stems from different surface layer thicknesses in the SHIM and SEM.

  12. Energization of helium ions by proton-induced hydromagnetic waves

    International Nuclear Information System (INIS)

    Gendrin, R.; Roux, A.

    1980-01-01

    We consider the diffusion of He + ions under the influence of ion cyclotron waves generated in a plasma consisting of three different ion populations: a thermal isotropic population containing both H + and He + ions and an energetic H + population, with a positive anisotropy A=T/sub perpendicular//T/sub parallel/-1. We compute, in the velocity space upsilon/sub parallel/, upsilon/sub perpendicular/, the diffusion curves that He + ions will follow in the presence of ion cyclotron waves propagating in such a medium. We show that for small concentrations of the He + ions, of the order of 1 to approx.10%, these ions can be energized by such a process up to and above suprathermal energies (E> or approx. =20 eV). On some occasions the He + ions may even reach energies of the order of the Alfven energy of the cold plasma population: E/sub a/approx. =m/sub p/V/sub a/ 2 approx. =5 keV. Characteristic diffusion times, in pitch angle and energy, for both ion species, are evaluated. They are of the order of 2 to 20 min. These theoretical results are discussed in the frame of recent observations by Geos experimenters showing the close association that exists between the occurrence of ion cyclotron ULF waves and the presence of thermal or supra-thermal He + ions in the equatorial region of the magnetosphere

  13. Study of helium behaviour in body-centered cubic structures for new nuclear reactor generations: experimental approach in well characterized materials

    International Nuclear Information System (INIS)

    Gorondy-Novak, Sofia Maria

    2017-01-01

    The presence of helium produced during the operation of future fast reactors and fusion reactors in core structural materials induces a deterioration of their mechanical properties (hardening, swelling, embrittlement). In order to pursue the development of the metallic structural alloys, it is necessary to comprehend the He interaction with the metal lattice thus the point in common is the study of the metallic components with body-centered cubic structure (bcc) of future alloys, such as iron and/or vanadium. Ion implantation of ions "4He was employed with the aim of simulating the damaging effects associated with the helium accumulation, the point defects' creation (vacancies, self-interstitials) and the He cluster formation in future reactors. Helium evolution in pure iron and pure vanadium has been revealed from the point of view of the trapping sites' nature and well as the helium migration mechanisms and the nucleation/growth of bubbles. These phenomena were studied by coupling different complementary techniques. Despite of the fact that some mechanisms involved seem to be similar for both bcc metals, the comparison between the helium behavior in iron and vanadium shows certain differences. Microstructural defects, including grain boundaries and implanted helium concentration (dose) in both bcc metals will play significant roles on the helium behavior at high temperature. The acquired experimental data coupled with simulation methods contribute to the future development in terms of kinetic and thermodynamic data management of helium behavior in the metal components of the alloys of nuclear interest. (author) [fr

  14. The laser control system for the TRIUMF optically pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Kadantsev, S.G.; Levy, C.D.P.; Mouat, M.M.

    1994-08-01

    The optically pumped polarized H - ion source at TRIUMF produces up to 100 μΑ dc of 78% polarized beam within an emittance of 1.0 π mm mrad and is now being prepared for an upcoming experiment at TRIUMF that will measure parity violation in pp scattering at 230 MeV. The optical pumping is accomplished by argon laser pumped Ti-sapphire lasers. The laser control system provides monitoring and precision control of the lasers for fast spin reversal up to 200 s -1 . To solve the problems of laser power and frequency stabilization during fast spin flipping, techniques and algorithms have been developed that significantly reduce the variation of laser frequency and power between spin states. The upgraded Faraday rotation system allows synchronous measurement of Rb thickness and polarization while spin flipping. The X Window environment provides both local and remote control to laser operators via a local area network and X window terminals. In this new environment issues such as access authorization, response time, operator interface consistency and ease of use are of particular importance. (author)

  15. Dynamics of the single and double ionization of helium in fast proton collisions

    International Nuclear Information System (INIS)

    Doerner, R.; Schmidt-Boecking, H.

    1991-08-01

    A new experimental approach, designed to measure differential ionisation and electron capture cross sections for relativistic heavy ion beams, has been developed and was used to investigate dynamic mechanisms of Helium single and double ionisation in collisions with fast protons. Detailed insight into the dynamics of the ionisation process has been obtained. The experimental results prove, that the many-body momentum exchange between all particles involved, the projectile and target nucleus as well as the emitted electrons, has to be incorporated in order to correctly describe the ionisation collision dynamics. For the proton on Helium collision system the transverse momenta of projectile and recoil-ion were found to be of comparable magnitude only for very close collisions and large scattering angles above 1 mrad, which contribute less than 3% to the total ionisation cross section. (orig./HSI) [de

  16. Helium the disappearing element

    CERN Document Server

    Sears, Wheeler M

    2015-01-01

    The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...

  17. A natural orbital analysis of the helium (e,2e) spectrum

    International Nuclear Information System (INIS)

    Mitroy, J.; McCarthy, I.E.; Weigold, E.

    1984-10-01

    A series of successively more accurate wavefunctions (of the Natural Orbital form) for the helium atom ground state is used to analyse the 1200eV non-coplanar symmetric (e,2e) data for helium with the Plane Wave Impulse Approximation. Particular attention is focussed upon the determination of the ratio for populating the n = 2 (2s and 2p) and 1s ion states. It is seen that the cross-section ratio (at low recoil momentum) converges satisfactorily as additional target natural orbitals are utilised for the calculation of the overlap function. The convergence of the cross-section ratio at high azimuthal angles is seen to be much slower

  18. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  19. Effects of alloying elements on thermal desorption of helium in Ni alloys

    International Nuclear Information System (INIS)

    Xu, Q.; Cao, X.Z.; Sato, K.; Yoshiie, T.

    2012-01-01

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni–Si, and Ni–Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni–Si and Ni–Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni–Sn alloy.

