WorldWideScience

Sample records for polarized deuteron beams

  1. Polarized deuteron beam at the Dubna synchrophasotron

    International Nuclear Information System (INIS)

    Ershov, V.P.; Fimushkin, V.V.; Gai, G.I.

    1990-01-01

    The experimental equipment and setup used to accelerate a polarized deuteron beam at the Dubna synchrophasotron are briefly described. Basic characteristics of the cryogenic source of polarized deuterons POLARIS are presented. The results of measurements of the intensity of the accelerated beam, vector and tensor polarization at the output of the linac LU-20, inside the synchrophasotron ring and in the extracted beam are given. 16 refs.; 9 figs.; 3 tabs

  2. Measurement of deuteron beam polarization before and after acceleration

    Directory of Open Access Journals (Sweden)

    A Ramazani Moghaddam Arani

    2017-02-01

    Full Text Available Beam polarization measurement in scattering experiments with a high accuracy and the lowest possible cost is an important issue. In this regard, deuteron beam polarization was measured in the low-energy beam line easily with a relatively low cost procedure and in a very short time by Lamb Shift Polarimeter (LSP. Also, the beam polarization has been measured in high-energy beam line with BINA. In low-energy line, a polarized beam of deuterons delivered by POLIS was decelerated and focused on LSP detection system. Three resonances between 52mT and 63mT show the distribution of different spin states of polarized deuteron beam. In high-energy beam line, polarization can be measured employing BINA via the H(d,dp reaction. The asymmetry ratio, was obtained as a function of azimuthal angle, φ, for several polar scattering angles. Knowing values of the analyzing powers, the ratio has been used to extract the polarization results. The obtained results show that polarization of deuteron beam that is accelerated up to the energy of 130 MeV is almost the same before and after acceleration

  3. Precessing deuteron polarization

    International Nuclear Information System (INIS)

    Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.

    2002-01-01

    The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments

  4. Polarized proton and deuteron targets for the usage in intensive proton beams

    International Nuclear Information System (INIS)

    Get'man, V.A.; Derkach, A.Ya.; Karnaukhov, I.M.; Lukhanin, A.A.; Razumnyj, A.A.; Sorokin, P.V.; Sporo, E.A.; Telegin, Yu.N.

    1982-01-01

    Polarized proton and deuteron targets are developed and tested for conducting investigations in intense photon beams. A flowsheet of polarization targets which includes: working agent of the target, superconducting magnet, cryostat of 3 He evaporation with 3 He pumping and recirculation systems, SHF system of 4 mm range for polarization pumping, measuring system of target polarization protons is presented. Working agent of the targets includes frozen balls with 1.5 mm diameter. Ethylene-glucol and 1.2-propylene-glycol were used as a working substance for proton targets. Completely deuterated ethylene-glycol was used for the deuteron target. Vertical magnetic field with 2.7 T intensity is produced by a superconducting magnetic system. Polarization pumping is exercised at 75 GHz frequency. Q-meter of direct current is used for determination of polarization. Working temperature of the cryostat is approximately 0.5 K. The lock device permits to exercise replacement of the target working agent during 30 minutes

  5. Spin physics experiments at NICA-SPD with polarized proton and deuteron beams

    Energy Technology Data Exchange (ETDEWEB)

    Savin, I.; Efremov, A.; Pshekhonov, D.; Kovalenko, A.; Teryaev, O.; Shevchenko, O.; Nagajcev, A.; Guskov, A.; Kukhtin, V.; Toplilin, N. [JINR, Dubna (Russian Federation)

    2016-08-15

    This is a brief description of suggested measurements of asymmetries of the Drell-Yan (DY) pair production in collisions of non-polarized, longitudinally and transversally polarized protons and deuterons which provide an access to all leading-twist collinear and TMD PDFs of quarks and anti-quarks in nucleons. Other spin effects in hadronic and heavy-ion collisions may be also studied constituting the spin physics program at NICA. (orig.)

  6. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    NARCIS (Netherlands)

    Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Ozben, C. S.; Prasuhn, D.; Sandri, P. Levi; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.

    2012-01-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY

  7. The 270 MeV deuteron beam polarimeter at the Nuclotron Internal Target Station

    Energy Technology Data Exchange (ETDEWEB)

    Kurilkin, P.K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Moscow State Institute of Radio-engineering Electronics and Automation (Technical University), Moscow (Russian Federation); Ladygin, V.P., E-mail: vladygin@jinr.ru [Joint Institute for Nuclear Research, Dubna (Russian Federation); Moscow State Institute of Radio-engineering Electronics and Automation (Technical University), Moscow (Russian Federation); Uesaka, T. [Center for Nuclear Study, University of Tokyo, Tokyo 113-0033 (Japan); Suda, K. [RIKEN Nishina Center, Saitama (Japan); Gurchin, Yu.V.; Isupov, A.Yu. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Itoh, K. [Department of Physics, Saitama University, Saitama (Japan); Janek, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Physics Department, University of Zilina, 010 26 Zilina (Slovakia); Karachuk, J.-T. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Advanced Research Institute for Electrical Engineering, Bucharest (Romania); Kawabata, T. [Center for Nuclear Study, University of Tokyo, Tokyo 113-0033 (Japan); Khrenov, A.N.; Kiselev, A.S.; Kizka, V.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kliman, J. [Institute of Physics of Slovak Academy of Sciences, Bratislava (Slovakia); Krasnov, V.A.; Livanov, A.N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Nuclear Research, Moscow (Russian Federation); Maeda, Y. [Kyushi University, Hakozaki (Japan); Malakhov, A.I. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Matousek, V.; Morhach, M. [Institute of Physics of Slovak Academy of Sciences, Bratislava (Slovakia)

    2011-06-21

    A deuteron beam polarimeter has been constructed at the Internal Target Station at the Nuclotron of JINR. The polarimeter is based on spin-asymmetry measurements in the d-p elastic scattering at large angles and the deuteron kinetic energy of 270 MeV. It allows to measure vector and tensor components of the deuteron beam polarization simultaneously.

  8. Polarized deuteron elastic scattering from a polarized proton target

    International Nuclear Information System (INIS)

    Schmelzer, R.; Kuiper, H.; Schoeberl, M.; Berber, S.; Hilmert, H.; Koeppel, R.; Pferdmenges, R.; Zankel, H.

    1983-01-01

    Measurements are reported of the spin correlation parameter Cy,y for the elastic scattering of 10.0 MeV vector polarized deuterons from a polarized proton target at five CM angles (76 0 ,85 0 ,98 0 ,115 0 ,132 0 ). The experimental results are compared with different predictions. A Faddeev type calculation on the basis of local potentials also including approximate Coulomb distortion is favoured by our experimental results. (orig.)

  9. Online polarimetry of the Nuclotron internal deuteron and proton beams

    Science.gov (United States)

    Isupov, A. Yu

    2017-12-01

    The spin studies at Nuclotron require fast and precise determination of the deuteron and proton beam polarization. For these purposes new powerful VME–based data acquisition (DAQ) system has been designed for the Deuteron Spin Structure setup placed at the Nuclotron Internal Target Station. The DAQ system is built using the netgraph–based data acquisition and processing framework ngdp. The software dealing with VME hardware is a set of netgraph nodes in form of the loadable kernel modules, so works in the operating system kernel context. The specific for current implementation nodes and user context utilities are described. The online events representation by ROOT classes allows us to generalize code for histograms filling and polarization calculations. The DAQ system was successfully used during 53rd and 54th Nuclotron runs, and their suitability for online polarimetry is demonstrated.

  10. Positron beam production with a deuteron accelerator

    CERN Document Server

    Cassidy, D B; Shefer, R E; Klinkowstein, R; Hughey, B J

    2002-01-01

    A graphite target was bombarded with 1.5 MeV deuterons, producing the isotope sup 1 sup 3 N, which is a positron emitter. Using the activated material a slow positron beam with an intensity of 0.7 (0.14)x10 sup 5 s sup - sup 1 was produced. A (saturated) sup 1 sup 3 N yield of 63 (11) MBq/mu A was observed, with 1.5 MeV deuterons, which is consistent with previous calculations and experiments. Our results show that, with the method we outline, positron beams with an average intensity of up to 1x10 sup 8 s sup - sup 1 may be produced.

  11. On the large COMPASS polarized deuteron target

    CERN Document Server

    Finger, M; Baum, G; Doshita, N; Finger, M Jr; Gautheron, F; Goertz, St; Hasegawa, T; Heckmann, J; Hess, Ch; Horikawa, N; Ishimoto, S; Iwata, T; Kisselev, Y; Koivuniemi, J; Kondo, K; Le Goff, J-M; Magnon, A; Marchand, C; Matsuda, T; Meyer, W; Reicherz, G; Srnka, A

    2006-01-01

    The spin structure of the nucleons is investigated in deep inelastic scattering of a polarized muon beam and a polarized nucleon target in the COMPASS experiment at CERN since 2001. To achieve high luminosities a large solid polarized target is used. The COMPASS polarized target consists of a high cooling power $^{3}$He/$^{4}$He dilution refrigerator capable to maintain working temperature of the target material at about 50mK, a superconducting solenoid and dipole magnet system for longitudinal and transversal magnetic field on the target material, respectively, target cells containing polarizable material, microwave cavities and high power microwave radiation systems for dynamic nuclear polarization and the nuclear magnetic resonance system for nuclear spin polarization measurements. During 2001–2004 experiments superconducting magnet system with opening angle $\\pm$69 mrad, polarized target holder with two target cells and corresponding microwave and NMR systems have been used. For the data taking from 200...

  12. Large enhancement of deuteron polarization with frequency modulated microwaves

    CERN Document Server

    Adeva, B; Arik, S; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin,; Baum, G; Berglund, P; Betev, L; Birda, I G; Birsa, R; Bjrkholm, P; Bonner, B E; de Botton, N; Boutemeur, M; Bradamante, Franco; Bressan, A; Brullc, A; Buchanan, J; Bültmann, S; Burtin, E; Cavata, C; Chen, J P; Clement, J; Clocchiatti, M; Corcoran, M D; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Deshpande, S; Dalla Torre, A; Van Dantzig, R; Dhawan, S; Dulya, C; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Day, D; Feinstein, F; Fernández, C; Frois, B; Garabatos, C; Garzón, J A; Gaussiran, T; Giorgi, M; von Goeler, E; Goloutvin, Igor A; Gómez, A; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, D; von Harrach, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; De Jong, M; Kabu, E M; Kageya, T; Kaiser, R; Karev, A; Kessler, H J; Ketel, T J; Kiryushin, Yu T; Kishi, A; Kisselev, Yu; Klostermann, L; Krämer, Dietrich; Kukhtin, V; Kyynarinen, J; Lamanna, M; Landgraf, U; Lau, V; Krivokhijinea, K; Layda, T; Le Go, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; López-Ponte, S; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B; McCarthy, J S; van Middelkoop, K; Medved, G; Miller, D; Mitchell, J; Mori, K; Moromisato, J; Mutchler, G S; Nagaitsev, A; Nassalski, J; Naumann, Lutz; Neganov, B; Niinikoski, T O; Oberski, J E J; Ogawa, A; Okumi, S; Ozben, C S; Penzo, Aldo L; Pérez, C A; Perrot-Kunne, F; Piegaia, R; Pinsky, L; Platchkov, S; Pló, M; Pose, D; Postma, D; Peshekhonov, H; Pretz, J; Pussieux, T; Pyrlik, J; Reyhancan, I; Rieubland, Jean Michel; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, E; Rondon, O; Ropelewski, Leszek; Rosado, A; Sabo, I; Saborido, J; Salvato, G; Sandacz, A; Sanders, D; Savin, I; Schiavon, Paolo; Schüler, K P; Segel, R; Seitz, R; Semertzidis, Y; Sergeev, S; Sever, F; Shanahan, P; Sichtermann, E P; Smirnov, G; Staude, A; Steinmetz, A; Stuhrmann, H; Teichert, K M; Tessarotto, F; Thiel, W; Velasco, M; Vogt, J; Voss, R; Weinstein, R; Whitten, C; Willumeit, R; Windmolders, R; Wislicki, W; Witzmann, A; Yañez, A; Zanetti, A M; Zhao, J; Zamiatin, N I

    1996-01-01

    We report a large enhancement of 1.7 in deuteron polarization up to values of 0.6 due to frequency modulation of the polarizing microwaves in a two liters polarized target using the method of dynamic nuclear polarization. This target was used during a deep inelastic polarized muon-deuteron scattering experiment at CERN. Measurements of the electron paramagnetic resonance absorption spectra show that frequency modulation gives rise to additional microwave absorption in the spectral wings. Although these results are not understood theoretically, they may provide a useful testing ground for the deeper understanding of dynamic nuclear polarization.

  13. Measurement of Deuteron Tensor Polarization in Elastic Electron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Kenneth K. [Univ. of Maryland, College Park, MD (United States)

    2000-01-01

    Nuclear physics traces it roots back to the very beginning of the last century. The concept of the nuclear atom was introduced by Rutherford around 1910. The discovery of the neutron Chadwick in 1932 gave us the concept of two nucleons: the proton and the neutron. The Jlab electron accelerator with its intermediate energy high current continuous wave beam combined with the Hall C high resolution electron spectrometer and a deutron recoil polarimeter provided experiment E94018 with the opportunity to study the deuteron electomagnetic structure, in particular to measure the tensor polarization observable t20, at high four momentum transfers than ever before. This dissertation presents results of JLab experiment E94018.

  14. Relativistic polarized deuteron fragmentation into protons as test of six-quark nature of deuteron at small distances

    International Nuclear Information System (INIS)

    Kobushkin, A.P.; Vizireva, L.

    1981-01-01

    A study of the nature of the short-range few-nucleon correlations in nuclei is proposed in the polarized high-energy deuteron fragmentation experiments. The presence of 6q-state in deuteron with probability of several percents is shown to change essentially the cross-section behaviour of this process in the momentum region where the fraction of the deuteron momentum carried out by proton in the infinite momentum frame is about 0.78. It is shown how the character of the cross-section of the transverse polarized deuteron fragmentation is changed depending on the parameters of 6q-admixure in deuteron [ru

  15. Study of depolarization of deuteron and proton beams in the Nuclotron ring

    CERN Document Server

    Golubeva, N Y; Kondratenko, A M; Kondratenko, A M; Mikhajlov, V A; Strokovsky, E A

    2002-01-01

    The scheme for acceleration of polarized deuterons at the Nuclotron accelerator facility includes a cryogenic polarized deuteron source 'Polaris', a 5 MeV/nucl. linac, a superconducting heavy ion synchrotron of a 6 GeV/nucl. energy with 10 s spill slow extraction, thin internal targets and wide net of external beam lines. This scheme also allows one to generate high energy polarized proton and neutron beams with well determined characteristics. There are two principal problems of polarized particle acceleration: to keep spin orientation during beam acceleration and to produce the high ion intensity sufficient for data taking in physics experiments. The first problem is discussed in this paper. The reasons of depolarization effects in the mentioned parts of the Nuclotron have been analysed and four methods of the polarization conserving have been suggested. They are the spin resonance strength compensation increasing of the resonance strength, the betatron tune jump and the spin tune jump. Among their number, ...

  16. Spin Transparency Mode in the NICA Collider with Solenoid Siberian Snakes for Proton and Deuteron Beam

    Science.gov (United States)

    Kovalenko, A. D.; Butenko, A. V.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2017-12-01

    Two solenoid Siberian Snakes are required to obtain ion polarization in spin transparency mode of the NICA collider. The snake solenoids with a total field integral of 2×50 T·m are placed into the straight sections of the NICA collider. It allows one to control polarization of protons and deuterons up to 13.5 GeV/c and 4 GeV/c respectively. The snakes introduce a strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in the NICA collider with solenoid Snakes are presented.

  17. Development of optical-pumping polarized deuteron target

    International Nuclear Information System (INIS)

    Tamae, Tadaaki; Yokokawa, Tamio; Nishikawa, Itaru; Abe, Kazuhiro; Konno, Osamu; Nakagawa, Itaru; Sugawara, Masumi; Tanaka, Eiji; Yamaguchi, Nobuo; Yamazaki, Hirohito; Miyase, Haruhisa; Tsubota, Hiroaki

    1998-01-01

    An optical-pumping system of rubidium atoms for a laser-driven polarized deuteron target was constructed. The density and polarization of the rubidium atoms were measured using Faraday rotation. The rotation angle was determined within an error of 0.01 deg. Our preliminary result showed a polarization of 0.4 at a gas thickness of 4x10 13 atoms/cm 2

  18. Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC

    Energy Technology Data Exchange (ETDEWEB)

    Kondratenko, A. [Novosibirsk State Univ. (Russian Federation); Kondratenko, M. [Novosibirsk State Univ. (Russian Federation); Filatov, Yu. N. [Moscow Inst. of Physics and Technology (MIPT), Moscow (Russian Federation); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Novosibirsk State Univ. (Russian Federation); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasily S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-07-01

    The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider's lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of "interference peaks". The beam polarization depends on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.

  19. Past, present and future polarization experiments with deuterons

    International Nuclear Information System (INIS)

    Punjabi, V.; Perdrisat, C.F.

    1996-01-01

    Recent experimental data for the inclusive breakup reaction A(d, p)X, with emphasis on 1 H(d, p)X, and the backward elastic scattering reaction dp → pd are discussed. There is now a fairly complete data base for these reactions, with measurements of the differential cross section, the tensor analyzing power T 20 and the deuteron to proton polarization transfer k 0 . The relevance of these reactions to the study of the short range properties of the deuteron is estimated [ru

  20. Orbital parameters of proton and deuteron beams in the NICA collider with solenoid Siberian snakes

    International Nuclear Information System (INIS)

    Kovalenko, A D; Butenko, A V; Kekelidze, V D; Mikhaylov, V A; Kondratenko, M A; Filatov, Yu N; Kondratenko, A M

    2016-01-01

    Two solenoid Siberian snakes are required to obtain ion polarization in the “spin transparency” mode of the NICA collider. The field integrals of the solenoid snakes for protons and deuterons at maximum momentum of 13.5 GeV/c are equal to 2×50 T·m and 2×160 T·m respectively. The snakes introduce strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in NICA collider with solenoid snakes are presented. (paper)

  1. Study of deep inelastic scattering of polarized electrons off polarized deuterons

    International Nuclear Information System (INIS)

    Kuriki, M.

    1996-03-01

    This thesis describes a 29GeV electron - nucleon scattering experiment carried out at Stanford Linear Accelerator Center (SLAC). Highly polarized electrons are scattered off a polarized ND 3 target. Scattered electrons are detected by two spectrometers located in End Station A (ESA) at angles of 4.5 degrees and 7 degrees with respect to the beam axis. We have measured the spin structure function g 1 of deuteron over the range of 0.029 2 2 . This integral indicates a discrepancy of more than three standard deviations from the prediction of the Ellis-Jaffe sum rule, 0.068±0.005 at Q 2 = 3.0(GeV/c) 2 while our result of g 1 d in good agreement with SMC results. Combined with g 1 of the proton, the measurement of ∫ 0 1 (g 1 d -g 1 n ) is 0.169±0.008. We also obtained the strong coupling constant at Q 2 = 3.0(GeV/c) 2 to be 0.417 -0.110 +0.086 , using the power correction for the sum rule up to third order of α s . This result is in agreement with the strong coupling constant α s (Q 2 ) = 3.0(GeV/c 2 ) obtained from various experiments. Using our deuteron results and the axial vector couplings of hyperon decays, the total quark polarization along the nucleon spin is found to be 0.286±.055, implying that quarks carry only 30% of the nucleon spin. The strange sea quark polarization is also determined to be -0.101 ± .023. These measurements are in agreement with other experiments and provide the world's most precise measurement of these quark polarizations. 80 refs., 151 figs., 23 tabs

  2. On the large COMPASS polarized deuteron target

    Czech Academy of Sciences Publication Activity Database

    Ball, J.; Baum, G.; Doshita, N.; Finger Jr., M.; Finger, M.; Gautheron, F.; Goertz, S.; Hasegawa, T.; Heckmann, J.; Hess, C.; Horikawa, N.; Ishimoto, S.; Iwata, T.; Kisselev, Y.; Koivuniemi, J.H.; Kondo, K.; Le Goff, J.M.; Magnon, A.; Marchand, C.; Matsuda, T.; Meyer, W.; Reicherz, G.; Srnka, Aleš

    2006-01-01

    Roč. 56, Suppl. F (2006), F295-F305 ISSN 0011-4626 R&D Projects: GA MŠk ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : COMPASS * polarized target * Dilution refrigerator Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.568, year: 2006

  3. Model-independent analysis of polarization effects in elastic electron-deuteron scattering in presence of two-photon exchange

    International Nuclear Information System (INIS)

    Gakh, G.I.; Tomasi-Gustafsson, E.

    2006-01-01

    The general spin structure of the matrix element, taking into account the 2-photon exchange contribution, for the elastic electron (positron) - deuteron scattering has been derived using general symmetry properties of the hadron electromagnetic interaction, such as P-, C- and T-invariances as well as lepton helicity conservation in QED at high energy. Taking into account also crossing symmetry, the amplitudes of e ± d scattering can be parametrized in terms of fifteen real functions. The expressions for the differential cross section and for all polarization observables are given in terms of these functions. We consider the case of an arbitrary polarized deuteron target and polarized electron beam (both longitudinal and transverse). The transverse polarization of the electron beam induces a single-spin asymmetry which is non-zero in presence of 2-photon exchange. It is shown that elastic deuteron electromagnetic form factors can still be extracted in presence of 2 photon exchange, from the measurements of the differential cross sections and of one polarization observable (for example, the tensor asymmetry) for electron and positron deuteron elastic scattering, in the same kinematical conditions. (authors)

  4. Tensor polarization in pion-deuteron elastic scattering

    Science.gov (United States)

    Ungricht, E.; Freeman, W. S.; Geesaman, D. F.; Holt, R. J.; Specht, J. R.; Zeidman, B.; Stephenson, E. J.; Moses, J. D.; Farkhondeh, M.; Gilad, S.; Redwine, R. P.

    1985-03-01

    Angular distributions of the deuteron tensor polarization, t20, in π-d elastic scattering have been measured at pion energies of 180, 220, and 256 MeV. The experiment and analysis are described in detail. Theoretical calculations in which the effects of pion absorption on the elastic channel are small seem to reproduce the data. An excitation function was measured in order to search for a rap- id energy dependence of t20. No rapid angular or energy dependence was found near a pion energy of 134 MeV, where other experiments have suggested the existence of dibaryon resonances.

  5. QED corrections in deep-inelastic scattering from tensor polarized deuteron target

    CERN Document Server

    Gakh, G I

    2001-01-01

    The QED correction in the deep inelastic scattering from the polarized tensor of the deuteron target is considered. The calculations are based on the covariant parametrization of the deuteron quadrupole polarization tensor. The Drell-Yan representations in the electrodynamics are used for describing the radiation real and virtual particles

  6. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    International Nuclear Information System (INIS)

    Miley, George H.

    2012-01-01

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of the available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition

  7. Experimental physics with polarized protons, neutrons and deuterons

    CERN Document Server

    Lehar, František; Wilkin, Colin

    2015-01-01

    The monograph gives a comprehensive overview of the diverse aspects of the experimental study of polarization phenomena in nucleon-nucleon and nucleon-deuteron collisions. The special nature of this volume is that it is based on the original physics results and knowledge gained by one of the authors (F. Lehar), who was a respected researcher in the field for nearly fifty years. The results of these experiments provide valuable information on the spin dependence of the forces acting between nucleons in atomic nuclei, of which all matter is ultimately composed. The fundamental importance of the results means that the subject will remain topical for years to come. The book is designed for teachers and students of natural sciences, espe - cially those with interests in nuclear and particle physics, as well as for ex - perimental physicists who are investigating polarization phenomena using accelerators of charged particles. The writing of the book was initiated by F. Lehar who was the driving force beh...

  8. Proceedings of the International symposium Dubna Deuteron-93

    International Nuclear Information System (INIS)

    1994-01-01

    Proceedings of international symposium on the deuteron structure problem are given. The results of investigations of hadron-deuteron interactions with polarized and unpolarized beams, lD, γD and NN interactions are discussed

  9. A single-beam deuteron compact accelerator for neutron generation

    International Nuclear Information System (INIS)

    Araujo, Wagner Leite; Campos, Tarcisio Passos Ribeiro de

    2011-01-01

    Portable neutron generators are devices composed by small size accelerators that produce neutrons through fusion between hydrogen isotopes. These reactions are characterized by appreciable cross section at energies at the tens of keV, which enables device portability. The project baselines follow the same physical and engineering principles of any other particle accelerators. The generator consists of a gas reservoir, apparatus for ion production, few electrodes to accelerate and focus the ion beam, and a metal hydride target where fusion reactions occur. Neutron generator applications include geophysical measurements, indus- trial process control, environmental, research, nation's security and mechanical structure analysis.This article presents a design of a compact accelerator for d-d neutron generators, describing the physical theory applied to the deuteron extraction system, and simulating the ion beam transport in the accelerator. (author)

  10. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  11. Deuteron tensor polarization in the e-+d →e-+p+n process

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Gakh, G.I.; Rekalo, A.P.

    1988-01-01

    The polarization phenomena in the d-vector(e, ep)n reaction caused by the deuteron tensor polarization have been investigated in the relativistic impulse approximation (IA) framework. It is shown that in general case the tensor polarization leads to 16 Asymmetries. Sensitivity of these observables to the choice of the deuteron wave function parametrization has been investigated. The calculated asymmetry in the d-vector(e, pn)e' reation caused by the tensor polarization of the target is in good agreement with experimental data obtained in Novosibirsk. The calculated asymmetry in the nonrelativistic and relativistic IA are significantly different

  12. Time-resolved characteristics of deuteron-beam generated by plasma focus discharge

    Science.gov (United States)

    Bradley, D. A.

    2018-01-01

    The plasma focus device discussed herein is a Z-pinch pulsed-plasma arrangement. In this, the plasma is heated and compressed into a cylindrical column, producing a typical density of > 1025 particles/m3 and a temperature of (1–3) × 107 oC. The plasma focus has been widely investigated as a radiation source, including as ion-beams, electron-beams and as a source of x-ray and neutron production, providing considerable scope for use in a variety of technological situations. Thus said, the nature of the radiation emission depends on the dynamics of the plasma pinch. In this study of the characteristics of deuteron-beam emission, in terms of energy, fluence and angular distribution were analyzed. The 2.7 kJ plasma focus discharge has been made to operate at a pressure of less than 1 mbar rather than at its more conventional operating pressure of a few mbar. Faraday cup were used to determine deuteron-beam energy and deuteron-beam fluence per shot while CR-39 solid-state nuclear track detectors were employed in studying the angular distribution of deuteron emission. Beam energy and deuteron-beam fluence per shot have been found to be pressure dependent. The largest value of average deuteron energy measured for present conditions was found to be (52 ± 7) keV, while the deuteron-beam fluence per shot was of the order of 1015 ions/m2 when operated at a pressure of 0.2 mbar. The deuteron-beam emission is in the forward direction and is observed to be highly anisotropic. PMID:29309425

  13. A polarized deuteron source and its application to nuclear physics (1963)

    International Nuclear Information System (INIS)

    Beurtey, R.

    1963-11-01

    Principles and realization of a polarized deuteron source fitted to the 22 MeV Saclay cyclotron are described. Various vector and tensor polarizations are obtained using radio-frequency transitions between Zeeman sub-levels of the deuterium atoms. Such polarized deuterons enable us the study of spin-dependent interactions in (d, d) scattering and (d, p) reactions. The asymmetries obtained by 40 Ca (d, d) 40 Ca, 12 C (d, p) 13 C and 28 Si (d, p) 29 Si are presented. (author) [fr

  14. Recommendation for a injector-cyclotron and ion sources for the acceleration of heavy ions and polarized protons and deuterons

    International Nuclear Information System (INIS)

    Botha, A.H.; Cronje, P.M.; Du Toit, Z.B.; Nel, W.A.G.; Celliers, P.J.

    1984-01-01

    It was decided to accelerate both heavy and light ions with the open-sector cyclotron. The injector SPS1, was used for light ions and SPS2 for heavy ions. Provision was also made for the acceleration of polarized neutrons. To enable this, the injector must have an axial injection system. The working of a source of polarized ions and inflectors for an axial injection system is discussed. The limitations of the open-sector cyclotron on the acceleration of heavy ions are also dealt with. The following acceleration/ion source combinations are discussed: i) The open-sector cyclotron and a k=40 injector cyclotron with a Penning ion source, and a stripper between the injector and the open-sector cyclotron and also a source of polarized protons and deuterons; ii) The acceleration/ion source combination with the addition of electron beam ion sources; iii) The open-sector cyclotron and a k=11 injector cyclotron with a electron beam ion source and a source of polarized protons and deuterons

  15. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  16. High-automated system of film data mathematical processing for polarized deuteron experiments

    International Nuclear Information System (INIS)

    Balgansuren, Ya.; Buzdavina, N.A.; Glagolev, V.V.

    1986-01-01

    A specialized software system which allowed to reduce essentially the time of experimental data analysis has been developed in order to provide timely processing of film information in polarized deuteron experiments. With its help preliminary data on deuteron polarization has been obtained in a few months after experiment start up, and the total data processing (15 thousand events) has been carried out in less than in a year from the chamber irradiation time. High rate of data processing has been achieved due to complex automation of all stages of processing

  17. Tensor polarization in elastic electron-deuteron scattering to the highest possible momentum transfers

    Energy Technology Data Exchange (ETDEWEB)

    Garcon, M; Ahmidouch, A; Anklin, H; Arvieux, J; Ball, J; Beedoe, S; Beise, E J; Bimbo, L; Boeglin, W; Breuer, H; Carlini, R; Chant, N S; Danagoulian, S; Dow, K; Ducret, J -E; Dunne, J; Ewell, L; Eyraud, L; Furget, C; Gilman, R; Glashausser, C; Gueye, P; Gustafsson, K; Hafidi, K; Honegger, A; Jourdan, J; Kox, S; Kumbartzki, G; Lu, L; Lung, A; Mack, D; Markowitz, P; McIntyre, J; Meekins, D; Merchez, F; Mitchell, J; Mohring, R; Mtingwa, S; Mrktchyan, H; Pitz, D; Qin, L; Ransome, R; Raoul, J -S; Roos, P G; Rutt, P; Schmidt, W; Sawafta, R; Stepanyan, S; Stephenson, R; Tieulent, R; Tomasi-Gustafsson, E

    1999-07-01

    In elastic electron-deuteron scattering, the tensor polarization moments t{sub 20}, t{sub 21} and t{sub 22}, together with the unpolarized cross-sections, have been measured up to a momentum transfer of 1.8 (GeV/c){sup 2}, or 6.8 fm{sup -1}. The experiment was performed at Jefferson Laboratory using the recoil deuteron polarimeter POLDER. Preliminary results are presented and discussed, especially in view of their significance concerning the applicability of perturbative QCD to this exclusive process.

  18. Spin effects at fragmentation of polarized deuterons into cumulative pions

    International Nuclear Information System (INIS)

    Afanasiev, S.; Arkhipov, V.; Bondarev, V.; Isupov, A.; Khrenov, A.; Kirillov, D.; Ladygin, V.; Litvinenko, A.; Malakhov, A.; Pilipenko, Yu.; Reznikov, S.; Rukoyatkin, P.; Zolin, L.; Daito, I.; Horikawa, N.; Wakai, A.; Doushita, N.; Fukui, S.; Iwata, T.; Kondo, K.

    2002-01-01

    Tensor analyzing power T 20 of the reaction d-vectorA→π(0 deg.)X was measured in the fragmentation of 9 GeV deuterons into points with the momenta from 3.5 to 5.3 GeV/c at hydrogen, beryllium and carbon targets. This momentum range corresponds to region of cumulative pion production The values of T 20 are found to be small and consistent with positive values in contradiction with the Impulse Approximation calculations based on assuming a direct mechanism of pion production (NN→NNπ). New data on tensor Ayy analyzing power for pion production at the non-zero angle (θ π =135,180mr) with pion transverse momenta up to P t =0.8 GeV/c are presented. Ayy increases with rise of P t in the cumulative region

  19. Simulation of a short-cable Q-meter for measuring the deuteron target polarization

    International Nuclear Information System (INIS)

    Karnaukhov, I.M.; Lukhanin, A.A.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1984-01-01

    Simulation of Q-meter with a phase automatic-frequency control of a reception circuit is carried out in the paper. Effect of circuit parameters and connecting cable on Q-meter sensitivity and magnitude of distortions of recorded signal is studied. It is shown that usage of the cable with a length of lambda/12-lambda/10 instead of traditional semiwave one enables to increase essentially the circuit sensitivity at the same distortion rate. Errors conditioned by distortions of the deuteron magnetic resonance (DMR) signal forms in the reception circuit, which can effect essertially on accuracy of deuteron polarization detection by the method of DMR spectrum decomposition, are discussed. It is shown that in the case of utilization of a short cable the polarization error due to spectrum distortions does not exceed 4...5%

  20. Activation of the IFMIF prototype accelerator and beam dump by deuterons and protons

    Czech Academy of Sciences Publication Activity Database

    Simakov, S. P.; Bém, Pavel; Burjan, Václav; Fischer, U.; Forrest, R.A.; Götz, Miloslav; Honusek, Milan; Klein, H.; Kroha, Václav; Novák, Jan; Sauer, A.; Šimečková, Eva; Tiede, R.

    2008-01-01

    Roč. 83, 10-12 (2008), s. 1543-1547 ISSN 0920-3796 R&D Projects: GA MPO 2A-1TP1/101 Institutional research plan: CEZ:AV0Z10480505 Keywords : IFMIF * Protons and deuterons accelerator * Beam dump Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.828, year: 2008

  1. Elastic scattering of polarized deuterons from 40Ca and 58Ni at intermediate energies

    International Nuclear Information System (INIS)

    Sen, N. van; Arvieux, J.; Yanlin, Y.; Gaillard, G.; Bonin, B.; Boudard, A.; Bruge, G.; Lugol, J.C.; Babinet, R.; Hasegawa, T.; Soga, F.; Cameron, J.M.; Neilson, G.C.; Sheppard, D.M.

    1985-01-01

    Angular distributions of cross section, and Asub(y) and Asub(yy) analyzing powers were measured for polarized deuteron elastic scattering from 58 Ni at 200, 400 and 700 MeV, and 40 Ca at 700 MeV. Phenomenological potentials were obtained from an optical model analysis of the data. The total reaction cross sections deduced were compared to predictions from the Glauber theory optical limit. (orig.)

  2. Tensor-polarized structure function b1 in the standard convolution description of the deuteron

    Science.gov (United States)

    Cosyn, W.; Dong, Yu-Bing; Kumano, S.; Sargsian, M.

    2017-04-01

    Tensor-polarized structure functions of a spin-1 hadron are additional observables, which do not exist for the spin-1 /2 nucleon. They could probe novel aspects of the internal hadron structure. Twist-2 tensor-polarized structure functions are b1 and b2, and they are related by the Callan-Gross-like relation in the Bjorken scaling limit. In this work, we theoretically calculate b1 in the standard convolution description for the deuteron. Two different theoretical models, a basic convolution description and a virtual nucleon approximation, are used for calculating b1, and their results are compared with the HERMES measurement. We found large differences between our theoretical results and the data. Although there is still room to improve by considering higher-twist effects and in the experimental extraction of b1 from the spin asymmetry Az z, there is a possibility that the large differences require physics beyond the standard deuteron model for their interpretation. Future b1 studies could shed light on a new field of hadron physics. In particular, detailed experimental studies of b1 will start soon at the Thomas Jefferson National Accelerator Facility. In addition, there are possibilities to investigate tensor-polarized parton distribution functions and b1 at Fermi National Accelerator Laboratory and a future electron-ion collider. Therefore, further theoretical studies are needed for understanding the tensor structure of the spin-1 deuteron, including a new mechanism to explain the large differences between the current data and our theoretical results.

  3. Deuteron beam interaction with lithium jet in a neutron source test facility

    International Nuclear Information System (INIS)

    Hassanein, A.

    1996-01-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium-lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (≥14 MeV) neutrons required to simulate a fusion environment via the Li (d,n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities. (orig.)

  4. Investigating the foil-generated deuteron beam interaction with a DT target in degenerate and classical plasma

    Science.gov (United States)

    Mehrangiz, M.; Ghasemizad, A.

    2017-06-01

    Deuteron fast ignition of a conically guided pre-compressed DT fuel is investigated. For this purpose, the acceleration of the deuterated thin foil by the intense laser beam is evaluated. The acceleration values and the number of foil-generated deuterons are calculated in terms of the laser pulse duration. Using the created deuterons as the fast ignitors, we investigate the fast ignition scheme by comparing fully degenerate, partial degenerate and classical types of DT plasma. The total energy gain of deuterons "beam fusion" is calculated to show the efficiency of beam reactions in increasing fusion rate. Besides, the stopping time and stopping range of incident deuterons are evaluated. Our numerical results indicate that degeneracy increases the beam-target collisions. Thus, it prepares the ignition situation sooner than the classical plasma. Moreover, the number of generated deuterons and their acceleration depend on the foil thickness and laser parameters. We show that when a 4ps laser with intensity of 10^{19} W/cm^2 focused onto a 20μm foil, 35× 10^{15} deuterons are generated. Moreover, under our analysis, in order to have a practicable fast ignition, 18% of the laser energy is necessary to convert into a deuteron driver.

  5. Studies of $\\Lambda n$ interaction through polarization observables for final-state interactions in exclusive $\\Lambda$ photoproduction off the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Ilieva, Yordanka [Univ. of South Carolina, Columbia, SC (United States); Cao, Tongtong [Univ. of South Carolina, Columbia, SC (United States); Zachariou, Nicholas [Univ. of Edinburgh, Scotland (United Kingdom)

    2016-06-01

    Theoretical studies suggest that experimental observables for hyperon production reactions can place stringent constraints on the free parameters of hyperon-nucleon potentials, which are critical for the understanding of hypernuclear matter and neutron stars. Here we present preliminary experimental results for the polarization observables S, Py, Ox, Oz, Cx, and Cz for final-state interactions (FSI) in exclusive L photoproduction off the deuteron. The observables were obtained from data collected during the E06-103 (g13) experiment with the CEBAF Large Acceptance Spectrometer (CLAS) in Hall B at Jefferson Lab. The g13 experiment ran with unpolarized deuteron target and circularly- and linearly-polarized photon beams with energies between 0.5 GeV and 2.5 GeV and collected about 51010 events with multiple charged particles in the final state. To select the reaction of interest, the K+ and the L decay products, a proton and a negative pion, were detected in the CLAS. The missing-mass technique was used to identify exclusive hyperon photoproduction events. Final-state interaction events were selected by requesting that the reconstructed neutron has a momentum larger than 200 MeV/c. The large statistics of E06-103 provided statistically meaningful FSI event samples, which allow for the extraction of one- and two-fold differential single- and double-polarization observables. Here we present preliminary results for a set of six observables for photon energies between 0.9 GeV and 2.3 GeV and for several kinematic variables in the Ln center-of-mass frame. Our results are the very first estimates of polarization observables for FSI in hyperon photoproduction and will be used to constrain the free parameters of hyperon-nucleon potentials.

  6. Polarized electron beams at SLAC

    International Nuclear Information System (INIS)

    Moffeit, K.C.

    1992-11-01

    SLAC has successfully accelerated high energy polarized electrons for the Stanford Linear Collider and fixed polarized nuclear target experiments. The polarized electron beams at SLAC use a gallium arsenide (GaAlAs for E-142) photon emission source to provide the beam of polarized electrons with polarization of approximately 28% (41% for E-142). While the beam emittance is reduced in the damping ring for SLC operation a system of bend magnets and superconducting solenoids preserve and orient the spin direction for maximum longitudinal polarization at the collision point. The electron polarization is monitored with a Compton scattering polarimeter, and was typically 22% at the e+e- collision point for the 1992 run. Improvements are discussed to increase the source polarization and to reduce the depolarization effects between the source and the collision point

  7. Polarization observables in deuteron photodisintegration below 360 MeV

    International Nuclear Information System (INIS)

    2011-01-01

    High precision measurements of induced and transferred recoil proton polarization in d((rvec y), (rvec p))n have been performed for photon energies of 277-357 MeV and θcm = 20 o -120 o . The measurements were motivated by a longstanding discrepancy between meson-baryon model calculations and data at higher energies. At the low energies of this experiment, theory continues to fail to reproduce the data, indicating that either something is missing in the calculations and/or there is a problem with the accuracy of the nucleon-nucleon potential being used.

  8. Polarization observables in deuteron photodisintegration below 360 MeV

    Science.gov (United States)

    Glister, J.; Ron, G.; Lee, B. W.; Gilman, R.; Sarty, A. J.; Strauch, S.; Higinbotham, D. W.; Piasetzky, E.; Allada, K.; Armstrong, W.; Arrington, J.; Arenhövel, H.; Beck, A.; Benmokhtar, F.; Berman, B. L.; Boeglin, W.; Brash, E.; Camsonne, A.; Calarco, J.; Chen, J. P.; Choi, S.; Chudakov, E.; Coman, L.; Craver, B.; Cusanno, F.; Dumas, J.; Dutta, C.; Feuerbach, R.; Freyberger, A.; Frullani, S.; Garibaldi, F.; Hansen, J.-O.; Holmstrom, T.; Hyde, C. E.; Ibrahim, H.; Ilieva, Y.; de Jager, C. W.; Jiang, X.; Jones, M. K.; Kang, Hyekoo; Kelleher, A.; Khrosinkova, E.; Kuchina, E.; Kumbartzki, G.; LeRose, J. J.; Lindgren, R.; Markowitz, P.; May-Tal Beck, S.; McCullough, E.; Meekins, D.; Meziane, M.; Meziani, Z.-E.; Michaels, R.; Moffit, B.; Norum, B. E.; Oh, Y.; Olson, M.; Paolone, M.; Paschke, K.; Perdrisat, C. F.; Potokar, M.; Pomatsalyuk, R.; Pomerantz, I.; Puckett, A.; Punjabi, V.; Qian, X.; Qiang, Y.; Ransome, R. D.; Reyhan, M.; Roche, J.; Rousseau, Y.; Saha, A.; Sawatzky, B.; Schulte, E.; Schwamb, M.; Shabestari, M.; Shahinyan, A.; Shneor, R.; Širca, S.; Slifer, K.; Solvignon, P.; Song, J.; Sparks, R.; Subedi, R.; Urciuoli, G. M.; Wang, K.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Zhan, X.; Zhu, X.

    2011-03-01

    High precision measurements of induced and transferred recoil proton polarization in d(γ→,p→)n have been performed for photon energies of 277-357 MeV and θcm=20°-120°. The measurements were motivated by a longstanding discrepancy between meson-baryon model calculations and data at higher energies. At the low energies of this experiment, theory continues to fail to reproduce the data, indicating that either something is missing in the calculations and/or there is a problem with the accuracy of the nucleon-nucleon potential being used.

  9. Low-beam-loss design of a compact, high-current deuteron radio frequency quadrupole accelerator

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2004-10-01

    Full Text Available A 201.5 MHz, 50 mA, 2.0 MeV deuteron radio frequency quadrupole accelerator is proposed as the neutron generator for the neutron experiment facility project at Peking University, China. Based on better understanding of beam losses, some new optimization procedures concerning both longitudinal and transverse dynamics are adopted. Accordingly, the beam transmission efficiency is improved from 91.2% to 98.3% and the electrode length is shortened from 2.91 to 2.71 m. The fundamental physical analyses are performed to look inside the new design recipe and explain why it works.

  10. Beam energy variability and other system considerations for a deuteron linac materials research neutron source

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1989-01-01

    There are many overall system aspects and tradeoffs that must be considered in the design of a deuteron linac based neutron source for materials research, in order to obtain a facility with the best possible response to the user's needs, efficient and reliable operation and maintenance, at the optimum construction and operating cost. These considerations should be included in the facility design from the earliest conceptual stages, and rechecked at each stage to insure consistency and balance. Some of system requirements, particularly that of beam energy variability and its implications, are outlined in this talk. (author)

  11. Preliminary assessment of interactions between the FMIT deuteron beam and liquid-lithium target

    International Nuclear Information System (INIS)

    Hassberger, J.A.

    1983-03-01

    Scoping calculations were performed to assess the limit of response of the FMIT lithium target to the deuteron-beam interactions. Results indicate that most response modes have acceptably minor impacts on the lithium-target behavior. Individual modes of response were studied separately to assess sensitivity of the target to various phenomena and to identify those needing detailed evaluation. A few responses are of sufficient magnitude to warrant further investigation. Potential for several different responses combining additively is identified as the major area requiring further consideration

  12. Deuteron form factors and e-d polarization observables for the Paris and Graz-II potentials

    International Nuclear Information System (INIS)

    Schwarz, K.; Plessas, W.; Mathelitsch, L.

    1983-01-01

    Elastic e-d scattering is studied employing the meson-theoretical Paris potential and the non-local separable Graz-II potential. Electric and magnetic form factors are calculated with inclusion of meson-exchange currents and compared to existing experimental data. Deuteron vector and tensor polarizations are predicted and discussed in relation to the deuteron wave functions of the potential models considered. Thereby the off-shell behaviour of the Graz-II interaction is found to be close to that one of the Paris potential over the most important domain of low and moderate off-shell moments. (Author)

  13. Polarization fluctuations in stationary light beams

    International Nuclear Information System (INIS)

    Shevchenko, A.; Setaelae, T.; Kaivola, M.; Friberg, A.T.; Royal Institute of Technology , Department of Microelectronics and Applied Physics; Sweden)

    2009-01-01

    For stationary beams the degree of polarization contains only limited information on time dependent polarization. Two approaches towards assessing a beams polarization dynamics, one based on Poincare and the other on Jones vector formalism, are described leading to the notion of polarization time. Specific examples of partially temporally coherent electromagnetic beams are discussed. (Author)

  14. Acceleration of polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1998-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian snakes are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  15. Tau physics with polarized beams

    Energy Technology Data Exchange (ETDEWEB)

    Daoudi, M.

    1995-11-01

    We present the first results on tau physics using polarized beams. These include measurements of the {tau} Michel parameters {xi} and {xi}{delta} and the {tau} neutrino helicity h{sub {nu}}. The measurements were performed using the SLD detector at the Stanford Linear Collider (SLC).

  16. History of the polarized beam

    Energy Technology Data Exchange (ETDEWEB)

    Parker, E F

    1979-01-01

    In 1973, the first high energy polarized proton beam was developed at the Argonne Zero Gradient Synchrotron (ZGS). It operated very successfully and productively until 1979 when the ZGS was shut down permanently. This report describes the development, characteristics, and operations of this facility.

  17. Experiments with Fermilab polarized proton and polarized antiproton beams

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the π degree production at high p perpendicular and in the Λ (Σ degree), π ± , π degree production at large x F , and Δσ L (pp, bar pp) measurements. 18 refs

  18. First Results from BM@N Technical Run with Deuteron Beam

    Science.gov (United States)

    Baranov, D.; Kapishin, M.; Kulish, E.; Maksymchuk, A.; Mamontova, T.; Pokatashkin, G.; Rufanov, I.; Vasendina, V.; Zinchenko, A.

    2018-03-01

    BM@N (Baryonic Matter at Nuclotron) is the first experiment to be realized at the accelerator complex of NICA-Nuclotron at JINR (Dubna). The aim of the experiment is to study interactions of relativistic heavy ion beams with a kinetic energy from 1 to 4.5 AGeV with fixed targets. The BM@N set-up at the starting phase of the experiment is introduced. First results of the analysis of minimum bias experimental data collected in the technical run in interactions of the deuteron beam of 4 AGeV with different targets are presented. The spacial, momentum and primary vertex resolution of the GEM tracker are studied. The signal of Lambda-hyperon is reconstructed in the proton-pion invariant mass spectrum. The data results are described by Monte Carlo simulations. The investigation has been performed at the Laboratory of High Energy Physics, JINR.

  19. Uses of laser optical pumping to produce polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1983-01-01

    Laser optical pumping can be used to produce polarized alkali atom beams or polarized alkali vapor targets. Polarized alkali atom beams can be converted into polarized alkali ion beams, and polarized alkali vapor targets can be used to produce polarized H - or 3 He - ion beams. In this paper the authors discuss how the polarized alkali atom beams and polarized alkali vapor targets are used to produce polarized ion beams with emphasis on the production of polarized negative ion beams

  20. LIPAc personnel protection system for realizing radiation licensing conditions on injector commissioning with deuteron beam

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroki, E-mail: takahashi.hiroki@jaea.go.jp [IFMIF/EVEDA Accelerator Group, Japan Atomic Energy Agency (JAEA), Rokkasho, Aomori (Japan); Narita, Takahiro; Kasugai, Atsushi [IFMIF/EVEDA Accelerator Group, Japan Atomic Energy Agency (JAEA), Rokkasho, Aomori (Japan); Kojima, Toshiyuki [Gitec Co. Ltd., Hachinohe, Aomori (Japan); Marqueta, Alvaro; Nishiyama, Koichi [IFMIF/EVEDA Project Team, Rokkasho, Aomori (Japan); Sakaki, Hironao [Quantum Beam Science Center, JAEA, Kizu, Kyoto (Japan); Gobin, Raphael [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, Gif/Yvette (France)

    2016-11-01

    Highlights: • Personnel Protection System (PPS) is developed to adapt the radiation licensing. • PPS achieves the target performance to secure the personnel safety. • Pulse Duty Management System (PDMS) is developed to manage the beam-operation-time. • Satisfying performance of PDMS is confirmed by injector operation with H+ beam. • By the result of PPS and PDMS tests, the radiation license was successfully obtained. - Abstract: The performance validation of the Linear IFMIF Prototype Accelerator (LIPAc), up to the energy of 9 MeV deuteron beam with 125 mA continuous wave (CW), is planned in Rokkasho, Japan. There are three main phases of LIPAc performance validation: Injector commissioning, RFQ commissioning and LIPAc commissioning. Injector commissioning was started by H{sup +} and D{sup +} beam. To apply the radiation licensing for the Injector commissioning, the entering/leaving to/from accelerator vault should be under control, and access to the accelerator vault has to be prohibited for any person during the beam operation. The Personnel Protection System (PPS) was developed to adapt the radiation licensing conditions. The licensing requests that PPS must manage the accumulated D{sup +} current. So, to manage the overall D{sup +} beam time during injector operation, Pulse Duty Management System (PDMS) was developed as a configurable subsystem as part of the PPS. The PDMS was tested during H{sup +} beam (as simulated D{sup +}) operation, to confirm that it can handle the beam inhibit from Injector before the beam accumulation is above the threshold value specified in the radiation licensing condition. In this paper, the design and configuration of these systems and the result of the tests are presented.

  1. Accelerating polarized beams in Tevatron

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-02-01

    In this paper, we will examine the totality of equipment, manpower and cost necessary to obtain a polarized proton beam in the Tevatron. We will not, however, be concerned with the acquisition and acceleration of polarized /bar p/ beams. Furthermore we will consider only a planar main ring without overpass, although it is expected that Siberian snake schemes could be made to apply equally well to non-planar machines. In addition to not wanting to tackle here the task of reformulating the theory for a non-planar closed orbit, we also anticipate that as part of the Tevatron upgrade the main ring will in the not too distant future, be replaced by a planar main injector situated in a separate tunnel. 4 refs., 11 figs., 1 tab

  2. Few-body experiments with polarized beams and polarized targets

    International Nuclear Information System (INIS)

    Simmons, J.E.

    1983-01-01

    A survey is presented concerning recent polarization experiments in the elastic p-d, p- 3 He, and p- 4 He systems. Mention is made of selected neutron experiments. The nominal energy range is 10 to 1000 MeV. Recent results and interpretations of the p-d system near 10 MeV are discussed. New experiments on the energy dependence of back angle p-d tensor polarization are discussed with respect to resolution of discrepancies and difficulty of theoretical interpretation. Progress is noted concerning multiple scattering interpretation of forward p-d deuteron polarization. Some new results are presented concerning the p- 3 He system and higher energy p- 4 He polarization experiments. 52 references

  3. ION BEAM POLARIZATION DYNAMICS IN THE 8 GEV BOOSTER OF THE JLEIC PROJECT AT JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Kondratenko, A. M. [GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058, Russia; Kondratenko, M. A. [GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058, Russia; Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei; Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Filatov, Yuri [MIPT, Dolgoprudniy, Moscow Region, Russia

    2016-05-01

    In the Jefferson Lab’s Electron-Ion Collider (JLEIC) project, an injector of polarized ions into the collider ring is a superconducting 8 GeV booster. Both figure-8 and racetrack booster versions were considered. Our analysis showed that the figure-8 ring configuration allows one to preserve the polarization of any ion species during beam acceleration using only small longitudinal field with an integral less than 0.5 Tm. In the racetrack booster, to pre-serve the polarization of ions with the exception of deu-terons, it suffices to use a solenoidal Siberian snake with a maximum field integral of 30 Tm. To preserve deuteron polarization, we propose to use arc magnets for the race-track booster structure with a field ramp rate of the order of 1 T/s. We calculate deuteron and proton beam polari-zations in both the figure-8 and racetrack boosters includ-ing alignment errors of their magnetic elements using the Zgoubi code.

  4. Polarized Ion Beams in Figure-8 Rings of JLab's MEIC

    Energy Technology Data Exchange (ETDEWEB)

    Derbenev, Yaroslav; Lin, Fanglei; Morozov, Vasiliy; Zhang, Yuhong; Kondratenko, Anatoliy; Kondratenko, M A; Filatov, Yury

    2014-07-01

    The Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is designed to provide high polarization of both colliding beams. One of the unique features of JLab's MEIC is figure-8 shape of its rings. It allows preservation and control of polarization of all ion species including small-anomalous-magnetic-moment deuterons during their acceleration and storage. The figure-8 design conceptually expands the capability of obtaining polarized high-energy beams in comparison to conventional designs because of its property of having no preferred periodic spin direction. This allows one to control effectively the beam polarization by means of magnetic insertions with small field integrals. We present a complete scheme for preserving the ion polarization during all stages of acceleration and its control in the collider's experimental straights.

  5. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    Energy Technology Data Exchange (ETDEWEB)

    Adeyemi, Adeleke H. [Hampton Univ., Hampton, VA (United States); et al.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e⁻/e⁺ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high-Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high-energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  6. Summary of the polarized beam working group

    International Nuclear Information System (INIS)

    Wienands, U.; Dyck, O. van.

    1989-05-01

    The polarized beam working group reviewed the AGS Bookster and TRIUMF KAON Factory facilities, heard an overview of the subject of siberian snakes, discussed internal polarized gas targets, and made recommendations for further study

  7. Polarization phenomena in the e-vector d-vector → enp process. Neutron electric form fa>ctor and deuteron structure

    International Nuclear Information System (INIS)

    Rekalo, M.N.; Gakh, G.I.; Rekalo, A.P.

    1987-01-01

    Polarization effects in the e - d→e - np process with longitudinally polarized electrons and vector polarized deuterons have been studied in the relativistic impulse approximation (which takes into account the t-, u-, s-channel pole and contact diagrams). The polarization observables which are most sensitive to the neutron electric form factor G En value have been determined. When calculating both the relativistic Buck-Gross deuteron wave function (DWF) and DWF for the Paris and Reid soft-core potentials are used. In the region of the quasielastic peak (at the nucleon emission angle Θ p =0 deg or 180 deg in c.m.s. of the np-system) the investigated asymmetries are practically independent of the DWF choice. The calculation shows that the asymmetries which are caused by the deuteron spin orientation perpendicular to the momentum transfer are most suitable for the G En determination

  8. Study of the possibility to use dp-elastic scattering for the Nuclotron external deuteron beam polarimetry

    International Nuclear Information System (INIS)

    Gurchin, Yu.V.; Isupov, A.Yu.; Khrenov, A.N.; Kiselev, A.S.; Ladygin, V.P.; Reznikov, S.G.; Vasil'ev, T.A.; Janek, M.; Karachuk, J.T.

    2011-01-01

    A selection of dp-elastic scattering events at energies of 1.6 and 2.0 GeV by using scintillation counters has been performed. The procedure of the CH 2 -C subtraction has been established. The dependence of the elastic events yield on the filter thickness has been investigated. This method can be used to develop the efficient high-energy deuteron beam polarimetry

  9. Is there an interest to use deuteron beams to produce non-conventional radionuclides?

    Directory of Open Access Journals (Sweden)

    Ferid eHaddad

    2015-05-01

    Full Text Available With the recent interest on the theranostic approach, there has been a renewed interest for alternative radionuclides in nuclear medicine. They can be produced using common production routes i.e. using protons accelerated by biomedical cyclotrons or neutrons produced in research reactors. However, in some cases, it can be more valuable to use deuterons as projectiles. In the case of Cu-64, smaller quantities of the expensive target material, Ni-64, are used with deuterons as compared with protons for the same produced activity. For the Sc-44m/Sc-44g generator, deuterons afford a higher Sc-44m production yield than with protons. Finally, in the case of Re-186g, deuterons lead to a production yield five times higher than protons. These three examples show that it is of interest to consider not only protons or neutrons but also deuterons to produce alternative radionuclides.

  10. Synthesis of chromium (V) complex in deuterated propanediol for a target with ''frozen'' polarization of deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Bunyatova, E.I.; Bubnov, N.N.

    1987-02-15

    A deutron polarized frozen spin target was developed. To reach higher deuteron content and maximum polarization, the chromium (V) complex with ligands on the basis of fully deuterated propanediol-1,2 was synthesized. The synthesis and the EPR investigation is described. The research has been performed at the Laboratory of Nuclear Problems, JINR.

  11. Polarization in electron and proton beams

    International Nuclear Information System (INIS)

    Buon, J.

    1986-03-01

    One first introduces the concept of polarization for spin 1/2 particle beams and discusses properties of spin kinetics in a stationary magnetic field. Then the acceleration of polarized protons in synchrotrons is studied with emphasis on depolarization when resonances are crossed and on the cures for reducing it. Finally, transverse polarization of electrons in storage rings is discussed as an equilibrium between polarizing and depolarizing effects of synchrotron radiation. Means for obtaining longitudinal polarization are also treated

  12. The polarization and beaming effect for GRBs

    OpenAIRE

    Cheng, K. S.; Fan, J. H.; Dai, Z. G.

    1999-01-01

    Both observations and theoretical models suggest that the emissions in gamma-ray bursts (GRBs) and the afterglows are beamed. We argue that the recent polarization measured in the afterglows gives further evidence of beaming in GRBs. In this approach, we adopted the polarization-magnitude relation of BL Lacertae objects to 4 GRBs with available polarization measurements and found that the data of the 4 GRBs are consistent with the relation of BL Lacertae objects. This result suggests that the...

  13. Synthesis of chromium (V) complex on the basis of deuterated ethanediol for a polarized deuteron target

    Energy Technology Data Exchange (ETDEWEB)

    Bunyatova, E.I.; Bubnov, N.N. (Joint Inst. for Nuclear Research, Moscow (USSR). Lab. of Nuclear Problems)

    1984-01-15

    To develop a target with polarised deuterons the chromium (V) complex with deuterated ethanediol ligands was synthesized. The electron paramagnetic resonance (EPR) spectra were employed to determine the concentration and g-factor of the complex. The procedure to obtain the chromium (V) complex with partly deuterated ethanediol ligands is also discussed.

  14. Synthesis of chromium (V) complex on the basis of deuterated ethanediol for a polarized deuteron target

    Science.gov (United States)

    Bunyatova, E. I.; Bubnov, N. N.

    1984-01-01

    To develop a target with polarised deuterons the chromium (V) complex with deuterated ethanediol ligands was synthesized. The electron paramagnetic resonance (EPR) spectra were employed to determine the concentration and g-factor of the complex. The procedure to obtain the chromium (V) complex with partly deuterated ethanediol ligands is also discussed.

  15. The local distribution of radiation quality of a collimated fast neutron beam from 15 MeV deuterons on beryllium

    International Nuclear Information System (INIS)

    Fidorra, J.; Booz, J.

    1978-01-01

    The local distribution of radiation quality (ysub(F), ysub(D)) of a collimated fast neutron beam from 14 MeV deuterons on Beryllium was studied with a spherical 1/2 inch EG and G proportional counter simulating a diameter of 2μm. The deuterons were accelerated by the compact cyclotron CV-28 of the Kernforschungsanlage Juelich. The collimator was constructed by the Cyclotron Corporation. The mean neutron energy was 6 MeV. The measurements were performed in air and in a water phantom at a target skin distance of 125 cm. The energy deposition spectra of fast neutrons obtained at various positions were separated into three components of different radiation quality: the gamma component, the recoil proton component, and the heavy ion component

  16. Coherent π{sup 0}-photoproduction on the deuteron near the η-production threshold including polarization observables

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Eed M., E-mail: eeddarwish@gmail.com [Physics Department, Faculty of Science, Sohag University, Sohag 82524 (Egypt); Physics Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, P.O. Box 30002 (Saudi Arabia); Al-Thoyaib, Suleiman S. [Physics Department, Faculty of Science, Qassim University, Buraydah 51452, P.O. Box 6644 (Saudi Arabia)

    2014-12-15

    Coherent π{sup 0}-photoproduction on the deuteron including polarization observables is studied in the energy region near the η-production threshold at backward center-of-mass angles of the outgoing pion. This work is motivated by the measurements of the CLAS Collaboration at Jefferson Lab, where a cusp-like structure in the energy dependence of the differential cross section has been observed at extremely backward pion angles. The present approach is based on the impulse approximation and first-order rescattering diagrams with intermediate production of both π- and η-mesons. Numerical results for unpolarized cross sections, the linear photon asymmetry (Σ), the vector (T{sub 11}) and tensor (T{sub 2M}, M=0, 1, 2) deuteron target asymmetries, and the double polarization E-asymmetry are predicted and compared with available experimental data and other theoretical models. The effect of first-order rescattering is found to be much larger in spin asymmetries than in the unpolarized cross sections. It reaches on average about 40% in the tensor target and E asymmetries. Compared to the experimental data from CLAS Collaboration, sizable discrepancies are found. This is not the case for the linear photon asymmetry, for which a better comparison with the data from YerPhI Collaboration is obtained.

  17. The spin-dependent structure function $g_{1}(x)$ of the deuteron from polarized deep-inelastic muon scattering

    CERN Document Server

    Adams, D; Adeva, B; Akdogan, T; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, Dimitri Yuri; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Frois, Bernard; Gallas, A; Garzón, J A; Gaussiran, T; Giorgi, M A; von Goeler, E; Gómez, F; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Kalinovskaya, L V; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Van Middelkoop, G; Miller, D; Mori, K; Moromisato, J H; Nagaitsev, A P; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Polec, J; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Pussieux, T; Pyrlik, J; Rädel, G; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schüler, K P; Seitz, R; Semertzidis, Y K; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Steigler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Tlaczala, W; Trentalange, S; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Yañez, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zhao, J

    1997-01-01

    We present a new measurement of the spin-dependent structure function $g_{1}^{\\rm d}$ of the deuteron from deep inelastic scattering of 190 GeV polarized muons on polarized deuterons. The results are combined with our previous measurements of $g_{1}^{\\rm d}$. A perturbative QCD evolution in next-to-leading order is used to compute $g_{1}^{\\rm d}(x)$ at a constant $Q^{2}$. At $Q^{2} = 10$ GeV$^{2}$, we obtain a first moment $\\Gamma_{1}^{\\rm d} = \\int_{0}^{1} g_{1}^{\\rm d}{\\rm d}x = 0.041 \\pm 0.008$, a flavour-singlet axial charge of the nucleon $a_{0} = 0.30 \\pm 0.08$, and an axial charge of the strange quark $a_{s} = -0.09 \\pm 0.03$. Using our earlier determination of $\\Gamma_{1}^{\\rm p}$, we obtain $\\Gamma_1^{\\rm p} - \\Gamma_1^{\\rm n} = 0.183 \\pm 0.035$ at $Q^2 = 10\\,\\mbox{GeV}^2$. This result is in agreement with the Bjorken sum rule which predicts $\\Gamma_1^{\\rm p} - \\Gamma_1^{\\rm n} = 0.186 \\pm 0.002$ at the same $Q^2$.

  18. Accelerating and storing polarized hadron beams

    International Nuclear Information System (INIS)

    Teng, L.C.

    1990-10-01

    Polarization hadron experiments at high energies continue to generate surprises. Many questions remain unanswered or unanswerable within the frame work of QCD. These include such basic questions as to why at high energies the polarization analyzing power in pp elastic scattering remains high, why hyperons are produced with high polarizations etc. It is, therefore, interesting to investigate the possibilities of accelerating and storing polarized beams in high energy colliders. On the technical side the recent understanding and confirmation of the actions of partial and multiple Siberian snakes made it possible to contemplate accelerating and storing polarized hadron beams to multi-TeV energies. In this paper, we will examine the equipment, the operation and the procedure required to obtain colliding beams of polarized protons at TeV energies

  19. Helicity dependence of the total inclusive cross section on the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Altieri, S. [INFN, Sezione di Pavia, I-27100 Pavia (Italy); Dipartimento di Fisica Nucleare e Teorica, Universita di Pavia, I-27100 Pavia (Italy); Annand, J.R.M. [Department of Physics and Astronomy, University of Glasgow (United Kingdom); Arends, H.-J.; Beck, R. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Blackston, M.A. [Department of Physics, Duke University, Durham, NC 27708 (United States); Braghieri, A. [INFN, Sezione di Pavia, I-27100 Pavia (Italy); D' Hose, N. [CEA Saclay, DSM/DAPNIA/SPhN, F-91191 Gif-sur-Yvette Cedex (France); Dutz, H. [Physikalisches Institut, Universitaet Bonn, D-53115 Bonn (Germany); Heid, E.; Jahn, O. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Klein, F. [Physikalisches Institut, Universitaet Bonn, D-53115 Bonn (Germany); Kondratiev, R. [INR, Academy of Science, Moscow (Russian Federation); Lang, M. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Lisin, V. [INR, Academy of Science, Moscow (Russian Federation); Martinez Fabregate, M. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); McGeorge, J.C. [Department of Physics and Astronomy, University of Glasgow (United Kingdom); Meyer, W. [Inst. fuer Experimentalphysik, Ruhr-Universitaet Bochum, D-44801 Bochum (Germany); Panzeri, A. [INFN, Sezione di Pavia, I-27100 Pavia (Italy); Dipartimento di Fisica Nucleare e Teorica, Universita di Pavia, I-27100 Pavia (Italy); Pedroni, P. [INFN, Sezione di Pavia, I-27100 Pavia (Italy)], E-mail: pedroni@pv.infn.it (and others)

    2009-03-02

    A measurement of the helicity dependence of the total inclusive photoabsorption cross section on the deuteron was carried out at MAMI (Mainz) in the energy range 200polarized tagged photon beam and a frozen spin target which provided longitudinally polarized deuterons. These new results are a significant improvement on the existing data and allow a detailed comparison with state-of-the-art calculations.

  20. Photofission of NAT Pt by monochromatic and polarized photons in the quasi-deuteron region

    International Nuclear Information System (INIS)

    Paiva, Eduardo de.

    1992-01-01

    The measurement of the Nat Pt photofission yield at 69 MeV of effective average energy of the incident photon is made using a polarized and monochromatic photon beam from the LADON system of the National Laboratory of Frascati, Italy, produced by inverse Compton scattering of laser light by high energy electrons of the ADONE Accelerator and using as fission track solid detector the Makrofol, being the developing made by usual procedure. The experimental value of the nuclear fissionability is compared to a theoretical value obtained following a model at two stages: in the first, the photon energy is absorbed by a neutron-proton pair inducing to the nucleus excitation, and in the second the nucleus de-excites due to the competition between nucleon evaporation and fission. The effect of fast nucleon emission during the first stage and the successive evaporation of neutrons in the second stage are considered. 40 refs, 12 figs, 9 tabs

  1. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.

    1984-01-01

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  2. Exclusive scattering off the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Amrath, D.

    2007-12-15

    Exclusive processes are a special class of processes giving insight into the inner structure of hadrons. In this thesis we consider two exclusive processes and compute their total cross sections as well as the beam charge and beam polarization asymmetries for different kinematical constraints. These calculations o er the opportunity to get access to the nonperturbative GPDs. Theoretically they can be described with the help of models. The rst process we investigate contains a GPD of the pion, which is basically unknown so far. We include different models and make predictions for observables that could in principle be measured at HERMES at DESY and CLAS at JLab. The second process we consider is electron-deuteron scattering in the kinematical range where the deuteron breaks up into a proton and a neutron. This can be used to investigate the neutron, which cannot be taken as a target due to its lifetime of approximately 15 minutes. For the calculation of the electron-deuteron cross section we implement models for the proton and neutron GPDs. Once there are experimental data available our calculations are ready for comparison. (orig.)

  3. The optics of secondary polarized proton beams

    International Nuclear Information System (INIS)

    Carey, D.C.

    1990-05-01

    Polarized protons can be produced by the parity-violating decay of either lambda or sigma hyperons. A secondary bema of polarized protons can then be produced without the difficult procedure of accelerating polarized protons. The preservation of the polarization while the protons are being transmitted to a final focus places stringent limitations on the optics of the beam line. The equations of motion of a polarized particle in a magnetic field have been solved to first order for quadrupole and dipole magnets. The lowest order terms indicate that the polarization vector will be restored to its original direction upon passage through a magnetic system if the momentum vector is unaltered. Higher-order terms may be derived by an expansion in commutators of the rotation matrix and its longitudinal derivative. The higher-order polarization rotation terms then arise from the non-commutivity of the rotation matrices by large angles in three-dimensional space. 5 refs., 3 figs

  4. Cross section asymmetry of deuteron photodesintegration reaction with polarized gamma quanta

    International Nuclear Information System (INIS)

    Gorbenko, V.G.; Zhebrovskij, Yu.V.; Kolesnikov, L.Ya.; Rubashkin, A.L.; Sorokin, P.V.

    1982-01-01

    The parameters of the reaction cross section asymmetry are determined to investigate the γ+d → n+p reaction. The measurements are exercised on a beam of linearly polarized photons of a linear 2 GeV electron accelerator by means of two magnetic spectrometers in the Esub(γ)=80-600 MeV energy range for 75-105 deg angles of proton escape in scm. The flowsheet of an experimental facility is presented. Technique of the experiment execution is presented. The obtained values of the cross section asymmetry parameter are presented in the table form for the 75, 90, 105, 120, 135, 150 deg angles. Calculation of the differential cross sections is carried out in pulse approximation. Energy Dependence and angutar distribUtions of the cross section asymmetry parameter of the investigated reaction are presented graphically. The obtained results are compared with the present experimental and theoretical data at 80 and 300 MeV photon energy. The comparison has revealed that none of the calculation methods is more preferable as well as no simple conclusion can be made on the existence of dibarin resonances

  5. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  6. A variable partially polarizing beam splitter

    Science.gov (United States)

    Flórez, Jefferson; Carlson, Nathan J.; Nacke, Codey H.; Giner, Lambert; Lundeen, Jeff S.

    2018-02-01

    We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.

  7. Phenomenology of the deuteron electromagnetic form factors

    International Nuclear Information System (INIS)

    David Abbott; Abdellah Ahmidouch; H. Anklin; J. Arvieux; James P. Ball; Shelton Beedoe; Elizabeth Beise; Louis Bimbot; Werner Boeglin; Herbert Breuer; Roger Carlini; Nicholas Chant; Samuel Danagoulian; K. Dow; Jean-Eric Ducret; Jim Dunne; Lars Ewell; L. Eyraud; C. Furget; Michel Garcon; Ron Gilman; Charles Glashausser; Paul Gueye; Kenneth Gustafsson; Kawtar Hafidi; A. Honegger; J. Jourdan; Serge Kox; Gerfried Kumbartzki; L. Lu; Allison Lung; Pete Markowitz; Justin McIntyre; David Meekins; F. Merchez; Joseph Mitchell; R. Mohring; S. Mtingwa; H. Mrktchyan; D. Pitz; Liming Qin; Ronald Ransome; J.-S. R'eal; Philip Roos; Paul Rutt; Reyad Sawafta; Stepan Stepanyan; Raphael Tieulent; E. Tomasi-Gustafsson; William Turchinetz; K. Vansyoc; J. Volmer; E. Voutier; Claude Williamson; Stephen Wood; Chen Yan; Jianguo Zhao; W. Zhao

    2000-01-01

    A rigorous extraction of the deuteron charge form factors from tensor polarization data in elastic electron-deuteron scattering, at given values of the 4-momentum transfer, is presented. Then the world data for elastic electron-deuteron scattering is used to parameterize, in three different ways, the three electromagnetic form factors of the deuteron in the 4-momentum transfer range 0-7 fm. This procedure is made possible with the advent of recent polarization measurements. The parameterizations allow a phenomenological characterization of the deuteron electromagnetic structure. They can be used to remove ambiguities in the form factors extraction from future polarization data

  8. Investigation of the 27Al(d,x24Na nuclear reaction for deuteron beam monitoring purpose

    Directory of Open Access Journals (Sweden)

    Khandaker Mayeen Uddin

    2017-01-01

    Full Text Available Activation cross-sections for the 27Al(d,x24Na nuclear reaction was measured by using a stacked-foil activation technique combined with high purity germanium (HPGe γ-ray spectrometry over deuteron energy range of 2–24 MeV. Measured data were critically compared with the available literature data and also with the theoretical data extracted from the TENDL data base. Accuracy of the 27Al(d,x24Na cross-sections were confirmed by the simultaneous measurements of the natTi(d,x48V monitor reaction cross-sections. Present results reproduced well the IAEA recommended natTi(d,x48V reaction cross-sections, but provide slight deviation with the IAEA recommended 27Al(d,x24Na cross-sections. It may be concluded that the use of 27Al(d,x24Na in deuteron beam monitoring should not be a perfect choice if one has the option to use the natTi(d,x48V reaction.

  9. Energy behaviour of neutrons generated by Witch-type distributed axi-symmetrical deuteron beams accelerated onto plane tritium targets

    International Nuclear Information System (INIS)

    Timus, D.M.; Bradley, D.A.; Timus, B.D.; Kalla, S.L.; Srivastava, H.M.

    2000-01-01

    This paper is an analytical study of the spatial dependency of the d-T neutron energy in the vicinity of a homogeneous tritium-occluded plane target. Close to the target, and along the path of incidence of axially symmetric deuteron beams, the transverse density of accelerated deuterons is assumed to be governed by a law approximated by the 'Witch' function. In particular circumstances, the elementary neutron emission process in non-dispersive media can be considered to be omni-directional (due consideration being paid to collision kinetics, depending upon mass and kinetic energy of particles involved in the nuclear collision, nuclear reaction energy, etc.). Consequently, analytical expressions can be considerably simplified. By applying the classical kinetic energy and momentum conservation laws to nuclear processes, a theoretical description is obtained, taking into account the exoergic character of d-T fusion reaction. A number of expressions for energetic prediction of the fast neutron field are proposed. The associated relations, involving elementary functions, can be investigated using a desk-top computer. Computationally tractable tools are of importance in the study of diverse situations such as induced reactions and activation analysis using 14 MeV neutron generators, investigations in health-physics, radiation dose measurements, nuclear medicine, damage effects, and simulation studies

  10. Complete Set of Deuteron Analyzing Powers for dp Elastic Scattering at 250 MeV/nucleon and Three Nucleon Forces

    Directory of Open Access Journals (Sweden)

    Shimizu Y.

    2010-04-01

    Full Text Available Measurements of a complete set of deuteron analyzing powers (iT11, T20, T21, T22 for elastic deuteron–proton scattering at 250 MeV/nucleon have been performed with polarized deuteron beams at RIKEN RI Beam Factory. The obtained data are compared with the Faddeev calculations based on the modern nucleon–nucleon forces together with the Tucson-Melbourne’99, and UrbanaIX three nucleon forces.

  11. Cylindrically polarized Bessel–Gauss beams

    International Nuclear Information System (INIS)

    Madhi, Daena; Aiello, Andrea; Ornigotti, Marco

    2015-01-01

    We present a study of radially and azimuthally polarized Bessel–Gauss (BG) beams in both the paraxial and nonparaxial regime. We discuss the validity of the paraxial approximation and the form of the nonparaxial corrections for BG beams. We show that independently on the ratio between the Bessel aperture cone angle ϑ 0 and the Gaussian beam divergence θ 0 , the nonparaxial corrections are alway very small and therefore negligible. The explicit expressions for the nonparaxial vector electric field components are also reported. (paper)

  12. POMME: A medium energy deuteron polarimeter based on semi-inclusive d-carbon scattering

    International Nuclear Information System (INIS)

    Bonin, B.; Boudard, A.; Fanet, H.; Fergerson, R.W.; Garcon, M.; Giorgetti, C.; Habault, J.; Le Meur, J.; Lombard, R.M.; Lugol, J.C.; Mayer, B.; Mouly, J.P.; Tomasi-Gustafsson, E.; Morlet, M.; Wiele, J. van de; Willis, A.; Greeniaus, G.; British Columbia Univ., Vancouver; Gaillard, G.; Markowitz, P.; Perdrisat, C.F.; Abegg, R.; Hutcheon, D.A.

    1990-01-01

    POMME is the first calibrated deuteron polarimeter using a d + carbon semi-inclusive scattering reaction. We present the results of its calibration in the region T d =150-700 MeV, with the polarized deuteron beam from the synchrotron Saturne. A parametrization of the measured analyzing powers, and a discussion of the obtained efficiency and figure of merit are also given. (orig.)

  13. Dynamic Isovector Reorientation of Deuteron as a Probe to Nuclear Symmetry Energy.

    Science.gov (United States)

    Ou, Li; Xiao, Zhigang; Yi, Han; Wang, Ning; Liu, Min; Tian, Junlong

    2015-11-20

    We present the calculations on a novel reorientation effect of deuteron attributed to isovector interaction in the nuclear field of heavy target nuclei. The correlation angle determined by the relative momentum vector of the proton and the neutron originating from the breakup deuteron, which is experimentally detectable, exhibits significant dependence on the isovector nuclear potential but is robust against the variation of the isoscaler sector. In terms of sensitivity and cleanness, the breakup reactions induced by the polarized deuteron beam at about 100 MeV/u provide a more stringent constraint to the symmetry energy at subsaturation densities.

  14. Polarized proton beam for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in the past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.

  15. Adiabatic/diabatic polarization beam splitter

    Energy Technology Data Exchange (ETDEWEB)

    DeRose, Christopher; Cai, Hong

    2017-09-12

    The various presented herein relate to an on-chip polarization beam splitter (PBS), which is adiabatic for the transverse magnetic (TM) mode and diabatic for the transverse electric (TE) mode. The PBS comprises a through waveguide and a cross waveguide, wherein an electromagnetic beam comprising TE mode and TM mode components is applied to an input port of the through waveguide. The PBS can be utilized to separate the TE mode component from the TM mode component, wherein the TE mode component exits the PBS via an output port of the through waveguide, and the TM mode component exits the PBS via an output port of the cross waveguide. The PBS has a structure that is tolerant to manufacturing variations and exhibits high polarization extinction ratios over a wide bandwidth.

  16. Upgrading the AGS polarized beam facility

    International Nuclear Information System (INIS)

    Ratner, L.G.

    1991-01-01

    Although present techniques for crossing depolarizing resonances in circular accelerators work, they are very time-consuming to implement and were only able to provide about a 40% polarized beam at 22 GeV in the Alternating Gradient Synchrotron (AGS). We propose to install a partial ''Siberian Snake'' solenoid in the AGS to eliminate the need to correct imperfection resonances and to make other modifications in our intrinsic resonance correctors. This will allow us to reach an energy of 25 GeV with 70% polarization and will enable the AGS to be an efficient injector of polarized protons into the Relativistic Heavy Ion Collider (RHIC), as well as being able to carry on a fixed-target program with minimum set-up time. 3 refs., 5 figs., 1 tab

  17. Polarization of a stored electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.

    1981-07-01

    Synchrotron radiation by a point charge is a familiar subject in classical electrodynamics. Perhaps less familiar are some quantum mechanical corrections to the classical results. Some of those quantum aspects of synchrotron radiation are described. One of the quantum effects leads to the expectation that electrons in a storage ring will polarize themselves to 92% - a surprisingly high value. A semi-classical derivation of the quantum effects is given. An effort has been made to minimize the need of using quantum mechanics. Results are put together to derive a final expression of beam polarization. Conditions under which the expected 92% polarization is destroyed are found and attributed to depolarization resonances. The various depolarization mechanisms are first illustrated by an idealized example and then systematically treated by a matrix formalism. It is shown that the strength of depolarization is specified by a key quantity called the spin chromaticity. Finally as an application of the obtained results, an estimate of the achievable level of beam polarization for two existing electron storage rings, SPEAR and PEP, is given.

  18. Spin observables for pion photoproduction on the deuteron in the {delta}(1232)-resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Eed M [Physics Department, Faculty of Science, South Valley University, Sohag 82524 (Egypt)

    2005-02-01

    Spin observables for the three charge states of the pion for the pion photoproduction reaction on the deuteron, {gamma}d {yields} {pi}NN, with polarized photon beam and/or oriented deuteron target are predicted. For the beam-target double-spin asymmetries, it is found that only the longitudinal asymmetries T{sup l}{sub 20} and T{sup l}{sub 2{+-}}{sub 2} do not vanish, whereas all the circular and the other longitudinal asymmetries do vanish. The sensitivity of spin observables to the model deuteron wavefunction is investigated. It has been found that only T{sub 21} and T{sub 22} are sensitive to the model deuteron wavefunction, in particular in the case of {pi}{sup 0}-production above the {delta}-region, and that other asymmetries are not.

  19. Nucleon and Deuteron Form Factors from BLAST

    International Nuclear Information System (INIS)

    Hasell, D. K.

    2009-01-01

    The BLAST experiment was designed to study in a systematic manner the spin-dependent, electromagnetic interaction on hydrogen and deuterium. Measuring only asymmetries in electron scattering with respect to the beam helicity, target spin, or both; the BLAST experiment was able to extract information on nucleon and deuteron form factors independent of beam intensity or target density. By further forming 'super-ratios' of asymmetries, measurements were possible independent of beam and target polarization thus reducing uncertainties due to these quantities as well. Some of the form factor results from BLAST will be briefly presented here. Also, in response to observed discrepancies between polarization measurements and those obtained using traditional Rosenbluth separation techniques a proposed experiment, OLYMPUS, which will use the BLAST detector to measure the two photon contribution to elastic electron scattering will also be presented.

  20. Accelerating polarized beams at the AGS

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the presence of numerous depolarizing resonances. During acceleration, a depolarizing resonance is crossed whenever the spin precession frequency equals the frequency with which spin-perturbing magnetic fields are encountered. There are two main types of depolarizing resonances corresponding to the possible sources of such fields: imperfection resonances, which are driven by magnet errors and misalignments, and intrinsic resonances, driven by the focusing fields. The resonance conditions are usually expressed in terms of the spin tune ν s , which is defined as the number of spin precessions per revolution. For an ideal planar accelerator, where orbiting particles experience only the vertical guide field, the spin tune is equal to Gγ, where G = 1.7928 is the anomalous magnetic moment of the proton and γ is the relativistic Lorentz factor. The resonance condition for imperfection depolarizing resonances arise when ν s = Gγ = n, where n is an integer. Imperfection resonances are therefore separated by only 523 MeV energy steps. The condition for intrinsic resonances is ν s = Gγ = kP ± ν y , where k is an integer, ν y is the vertical betatron tune and P is the superperiodicity. For the AGS, P = 12 and ν y ∼ 8.8. For most of the time during the acceleration cycle, the precession direction, or stable spin direction, coincides with the main vertical magnetic field. Close to a resonance, the stable spin direction is perturbed away from the vertical direction by the resonance driving fields. When a polarized beam is accelerated through an isolated resonance, the final polarization can be calculated analytically

  1. Memory testing with Saturne synchrotron beams. Experiments with protons and deuterons

    International Nuclear Information System (INIS)

    Buisson, J.