  20. Effects of alloying elements on thermal desorption of helium in Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q., E-mail: xu@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Cao, X.Z.; Sato, K.; Yoshiie, T. [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan)

    2012-12-15

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni-Si, and Ni-Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni-Si and Ni-Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni-Sn alloy.

  1. Effects of alloying elements on thermal desorption of helium in Ni alloys

    Science.gov (United States)

    Xu, Q.; Cao, X. Z.; Sato, K.; Yoshiie, T.

    2012-12-01

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni-Si, and Ni-Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni-Si and Ni-Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni-Sn alloy.

  2. The Mean Excitation Energy of Atomic Ions

    DEFF Research Database (Denmark)

    Sauer, Stephan; Oddershede, Jens; Sabin, John R.

    2015-01-01

    A method for calculation of the mean excitation energies of atomic ions is presented, making the calculation of the energy deposition of fast ions to plasmas, warm, dense matter, and complex biological systems possible. Results are reported to all ions of helium, lithium, carbon, neon, aluminum...

  3. Liquid helium target

    International Nuclear Information System (INIS)

    Fujii, Y.; Kitami, T.; Torikoshi, M.

    1984-12-01

    A liquid helium target system has been built and used for the experiment on the reaction 4 He(γ, p). The target system has worked satisfactorily; the consumption rate of liquid helium is 360 ml/h and the cryogenic system retains liquid helium for about ten hours. The structure, operation and performance of the target system are reported. (author)

  4. Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8–12% Cr ferritic-martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kupriiyanova, Y.E., E-mail: fomenkoj@kipt.kharkov.ua [National Science Centre Kharkov Institute of Physics and Technology, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Bryk, V.V.; Borodin, O.V.; Kalchenko, A.S.; Voyevodin, V.N.; Tolstolutskaya, G.D. [National Science Centre Kharkov Institute of Physics and Technology, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Garner, F.A. [Radiation Effects Consulting, Richland, WA 99354 (United States)

    2016-01-15

    In accelerator-driven spallation (ADS) devices, some of the structural materials will be exposed to intense fluxes of very high energy protons and neutrons, producing not only displacement damage, but very high levels of helium and hydrogen. Unlike fission flux-spectra where most helium and hydrogen are generated by transmutation in nickel and only secondarily in iron or chromium, gas production in ADS flux-spectra are rather insensitive to alloy composition, such that Fe–Cr base ferritic alloys also generate very large gas levels. While ferritic alloys are known to swell less than austenitic alloys in fission spectra, there is a concern that high gas levels in fusion and especially ADS facilities may strongly accelerate void swelling in ferritic alloys. In this study of void swelling in response to helium and hydrogen generation, irradiation was conducted on three ferritic-martensitic steels using the Electrostatic Accelerator with External Injector (ESUVI) facility that can easily produce any combination of helium to dpa and/or hydrogen to dpa ratios. Irradiation was conducted under single, dual and triple beam modes using 1.8 MeV Cr{sup +3}, 40 keV He{sup +}, and 20 keV H{sup +}. In the first part of this study we investigated the response of dual-phase EP-450 to variations in He/dpa and H/dpa ratio, focusing first on dual ion studies and then triple ion studies, showing that there is a diminishing influence on swelling with increasing total gas content. In the second part we investigated the relative response of three alloys spanning a range of starting microstructure and composition. In addition to observing various synergisms between He and H, the most important conclusion was that the tempered martensite phase, known to lag behind the ferrite phase in swelling in the absence of gases, loses much of its resistance to void nucleation when irradiated at large gas/dpa levels.

  5. Optimum transmission for a 3He neutron polarizer

    International Nuclear Information System (INIS)

    Tasset, F.; Ressouche, E.

    1995-01-01

    Following recent achievements in polarizing gaseous 3 He targets by optical pumping at room temperature, polarized helium-3 is now the most promising polarizer for thermal and epithermal neutrons and should soon compete favorably with existing Heusler polarizing crystals. Because it is gaseous, a degree of freedom exists in such a filter: the pressure of the gas in the cell. This parameter allows a choice to be made in the filter design: for a given polarization of 3 He, one is able to increase the pressure, to favor neutron beam polarization, or to stay at relatively low pressure to favor the filter's transmission. In this paper, we discuss this point in the framework of a classical polarized neutron experiment, and we compare our more general results with the quality factor Q=P√(T), which is generally taken as standard for such a filter. (orig.)

  6. Single-electron-capture processes in collisions of He2+, Liq+ (q=1,2,3), C6+, and O8+ ions with helium

    International Nuclear Information System (INIS)

    Samanta, R.; Purkait, M.; Mandal, C. R.

    2011-01-01

    Cross sections for single-electron capture in collisions of He 2+ , Li q+ (q = 1,2,3), C 6+ , and O 8+ ions with helium atoms at incident energy ranging from 50 to 5000 keV/amu have been calculated in the framework of four-body boundary-corrected continuum intermediate state (BCCIS-4B) approximation in both prior and post forms. In this formalism, distortion in the final channel related to the Coulomb continuum states of the projectile ion and the active electron in the field of residual target ion are included. In all cases, total single-electron-capture cross sections have been calculated by summing over all contributions up to n = 3 shells and subshells, respectively. It has been observed that the contribution of the capture cross section into the excited states is significant for asymmetric collision (Z P >Z T ) and is insignificant for symmetric collision. Numerical results for the total cross sections show good agreement with the available experimental findings, particularly in the post form. Post-prior discrepancy has been found to be within 30% except for Li + + He interactions below 150 keV/amu.