    1989-01-01

    For simulate light ions of the cosmic rays CEA will use facilities used in fundamental physic research. SATURNE is a synchrotron especially designed to accelerate light particles, for example protons with energy up to 2.9 GeV. Two experiments are made on SATURNE to specify the beam characteristics (energy and intensity) and to adapt the beam for irradiation of electronic components. During these preliminary experimentation memories and microprocessors was tested. The results of the tests (cross-section) are given in this paper [fr

  2. Preliminary results on neutron production from a Pb/U target irradiated by deuteron beam at 1.25 GeV/amu

    International Nuclear Information System (INIS)

    Fragopoulou, M.; Manolopoulou, M.; Jokic, S.; Zamani, M.; Krivopustov, M.; Sosnin, A.; Stoulos, S.

    2008-01-01

    A spallation neutron source consisted of a cylindrical Pb target and surrounded by uranium blanket was irradiated by deuteron beam 1.25 GeV/amu provided from the Nuclotron accelerator at High Energy Laboratory, JINR, Dubna. For radiation protection purpose a polyethylene shielding was placed around the spallation neutron source. Neutron distributions along the surface of the U-blanket were measured by using solid state nuclear track detectors (SSNTDs) as particle and fission detectors. The neutron distributions appear to be similar to those obtained by proton irradiations. Applying a fitting procedure to the experimental data the inelastic cross section of deuteron in Pb was estimated. The escaping neutron distribution from the polyethylene shielding and parallel to the target was also measured and presented to be two orders of magnitude less than that over the U-blanket surface

  3. Polarization coupling of vector Bessel–Gaussian beams

    International Nuclear Information System (INIS)

    Takeuchi, Ryushi; Kozawa, Yuichi; Sato, Shunichi

    2013-01-01

    We report polarization coupling of radial and azimuthal electric field components of a vector light beam as predicted by the fact that the vector Helmholtz equation is expressed as coupled differential equations in cylindrical coordinates. To clearly observe the polarization variation of a beam as it propagates, higher order transverse modes of a vector Bessel–Gaussian beam were generated by a gain distribution modulation technique, which created a narrow ring-shaped gain region in a Nd:YVO 4 crystal. The polarization coupling was confirmed by the observation that the major polarization component of a vector Bessel–Gaussian beam alternates between radial and azimuthal components along with the propagation. (paper)

  4. Study By Spin Tracking of A Storage Ring For Deuteron Electric Dipole Moment

    International Nuclear Information System (INIS)

    Lin, F.; Malitsky, N. D.; Luccio, A. U.; Morse, W. M.; Semertzidis, Y. K.; Onderwater, C. J. G.; Orlov, Y. F.

    2009-01-01

    Spin tracking of polarized deuterons for a proposed experiment to measure a possible Electric Dipole Moment (EDM) of the deuteron was done by using the codes UAL and SPINK. In the experiment the direction of spin polarization will be frozen using crossed electric and magnetic fields. Systematics, in particular the effects of non-linearities of the lattice on a beam with finite emittance and energy spread, have been extensively simulated and the effect of sextuple corrections to increase the spin coherence time has been studied.

  5. Deuteron interaction with 124Sn nuclei at sub-barrier energies

    Directory of Open Access Journals (Sweden)

    Yu.N. Pavlenko

    2015-04-01

    Full Text Available The measurements of cross sections for deuteron elastic scattering and (d,p reaction on 124Sn nuclei have been performed with aim to study the features of sub-barrier deuteron interaction with heavy nuclei. Experimental data were obtained on the electrostatic Tandem accelerator EGP-10K of the Institute for Nuclear Research (Kyiv at the deuteron beam energies Ed = 4.0; 5.0 and 5.5 MeV. Cross sections of deuteron elastic scattering were calculated in approach where the deuteron interaction potential with heavy nuclei at sub-barrier energies has been constructed in the framework of single folding model using the complex dynamic polarization potential. It is shown that the account of finite deuteron size leads to the increasing the nuclear potential in outer region of interaction and significantly improves the description of the experimental data. The calculations of elastic scattering cross sections were performed without any variations of the nuclear potential parameters. The analysis of measured integral cross sections of the 124Sn(d,p reaction and calculated cross sections of deuteron breakup reaction 124Sn(d,pn124Sn shows the dominant contribution of the neutron transfer reaction in the processes of the formation of protons and elastic scattering cross sections.

  6. Plasma focus neutron anisotropy measurements and influence of a deuteron beam obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Talebitaher, A. [Physics Department, University of Regina, Saskatchewan, Canada S4S 0A2 (Canada); Springham, S.V., E-mail: stuart.springham@nie.edu.sg [Natural Sciences and Science Education, National Institute of Education, 637616 (Singapore); Rawat, R.S.; Lee, P. [Natural Sciences and Science Education, National Institute of Education, 637616 (Singapore)

    2017-03-11

    The deuterium-deuterium (DD) fusion neutron yield and anisotropy were measured on a shot-to-shot basis for the NX2 plasma focus (PF) device using two beryllium fast-neutron activation detectors at 0° and 90° to the PF axis. Measurements were performed for deuterium gas pressures in the range 6–16 mbar, and positive correlations between neutron yield and anisotropy were observed at all pressures. Subsequently, at one deuterium gas pressure (13 mbar), the contribution to the fusion yield produced by the forwardly-directed D{sup +} ion beam, emitted from the plasma pinch, was investigated by using a circular Pyrex plate to obstruct the beam and suppress its fusion contribution. Neutron measurements were performed with the obstacle positioned at two distances from the anode tip, and also without the obstacle. It was found that ~ 80% of the neutron yield originates in the plasma pinch column and just above that. In addition, proton pinhole imaging was performed from the 0° and 90° directions to the pinch. The obtained proton images are consistent with the conclusion that DD fusion is concentrated (~ 80%) in the pinch column region.

  7. Deuteron transverse densities in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Chakrabarti, Dipankar [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Zhao, Xingbo [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2017-05-15

    We investigate the transverse charge density in the longitudinally as well as transversely polarized deuteron using the recent empirical description of the deuteron electromagnetic form factors in the framework of holographic QCD. The predictions of the holographic QCD are compared with the results of a standard phenomenological parameterization. In addition, we evaluate GPDs and the gravitational form factors for the deuteron. The longitudinal momentum densities are also investigated in the transverse plane. (orig.)

  8. A polarized beam for the M-3 line

    International Nuclear Information System (INIS)

    Underwood, D.; Colton, E.; Halpern, H.

    1978-01-01

    A beamline is proposed for polarized protons to be built in the M-3 line of the Meson Laboratory utilizing lambda decays. This beamline would provide a clean source of polarized protons or an enriched beam of antiprotons or polarized antiprotons

  9. Functionalized liquid crystal polymers generate optical and polarization vortex beams

    Science.gov (United States)

    Sakamoto, Moritsugu; Nakamoto, Yuki; Tien, Tran Minh; Kawai, Kotaro; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2017-08-01

    In recent year, optical and polarization vortex (OV and PV) beams, which has phase and polarization singularities, have much-attracted attention in various research fields due to their unique physical properties. In this presentation, we report our attempts for the vortex beam generation based on the photo-alignment technique of functionalized liquid crystal polymers. The OV and PV beam generations are respectively demonstrated by using azo-dye-doped liquid crystal polymers and photocrosslinkable polymer liquid crystal. Our approaches realize highly functionalized vortex beam generators which are expected to evolve the photonics applications of vortex beams.

  10. Cold guided beams of polar molecules

    International Nuclear Information System (INIS)

    Motsch, Michael

    2010-01-01

    This thesis reports on experiments characterizing cold guided beams of polar molecules which are produced by electrostatic velocity filtering. This filtering method exploits the interaction between the polar molecules and the electric field provided by an electrostatic quadrupole guide to extract efficiently the slow molecules from a thermal reservoir. For molecules with large and linear Stark shifts such as deuterated ammonia (ND 3 ) or formaldehyde (H 2 CO), fluxes of guided molecules of 10 10 -10 11 molecules/s are produced. The velocities of the molecules in these beams are in the range of 10-200 m/s and correspond to typical translational temperatures of a few Kelvin. The maximum velocity of the guided molecules depends on the Stark shift, the molecular mass, the geometry of the guide, and the applied electrode voltage. Although the source is operated in the near-effusive regime, the number density of the slowest molecules is sensitive to collisions. A theoretical model, taking into account this velocity-dependent collisional loss of molecules in the vicinity of the nozzle, reproduces the density of the guided molecules over a wide pressure range. A careful adjustment of pressure allows an increase in the total number of molecules, whilst yet minimizing losses due to collisions of the sought-for slow molecules. This is an important issue for future applications. Electrostatic velocity filtering is suited for different molecular species. This is demonstrated by producing cold guided beams of the water isotopologs H 2 O, D 2 O, and HDO. Although these are chemically similar, they show linear and quadratic Stark shifts, respectively, when exposed to external electric fields. As a result, the flux of HDO is larger by one order of magnitude, and the flux of the individual isotopologs shows a characteristic dependence on the guiding electric field. The internal-state distribution of guided molecules is studied with a newly developed diagnostic method: depletion

  11. Investigation of Beam Emittance and Beam Transport Line Optics on Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew [Northern Illinois U.; Syphers, Michael [Fermilab

    2017-10-06

    Effects of beam emittance, energy spread, optical parameters and magnet misalignment on beam polarization through particle transport systems are investigated. Particular emphasis will be placed on the beam lines being used at Fermilab for the development of the muon beam for the Muon g-2 experiment, including comparisons with the natural polarization resulting from pion decay, and comments on the development of systematic correlations among phase space variables.

  12. Polarization-beam-splitter-less integrated dual-polarization coherent receiver.

    Science.gov (United States)

    Alonso-Ramos, C; Reyes-Iglesias, P J; Ortega-Moñux, A; Pérez-Galacho, D; Halir, R; Molina-Fernández, I

    2014-08-01

    Conventional dual-polarization coherent receivers require polarization beam splitters for either the signal or the local oscillator path. This severely hinders monolithic integration, since integrated polarization splitting devices often exhibit stringent fabrication tolerances. Here we propose a dual-polarization monolithically integrated coherent receiver architecture that completely avoids the use of polarization splitting elements. Polarization management is instead achieved by adequately engineering the birefringence of the interconnecting waveguides. The resultant receiver is highly tolerant to fabrication deviations and thus offers a completely new route for monolithic integration of dual-polarization receivers without any type of active tuning.

  13. Polarizing a stored proton beam by spin-flip?

    Energy Technology Data Exchange (ETDEWEB)

    Oellers, Dieter Gerd Christian

    2010-04-15

    The present thesis discusses the extraction of the electron-proton spin-flip cross-section. The experimental setup, the data analysis and the results are pictured in detail. The proton is described by a QCD-based parton model. In leading twist three functions are needed. The quark distribution, the helicity distribution and the transversity distribution. While the first two are well-known, the transversity distribution is largely unknown. A self-sufficient measurement of the transversity is possible in double polarized proton-antiproton scattering. This rises the need of a polarized antiproton beam. So far spin filtering is the only tested method to produce a polarized proton beam, which may be capable to hold also for antiprotons. In-situ polarization build-up of a stored beam either by selective removal or by spin-flip of a spin-(1)/(2) beam is mathematically described. A high spin-flip cross-section would create an effective method to produce a polarized antiproton beam by polarized positrons. Prompted by conflicting calculations, a measurement of the spin-flip cross-section in low-energy electron-proton scattering was carried out. This experiment uses the electron beam of the electron cooler at COSY as an electron target. The depolarization of the stored proton beam is detected. An overview of the experiment is followed by detailed descriptions of the cycle setup, of the electron target and the ANKE silicon tracking telescopes acting as a beam polarimeter. Elastic protondeuteron scattering is the analyzing reaction. The event selection is depicted and the beam polarization is calculated. Upper limits of the two electron-proton spin-flip cross-sections {sigma} {sub parallel} and {sigma} {sub perpendicular} {sub to} are deduced using the likelihood method. (orig.)

  14. High energy physics with polarized beams and targets. [65 papers

    Energy Technology Data Exchange (ETDEWEB)

    Marshak, M L [ed.

    1976-01-01

    Sixty-six papers are presented as a report on conference sessions held from August 23-27, 1976, at Argonne National Laboratory. Topics covered include: (1) strong interactions; (2) weak and electromagnetic interactions; (3) polarized beams; and (4) polarized targets. A separate abstract was prepared for each paper for ERDA Energy Research Abstracts (ERA) and for the INIS Atomindex. (PMA)

  15. Towards High Precision Deuteron Polarimetry

    NARCIS (Netherlands)

    da Silva e Silva, M.; Crabb, DG; Day, DB; Liuti, S; Zheng,; Poelker, M; Prok, Y

    2009-01-01

    A finite electric dipole moment (EDM) in any fundamental system would constitute a signal for new physics. The deuteron presents itself as an optimal candidate both experimentally and theoretically. A new storage ring technique is being developed for which a small change in the vertical polarization

  16. Generation and propagation of radially polarized beams in optical fibers

    DEFF Research Database (Denmark)

    Ramachandran, Siddharth; Kristensen, P; Yan, M F

    2009-01-01

    Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even...

  17. Study and production of polarized monochromatic thermal neutron beams

    International Nuclear Information System (INIS)

    Beiln, H.

    1963-06-01

    Results obtained with a recently built neutron spectrometer producing monochromatic polarized neutron beams,in the energy rang (10 -3 - 10) eV and using a series of artificial (Co: 92 per cent - Fe: 8 per cent) monocrystal as polarizers and analysers, are given. A high precision method for cutting monocrystals is explained. A description of the installation itself as well as some results obtained with Fe 3 O 4 crystals are also given. Experimental result pertaining to various magnetic guide and 'spin flip' system, as required in the handling of such polarized neutron beams, are also discussed. (author) [fr

  18. Inverse design engineering of all-silicon polarization beam splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Sigmund, Ole

    2016-01-01

    Utilizing the inverse design engineering method of topology optimization, we have realized high-performing all-silicon ultra-compact polarization beam splitters. We show that the device footprint of the polarization beam splitter can be as compact as similar to 2 µm2 while performing experimentally...... with a polarization splitting loss lower than similar to 0.82 dB and an extinction ratio larger than similar to 15 dB in the C-band. We investigate the device performance as a function of the device length and find a lower length above which the performance only increases incrementally. Imposing a minimum feature...

  19. Polarization of a stored beam by spin-filtering

    Energy Technology Data Exchange (ETDEWEB)

    Augustyniak, W. [National Centre for Nuclear Research, 00681 Warsaw (Poland); Barion, L. [Universita di Ferrara and INFN, 44122 Ferrara (Italy); Barsov, S. [St. Petersburg Nuclear Physics Institute, 188350 Gatchina (Russian Federation); Bechstedt, U. [Institut fuer Kernphysik, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Juelich Center for Hadron Physics, 52425 Juelich (Germany); Benati, P.; Bertelli, S.; Carassiti, V. [Universita di Ferrara and INFN, 44122 Ferrara (Italy); Chiladze, D. [High Energy Physics Institute, Tbilisi State University, 0186 Tbilisi, Georgia (United States); Ciullo, G.; Contalbrigo, M.; Dalpiaz, P.F. [Universita di Ferrara and INFN, 44122 Ferrara (Italy); Dymov, S. [Physikalische Institute II, Universitaet Erlangen-Nuernberg, 91058 Erlangen (Germany); Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Engels, R. [Institut fuer Kernphysik, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Juelich Center for Hadron Physics, 52425 Juelich (Germany); Erwen, W. [Juelich Center for Hadron Physics, 52425 Juelich (Germany); Zentralinstitut fuer Elektronik, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Fiorini, M. [Universita di Ferrara and INFN, 44122 Ferrara (Italy); and others

    2012-11-15

    The PAX Collaboration has successfully performed a spin-filtering experiment with protons at the COSY-ring. The measurement allowed the determination of the spin-dependent polarizing cross section, that compares well with the theoretical prediction from the nucleon-nucleon potential. The test confirms that spin-filtering can be adopted as a method to polarize a stored beam and that the present interpretation of the mechanism in terms of the proton-proton interaction is correct. The outcome of the experiment is of utmost importance in view of the possible application of the method to polarize a beam of stored antiprotons.

  20. Measurement of the vector np → dπ{sup 0}π{sup 0} reaction with polarized beam in the region of the d*(2380) resonance

    Energy Technology Data Exchange (ETDEWEB)

    Adlarson, P.; Calen, H.; Fransson, K.; Gullstroem, C.O.; Heijkenskjoeld, L.; Johansson, T.; Marciniewski, P.; Wolke, M.; Zlomanczuk, J. [Uppsala University, Division of Nuclear Physics, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); Augustyniak, W.; Marianski, B.; Morsch, H.P.; Trzcinski, A.; Zupranski, P. [National Centre for Nuclear Research, Department of Nuclear Physics, Warsaw (Poland); Bardan, W.; Ciepal, I.; Czerwinski, E.; Jarczyk, L.; Kamys, B.; Khatri, G.; Kistryn, S.; Krzemien, W.; Magiera, A.; Moskal, P.; Rudy, Z.; Rundel, O.; Schaetti-Ozerianska, I.; Skurzok, M.; Smyrski, J.; Wronska, A.; Zielinski, M.J. [Jagiellonian University, Institute of Physics, Krakow (Poland); Bashkanov, M. [University of Edinburgh, James Clerk Maxwell Building, School of Physics and Astronomy, Edinburgh (United Kingdom); Eberhard-Karls-Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Bergmann, F.S.; Demmich, K.; Huesken, N.; Khoukaz, A.; Sitterberg, K.; Taeschner, A. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Berlowski, M.; Stepaniak, J. [National Centre for Nuclear Research, High Energy Physics Department, Warsaw (Poland); Bhatt, H.; Varma, R. [Indian Institute of Technology Bombay, Department of Physics, Powai, Maharashtra (India); Bondar, A.; Kuzmin, A.; Shwartz, B. [Budker Institute of Nuclear Physics of SB RAS, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Buescher, M.; Engels, R.; Goldenbaum, F.; Hejny, V.; Khan, F.A.; Lersch, D.; Lorentz, B.; Ohm, H.; Prasuhn, D.; Schadmand, S.; Sefzick, T.; Serdyuk, V.; Stassen, R.; Sterzenbach, G.; Stockhorst, H.; Zurek, M. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Clement, H. [Eberhard-Karls-Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); University of Tuebingen, Kepler Center for Astro- and Particle Physics, Tuebingen (Germany); Erven, A.; Erven, W.; Kemmerling, G.; Kleines, H.; Wuestner, P. [Forschungszentrum Juelich, Zentralinstitut fuer Engineering, Elektronik und Analytik, Juelich (Germany); Eyrich, W.; Zink, A. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Fedorets, P. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Foehl, K. [Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Goswami, A.; Roy, A. [Indian Institute of Technology Indore, Department of Physics, Indore, Madhya Pradesh (India); Grigoryev, K. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Petersburg Nuclear Physics Institute, High Energy Physics Division, Gatchina, Leningrad district (Russian Federation); Kirillov, D.A.; Piskunov, N.M. [Joint Institute for Nuclear Physics, Veksler and Baldin Laboratory of High Energiy Physics, Dubna, Moscow region (Russian Federation); Klos, B.; Stephan, E. [University of Silesia, August Chelkowski Institute of Physics, Katowice (Poland); Kulessa, P.; Pysz, K.; Siudak, R.; Szczurek, A. [Polish Academy of Sciences, The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Kupsc, A.; Pszczel, D. [Uppsala University, Division of Nuclear Physics, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); National Centre for Nuclear Research, High Energy Physics Department, Warsaw (Poland); Lalwani, K. [Malaviya National Institute of Technology Jaipur, JLN Marg, Department of Physics, Jaipur, Rajasthan (India); Maier, R.; Stroeher, H. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forschungszentrum Juelich, JARA-FAME, Juelich Aachen Research Alliance, Juelich (Germany); RWTH Aachen, Aachen (Germany); Perez del Rio, E. [Eberhard-Karls-Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Pyszniak, A. [Uppsala University, Division of Nuclear Physics, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); Jagiellonian University, Institute of Physics, Krakow (PL); Ritman, J. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (DE); Forschungszentrum Juelich, JARA-FAME, Juelich Aachen Research Alliance, Juelich (DE); RWTH Aachen, Aachen (DE); Ruhr-Universitaet Bochum, Institut fuer Experimentalphysik I, Bochum (DE); Sawant, S. [Indian Institute of Technology Bombay, Department of Physics, Powai, Maharashtra (IN); Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (DE); Skorodko, T. [Eberhard-Karls-Universitaet Tuebingen, Physikalisches Institut, Tuebingen (DE); University of Tuebingen, Kepler Center for Astro- and Particle Physics, Tuebingen (DE); Tomsk State University, Department of Physics, Tomsk (RU); Sopov, V. [State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics, Moscow (RU); Yamamoto, A. [High Energy Accelerator Research Organisation KEK, Tsukuba, Ibaraki (JP); Zabierowski, J. [National Centre for Nuclear Research, Department of Astrophysics, Lodz (PL); Collaboration: WASA-at-COSY Collaboration

    2016-05-15

    We report on a high-statistics measurement of the most basic double-pionic fusion reaction vector np→dπ{sup 0}π{sup 0} over the energy region of the d*(2380) resonance by use of a polarized deuteron beam and observing the double fusion reaction in the quasifree scattering mode. The measurements were performed with the WASA detector setup at COSY. The data reveal substantial analyzing powers and confirm conclusions about the d* resonance obtained from unpolarized measurements. We also confirm the previous unpolarized data obtained under complementary kinematic conditions. (orig.)

  1. Nuclear spin polarized alkali beams (Na, Li): Optical pumping with electro-optically modulated laser beam

    International Nuclear Information System (INIS)

    Reich, H.; Jaensch, H.J.

    1990-01-01

    An improvement of the Heidelberg source for polarized heavy ions (PSI) is described. To produce a nuclear spin polarized atomic Na beam an electro-optically modulated laser beam has been used for optical pumping. An electro-optic modulator (EOM) was constructed with a bandwidth of 1.8 GHz. Without a spin separating Stern-Gerlach magnet it is now possible to prepare a Na atomic beam in one single hyperfine magnetic substate. Thus the beam figure of merit (polarization 2 x intensity of the beam) has been improved by a factor of 4 as compared to the previous setup. Experiences with the new system collected from several beam times are discussed. (orig.)

  2. Operation of the AGS polarized beam

    International Nuclear Information System (INIS)

    Ahrens, L.A.

    1988-01-01

    A polarized proton physics run took place during January, 1988, at the Brookhaven AGS. It is the purpose of this paper to review the tune-up period preceding that run. This was the third such run at the AGS; the others occurred in June of 1984 and February of 1986. Some comparisons will be drawn among these. A thorough review of the history and hardware associated with the acceleration of polarized protons at the AGS can be found in the proceedings of the last meeting of this group at Protvino and will not be repeated here. 2 refs., 6 figs., 1 tab

  3. The tagged photon beam polarization of the jet target experiment

    International Nuclear Information System (INIS)

    Bianchi, N.; Muccifora, V.

    1989-01-01

    The applicability of the residual electron selection method to the tagging method of the jet target laboratory has been studied. With this end in view the behaviour of the polarized bremsstrahlung cross section in the range considered has been analysed, while the polarization increase by means of the RES has been evaluated. The vertical conditions of the focusing of the tagging spectrometer as a function of energy have been determined. Finally the gamma beam density and the tagging efficiency have been calculated

  4. Studies of polarized beam acceleration and Siberian Snakes

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1992-01-01

    We studied depolarization mechanisms of polarized proton acceleration in high energy accelerators with snakes and found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune of imperfection resonances, each snake resonance splits into two. Thus the available betatron tune space becomes smaller. Some constraints on polarized beam colliders were also examined

  5. The SLAC Polarized Electron Source and Beam for E-158

    Energy Technology Data Exchange (ETDEWEB)

    Humensky, Thomas B

    2003-01-16

    SLAC E-158 is making the first measurement of parity violation in Moeller scattering. E-158 measures the right-left cross-section asymmetry, A{sub LR}, in the scattering of a 45-GeV polarized electron beam off unpolarized electrons in a liquid hydrogen target. E-158 plans to measure the expected Standard Model asymmetry of {approx} 10{sup -7} to an accuracy of better than 10{sup -8}. This paper discusses the performance of the SLAC polarized electron source and beam during E-158's first physics run in April/May 2002.

  6. Production of Polarized Ions with Nearly Resonant Charge-Exchange Collisions in Plasma

    Science.gov (United States)

    Belov, A. S.

    2008-02-01

    Review of results of development of polarized ion sources with nearly resonant charge-exchange plasma ionizer is presented. Pulsed beams of polarized protons with peak intensity up to 11 mA and polarization of 80% and polarized negative hydrogen ions with peak current of 4 mA and polarization of 91% have been obtained. Polarized deuterons, negative deuterium ions and 3He++ ions can be produced by this method as well. A study of a pulsed polarized atomic hydrogen beam has been performed. It was found that intensity of the pulsed atomic hydrogen beam is limited by a beam-skimmer interference and by noncomplete cooling of hydrogen atoms.

  7. Production of Polarized Ions with Nearly Resonant Charge-Exchange Collisions in Plasma

    International Nuclear Information System (INIS)

    Belov, A. S.

    2008-01-01

    Review of results of development of polarized ion sources with nearly resonant charge-exchange plasma ionizer is presented. Pulsed beams of polarized protons with peak intensity up to 11 mA and polarization of 80% and polarized negative hydrogen ions with peak current of 4 mA and polarization of 91% have been obtained. Polarized deuterons, negative deuterium ions and 3 He ++ ions can be produced by this method as well. A study of a pulsed polarized atomic hydrogen beam has been performed. It was found that intensity of the pulsed atomic hydrogen beam is limited by a beam-skimmer interference and by noncomplete cooling of hydrogen atoms

  8. Optically pumped electron spin polarized targets for use in the production of polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1979-01-01

    The production of relatively dense electron spin polarized alkali metal vapor targets by optical pumping with intense cw dye lasers is discussed. The target density and electron spin polarization depend on the dye laser intensity and bandwidth, the magnetic field at the target, and the electron spin depolarization time. For example in a magnetic field of 1.5 x 10 3 G, and using 1 W dye laser with a bandwidth of 10 10 Hz one can construct an electron spin polarized Na vapor target with a target thickness of 1.6 x 10 13 atoms/cm 2 and an average electron spin polarization of about 90% even though the Na atoms are completely depolarized at every wall collision. Possible uses of the electron spin polarized targets for the production of intense beams of polarized H - or 3 He - ions are discussed. (orig.)

  9. Scattering of linearly polarized Bessel beams by dielectric spheres

    Science.gov (United States)

    Shoorian, Hamed

    2017-09-01

    The scattering of a Linearly Polarized Bessel Beam (LPBB) by an isotropic and homogenous dielectric sphere is investigated. Using analytical relation between the cylindrical and the spherical vector wave functions, all the closed- form analytical expressions, in terms of spherical wave-functions expansions, are derived for the scattered field. It is shown that in the case of conical angle of incident Bessel beam is equal to zero, the Linearly Polarized Bessel Beam becomes a plane wave and its scattering coefficients become the same as the expansion coefficients of plane wave in Mie theory. The transverse Cartesian and spherical components of the electric field, scattered by a sphere are shown in the z-plane for different cases, moreover the intensity of the incident Bessel beam and the effects of its conical angle on the scattered field and the field inside the sphere are investigated. To quantitatively study the scattering phenomenon and the variations of the fields inside and outside of the sphere, the scattering and absorption efficiencies are obtained for the scattering of the linearly-polarized Bessel beam, and are compared with those of the plane wave scattering.

  10. Photofission of {sup NAT} Pt by monochromatic and polarized photons in the quasi-deuteron region; Fotofissao da {sup NAT} Pt por fotons monocromaticos e polarizados na regiao do quase-deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Eduardo de

    1992-01-01

    The measurement of the Nat Pt photofission yield at 69 MeV of effective average energy of the incident photon is made using a polarized and monochromatic photon beam from the LADON system of the National Laboratory of Frascati, Italy, produced by inverse Compton scattering of laser light by high energy electrons of the ADONE Accelerator and using as fission track solid detector the Makrofol, being the developing made by usual procedure. The experimental value of the nuclear fissionability is compared to a theoretical value obtained following a model at two stages: in the first, the photon energy is absorbed by a neutron-proton pair inducing to the nucleus excitation, and in the second the nucleus de-excites due to the competition between nucleon evaporation and fission. The effect of fast nucleon emission during the first stage and the successive evaporation of neutrons in the second stage are considered. 40 refs, 12 figs, 9 tabs.

  11. Pulsed Cs beam development for the BNL polarized H- source

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1983-01-01

    A pulsed Cs + beam has been developed for use on a polarized H - source. Cesium ion production is by surface ionization using a porous tungsten ionizer. While satisfactory current pulses (5 to 10 mA greater than or equal to 0.5 ms) can be obtained, the pulse shapes are a sensitive function of the ionizer temperature and Cs surface coverage. The beam optical requirements are stringent, and the optics have been studied experimentally for both Cs + and Cs 0 beams. Computer calculations are in good agreement with the observed results. The present source has delivered 2.6 mA of Cs + through the interaction region of the polarized ion source, and as much as 2.0 particle mA of Cs 0 . A new source is being built which is designed to give 15 mA through the interaction region

  12. QCD tests with SLD and polarized beams

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, M.G. [Univ. of Massachusetts, Amherst, MA (United States)

    1994-12-01

    The author presents a measurement of the strong coupling {alpha}{sub s} derived from multijet rates using data collected by the SLD experiment at SLAC and find that {alpha}{sub s}(M{sub Z}{sup 2}) = 0.118 {+-} 0.002(stat.) {+-} 0.003(syst.) {+-} 0.010(theory). He presents tests of the flavor independence of strong interactions via preliminary measurements of the ratios {alpha}{sub s}(b)/{alpha}{sub s}(udsc) and {alpha}{sub s}(uds)/{alpha}{sub s}(bc). In addition, the group has measured the difference in charged particle multiplicity between Z{sup 0} {yields} b{bar b} and Z{sup 0} {yields} u{bar u}, d{bar d}, s{bar s} events, and find that it supports the prediction of perturbative QCD that the multiplicity difference be independent of center-of-mass energy. Finally, the group has made a preliminary study of jet polarization using the jet handedness technique.

  13. Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams

    CSIR Research Space (South Africa)

    Milione, G

    2015-02-01

    Full Text Available We experimentally measured the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams. Radially and azimuthally polarized vector Bessel beams were experimentally generated via a digital version of Durnin's method...

  14. POLARIZED BEAMS: 2 - Partial Siberian Snake rescues polarized protons at Brookhaven

    International Nuclear Information System (INIS)

    Huang, Haixin

    1994-01-01

    To boost the level of beam polarization (spin orientation), a partial 'Siberian Snake' was recently used to overcome imperfection depolarizing resonances in the Brookhaven Alternating Gradient Synchrotron (AGS). This 9-degree spin rotator recently permitted acceleration with no noticeable polarization loss. The intrinsic AGS depolarizing resonances (which degrade the polarization content) had been eliminated by betatron tune jumps, but the imperfection resonances were compensated by means of harmonic orbit corrections. However, at high energies these orbit corrections are difficult and tedious and a Siberian Snake became an attractive alternative

  15. Production of fast neutrons from deuteron beams in view of producing radioactive heavy ions beams; Etude de la production de neutrons rapides a partir de faisceaux de deutons en vue de la mise en oeuvre de faisceaux d'ions lourds radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, N

    2000-11-01

    This thesis is part of two research and development programmes for the study of neutron rich radioactive nuclear beam production. The technique is based on the ISOL method and can be summarized as follows. Fast neutrons are generated by the break-up of deuterons in a thick target. These neutrons irradiate a fissionable {sup 238}U target. The resulting fission products are extracted from the target, ionised, mass selected and post-accelerated. The aim of the thesis is to study the neutron angular and energetic distributions. After a bibliographical research to justify the choice of deuterons as the best projectile, we developed more specifically three points: - the extension of the activation detector method for neutron spectroscopy to a wide energy range (1 to 150 MeV), - the experimental measurement of neutron angular and energetic distributions produced by deuterons on thick targets. The deuteron energy ranges from 17 to 200 MeV and the thick targets were Be, C and U, - the realization of a code based on Serber's theory to predict the neutron distribution for any couple (deuteron energy-thick target). We conclude that for our application the most suitable target is C and the best deuteron energy is about 100 MeV. (author)

  16. 3D-Printed Beam Splitter for Polar Neutral Molecules

    Science.gov (United States)

    Gordon, Sean D. S.; Osterwalder, Andreas

    2017-04-01

    We describe a macroscopic beam splitter for polar neutral molecules. A complex electrode structure is required for the beam splitter which would be very difficult to produce with traditional manufacturing methods. Instead, we make use of a nascent manufacturing technique: 3D printing of a plastic piece, followed by electroplating. This fabrication method opens a plethora of avenues for research, since 3D printing imposes practically no limitations on possible shapes, and the plating produces chemically robust, conductive construction elements with an almost free choice of surface material. It has the added advantage of dramatically reduced production cost and time. Our beam splitter is an electrostatic hexapole guide that smoothly transforms into two bent quadrupoles. We demonstrate the correct functioning of this device by separating a supersonic molecular beam of ND3 into two correlated fractions. It is shown that this device can be used to implement experiments with differential detection wherein one of the fractions serves as a probe and the other as a reference. Reverse operation would allow the merging of two beams of polar neutral molecules.

  17. Pursuing nuclear energy with no nuclear contamination - from neutron flux reactor to deuteron flux reactor

    International Nuclear Information System (INIS)

    Li, X. Z.; Wei, Q. M.; Liu, B.; Zhu, X. G.; Ren, S. L.

    2007-01-01

    -free channel in the deuteron-deuteron fusion reaction. Even if polarized deuteron has long enough life-time to keep its polarity in hot fusion plasma, there is still the probability to have the neutron emission channel from deuteron-deuteron fusion. The neutron emission in hot plasma containing deuterons is inevitable. Isomer Hf-178 was proposed to reduce the neutron emission in terms of gamma decay controlled by X-ray. Although its reality is still in question, the resonance plays key role in this concept as well. Condensed matter nuclear science provided another chance to approach nuclear energy with no nuclear contamination. Selective resonant tunneling would select only the neutron free channel. There are five major steps in the past 17 years: (1) Selective Resonant tunneling model has been successful to explain the 3 major puzzles in cold fusion proposed by nuclear physicist(i.e. penetration of Coulomb barrier, no neutron emission, no gamma radiation), and successful also to explain the 3 major cross-section data in hot fusion(i.e. d+t, d+d, d+He 3 ). The Nobel prize laureate, B. Josephson of Cambridge University, cited this theory in the famous Lindau Meeting (2004).[1,2] (2) Deuteron flux through the palladium surface at specific temperature was found correlated with heat flow in various experiments in China, Switzerland, Japan, France and Italy.[3,4] (3) The nuclear products have been confirmed in a series of nuclear transmutation experiments using deuterium flux permeating through the thin film on the palladium surface.[5] (4) Distinct from the beam-target experiment, a special procedure was proposed to search this resonance between lattice energy level and nuclear energy level. (5) Instead of the electrolytic cell, the gas loading technique has been used. It led to the discovery of the temperature of these resonances which may be as high as 1000 degree C. This would change greatly the usage of this nuclear energy. We may propose the future subjects of study as

  18. Optically pumped polarized alkali atomic beams and targets

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1984-01-01

    The optical pumping of 23 Na and 6 Li atomic beams is discussed. Experiments on the optical pumping of 23 Na atomic beams using either a single mode dye laser followed by a double passed acousto-optic modulator or a multimode dye laser are reported. The optical pumping of a 23 Na vapor target for use in a polarized H - ion source is discussed. Results on the use of viton as a wall coating with a long relaxation time are reported. 31 references, 6 figures, 3 tables

  19. Spin-polarization of an electro-static positron beam

    International Nuclear Information System (INIS)

    Kawasuso, A.; Maekawa, M.

    2008-01-01

    We constructed an electro-static positron beam apparatus. We fabricated a simple spin-polarimeter composed of a permanent magnet with a surface magnetic field of 0.65 T and an iron pole piece. The longitudinal spin-polarization of the positron beam was determined to be 0.3 by analyzing the magnetic field dependence of the Doppler broadening of annihilation radiation from a fused silica specimen. The effect of spin rotation was examined using an iron poly-crystal and a simple E x B filter

  20. Measurement of the Tensor Structure Function b1 of the Deuteron

    Science.gov (United States)

    Airapetian, A.; Akopov, N.; Akopov, Z.; Amarian, M.; Ammosov, V. V.; Andrus, A.; Aschenauer, E. C.; Augustyniak, W.; Avakian, R.; Avetissian, A.; Avetissian, E.; Bailey, P.; Balin, D.; Baturin, V.; Beckmann, M.; Belostotski, S.; Bernreuther, S.; Bianchi, N.; Blok, H. P.; Böttcher, H.; Borissov, A.; Borysenko, A.; Bouwhuis, M.; Brack, J.; Brüll, A.; Bryzgalov, V.; Capitani, G. P.; Chen, T.; Chiang, H. C.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Leo, R. De; Demey, M.; Nardo, L. De; Sanctis, E. De; Devitsin, E.; Nezza, P. Di; Dreschler, J.; Düren, M.; Ehrenfried, M.; Elalaoui-Moulay, A.; Elbakian, G.; Ellinghaus, F.; Elschenbroich, U.; Fabbri, R.; Fantoni, A.; Fechtchenko, A.; Felawka, L.; Fox, B.; Frullani, S.; Gapienko, G.; Gapienko, V.; Garibaldi, F.; Garrow, K.; Garutti, E.; Gaskell, D.; Gavrilov, G.; Gharibyan, V.; Graw, G.; Grebeniouk, O.; Greeniaus, L. G.; Gregor, I. M.; Hafidi, K.; Hartig, M.; Hasch, D.; Heesbeen, D.; Henoch, M.; Hertenberger, R.; Hesselink, W. H. A.; Hillenbrand, A.; Hoek, M.; Holler, Y.; Hommez, B.; Iarygin, G.; Ivanilov, A.; Izotov, A.; Jackson, H. E.; Jgoun, A.; Kaiser, R.; Kinney, E.; Kisselev, A.; Kopytin, M.; Korotkov, V.; Kozlov, V.; Krauss, B.; Krivokhijine, V. G.; Lagamba, L.; Lapikás, L.; Laziev, A.; Lenisa, P.; Liebing, P.; Linden-Levy, L. A.; Lipka, K.; Lorenzon, W.; Lu, H.; Lu, J.; Lu, S.; Ma, B.-Q.; Maiheu, B.; Makins, N. C. R.; Mao, Y.; Marianski, B.; Marukyan, H.; Masoli, F.; Mexner, V.; Meyners, N.; Mikloukho, O.; Miller, C. A.; Miyachi, Y.; Muccifora, V.; Nagaitsev, A.; Nappi, E.; Naryshkin, Y.; Nass, A.; Negodaev, M.; Nowak, W.-D.; Oganessyan, K.; Ohsuga, H.; Pickert, N.; Potashov, S.; Potterveld, D. H.; Raithel, M.; Reggiani, D.; Reimer, P. E.; Reischl, A.; Reolon, A. R.; Riedl, C.; Rith, K.; Rosner, G.; Rostomyan, A.; Rubacek, L.; Rubin, J.; Ryckbosch, D.; Salomatin, Y.; Sanjiev, I.; Savin, I.; Schäfer, A.; Schill, C.; Schnell, G.; Schüler, K. P.; Seele, J.; Seidl, R.; Seitz, B.; Shanidze, R.; Shearer, C.; Shibata, T.-A.; Shutov, V.; Simani, M. C.; Sinram, K.; Stancari, M.; Statera, M.; Steffens, E.; Steijger, J. J. M.; Stenzel, H.; Stewart, J.; Stinzing, F.; Stösslein, U.; Tait, P.; Tanaka, H.; Taroian, S.; Tchuiko, B.; Terkulov, A.; Tkabladze, A.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; van der Nat, P. B.; van der Steenhoven, G.; Vetterli, M. C.; Vikhrov, V.; Vincter, M. G.; Vogel, C.; Vogt, M.; Volmer, J.; Weiskopf, C.; Wendland, J.; Wilbert, J.; Ye, Y.; Ye, Z.; Yen, S.; Zihlmann, B.; Zupranski, P.

    2005-12-01

    The Hermes experiment has investigated the tensor spin structure of the deuteron using the 27.6GeV/c positron beam of DESY HERA. The use of a tensor-polarized deuteron gas target with only a negligible residual vector polarization enabled the first measurement of the tensor asymmetry Azzd and the tensor structure function b1d for average values of the Bjorken variable 0.01<⟨x⟩<0.45 and of the negative of the squared four-momentum transfer 0.5GeV2<⟨Q2⟩<5GeV2. The quantities Azzd and b1d are found to be nonzero. The rise of b1d for decreasing values of x can be interpreted to originate from the same mechanism that leads to nuclear shadowing in unpolarized scattering.

  1. High-energy polarized proton beams a modern view

    CERN Document Server

    Hoffstaetter, Georg Heinz

    2006-01-01

    This monograph begins with a review of the basic equations of spin motion in particle accelerators. It then reviews how polarized protons can be accelerated to several tens of GeV using as examples the preaccelerators of HERA, a 6.3 km long cyclic accelerator at DESY / Hamburg. Such techniques have already been used at the AGS of BNL / New York, to accelerate polarized protons to 25 GeV. But for acceleration to energies of several hundred GeV as in RHIC, TEVATRON, HERA, LHC, or a VLHC, new problems can occur which can lead to a significantly diminished beam polarization. For these high energies, it is necessary to look in more detail at the spin motion, and for that the invariant spin field has proved to be a useful tool. This is already widely used for the description of high-energy electron beams that become polarized by the emission of spin-flip synchrotron radiation. It is shown that this field gives rise to an adiabatic invariant of spin-orbit motion and that it defines the maximum time average polarizat...

  2. Spin dependence studies with the ZGS polarized proton beam

    International Nuclear Information System (INIS)

    Wicklund, A.B.

    1977-01-01

    Selected results are summarized of recent measurements using a polarized proton beam at the Argonne ZGS. The polarized target asymmetry and the beam-target spin correlation are measured in pp→pp at 6 and 12 GeV/c. Asymmetry is slowly varying with energy while spin correlation increases considerably from 6 to 12 GeV/c. The polarized parameters in pp→pp and pn→pn elastic scattering are compared. The data show that pp and pn polarizations tend to approach mirror symmetry as the energy increases. The effective mass spectrometer has been used to study the pp→pπ + n, pn→pπ - p reactions from 2 to 6 GeV/c. For small -t values (-t 2 ) these reactions are dominated by π exchange. At large -t values other mechanisms besides π-exchange become important. The 3-body diffraction dissociation reactions have been measured at 6 GeV/c with hydrogen and deuterium targets. The reactions are pp→pπ + π - (p); pd→pπ + π - (p+n). Comparison of hydrogen and deuterium cross section reveals a considerable coherent contribution of deuterium, which has an approximately 20% larger cross section per nucleon than hydrogen

  3. Measurement of spin observables using a storage ring with polarized beam and polarized internal gas target

    International Nuclear Information System (INIS)

    Lee, K.; Miller, M.A.; Smith, A.; Hansen, J.; Bloch, C.; van den Brand, J.F.J.; Bulten, H.J.; Ent, R.; Goodman, C.D.; Jacobs, W.W.; Jones, C.E.; Korsch, W.; Leuschner, M.; Lorenzon, W.; Marchlenski, D.; Meyer, H.O.; Milner, R.G.; Neal, J.S.; Pancella, P.V.; Pate, S.F.; Pitts, W.K.; von Przewoski, B.; Rinckel, T.; Sowinski, J.; Sperisen, F.; Sugarbaker, E.; Tschalaer, C.; Unal, O.; Zhou, Z.

    1993-01-01

    We report the first measurement of analyzing powers and spin correlation parameters using a storage ring with both beam and internal target polarized. Spin observables were measured for elastic scattering of 45 and 198 MeV protons from polarized 3 He nuclei in a new laser-pumped internal gas target at the Indiana University Cyclotron Facility Cooler Ring. Scattered protons and recoil 3 He nuclei were detected in coincidence with large acceptance plastic scintillators and silicon detectors. The internal-target technique demonstrated in this experiment has broad applicability to the measurement of spin-dependent scattering in nuclear and particle physics

  4. The deuteron accelerator preliminary design for BISOL

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S.X., E-mail: sxpeng@pku.edu.cn; Zhu, F.; Wang, Z.; Gao, Y.; Guo, Z.Y.

    2016-06-01

    BISOL, which was named as Beijing-ISOL before (Cui et al., 2013), is the abbreviation of Beijing Isotope-Separation-On-Line neutron beam facility. It is proposed jointly by Peking University (PKU) and China Institute of Atomic Energy (CIAE) for basic science study and application. It is a double driven facility that can be driven by a reactor or a deuteron accelerator. The deuteron driver accelerator should accelerate the deuteron beam up to 40 MeV with maximum beam current of 10 mA. Proton beams up to 33 MeV and He{sup 2+} beams up to 81.2 MeV can also be accelerated in this accelerator. The accelerator can be operated on either CW (continuous waveform) or pulsed mode, and the ion energy can be adjusted in a wide range. The accelerator will also allow independent operation of the RIB (Radioactive Ion Beams) system. It will be mainly charged by PKU group. Details of the deuteron accelerator preliminary design for BISOL will be given in this paper.

  5. Pin cushion plasmonic device for polarization beam splitting, focusing, and beam position estimation.

    Science.gov (United States)

    Lerman, Gilad M; Levy, Uriel

    2013-03-13

    Great hopes rest on surface plasmon polaritons' (SPPs) potential to bring new functionalities and applications into various branches of optics. In this paper, we demonstrate a pin cushion structure capable of coupling light from free space into SPPs, split them based on the polarization content of the illuminating beam of light, and focus them into small spots. We also show that for a circularly or randomly polarized light, four focal spots will be generated at the center of each quarter circle comprising the pin cushion device. Furthermore, following the relation between the relative intensity of the obtained four focal spots and the relative position of the illuminating beam with respect to the structure, we propose and demonstrate the potential use of our structure as a miniaturized plasmonic version of the well-known four quadrant detector. Additional potential applications may vary from multichannel microscopy and multioptical traps to real time beam tracking systems.

  6. Measuring polarization dependent dispersion of non-polarizing beam splitter cubes with spectrally resolved white light interferometry

    Science.gov (United States)

    Csonti, K.; Hanyecz, V.; Mészáros, G.; Kovács, A. P.

    2017-06-01

    In this work we have measured the group-delay dispersion of an empty Michelson interferometer for s- and p-polarized light beams applying two different non-polarizing beam splitter cubes. The interference pattern appearing at the output of the interferometer was resolved with two different spectrometers. It was found that the group-delay dispersion of the empty interferometer depended on the polarization directions in case of both beam splitter cubes. The results were checked by inserting a glass plate in the sample arm of the interferometer and similar difference was obtained for the two polarization directions. These results show that to reach high precision, linearly polarized white light beam should be used and the residual dispersion of the empty interferometer should be measured at both polarization directions.

  7. Acceleration of deuterons in the KEK accelerator

    International Nuclear Information System (INIS)

    Kobayashi, Masaaki; Mizumachi, Yoshihiko; Okumura, Shoji.

    1975-11-01

    A possibility for acceleration of deuterons in the KEK accelerator is presented with some modifications required to the present machine. Deuteron beam of an intensity as high as 350 mA was obtained in the present duoplasmatron ion source. The emittance and acceptane of the 20-MeV proton linac are calculated for deuterons. A modification in the field distribution by means of tuners is considered to save the rf power and to improve the longitudinal emittance. Acceleration in the booster and main synchrotrons as well as in the 180-GeV intersecting storage ring proposed for a KEK future project are discussed. Intensity of the obtainable neutron beam is also estimated. (auth.)

  8. Super-resolution longitudinally polarized light needle achieved by tightly focusing radially polarized beams

    Science.gov (United States)

    Shi, Chang-kun; Nie, Zhong-quan; Tian, Yan-ting; Liu, Chao; Zhao, Yong-chuang; Jia, Bao-hua

    2018-01-01

    Based on the vector diffraction theory, a super-resolution longitudinally polarized optical needle with ultra-long depth of focus ( DOF) is generated by tightly focusing a radially polarized beam that is modulated by a self-designed ternary hybrid (phase/amplitude) filter (THF). Both the phase and the amplitude patterns of THF are judiciously optimized by the versatile particle swarm optimization (PSO) searching algorithm. For the focusing configuration with a combination of a high numerical aperture ( NA) and the optimized sine-shaped THFs, an optical needle with the full width at half maximum ( FWHM) of 0.414λ and the DOF of 7.58λ is accessed, which corresponds to an aspect ratio of 18.3. The demonstrated longitudinally polarized super-resolution light needle with high aspect ratio opens up broad applications in high-density optical data storage, nano-photolithography, super-resolution imaging and high-efficiency particle trapping.

  9. Particle confinement by a radially polarized laser Bessel beam

    Science.gov (United States)

    Laredo, Gilad; Kimura, Wayne D.; Schächter, Levi

    2017-03-01

    The stable trajectory of a charged particle in an external guiding field is an essential condition for its acceleration or for forcing it to generate radiation. Examples of possible guiding devices include a solenoidal magnetic field or permanent periodic magnet in klystrons, a wiggler in free-electron lasers, the lattice of any accelerator, and finally the crystal lattice for the case of channeling radiation. We demonstrate that the trajectory of a point-charge in a radially polarized laser Bessel beam may be stable similarly to the case of a positron that bounces back and forth in the potential well generated by two adjacent atomic planes. While in the case of channeling radiation, the transverse motion is controlled by a harmonic oscillator equation, for a Bessel beam the transverse motion is controlled by the Mathieu equation. Some characteristics of the motion are presented.

  10. Komar fluxes of circularly polarized light beams and cylindrical metrics

    Science.gov (United States)

    Lynden-Bell, D.; Bičák, J.

    2017-11-01

    The mass per unit length of a cylindrical system can be found from its external metric as can its angular momentum. Can the fluxes of energy, momentum, and angular momentum along the cylinder also be so found? We derive the metric of a beam of circularly polarized electromagnetic radiation from the Einstein-Maxwell equations. We show how the uniform plane wave solutions miss the angular momentum carried by the wave. We study the energy, momentum, angular momentum, and their fluxes along the cylinder both for this beam and in general. The three Killing vectors of any stationary cylindrical system give three Komar flux vectors which in turn give six conserved fluxes. We elucidate Komar's mysterious factor 2 by evaluating Komar integrals for systems that have no trace to their stress tensors. The Tolman-Komar formula gives twice the energy for such systems which also have twice the gravity. For other cylindrical systems their formula gives correct results.

  11. ACCELERATION OF POLARIZED BEAMS USING MULTIPLE STRONG PARTIAL SIBERIAN SNAKES

    International Nuclear Information System (INIS)

    ROSER, T.; AHRENS, L.; BAI, M.

    2004-01-01

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult since depolarizing spin resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions. Using a 20-30% partial Siberian snake both imperfection and intrinsic resonances can be overcome. Such a strong partial Siberian snake was designed for the Brookhaven AGS using a dual pitch helical superconducting dipole. Multiple strong partial snakes are also discussed for spin matching at beam injection and extraction

  12. Beam polarization during a Siberian snake turn-on

    International Nuclear Information System (INIS)

    Anferov, Vladimir A.

    1999-01-01

    Installing Siberian snakes in a circular proton accelerator allows one to overcome all spin depolarizing resonances even at very high energies. However, Siberian snake application at low energies is technically rather difficult. Turning snake on at some energy during acceleration would allow using Siberian snakes even in rings with low injection energies. It is shown that the beam polarization would be preserved during the snake ramp, provided that the snake is turned on in more than ten turns, and the energy is set near a half-integer Gγ

  13. Elastic electron-deuteron scattering in vectorlike theories

    International Nuclear Information System (INIS)

    Gakh, G.I.

    1979-01-01

    The P odd effects caused by neutral weak currents in the elastic electron-deuteron scattering have been investigated in the vectorlike theories. Cross sections for scattering of both nonpolarized and longitudinally polarized electrons by the deuterons which have both vector and tensor polarizations have been calculated. The general case of the P invariance violation in the elastic electron-deuteron scattering amplitude is considered. The P invariance is violated both in the lepton and the hadron vertices. The vectorlike theory is a particular case when the P invariance is violated only in the hadron vertex

  14. Hamiltonian chaos in a nonlinear polarized optical beam

    International Nuclear Information System (INIS)

    David, D.; Holm, D.D.; Tratnik, M.V.

    1990-01-01

    This lecture concerns the applications of ideas about temporal complexity in Hamiltonian systems to the dynamics of an optical laser beam with arbitrary polarization propagating as a travelling wave in a medium with cubically nonlinear polarizability. The authors use methods from the theory of Hamiltonian systems with symmetry to study the geometry of phase space for this optical problem, transforming from C 2 to S 3 x S 1 , first, and then to S 2 x (J,θ) is a symplectic action-angle pair. The bifurcations of the phase portraits of the Hamiltonian motion on S 2 are classified and displayed graphically. These bifurcations take place when either J (the beam intensity) or the optical parameters of the medium are varied. After this bifurcation analysis has shown the existence of various saddle connections on S 2 , the Melnikov method is used to demonstrate analytically that the travelling-wave dynamics of polarized optical laser pulse develops chaotic behavior in the form of Smale horseshoes when propagating through spatially periodic perturbations in the optical parameters of the medium. 23 refs., 7 figs

  15. Polarized beams at the ZGS and the AGS

    International Nuclear Information System (INIS)

    Ratner, L.G.

    1989-01-01

    I have had, and still do, a feeling of deja Vu as I have gone through the development of the polarized beam at the AGS. There were many similarities both scientifically and sociologically, and of course, some significant differences between the AGS and the ZGS. We traded the 12 GeV ZGS for the 28 GeV AGS, we traded Ron Martin for Derek Lowenstein, but having the lowest energy, high energy machine did not change. Paraphrasing some remarks of Bob Sachs, the AGS replaced the ZGS as the tail of the dog, and it appears that now the tail loppers are again on the loose. You will probably see them again somewhere in the world using body english to help polarize a beam. Basically, I would like to describe a little of the progression of events and the hardware in both accelerators that allowed Kent and his colleagues to do a great deal of very interesting spin physics. 6 refs., 30 figs

  16. Effect of light source parameters on the polarization properties of the beam

    Science.gov (United States)

    Liu, Dan; Liu, Yan; Jiang, Hui-lin; Liu, Zhi; Zhou, Xin; Fang, Hanhan

    2013-08-01

    Polarized laser has been widely used in free space optical communication, laser radar, and laser ranging system because of its advantages of good performance in recent years. The changes of laser polarization properties in the process of transmission in atmospheric turbulence have a certain impact on the system performance. The paper research on the rule of polarization properties changes of Gauss Schell model beam in turbulent conditions. And analysis the main factors to affect the polarization properties by numerical simulation using MATLAB software tools. The factors mainly including: initial polarization, coherence coefficient, spot size and the intensity of the atmospheric turbulent. The simulation results show that, the degree of polarization will converge to the initial polarization when the beam propagation in turbulent conditions. The degrees of polarization change to different value when initial polarization of beam is different in a short distance. And, the degrees of polarization converge to the initial polarization after long distance. Beam coherence coefficient bigger, the degree of polarization and change range increases bigger. The change of polarization more slowly for spot size is bigger. The change of polarization change is faster for longer wavelength. The conclusion of the study indicated that the light source parameters effect the changes of polarization properties under turbulent conditions. The research provides theory basis for the polarization properties of the laser propagation, and it will plays a significant role in optical communication and target recognition.

  17. Polarization sensitive beam bending using a spatially variant photonic crystal

    Science.gov (United States)

    Digaum, Jennefir L.; Pazos, Javier; Rumpf, Raymond; Chiles, Jeff; Fathpour, Sasan; Thomas, Jeremy N.; Kuebler, Stephen M.

    2015-02-01

    A spatially-variant photonic crystal (SVPC) that can control the spatial propagation of electromagnetic waves in three dimensions with high polarization sensitivity was fabricated and characterized. The geometric attributes of the SVPC lattice were spatially varied to make use of the directional phenomena of self-collimation to tightly bend an unguided beam coherently through a 90 degree angle. Both the lattice spacing and the fill factor of the SVPC were maintained to be nearly constant throughout the structure. A finite-difference frequency-domain computational method confirms that the SVPC can self-collimate and bend light without significant diffuse scatter caused by the bend. The SVPC was fabricated using multi-photon direct laser writing in the photo-polymer SU-8. Mid-infrared light having a vacuum wavelength of λ0 = 2.94 μm was used to experimentally characterize the SVPCs by scanning the sides of the structure with optical fibers and measuring the intensity of light emanating from each face. Results show that the SVPC is capable of directing power flow of one polarization through a 90-degree turn, confirming the self-collimating and polarization selective light-guiding properties of the structures.

  18. A study of lithium deuteride as a material for a polarized target

    CERN Document Server

    Bültmann, S; Day, D B; Fatemi, R D; Gardner, B; Harris, C M; Johnson, J R; Mccarthy, J S; McKee, P M; Meyer, Werner T; Penttilae, S I; Ponikvar, E; Rijllart, A; Rondon, Oscar A; Lorant, S S; Tobias, W A; Trentalange, S; Zhu, H; Zihlmann, B; Zimmermann, D

    1999-01-01

    Experiment E155 at the Stanford Linear Accelerator Center (SLAC) measured the spin-dependent structure of the proton and neutron, using for the first time sup 6 LiD as the polarized deuteron target material in a high-energy electron beam. This compound provides a significantly higher dilution factor than any other solid deuteron target material currently used in high-energy physics experiments. Results of the polarization behavior of the sup 6 LiD target material before and after exposure to the 50 GeV/c electron beam used in E155 are presented.

  19. Production of polarized negative deuterium ion beam with dual optical pumping in KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.

    1997-02-01

    To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)

  20. Realization of beam polarization at the linear collider and its application to EW processes

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Sollova, F.

    2006-07-15

    The use of beam polarization at the future ILC e{sup +}e{sup -} linear collider will benefit the physics program significantly. This thesis explores three aspects of beam polarization: the application of beam polarization to the study of electroweak processes, the precise measurement of the beam polarization, and finally, the production of polarized positrons at a test beam experiment. In the first part of the thesis the importance of beam polarization at the future ILC is exhibited: the benefits of employing transverse beam polarization (in both beams) for the measurement of triple gauge boson couplings (TGCs) in the W-pair production process are studied. The sensitivity to anomalous TGC values is compared for the cases of transverse and longitudinal beam polarization at a center of mass energy of 500 GeV. Due to the suppressed contribution of the t-channel {nu} exchange, the sensitivity is higher for longitudinal polarization. For some physics analyses the usual polarimetry techniques do not provide the required accuracy for the measurement of the beam polarization (around 0.25% with Compton polarimetry). The second part of the thesis deals with a complementary method to measure the beam polarization employing physics data acquired with two polarization modes. The process of single-W production is chosen due to its high cross section. The expected precision for 500 fb{sup -1} and W{yields}{mu}{nu} decays only, is {delta}P{sub e{sup -}}/P{sub e{sup -}}=0.26% and {delta}P{sub e{sup +}}/P{sub e{sup +}}=0.33%, which can be further improved by employing additional W-decay channels. The first results of an attempt to produce polarized positrons at the E-166 experiment are shown in the last part of the thesis. The E-166 experiment, located at the Final Focus Test Beam at SLAC's LINAC employs a helical undulator to induce the emission of circularly polarized gamma rays by the beam electrons. These gamma rays are converted into longitudinally polarized electron

  1. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J. E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R. E.; Maruyama, T.; Miller, R. H.; Wang, J. W.; Zhou, F.

    2007-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of ≥200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while ≥500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  2. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R.E.; Maruyama, T.; Miller, R.H.; Wang, J.W.; Zhou, F.; SLAC

    2006-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of (ge)200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while (ge)500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  3. Spin Asymmetries $A_1$ of the Proton and the Deuteron in the Low $x$ and Low $Q^2$ Region from Polarized High Energy Muon Scattering

    CERN Document Server

    Adeva, B; Arvidson, A; Badelek, B; Baum, G; Berglund, P; Betev, L; De Botton, N R; Bradamante, Franco; Bravar, A; Bültmann, S; Burtin, E; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Eichblatt, S; Fasching, D; Feinstein, F; Fernández, C; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kiselev, Yu F; Krämer, Dietrich; Kröger, W; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Rädel, G; Reicherz, G; Roberts, J; Rodríguez, M; Rondio, Ewa; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Willumeit, R; Windmolders, R; Wislicki, W; Witzmann, A; Zanetti, A M; Zaremba, K; Zhao, J

    1999-01-01

    We present the results of the spin asymmetries $A_1$ of the proton and the deuteron in the kinematic region extending down to $x=6\\cdot 10^{-5}$ and $Q^2=0.01$ GeV$^2$. The data were taken with a dedicated low $x$ trigger, which required hadron detection in addition to the scattered muon, so as to reduce the background at low $x$. The results complement our previous measurements and the two sets are consistent in the overlap region. No sig\\-ni\\-fi\\-cant spin effects are found in the newly explored region.

  4. Beam broadening of polar molecules and clusters in deflection experiments.

    Science.gov (United States)

    Bulthuis, J; Kresin, V V

    2012-01-07

    A beam of rotating dipolar particles (molecules or clusters) will broaden when passed through an electric or magnetic field gradient region. This broadening, which is a common experimental observable, can be expressed in terms of the variance of the distribution of the resulting polarization orientation (the direction cosine). Here, the broadening for symmetric-top and linear rotors is discussed. These two types of rotors have qualitatively different low-field orientation distribution functions, but behave similarly in a strong field. While analytical expressions for the polarization variance can be derived from first-order perturbation theory, for experimental guidance it is important to identify the applicability and limitations of these expressions, and the general dependence of the broadening on the experimental parameters. For this purpose, the analytical results are compared with the full diagonalization of the rotational Stark-effect matrices. Conveniently for experimental estimations, it is found that for symmetric tops, the dependence of the broadening parameter on the rotational constant, the axial ratio, and the field strength remains similar to the analytical expression even outside of the perturbative regime. Also, it is observed that the shape envelope, the centroid, and the width of the orientation distribution function for a symmetric top are quite insensitive to the value of its rotational constant (except at low rotational temperatures).

  5. Synthesis of chromium (V) complex in deuterated propanediol for a target with ``frozen'' polarisation of deuterons

    Science.gov (United States)

    Bunyatova, E. I.; Bubnov, N. N.

    1987-02-01

    A deuteron polarized frozen spin target was developed. To reach higher deuteron content and maximum polarization, the chromium (V) complex with ligands on the basis of fully deuterated propanediol-1,2 was synthesized. The synthesis and the EPR investigation is described. The research has been performed at the Laboratory of Nuclear Problems, JINR.

  6. Accurate measurement of the electron beam polarization in JLab Hall A using Compton polarimetry

    International Nuclear Information System (INIS)

    Escoffier, S.; Bertin, P.Y.; Brossard, M.; Burtin, E.; Cavata, C.; Colombel, N.; Jager, C.W. de; Delbart, A.; Lhuillier, D.; Marie, F.; Mitchell, J.; Neyret, D.; Pussieux, T.

    2005-01-01

    A major advance in accurate electron beam polarization measurement has been achieved at Jlab Hall A with a Compton polarimeter based on a Fabry-Perot cavity photon beam amplifier. At an electron energy of 4.6GeV and a beam current of 40μA, a total relative uncertainty of 1.5% is typically achieved within 40min of data taking. Under the same conditions monitoring of the polarization is accurate at a level of 1%. These unprecedented results make Compton polarimetry an essential tool for modern parity-violation experiments, which require very accurate electron beam polarization measurements

  7. Polarized Electron Beams for Nuclear Physics at the MIT Bates Accelerator Center

    CERN Document Server

    Farkhondeh, Manouchehr; Franklin, Wilbur; Ihloff, Ernie; McAllister, Brian; Milner, Richard; North, William; Tschalär, C; Tsentalovich, Evgeni; Wang, Defa; Wang, Dong; Wang, Fuhua; Zolfaghari, Abbasali; Zwart, Townsend; van der Laan, Jan

    2005-01-01

    The MIT Bates Accelerator Center is delivering highly polarized electron beams to its South Hall Ring for use in Nuclear Physics Experiments. Circulating electron currents in excess of 200 mA with polarization of 70% are scattered from a highly polarized, but very thin atomic beam source deuterium target. At the electron source a compact diode laser creates photoemission of quasi-CW mA pulses of polarized electrons at low duty factors from a strained GaAs photocathode. Refurbished RF transmitters provide power to the 2856 MHz linac, accelerating the beam to 850 MeV in two passes before injection into the South Hall Ring. In the ring a Siberian snake serves to maintain a high degree of longitudinal polarization at the BLAST scattering target. A Compton laser back-scattering polarimeter measures the electron beam polarization with a statistical acuracy of 6% every 15 minutes.

  8. The design and performance of the FNAL high-energy polarized beam facility

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki.

    1989-01-01

    We describe a new polarized-proton and -antiproton beam with 185-GeV/c momentum in the Fermilab MP beam line which is currently operational. The design uses the parity-conserving decay of lambda and antilambda hyperons to produce polarized protons and antiprotons, respectively. A beam-transport system minimizes depolarization effects and uses a set of 12 dipole magnets that rotate the beam-particle spin direction. A beam-tagging system determines the momentum and polarization of individual beam particles, allowing a selection of particles in definite intervals at momentum and polarization. We measured polarization of the beam by using two types of polarimeters, which verified the determination of polarization by a beam-particle tagging system. Two of these processes are the inverse-Primakoff effect and the Coulomb-nuclear interference (CNI) in elastic proton-proton scattering. Another experiment measured the π 0 production asymmetry of large-x F values; this process may now be used as an on-line beam polarimeter. 9 refs., 9 figs

  9. Spin asymmetries $A_1$ and structure functions $g_1$ of the proton and the deuteron from polarized high energy muon scattering

    CERN Document Server

    AUTHOR|(CDS)2067425; Arik, E; Arvidson, A; Badelek, B; Bardin, G; Baum, G; Berglund, P; Betev, L; Birsa, R; Björkholm, P; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Golutvin, I A; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kiryushin, Yu T; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nagaitsev, A P; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Piegia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Pussieux, T; Rädel, G; Rijllart, A; Reicherz, G; Roberts, J; Rock, S E; Rodríguez, M; Rondio, Ewa; Ropelewski, Leszek; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Schüler, K P; Seitz, R; Semertzidis, Y K; Sergeev, S; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zamiatin, N I; Zhao, J

    1998-01-01

    We present the final results of the spin asymmetries $A_1$ and the spin structure functions $g_1$ of the proton and the deuteron in the kinematic range $0.0008

  10. The spin structure of the deuteron

    International Nuclear Information System (INIS)

    Frois, B.

    1993-01-01

    The SMC collaboration has measured for the first time the spin-dependent structure function g 1 d of the deuteron in the deep inelastic scattering of polarized muons on polarized deuterons. The first moment is smaller than the prediction of the Ellis-Jaffe sum rules. It was found that the fraction of the nucleon spin carried by strange quarks Δs is appreciable and negative. Using earlier measurements of g 1 p , the first moment of the spin-dependent neutron structure function g 1 n is calculated. The combined analysis of all the available data on the spin-dependent structure functions of the nucleon shows an excellent agreement among the data sets. No significant deviations from the prediction of the Bjorken sum-rule has been found. (author) 52 refs., 19 figs., 2 tabs

  11. Theoretical model of a polarization diffractive elements for the light beams conversion holographic formation in PDLCs

    Science.gov (United States)

    Sharangovich, Sergey N.; Semkin, Artem O.

    2017-12-01

    In this work a theoretical model of the holographic formation of the polarization diffractive optical elements for the transformation of Gaussian light beams into Bessel-like ones in polymer-dispersed liquid crystals (PDLC) is developed. The model is based on solving the equations of photo-induced Fredericks transition processes for polarization diffractive elements formation by orthogonally polarized light beams with inhomogeneous amplitude and phase profiles. The results of numerical simulation of the material's dielectric tensor changing due to the structure's formation process are presented for various recording beams' polarization states. Based on the results of numerical simulation, the ability to form the diffractive optical elements for light beams transformation by the polarization holography methods is shown.

  12. Generation of cylindrically polarized vector vortex beams with digital micromirror device

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Lei; Liu, Weiwei; Wang, Meng; Zhong, Mincheng; Wang, Ziqiang; Li, Yinmei, E-mail: liyinmei@ustc.edu.cn [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Ren, Yuxuan [National Center for Protein Sciences Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 201210 (China)

    2014-11-14

    We propose a novel technique to directly transform a linearly polarized Gaussian beam into vector-vortex beams with various spatial patterns. Full high-quality control of amplitude and phase is implemented via a Digital Micro-mirror Device (DMD) binary holography for generating Laguerre-Gaussian, Bessel-Gaussian, and helical Mathieu–Gaussian modes, while a radial polarization converter (S-waveplate) is employed to effectively convert the optical vortices into cylindrically polarized vortex beams. Additionally, the generated vector-vortex beams maintain their polarization symmetry after arbitrary polarization manipulation. Due to the high frame rates of DMD, rapid switching among a series of vector modes carrying different orbital angular momenta paves the way for optical microscopy, trapping, and communication.

  13. Dual circularly polarized broadside beam antenna based on metasurfaces

    Science.gov (United States)

    Tellechea, A.; Caminita, F.; Martini, E.; Ederra, I.; Teniente, J.; Iriarte, J. C.; Gonzalo, R.; Maci, S.

    2018-02-01

    Design details of a Ku band metasurface (MTS) antenna with dual circularly polarized (CP) broadside radiation is shown in this work. By means of the surface impedance tensor modulation, synchronized propagation of two transversal magnetic (TM) and transverse electric (TE) surface waves (SWs) is ensured in the structure, which contribute to the radiation in broadside direction by the generation of a CP leaky wave. The structure is implemented by elliptical subwavelength metallic elements with a cross-shaped aperture in the center, printed on top of a thin substrate with high permittivity (AD1000 with a thickness of λ0/17). For the experimental validation, the MTS prototype has been excited employing an orthomode transducer composed by a metallic stepped septum inside an air-filled waveguide. Two orthogonal TE11 modes excited with ±90° phase shift in the feed couple with the TM and TE SWs supported by the MTS and generate RHCP or LHCP broadside beam. Experimental results are compared with the simulation predictions. Finally, conclusions are drawn.

  14. Targets for a Neutral Kaon Beam

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Christopher [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    A secondary beam of neutral Kaons is under consideration for Hall D at Jefferson Lab to perform spectroscopic studies of hyperons produced by K 0 L particles scattering from proton and deuteron targets. The proposed physics program would utilize the GlueX detector package currently installed in Hall D. This contribution looks at potential targets for use in the new facility, paying close attention to the existing infrastructure of GlueX and Hall D. Unpolarized cryotargets of liquid hydrogen and deuerium, as well as polarized solid targets of protons and deuterons are examined.

  15. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal

    International Nuclear Information System (INIS)

    Chen Xi-Yao; Lin Gui-Min; Li Jun-Jun; Xu Xiao-Fu; Jiang Jun-Zhen; Qiang Ze-Xuan; Qiu Yi-Shen; Li Hui

    2012-01-01

    A polarization beam splitter based on a self-collimation Michelson interferometer (SMI) in a hole-type silicon photonic crystal is proposed and numerically demonstrated. Utilizing the polarization dependence of the transmission spectra of the SMI and polarization peak matching method, the SMI can work as a polarization beam splitter (PBS) by selecting an appropriate path length difference in the structure. Based on its novel polarization beam splitting mechanics, the polarization extinction ratios (PERs) for TM and TE modes are as high as 18.4 dB and 24.3 dB, respectively. Since its dimensions are only several operating wavelengths, the PBS may have practical applications in photonic integrated circuits. (fundamental areas of phenomenology(including applications))

  16. Optical pulling force on a magneto-dielectric Rayleigh sphere in Bessel tractor polarized beams

    International Nuclear Information System (INIS)

    Mitri, F.G.; Li, R.X.; Yang, R.P.; Guo, L.X.; Ding, C.Y.

    2016-01-01

    The optical radiation force induced by Bessel (vortex) beams on a magneto-dielectric subwavelength sphere is investigated with particular emphasis on the beam polarization and order l (or topological charge). The analysis is focused on identifying the regions and some of the conditions to achieve retrograde motion of the sphere centered on the axis of wave propagation of the incident beam, or shifted off-axially. Exact non-paraxial analytical solutions are established, and computations for linear, circular, radial, azimuthal and mixed polarizations of the individual plane wave components forming the Bessel (vortex) beams by means of the angular spectrum decomposition method (ASDM) illustrate the theory with particular emphasis on the tractor (i.e. reversal) behavior of the force. This effect results in the pulling of the magneto-dielectric sphere against the forward linear momentum density flux associated with the incoming waves. Should some conditions related to the choice of the beam parameters as well as the permittivity and permeability of the sphere be met, the optical force vanishes and reverses sign. Moreover, the beam polarization is shown to affect differently the axial negative pulling force for either the zeroth- or the first-order Bessel beam. When the sphere is centered on the beam′s axis, the axial force component is always negative for the zeroth-order Bessel beam except for the radial and azimuthal polarization configurations. Nonetheless, for the first-order Bessel beam, the axial force is negative for the radial polarization case only. Additional tractor beam effects arise when the sphere departs from the center of the beam. It is also demonstrated that the tractor beam effect arises from the force component originating from the cross-interaction between the electric and magnetic dipoles. Potential applications are in particle manipulation, optical levitation, tractor beam tweezers, and other emergent technologies using polarized Bessel beams on

  17. Sharper focal spot formed by higher-order radially polarized laser beams.

    Science.gov (United States)

    Kozawa, Yuichi; Sato, Shunichi

    2007-06-01

    The intensity distributions near the focal point for radially polarized laser beams including higher-order transverse modes are calculated based on vector diffraction theory. For higher-order radially polarized mode beams as well as a fundamental mode (R-TEM01*) beam, the strong longitudinal component forms a sharper spot at the focal point under a high-NA focusing condition. In particular, double-ring-shaped radially polarized mode (R-TEM11*) beams can effectively reduce the focal spot size because of destructive interference between the inner and the outer rings with pi phase shift. Compared with an R-TEM01* beam focusing in a limit of NA=1, the full width at half-maximum values of the focal spot for an R-TEM11* beam are decreased by 13.6% for the longitudinal component and 25.8% for the total intensity.

  18. COMMISSIONING OF RHIC DEUTERON - GOLD COLLISIONS.

    Energy Technology Data Exchange (ETDEWEB)

    SATOGATA,T.AHRENS,L.BAI,M.BEEBE-WANG,J.

    2003-05-12

    Deuteron and gold beams have been accelerated to a collision energy of {radical}s = 200 GeV/u in the Relativistic Heavy Ion Collider (RHIC), providing the first asymmetric-species collisions of this complex. Necessary changes for this mode of operation include new ramping software and asymmetric crossing angle geometries. This paper reviews machine performance, problem encountered and their solutions, and accomplishments during the 16 weeks of ramp-up and operations.

  19. Spin-polarized radioactive isotope beam produced by tilted-foil technique

    International Nuclear Information System (INIS)

    Hirayama, Yoshikazu; Mihara, Mototsugu; Watanabe, Yutaka; Jeong, Sun-Chan; Miyatake, Hiroari; Momota, Sadao; Hashimoto, Takashi; Imai, Nobuaki; Matsuta, Kensaku; Ishiyama, Hironobu; Ichikawa, Shin-ichi; Ishii, Tetsuro; Izumikawa, Takuji; Katayama, Ichiro; Kawakami, Hirokane; Kawamura, Hirokazu; Nishinaka, Ichiro; Nishio, Katsuhisa; Makii, Hiroyuki; Mitsuoka, Shin-ichi

    2013-01-01

    Highlights: • Detail study for tilted foil technique. • New equation for estimating nuclear polarization dependence on the beam energy. • Production of nuclear polarization for heaviest nucleus 123 In in ground state. -- Abstract: The tilted-foil method for producing spin-polarized radioactive isotope beams has been studied using the re-accelerated radioactive 8 Li and 123 In beams produced at Tokai Radioactive Ion Accelerator Complex (TRIAC) facility. We successfully produced polarization in a 8 Li beam of 7.3(5)% using thin polystyrene foils (4.2 μg/cm 2 ). The systematic study of the nuclear polarization as a function of the number of foils and beam energy has been performed, confirming the features of the tilted-foil technique experimentally. After the study, a spin-polarized radioactive 123 In beam, which is the heaviest ever polarized in its ground state by this method, has been successfully generated by the tilted-foil method, for the nuclear spectroscopy around the doubly magic nucleus 132 Sn

  20. Deuteron injector for Peking University Neutron Imaging Facility project

    Energy Technology Data Exchange (ETDEWEB)

    Ren, H. T.; Chen, J. E. [Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Peng, S. X.; Lu, P. N.; Zhou, Q. F.; Yuan, Z. X.; Zhao, J.; Zhang, M.; Song, Z. Z.; Yu, J. X.; Guo, Z. Y. [SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)

    2012-02-15

    The deuteron injector developed for the PKUNIFTY (Peking University Neutron Imaging Facility) has been installed and commissioned at Peking University (PKU). The injector system must transfer 50 keV 50 mA of D{sup +} ion beam to the entrance of the 2 MeV radio frequency quadrupole (RFQ) with 10% duty factor (1 ms, 100 Hz). A compact 2.45 GHz permanent magnet electron cyclotron resonance (PMECR) ion source and a 1.36 m long low energy beam transport (LEBT) line using two solenoids was developed as the deuteron injector. A {phi}5 mm four-quadrant diaphragm was used to simulate the entrance of RFQ electrodes. The beam parameters are measured after this core with an emittance measurement unit (EMU) and a bending magnet for ion fraction analysis at the end of injector. During the commissioning, 77 mA of total deuteron beam was extracted from PMECR and 56 mA of pure D{sup +} beam that passed through the {phi}5 mm four-quadrant diaphragm was obtained at the position of RFQ entrance with the measured normalized rms emittance 0.12-0.16{pi} mm mrad. Ion species analysis results show that the deuteron fraction is as high as 99.5%. All of the parameters satisfy PKUNIFTY's requirements. In this paper, we will describe the deuteron injector design and report the commissioning results as well as the initial operation.

  1. Development of a hydrogen and deuterium polarized gas target for application in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Haeberli, W.

    1992-02-01

    Polarized gas targets of atomic hydrogen and deuterium have significant advantages over conventional polarized targets, e.g. chemical and isotopic purity, large polarization including deuteron tensor polarization, absence of strong magnetic fields, rapid polarization reversal. While in principle the beam of polarized atoms from an atomic beam source (Stern-Gerlach spin separation) can be used as a polarized target, the target thickness achieved is too small for most applications. We propose to increase the target thickness by injecting the polarized atoms into a storage cell. Provided the atoms survive several hundred wall collisions without losing their polarization, it will be possible to achieve a target thickness of 10{sup 13} to 10{sup 14} atoms/cm{sup 2} by injection of polarized atoms from an atomic-beam source into suitable cells. Such targets are very attractive as internal targets in storage rings.

  2. Development of a hydrogen and deuterium polarized gas target for application in storage rings. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Haeberli, W.

    1992-02-01

    Polarized gas targets of atomic hydrogen and deuterium have significant advantages over conventional polarized targets, e.g. chemical and isotopic purity, large polarization including deuteron tensor polarization, absence of strong magnetic fields, rapid polarization reversal. While in principle the beam of polarized atoms from an atomic beam source (Stern-Gerlach spin separation) can be used as a polarized target, the target thickness achieved is too small for most applications. We propose to increase the target thickness by injecting the polarized atoms into a storage cell. Provided the atoms survive several hundred wall collisions without losing their polarization, it will be possible to achieve a target thickness of 10{sup 13} to 10{sup 14} atoms/cm{sup 2} by injection of polarized atoms from an atomic-beam source into suitable cells. Such targets are very attractive as internal targets in storage rings.

  3. Deuteron diffractive dissociation

    International Nuclear Information System (INIS)

    Antunes, A.C.B.; Caruso, F.

    1984-01-01

    Deuteron diffractive dissociation is studied in the framework of the Three Components Deck Model. The applicability of this model to light nuclei diffractive dissociation is assumed. The existence of a slope-mass-cos theta correlation is pointed out. The relevant distributions are obtained. (Author) [pt

  4. Generating, Separating and Polarizing Terahertz Vortex Beams via Liquid Crystals with Gradient-Rotation Directors

    Directory of Open Access Journals (Sweden)

    Shi-Jun Ge

    2017-10-01

    Full Text Available Liquid crystal (LC is a promising candidate for terahertz (THz devices. Recently, LC has been introduced to generate THz vortex beams. However, the efficiency is intensely dependent on the incident wavelength, and the transformed THz vortex beam is usually mixed with the residual component. Thus, a separating process is indispensable. Here, we introduce a gradient blazed phase, and propose a THz LC forked polarization grating that can simultaneously generate and separate pure THz vortices with opposite circular polarization. The specific LC gradient-rotation directors are implemented by a photoalignment technique. The generated THz vortex beams are characterized with a THz imaging system, verifying features of polarization controllability. This work may pave a practical road towards generating, separating and polarizing THz vortex beams, and may prompt applications in THz communications, sensing and imaging.

  5. Second-harmonic generation in shear wave beams with different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)

    2015-10-28

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  6. Parametric study of uniformly polarized stochastic electromagnetic beam and its imaging

    International Nuclear Information System (INIS)

    Du Xinyue; Zhao Daomu

    2009-01-01

    A parametric study is performed in investigating the stochastic electromagnetic beam generated by a uniformly polarized electromagnetic Gaussian Schell-model source and passing through ABCD optical systems. Through theoretical analysis, the requirement is derived that the uniformly polarized electromagnetic field can be obtained at the output plane of the imaging optical system. Furthermore, the general imaging formula of the stochastic electromagnetic beam is derived. Numerical examples are also presented to illustrate the application.

  7. Anti-Lambda Polarization in High Energy pp Collisions withPolarized Beams

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qing-hua; Liang, Zuo-tang; Sichtermann, Ernst

    2005-11-06

    We study the polarization of the anti-Lambda particle in polarized high energy pp collisions at large transverse momenta. The anti-Lambda polarization is found to be sensitive to the polarization of the anti-strange sea of the nucleon. We make predictions using different parameterizations of the polarized quark distribution functions. The results show that the measurement of longitudinal anti-Lambda polarization can distinguish different parameterizations, and that similar measurements in the transversely polarized case can give some insights into the transversity distribution of the anti-strange sea of nucleon.

  8. Non-perturbative calculation of equilibrium polarization of stored electron beams

    International Nuclear Information System (INIS)

    Yokoya, Kaoru.

    1992-05-01

    Stored electron/positron beams polarize spontaneously owing to the spin-flip synchrotron radiation. In the existing computer codes, the degree of the equilibrium polarization has been calculated using perturbation expansions in terms of the orbital oscillation amplitudes. In this paper a new numerical method is presented which does not employ the perturbation expansion. (author)

  9. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam.

    Science.gov (United States)

    Guo, Lina; Chen, Yahong; Liu, Xianlong; Liu, Lin; Cai, Yangjian

    2016-06-27

    Partially coherent radially polarized (PCRP) beam was introduced and generated in recent years. In this paper, we investigate the statistical properties of a PCRP beam embedded with a vortex phase (i.e., PCRP vortex beam). We derive the analytical formula for the cross-spectral density matrix of a PCRP vortex beam propagating through a paraxial ABCD optical system and analyze the statistical properties of a PCRP vortex beam focused by a thin lens. It is found that the statistical properties of a PCRP vortex beam on propagation are much different from those of a PCRP beam. The vortex phase induces not only the rotation of the beam spot, but also the changes of the beam shape, the degree of polarization and the state of polarization. We also find that the vortex phase plays a role of resisting the coherence-induced degradation of the intensity distribution and the coherence-induced depolarization. Furthermore, we report experimental generation of a PCRP vortex beam for the first time. Our results will be useful for trapping and rotating particles, free-space optical communications and detection of phase object.