  7. Impact of neutron irradiation on thermal helium desorption from iron

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xunxiang, E-mail: hux1@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Field, Kevin G. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Taller, Stephen [University of Michigan, Ann Arbor, MI 48109 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wirth, Brian D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States)

    2017-06-15

    The synergistic effect of neutron irradiation and transmutant helium production is an important concern for the application of iron-based alloys as structural materials in fission and fusion reactors. In this study, we investigated the impact of neutron irradiation on thermal helium desorption behavior in high purity iron. Single crystalline and polycrystalline iron samples were neutron irradiated in HFIR to 5 dpa at 300 °C and in BOR-60 to 16.6 dpa at 386 °C, respectively. Following neutron irradiation, 10 keV He ion implantation was performed at room temperature on both samples to a fluence of 7 × 10{sup 18} He/m{sup 2}. Thermal desorption spectrometry (TDS) was conducted to assess the helium diffusion and clustering kinetics by analyzing the desorption spectra. The comparison of He desorption spectra between unirradiated and neutron irradiated samples showed that the major He desorption peaks shift to higher temperatures for the neutron-irradiated iron samples, implying that strong trapping sites for He were produced during neutron irradiation, which appeared to be nm-sized cavities through TEM examination. The underlying mechanisms controlling the helium trapping and desorption behavior were deduced by assessing changes in the microstructure, as characterized by TEM, of the neutron irradiated samples before and after TDS measurements.

  8. A liquid helium saver

    International Nuclear Information System (INIS)

    Avenel, O.; Der Nigohossian, G.; Roubeau, P.

    1976-01-01

    A cryostat equipped with a 'liquid helium saver' is described. A mass flow rate M of helium gas at high pressure is injected in a counter-flow heat exchanger extending from room to liquid helium temperature. After isenthalpic expansion through a calibrated flow impedance this helium gas returns via the low pressure side of the heat exchanger. The helium boil-off of the cryostat represents a mass flow rate m, which provides additional precooling of the incoming helium gas. Two operating regimes appear possible giving nearly the same efficiency: (1) high pressure (20 to 25 atm) and minimum flow (M . L/W approximately = 1.5) which would be used in an open circuit with helium taken from a high pressure cylinder; and (2) low pressure (approximately = 3 atm), high flow (M . L/W > 10) which would be used in a closed circuit with a rubber diaphragm pumping-compressing unit; both provide a minimum theoretical boil-off factor of about 8%. Experimental results are reported. (U.K.)

  9. Assessment of potential advantages of relevant ions for particle therapy: A model based study

    Energy Technology Data Exchange (ETDEWEB)

    Grün, Rebecca, E-mail: r.gruen@gsi.de [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291 (Germany); Institute of Medical Physics and Radiation Protection, University of Applied Sciences Gießen, Gießen 35390 (Germany); Medical Faculty of Philipps-University Marburg, Marburg 35032 (Germany); Friedrich, Thomas; Krämer, Michael; Scholz, Michael [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291 (Germany); Zink, Klemens [Institute of Medical Physics and Radiation Protection, University of Applied Sciences Gießen, Gießen 35390, Germany and Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg 35043 (Germany); Durante, Marco [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291, Germany and Department of Condensed Matter Physics, Darmstadt University of Technology, Darmstadt 64289 (Germany); Engenhart-Cabillic, Rita [Medical Faculty of Philipps-University Marburg, Marburg 35032, Germany and Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg 35043 (Germany)

    2015-02-15

    Purpose: Different ion types offer different physical and biological advantages for therapeutic applications. The purpose of this work is to assess the advantages of the most commonly used ions in particle therapy, i.e., carbon ({sup 12}C), helium ({sup 4}He), and protons ({sup 1}H) for different treatment scenarios. Methods: A treatment planning analysis based on idealized target geometries was performed using the treatment planning software TRiP98. For the prediction of the relative biological effectiveness (RBE) that is required for biological optimization in treatment planning the local effect model (LEM IV) was used. To compare the three ion types, the peak-to-entrance ratio (PER) was determined for the physical dose (PER{sub PHY} {sub S}), the RBE (PER{sub RBE}), and the RBE-weighted dose (PER{sub BIO}) resulting for different dose-levels, field configurations, and tissue types. Further, the dose contribution to artificial organs at risk (OAR) was assessed and a comparison of the dose distribution for the different ion types was performed for a patient with chordoma of the skull base. Results: The study showed that the advantages of the ions depend on the physical and biological properties and the interplay of both. In the case of protons, the consideration of a variable RBE instead of the clinically applied generic RBE of 1.1 indicates an advantage in terms of an increased PER{sub RBE} for the analyzed configurations. Due to the fact that protons show a somewhat better PER{sub PHY} {sub S} compared to helium and carbon ions whereas helium shows a higher PER{sub RBE} compared to protons, both protons and helium ions show a similar RBE-weighted dose distribution. Carbon ions show the largest variation of the PER{sub RBE} with tissue type and a benefit for radioresistant tumor types due to their higher LET. Furthermore, in the case of a two-field irradiation, an additional gain in terms of PER{sub BIO} is observed when using an orthogonal field configuration

  10. Effects of dual-ion irradiation on the swelling of SiC/SiC composites

    International Nuclear Information System (INIS)

    Kishimoto, Hirotatsu; Kohyama, Akira; Ozawa, Kazumi; Kondo, Sosuke

    2005-01-01

    Silicon carbide (SiC) matrix composites reinforced by SiC fibers is a candidate structural material of fusion gas-cooled blanket system. From the viewpoint of material designs, it is important to investigate the swelling by irradiation, which results from the accumulation of displacement damages. In the fusion environment, (n, α) nuclear reactions are considered to produce helium gas in SiC. For the microstructural evolution, a dual-ion irradiation method is able to simulate the effects of helium. In the present research, 1.7 MeV tandem and 1 MeV single-end accelerators were used for Si self-ion irradiation and helium implantation, respectively. The average helium over displacement per atom (dpa) ratio in SiC was adjusted to 60 appm/dpa. The irradiation temperature ranged from room temperature to 1400degC. The irradiation-induced swelling was measured by the step height method. Helium that was implanted simultaneously with displacement damages in dual-ion irradiated SiC increased the swelling that was larger than that by single-ion irradiated SiC below 800degC. Since this increase was not observed above 1000degC, the interaction of helium and displacement damages was considered to change above 800degC. In this paper, the microstructural behavior and dimensional stability of SiC materials under the fusion relevant environment are discussed. (author)