  10. Boosting Deuteron Polarization in HD Targets: Experience of moving spins between H and D with RF methods during the E06-101 experiment at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiangdong; Bass, Christopher; D' Angelo, Annalisa; Deur, Alexandre; Dezern, Gary; Kageya, Tsuneo; Laine, Vivien; Lowry, Michael; Sandorfi, Andrew; Teachey, Robert; Wang, Haipeng; Whisnant, Charles

    2014-06-01

    Solid HDice targets are polarized by bringing the HD crystal to thermal equilibrium at low temperature and high magnetic field, typically 10-20 mK and 15 Tesla, at Jefferson Lab. In this regime, due to its smaller magnetic moment, the resulting polarization for D is always at least three times smaller than for H. The controlled amount of polarizing catalysts, o-H2 and p-D2, used in the process of reaching a frozen-spin state, further limit the maximum achievable D polarization. Nonetheless, H and D polarizations can be transferred from one to the other by connecting the H and D sub-states of the HD system with RF. In a large target, the RF power needed for such transitions is effectively limited by non-uniformities in the RF field. High efficiency transfers can require substantial RF power levels, and a tuned-RF circuit is needed to prevent large temperature excursions of the holding cryostat. In this paper, we compare the advantages and limitations of two different RF transfer methods to increase D polarization, Forbidden Adiabatic and Saturated Forbidden RF Transitions. The experience with the HD targets used during the recently completed E06-101 experiment in Hall-B of Jefferson Lab is discussed.

  11. Effect of the deuteron anisotropy: longitudinal and transverse components of the electric dipole polarizability

    International Nuclear Information System (INIS)

    Kharchenko, A.V.

    1997-01-01

    The anisotropy effect of the electric polarization (stretching) of the deuteron in the Coulomb field, caused by the tensor character of the nuclear force, is investigated. The values of the longitudinal (with the major axis, or the spin of the deuteron, directed along the electric field), and transverse components of the deuteron electric dipole polarizability that correspond to the low-energy n-p data, are predicted to be α parallel =0.669 fm 3 and α perpendicular to =0.555 fm 3 (the potential YYm). The values of the major and minor semi-axes of the deuteron are calculated. (orig.)

  12. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    Science.gov (United States)

    Hershcovitch, A.

    1984-02-13

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  13. Probing space–time structure of new physics with polarized beams ...

    Indian Academy of Sciences (India)

    Abstract. At the international linear collider large beam polarization of both the elec- tron and positron beams will enhance the signature of physics due to interactions that are beyond the standard model. Here we review our recently obtained results on a general model-independent method of determining for an arbitary ...

  14. System for producing high-resolution polarized and unpolarized beams with a tandem accelerator

    International Nuclear Information System (INIS)

    Westerfeldt, C.R.; Bilpuch, E.G.; Bleck, M.E.; Outlaw, D.A.; Wells, W.K.; Wilkerson, J.F.; Clegg, T.B.

    1983-01-01

    A tandem accelerator beam energy stabilizer, which utilizes an optically coupled fast feedback loop to the accelerator terminal stripper, is described. Emphasis is placed on the components of the feedback system and on the application of this system to production of high energy-resolution beams. This system produces beam energy spreads ranging from 450 to 600 eV FWHM for 2 to 16 MeV unpolarized protons. Polarized beam energy spreads range from 550 to 700 eV FWHM, for the same beam energy range

  15. Determination of the Azimuthal Asymmetry of Deuteron Photodisintegration in the Energy Region Eγ = 1.1 - 2.3 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Zachariou, Nicholas [George Washington Univ., Washington, DC (United States)

    2012-05-20

    Deuteron photodisintegration is a benchmark process for the investigation of the role of quarks and gluons in nuclei. Existing theoretical models of this process describe the available cross sections with the same degree of success. Therefore, spin-dependent observables are crucial for a better understanding of the underlying dynamical mechanisms. However, data on the induced polarization (P y), along with the polarization transfers (Cx and Cz ), have been shown to be insensitive to differences between theoretical models. On the other hand, the beam-spin asymmetry {Sigma} is predicted to have a large sensitivity and is expected to help in identifying the energy at which the transition from the hadronic to the quark-gluon picture of the deuteron takes place. Here, the work done to determine the experimental values of the beam-spin asymmetry in deuteron photodisintegration for photon energies between 1.1 - 2.3 GeV is presented. The data were taken with the CLAS at the Thomas Jefferson National Accelerator Facility during the g13 experiment. Photons with linear polarization of ~80% were produced using the coherent bremsstrahlung facility in Hall B. The work done by the author to calibrate a specific detector system, select deuteron photodisintegration events, study the degree of photon polarization, and finally determine the azimuthal asymmetry and any systematic uncertainties associate with it, is comprehensively explained. This work shows that the collected data provide the kinematic coverage and statistics to test the available QCD-based models. The results of this study show that the available theoretical models in their current state do not adequately predict the azimuthal asymmetry in the energy region 1.1 - 2.3 GeV.

  16. 5G antenna array with wide-angle beam steering and dual linear polarizations

    KAUST Repository

    Klionovski, Kirill

    2017-10-25

    In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.

  17. Nuclear spin polarized alkali beams (Li and Na): Production and acceleration

    International Nuclear Information System (INIS)

    Jaensch, H.; Becker, K.; Blatt, K.; Leucker, H.; Fick, D.

    1987-01-01

    Recent improvements of the Heidelberg source for polarized heavy ions (PSI) are described. By means of optical pumping in combination with the existing multipole separation magnet the beam figure of merit (polarization 2 x intensity) was doubled. 7 Li and 23 Na atomic beams can now be produced in pure hyperfine magnetic substates. Fast switching of the polarization is achieved by an adiabatic medium field transition. The hyperfine magnetic substate population is determined by laser-induced fluorescence spectroscopy. In routine operation atomic beams with nuclear polarization p α ≥0.85 (α=z, zz) are obtained. The acceleration of polarized 23 Na - ions by a 12 MV tandem accelerator introduces a new problem: the energy at the terminal stripper foil is not sufficient to produce a usable yield of naked ions. For partially stripped ions hyperfine interaction of the remaining electrons with the nuclear spin reduces the nuclear polarization. Using in addition the Heidelberg postaccelerator 23 Na 9+ beams of energies between 49 and 184 MeV were obtained with an alignment on target of P zz ≅0.45. 7 Li beams have also been accelerated up to 45 MeV with an alignment of P zz =0.69. (orig.)

  18. Study of inclusive proton spectra from 20 MeV deuteron breakup by bismuth

    International Nuclear Information System (INIS)

    Badiger, N.M.; Hallur, B.R.; Madhusoodhanan, T.; Sathyavathiamma, M.P.; Puttaswamy, N.G.; Darshan, V.P.; Sharma, H.; Chintalapudi, S.N.

    1997-01-01

    The breakup of deuteron into proton and neutron has been studied earlier to understand the breakup mechanism. Inclusive measurements show the expected broad bumps near the beam velocity. In the present experiment, the breakup of 20 MeV deuterons by bismuth target has been investigated

  19. Spin polarized solid target as a prospective tool for radioactive ion beam physics

    Science.gov (United States)

    Urrego-Blanco, J. P.; van den Brandt, B.; Bunyatova, E. I.; Galindo-Uribarri, A.; Hautle, P.; Konter, J. A.

    2005-12-01

    Spin polarized probes are used in a wide range of experiments in nuclear physics including the determination of spin structure functions and tests of fundamental symmetries. At low energies, light stable polarized beams have been used for spectroscopic purposes. We propose to extend these types of experiments to nuclei far from stability by using radioactive ion beams (RIBs) and polarized targets. Towards this goal we intend to develop a solid polarized proton and/or deuterium target in the thickness range between 20 μm and 100 μm based on a scintillating (active) polymeric foil. Such a target would be a useful tool in the determination of excitation functions in resonant reactions, in studies of one-nucleon transfer reactions using RIBs as well as in probing the matter density of atomic nuclei. If scintillating, it could also help remove the background associated with the scattering of the radioactive beam.

  20. Spin polarized solid target as a prospective tool for radioactive ion beam physics

    Energy Technology Data Exchange (ETDEWEB)

    Urrego-Blanco, J.P. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6371 (United States); Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Brandt, B. van den [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Bunyatova, E.I. [Joint Institute for Nuclear Research, Dubna, Head P.O. Box 79, 101000 Moscow (Russian Federation); Galindo-Uribarri, A. [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6371 (United States)]. E-mail: uribarri@mail.phy.ornl.gov; Hautle, P. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Konter, J.A. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2005-12-15

    Spin polarized probes are used in a wide range of experiments in nuclear physics including the determination of spin structure functions and tests of fundamental symmetries. At low energies, light stable polarized beams have been used for spectroscopic purposes. We propose to extend these types of experiments to nuclei far from stability by using radioactive ion beams (RIBs) and polarized targets. Towards this goal we intend to develop a solid polarized proton and/or deuterium target in the thickness range between 20 {mu}m and 100 {mu}m based on a scintillating (active) polymeric foil. Such a target would be a useful tool in the determination of excitation functions in resonant reactions, in studies of one-nucleon transfer reactions using RIBs as well as in probing the matter density of atomic nuclei. If scintillating, it could also help remove the background associated with the scattering of the radioactive beam.

  1. Experimental generation of tripartite polarization entangled states of bright optical beams

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liang; Liu, Yanhong; Deng, Ruijie [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006 (China); Yan, Zhihui; Jia, Xiaojun, E-mail: jiaxj@sxu.edu.cn; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006 (China)

    2016-04-18

    The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an optical beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.

  2. Experimental generation of tripartite polarization entangled states of bright optical beams

    Science.gov (United States)

    Wu, Liang; Yan, Zhihui; Liu, Yanhong; Deng, Ruijie; Jia, Xiaojun; Xie, Changde; Peng, Kunchi

    2016-04-01

    The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an optical beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.

  3. Spin tracking for a deuteron EDM storage ring

    Science.gov (United States)

    Skawran, A.; Lehrach, A.

    2017-07-01

    The aim of the Jülich Electric Dipole moment Investigations (JEDI) collaboration is the measurement of the Electric Dipole Moment (EDM) of charged particles like protons or deuterons. There are two possible concepts under consideration for the realization of EDM measurement with deuterons; the Frozen Spin (FS) and Quasi-Frozen Spin (QFS) method. Both approaches are discussed and compared in this paper. Detailed spin- and beam dynamics simulations are performed to investigate the effect of various misalignments of ring elements and systematic effects. Furthermore, the utilization of counter rotating beams is studied and checked for its validity.

  4. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  5. Vectorial field propagation through high NA objectives using polarized Gaussian beam decomposition

    Science.gov (United States)

    Worku, N.; Gross, H.

    2017-08-01

    Scalar fields can be propagated through non-paraxial systems using the Gaussian beam decomposition method. However, for high NA objectives, this scalar treatment is not sufficient to correctly describe the electromagnetic fields inside the focal region due to high ray bendings, which result in a significant change in the polarization state of light. To model these vectorial effects, the Gaussian beam decomposition method has to be extended to include the polarization state of light. In this work we have combined it with the three dimensional polarization ray tracing in order to propagate vectorial fields through high NA optical systems. During the Gaussian beam decomposition, the polarization state of each individual beamlet is represented by a polarization vector [𝐸𝑥, 𝐸𝑦, 𝐸𝑧 ] associated with its central ray. Individual Gaussian beams are then propagated through the system using the complex ray tracing method. The effect of the optical system on the polarization state of each beam is computed by applying the three dimensional polarization ray tracing of the corresponding central rays. Finally the individual beams are superposed coherently in the plane of interest resulting in the complete vectorial field. We apply the proposed method to compute the vectorial field inside the focal region of a high NA microscope objective lens and compare our result to the vectorial Debye integral method. We find that the Gaussian beam decomposition method overcomes serious limitations of algorithms relying on Fourier transforms, i.e. the field sampling requirements are less critical in high NA focusing and in the presence of large aberrations. However, sharp edges in the amplitude profile are difficult to handle as they should be replaced with smooth Gaussian edge.

  6. Three-dimensional polarization marked multiple-QR code encryption by optimizing a single vectorial beam

    Science.gov (United States)

    Lin, Chao; Shen, Xueju; Hua, Binbin; Wang, Zhisong

    2015-10-01

    We demonstrate the feasibility of three dimensional (3D) polarization multiplexing by optimizing a single vectorial beam using a multiple-signal window multiple-plane (MSW-MP) phase retrieval algorithm. Original messages represented with multiple quick response (QR) codes are first partitioned into a series of subblocks. Then, each subblock is marked with a specific polarization state and randomly distributed in 3D space with both longitudinal and transversal adjustable freedoms. A generalized 3D polarization mapping protocol is established to generate a 3D polarization key. Finally, multiple-QR code is encrypted into one phase only mask and one polarization only mask based on the modified Gerchberg-Saxton (GS) algorithm. We take the polarization mask as the cyphertext and the phase only mask as additional dimension of key. Only when both the phase key and 3D polarization key are correct, original messages can be recovered. We verify our proposal with both simulation and experiment evidences.

  7. Particle interaction with the deuteron

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1974-09-01

    A study of the particle deuteron interactions at low, intermediate and high energies is presented. The differential cross section for pion deuteron scattering, near the 33 resonance, is calculated considering the Fermi motion and the off energy shell effects. We present formulae for the calculation of correction to the incoherent production cross section on deuteron arising from the multiple scattering and interference; we apply them to the case K + → K 0 π + between 1. and 5 Gev/c. is introduced. A relativistic correction to the double scattering Glauber formula and is done an application to the rho photoproduction on deuteron at high energies

  8. Polarization preservation and control in a figure-8 ring

    Energy Technology Data Exchange (ETDEWEB)

    Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kondratenko, A. M. [GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058; Kondratenko, M. A. [GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058; Filatov, Yuri [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058

    2016-02-01

    We present a complete scheme for managing the polarization of ion beams in Jefferson Lab's proposed Medium-energy Electron-Ion Collider (MEIC). It provides preservation of the ion polarization during all stages of beam acceleration and polarization control in the collider's experimental straights. We discuss characteristic features of the spin motion in accelerators with Siberian snakes and in accelerators of figure-8 shape. We propose 3D spin rotators for polarization control in the MEIC ion collider ring. We provide polarization calculations in the collider with the 3D rotator for deuteron and proton beams. The main polarization control features of the figure-8 design are summarized.

  9. On the polarized beam acceleration in medium energy synchrotrons

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1992-01-01

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined

  10. Compact LCOS–SLM Based Polarization Pattern Beam Generator

    OpenAIRE

    Zheng, Xuejie; Lizana Tutusaus, Ángel; Peinado, Alba; Ramírez, Claudio; Martínez, Jose L.; Márquez, Andrés; Moreno Soriano, Ignacio; Campos Coloma, Juan

    2015-01-01

    In this paper, a compact optical system for generating arbitrary spatial light polarization patterns is demonstrated. The system uses a single high-resolution liquid crystal (LC) on silicon (LCOS) spatial light modulator. A specialized optical mount is designed and fabricated using a 3D printer, in order to build a compact dual optical architecture, where two different phase patterns are encoded on two adjacent halves of the LCOS screen, with a polarization transformation in between. The fina...

  11. Intense γ-ray generation for a polarized positron beam in a linear collider

    Directory of Open Access Journals (Sweden)

    Y. Miyahara

    2001-12-01

    Full Text Available γ-ray generation by Compton backscattering in an optical lens series with periodic focal points is considered to produce a polarized positron beam for a linear collider. The lens series is composed of 20 unit cells with a length of 210 mm. Each lens has a hole to pass an electron beam with an energy of 5.8 GeV and the generated γ rays. It is shown by diffraction analysis that laser beam loss in the series is very small, and the beam size is periodically reduced to 26 μm. Electron beam size is reduced to 34 μm in a superconducting solenoid with a field of 15 T. To get a required γ-ray yield of 7×10^{15} γ/s, only one circularly polarized CO_{2} laser source with a power of 24 kW is needed.

  12. Polarimetry of the polarized hydrogen deuteride HDice target under an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Laine, Vivien E. [Blaise Pascal Univ., Aubiere (France)

    2013-10-01

    The study of the nucleon structure has been a major research focus in fundamental physics in the past decades and still is the main research line of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). For this purpose and to obtain statistically meaningful results, having both a polarized beam and a highly efficient polarized target is essential. For the target, this means high polarization and high relative density of polarized material. A Hydrogen Deuteride (HD) target that presents both such characteristics has been developed first at Brookhaven National Lab (BNL) and brought to the Hall B of Jefferson Lab in 2008. The HD target has been shown to work successfully under a high intensity photon beam (BNL and Jefferson Lab). However, it remained to be seen if the target could stand an electron beam of reasonably high current (nA). In this perspective, the target was tested for the first time in its frozen spin mode under an electron beam at Jefferson Lab in 2012 during the g14 experiment. This dissertation presents the principles and usage procedures of this HD target. The polarimetry of this target with Nuclear Magnetic Resonance (NMR) during the electron beam tests is also discussed. In addition, this dissertation also describes another way to perform target polarimetry with the elastic scattering of electrons off a polarized target by using data taken on helium-3 during the E97-110 experiment that occurred in Jefferson Lab's Hall A in 2003.

  13. Construction and characterization of a spin polarized helium ion beam for surface electronic structure studies

    International Nuclear Information System (INIS)

    Harrison, A.R.

    1982-01-01

    Ion neutralization and metastable de-excitation spectroscopy, INS and MDS, allow detailed analysis of the surface electronic configuration of metals. The orthodox application of these spectroscopies may be enhanced by electronic spin polarization of the probe beams. For this reason, a spin polarized helium ion beam has been constructed. The electronic spin of helium metastables created within an rf discharge may be spacially aligned by optically pumping the atoms. Subsequent collisions between metastables produce helium ions which retain the orientation of the electronic spin. Extracted ion polarization, although not directly measurable, may be estimated from extracted electron polarization, metastable polarization, pumping radiation absorption and current modulation measurements. Ions extracted from the optically pumped discharge exhibit an estimated polarization of about ten per cent at a beam current of a few tenths of a microampere. Extraction of helium ions from the discharge requires that the ions have a high kinetic energy. However, to avoid undesirable kinetic electron ejection from the target surface, the ions must be decelerated. Examination of various deceleration configurations, in paticular exponential and linear deceleration fields, and experimental observation indicate that a linear decelerating field produces the best low energy beam to the target surface

  14. The polarized H and D atomic beam source for ANKE at COSY-Jülich

    Energy Technology Data Exchange (ETDEWEB)

    Mikirtychyants, M., E-mail: m.mikirtychyants@fz-juelich.de [Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich (Germany); High Energy Physics Department, St.Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Engels, R. [Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich (Germany); Grigoryev, K. [Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich (Germany); High Energy Physics Department, St.Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Kleines, H. [Zentrallabor für Elektronik, Forschungszentrum Jülich, 52425 Jülich (Germany); Kravtsov, P. [High Energy Physics Department, St.Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Lorenz, S. [Physikalisches Institut, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen (Germany); Nekipelov, M. [Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich (Germany); High Energy Physics Department, St.Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Nelyubin, V. [High Energy Physics Department, St.Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Rathmann, F.; Sarkadi, J. [Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich (Germany); and others

    2013-09-01

    A polarized atomic beam source was developed for the polarized internal storage-cell gas target at the magnet spectrometer ANKE of COSY-Jülich. The intensities of the beams injected into the storage cell, measured with a compression tube, are 7.5×10{sup 16} hydrogen atoms/s (two hyperfine states) and 3.9×10{sup 16} deuterium atoms/s (three hyperfine states). For the hydrogen beam the achieved vector polarizations are p{sub z}≈±0.92. For the deuterium beam, the obtained combinations of vector and tensor (p{sub zz}) polarizations are p{sub z}≈±0.90 (with a constant p{sub zz}≈+0.86), and p{sub zz}=+0.90 or p{sub zz}=−1.71 (both with vanishing p{sub z}). The paper includes a detailed technical description of the apparatus and of the investigations performed during the development. This source has been very successfully used for single and double polarization measurements at ANKE as well as for studies of the polarization of recombining hydrogen molecules.

  15. Investigation of beam self-polarization in the future e+e− circular collider

    CERN Document Server

    AUTHOR|(CDS)2075800

    2016-10-24

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the eþe− Future Circular Collider (FCC-eþe−) for Z and WW physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of selfpolarized leptons is considered. Preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-eþe− ring are presented.

  16. Quasielastic nucleon scattering using polarized beams and targets

    International Nuclear Information System (INIS)

    Haeusser, O.

    1990-07-01

    Inelastic scattering of polarized intermediate energy nucleons to continuum nuclear states is discussed with emphasis on recent results. Spin momentum correlations of protons in polarized targets of 3 He were observed for the first time. Complete spin observables in (p,p') show effects of the nuclear spin-isospin response and of an NN interaction modified by the nuclear medium. A comparison of Gamow Teller and isovector M1 giant resonance strengths in the sd shell provides evidence for large meson exchange current effects in the M1. (Author) (37 refs., 2 tabs., 9 figs.)

  17. Cross sections of deuteron induced nuclear reactions on metal targets

    International Nuclear Information System (INIS)

    Tarkanyi, F.; Ditroi, F.; Takacs, S.

    2005-01-01

    Integral excitation functions for the production of residual nuclides with light charged particles are basic data for different applications. The proton induced nuclear reactions are the most widely used and their cross section data are extensively studied. For practical applications these reactions are followed in importance by deuteron induced reactions. Due to the stripping process the production yield of the deuteron induced reactions is significant. High intensity deuteron beams can be produced relatively simply by accelerators. Deuteron induced reactions play an important role in secondary fast neutron sources, in thin layer activation technology, etc. The search of the literature shows that the cross section database for deuteron induced reactions is very poor (very few data above 15-20 MeV). No systematical study has been performed earlier. In addition the published data (except for a few well measured monitor and medically important reactions) show large discrepancies. To meet the requirements of these applications we performed a systematical experimental study of deuteron induced activation cross sections for different targets up to 50 MeV deuteron energy during the last years. Here we summarize the results for the most widely used technological materials: i.e. for metals. The targets were irradiated with external beams of the cyclotrons of Debrecen, Brussels and Sendai, Residual nuclei were measured by X- and gamma-spectrometry without chemical separation. The investigation includes a few hundred reactions induced on the following 20 target elements: Al, Ti, Fe, Ni, Cu, Zn, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, Sn, Te, W, Ir, Pt, Pb. A significant part of the measured data is new. The measured excitation functions were compared with the theory by using the ALICE-IPPE and TALYS codes. For a few elements, isotopic cross sections were measured on highly enriched targets ( 100 Mo, 122,123 Te, 114 Cd) for medical radioisotope production Applications in the field of

  18. Low energy deuteron-induced reactions on Fe isotopes

    Czech Academy of Sciences Publication Activity Database

    Avrigeanu, M.; Avrigeanu, V.; Bém, Pavel; Fischer, U.; Honusek, Milan; Katovsky, K.; Manailescu, C.; Mrázek, Jaromír; Šimečková, Eva; Závorka, Lukáš

    2014-01-01

    Roč. 89, č. 4 (2014), 044613 ISSN 0556-2813 R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : cross sections * proton spectra * polarized deuterons Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.733, year: 2014

  19. Thomson scattering of polarized photons in an intense laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Byung Yunn

    2006-02-21

    We present a theoretical analysis of the Thomson scattering of linearly and circularly polarized photons from a pulsed laser by electrons. The analytical expression for the photon distribution functions presented in this paper should be useful to designers of Thomson scattering experiments.

  20. Experimental generation of tripartite polarization entangled states of bright optical beams

    OpenAIRE

    Wu, Liang; Yan, Zhihui; Liu, Yanhong; Deng, Ruijie; Jia, Xiaojun; Xie, Changde; Peng, Kunchi

    2017-01-01

    The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite en...

  1. Construction of the spin-polarized slow positron beam with the RI source

    Energy Technology Data Exchange (ETDEWEB)

    Nakajyo, Terunobu; Tashiro, Mutsumi; Kanazawa, Ikuzo [Tokyo Gakugei Univ., Koganei (Japan); Komori, Fumio; Murata, Yoshimasa; Ito, Yasuo

    1997-03-01

    The electrostatic slow-positron beam is constructed by using {sup 22}Na source. We design the electrostatic lens, the system of the detector, and the Wien filter for the experiment`s system of the spin-polarized slow positron beam. The reemitted spin-polarized slow-positron spectroscopy is proposed for studying magnetic thin films and magnetic multilayers. We calculated the depolarized positron fractions in the Fe thin film Fe(10nm)/Cu(substrate) and the multilayers Cu(1nm)/Fe(10nm)/Cu(substrate). (author)

  2. Low-energy deuteron polarimeter

    NARCIS (Netherlands)

    Bellos, A; Kalantar-Nayestanaki, N; Kremers, HR; Messchendorp, JG; KalantarNayestanaki, N; Timmermans, RGE; Bakker, BLG

    2005-01-01

    Polarized beams or targets are used in nuclear few-body experiments to extract observables such as analyzing powers and spin-transfer coefficients. These measured observables can be compared to theoretical models to study, for example, three-body interactions, or, the properties of the spin-orbit

  3. Squids, snakes, and polarimeters: A new technique for measuring the magnetic moments of polarized beams

    International Nuclear Information System (INIS)

    Cameron, P.R.; Luccio, A.U.; Shea, T.J.; Tsoupas, N.; Goldberg, D.A.

    1997-01-01

    Effective polarimetry at high energies in hadron and lepton synchrotrons has been a long-standing and difficult problem. In synchrotrons with polarized beams it is possible to cause the direction of the polarization vector of a given bunch to alternate at a frequency which is some subharmonic of the rotation frequency. This can result in the presence of lines in the beam spectrum which are due only to the magnetic moment of the beam and which are well removed from the various lines due to the charge of the beam. The magnitude of these lines can be calculated from first principles. They are many orders of magnitude weaker than the Schottky signals. Measurement of the magnitude of one of these lines would be an absolute measurement of beam polarization. For measuring magnetic field, the Superconducting Quantum Interference Device, or squid, is about five orders of magnitude more sensitive than any other transducer. Using a squid, such a measurement might be accomplished with the proper combination of shielding, pickup loop design, and filtering. The resulting instrument would be fast, non-destructive, and comparatively cheap. In addition, techniques developed in the creation of such an instrument could be used to measure the Schottky spectrum in unprecedented detail. We present specifics of a polarimeter design for the Relativistic Heavy Ion Collider (RHIC) and briefly discuss the possibility of using this technique to measure polarization at high-energy electron machines like LEP and HERA. copyright 1997 American Institute of Physics

  4. Differential Polarization Nonlinear Optical Microscopy with Adaptive Optics Controlled Multiplexed Beams

    Directory of Open Access Journals (Sweden)

    Virginijus Barzda

    2013-09-01

    Full Text Available Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red, which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.

  5. Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams.

    Science.gov (United States)

    Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus

    2013-09-09

    Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.

  6. Differential Polarization Nonlinear Optical Microscopy with Adaptive Optics Controlled Multiplexed Beams

    Science.gov (United States)

    Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus

    2013-01-01

    Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures. PMID:24022688

  7. Vacuum laser acceleration using a radially polarized CO sub 2 laser beam

    CERN Document Server

    Liu, Y; He, P

    1999-01-01

    Utilizing the high-power, radially polarized CO sub 2 laser and high-quality electron beam at the Brookhaven Accelerator Test Facility, a vacuum laser acceleration scheme is proposed. In this scheme, optics configuration is simple, a small focused beam spot size can be easily maintained, and optical damage becomes less important. At least 0.5 GeV/m acceleration gradient is achievable by 1 TW laser power.

  8. Propagation of Polarization Modulated Beams Through a Turbulent Atmosphere

    Science.gov (United States)

    2014-11-24

    multipole expansion (Fiutak, 1963), in which the semiclassical Kramers- Heisenberg dispersion equation is demonstrated to be identical with the...are a pair of complex scalar fields considered to be dual, as there exists in 3D a duality between a vector basis which is contravariant...does not provide necessarily a relation of to , which are dual in the strong sense. Fig 6.2.1.A shows a continuous beam in 3D constructed

  9. A multi-satellite study of accelerated ionospheric ion beams above the polar cap

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2006-07-01

    Full Text Available This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 RE. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio EO+ / EH+, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity. In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.

  10. Efficient generation of high beam-quality attosecond pulse with polarization-gating Bessel-Gauss beam from highly-ionized media.

    Science.gov (United States)

    Li, Yang; Zhang, Qingbin; Hong, Weiyi; Wang, Shaoyi; Wang, Zhe; Lu, Peixiang

    2012-07-02

    Single attosecond pulse generation with polarization gating Bessel-Gauss beam in relatively strongly-ionized media is investigated. The results show that Bessel-Gauss beam has the ability to suppress the spatial plasma dispersion effects caused by high density of free electrons, thus the laser field can maintain its spatial profile through highly-ionized medium. This indicates the use of Bessel-Gauss beam has advantages over Gaussian beam in high harmonic generation under high ionization conditions. In our scheme, significant improvement of spatiotemporal properties of harmonics is achieved and an isolated attosecond pulse with high beam quality is filtered out using polarization gating.

  11. Cross-field injection of a charged, polarized, ion-electron beam

    International Nuclear Information System (INIS)

    Hamilton, G.W.

    1976-01-01

    An early idea for fueling a controlled fusion device had been the injection of a polarized mixture of ions and electrons across a magnetic field and into the device. Now, the beam intensity (several kA/cm 2 ) required for this technique is available from pulsed ion diodes. Remaining feasibility questions involve beam optics and trapping. The most obvious advantage over neutral-beam injection is avoidance of the need to produce high-energy atoms. Therefore, the technique will compete best at ion energies above 100 keV. The method appears feasible for pulsed startup of mirror machines, but not for steady-state injection into a plasma

  12. Design of a Deuteron RFQ for Neutron Generation

    CERN Document Server

    Guo, Z Y; Fang, J; Lu, Y R; Peng, S X; Song, Z Z; Yu Jin Xiang; Zhang, C; Zhu, K

    2004-01-01

    A deuteron RFQ is designed for neutron generation with 9Be(d,n)10B reaction. Considering the limitation of available RF transmitter, the frequency was chosen as 201.5 MHz and the peak RF power was set to 400 kW with 10% duty factor. The deuteron beam will be extracted from an ECR ion source also with 10% duty factor and then be accelerated to about 2 MeV by RFQ with high transmission efficiency. The system will be described and the design results of particle dynamics and structure will be given.

  13. Influence of Polarization of the Incident Beam on Integrated Intensities in X-Ray Energy-Dispersive Diffractometry

    DEFF Research Database (Denmark)

    Olsen, J. Staun; Buras, B.; Jensen, T.

    1978-01-01

    Polarization measurements of the primary X-ray beam produced by thick copper and tungsten anodes are reported and formulas derived for integrated intensities of Bragg reflections in energy-dispersive diffractometry with the polarization of the primary beam taken into account. It was found...

  14. Diversity and Multiplexing Technologies by 3D Beams in Polarized Massive MIMO Systems

    Directory of Open Access Journals (Sweden)

    Xin Su

    2016-01-01

    Full Text Available Massive multiple input, multiple output (M-MIMO technologies have been proposed to scale up data rates reaching gigabits per second in the forthcoming 5G mobile communications systems. However, one of crucial constraints is a dimension in space to implement the M-MIMO. To cope with the space constraint and to utilize more flexibility in 3D beamforming (3D-BF, we propose antenna polarization in M-MIMO systems. In this paper, we design a polarized M-MIMO (PM-MIMO system associated with 3D-BF applications, where the system architectures for diversity and multiplexing technologies achieved by polarized 3D beams are provided. Different from the conventional 3D-BF achieved by planar M-MIMO technology to control the downtilted beam in a vertical domain, the proposed PM-MIMO realizes 3D-BF via the linear combination of polarized beams. In addition, an effective array selection scheme is proposed to optimize the beam-width and to enhance system performance by the exploration of diversity and multiplexing gains; and a blind channel estimation (BCE approach is also proposed to avoid pilot contamination in PM-MIMO. Based on the Long Term Evolution-Advanced (LTE-A specification, the simulation results finally confirm the validity of our proposals.

  15. Measurement of the $\\beta$-asymmetry parameter in $^{35}$Ar decay with a laser polarized beam

    CERN Multimedia

    With this proposal we request beam time for the first two phases of a project that aims at measuring the $\\beta$-asymmetry parameter of the mirror $\\beta$-decay branch in $^{35}$Ar using an optically polarized Ar atom beam. The final goal of the experiment is to measure this parameter to a precision of 0.5%. This will allow the most precise determination of the V$_{ud}$ quark mixing matrix element from all the mirror transitions with an absolute uncertainty of 0.0007. The proposal will be presented in phases and we ask here 11 shifts (7 on-line + 4 off-line) for phase 1 and 15 shifts (6 on-line and 9 off-line) for phase 2. Phase 1 aims at establishing the optimal laser polarization scheme as well as the best implantation host for maintaining the polarization. Phase 2 aims at enhancing the beam polarization by removing the unpolarized part of the beam using re-ionization.

  16. Modeling of polarization phenomena due to RF sheaths and electron beams in magnetized plasma

    International Nuclear Information System (INIS)

    Faudot, E.

    2005-01-01

    This work investigates the problematic of hot spots induced by accelerated particle fluxes in tokamaks. It is shown that the polarization due to sheaths in the edge plasma in which an electron beam at a high level of energy is injected, can reach several hundreds volts and thus extend the deposition area. The notion of obstructed sheath is introduced and explains the acceleration of energy deposition by the decreasing of the sheath potential. Then, a 2-dimensional fluid modeling of flux tubes in front of ICRF antennae allows us to calculate the rectified potentials taking into account RF polarization currents transverse to magnetic field lines. The 2-dimensional fluid code designed validates the analytical results which show that the DC rectified potential is 50% greater with polarization currents than without. Finally, the simultaneous application of an electron beam and a RF potential reveals that the potentials due to each phenomenon are additives when RF potential is much greater than beam polarization. The density depletion of polarized flux tubes in 2-dimensional PIC (particles in cells) simulations is characterized but not yet explained. (author)

  17. Broadband non-polarizing terahertz beam splitters with variable split ratio

    KAUST Repository

    Wei, Minggui

    2017-08-15

    Seeking effective terahertz functional devices has always aroused extensive attention. Of particular interest is the terahertz beam splitter. Here, we have proposed, designed, manufactured, and tested a broadband non-polarizing terahertz beam splitter with a variable split ratio based on an all-dielectric metasurface. The metasurface was created by patterning a dielectric surface of the N-step phase gradient and etching to a few hundred micrometers. The conversion efficiency as high as 81% under the normal incidence at 0.7 THz was achieved. Meanwhile, such a splitter works well over a broad frequency range. The split ratio of the proposed design can be continuously tuned by simply shifting the metasurface, and the angle of emergences can also be easily adjusted by choosing the step of phase gradients. The proposed design is non-polarizing, and its performance is kept under different polarizations.

  18. Geometric considerations of polar mesospheric summer echoes in tilted beams using coherent radar imaging

    Science.gov (United States)

    Sommer, S.; Stober, G.; Chau, J. L.; Latteck, R.

    2014-11-01

    We present observations of polar mesospheric summer echoes (PMSE) using the Middle Atmosphere Alomar Radar System in Northern Norway (69.30° N, 16.04° E). The radar is able to resolve PMSE at high spatial and temporal resolution and to perform pulse-to-pulse beam steering. In this experiment, 81 oblique beam directions were used with off-zenith angles up to 25°. For each beam pointing direction and range gate, coherent radar imaging was applied to determine the mean backscatter location. The location of the mean scatterer in the beam volume was calculated by the deviation from the nominal off-zenith angle of the brightest pixel. It shows that in tilted beams with an off-zenith angle greater than 5°, structures appear at the altitudinal edges of the PMSE layer. Our results indicate that the mean influence of the location of the maximum depends on the tilt of the beam and on the observed area of the PMSE layer. At the upper/lower edge of the PMSE layer, the mean backscatter has a greater/smaller off-zenith angle than the nominal off-zenith angle. This effect intensifies with greater off-zenith beam pointing direction, so the beam filling factor plays an important role in the observation of PMSE layers for oblique beams.

  19. Deuteron D-wave and the non-eikonal effects in tensor asymmetries in elastic proton-deuteron scattering

    International Nuclear Information System (INIS)

    Alberi, G.; Bleszynski, M.; California Univ., Los Angeles; Santos, S.; Jaroszewicz, T.

    1980-01-01

    It is shown that the tensor asymmetries in the elastic proton-deuteron scattering at medium energies are very sensitive to the non-eikonal corrections to the Glauber model. This sensitivity originates from the fact that, in double scattering, the non-eikonal corrections affect in a different way the contributions coming from the S- and D-wave parts of the deuteron wave function. This leads to considerable change of the tensor asymmetries not only in the region of the interference between single and double scatterings, but also in the region of dominance of the double scattering. It is suggested that these effects should be taken into account in any careful analysis of the proton-deuteron polarization data, which has as a goal the extraction of the NN amplitudes. (author)

  20. Design of a novel multi channel photonic crystal fiber polarization beam splitter

    Science.gov (United States)

    Zhao, Yunyan; Li, Shuguang; Wang, Xinyu; Wang, Guangyao; Shi, Min; Wu, Junjun

    2017-10-01

    A kind of multi channel dual-core photonic crystal fiber polarization beam splitter is designed. We analyze the effects of the lattice parameters and the thickness of gold layer on the beam splitting by the finite element method. Numerical results show that the thickness of metal layer and the size of the air holes near the fiber cores are closely linked with the nature of the polarization beam splitter. We also obtain that extinction ratio can reach -73.87 dB at 1 . 55 μm wavelength and at 1 . 41 μm, 1 . 65 μm extinction ratio can reach 30.8978 dB and 31.1741 dB, respectively. The comparison of the effect on the characteristic of the photonic crystal fiber with coating no gold is also taken into account.

  1. The spin structure of the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Frois, B. [DAPNIA/SPHN, Gif-sur-Yvette (France)

    1994-12-01

    The Spin Muon Collaboration (SMC) has measured for the first time the spin-dependent structure function g{sub 1}{sup d} of the deuteron in the deep inelastic scattering of polarized muons on polarized deuterons in the kinematic range Q{sup 2} > 1 GeV{sup 2}, 0.006 < x < 0.6. The first moment {Gamma}{sub 1}{sup d} = {integral}{sub 0}{sup 1}g{sub 1}{sup d}dx = 0.023 {+-} 0.020(stat.) {+-} 0.015(syst.) is smaller than the prediction of the Ellis-Jaffe sum rules. The author finds that the fraction of the nucleon spin carried by strange quarks {Delta}s is appreciable and negative. Using earlier measurements of g{sub 1}{sup p}, the group can infer the first moment of the spin-dependent neutron structure function g{sub 1}{sup n}. The combined analysis of all the available data on the spin-dependent structure functions of the nucleon shows an excellent agreement among the data sets. The author does not find significant deviations from the prediction of the Bjorken sum rule.

  2. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    Energy Technology Data Exchange (ETDEWEB)

    Makhloufi, M., E-mail: makhloufi_8m@yahoo.fr [Centre de Recherche Nucléaire de Birine (Algeria); Salah, H. [Centre de Recherche Nucléaire d' Alger (Algeria)

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway. - Highlights: • Permit to evaluate the feasibility of a polarized neutron scattering instrument prior to its implementation. • Help to understand the origin of instrumental imperfections and offer an optimized set up configuration. • Provide the possibility to use the FeSi and CoCu supermirrors, designed to polarize spin up cold neutron, to polarize thermal neutron.

  3. First attempt of the measurement of the beam polarization at an accelerator with the optical electron polarimeter POLO

    CERN Document Server

    Collin, B; Essabaa, S; Frascaria, R; Gacougnolle, R; Kunne, Ronald Alexander; Aulenbacher, K; Tioukine, V

    2004-01-01

    The conventional methods for measuring the polarization of electron beams are either time consuming, invasive or accurate only to a few percent. We developped a method to measure electron beam polarization by observing the light emitted by argon atoms following their excitation by the impact of polarized electrons. The degree of circular polarization of the emitted fluorescence is directly related to the electron polarization. We tested the polarimeter on a test GaAs source available at the MAMI electron accelerator in Mainz, Germany. The polarimeter determines the polarization of a 50 keV electron beam decelerated to a few eV and interacting with an effusive argon gas jet. The resulting decay of the excited states produces the emission of a circularly polarized radiation line at 811.5 nm which is observed and analyzed.

  4. POLARIZED NEUTRONS IN RHIC

    Energy Technology Data Exchange (ETDEWEB)

    COURANT,E.D.

    1998-04-27

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

  5. Medium size polarised deuteron target

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, Yu.F.; Polyakov, V.V.; Kovalev, A.I.; Bunyatova, E.I.; Borisov, N.S.; Trautman, V.Yu.; Werner, K.; Kozlenko, N.G.

    1984-03-01

    A frozen polarised deuteron target based on ethanediol with a high percentage of deuterium is described. Analytical expressions for the NMR spectrum correction for non-linearity of the Q-meter are obtained and a method for the determination of the asymmetry is developed. Experimental results confirm the thermal mixing theory for deuteron and proton spin systems with a dipole-dipole reservoir of electron spins.

  6. Ultracompact 1×4 TM-polarized beam splitter based on photonic crystal surface mode.

    Science.gov (United States)

    Jiang, Bin; Zhang, Yejin; Wang, Yufei; Liu, Anjin; Zheng, Wanhua

    2012-05-01

    We provide an improved surface-mode photonic crystal (PhC) T-junction waveguide, combine it with an improved PhC bandgap T-junction waveguide, and then provide an ultracompact 1×4 TM-polarized beam splitter. The energy is split equally into the four output waveguides. The maximal transmission ratio of each output waveguide branch equals 24.7%, and the corresponding total transmission ratio of the ultracompact 1×4 beam splitter equals 98.8%. The normalized frequency of maximal transmission ratio is 0.397(2πc/a), and the bandwidth of the ultracompact 1×4 TM-polarized beam splitter is 0.0106(2πc/a). To the best of our knowledge, this is the first time such a high-efficiency 1×4 beam splitter exploiting the nonradiative surface mode as a guided mode has been proposed. Although we only employed a 1×4 beam splitter, our design can easily be extended to other 1×n beam splitters.