  11. Effects of large rate coefficients for ion-polar neutral reactions on chemical models of dense interstellar clouds

    International Nuclear Information System (INIS)

    Herbst, E.; Leung, C.M.; Rensselaer Polytechnic Institute, Troy, NY)

    1986-01-01

    Pseudo-time-dependent models of the gas phase chemistry of dense interstellar clouds have been run with large rate coefficients for reactions between ions and polar neutral species, as advocated by Adams, Smith, and Clary. The higher rate coefficients normally lead to a reduction in both the peak and steady state abundances of polar neutrals, which can be as large as an order of magnitude but is more often smaller. Other differences between the results of these models and previous results are also discussed. 38 references

  12. Ion spectroscopy for improvement of the physical beam model for therapy planning in ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Arico, Giulia

    2016-11-23

    Helium and carbon ions enable a more conformal dose distribution, narrower penumbra and higher relative biological effectiveness than photon and proton radiotherapy. However, they may undergo nuclear fragmentation in the patient tissues and the arising secondary fragments affect the delivered biological dose distributions. Currently there is a lack of data regarding ion nuclear fragmentation. One reason is the large size (up to some meters) of the experimental setups required for the investigations. In this thesis a new method is presented, which makes use of versatile pixelated semiconductor detectors (Timepix). This method is based on tracking of single particles and pattern recognition of their signals in the detectors. Measurements were performed at the HIT facility. The mixed radiation field arising from 430 MeV/u carbon ion beams and 221 MeV/u helium ion beams in water and in PMMA targets was investigated. The amounts of primary (carbon or helium) ions detected behind targets with the same water equivalent thickness (WET) were found to be in agreement within the statistical uncertainties. However, more fragments (differences up to 20% in case of H) and narrower lateral particle distributions were measured behind the PMMA than the water targets. The spectra of ions behind tissue surrogates and corresponding water targets with the same WET were analysed. The results obtained with adipose and inner bone surrogates and with the equivalent water phantoms were found to be consistent within the uncertainties. Significant differences in the results were observed in the case of lung and cortical bone surrogates when compared to the water phantoms. The experimental results were compared to FLUKA Monte Carlo simulations. This comparison could contribute to enhance the ion interaction models currently implemented for {sup 12}C and {sup 4}He ion beams.

  13. Diagnostics of helium plasmas under special consideration of the continuous spectrum

    International Nuclear Information System (INIS)

    Einfeld, D.

    1974-01-01

    From measurements of the spectral beam density of the helium plasma in the region 290 nm to 650 nm, transition probabilities, Gaunt factors, line broadening parameters and deviations from the state of local thermodynamic equilibrium (L.T.E.) were determined and compared with theoretical data. Using the Gaunt factors experimentally secured in this work for the term n = 3, the electron density could be determined with an uncertainty of +-10% from the emission coefficients of the continuous spectrum. Assuming steady transition of the spectral emission coefficients over the series limit, a numerical method has been given according to which, amongst others, the Gaunt factors for the various series limits can be determined from the transition probabilities of these series. By determining the overpopulation factors of the ground states of the helium atom and the helium ion, a deviation from the L.T.E. state is experimentally detected and quantitatively described. (orig./LH) [de

  14. Thermal desorption of deuterium from polycrystalline nickel pre-implanted with helium

    International Nuclear Information System (INIS)

    Shi, S.Q.; Abramov, E.; Thompson, D.A.

    1990-01-01

    The thermal desorption technique has been used to study the trapping of deuterium atoms in high-purity polycrystalline nickel pre-implanted with helium for 1 x 10 19 to 5 x 10 20 ions/m 2 . The effect of post-implantation annealing at 703 K and 923 K on the desorption behavior was investigated. Measured values of the total amount of detrapped deuterium (Q T ) and helium concentration were used in a computer simulation of the desorption curve. It was found that the simulation using one or two discrete trap energies resulted in an inadequate fit between the simulated and the measured data. Both experimental and simulation results are explained using a stress-field trapping model. The effective binding energy, E b eff , was estimated to be in the range of 0.4-0.6 eV. Deuterium charging was found to stimulate a release of helium at a relatively low temperature

  15. EVOLUTION OF THE RELATIONSHIPS BETWEEN HELIUM ABUNDANCE, MINOR ION CHARGE STATE, AND SOLAR WIND SPEED OVER THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Kasper, J. C.; Stevens, M. L.; Korreck, K. E.; Maruca, B. A.; Kiefer, K. K.; Schwadron, N. A.; Lepri, S. T.

    2012-01-01

    The changing relationships between solar wind speed, helium abundance, and minor ion charge state are examined over solar cycle 23. Observations of the abundance of helium relative to hydrogen (A He ≡ 100 × n He /n H ) by the Wind spacecraft are used to examine the dependence of A He on solar wind speed and solar activity between 1994 and 2010. This work updates an earlier study of A He from 1994 to 2004 to include the recent extreme solar minimum and broadly confirms our previous result that A He in slow wind is strongly correlated with sunspot number, reaching its lowest values in each solar minima. During the last minimum, as sunspot numbers reached their lowest levels in recent history, A He continued to decrease, falling to half the levels observed in slow wind during the previous minimum and, for the first time observed, decreasing even in the fastest solar wind. We have also extended our previous analysis by adding measurements of the mean carbon and oxygen charge states observed with the Advanced Composition Explorer spacecraft since 1998. We find that as solar activity decreased, the mean charge states of oxygen and carbon for solar wind of a given speed also fell, implying that the wind was formed in cooler regions in the corona during the recent solar minimum. The physical processes in the coronal responsible for establishing the mean charge state and speed of the solar wind have evolved with solar activity and time.

  16. Canada's helium output rising fast

    Energy Technology Data Exchange (ETDEWEB)

    1966-12-01

    About 12 months from now, International Helium Limited will be almost ready to start up Canada's second helium extraction plant at Mankota, in Saskatchewan's Wood Mountain area about 100 miles southwest of Moose Jaw. Another 80 miles north is Saskatchewan's (and Canada's) first helium plant, operated by Canadian Helium and sitting on a gas deposit at Wilhelm, 9 miles north of Swift Current. It contains almost 2% helium, some COD2U, and the rest nitrogen. One year in production was apparently enough to convince Canadian Helium that the export market (it sells most of its helium in W. Europe) can take a lot more than it's getting. Construction began this summer on an addition to the Swift Current plant that will raise its capacity from 12 to 36MMcf per yr when it goes on stream next spring. Six months later, International Helium's 40 MMcf per yr plant to be located about 4 miles from its 2 Wood Mountain wells will double Canada's helium output again.

  17. Mutation induced with ion beam irradiation in rose

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H. E-mail: yhiroya@nias.affrc.go.jp; Nagatomi, S.; Morishita, T.; Degi, K.; Tanaka, A.; Shikazono, N.; Hase, Y

    2003-05-01

    The effects of mutation induction by ion beam irradiation on axillary buds in rose were investigated. Axillary buds were irradiated with carbon and helium ion beams, and the solid mutants emerged after irradiation by repeated cutting back. In helium ion irradiation, mutations were observed in plants derived from 9 buds among 56 irradiated buds in 'Orange Rosamini' and in plants derived from 10 buds among 61 irradiated buds in 'Red Minimo'. In carbon ion, mutations were observed in plants derived from 12 buds among 88 irradiated buds in 'Orange Rosamini'. Mutations were induced not only in higher doses but also in lower doses, with which physiological effect by irradiation was hardly observed. Irradiation with both ion beams induced mutants in the number of petals, in flower size, in flower shape and in flower color in each cultivar.

  18. Diffusion of helium and nucleation-growth of helium-bubbles in metallic materials

    International Nuclear Information System (INIS)

    Zhang Chonghong; Chen Keqin; Wang Yinshu

    2001-01-01

    Studies of diffusion and aggregation behaviour of helium in metallic materials are very important to solve the problem of helium embrittlement in structural materials used in the environment of nuclear power. Experimental studies on helium diffusion and aggregation in austenitic stainless steels in a wide temperature range have been performed in authors' research group and the main results obtained are briefly summarized. The mechanism of nucleation-growth of helium-bubbles has been discussed and some problems to be solved are also given

  19. Positron and nanoindentation study of helium implanted high chromium ODS steels

    Science.gov (United States)

    Veternikova, Jana Simeg; Fides, Martin; Degmova, Jarmila; Sojak, Stanislav; Petriska, Martin; Slugen, Vladimir

    2017-12-01

    Three oxide dispersion strengthened (ODS) steels with different chromium content (MA 956, MA 957 and ODM 751) were studied as candidate materials for new nuclear reactors in term of their radiation stability. The radiation damage was experimentally simulated by helium ion implantation with energy of ions up to 500 keV. The study was focused on surface and sub-surface structural change due to the ion implantation observed by mostly non-destructive techniques: positron annihilation lifetime spectroscopy and nanoindentation. The applied techniques demonstrated the best radiation stability of the steel ODM 751. Blistering effect occurred due to high implantation dose (mostly in MA 956) was studied in details.

  20. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    International Nuclear Information System (INIS)

    Sharma, Rohit; Singh, Kuldip

    2014-01-01

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T e /T h ) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter

  1. The neon gas field ion source-a first characterization of neon nanomachining properties

    International Nuclear Information System (INIS)

    Livengood, Richard H.; Tan, Shida; Hallstein, Roy; Notte, John; McVey, Shawn; Faridur Rahman, F.H.M.

    2011-01-01

    At the Charged Particle Optics Conference (CPO7) in 2006, a novel trimer based helium gas field ion source (GFIS) was introduced for use in a new helium ion microscope (HIM), demonstrating the novel source performance attributes and unique imaging applications of the HIM (Hill et al., 2008 ; Livengood et al., 2008 ). Since that time there have been numerous enhancements to the HIM source and platform demonstrating resolution scaling into the sub 0.5 nm regime (Scipioni et al., 2009 ; Pickard et al., 2010 ). At this Charged Particle Optics Conference (CPO8) we will be introducing a neon version of the trimer-GFIS co-developed by Carl Zeiss SMT and Intel Corporation. The neon source was developed as a possible supplement to the gallium liquid metal ion source (LMIS) used today in most focused ion beam (FIB) systems (Abramo et al., 1994 ; Young et al.,1998 ). The neon GFIS source has low energy spread (∼1 eV) and a small virtual source size (sub-nanometer), similar to that of the helium GFIS. However neon does differ from the helium GFIS in two significant ways: neon ions have high sputtering yields (e.g. 1 Si atom per incident ion at 20 keV); and have relatively shallow implant depth (e.g. 46 nm in silicon at 20 keV). Both of these are limiting factors for helium in many nanomachining applications. In this paper we will present both simulation and experimental results of the neon GFIS used for imaging and nanomachining applications.

  2. Applications of simultaneous ion backscattering and ion-induced x-ray emission

    International Nuclear Information System (INIS)

    Musket, R.G.

    1983-05-01

    Simultaneous ion backscattering and ion-induced x-ray emission (E/sub x/greater than or equal to 300 eV) analyses have been performed using helium ions as probes of the first few hundred nanometers of various materials. These studies serve as a demonstration of the complementary nature of the two types of information obtained. Uncertainties associated with each of the individual techniques were reduced by performing both analyses. The principal advantages of simultaneous analyses over sequential analyses have been delineated

  3. Blistering effects in neutral injection systems operated with helium and hydrogen gases: a preliminary assessment

    International Nuclear Information System (INIS)

    Hamilton, G.W.