  7. Polarized neutron beam properties for measuring parity-violating spin rotation in liquid {sup 4}He

    Energy Technology Data Exchange (ETDEWEB)

    Micherdzinska, A.M., E-mail: amicherd@gwu.ed [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); George Washington University, Washington, DC 20052 (United States); Bass, C.D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Bass, T.D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Gan, K. [George Washington University, Washington, DC 20052 (United States); Luo, D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Markoff, D.M. [North Carolina Central University, Durham, NC 27707 (United States); Mumm, H.P.; Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Opper, A.K. [George Washington University, Washington, DC 20052 (United States); Sharapov, E.I. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Snow, W.M. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Swanson, H.E. [University of Washington/CENPA, Seattle, WA 98195 (United States); Zhumabekova, V. [Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050038 Almaty (Kazakhstan)

    2011-03-01

    Measurements of parity-violating neutron spin rotation can provide insight into the poorly understood nucleon-nucleon weak interaction. Because the expected rotation angle per unit length is small (10{sup -7} rad/m), several properties of the polarized cold neutron beam phase space and the neutron optical elements of the polarimeter must be measured to quantify possible systematic effects. This paper presents (1) an analysis of a class of possible systematic uncertainties in neutron spin rotation measurements associated with the neutron polarimetry, and (2) measurements of the relevant neutron beam properties (intensity distribution, energy spectrum, and the product of the neutron beam polarization and the analyzing power as a function of the beam phase space properties) on the NG-6 cold neutron beam-line at the National Institute of Standards and Technology Center for Neutron Research. We conclude that the phase space nonuniformities of the polarimeter in this beam are small enough that a parity-violating neutron spin rotation measurement in n-{sup 4}He with systematic uncertainties at the 10{sup -7} rad/m level is possible.

  8. Measurement of the spin-dependent structure-functions of the proton and the deuteron

    CERN Multimedia

    2002-01-01

    % NA47 %title \\\\ \\\\The physics motivation of the experiments of the Spin Muon Collaboration is to better understand how the nucleon spin is built-up by its partons and to test the fundamental Bjorken sum rule. \\\\ \\\\The spin-dependent structure functions $g _{1}(x)$ of the proton and the deuteron are determined from the measured cross section asymmetries for deep inelastic scattering of longitudinally polarized muons from longitudinally polarized nucleons. The experiment is similar to the NA2 one of the European Muon Collaboration in which the violation of the Ellis-Jaffe sum rule for the proton was found. \\\\ \\\\The apparatus is the upgraded forward spectrometer which was used originally by the European and New Muon Collaborations. To minimize the systematic uncertainties the target contains two oppositely polarized cells, which were exposed to the muon beam simultaneously. For the experiments in 1991 and 1992 the original EMC polarized target was reinstalled. In 1993 a new polarized target was put into operati...

  9. Measurement of the spin-dependent structure-functions of the proton and the deuteron

    CERN Multimedia

    2002-01-01

    % NA47 %title \\\\ \\\\The physics motivation of the experiments of the Spin Muon Collaboration is to better understand how the nucleon spin is built-up by its partons and to test the fundamental Bjorken sum rule. \\\\ \\\\The spin-dependent stucture functions g$ _{1} $(x) of the proton and the deuteron are determined from the measured cross section asymmetries for deep inelastic scattering of longitudinally polarized muons from longitudinally polarized nucleons. The experiment is similar to the NA2 one of the European Muon Collaboration in which the violation of the Ellis-Jaffe sum rule for the proton was found. \\\\ \\\\The apparatus is the upgraded forward spectrometer which was used originally by the European and New Muon Collaborations. To minimize the systematic uncertainties the target contains two oppositely polarized cells, which were exposed to the muon beam simultaneously. For the experiments in 1991 and 1992 the original EMC polarized target was reinstalled. In 1993 a new polarized target was put into operati...

  10. A polarized hydrogen/deuterium atomic beam source for internal target experiments

    International Nuclear Information System (INIS)

    Szczerba, D.; Buuren, L.D. van; Brand, J.F.J. van den; Bulten, H.J.; Ferro-Luzzi, M.; Klous, S.; Kolster, H.; Lang, J.; Mul, F.; Poolman, H.R.; Simani, M.C.

    2000-01-01

    A high-brightness hydrogen/deuterium atomic beam source is presented. The apparatus, previously used in electron scattering experiments with tensor-polarized deuterium (Ferro-Luzzi et al., Phys. Rev. Lett. 77 (1996) 2630; van den Brand et al., Phys. Rev. Lett. 78 (1997) 1235; Zhou et al., Phys. Rev. Lett. 82 (1998) 687; Bouwhuis et al., Phys. Rev. Lett. 82 (1999) 3755), was configured as a source for internal target experiments to measure single- and double-polarization observables, with either polarized hydrogen or vector/tensor polarized deuterium. The atomic beam intensity was enhanced by a factor of ∼2.5 by optimizing the Stern-Gerlach focusing system using high tip-field (∼1.5 T) rare-earth permanent magnets, and by increasing the pumping speed in the beam-formation chamber. Fluxes of (5.9±0.2)x10 16 1 H/s were measured in a diameter 12 mmx122 mm compression tube with its entrance at a distance of 27 cm from the last focusing element. The total output flux amounted to (7.6±0.2)x10 16 1 H/s

  11. Broadband non-polarizing beam splitter based on guided mode resonance effect

    International Nuclear Information System (INIS)

    Ma Jian-Yong; Xu Cheng; Qiang Ying-Huai; Zhu Ya-Bo

    2011-01-01

    A broadband non-polarizing beam splitter (NPBS) operating in the telecommunication C+L band is designed by using the guided mode resonance effect of periodic silicon-on-insulator (SOI) elements. It is shown that this double layer SOI structure can provide ∼50/50 beam ratio with the maximum divergences between reflection and transmission being less than 8% over the spectrum of 1.4 μm∼1.7 μm and 1% in the telecommunication band for both TE and TM polarizations. The physical basis of this broadband non-polarizing property is on the simultaneous excitation of the TE and TM strong modulation waveguide modes near the designed spectrum band. Meanwhile, the electric field distributions for both TE and TM polarizations verify the resonant origin of spectrum in the periodic SOI structure. Furthermore, it is demonstrated with our calculations that the beam splitter proposed here is tolerant to the deviations of incident angle and structure parameters, which make it very easy to be fabricated with current IC technology. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Polarization measurement of atomic hydrogen beam spin-exchanged with optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Ueno, Akira; Ogura, Kouichi; Wakuta, Yoshihisa; Kumabe, Isao

    1988-01-01

    The spin-exchange reaction between hydrogen atoms and optically oriented sodium atoms was used to produce a polarized atomic hydrogen beam. The electron-spin polarization of the atomic hydrogen beam, which underwent the spin-exchange reaction with the optically oriented sodium atoms, was measured. A beam polarization of -(8.0±0.6)% was obtained when the thickness and polarization of the sodium target were (5.78±0.23)x10 13 atoms/cm 2 and -(39.6±1.6)%, respectively. The value of the spin-exchange cross section in the forward scattering direction, whose scattering angle in the laboratory system was less than 1.0 0 , was obtained from the experimental results as Δσ ex =(3.39±0.34)x10 -15 cm 2 . This value is almost seven times larger than the theoretical value calculated from the Na-H potential. The potential was computed quantum mechanically in the space of the appropriate wave functions of the hydrogen and the sodium atoms. (orig./HSI)

  13. CEBAF/SURA [Continuous Electron Beam Accelerator Facility]/[Southeastern Universities Research Association] 1988 summer workshop

    International Nuclear Information System (INIS)

    Gross, F.; Lightbody, J.

    1989-01-01

    This report contains papers from a summer workshop of the continuous electron beam accelerator facility. Some topics of these papers are: spectrometers; electron scattering from deuterons; relativistic correlations in nuclear matter; pion production on 3 He and 3 H; quantum electrodynamic processes in crystals; 12 C(e,e'p) x reaction; deuteron polarization tensor and relativistic spin rotation; electromagnetic excitation of nuclei; electron distortion and structure functions in (e,e'p) reactions; and reaction mechanism of 4 He(e,e'p) 3 H

  14. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G

    2004-03-25

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  15. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    Energy Technology Data Exchange (ETDEWEB)

    G. Alexander; P. Anthony; V. Bharadwaj; Yu.K. Batygin; T. Behnke; S. Berridge; G.R. Bower; W. Bugg; R. Carr; E. Chudakov; J.E. Clendenin; F.J. Decker; Yu. Efremenko; T. Fieguth; K. Flottmann; M. Fukuda; V. Gharibyan; T. Handler; T. Hirose; R.H. Iverson; Yu. Kamyshkov; H. Kolanoski; T. Lohse; Chang-guo Lu; K.T. McDonald; N. Meyners; R. Michaels; A.A. Mikhailichenko; K. Monig; G. Moortgat-Pick; M. Olson; T. Omori; D. Onoprienko; N. Pavel; R. Pitthan; M. Purohit; L. Rinolfi; K.P. Schuler; J.C. Sheppard; S. Spanier; A. Stahl; Z.M. Szalata; J. Turner; D. Walz; A. Weidemann; J. Weisend

    2003-06-01

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  16. Low-energy photodisintegration of the deuteron and Big-Bang nucleosynthesis

    International Nuclear Information System (INIS)

    Tornow, W.; Czakon, N.G.; Howell, C.R.; Hutcheson, A.; Kelley, J.H.; Litvinenko, V.N.; Mikhailov, S.F.; Pinayev, I.V.; Weisel, G.J.; Witala, H.

    2003-01-01

    The photon analyzing power for the photodisintegration of the deuteron was measured for seven gamma-ray energies between 2.39 and 4.05 MeV using the linearly polarized gamma-ray beam of the high-intensity gamma-ray source at the Duke Free-Electron Laser Laboratory. The data provide a stringent test of theoretical calculations for the inverse reaction, the neutron-proton radiative capture reaction at energies important for Big-Bang nucleosynthesis. Our data are in excellent agreement with potential model and effective field theory calculations. Therefore, the uncertainty in the baryon density Ω B h 2 obtained from Big-Bang Nucleosynthesis can be reduced at least by 20%

  17. Run05 Proton Beam Polarization Measurements by pC-Polarimeter (ver. 1.1)

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa,I.; Alekseev, I.; Bazilevsky, A.; Bravar, A.; Bunce, G.; Dhawan, S.; Eyser, K.O.; Gill, R.; Haeberli, W.; Huang, H.; Makdisi, Y.; Nass, A.; Okada, H.; Stephenson, E.; Svirida, D.N.; Wise, T.; Wood, J.; Yip, K.; Zelenski, A.

    2008-07-01

    The polarization of the proton beams [1, 2] at the Relativistic Heavy Ion Collider (RHIC)[3] RHIC ring. The H-Jet polarimeter is located at the collision point allowing measurements of absolute normalization is provided by the hydrogen polarimeter, which measures over 1 {approx} 2 another measurement rather than measuring the absolute polarization. both beams. Two identical pC-polarimeters are equipped in the yellow and blue rings, where carbon ribbon target, providing fast feedback to beam operations and experiments. The days to obtain {approx} 5% statistical uncertainty (in Run05). Thus, the operation of the carbon is measured using both an atomic beam source hydrogen gas jet (H-Jet)[4, 5] and proton-carbon polarimeters was focused on better control of relative stability between one measurement to statistical accuracy within 20 to 30 seconds using an ultra-thin (typically 6 {approx} 8 {micro}g/cm{sup 2}) the rings are separated. The pC-polarimeter measures relative polarization to a few percent.

  18. RHIC PERFORMANCE AND PLANS TOWARDS HIGHER LUMINOSITY AND HIGHER POLARIZATION.

    Energy Technology Data Exchange (ETDEWEB)

    SATOGATA,T.

    2004-07-05

    The Relativistic Heavy Ion Collider (RHIC), the first hadron accelerator and collider consisting of two independent rings, has completed its fourth year of operation since commissioning in 1999. RHIC is designed to provide luminosity over a wide range of beam energies and species, including heavy ions, polarized protons, and asymmetric beam collisions. RHIC has produced physics data at four experiments in runs that include gold-on-gold collisions at various beam energies (9.8, 31, 65, and 100 GeV/u), high-energy polarized proton-proton collisions (100 GeV), and deuteron-gold collisions (100 GeV/u). We review recent machine performance for high-luminosity gold-gold operations and polarized proton operations, including causes and solutions for known operational limits. Plans and progress for luminosity and polarization improvements, electron cooling, and the electron-ion collider eRHIC are discussed.

  19. Generation and self-healing of vector Bessel-Gauss beams with variant state of polarizations upon propagation.

    Science.gov (United States)

    Li, Peng; Zhang, Yi; Liu, Sheng; Cheng, Huachao; Han, Lei; Wu, Dongjing; Zhao, Jianlin

    2017-03-06

    We propose a generalized model for the creation of vector Bessel-Gauss (BG) beams having state of polarization (SoP) varying along the propagation direction. By engineering longitudinally varying Pancharatnam-Berry (PB) phases of two constituent components with orthogonal polarizations, we create zeroth- and higher-order vector BG beams having (i) uniform polarizations in the transverse plane that change along z following either the equator or meridian of the Poincaré sphere and (ii) inhomogeneous polarizations in the transverse plane that rotate during propagation along z. Moreover, we evaluate the self-healing capability of these vector BG beams after two disparate obstacles. The self-healing capability of spatial SoP information may enrich the application of BG beams in light-matter interaction, polarization metrology and microscopy.

  20. Initial investigations of (np)-scattering with a polarized deuterium target at ANKE-COSY

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Boxing

    2015-07-01

    The understanding of the forces among nucleons is fundamental to the whole of nuclear and hadronic physics. The nucleon-nucleon (NN) scattering is the ideal probe to study the nuclear forces. The scattering amplitudes for the complete description of the NN interactions can be reconstructed from phase-shift analyses (PSA), which requires measurements with polarized experiments. The existing data allow to extract unambiguous proton-proton (pp) amplitudes below 2 GeV. However, there is very little known about the neutron-proton (np) system above 800 MeV nucleon energy. THE ANKE-COSY collaboration has embarked on a systematic program which aims to extract the np scattering amplitudes through the deuteron-proton charge-exchange process dp→{pp}{sub s}n. First part of the program via polarized deuteron beam and hydrogen target allowed successful measurement of np amplitudes up to 1.135 GeV nucleon energy, which is the maximum nucleon energy that can be accessed with deuteron beam at COSY. Via inverse kinematics, i.e. using a proton beam incident on a polarized deuterium target will allow to enhance the np study up to 2.8 GeV, the highest energy available at COSY. The method of inverse kinematics has to be validated prior to the production experiment. As the proof-of-principle (POP) experiment, the initial research has been conducted at proton energy T{sub p}=600 MeV using a polarized deuterium target. The projectiles were measured by two silicon tracking telescopes (STT) placed closed to the target and by the ANKE sub-detection systems. Four polarization modes of the deuterium target were employed. In order to increase the effective target thickness, polarized deuterium atoms produced by the atomic beam source (ABS) was filled into a storage cell, where the circulating COSY beam collides with the target. The target polarizations were measured using the proton-deuteron elastic reaction. The vector and tensor analyzing powers A{sub y} and A{sub yy} of pvector d

  1. Deuteron nuclear interaction potential with heavy nuclei in single folding model

    Directory of Open Access Journals (Sweden)

    O. V. Babak

    2013-09-01

    Full Text Available Deuteron interaction potential with heavy nuclei at sub-barrier energies has been constructed in the frame-work of single folding model using the complex dynamic polarization potential. It is shown that the account of finite deuteron size leads to significant increasing of nuclear potential in outer region of interaction. Cross sec-tions of deuteron elastic scattering on 208Pb at energy 7, 7.3 and 8 MeV were calculated and compared with ex-periment data. Calculations were performed without any variations of parameters.

  2. Measurement of the longitudinal deuteron spin-structure function in deep-inelastic scattering

    International Nuclear Information System (INIS)

    Bauer, J.M.

    1996-09-01

    Experiment E143 at SLAC performed deep-inelastic scattering measurements with polarized electrons incident on polarized protons and deuterons. The data for the beam energy of 29 GeV cover the kinematical range of x Bj > 0.03 and 1 2 2 . From these data, the spin-dependent structure functions g 1 were determined. This dissertation describes the experiment and its analysis and discusses the results. The measured integral of g 1 d over x from x = 0 to x = 1 is Γ 1 d = 0.046 ± 0.003 (stat)±0.004 (syst) at Q 2 = 3 GeV 2 and disagrees by more than three standard deviations with the prediction of the Ellis-Jaffe, sum rule. The data suggest that the quark contribution to the nucleon helicity is 0.35 ± 0.05. From the proton data of the same experiment, the integral over the proton spin-structure functional g 1 d was determined to be Γ 1 p = 0.127 ± 0.003(stat)±0.008(syst). By Combining the deuteron data with the proton data, the integral Γ 1 n was extracted as -0.027 ± 0.008 (stat)±0.010 (syst). The integral Γ 1 p - Γ 1 n is 0.154±0.010(stat) ±0.016 (syst) according to the E143 analysis. This result agrees with the important Bjorken sum rule of 0.171 ± 0.009 at Q 2 = 3 GeV 2 within less than one standard deviation. Furthermore, results of a separate analysis involving GLAP evolution equations are shown. Data were also collected for beam energies of 16.2 and 9.7 GeV, Results for g 1 at these energies are presented

  3. Nondestructive inspection of explosive materials using linearly polarized two-colored photon beam

    International Nuclear Information System (INIS)

    Toyokawa, H.; Hayakawa, T.; Shizuma, T.; Hajima, R.; Masuda, K.; Ohgaki, H.

    2011-01-01

    A nondestructive inspection method for screening explosive materials that are hidden in passenger vehicles, trucks, and cargo containers with radiation shielding was presented. The method was examined experimentally using linearly polarized two-colored photon beam. A sample object was irradiated with the photon beam, followed by an emission of gamma-rays in nuclear resonance fluorescence. The gamma-rays from oxygen and nitrogen emitted through nuclear resonance fluorescence were measured using high-purity germanium detectors. We were able to evaluate the element concentration ratio.

  4. Effects of astigmatism on spectra and polarization of aberrant electromagnetic nonuniformly correlated beams in turbulent ocean.

    Science.gov (United States)

    Tang, Miaomiao; Zhao, Daomu

    2014-12-01

    Analytical formulas are derived, for the cross spectral density matrix of electromagnetic nonuniformly correlated (EMUNC) beams, with astigmatic aberration propagating through oceanic turbulence. We investigate the effects of astigmatism on the spectral density, and the spectral degree of polarization, in great detail. It can be seen that, unlike for an aberration-free case, the lateral shifted intensity maximum (of an astigmatic EMUNC beam) does not return back to the on-axis position, after propagating at sufficiently large distances in the turbulence. Furthermore, in the far-zone, the deviation of its maximum value (from the optical axis) gradually increases, in accordance with growing propagation distance.

  5. Moderator/collimator for a proton/deuteron linac to produce a high-intensity, high-quality thermal neutron beam for neutron radiography

    International Nuclear Information System (INIS)

    Singleterry, R.C. Jr.; Imel, G.R.; McMichael, G.E.

    1995-01-01

    Reactor based high resolution neutron radiography facilities are able to deliver a well-collimated (L/D ≥100) thermal flux of 10 6 n/cm 2 ·sec to an image plane. This is well in excess of that achievable with the present accelerator based systems such as sealed tube D-T sources, Van der Graaff's, small cyclotrons, or low duty factor linacs. However, continuous wave linacs can accelerate tens of milliamperes of protons to 2.5 to 4 MeV. The MCNP code has been used to analyze target/moderator configurations that could be used with Argonne's Continuous Wave Linac (ACWL). These analyses have shown that ACWL could be modified to generate a neutron beam that has a high intensity and is of high quality

  6. Stored polarized beams: MILES, LIMES, SMILE, sine-Bessels and SODOM2 too

    Energy Technology Data Exchange (ETDEWEB)

    Mane, S.R. [Convergent Computing Inc., P.O. Box 561, Shoreham, NY 11786 (United States)], E-mail: srmane@optonline.net

    2008-03-21

    The fundamental theory underlying several computational algorithms for the spin dynamics of stored polarized beams is analyzed. Particular attention is paid to the consequences of the use of finite-dimensional matrices and/or Fourier series. The single resonance model with a pair of diametrically opposed nonorthogonal pointlike Siberian Snakes is analyzed in detail to clarify several points pertaining to the above algorithms, and more generally to the spin dynamics of stored polarized beams in rings with Snakes. New analytical results are also presented, e.g. for the spin tune shift in the nonorthogonal Snakes model, and the sine-Bessel functions for the orthogonal Snakes model. Many results are derived using multiple algorithms, which serves as a check on their mutual consistency.

  7. Stored polarized beams: MILES, LIMES, SMILE, sine-Bessels and SODOM2 too

    International Nuclear Information System (INIS)

    Mane, S.R.

    2008-01-01

    The fundamental theory underlying several computational algorithms for the spin dynamics of stored polarized beams is analyzed. Particular attention is paid to the consequences of the use of finite-dimensional matrices and/or Fourier series. The single resonance model with a pair of diametrically opposed nonorthogonal pointlike Siberian Snakes is analyzed in detail to clarify several points pertaining to the above algorithms, and more generally to the spin dynamics of stored polarized beams in rings with Snakes. New analytical results are also presented, e.g. for the spin tune shift in the nonorthogonal Snakes model, and the sine-Bessel functions for the orthogonal Snakes model. Many results are derived using multiple algorithms, which serves as a check on their mutual consistency

  8. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    International Nuclear Information System (INIS)

    Rich, D.R.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Espy, M.A.; Haseyama, T.; Jones, G.; Keith, C.D.; Knudson, J.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilae, S.I.; Pomeroy, V.R.; Smith, D.A.; Snow, W.M.; Szymanski, J.J.; Stephenson, S.L.; Thompson, A.K.; Yuan, V.

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3 He spin filter and a relative transmission measurement technique. 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method

  9. Proton and deuteron activation measurements at the NPI and future plans in SPIRAL2/NFS

    Science.gov (United States)

    Šimečková, Eva; Bém, Pavel; Mrázek, Jaromír; Štefánik, Milan; Běhal, Radomír; Gladolev, Vadim

    2017-09-01

    The proton- and deuteron-induced reactions are of a great interest for the assessment of induced radioactivity of accelerator components, target and beam stoppers as well as isotope production for medicine. In the present work, the deuteron-induced reaction cross sections on zinc were investigated by stacked-foil activation technique with deuteron beam of 20 MeV energy from the cyclotron U-120M of NPI CAS Řež. Also the proton activation cross section measurement of iron is presented. The comparison of present results to data of other authors and to predictions of evaluated data libraries is discussed. The investigation shall continue for higher proton and deuteron energy interval 20-35 MeV at SPIRAL2/NFS facility using a charged particle irradiation chamber with pneumatic transport system to measure isotopes and isomers with half-lives in minutes-regions.

  10. A multi-satellite study of accelerated ionospheric ion beams above the polar cap

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2006-07-01

    Full Text Available This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 RE. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio EO+ / EH+, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity.

    In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.

  11. Summary of physics from measurements with longitudinally polarized beams and targets at ZGS energies

    Energy Technology Data Exchange (ETDEWEB)

    Yokosawa, A.

    1980-09-01

    An extensive amount of data were obtained from measurements of proton-proton elastic scattering from 1 to 12 GeV/c using longitudinally polarized beams and targets. Physics learned from these data as well as other related experimental results is summarized. The topics include structures observed in nucleon-nucleon scattering at lower energies and dinucleon resonances, pp scattering-amplitude measurements at 6 GeV/c, and lerge p/sub perpendicular/ results in pp elastic scattering.

  12. Spin matching conditions in large electron storage rings with purely horizontal beam polarization

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1990-08-01

    In a storage ring with a purely horizontal spin and a Siberian Snake, the spin matching conditions are similar to the spin matching conditions for vertical polarization; a combination of beam bumps has to be found which compensate the depolarizing effects. These bumps compensate the random emission of synchrotron emission on the spin. The aim of this paper is to define spin matching conditions that compensate this effect

  13. Spin matching conditions in large electron storage rings with purely horizontal beam polarization

    Energy Technology Data Exchange (ETDEWEB)

    Rossmanith, R.

    1990-08-01

    In a storage ring with a purely horizontal spin and a Siberian Snake, the spin matching conditions are similar to the spin matching conditions for vertical polarization; a combination of beam bumps has to be found which compensate the depolarizing effects. These bumps compensate the random emission of synchrotron emission on the spin. The aim of this paper is to define spin matching conditions that compensate this effect.

  14. Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses

    Directory of Open Access Journals (Sweden)

    O. Klimo

    2008-03-01

    Full Text Available Acceleration of ions from ultrathin foils irradiated by intense circularly polarized laser pulses is investigated using one- and two-dimensional particle simulations. A circularly polarized laser wave heats the electrons much less efficiently than the wave of linear polarization and the ion acceleration process takes place on the front side of the foil. The ballistic evolution of the foil becomes important after all ions contained in the foil have been accelerated. In the ongoing acceleration process, the whole foil is accelerated as a dense compact bunch of quasineutral plasma implying that the energy spectrum of ions is quasimonoenergetic. Because of the ballistic evolution, the velocity spread of an accelerated ion beam is conserved while the average velocity of ions may be further increased. This offers the possibility to control the parameters of the accelerated ion beam. The ion acceleration process is described by the momentum transfer from the laser beam to the foil and it might be fairly efficient in terms of the energy transferred to the heavy ions even if the foil contains a comparable number of light ions or some surface contaminants. Two-dimensional simulations confirm the formation of the quasimonoenergetic spectrum of ions and relatively good collimation of the ion bunch, however the spatial distribution of the laser intensity poses constraints on the maximum velocity of the ion beam. The present ion acceleration mechanism might be suitable for obtaining a dense high energy beam of quasimonoenergetic heavy ions which can be subsequently applied in nuclear physics experiments. Our simulations are complemented by a simple theoretical model which provides the insights on how to control the energy, number, and energy spread of accelerated ions.

  15. Polarized Uniform Linear Array System: Beam Radiation Pattern, Beamforming Diversity Order, and Channel Capacity

    Directory of Open Access Journals (Sweden)

    Xin Su

    2015-01-01

    Full Text Available There have been many studies regarding antenna polarization; however, there have been few publications on the analysis of the channel capacity for polarized antenna systems using the beamforming technique. According to Chung et al., the channel capacity is determined by the density of scatterers and the transmission power, which is obtained based on the assumption that scatterers are uniformly distributed on a 3D spherical scattering model. However, it contradicts the practical scenario, where scatterers may not be uniformly distributed under outdoor environment, and lacks the consideration of fading channel gain. In this study, we derive the channel capacity of polarized uniform linear array (PULA systems using the beamforming technique in a practical scattering environment. The results show that, for PULA systems, the channel capacity, which is boosted by beamforming diversity, can be determined using the channel gain, beam radiation pattern, and beamforming diversity order (BDO, where the BDO is dependent on the antenna characteristics and array configurations.

  16. Accounting for polarization in the calibration of a donut beam axial optical tweezers.

    Science.gov (United States)

    Pollari, Russell; Milstein, Joshua N

    2018-01-01

    Advances in light shaping techniques are leading to new tools for optical trapping and micromanipulation. For example, optical tweezers made from Laguerre-Gaussian or donut beams display an increased axial trap strength and can impart angular momentum to rotate a specimen. However, the application of donut beam optical tweezers to precision, biophysical measurements remains limited due to a lack of methods for calibrating such devices sufficiently. For instance, one notable complication, not present when trapping with a Gaussian beam, is that the polarization of the trap light can significantly affect the tweezers' strength as well as the location of the trap. In this article, we show how to precisely calibrate the axial trap strength as a function of height above the coverslip surface while accounting for focal shifts in the trap position arising from radiation pressure, mismatches in the index of refraction, and polarization induced intensity variations. This provides a foundation for implementing a donut beam optical tweezers capable of applying precise axial forces.

  17. Polarization independent high transmission large numerical aperture laser beam focusing and deflection by dielectric Huygens' metasurfaces

    Science.gov (United States)

    Özdemir, Aytekin; Hayran, Zeki; Takashima, Yuzuru; Kurt, Hamza

    2017-10-01

    In this letter, we propose all-dielectric Huygens' metasurface structures to construct high numerical aperture flat lenses and beam deflecting devices. The designed metasurface consists of two-dimensional array of all-dielectric nanodisk resonators with spatially varying radii, thereby introducing judiciously designed phase shift to the propagating light. Owing to the overlap of Mie-type magnetic and electric resonances, high transmission was achieved with rigorous design analysis. The designed flat lenses have numerical aperture value of 0.85 and transmission values around 80%. It also offers easy fabrication and compatibility with available semiconductor technology. This spectrally and physically scalable, versatile design could implement efficient wavefront manipulation or beam shaping for high power laser beams, as well as various optical microscopy applications without requiring plasmonic structures that are susceptible to ohmic loss of metals and sensitive to the polarization of light.

  18. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves

    Science.gov (United States)

    Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2018-02-01

    The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.

  19. Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna

    Science.gov (United States)

    duToit, Cornelis

    2014-01-01

    A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each

  20. Effects of astigmatism on spectra, coherence and polarization of stochastic electromagnetic beams passing through an astigmatic optical system.

    Science.gov (United States)

    Pan, Liuzhan; Sun, Mengle; Ding, Chaoliang; Zhao, Zhiguo; Lü, Baida

    2009-04-27

    Analytical formulas for the cross-spectral density matrix of stochastic electromagnetic Gaussian Schell-model (EGSM) beams passing through an astigmatic optical system are derived. We show both analytically and by numerical examples the effects of astigmatism on spectra, coherence and polarization of stochastic electromagnetic EGSM beams propagating through an astigmatic lens. A comparison with the aberration-free case is made, and shows that the astigmatism has significant effect on the spectra, coherence and polarization.

  1. A fan analyzer of neutron beam polarization on the spectrometer REMUR at the pulsed reactor IBR-2

    International Nuclear Information System (INIS)

    Ul'yanov, V.A.; Pusenkov, V.M.; Pleshanov, N.K.

    2004-01-01

    The new spectrometer of polarized neutrons REMUR has been created and put in operation at the Frank Laboratory of Neutron Physics (JINR, Dubna). The spectrometer is dedicated to investigations of multilayer structures and surfaces by registering the reflection of polarized neutrons and of the inhomogeneous state of solid matter by measuring the small-angle scattering of polarized neutrons. The spectrometer's working range of neutron wavelengths is 1.5-10 Angstroem. The spectrometer is equipped with a linear position-sensitive detector and a focused supermirror polarization analyzer (the fan-like polarization analyzer) with a solid angle of polarized neutron detection of 2.2·10 -4 rad. This paper describes the design and the principle of operation of the fan analyzer of neutron polarization together with the results of the fan tests on a polarized neutron beam

  2. Measurement of the longitudinal polarization of the HERA electron beam using crystals and the ZEUS luminosity monitor

    International Nuclear Information System (INIS)

    Piotrzkowski, K.

    1995-12-01

    A measurement of the longitudinal polarization of the electron beam at HERA utilizing coherent interactions of high energy photons in crystals is described. Modification of existing facilities would allow an independent polarization measurement and a verification of birefringence phenomena in crystals for 20-30 GeV photons. Relevant experimental issues and systematic uncertainties are also presented. (orig.)

  3. Spin transfer matrix formulation and snake resonances for polarized proton beams

    International Nuclear Information System (INIS)

    Tepikian, S.

    1986-01-01

    The polarization of a spin polarized proton beam in a circular accelerator is described by a spin transfer matrix. Using this method, they investigate three problems: (1) the crossing of multiple spin resonances, (2) resonance jumping and (3) an accelerator with Siberian snakes. When crossing two (or more) spin resonances, there are no analytic solutions available. However, they can obtain analytic expressions if the two spin resonances are well separated (nonoverlapping) or very close together (overlapping). Between these two extremes they resort to numerical solution of the spin equations. Resonance jumping can be studied using the tools developed for analyzing the cross of multiple spin resonances. These theoretical results compare favorably with experimental results obtained from the AGS at Brookhaven. For large accelerators, resonance jumping becomes impractical and other methods such as Siberian snakes must be used to keep the beam spin polarized. An accelerator with Siberian snakes and isolated spin resonances can be described with a spin transfer matrix. From this, they find a new type of spin depolarizing resonance, called snake resonances

  4. Recent progress in the development of a polarized proton target for reactions with radioactive ion beams

    International Nuclear Information System (INIS)

    Urrego-Blanco, J.P.; Bingham, C.R.; Brandt, B. van den; Galindo-Uribarri, A.; Gomez del Campo, J.; Hautle, P.; Konter, J.A.; Padilla-Rodal, E.; Schmelzbach, P.A.

    2007-01-01

    Polarization observables in nuclear reactions with stable beams have provided important information concerning structural properties of nuclei and reaction mechanisms and hold great promise in the context of exotic nuclei. We report on the development of a polarized target based on plastic foils of 20-200 μm thickness to be used with radioactive ion beams. The operation of such a target requires a moderately high magnetic field and very low temperatures. The plastic foil is placed inside a chamber attached to the mixing chamber of a 3 He- 4 He dilution refrigerator. Cooling of the foil is achieved via a superfluid film of 4 He that can be supplied through two capillaries. The chamber has two thin, highly uniform silicon nitride windows. An NMR coil is attached to the target to monitor the polarization. Results of a first test to characterize the target system, using the elastic scattering of 38 MeV 12 C by protons in inverse kinematics are presented

  5. A cryostat to hold frozen-spin polarized HD targets in CLAS: HDice-II

    International Nuclear Information System (INIS)

    The design, fabrication, operation, and performance of a 3/4 He dilution refrigerator and superconducting magnet system for holding a frozen-spin polarized hydrogen deuteride target in the Jefferson Laboratory CLAS detector during photon beam running is reported. The device operates both vertically (for target loading) and horizontally (for target bombardment). The device proves capable of maintaining a base temperature of 50 mK and a holding field of 1 T for extended periods. These characteristics enabled multi-month polarization lifetimes for frozen spin HD targets having proton polarization of up to 50% and deuteron up to 27%.

  6. A cryostat to hold frozen-spin polarized HD targets in CLAS: HDice-II

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, M.M., E-mail: mlowry@jlab.org [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Bass, C.D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); D' Angelo, A. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Universita' di Roma ‘Tor Vergata’, and INFN Sezione di Roma ‘Tor Vergata’, Via della Ricerca Scientifica, 1, I-00133 Roma (Italy); Deur, A.; Dezern, G. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Hanretty, C. [University of Virginia, 1400 University Avenue, Charlottesville, VA 22903 (United States); Ho, D. [Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Kageya, T.; Kashy, D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Khandaker, M. [Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Laine, V. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Université Blaise Pascal, 34 Avenue Carnot, 63000 Clermont-Ferrand (France); O' Connell, T. [University of Connecticut, 115 N Eagleville Road, Storrs-Mansfield, CT 06269 (United States); Pastor, O. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Peng, P. [University of Virginia, 1400 University Avenue, Charlottesville, VA 22903 (United States); Sandorfi, A.M. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Sokhan, D. [Institut de Physique Nucleaire, Bat 100 – M053, Orsay 91406 (France); and others

    2016-04-11

    The design, fabrication, operation, and performance of a {sup 3/4}He dilution refrigerator and superconducting magnet system for holding a frozen-spin polarized hydrogen deuteride target in the Jefferson Laboratory CLAS detector during photon beam running is reported. The device operates both vertically (for target loading) and horizontally (for target bombardment). The device proves capable of maintaining a base temperature of 50 mK and a holding field of 1 T for extended periods. These characteristics enabled multi-month polarization lifetimes for frozen spin HD targets having proton polarization of up to 50% and deuteron up to 27%.

  7. Development of high-polarization Fe/Ge neutron polarizing supermirror: Possibility of fine-tuning of scattering length density in ion beam sputtering

    Science.gov (United States)

    Maruyama, R.; Yamazaki, D.; Akutsu, K.; Hanashima, T.; Miyata, N.; Aoki, H.; Takeda, M.; Soyama, K.

    2018-04-01

    The multilayer structure of Fe/Si and Fe/Ge systems fabricated by ion beam sputtering (IBS) was investigated using X-ray and polarized neutron reflectivity measurements and scanning transmission electron microscopy with energy-dispersive X-ray analysis. The obtained result revealed that the incorporation of sputtering gas particles (Ar) in the Ge layer gives rise to a marked reduction in the neutron scattering length density (SLD) and contributes to the SLD contrast between the Fe and Ge layers almost vanishing for spin-down neutrons. Bundesmann et al. (2015) have shown that the implantation of primary Ar ions backscattered at the target is responsible for the incorporation of Ar particles and that the fraction increases with increasing ion incidence angle and increasing polar emission angle. This leads to a possibility of fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. Fe/Ge polarizing supermirror with m = 5 fabricated under the same condition showed a spin-up reflectivity of 0.70 at the critical momentum transfer. The polarization was higher than 0.985 for the qz range where the correction for the polarization inefficiencies of the beamline works properly. The result of the polarized neutron reflectivity measurement suggests that the "magnetically-dead" layers formed at both sides of the Fe layer, together with the SLD contrast, play a critical role in determining the polarization performance of a polarizing supermirror.

  8. Measurement of the Proton and Deuteron Spin Structure Functions G1 and G2

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, Al

    2003-04-02

    The SLAC experiment E155 was a deep-inelastic scattering experiment that scattered polarized electrons off polarized proton and deuteron targets in the effort to measure precisely the proton and deuteron spin structure functions. The nucleon structure functions g{sub 1} and g{sub 2} are important quantities that help test our present models of nucleon structure. Such information can help quantify the constituent contributions to the nucleon spin. The structure functions g{sub 1}{sup p} and G{sub 1}{sup d} have been measured over the kinematic range 0.01 {le} x {le} 0.9 and 1 {le} Q{sup 2} {le} 40 GeV{sup 2} by scattering 48.4 GeV longitudinally polarized electrons off longitudinally polarized protons and deuterons. In addition, the structure functions g{sub 2}{sup p} and g{sub 2}{sup d} have been measured over the kinematic range 0.01 {le} x {le} 0.7 and 1 {le} Q{sup 2} {le} 17 GeV{sup 2} by scattering 38.8 GeV longitudinally polarized electrons off transversely polarized protons and deuterons. The measurements of g{sub 1} confirm the Bjorken sum rule and find the net quark polarization to be {Delta}{Sigma} = 0.23 {+-} 0.04 {+-} 0.6 while g{sub 2} is found to be consistent with the g{sub 2}{sup WW} model.

  9. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2012-01-01

    switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007......Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After...... of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)]....

  10. COSY Juelich - a cooler synchrotron for unpolarized and polarized medium-energy studies

    International Nuclear Information System (INIS)

    Seyfarth, H.

    2001-01-01

    Full text: The Forschungszentrum Juelich (Research Center Juelich) is one of the sixteen national research institutions in the 'Hermann von Helmholtz Association of German Research Centers'. It is dedicated to fundamental and applied research and development which can be summarized under five priorities: (i) structure of matter and materials research, (ii) information technology, (iii) life sciences, (iv) environment precaution research, and (v) energy technology. As one of the institutes within (i). the Institut fur Kernphysik (Institute for Nuclear Research) operates the COSY cooler synchrotron which allows to accelerate unpolarized and polarized protons and deuterons to the maximum momentum of 3450 MeV/c (2640 MeV and 2050 MeV kinetic energy for protons and deuterons, respectively). At low energy electron cooling can be used for beam preparation, whereas stochastic cooling can be applied to the accelerated beam. In the first years of operation since 1993 the experiments have been performed with the unpolarized proton beam. Since 1997 the polarized proton beam is available with increasing intensity and a typical degree of polarization of about 75 % up to the maximum beam energy. In 2000 the first unpolarized deuteron beam could be accelerated and stored at the maximum energy. Four target places exist for the internal experiments PISA. EDDA, COSY-II, and ANKE which use the circulating beam with thin solid strip or fiber targets and gas targets. The four experiments TOF, MOMO, GEM, NESSI, and JESSICA are using external beams. The programs of the experiments JESSICA (Juelich Experimental Spallation Setup in the COSY Area), NESSI (Neutron Scintillator and Silicon), and PISA (Proton Induced Spallation) aim at the measurement of data needed or the design of the target station of the planned European Spallation neutron Source (ESS). The set-up of PISA is replacing the earlier experiment COSY-13 which successfully completed its investigations on the production of

  11. Design of a compact polarization beam splitter based on a deformed photonic crystal directional coupler

    International Nuclear Information System (INIS)

    Ren Gang; Zheng Wanhua; Wang Ke; Du Xiaoyu; Xing Mingxin; Chen Lianghui

    2008-01-01

    In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided mode are split due to different guiding mechanisms. The effect of the shape deformation of the air holes on the coupler is studied. It discovered that the coupling strength of the coupled waveguides is strongly enhanced by introducing elliptical airholes, which reduce the device length to less than 18.5μm. A finite-difference time-domain simulation is performed to evaluate the performance of the device, and the extinction ratios for both TE and TM polarized light are higher than 20 dB. (classical areas of phenomenology)

  12. Polarization-dependent single-beam laser-induced grating-like effects on titanium films

    International Nuclear Information System (INIS)

    Camacho-Lopez, Santiago; Evans, Rodger; Escobar-Alarcon, Luis; Camacho-Lopez, Miguel A.; Camacho-Lopez, Marco A.

    2008-01-01

    In this paper we present results on polarization-dependent laser-induced effects on titanium (Ti) thin films. We irradiated the titanium films, in ambient air, using a nanosecond Nd:YAG laser (532 nm, 9 ns pulse duration, 10 Hz). Using a series of pulses of fluence well below the ablation threshold, it was possible to form grating-like structures, whose grooves run parallel to the linear polarization of the incident beam. No grating-like structures were obtained when circularly polarized light was used. Our results revealed the remarkable formation of tiny (100 nm and even smaller diameter) craters, which self-arrange quasi-periodically along the ridges (never on the valleys) of the grating-like structure. Optical and scanning electron microscopy were used to study the laser-induced changes on the surface of the titanium films. Micro-Raman spectroscopy was used to analyze the irradiated areas on the titanium films. The Raman analysis demonstrated that the grooves in the grating-like structure, build up from the laser-induced oxidation of titanium. This is the first time, to the best of our knowledge, that periodic surface structures are reported to be induced below the ablation threshold regime, with the grooves made of crystalline metal oxide, in this case TiO 2 in the well-known Rutile phase. The laser irradiated areas on the film acquired selective (upon recording polarization) holographic reflectance

  13. CMB polarization systematics due to beam asymmetry: Impact on inflationary science

    International Nuclear Information System (INIS)

    Shimon, Meir; Keating, Brian; Ponthieu, Nicolas; Hivon, Eric

    2008-01-01

    Cosmic microwave background (CMB) polarization provides a unique window into cosmological inflation; the amplitude of the B-mode polarization from last scattering is uniquely sensitive to the energetics of inflation. However, numerous systematic effects arising from optical imperfections can contaminate the observed B-mode power spectrum. In particular, systematic effects due to the coupling of the underlying temperature and polarization fields with elliptical or otherwise asymmetric beams yield spurious systematic signals. This paper presents a nonperturbative analytic calculation of some of these signals. We show that results previously derived in real space can be generalized, formally, by including infinitely many higher-order corrections to the leading order effects. These corrections can be summed and represented as analytic functions when a fully Fourier-space approach is adopted from the outset. The formalism and results presented in this paper were created to determine the susceptibility of CMB polarization probes of the primary gravitational wave signal but can be easily extended to the analysis of gravitational lensing of the CMB.