    1977-01-01

    The practical effects of blistering and flaking in neutral injection systems are studied. These effects will soon be more important because of energy increases in systems now under development and because of their operation with fast helium ions as well as hydrogen and deuterium ions. Two main effects were studied: enhanced erosion rate and possible voltage breakdown from sharp flakes and gas emission

  4. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection

    Science.gov (United States)

    Deng, Yunsheng; Huang, Qimeng; Zhao, Yue; Zhou, Daming; Ying, Cuifeng; Wang, Deqiang

    2017-01-01

    We report a scalable method to fabricate high-quality graphene nanopores for biomolecule detection using a helium ion microscope (HIM). HIM milling shows promising capabilities for precisely controlling the size and shape, and may allow for the potential production of nanopores at wafer scale. Nanopores could be fabricated at different sizes ranging from 5 to 30 nm in diameter in few minutes. Compared with the current solid-state nanopore fabrication techniques, e.g. transmission electron microscopy, HIM is fast. Furthermore, we investigated the exposure-time dependence of graphene nanopore formation: the rate of pore expansion did not follow a simple linear relationship with exposure time, but a fast expansion rate at short exposure time and a slow rate at long exposure time. In addition, we performed biomolecule detection with our patterned graphene nanopore. The ionic current signals induced by 20-base single-stranded DNA homopolymers could be used as a basis for homopolymer differentiation. However, the charge interaction of homopolymer chains with graphene nanopores, and the conformations of homopolymer chains need to be further considered to improve the accuracy of discrimination.

  5. Effect of Carbon Concentration on the Sputtering of Carbon-Rich SiC Bombarded by Helium Ions

    Directory of Open Access Journals (Sweden)

    Xinghao Liang

    2018-02-01

    Full Text Available Silicon carbide (SiC is considered as an important material for nuclear engineering due to its excellent properties. Changing the carbon content in SiC can regulate and control its elastic and thermodynamic properties, but a simulation study of the effect of carbon content on the sputtering (caused by the helium ions of SiC is still lacking. In this work, we used the Monte-Carlo and molecular dynamics simulation methods to study the effects of carbon concentration, incidence energy, incident angle, and target temperature on the sputtering yield of SiC. The results show that the incident ions’ energy and angle have a significant effect on sputtering yield of SiC when the carbon concentration in SiC is around 62 at %, while the target temperature has a little effect on the sputtering yield of SiC. Our work might provide theoretical support for the experimental research and engineering application of carbon fiber-reinforced SiC that be used as the plasma-facing material in tokamak fusion reactors.

  6. Active voltage contrast imaging of cross-sectional surface of multilayer ceramic capacitor using helium ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, C., E-mail: SAKAI.Chikako@nims.go.jp; Ishida, N.; Masuda, H.; Nagano, S.; Kitahara, M.; Fujita, D. [National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Ogata, Y. [TAIYO YUDEN CO., LTD., Takasaki-shi, Gunma 370-3347 (Japan)

    2016-08-01

    We studied active voltage contrast (AVC) imaging using helium ion microscopy (HIM). We observed secondary electron (SE) images of the cross-sectional surface of multilayer ceramic capacitors (MLCCs) with and without a voltage applied to the internal electrodes. When no voltage was applied, we obtained an image reflecting the material contrast between the Ni internal electrode region and the BaTiO{sub 3} dielectric region of the cross-sectional surface of the MLCC. When a voltage was applied, the electrical potential difference between the grounded and the positively biased internal electrodes affected the contrast (voltage contrast). Moreover, attenuation of the SE intensity from the grounded to the positively biased internal electrodes was observed in the dielectric region. Kelvin probe force microscopy (KPFM) measurements of the contact potential difference (CPD) were performed on the same sample. By using the AVC image from the HIM observation and the CPD image from the KPFM measurement, we could quantitatively evaluate the electrical potential. We think that the results of this study will lead to an expansion in the number of applications of HIM.

  7. Effect of rhenium addition on tungsten fuzz formation in helium plasmas

    NARCIS (Netherlands)

    Khan, A.; De Temmerman, G.; Morgan, T. W.; M. B. Ward,

    2016-01-01

    The effect of the addition of rhenium to tungsten on the formation of a nanostructure referred to as ‘fuzz’ when exposed to helium plasmas at fusion relevant ion fluxes was investigated in the Magnum and Pilot PSI devices at the FOM Institute DIFFER. The effect rhenium had on fuzz growth was seen to

  8. Precision high-dose radiotherapy with helium-ion beams: treatment of malignant tumors in humans

    International Nuclear Information System (INIS)

    Saunders, W.S.; Castro, J.R.; Austin-Seymour, M.; Chen, G.T.Y.; Collier, J.M.; Zink, S.R.; Capra-Young, D.; Pitluck, S.; Walton, R.E.; Pascale, C.R.

    1985-01-01

    The advantages of the Bragg peak and sharp penumbra of the helium-ion beam emphasize its importance in radiotherapy. Perhaps the best example of this type of treatment is that for the treatment of malignant melanoma of the eye. The authors treated 181 such patients, 46 in the last 12 months. They continue to have very encouraging results in this group. Only eight patients have had a recurrence of their tumor, and in all eight a second treatment, usually removal of the eye, has apparently cured the tumor. They have generally been able to preserve the pretreatment visual acuity as long as the edge of the tumor is at least 3-4 mm away from the optic disc or macula. Four different tumor doses have been used since this program was begun. The first 20 patients received 70 GyE; the dose was then raised to 80 GyE for the next 69 patients. The group of patients treated with 80 GyE began to develop an unacceptable incidence of glaucoma in the treated eye, so the dose was then decreased to 60 GyE. So far, 4 of 61 patients (or 7%) in the 60-GyE group have developed glaucoma

  9. Ultrastructural Characterization of the Glomerulopathy in Alport Mice by Helium Ion Scanning Microscopy (HIM).

    Science.gov (United States)

    Tsuji, Kenji; Suleiman, Hani; Miner, Jeffrey H; Daley, James M; Capen, Diane E; Păunescu, Teodor G; Lu, Hua A Jenny

    2017-09-15

    The glomerulus exercises its filtration barrier function by establishing a complex filtration apparatus consisting of podocyte foot processes, glomerular basement membrane and endothelial cells. Disruption of any component of the glomerular filtration barrier leads to glomerular dysfunction, frequently manifested as proteinuria. Ultrastructural studies of the glomerulus by transmission electron microscopy (TEM) and conventional scanning electron microscopy (SEM) have been routinely used to identify and classify various glomerular diseases. Here we report the application of newly developed helium ion scanning microscopy (HIM) to examine the glomerulopathy in a Col4a3 mutant/Alport syndrome mouse model. Our study revealed unprecedented details of glomerular abnormalities in Col4a3 mutants including distorted podocyte cell bodies and disorganized primary processes. Strikingly, we observed abundant filamentous microprojections arising from podocyte cell bodies and processes, and presence of unique bridging processes that connect the primary processes and foot processes in Alport mice. Furthermore, we detected an altered glomerular endothelium with disrupted sub-endothelial integrity. More importantly, we were able to clearly visualize the complex, three-dimensional podocyte and endothelial interface by HIM. Our study demonstrates that HIM provides nanometer resolution to uncover and rediscover critical ultrastructural characteristics of the glomerulopathy in Col4a3 mutant mice.

  10. Damage behavior in helium-irradiated reduced-activation martensitic steels at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Jihong; Li, Tiecheng; Zheng, Zhongcheng [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yao, Z. [Department of Mechanical and Materials Engineering, Queen’s University, Kingston K7L 3N6, ON (Canada); Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-12-15

    Dislocation loops induced by helium irradiation at elevated temperatures in reduced-activation martensitic steels were investigated using transmission electron microscopy. Steels were irradiated with 100 keV helium ions to 0.8 dpa between 300 K and 723 K. At irradiation temperatures T{sub irr} ⩽ 573 K, small defects with both Burger vectors b = 1/2〈1 1 1〉 and b = 〈1 0 0〉 were observed, while at T{sub irr} ⩾ 623 K, the microstructure was dominated by large convoluted interstitial dislocation loops with b = 〈1 0 0〉. Only small cavities were found in the steels irradiated at 723 K.

  11. Lattice site of helium implanted in Si and diamond

    International Nuclear Information System (INIS)

    Allen, W.R.

    1993-01-01

    Single crystals of silicon and diamond were implanted at 300K with 70 keV 3 He. Ion channeling analyses were executed by application of Rutherford backscattering spectrometry and nuclear reaction analysis. Helium exhibits a non-random lattice site in the channeling angular distributions for silicon and diamond. A major fraction of the implanted He was qualitatively identified to be near to the tetrahedral interstice in both materials

  12. Effects of hydrogen mixture into helium gas on deuterium removal from lithium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Akihito, E-mail: tsuchiya@frontier.hokudai.ac.jp [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Hino, Tomoaki; Yamauchi, Yuji; Nobuta, Yuji [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Akiba, Masato; Enoeda, Mikio [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan)

    2013-10-15

    Lithium titanate (Li{sub 2}TiO{sub 3}) pebbles were irradiated with deuterium ions with energy of 1.7 keV and then exposed to helium or helium–hydrogen mixed gas at various temperatures, in order to evaluate the effects of gas exposure on deuterium removal from the pebbles. The amounts of residual deuterium in the pebbles were measured by thermal desorption spectroscopy. The mixing of hydrogen gas into helium gas enhanced the removal amount of deuterium. In other words, the amount of residual deuterium after the helium–hydrogen mixed gas exposure at lower temperature was lower than that after the helium gas exposure. In addition, we also evaluated the pebbles exposed to the helium gas with different hydrogen mixture ratio from 0% to 1%, at 573 K. Although the amount of residual deuterium in the pebbles after the exposure decreased with increasing the hydrogen mixture ratio, the implanted deuterium partly remained after the exposure. These results suggest that the tritium inventory may occur at low temperature region in the blanket during the operation.

  13. Simulation of alpha decay of actinides in iron phosphate glasses by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dube, Charu L., E-mail: dubecharu@gmail.com; Stennett, Martin C.; Gandy, Amy S.; Hyatt, Neil C.

    2016-03-15

    Highlights: • Alpha decay of actinides in iron phosphate glasses is simulated by employing ion irradiation technique. • FTIR and Raman spectroscopic measurements confirm modification of glass network. • The depolymerisation of glass network after irradiation is attributed to synergetic effect of nuclear and electronic losses. - Abstract: A surrogate approach of ion beam irradiation is employed to simulate alpha decay of actinides in iron phosphate nuclear waste glasses. Bismuth and helium ions of different energies have been selected for simulating glass matrix modification owing to radiolysis and ballistic damage due to recoil atoms. Structural modification and change in coordination number of network former were probed by employing Reflectance Fourier-Transform Infrared (FT-IR), and Raman spectroscopies as a consequence of ion irradiation. Depolymerisation is observed in glass sample irradiated at intermediate energy of 2 MeV. Helium blisters of micron size are seen in glass sample irradiated at low helium ion energy of 30 keV.

  14. Study of proton polarization in charge exchange process on optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Zelenskij, A.N.; Kokhanovskij, S.A.