  14. Polarization-dependent single-beam laser-induced grating-like effects on titanium films

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Lopez, Santiago [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860 (Mexico)], E-mail: camachol@cicese.mx; Evans, Rodger [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860 (Mexico); Escobar-Alarcon, Luis [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico DF 11801 (Mexico); Camacho-Lopez, Miguel A. [Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n, esq. Jesus Carranza, Toluca, Estado de Mexico 50120 (Mexico); Camacho-Lopez, Marco A. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Tollocan s/n, esq. Paseo Colon, Toluca, Estado de Mexico, 50110 (Mexico)

    2008-12-30

    In this paper we present results on polarization-dependent laser-induced effects on titanium (Ti) thin films. We irradiated the titanium films, in ambient air, using a nanosecond Nd:YAG laser (532 nm, 9 ns pulse duration, 10 Hz). Using a series of pulses of fluence well below the ablation threshold, it was possible to form grating-like structures, whose grooves run parallel to the linear polarization of the incident beam. No grating-like structures were obtained when circularly polarized light was used. Our results revealed the remarkable formation of tiny (100 nm and even smaller diameter) craters, which self-arrange quasi-periodically along the ridges (never on the valleys) of the grating-like structure. Optical and scanning electron microscopy were used to study the laser-induced changes on the surface of the titanium films. Micro-Raman spectroscopy was used to analyze the irradiated areas on the titanium films. The Raman analysis demonstrated that the grooves in the grating-like structure, build up from the laser-induced oxidation of titanium. This is the first time, to the best of our knowledge, that periodic surface structures are reported to be induced below the ablation threshold regime, with the grooves made of crystalline metal oxide, in this case TiO{sub 2} in the well-known Rutile phase. The laser irradiated areas on the film acquired selective (upon recording polarization) holographic reflectance.

  15. Molecular beam epitaxy of N-polar InGaN

    International Nuclear Information System (INIS)

    Nath, Digbijoy N.; Ringel, Steven A.; Rajan, Siddharth; Guer, Emre

    2010-01-01

    We report on the growth of N-polar In x Ga 1-x N by N 2 plasma-assisted molecular beam epitaxy. Ga-polar and N-polar InGaN films were grown at different growth temperatures and the composition was estimated by photoluminescence (PL) measurements. A growth model that incorporates the incoming and desorbing atomic fluxes is proposed to explain the compositional dependence of InGaN on the flux of incoming atomic species and growth temperature. The growth model is found to be in agreement with the experimental data. The peak PL intensity for N-face samples is found to exhibit a two order of magnitude increase for a 100 deg. C increase in growth temperature. Besides, at 600 nm, the N-face sample shows more than 100 times higher PL intensity than Ga-face sample at comparable wavelengths indicating its superior optical quality. The understanding of growth kinetics of InGaN presented here will guide the growth of N-polar InGaN in a wide range of growth temperatures.

  16. Photon polarization tensor in pulsed Hermite- and Laguerre-Gaussian beams

    Science.gov (United States)

    Karbstein, Felix; Mosman, Elena A.

    2017-12-01

    In this article, we provide analytical expressions for the photon polarization tensor in pulsed Hermite- and Laguerre-Gaussian laser beams. Our results are based on a locally constant field approximation of the one-loop Heisenberg-Euler effective Lagrangian for quantum electrodynamics. Hence, by construction they are limited to slowly varying electromagnetic fields, varying on spatial and temporal scales significantly larger than the Compton wavelength/time of the electron. The latter criterion is fulfilled by all laser beams currently available in the laboratory. Our findings will, e.g., be relevant for the study of vacuum birefringence experienced by probe photons brought into collision with a high-intensity laser pulse which can be represented as a superposition of either Hermite- or Laguerre-Gaussian modes.

  17. Low energy spin polarized radioactive beams as a probe of thin films and interfaces

    CERN Document Server

    Kiefl, R F; Amaudruz, P A; Arseneau, D; Baartman, R; Beals, T R; Behr, J; Brewer, J; Daviel, S; Hatakeyama, A; Hitti, B; Kreitzman, S R; Levy, C D P; Miller, R; Olivo, M; Poutissou, R; Morris, G D; Dunsiger, S R; Heffner, R; Chow, K H; Hirayama, Y; Izumi, H; Bommas, C; Dumont, E; Greene, L H

    2003-01-01

    A spectrometer for beta-detected nuclear magnetic resonance (beta-NMR) has been commissioned at the ISAC facility at TRIUMF. A beam of low energy highly spin polarized sup 8 Li sup + can be decelerated and implanted into ultra-thin structures 6-400 nm thick. beta-NMR provides local information on the electronic and magnetic properties of materials which is similar to conventional NMR but can be used as a sensitive probe of ultra-thin films, interfaces and other nanostructures. We report here on the status of the spectrometer and preliminary results on a simple metal film.

  18. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron (positron) storage rings

    International Nuclear Information System (INIS)

    Duan, Zhe; Bai, Mei; Barber, Desmond P.; Qin, Qing

    2015-04-01

    With the recently emerging global interest in building a next generation of circular electron-positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code(PTC) (Schmidt et al., 2002) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1978) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called ''correlated'' crossing of spin resonances during synchrotron oscillations at current energies, evolves into ''uncorrelated'' crossing of spin resonances at ultra-high energies.

  19. Polarization of electron-beam irradiated LDPE films: contribution to charge generation and transport

    Science.gov (United States)

    Banda, M. E.; Griseri, V.; Teyssèdre, G.; Le Roy, S.

    2018-04-01

    Electron-beam irradiation is an alternative way to generate charges in insulating materials, at controlled position and quantity, in order to monitor their behaviour in regard to transport phenomena under the space charge induced electric field or external field applied. In this study, low density polyethylene (LDPE) films were irradiated by a 80 keV electron-beam with a flux of 1 nA cm‑2 during 10 min in an irradiation chamber under vacuum conditions, and were then characterized outside the chamber using three experimental methods. The electrical behaviour of the irradiated material was assessed by space charge measurements using the pulsed electro-acoustic (PEA) method under dc stress. The influence of the applied electric field polarity and amplitude has been tested in order to better understand the charge behaviour after electron-beam irradiation. Fourier transform infra-red spectroscopy (FTIR) and photoluminescence (PL) measurements were performed to evaluate the impact of the electron beam irradiation, i.e. deposited charges and energy, on the chemical structure of the irradiated samples. The present results show that the electrical behaviour in LDPE after irradiation is mostly driven by charges, i.e. by physical process functions of the electric field, and that changes in the chemical structure seems to be mild.

  20. Spin asymmetries A[sub 1] of the proton and the deuteron in the low [ital x] and low Q[sup 2] region from polarized high energy muon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Baum, G.; Bueltmann, S.; Kraemer, D.; Kyynaeraeinen, J.; Tripet, A. (University of Bielefeld, Physics Department, D-33501 Bielefeld (Germany)); Arik, E.; Cuhadar, T.; Ozben, C.; Unel, G. (Bogazici University and Istanbul Technical University, 80676 Istanbul (Turkey)); Goertz, S.; Meyer, W.; Reicherz, G. (University of Bochum, Physics Department, D-44780 Bochum (Germany)); Derro, B.; Dulya, C.; Igo, G.; Whitten, C. (University of California, Department of Physics, Los Angeles, California 90024 (United States)); Hautle, P.; Heusch, C.A.; Kroeger, W.; Niinikoski, T.O.; Raedel, G.; Stiegler, U.; Voss, R. (CERN, CH-1211 Geneva 23 (Switzerland)); Gilly, H.; Kessler, H.J.; Landgraf, U.; Witzmann, A. (University of Freiburg, Physics Department, D-79104 Freiburg (Germany)); Stuhrmann, H.; Willumeit, R.; Zhao, J. (GKSS, D-21494 Geesthacht (Germany)); Berglund, P.; Kyynaeraeinen, J. (Helsinki University of Technology, Low Temperature Laboratory and Institute of Particle Physics Technology,

    1999-10-01

    We present the results of the spin asymmetries A[sub 1] of the proton and the deuteron in the kinematic region extending down to x=6[times]10[sup [minus]5] and Q[sup 2]=0.01 hthinsp;GeV[sup 2]. The data were taken with a dedicated low [ital x] trigger, which required hadron detection in addition to the scattered muon, so as to reduce the background at low [ital x]. The results complement our previous measurements and the two sets are consistent in the overlap region. No significant spin effects are found in the newly explored region. thinsp [copyright] [ital 1999] [ital The American Physical Society

  1. Spin asymmetries A{sub 1} of the proton and the deuteron in the low {ital x} and low Q{sup 2} region from polarized high energy muon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Baum, G.; Bueltmann, S.; Kraemer, D.; Kyynaeraeinen, J.; Tripet, A. [University of Bielefeld, Physics Department, D-33501 Bielefeld (Germany); Arik, E.; Cuhadar, T.; Ozben, C.; Unel, G. [Bogazici University and Istanbul Technical University, 80676 Istanbul (Turkey); Goertz, S.; Meyer, W.; Reicherz, G. [University of Bochum, Physics Department, D-44780 Bochum (Germany); Derro, B.; Dulya, C.; Igo, G.; Whitten, C. [University of California, Department of Physics, Los Angeles, California 90024 (United States); Hautle, P.; Heusch, C.A.; Kroeger, W.; Niinikoski, T.O.; Raedel, G.; Stiegler, U.; Voss, R. [CERN, CH-1211 Geneva 23 (Switzerland); Gilly, H.; Kessler, H.J.; Landgraf, U.; Witzmann, A. [University of Freiburg, Physics Department, D-79104 Freiburg (Germany); Stuhrmann, H.; Willumeit, R.; Zhao, J. [GKSS, D-21494 Geesthacht (Germany); Berglund, P.; Kyynaeraeinen, J. [Helsinki University of Technology, Low Temperature Laboratory and Institute of Particle Physics Technology, 02150 Espoo (Finland); Fernandez, C.; Garzon, J.A.; Mayes, B.; Pinsky, L. [University of Houston, Department of Physics and Institute for Beam Particle Dynamics, Houston, Texas 77204 (United States); Karev, A.; Kisselev, Y.; Medved, K.; Peshekhonov, D.; Pose, D.; Savin, I.; Smirnov, G.I. [JINR, Dubna, RU-141980 Dubna (Russia); Bravar, A.; von Harrach, D.; Kabuss, E.M.; Mallot, G.K.; Pretz, J.; Steinmetz, A. [University of Mainz, Institute for Nuclear Physics, D-55099 Mainz (Germany); Windmolders, R. [University of Mons, Faculty of Science, B-7000 Mons (Belgium); Betev, L.; Haft, K.; Staude, A.; Vogt, J. [University of Munich, Physics Department, D-80799 Munich (Germany); Hasegawa, T.; Hayashi, N.; Horikawa, N.; Ishimoto, S.; Iwata, T.; Matsuda, T.; Miyachi, Y.; Mori, K.; Ogawa, A. [Nagoya University, CIRSE and Department of Physics, Furo-Cho, Chikusa-Ku, 464 Nagoya (Japan); Cuhadar, T.; van Dantzig, R.; de Groot, N.; Ketel, T.J.; Litmaath, M.; van Middelkoop, G.; and others

    1999-10-01

    We present the results of the spin asymmetries A{sub 1} of the proton and the deuteron in the kinematic region extending down to x=6{times}10{sup {minus}5} and Q{sup 2}=0.01&hthinsp;GeV{sup 2}. The data were taken with a dedicated low {ital x} trigger, which required hadron detection in addition to the scattered muon, so as to reduce the background at low {ital x}. The results complement our previous measurements and the two sets are consistent in the overlap region. No significant spin effects are found in the newly explored region. thinsp {copyright} {ital 1999} {ital The American Physical Society}

  2. Precise Measurement of Deuteron Tensor Analyzing Powers with BLAST

    International Nuclear Information System (INIS)

    Zhang, C.; Akdogan, T.; Bertozzi, W.; Botto, T.; Clasie, B.; DeGrush, A.; Dow, K.; Farkhondeh, M.; Franklin, W.; Gilad, S.; Hasell, D.; Kolster, H.; Maschinot, A.; Matthews, J.; Meitanis, N.; Milner, R.; Redwine, R.; Seely, J.; Shinozaki, A.; Tschalaer, C.

    2011-01-01

    We report a precision measurement of the deuteron tensor analyzing powers T 20 and T 21 at the MIT-Bates Linear Accelerator Center. Data were collected simultaneously over a momentum transfer range Q=2.15-4.50 fm -1 with the Bates Large Acceptance Spectrometer Toroid using a highly polarized deuterium internal gas target. The data are in excellent agreement with calculations in a framework of effective field theory. The deuteron charge monopole and quadrupole form factors G C and G Q were separated with improved precision, and the location of the first node of G C was confirmed at Q=4.19±0.05 fm -1 . The new data provide a strong constraint on theoretical models in a momentum transfer range covering the minimum of T 20 and the first node of G C .

  3. Experimental study of spallation: neutron angular distributions induced by protons (0.8.,1.2 et 1.6 GeV) and deuterons (0.8 et 1.6 GeV) beams

    International Nuclear Information System (INIS)

    Borne, F.

    1998-01-01

    Angular distributions of spallation neutrons, produced by 0,8 to 1,6 GeV protons and 0,8 to 1,6 GeV deuterons, with two experimental and complementary techniques: the flight time measure and the use of a liquid hydrogen converter associated with a magnetic spectrometer of higher energy (2000 MeV). Experimental results obtained at Saturne (Cea) are analysed and interpreted. They allowed the determination of the neutrons production behaviour on thin targets (Al, Fe, Zr, W, Pb and Th) in function of the angle emission and the atomic number of the target and to compare the variation of neutrons production, coming from protons and incident deuterons of same total energy on a Pb target. Experimental results are compared with simulation results obtained with the TIERCE code, including Bertini and Cugnon intra-nuclear cascades. (A.L.B.)

  4. Energy Loss of Coasting Gold Ions and Deuterons in RHIC

    CERN Document Server

    Abreu, N P; Brown, K; Burkhardt, H; Butler, J; Fischer, W; Harvey, M; Tepikian, S

    2008-01-01

    The total energy loss of coasting gold ion beams at two different energies and deuterons at one energy were measured at RHIC, corresponding to a gamma of 75.2, 107.4 and 108.7 respectively. We describe the experiment and observations and compare the measured total energy loss with expectations from ionization losses at the residual gas, the energy loss due to impedance and synchrotron radiation. We find that the measured energy losses are below what is expected from free space synchrotron radiation. We believe that this shows evidence for suppression of synchrotron radiation which is cut off at long wavelength by the presence of the conducting beam pipe.

  5. A model of polarized-beam AGS in the ray-tracing code Zgoubi

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ahrens, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Glenn, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-07-12

    A model of the Alternating Gradient Synchrotron, based on the AGS snapramps, has been developed in the stepwise ray-tracing code Zgoubi. It has been used over the past 5 years in a number of accelerator studies aimed at enhancing RHIC proton beam polarization. It is also used to study and optimize proton and Helion beam polarization in view of future RHIC and eRHIC programs. The AGS model in Zgoubi is operational on-line via three different applications, ’ZgoubiFromSnaprampCmd’, ’AgsZgoubiModel’ and ’AgsModelViewer’, with the latter two essentially interfaces to the former which is the actual model ’engine’. All three commands are available from the controls system application launcher in the AGS ’StartUp’ menu, or from eponymous commands on shell terminals. Main aspects of the model and of its operation are presented in this technical note, brief excerpts from various studies performed so far are given for illustration, means and methods entering in ZgoubiFromSnaprampCmd are developed further in appendix.

  6. Distinguishing new physics scenarios at a linear collider with polarized beams

    International Nuclear Information System (INIS)

    Pankov, A.A.; Tsytrinov, A.V.; Paver, N.

    2006-01-01

    Numerous nonstandard dynamics dominated by very high mass exchanges are described at current and future accelerator energies by appropriate contactlike effective interactions among the standard model particles. Correspondingly, they can manifest themselves only through deviations of the cross sections from the standard model predictions. If one such deviation were observed, it would be important to definitely identify, to a given confidence level, the actual source among the various possible nonstandard interactions that, in principle, can explain it. Here we estimate the identification reach on different new physics effective interactions, obtainable from angular distributions of lepton pair production processes at the planned electron-positron International Linear Collider with polarized beams. For each nonstandard model, such an identification reach defines the range in the relevant heavy mass scale parameter where it can be unambiguously distinguished from the other nonstandard models as the source of corrections to the standard model cross sections, in case these are observed. The effective interactions for which we estimate the expected identification reach are the interactions based on gravity in large extra dimensions, in TeV -1 extra dimensions and the compositeness-inspired four-fermion contact interactions. The availability of both beams polarized at the International Linear Collider turns out, in many cases, to dramatically enhance the identification sensitivity

  7. Revealing the large extra dimension effective interaction at an e+e- collider with polarized beams

    International Nuclear Information System (INIS)

    Pankov, A. A.; Tsytrinov, A. V.; Paver, N.

    2007-01-01

    Several types of new physics scenarios are represented by contactlike effective interactions. An example is the exchange of nonstandard quanta of very large mass scales, beyond the kinematical limit for direct production set by the available collider energy. This kind of interactions can be revealed only through deviations of observables from the standard model predictions. If such deviations were observed, the relevant source should be identified among the possible models that could explain them. Here, we assess the expected 'identification reach' on the ADD model of gravity in large compactified extra dimensions, against the compositeness-inspired four-fermion contact interaction. As basic observables we take the differential cross sections for fermion-pair production at a 0.5-1 TeV electron-positron linear collider with both beams longitudinally polarized. For the four-fermion contact interaction, we assume a general linear combination of the individual models with definite chiralities, with arbitrary coupling constants. In this sense, the estimated identification reach on the ADD model can be considered as 'model independent'. In the analysis, we give estimates also for the expected ''discovery reaches'' on the various scenarios. We emphasize the substantial role of beams polarization in enhancing the sensitivity to the contactlike interactions under consideration

  8. Needle-like focus generation by radially polarized halo beams emitted by photonic-crystal ring-cavity laser

    Science.gov (United States)

    Kitamura, Kyoko; Nishimoto, Masaya; Sakai, Kyosuke; Noda, Susumu

    2012-11-01

    Focused fields that possess a small spot size and long depth of focus (DOF) are expected to lead to the further development of optical applications. Here, we develop a photonic-crystal ring-cavity laser that emits a beam with a radially polarized halo shape (rinner/router > 0.9). This beam has a needle-like focus with a spot size of less than 0.4λ and a depth of focus longer than 10 λ for a 0.9 numerical aperture objective lens. We evaluate the focusing properties of the emitted beam and demonstrate that it has a longer depth of focus than conventional beams.

  9. Achieving highly efficient and broad-angle polarization beam filtering using epsilon-near-zero metamaterials mimicked by metal-dielectric multilayers

    Science.gov (United States)

    Wu, Feng

    2018-03-01

    We report a highly efficient and broad-angle polarization beam filter at visible wavelengths using an anisotropic epsilon-near-zero metamaterial mimicked by a multilayer composed of alternative subwavelength magnesium fluoride and silver layers. The underlying physics can be explained by the dramatic difference between two orthogonal polarizations' iso-frequency curves of anisotropic epsilon-near-zero metamaterials. Transmittance for two orthogonal polarization waves and the polarization extinction ratio are calculated via the transfer matrix method to assess the comprehensive performance of the proposed polarization beam filter. From the simulation results, the proposed polarization beam filter is highly efficient (the polarization extinction ratio is far larger than two orders of magnitude) and has a broad operating angle range (ranging from 30° to 75°). Finally, we show that the proper tailoring of the periodic number enables us to obtain high comprehensive performance of the proposed polarization beam filter.

  10. Cross-section studies of relativistic deuteron reactions obtained by activation method

    CERN Document Server

    Wagner, V; Svoboda, O; Vrzalová, J; Majerle, M; Krása, A; Chudoba, P; Honusek, M; Kugler, A; Adam, J; Baldin, A; Furman, W; Kadykov, M; Khushvaktov, J; Sol-nyskhin, A; Tsoupko-Sitnikov, V; Závorka, L; Tyutyunnikov, S; Vladimirova, N

    2014-01-01

    The cross-sections of relativistic deuteron reactions on natural copper were studied in detail by means of activation method. The copper foils were irradiated during experiments with the big Quinta uranium target at Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The deuteron beams with energies ranging from 1 GeV up to 8 GeV were produced by JINR Nuclotron. Residual nuclides were identified by the gamma spectrometry. Lack of such experimental cross-section values prevents the usage of copper foils from beam integral monitoring.

  11. Neutron production in interactions of relativistic protons and deuterons with lead targets

    International Nuclear Information System (INIS)

    Yurevich, V.I.; Amelin, N.S.; Yakovlev, R.M.; Nikolaev, V.A.; Lyapin, V.G.; Tsvetkov, I.O.

    2005-01-01

    Results on the neutron double-differential cross sections and yields obtained in the time-of-flight measurements with different lead targets and beams of protons and deuterons at an energy of about 2 GeV are discussed. The neutron spatial-energy distribution for an extended lead target was studied by the threshold detector method in the energy range of protons and deuterons 1-3.7 GeV. A dependence of the mean neutron multiplicity, energy of neutrons, and process of neutron multiplication in lead on the target dimension, and the type and energy of the beam particle is analyzed. (author)

  12. A liquid hydrocarbon deuteron source for neutron generators

    Science.gov (United States)

    Schwoebel, P. R.

    2017-06-01

    Experimental studies of a deuteron spark source for neutron generators using hydrogen isotope fusion reactions are reported. The ion source uses a spark discharge between electrodes coated with a deuterated hydrocarbon liquid, here Santovac 5, to inhibit permanent electrode erosion and extend the lifetime of high-output neutron generator spark ion sources. Thompson parabola mass spectra show that principally hydrogen and deuterium ions are extracted from the ion source. Hydrogen is the chief residual gas phase species produced due to source operation in a stainless-steel vacuum chamber. The prominent features of the optical emission spectra of the discharge are C+ lines, the hydrogen Balmer Hα-line, and the C2 Swan bands. Operation of the ion source was studied in a conventional laboratory neutron generator. The source delivered an average deuteron current of ˜0.5 A nominal to the target in a 5 μs duration pulse at 1 Hz with target voltages of -80 to -100 kV. The thickness of the hydrocarbon liquid in the spark gap and the consistency thereof from spark to spark influences the deuteron yield and plays a role in determining the beam-focusing characteristics through the applied voltage necessary to break down the spark gap. Higher breakdown voltages result in larger ion beam spots on the target and vice-versa. Because the liquid self-heals and thereby inhibits permanent electrode erosion, the liquid-based source provides long life, with 104 pulses to date, and without clear evidence that, in principle, the lifetime could not be much longer. Initial experiments suggest that an alternative cylindrical target-type generator design can extract approximately 10 times the deuteron current from the source. Preliminary data using the deuterated source liquid as a neutron-producing target are also presented.

  13. Arbitrary Control of Polarization and Intensity Profiles of Diffraction-Attenuation-Resistant Beams along the Propagation Direction

    Science.gov (United States)

    Corato-Zanarella, Mateus; Dorrah, Ahmed H.; Zamboni-Rached, Michel; Mojahedi, Mo

    2018-02-01

    We report on the theory and experimental generation of a class of diffraction-attenuation-resistant beams with state of polarization (SOP) and intensity that can be controlled on demand along the propagation direction. This control is achieved by a suitable superposition of Bessel beams, whose parameters are systematically chosen based on closed-form analytic expressions provided by the frozen waves method. Using an amplitude-only spatial light modulator, we experimentally demonstrate three scenarios. In the first, the SOP of a horizontally polarized beam evolves to radial polarization and is then changed to vertical polarization, with the beam intensity held constant. In the second, we simultaneously control the SOP and the longitudinal intensity profile, which is chosen such that the beam's central ring can be switched off over predefined space regions, thus generating multiple foci with different SOPs and at different intensity levels along the propagation. Finally, the ability to control the SOP while overcoming attenuation inside lossy fluids is shown experimentally. We envision our proposed method to be of great interest for many applications, such as optical tweezers, atom guiding, material processing, microscopy, and optical communications.

  14. Study of proton-deuteron break-up reaction in exclusive experiment at 1 GeV

    International Nuclear Information System (INIS)

    Aleshin, N.P.; Belostotskij, S.L.; Dotsenko, Yu.V.

    1987-07-01

    The exclusive proton-deuteron break-up reaction pD yields ppn was studied at 1 GeV. Differential cross sections and polarizations of the final protons were measured in the range of neutron-spectator momenta 0 3 3 <0.2 GeV/c, respectively. The data obtained are well described within the framework of impulse approximation with the Paris wave function of the deuteron. (author)

  15. On the choice of beam polarization in e{sup +}e{sup -} → ZZ/Zγ and anomalous triple gauge-boson couplings

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Rafiqul; Singh, Ritesh K. [Indian Institute of Science Education and Research Kolkata, Department of Physical Sciences, Mohanpur (India)

    2017-08-15

    The anomalous trilinear gauge couplings of Z and γ are studied in e{sup +}e{sup -} → ZZ/Zγ with longitudinal beam polarizations using a complete set of polarization asymmetries for the Z boson. We quantify the goodness of the beam polarization in terms of the likelihood and find the best choice of e{sup -} and e{sup +} polarizations to be (+0.16, -0.16), (+0.09, -0.10) and (+0.12, -0.12) for ZZ, Zγ and combined processes, respectively. Simultaneous limits on anomalous couplings are obtained for these choices of beam polarizations using Markov-Chain-Monte-Carlo (MCMC) for an e{sup +}e{sup -} collider running at √(s) = 500 GeV and L = 100 fb{sup -1}. We find the simultaneous limits for these beam polarizations to be comparable with each other and also comparable with the unpolarized beam case. (orig.)

  16. Arbitrary control of the polarization and intensity profiles of diffraction-attenuation-resistant beams along their propagation direction

    OpenAIRE

    Corato-Zanarella, Mateus; Dorrah, Ahmed H.; Zamboni-Rached, Michel; Mojahedi, Mo

    2017-01-01

    We report on the theory and experimental generation of a class of diffraction-attenuation-resistant beams with state of polarization (SoP) and intensity that can be controlled on demand along the propagation direction. This is achieved by a suitable superposition of Bessel beams, whose parameters are systematically chosen based on closed-form analytic expressions provided by the Frozen Waves (FWs) method. Using an amplitude-only spatial light modulator, we experimentally demonstrate three sce...

  17. The activation of W and Zr by deuterons at energies up to 20 MeV

    Directory of Open Access Journals (Sweden)

    Šimečková Eva

    2017-01-01

    Full Text Available The proton and deuteron induced reactions are of a great interest for the assessment of induced radioactivity of accelerator components, target and beam stoppers. In order to investigate the important nuclides, we have carried up the irradiation experiments with the variable-energy cyclotron U-120 M of the NPI CAS Řež. The production cross sections of the nuclides 179,181,182m,182,183,184m,184,186Re and 187W from reaction on natural W were investigated by deuteron beams of 20 MeV energy. A part of preliminary results of deuteron activation of natural Zr is also shown. The stacked-foil technique was utilized. The comparison of present results to data of other authors and to predictions of evaluated data libraries is discussed.

  18. A Spin-Light Polarimeter for Multi-GeV Longitudinally Polarized Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Mohanmurthy, Prajwal [Mississippi State University, Starkville, MS (United States); Dutta, Dipangkar [Mississippi State University, Starkville, MS (United States) and Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    The physics program at the upgraded Jefferson Lab (JLab) and the physics program envisioned for the proposed electron-ion collider (EIC) include large efforts to search for interactions beyond the Standard Model (SM) using parity violation in electroweak interactions. These experiments require precision electron polarimetry with an uncertainty of < 0.5 %. The spin dependent Synchrotron radiation, called "spin-light," can be used to monitor the electron beam polarization. In this article we develop a conceptual design for a "spin-light" polarimeter that can be used at a high intensity, multi-GeV electron accelerator. We have also built a Geant4 based simulation for a prototype device and report some of the results from these simulations.

  19. Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams

    CSIR Research Space (South Africa)

    Milione, G

    2015-02-01

    Full Text Available 14031–40 [42] Shumyatsky P, Milione G and Alfano R R 2014 Optical memory effect from polarized Laguerre Gaussian light beam in light-scattering turbid media Opt. Commun. 321 116–23 [43] Alexeyev C N, Alexeyev A N, Lapin B P, Milione G and Yavorsky M A...). Effectively, a q-plate is a half wave plate (HWP) with an azimuthally varying fast axis that can be represented by the Jones matrix [34]: ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ϕ ϕ ϕ ϕ = − Q q q q q ˆ cos 2 sin 2 sin 2 cos 2 . (1) Using Jones calculus, it can be easily shown, for a =q 1...

  20. Into the development of a model to assess beam shaping and polarization control effects on laser cutting

    Science.gov (United States)

    Rodrigues, Gonçalo C.; Duflou, Joost R.

    2018-02-01

    This paper offers an in-depth look into beam shaping and polarization control as two of the most promising techniques for improving industrial laser cutting of metal sheets. An assessment model is developed for the study of such effects. It is built upon several modifications to models as available in literature in order to evaluate the potential of a wide range of considered concepts. This includes different kinds of beam shaping (achieved by extra-cavity optical elements or asymmetric diode staking) and polarization control techniques (linear, cross, radial, azimuthal). A fully mathematical description and solution procedure are provided. Three case studies for direct diode lasers follow, containing both experimental data and parametric studies. In the first case study, linear polarization is analyzed for any given angle between the cutting direction and the electrical field. In the second case several polarization strategies are compared for similar cut conditions, evaluating, for example, the minimum number of spatial divisions of a segmented polarized laser beam to achieve a target performance. A novel strategy, based on a 12-division linear-to-radial polarization converter with an axis misalignment and capable of improving cutting efficiency with more than 60%, is proposed. The last case study reveals different insights in beam shaping techniques, with an example of a beam shape optimization path for a 30% improvement in cutting efficiency. The proposed techniques are not limited to this type of laser source, neither is the model dedicated to these specific case studies. Limitations of the model and opportunities are further discussed.

  1. NUCLEON POLARIZATION IN 3-BODY MODELS OF POLARIZED LI-6

    NARCIS (Netherlands)

    SCHELLINGERHOUT, NW; KOK, LP; COON, SA; ADAM, RM

    1993-01-01

    Just as He-3 --> can be approximately characterized as a polarized neutron target, polarized Li-6D has been advocated as a good isoscalar nuclear target for the extraction of the polarized gluon content of the nucleon. The original argument rests upon a presumed ''alpha + deuteron'' picture of Li-6,

  2. Characterizing New Physics with Polarized Beams at High-Energy Hadron Colliders

    CERN Document Server

    Fuks, Benjamin; Rojo, Juan; Schienbein, Ingo

    2014-01-01

    The TeV energy region is currently being explored by both the ATLAS and CMS experiments of the Large Hadron Collider and phenomena beyond the Standard Model are extensively searched for. Large fractions of the parameter space of many models have already been excluded, and the ranges covered by the searches will certainly be increased by the upcoming energy and luminosity upgrades. If new physics has to be discovered in the forthcoming years, the ultimate goal of the high-energy physics program will consist of fully characterizing the newly-discovered degrees of freedom in terms of properties such as their masses, spins and couplings. The scope of this paper is to show how the availability of polarized beams at high-energy proton-proton colliders could yield a unique discriminating power between different beyond the Standard Model scenarios. We first discuss in a model-independent way how this discriminating power arises from the differences between polarized and unpolarized parton distribution functions. We t...

  3. Local and non-local potentials for deuteron elastic scattering

    International Nuclear Information System (INIS)

    Ramirez, J.A.

    1976-01-01

    The nucleon--nucleus local potential (central and spin--orbit) and the deuteron--nucleus nonlocal potential (central, spin--orbit, spin--radial tensor) are calculated by the folding-model (FM). Simple analytic expressions are obtained for the nucleon--nucleus potential by the use of Gaussians to represent the nucleon--nucleus potential and the charge and mass densities of the target. The analytic expressions give qualitative descriptions of phenomenological nucleon--nucleus interactions. A systematic target--mass dependence of realistic local FM deueron potentials is also included. Local-equivalent, energy-dependent, deuteron potentials are obtained from the nonlocal FM deuteron potentials and the energy dependence of the local potential parameters are presented. The local FM deuteron potential is tested for 60 Ni(d,d) 60 Ni at E/sub α/ = 15 MeV by comparing the predictions of the FM potentials with data in which all five polarization moments were measured. A qualitative fit to the data is obtained, but it overestimates the volume integral of the central potential by 7%. Energy-dependence effects are estimated by evaluating the local-equivalent potentials at E/sub α/ = 30 MeV and comparing the predictions to the E/sub α/ = 15 MeV potentials. The energy dependence of the central potential dominates the angular dependence of all five observables while the energy dependence of the spin--orbit and tensor potentials produces only scale changes (approx. 3%) in the vector and tensor analyzing powers. The scattering formalism for a spin-1 on a spin-0 target nucleus, and a description of the coupled--channels computer code DDUNC1 which treats the spin--radial tensor potential exactly, are included

  4. Asymmetry measurements in nucleon--nucleon scattering with polarized beams and targets at ZGS to Fermilab energies

    International Nuclear Information System (INIS)

    Yakosawa, A.

    1977-01-01

    Results of various asymmetry measurements in nucleon-nucleon scattering with polarized beams and targets at ZGS energies are presented. A possible direct-channel resonance in the pp system is discussed. Most of the discussion above ZGS energies are aimed at future measurements

  5. 1x3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Zhang, Min; Malureanu, Radu; Krüger, Asger Christian

    2010-01-01

    Based on inspiration from multi-mode interference self-imaging and theoretical FDTD simulations, a 1x3 beam splitter was designed, fabricated and characterized. Measurements show that for TE-polarized incident light the power is distributed equally between the output ports within 1dB in the range...

  6. Polarized electron beams elastically scattered by atoms as a tool for testing fundamental predictions of quantum mechanics.

    Science.gov (United States)

    Dapor, Maurizio

    2018-03-29

    Quantum information theory deals with quantum noise in order to protect physical quantum bits (qubits) from its effects. A single electron is an emblematic example of a qubit, and today it is possible to experimentally produce polarized ensembles of electrons. In this paper, the theory of the polarization of electron beams elastically scattered by atoms is briefly summarized. Then the POLARe program suite, a set of computer programs aimed at the calculation of the spin-polarization parameters of electron beams elastically interacting with atomic targets, is described. Selected results of the program concerning Ar, Kr, and Xe atoms are presented together with the comparison with experimental data about the Sherman function for low kinetic energy of the incident electrons (1.5eV-350eV). It is demonstrated that the quantum-relativistic theory of the polarization of electron beams elastically scattered by atoms is in good agreement with experimental data down to energies smaller than a few eV.

  7. Superconducting polarizing magnet for a movable polarized target

    International Nuclear Information System (INIS)

    Anishchenko, N.G.; Bartenev, V.D.; Blinov, N.A.

    1998-01-01

    The superconducting polarizing magnet was constructed for the JINR (Dubna) movable polarized target (MPT) with working volume 200 mm long and 30 mm in diameter. The magnet provides a polarizing magnetic field up to 6 T in the centre with the uniformity of 4.5 x 10 -4 in the working volume of the target. The magnet contains a main solenoidal winding 558 mm long and 206/144 mm in diameters, and compensating and correcting winding placed at its ends. The windings are made of a NbTi wire, impregnated with the epoxy resin and placed in the horizontal cryostat. The diameter of the 'warm' aperture of the magnet cryostat is 96 mm. The design and technology of the magnet winding are described. Results of the magnetic field map measurements, using a NMR-magnetometer are given. A similar magnet constructed at DAPNIA, CEA/Saclay (France), represented a model for the present development. The MPT array is installed in the beam line of polarized neutrons produced by break-up of polarized deuterons extracted from the synchrophasotron of the Laboratory of High Energies (LHE), JINR (Dubna)

  8. Three-dimensionally modulated anisotropic structure for diffractive optical elements created by one-step three-beam polarization holographic photoalignment

    International Nuclear Information System (INIS)

    Kawai, Kotaro; Sakamoto, Moritsugu; Noda, Kohei; Sasaki, Tomoyuki; Ono, Hiroshi; Kawatsuki, Nobuhiro

    2016-01-01

    A diffractive optical element with a three-dimensional liquid crystal (LC) alignment structure for advanced control of polarized beams was fabricated by a highly efficient one-step photoalignment method. This study is of great significance because different two-dimensional continuous and complex alignment patterns can be produced on two alignment films by simultaneously irradiating an empty glass cell composed of two unaligned photocrosslinkable polymer LC films with three-beam polarized interference beam. The polarization azimuth, ellipticity, and rotation direction of the diffracted beams from the resultant LC grating widely varied depending on the two-dimensional diffracted position and the polarization states of the incident beams. These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus.

  9. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates

    International Nuclear Information System (INIS)

    Chen, Peng; Ji, Wei; Wei, Bing-Yan; Hu, Wei; Lu, Yan-Qing; Chigrinov, Vladimir

    2015-01-01

    Arbitrary vector beams (VBs) are realized by the designed polarization converters and corresponding vector-photoaligned q-plates. The polarization converter is a specific twisted nematic cell with one substrate homogeneously aligned and the other space-variantly aligned. By combining a polarization-sensitive alignment agent with a dynamic micro-lithography system, various categories of liquid crystal polarization converters are demonstrated. Besides, traditional radially/azimuthally polarized light, high-order and multi-ringed VBs, and a VB array with different orders are generated. The obtained converters are further utilized as polarization masks to implement vector-photoaligning. The technique facilitates both the volume duplication of these converters and the generation of another promising optical element, the q-plate, which is suitable for the generation of VBs for coherent lasers. The combination of proposed polarization converters and correspondingly fabricated q-plates would drastically enhance the capability of polarization control and may bring more possibilities for the design of photonic devices

  10. Polarization-dependent Character of 1x3 Beam Splitter Using Self-Imaging Phenomena in Air-Slab PhCW

    DEFF Research Database (Denmark)

    Zhang, Min; Malureanu, Radu; Kristensen, Martin

    2010-01-01

    A 1x3 beam splitter in PhCWs using multi-mode interference (MMI) based on self-imaging principle is investigated. The 1x3 splitter is polarization-dependent. The total TE-polarized transmission of the 1x3 splitter is almost equal to the corresponding length of W1 PhCW. The TE-polarized input power...

  11. Scattering of high energy electrons on deuteron

    International Nuclear Information System (INIS)

    Grossetete, B.

    1964-12-01

    The aim of this work is to obtain information on the neutron form factor from the study of the scattering of electrons on deuterium. The first part is dedicated to the theoretical study of the elastic and inelastic scattering. We introduce different form factors: Sachs form factor, the Pauli and Dirac form factors, they appear in the analytic expression of the scattering cross-section. We show how the deuteron form factors can be deduced from neutron's and proton's form factors. In the case of the inelastic scattering we show how the cross section can be broken into components associated to partial waves and we obtain different formulas for the inelastic cross-section based on the Breit formula or the Durand formalism. The second part is dedicated to the experiment setting of electron scattering on deuterium. The elastic scattering experiment has been made on solid or liquid CD 2 targets while inelastic scattering has been studied on a liquid target. We have used an electron beam produced by the Orsay linear accelerator and the scattered electrons have been analysed by a magnetic spectrometer and a Cerenkov detector. The results give a very low value (slightly positive)for the charge form factor of the neutron and a magnetic form factor for the neutron slightly below that of the proton [fr

  12. Nonlocal nucleon-nucleus interactions in (d ,p ) reactions: Role of the deuteron D state

    Science.gov (United States)

    Bailey, G. W.; Timofeyuk, N. K.; Tostevin, J. A.

    2017-02-01

    Theoretical models of the (d ,p ) reaction are exploited for both nuclear astrophysics and spectroscopic studies in nuclear physics. Usually, these reaction models use local optical model potentials to describe the nucleon- and deuteron-target interactions. Within such a framework, the importance of the deuteron D state in low-energy reactions is normally associated with spin observables and tensor polarization effects, with very minimal influence on differential cross sections. In contrast, recent work that includes the inherent nonlocality of the nucleon optical model potentials in the Johnson-Tandy adiabatic-model description of the (d ,p ) transition amplitude, which accounts for deuteron break-up effects, shows sensitivity of the reaction to the large n -p relative momentum content of the deuteron wave function. The dominance of the deuteron D -state component at such high momenta leads to significant sensitivity of calculated (d ,p ) cross sections and deduced spectroscopic factors to the choice of deuteron wave function [Phys. Rev. Lett. 117, 162502 (2016), 10.1103/PhysRevLett.117.162502]. We present details of the Johnson-Tandy adiabatic model of the (d ,p ) transfer reaction generalized to include the deuteron D state in the presence of nonlocal nucleon-target interactions. We present exact calculations in this model and compare these to approximate (leading-order) solutions. The latter, approximate solutions can be interpreted in terms of local optical potentials, but evaluated at a shifted value of the energy in the nucleon-target system. This energy shift is increased when including the D -state contribution. We also study the expected dependence of the D -state effects on the separation energy and orbital angular momentum of the transferred nucleon. Their influence on the spectroscopic information extracted from (d ,p ) reactions is quantified for a particular case of astrophysical significance.