    1984-01-01

    Using high-power adjustable dye lasers for electron spin orientation in a charge-exchange target enables to significantly increase the proton polarization efficiency. A device is described that permits to avoid growth of the polarized proton beam emittance in a charge-exchange process in a strong magnetic field. The devise main feature is the use of an intensive source of neutral hydrogen atoms and the presence of a helium additional charge-exchange target which actualy is a proton ''source''. The helium charge-exchange cell is placed in the same magnetic field of a solenoid where a cell with oriented sodium is placed, a polarized electron being captured by a proton in the latter cell. In this case the beam at the solenoid inlet and outlet is in a neutral state; emittance growth related to the effect of end magnetic fields is not observed. The device after all prouduces polarized protons, their polarization degree is measured and the effect of various factors on polarization degree is studied. The description of the laser source and laser system is given. Measurement results have shown the beam intensity of neutral 7 keV atoms which passed through a polarizer to be 2 mA. The proton current doesn't depend. On the beeld fin the region of chrge exchange for the 8 kGs magnetic field. The degree of sodium polarization was 80% and polarized proton current approximately 70 μA at a temperature of the polarized sodium cell corresponding to the density of sodium vapar approximately 3x10 13 at/cm 2

  15. Hydrogenlike nitrogen ions collision with helium into excited states

    International Nuclear Information System (INIS)

    Pan Guangyan; Yang Feng; Li Dawan; Xu Qian; Liu Huiping; Zhao Mengchun

    1991-01-01

    The emission spectra have been measured in collisions between N 6+ and He using the LHT-30 VUV Monochromator. The wavelength range is 10 nm-80 nm, the energy of N 6+ ions is 90 keV, the current of ion beam in the collision region is about 10 μA. Recently, the authors have investigated the electron capture processes and incident ions excitation in the velocity of N 6+ ions about 0.5 atomic unit. The emission spectrum of N V, N VI and N VII liens is given in collisions of N 6+ with He at 90 keV of ions energy

  16. Semiconductor analysis with a channeled helium microbeam

    International Nuclear Information System (INIS)

    Ingarfield, S.A.; McKenzie, C.D.; Short, K.T.; Williams, J.S.

    1981-01-01

    This paper describes the use of a channeled helium microbeam for analysis of damage and dopant distributions in semiconductors. Practical difficulties and potential problems associated with the channeling of microbeams in semiconductors have been examined. In particular, the following factors have been characterised: i) the effect of both convergence of focused beam and beam scanning on the quality of channeling; ii) damage produced by the probe ions; and iii) local beam heating effects arising from high current densities. Acceptable channeling has been obtained (minimum yield approaching 4%) under a variety of focusing and scanning conditions which are suitable for analysis of device structures. The capabilities of the technique are demonstrated by monitoring variations in local damage and impurity depth distributions across a narrow (<2mm) region of an ion implanted silicon wafer

  17. Juno/JEDI observations of 0.01 to >10 MeV energetic ions in the Jovian auroral regions: Anticipating a source for polar X-ray emission

    Science.gov (United States)

    Haggerty, D. K.; Mauk, B. H.; Paranicas, C. P.; Clark, G.; Kollmann, P.; Rymer, A. M.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2017-07-01

    After a successful orbit insertion, the Juno spacecraft completed its first 53.5 day orbit and entered a very low altitude perijove with the full scientific payload operational for the first time on 27 August 2016. The Jupiter Energetic particle Detector Instrument measured ions and electrons over the auroral regions and through closest approach, with ions measured from 0.01 to >10 MeV, depending on species. This report focuses on the composition of the energetic ions observed during the first perijove of the Juno mission. Of particular interest are the ions that precipitate from the magnetosphere onto the polar atmosphere and ions that are accelerated locally by Jupiter's powerful auroral processes. We report preliminary findings on the spatial variations, species, including energy and pitch angle distributions throughout the prime science region during the first orbit of the Juno mission. The prime motivation for this work was to examine the heavy ions that are thought to be responsible for the observed polar X-rays. Jupiter Energetic particle Detector Instrument (JEDI) did observe precipitating heavy ions with energies >10 MeV, but for this perijove the intensities were far below those needed to account for previously observed polar X-ray emissions. During this survey we also found an unusual signal of ions between oxygen and sulfur. We include here a report on what appears to be a transitory observation of magnesium, or possibly sodium, at MeV energies through closest approach.

  18. Spin-polarized 3He nuclear targets and metastable 4He atoms by optical pumping with a tunable, Nd:YAP laser

    International Nuclear Information System (INIS)

    Bohler, C.L.; Schearer, L.D.; Leduc, M.; Nacher, P.J.; Zachorowski, L.; Milner, R.G.; McKeown, R.D.; Woodward, C.E.

    1988-01-01

    Several Nd:YAP lasers were constructed which could be broadly tuned in the 1083-nm region which includes the helium 2 3 S-2 3 P transition, using a Lyot filter and thin, uncoated etalons within the laser cavity. 1 W of power could be extracted at 1083 nm through a 1% transmitting output coupler. This laser beam was used to optically pump metastable 4 He and 3 He 2 3 S helium atoms in a weak discharge cell, spin polarizing the metastable ensemble. In a 3 He cell the polarization is transferred to the nuclear spin system. A 3 He target cell at 0.3 Torr was polarized to 52% in a few minutes. We describe the application of this system to the design of polarized targets for experiments in nuclear physics

  19. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    International Nuclear Information System (INIS)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit

    2016-01-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed

  20. Screw compressor system for industrial-scale helium refrigerators or industrial ammonia screw compressors for helium refrigeration systems; Schraubenkompressor-System fuer Helium-Grosskaelteanlage oder Ammoniak-Schraubenverdichter aus Industrieanwendungen fuer Helium-Kaelteanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Fredrich, O.; Mosemann, D.; Zaytsev, D. [GEA Grasso GmbH Refrigeration Technology, Berlin (Germany)

    2007-07-01

    Material characteristics, requirements and measured data of ammonia and helium compression are compared. The compressor lines for industrial ammonia and helium refrigerators are presented, and important characteristics of the compressors are explained. The test stand for performance measurements with helium and ammonia is described, and results are presented. In spite of the different characteristics of the fluids, the compressor-specific efficiencies (supply characteristic, quality characteristic) were found to be largely identical. The values calculated for helium on the basis of NH3 test runs were found to be realistic, which means that the decades of experience with ammonia in industrial applications can be applied to helium compression as well. The design of screw compressor aggregates (skids) in industrial refrigeration is discussed and illustrated by examples. (orig.)