  13. Nucleon-deuteron scattering with the JISP16 potential

    Science.gov (United States)

    Skibiński, R.; Golak, J.; Topolnicki, K.; Witała, H.; Volkotrub, Yu.; Kamada, H.; Shirokov, A. M.; Okamoto, R.; Suzuki, K.; Vary, J. P.

    2018-01-01

    The nucleon-nucleon J -matrix inverse scattering potential JISP16 is applied to elastic nucleon-deuteron scattering and the deuteron breakup process at the laboratory nucleon energies up to 135 MeV. The formalism of the Faddeev equations is used to obtain three-nucleon scattering states. We compare predictions based on the JISP16 force with data and with results based on various two-body interactions, including the CD Bonn, the Argonne AV18, the chiral force with the semilocal regularization at the fifth order of the chiral expansion and with low-momentum interactions obtained from the CD Bonn force as well as with the predictions from the combination of the AV18 NN interaction and the Urbana IX 3 N force. JISP16 provides a satisfactory description of some observables at low energies but strong deviations from data as well as from standard and chiral potential predictions with increasing energy. However, there are also polarization observables at low energies for which the JISP16 predictions differ from those based on the other forces by a factor of two. The reason for such a behavior can be traced back to the P -wave components of the JISP16 force. At higher energies the deviations can be enhanced by an interference with higher partial waves and by the properties of the JISP16 deuteron wave function. In addition, we compare the energy and angular dependence of predictions based on the JISP16 force with the results of the low-momentum interactions obtained with different values of the momentum cutoff parameter. We found that such low-momentum forces can be employed to interpret the nucleon-deuteron elastic scattering data only below some specific energy which depends on the cutoff parameter. Since JISP16 is defined in a finite oscillator basis, it has properties similar to low momentum interactions and its application to the description of nucleon-deuteron scattering data is limited to a low momentum transfer region.

  14. Experimental Investigations of Cochannel Interference Reduction Effect at High Elevation Base Station Using Beam Tilt and Orthogonal Polarization

    Directory of Open Access Journals (Sweden)

    Shuta Uwano

    2014-01-01

    Full Text Available This paper addresses the problem of cochannel interference (CCI generated in a mixed cell architecture in microcellular systems. In this type of microcellular systems in which both microcells and macrocells coexist in the same geographical urban area, the base station antennas mounted on the rooftops of buildings to cover wide circular radio zones suffer severe CCI from the surrounding low base stations. A dielectric-loaded slotted-cylinder antenna (DSCA is applied to horizontally polarized omnidirectional array antennas in a height-diversity configuration with the high gain of 8 dBi, which is comparable to that of a collinear antenna, to reduce the CCI. The measurements conducted in a suburban area clarify the reduction in the CCI for three techniques. The beam-tilt technique reduces the CCI level by approximately 10 dB for both collinear antennas and the DSCA array antennas. The use of horizontal polarization reduces the CCI level by approximately 13 dB for the DSCA array antennas with and without beam tilt. The combination of the beam tilt and horizontal polarization or the DSCA array antennas with beam tilt significantly reduces the CCI level by approximately 23 dB.

  15. Electromagnetic structure of the deuteron

    International Nuclear Information System (INIS)

    Gilman, R.; Gross, Franz

    2001-01-01

    Recent measurements of the deuteron electromagnetic structure functions A, B, and T 20 extracted from high energy elastic ed scattering, and the cross sections and asymmetries extracted from high energy photodisintegration gamma + d to n + p, are reviewed and compared to theory. The theoretical calculations range from nonrelativistic and relativistic models using the traditional meson and baryon degrees of freedom, to effective field theories, to models based on the underlying quark and gluon degrees of freedom of QCD, including nonperturbative quark cluster models and perturbative QCD. We review what has been learned from these experiments, and discuss why elastic ed scattering and photodisintegration seem to require very different theoretical approaches, even though they are closely related experimentally

  16. Simple and efficient method of spin-polarizing a metastable helium beam by diode laser optical pumping

    International Nuclear Information System (INIS)

    Granitza, B.; Salvietti, M.; Torello, E.; Mattera, L.; Sasso, A.

    1995-01-01

    Diode laser optical pumping to produce a highly spin-polarized metastable He beam to be used in a spin-polarized metastable atom deexcitation spectroscopy experiment on magnetized surfaces is described. Efficient pumping of the beam is performed by means of an SDL-6702 distributed Bragg reflector diode laser which yields 50 mW of output power in a single longitudinal mode at 1083 nm, the resonance wavelength for the 2 3 S→2 3 P 0,1,2 (D 0 , D 1 , and D 2 ) transitions of He*. The light is circularly polarized by a quarter-wave plate, allowing easy change of the sense of atomic polarization. The laser frequency can be locked to the atomic transition for several hours by phase-sensitive detection of the saturated absorption signal in a He discharge cell. Any of the three transitions of the triplet system can be pumped with the laser but the maximum level of atomic polarization of 98.5% is found pumping the D 2 line. copyright 1995 American Institute of Physics

  17. Toroidal deuteron accelerator for Mo-98 neutron activation

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wagner L., E-mail: wagner.leite@ifnmg.edu.br, E-mail: tprcampos@pq.cnpq.br [Instituto Federal do Norte de Minas Gerais (IFN-MG), Montes Claros, MG (Brazil); Campos, Tarcisio P.R. Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    The radionuclide Tc-{sup 99m} is the most useful radioisotope in nuclear medicine. It can be produced by the Mo-99 beta minus decay. Mo-99 has often been produced in a high- flux nuclear reactor through radioactive neutron capture reactions on Mo-98. The present paper provides a preliminary design of a toroidal transmutation system (TTS) based on a toroidal compact deuteron accelerator, which can provide the Mo-98 transmutation into Mo-99. This system is essentially composed of a multi-aperture plasma electrode and a target, submitted to 180 kV, where a positive deuteron beam is accelerated toward a titanium-target loaded with deuterium in which nuclear d-d fusion reactions are induced. The Particle Studio package of the Computer Simulation Technology (CST) software was applied to design, simulate and optimize the deuteron beam on the target. MCNP code provided to neutronic analysis. Based on electromagnetic and neutronic simulations, the neutron yield and reaction rates were estimated. The simulated data allowed appraising the Mo-99 activity. A TTS, in a specific configuration, could produce a total deuterium current of 1.6 A at the target and a neutron yield of 10{sup 13} n.s{sup -1}. In a arrangement of 30 column samples, TTS provides 230 mCi s{sup -1} Mo{sup 99} in each column, which represents 80% of Tc-99m in secular equilibrium. As conclusion, the system holds potential for generating Mo-99 and Tc-99m in a suitable activity in secular equilibrium. (author)

  18. Deuteron cross section evaluation for safety and radioprotection calculations of IFMIF/EVEDA accelerator prototype

    Energy Technology Data Exchange (ETDEWEB)

    Blideanu, Valentin [Commissariat a l' energie atomique CEA/IRFU, Centre de Saclay, 91191 Gif sur Yvette cedex (France); Garcia, Mauricio [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain); Joyer, Philippe, E-mail: philippe.joyer@cea.fr [Commissariat a l' energie atomique CEA/IRFU, Centre de Saclay, 91191 Gif sur Yvette cedex (France); Lopez, Daniel; Mayoral, Alicia; Ogando, Francisco [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain); Ortiz, Felix [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Sanz, Javier; Sauvan, Patrick [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain)

    2011-10-01

    In the frame of IFMIF/EVEDA activities, a prototype accelerator delivering a high power deuteron beam is under construction in Japan. Interaction of these deuterons with matter will generate high levels of neutrons and induced activation, whose predicted yields depend strongly on the models used to calculate the different cross sections. A benchmark test was performed to validate these data for deuteron energies up to 20 MeV and to define a reasonable methodology for calculating the cross sections needed for EVEDA. Calculations were performed using the nuclear models included in MCNPX and PHITS, and the dedicated nuclear model code TALYS. Although the results obtained using TALYS (global parameters) or Monte Carlo codes disagree with experimental values, a solution is proposed to compute cross sections that are a good fit to experimental data. A consistent computational procedure is also suggested to improve both transport simulations/prompt dose and activation/residual dose calculations required for EVEDA.

  19. Deuteron cross section evaluation for safety and radioprotection calculations of IFMIF/EVEDA accelerator prototype

    International Nuclear Information System (INIS)

    Blideanu, Valentin; Garcia, Mauricio; Joyer, Philippe; Lopez, Daniel; Mayoral, Alicia; Ogando, Francisco; Ortiz, Felix; Sanz, Javier; Sauvan, Patrick

    2011-01-01

    In the frame of IFMIF/EVEDA activities, a prototype accelerator delivering a high power deuteron beam is under construction in Japan. Interaction of these deuterons with matter will generate high levels of neutrons and induced activation, whose predicted yields depend strongly on the models used to calculate the different cross sections. A benchmark test was performed to validate these data for deuteron energies up to 20 MeV and to define a reasonable methodology for calculating the cross sections needed for EVEDA. Calculations were performed using the nuclear models included in MCNPX and PHITS, and the dedicated nuclear model code TALYS. Although the results obtained using TALYS (global parameters) or Monte Carlo codes disagree with experimental values, a solution is proposed to compute cross sections that are a good fit to experimental data. A consistent computational procedure is also suggested to improve both transport simulations/prompt dose and activation/residual dose calculations required for EVEDA.

  20. Deuteron and neutron induced activation in the Eveda accelerator materials: implications for the accelerator maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.; Sanz, J.; Garcia, N.; Cabellos, O. [Madrid Univ. Politecnica, C/ Jose Gutierrez Abascal, lnstituto de Fusion Nuclear (Spain); Sauvan, R. [Universidad Nacional de Educacion a Distancia (UNED), Madrid (Spain); Moreno, C.; Sedano, L.A. [CIEMAT-Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Association Euratom-CIEMAT, Madrid (Spain)

    2007-07-01

    Full text of publication follows: The IFMIF (International Fusion Materials Irradiation Facility) is an accelerator-based DLi neutron source designed to test fusion reactor candidate materials for high fluence neutrons. Before deciding IFMIF construction, an engineering design and associated experimental data acquisition, defined as EVEDA, has been proposed. Along the EVEDA accelerator, deuteron beam losses collide with the accelerator materials, producing activation and consequent radiations responsible of dose. Calculation of the dose rates in the EVEDA accelerator room is necessary in order to analyze the feasibility for manual maintenance. Dose rates due to the activation produced by the deuteron beam losses interaction with the accelerator materials, will be calculated with the ACAB activation code, using EAF2007 library for deuteron activation cross-sections. Also, dose rates from the activation induced by the neutron source produced by the interaction of deuteron beam losses with the accelerator materials and the deuterium implanted in the structural lattice, will be calculated with the SRIM2006, TMAP7, DROSG2000/NEUYIE, MCNPX and ACAB codes. All calculations will be done for the EVEDA accelerator with the room temperature DTL structure, which is based on copper cavities for the DTL. Some calculations will be done for the superconducting DTL structure, based on niobium cavities for the DTL working at cryogenic temperature. Final analysis will show the dominant mechanisms and major radionuclides contributing to the surface dose rates. (authors)

  1. Growth of N-polar GaN by ammonia molecular beam epitaxy

    Science.gov (United States)

    Fireman, M. N.; Li, Haoran; Keller, Stacia; Mishra, Umesh K.; Speck, James S.

    2018-01-01

    The homoepitaxial growth of N-polar GaN was investigated by ammonia molecular beam epitaxy. Systematic growth studies varying the V/III flux ratio and the growth temperature indicated that the strongest factor in realizing morphologically smooth films was the growth temperature; N-face films needed to be grown approximately 100 °C or greater than Ga-face films provided the same metal flux. Smooth N-face films could also be grown at temperatures only 50 °C greater than Ga-face films, albeit under reduced metal flux. Too high a growth temperature and too low a metal flux resulted in dislocation mediated pitting of the surface. The unintentional impurity incorporation of such films was also studied by secondary mass ion spectroscopy and most importantly revealed an oxygen content in the mid 1017 to the mid 1018 cm-3 range. Hall measurements confirmed that this oxygen impurity resulted in n-type films, with carrier concentrations and mobilities comparable to those of intentionally silicon doped GaN.

  2. Searches for the Anomalous FCNC Top-Higgs Couplings with Polarized Electron Beam at the LHeC

    Directory of Open Access Journals (Sweden)

    XiaoJuan Wang

    2017-01-01

    Full Text Available We study the single top and Higgs associated production e-p→νet-→νehq-(h→bb- in the top-Higgs FCNC couplings at the LHeC with the electron beam energy of Ee=60 GeV and Ee=120 GeV and combination of a 7 TeV and 50 TeV proton beam. With the possibility of e-beam polarization (pe=0, ±0.6, we distinct the cut-based method and the multivariate analysis- (MVA- based method and compare with the current experimental and theoretical limits. It is shown that the branching ratio Br(t→uh can be probed to 0.113 (0.093%, 0.071 (0.057%, 0.030 (0.022%, and 0.024 (0.019% with the cut-based (MVA-based analysis at (Ep, Ee = (7 TeV, 60 GeV, (Ep, Ee = (7 TeV, 120 GeV, (Ep, Ee = (50 TeV, 60 GeV, and (Ep, Ee = (50 TeV, 120 GeV beam energy and 1σ level. With the possibility of e-beam polarization, the expected limits can be probed down to 0.090 (0.073%, 0.056 (0.045%, 0.024 (0.018%, and 0.019 (0.015%, respectively.

  3. Connection between zero chromaticity and long in-plane polarization lifetime in a magnetic storage ring

    Science.gov (United States)

    Guidoboni, G.; Stephenson, E. J.; Wrońska, A.; Bagdasarian, Z.; Bsaisou, J.; Chekmenev, S.; Ciullo, G.; Dymov, S.; Eversmann, D.; Gaisser, M.; Gebel, R.; Hejny, V.; Hempelmann, N.; Hinder, F.; Kacharava, A.; Keshelashvili, I.; Kulessa, P.; Lenisa, P.; Lehrach, A.; Lorentz, B.; Maanen, P.; Maier, R.; Mchedlishvili, D.; Mey, S.; Nass, A.; Pesce, A.; Orlov, Y.; Pretz, J.; Prasuhn, D.; Rathmann, F.; Rosenthal, M.; Saleev, A.; Semertzidis, Y. K.; Senichev, Y.; Shmakova, V.; Stockhorst, H.; Ströher, H.; Talman, R.; Thörngren Engblom, P.; Trinkel, F.; Valdau, Yu.; Weidemann, C.; Wüstner, P.; Żurek, M.; Zyuzin, D.; JEDI Collaboration

    2018-02-01

    In this paper, we demonstrate the connection between a magnetic storage ring with additional sextupole fields set so that the x and y chromaticities vanish and the maximizing of the lifetime of in-plane polarization (IPP) for a 0.97 -GeV /c deuteron beam. The IPP magnitude was measured by continuously monitoring the down-up scattering asymmetry (sensitive to sideways polarization) in an in-beam, carbon-target polarimeter and unfolding the precession of the IPP due to the magnetic anomaly of the deuteron. The optimum operating conditions for a long IPP lifetime were made by scanning the field of the storage ring sextupole magnet families while observing the rate of IPP loss during storage of the beam. The beam was bunched and electron cooled. The IPP losses appear to arise from the change of the orbit circumference, and consequently the particle speed and spin tune, due to the transverse betatron oscillations of individual particles in the beam. The effects of these changes are canceled by an appropriate sextupole field setting.

  4. High magnetic field uniformity superconducting magnet for a movable polarized target

    International Nuclear Information System (INIS)

    Anishchenko, N.G.; Bartenev, V.D.; Blinov, N.A.

    1998-01-01

    The superconducting polarizing magnet was constructed for movable polarized target (MPT) with working volume 200 mm long and 30 mm in diameter. The magnet provides a polarizing magnetic field up to 6 T with the uniformity of 4.5 x 10 -4 in the working volume of the target. The magnet windings are made of a NbTi wire, impregnated with the epoxy resin and placed in the horizontal cryostat with 'warm' aperture diameter of 96 mm. The design and technology of the magnet winding are described. Results of the magnetic field map measurements using a NMR-magnetometer are given. The MPT set-up is installed in the beam line of polarized neutrons produced by break-up of polarized deuterons extracted from the Synchrophasotron of the Laboratory of High Energies (LHE), JINR, Dubna

  5. The polarized double cell target of the SMC

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; Adeva, B.; Arik, E.; Arvidson, A.; Badelek, B.; Ballintijn, M.K.; Bardin, G.; Baum, G.; Berglund, P.; Betev, L.; Bird, I.G.; Birsa, R.; Bjoerkholm, P.; Bonner, B.E.; Botton, N. de; Boutemeur, M.; Bradamante, F.; Bravar, A.; Bressan, A.; Bueltmann, S.; Burtin, E.; Cavata, C.; Crabb, D.; Cranshaw, J.; Cuhadar, T.; Torre, S. Dalla; Dantzig, R. van; Derro, B.; Deshpande, A.; Dhawan, S.; Dulya, C.; Dyring, A.; Eichblatt, S.; Faivre, J.C.; Fasching, D.; Feinstein, F.; Fernandez, C.; Forthmann, S.; Frois, B.; Gallas, A.; Garzon, J.A.; Gaussiran, T.; Gilly, H.; Giorgi, M.; Goeler, E. von; Goertz, S.; Gracia, G.; Groot, N. de; Perdekamp, M. Grosse; Guelmez, E.; Haft, K.; Harrach, D. von; Hasegawa, T.; Hautle, P.; Hayashi, N.; Heusch, C.A.; Horikawa, N.; Hughes, V.W.; Igo, G.; Ishimoto, S.; Iwata, T.; Kabuss, E.M.; Kageya, T.; Karev, A.; Kessler, H.J.; Ketel, T.J.; Kiryluk, J.; Kishi, A.; Kisselev, Yu.; Klostermann, L.; Kraemer, D.; Krivokhijine, V.; Kroeger, W.; Kurek, K.; Kyynaeraeinen, J.; Lamanna, M.; Landgraf, U.; Layda, T.; Le Goff, J.M.; Lehar, F.; Lesquen, A. de; Lichtenstadt, J.; Lindqvist, T.; Litmaath, M.; Lowe, M.; Magnon, A.; Mallot, G.K.; Marie, F.; Martin, A.; Martino, J.; Matsuda, T.; Mayes, B.; McCarthy, J.S.; Medved, K.; Meyer, W.; Middelkoop, G. van; Miller, D.; Miyachi, Y.; Mori, K.; Moromisato, J.; Nassalski, J.; Naumann, L.; Neganov, B.; Niinikoski, T.O.; Oberski, J.E.J.; Ogawa, A.; Ozben, C.; Parks, D.P.; Pereira, H.; Penzo, A.; Perrot-Kunne, F.; Peshekhonov, D.; Piegaia, R.; Pinsky, L.; Platchkov, S.; Plo, M.; Pose, D.; Postma, H. E-mail: hpostma@dataweb.nl; Pretz, J.; Pussieux, T.; Pyrlik, J.; Raedel, G.; Reyhancan, I.; Reicherz, G.; Rieubland, J.M.; Rijllart, A.; Roberts, J.B.; Rock, S.; Rodriguez, M.; Rondio, E.; Rosado, A.; Roscherr, B.; Sabo, I.; Saborido, J.; Sandacz, A.; Savin, I.; Schiavon, P.; Schiller, A.; Schueler, K.P.; Segel, R.; Seitz, R.; Semertzidis, Y.; Sever, F.; Shanahan, P.; Sichtermann, E.P.; Simeoni, F. [and others

    1999-11-11

    The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993-1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials -- butanol, ammonia, and deuterated butanol -- with maximum degrees of polarization of 94%, 91% and 60%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and their analyses, the accuracies achieved were between 2.0% and 3.2%. The SMC target system with two cells of opposite polarizations, each cell 65 cm long and 5 cm in diameter, constitutes the largest polarized target system ever built and facilitates accurate spin asymmetry measurements. The design considerations, construction and performance of the target are reviewed.

  6. The polarized double cell target of the SMC

    CERN Document Server

    Adams, D; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gaussiran, T; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Layda, T; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Neganov, B S; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Pereira, H; Penzo, Aldo L; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Pussieux, T; Pyrlik, J; Rädel, G; Reyhancan, I; Reicherz, G; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Roscherr, B; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Schüler, K P; Segel, R E; Seitz, R; Semertzidis, Y K; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Thers, D; Tlaczala, W; Trentalange, S; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Zanetti, A M; Zaremba, K; Zhao, J

    1999-01-01

    The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993 to 1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials $-$ butanol, ammonia, and deuterated butanol, with maximum degrees of polarization of 94, 91, and 60 \\%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and their analyses. The achieved accuracies were between 2.0 and 3.2 \\%. The SMC target system with two cells of opposite polarizations, each cell 65 cm long and 5 cm in diameter, constitutes the largest polarized target system ever built and facilitates accurate spin asymmetry measurements. The design considerations, the ...

  7. Deuteron stripping reactions using dirac phenomenology

    Science.gov (United States)

    Hawk, E. A.; McNeil, J. A.

    2001-04-01

    In this work deuteron stripping reactions are studied using the distorted wave born approximation employing dirac phenomenological potentials. In 1982 Shepard and Rost performed zero-range dirac phenomenological stripping calculations and found a dramatic reduction in the predicted cross sections when compared with similar nonrelativistic calculations. We extend the earlier work by including full finite range effects as well as the deuteron's internal D-state. Results will be compared with traditional nonrelativistic approaches and experimental data at low energy.

  8. A medium size polarised deuteron target

    Science.gov (United States)

    Kiselev, Yu. F.; Polyakov, V. V.; Kovalev, A. I.; Bunyatova, E. I.; Borisov, N. S.; Trautman, V. Yu.; Werner, K.; Kozlenko, N. G.

    1984-03-01

    A frozen polarised deuteron target based on ethanediol with a high percentage of deuterium is described. Analytical expressions for the NMR spectrum correction for non-linearity of the Q-meter are obtained and a method for the determination of the asymmetry is developed. Experimental results confirm the thermal mixing theory for deuteron and proton spin systems with a dipole-dipole reservoir of electron spins.

  9. Deuteron structure in the deep inelastic regime

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Canal, C.A.; Tarutina, T. [Universidad Nacional de La Plata, IFLP/CONICET y Departamento de Fisica, La Plata (Argentina); Vento, V. [Universidad de Valencia-CSIC, Departamento de Fisica Teorica-IFIC, Burjassot (Valencia) (Spain)

    2017-06-15

    We study nuclear effects in the deuteron in the deep inelastic regime using the newest available data. We put special emphasis on their Q{sup 2} dependence. The study is carried out using a scheme which parameterizes, in a simple manner, these effects by changing the proton and neutron stucture functions in medium. The result of our analysis is compared with other recent proposals. We conclude that precise EMC ratios cannot be obtained without considering the nuclear effects in the deuteron. (orig.)

  10. Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings.

    Science.gov (United States)

    Qiu, Huiye; Jiang, Jianfei; Yu, Ping; Yang, Jianyi; Yu, Hui; Jiang, Xiaoqing

    2017-10-01

    A novel polarization beam splitter based on an anti-symmetric sidewall Bragg grating in a multimode silicon-on-insulator strip waveguide is demonstrated. Anti-symmetric spatially periodic refractive-index perturbations are designed for strong coupling between the fundamental (TE 0 ) and the first-order transverse electric modes (TE 1 ), while not for transfer magnetic modes. An adiabatic coupler is cascaded at the input-port, so as to drop the TE 1 reflection. The Bragg grating has a compact length of ∼20  μm (55 periods). The polarization isolations of the through- and drop-ports at the wavelength of 1557 nm are 34 and 31 dB, respectively. A broad bandwidth of 64 nm and a large fabrication tolerance of 80 nm for polarization isolation over 20 dB are also achieved.

  11. Generation of azimuthally polarized beams in fast axial flow CO2 laser with hybrid circular subwavelength grating mirror.

    Science.gov (United States)

    Zhao, Jiang; Li, Bo; Zhao, Heng; Wang, Wenjin; Hu, Yi; Liu, Sisi; Wang, Youqing

    2014-06-10

    A hybrid circular subwavelength grating mirror is proposed and fabricated as a rear mirror in a fast axial flow CO2 laser system to generate azimuthally polarized beams (APBs). This grating mirror, with particular gold-covered ridges and nanopillar-stuffed grooves, performs wideband TE wave reflectivity and high polarization selectivity. It shows that the polarization selectivity mechanism lies in the gold ridge's high reflectivity to the TE wave and the lower TM wave reflectivity, which are the result of the mode leaking into substrate through the dielectric-like nanopillar layer. Finally, a high-quality 550 W APB is obtained in subsequent experiments, which provides potential applications in drilling and welding.

  12. A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

    Directory of Open Access Journals (Sweden)

    Huiying Qi

    2016-01-01

    Full Text Available Design of antenna array under the limitation of restricted size is a challenging problem. Cavity-backed slot antenna is widely used because of its advantages of small size, wide band, and wide beam. In this paper, a design of wide band and wide beam cavity-backed slot antenna array with the slant polarization is proposed. To obtain wide band and wide beam with limited size, the inverted microstrip-fed cavity-backed slot antenna (IMF-CBSA is adopted as the element of 1 × 4 antenna array. The slant polarized antennas and their feeding networks are adopted because of their simple structures. The performance of the proposed antenna array is verified by the simulations and experiments. The measured VSWR < 2 bandwidth is 55% at the center frequency 21.8 GHz, and the gain is larger than 12.2 dB. Experimental results demonstrate that the proposed design achieves wide band and beam with the size of 68 mm × 56 mm × 14.5 mm.

  13. Effects of solvent polarity on mutual styrene grafting onto polypropylene by electron beam irradiation

    International Nuclear Information System (INIS)

    Moura, E.; Manzoli, J.E.; Geraldo, A.B.C.

    2012-01-01

    Radiation induced mutual grafting of styrene onto polypropylene has been carried using several grafting solutions with different organic solvents and polarity levels. In the mixture of styrene and protic polar solvents high grafting yields were obtained. This behavior suggests that grafting process does not have dependence on swelling of the substrate, something that is expected when a non-polar substrate and a non-polar media are in contact. In this case, the grafting yield may be related to the free radical generation at protic polar solvent; these reactive specimens start the reaction on substrate surface to allow the accessibility of monomer species to active sites. Some reaction mechanisms are proposed. - Highlights: ► Styrene grafting is performed with high yield when protic polar solvents are used. ► Results are related to effects from electron solvation and dipole interactions. ► Grafting samples performed in n-octanol mixtures had crystallinity changes.

  14. Search for effects of nuclear matter in quasi-elastic pion-deuteron backscattering on sup 6 Li

    CERN Document Server

    Abramov, B M; Bulychev, S A; Dukhovskoy, I A; Krutenkova, A P; Kulikov, V V; Matsyuk, M A; Radkevich, I A; Turdakina, E N; Khanov, A I

    2001-01-01

    The results of the experiment on studying the quasi-elastic pi sup - d backscattering in the complete kinematic on the sup 6 Li nuclei are presented. The work was accomplished on the ITEP three-meter magnetic spectrometer on the pion beams by the pulses 0.72, 0.88 and 1.28 GeV/s.The parameters of the quasi-deuteron cluster Fermi motion and the effective number of the quasi-deuterons in the sup 6 Li are determined for the sup 6 Li(pi sup - , pi sup - d) sup 4 He reaction. These values are in good agreement with the measurements on the proton and electron beams. The possibility of observing the modification effects of the deuteron wave function in the nuclear medium in this reation is discussed

  15. Observable in the reversible reaction gamma + d yields n + p. [photodisintegration of deuteron

    Science.gov (United States)

    Rustgi, M. L.; Vyas, R.; Nunemaker, R. D.

    1984-01-01

    Calculations are presented on the effect of the two-body charge and current density effects on the observables in the photodisintegration of a deuteron. The computations are performed in a cartesian coordinate system, initially for gamma rays plane-polarized in the x-direction. Unpolarized photons are treated with an incoherent superposition of transition amplitudes for gamma rays polarized in the x- and y- directions. Account is taken of recoil and interaction energies after an initial state is defined. Consideration is focused on the cross section, polarization, and asymmetry of the reaction at low and medium energy incident gamma rays.

  16. Thin Scintillating Polarized Targets for Spin Physics

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.

    2003-07-01

    At PSI polarized scintillating targets are available since 1996. Proton polarizations of more than 80%, and deuteron polarizations of 25% in polystyrene-based scintillators can be reached under optimum conditions in a vertical dilution refrigerator with optical access, suited for nuclear and particle physics experiments. New preparation procedures allow to provide very thin polarizable scintillating targets and widen the spectrum of conceivable experiments.

  17. Simulation of AZ-PN100 resist pattern fluctuation in X-ray lithography, including synchrotron beam polarization

    International Nuclear Information System (INIS)

    Scheckler, E.W.; Ogawa, Taro; Tanaka, Toshihiko; Takeda, Eiji; Oizumi, Hiroaki.

    1993-01-01

    A new simulation model for nanometer-scale pattern fluctuation in X-ray lithography is presented and applied to a study of AZ-PN100 negative chemical amplification resist. The exposure simulation considers polarized photons from a synchrotron radiation (SR) source. Monte Carlo simulation of Auger and photoelectron generation is followed by electron scattering simulation to determine the deposited energy distribution at the nanometer scale, including beam polarization effects. An acid-catalyst random walk model simulates the post-exposure bake (PEB) step. Fourier transform infrared (FTIR) spectroscopy and developed resist thickness measurements are used to fit PEB and rate models for AZ-PN100. A polymer removal model for development simulation predicts the macroscopic resist shape and pattern roughness. The simulated 3σ linewidth variation is in excess of 24 nm. Simulation also shows a detrimental effect if the beam polarization is perpendicular to the line. Simulation assuming a theoretical ideal exposure yields a 50 nm minimum line for standard process conditions. (author)

  18. Study and production of polarized monochromatic thermal neutron beams; Etude et production de faisceaux monochromatiques polarises de neutrons lents

    Energy Technology Data Exchange (ETDEWEB)

    Beiln, H. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-06-15

    Results obtained with a recently built neutron spectrometer producing monochromatic polarized neutron beams,in the energy rang (10{sup -3} - 10) eV and using a series of artificial (Co: 92 per cent - Fe: 8 per cent) monocrystal as polarizers and analysers, are given. A high precision method for cutting monocrystals is explained. A description of the installation itself as well as some results obtained with Fe{sub 3}O{sub 4} crystals are also given. Experimental result pertaining to various magnetic guide and 'spin flip' system, as required in the handling of such polarized neutron beams, are also discussed. (author) [French] Nous donnons les resultats obtenus avec un spectrometre produisant des neutrons monochromatiques polarises d'energie comprise entre quelques milliemes d'electronvolts et quelques electronvotts qui utilise une serie de monocristaux artificiels de Co: 92 pour cent - Fe: 8 pour cent, comme polariseurs et analyseurs. Nous discutons egalement une methode de taille de monocristaux a tres haute precision. Le dispositif experimental ainsi que quelques resultats preliminaires obtenus avec des monocristaux de Fe{sub 3}O{sub 4} sont egalement donnes. Nous discutons egalement des resultats experimentaux obtenus avec differents systemes de guidage magnetique et de renversement du spin. (auteur)

  19. Optimal design and fabrication method for antireflection coatings for P-polarized 193 nm laser beam at large angles of incidence (68°-74°).

    Science.gov (United States)

    Jin, Jingcheng; Jin, Chunshui; Li, Chun; Deng, Wenyuan; Chang, Yanhe

    2013-09-01

    Most of the optical axes in modern systems are bent for optomechanical considerations. Antireflection (AR) coatings for polarized light at oblique incidence are widely used in optical surfaces like prisms or multiform lenses to suppress undesirable reflections. The optimal design and fabrication method for AR coatings with large-angle range (68°-74°) for a P-polarized 193 nm laser beam is discussed in detail. Experimental results showed that after coating, the reflection loss of a P-polarized laser beam at large angles of incidence on the optical surfaces is reduced dramatically, which could greatly improve the output efficiency of the optical components in the deep ultraviolet vacuum range.

  20. Nuclear quadrupole-quadrupole interaction in the inelastic scattering of aligned deuterons from deformed nuclei

    International Nuclear Information System (INIS)

    Clement, H.; Frick, R.; Graw, G.; Schiemenz, P.; Seichert, N.

    1983-01-01

    The 2 1 + -excitation of deformed nuclei by tensor polarized deuterons provides an alignment of both nuclei and thus a means to study specifically the quadrupole-quadrupole interaction between both nuclei. The tensor analyzing power Asub(xz)(theta) has been measured for the elastic and inelastic scattering on 24 Mg and 28 Si. The coupled channel analysis including a deformed tensor potential reveals a clear signature of the quadrupole-quadrupole part of the nuclear projectile-target interaction. (orig.)

  1. Relativistic deuteron wave function on light front

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1980-01-01

    In the framework of the one boson exchange model the approximate analytical expression for the deuteron wave function (WF) at relativistic relative momenta is obtained. WF depends on extra variable having the form of a unit vector and is determined by six functions instead of two ones (S-and D-waves) in the nonrelativistic case. At moderate momenta the WF is matched with WF in the Reid model. It is emphasized the importance of indication of the qualitative observed phenomena associated with change of parametrization and spin structure of relativistic deuteron WF

  2. Design of magnetic system to produce intense beam of polarized molecules of H2 and D2

    Science.gov (United States)

    Yurchenko, A. V.; Nikolenko, D. M.; Rachek, I. A.; Shestakov, Yu V.; Toporkov, D. K.; Zorin, A. V.

    2017-12-01

    A magnetic-separating system is designed to produce polarized molecular high-density beams of H2/D2. The distribution of the magnetic field inside the aperture of the multipole magnet was calculated using the Mermaid software package. The calculation showed that the characteristic value of the magnetic field is 40 kGs, the field gradient is about 60 kGs/cm. A numerical calculation of the trajectories of the motion of molecules with different spin projections in this magnetic system is performed. The article discusses the possibility of using the magnetic system designed for the creation of a high-intensity source of polarized molecules. The expected intensity of this source is calculated. The expected flux of molecules focused in the receiver tube is 3.5·1016 mol/s for the hydrogen molecule and 2.0·1015 mol/s for the deuterium molecule.

  3. Vector Laguerre-Gauss beams with polarization-orbital angular momentum entanglement in a graded-index medium.

    Science.gov (United States)

    Petrov, Nikolai I

    2016-07-01

    It is shown that the vector-vortex Laguerre-Gauss modes with polarization-orbital angular momentum (OAM) entanglement are the vector solutions of the Maxwell equations in a graded-index medium. Focusing of linearly and circularly polarized vortex light beams with nonzero azimuthal and radial indices in a cylindrical graded-index waveguide is investigated. The wave shape variation with distance taking into account the spin-orbit and nonparaxial effects is analyzed. The effect of long-term periodic revival of wave packets due to mode interference in a graded-index cylindrical optical waveguide is demonstrated. High efficiency transfer of a strongly focused spot through an optical waveguide over large distances takes place with a period of revival.

  4. Medical Application of the SARAF-Proton/Deuteron 40 MeV Superconducting Linac

    Science.gov (United States)

    Halfon, Shlomi

    2007-11-01

    The Soreq Applied Research Accelerator Facility (SARAF) is based on a superconducting linear accelerator currently being built at the Soreq research center (Israel). The SARAF is planned to generate a 2 mA 4 MeV proton beam during its first year of operation and up to 40 MeV proton or deuteron beam in 2012. The high intensity beam, together with the linac ability to adjust the ion energy provides opportunities for medical research, such as Boron Neutron Capture Therapy (BNCT) and the production of medical radioisotopes, for instance 103Pd for prostate brachytherapy.

  5. A polarized target for the CLAS detector

    CERN Document Server

    Keith, C D; Battaglieri, M; Bosted, P; Branford, D; Bültmann, S; Burkert, V D; Comer, S A; Crabb, D G; De Vita, R; Dodge, G; Fatemi, R; Kashy, D; Kuhn, S E; Prok, Y; Ripani, M; Seely, M L; Taiuti, M; Witherspoon, S

    2003-01-01

    We describe the design, construction, and performance of a polarized solid target for use in electron scattering experiments with the CEBAF Large Acceptance Spectrometer. Protons and deuterons are continuously polarized by microwave-induced spin-flip transitions at 1 K and 5 T. The target operated successfully during two cycles in 1998 and 2000, providing proton and deuteron polarizations as high as 96% and 46%, respectively. The unique features of the target which permit its use inside a 4 pi spectrometer are stressed. Comparison is made between the target polarization measured by the traditional method of NMR and by electron elastic scattering.

  6. A Precise Measurement of the Deuteron Elastic Structure Function A(Q2)

    Energy Technology Data Exchange (ETDEWEB)

    Honegger, Andrian [Univ. of Basel (Switzerland)

    1999-12-07

    During summer 1997 experiment 394-018 measured the deuteron tensor polarization in D(e,e'$vec\\{d}$) scattering in Hall C at Jefferson Laboratory. In a momentum transfer range between 0.66 and 1.8 (GeV=c)2, with slight changes in the experimental setup, the collaboration performed six precision measurements of the deuteron structure function A(Q2) in elastic D(e,e'd) scattering . Scattered electrons and recoil deuterons were detected in coincidence in the High Momentum Spectrometer and the recoil polarimeter POLDER, respectively. At every kinematics H(e,e') data were taken to study systematic effects of the measurement. These new precise measurements resolve discrepancies between older data sets and put significant constraints on existing models of the deuteron electromagnetic structure. This work was supported by the Swiss National Science Foundation, the French Centre National de la Recherche Scientifique and the Commissariat 'a l'Energie Atomique, the U.S. Department of Energy and the National Science Foundation and the K.C. Wong Foundation.

  7. Measurement of 230Pa and 186Re Production Cross Sections Induced by Deuterons at Arronax Facility

    Science.gov (United States)

    Duchemin, Charlotte; Guertin, Arnaud; Metivier, Vincent; Haddad, Ferid; Michel, Nathalie

    2014-02-01

    A dedicated program has been launched on production of innovative radionuclides for PET imaging and for β- and α targeted radiotherapy using proton or α particles at the ARRONAX cyclotron. Since the accelerator is also able to deliver deuteron beams up to 35 MeV, we have reconsidered the possibility of using them to produce medical isotopes. Two isotopes dedicated to targeted therapy have been considered: 226Th, a decay product of 230Pa, and 186Re. The production cross sections of 230Pa and 186Re, as well as those of the contaminants created during the irradiation, have been determined by the stacked-foil technique using deuteron beams. Experimental values have been quantified using a referenced cross section. The measured cross sections have been used to determine expected production yields and compared with the calculated values obtained using the Talys code with default parameters.

  8. Saturne II: characteristics of the proton beam, field qualities and corrections, acceleration of the polarized protons

    International Nuclear Information System (INIS)

    Laclare, J.-L.

    1978-01-01

    Indicated specifications of Saturne II are summed up: performance of the injection system, quality of the guidance field (magnetic measurements and multipolar corrections), transverse and longitudinal instabilities, characteristics of the beam stored in the machine and of the extracted beam. The problem of depolarization along the acceleration cycle is briefly discussed (1 or 2% between injection and 3 GeV) [fr

  9. Investigating of short period gravity waves using multi-beam experiments above Andenes in the polar summer mesopause

    Science.gov (United States)

    Stober, Gunter; Sommer, Svenja; Chau, Jorge L.; Latteck, Ralph

    2014-05-01

    In summer 2013 the Middle Atmosphere Alomar Radar System (MAARSY) conducted a multi-beam scanning experiment using 65 different beam directions. These systematic scanning experiments are analysed with respect to gravity waves with periods from 4 minutes up to 8 hours using polar mesospheric summer echoes (PMSE) as tracer. The gravity waves are investigated by decomposing the wind field into a mean wind and superimposed tidal components (diurnal, semidiurnal and terdiurnal). After subtracting these mean winds and tides we get a residuum wind dominated by the gravity waves with periods shorter than 8 hours. Using this approach we have been able to identified significant wave burst, with amplitudes as high as 50 m/s and 10-20 m/s for the horizontal and vertical wind components, respectively. In addition, we have identified events that indicate the development of KH-instabilities.

  10. Polarity-dependence of the defect formation in c-axis oriented ZnO by the irradiation of an 8 MeV proton beam

    Science.gov (United States)

    Koike, Kazuto; Yano, Mitsuaki; Gonda, Shun-ichi; Uedono, Akira; Ishibashi, Shoji; Kojima, Kazunobu; Chichibu, Shigefusa F.

    2018-04-01

    The polarity dependence of the radiation hardness of single-crystalline ZnO bulk crystals is studied by irradiating the Zn-polar and O-polar c-planes with an 8 MeV proton beam up to the fluence of 4.2 × 1016 p/cm2. To analyze the hardness, radiation-induced defects were evaluated using positron annihilation (PA) analysis, and the recovery by post-annealing was examined using continuous-wave photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements. It was suggested by the PA and PL analyses that the major defects in both polarities were VZnVO divacancies. While the PA data did not show the clear dependence on the polarity, the PL and TRPL results showed that the Zn-polar c-plane had a little higher radiation tolerance than that of the O-polar c-plane, which was consistent with the result that the increase in the electrical resistance by proton beam irradiation was smaller for the former one. Considering these results in total, the polarity dependence is considered to be not so large, but the Zn-polar c-plane has a little higher tolerance than that of the O-polar one.

  11. Evaluation of deuteron-induced activation for IFMIF accelerator structural materials

    International Nuclear Information System (INIS)

    Nakao, Makoto; Ochiai, Kentaro; Kubota, Naoyoshi; Sato, Satoshi; Yamauchi, Michinori; Nishitani, Takeo; Hori, Jun-ichi; Ishioka, Noriko S.; Sudo, Hiroyuki

    2006-11-01

    The International Fusion Materials Irradiation Facility (IFMIF) is a neutron source facility designed to produce an intense neutron field for irradiation test of fusion reactor candidate materials. In the design of IFMIF, long-term operation with total facility availability of at least 70% is required. However, activation of structural materials by deuteron beam limits maintenance, which causes lower facility availability. Thus it is essential to prepare deuteron-induced activation cross section database and to select low activation materials based on it. In this work, we measured deuteron-induced activation cross sections of aluminum, vanadium, chromium, manganese, iron, nickel, copper, tantalum, tungsten and gold. The measured cross sections were compared with other experimental data and calculations. Deuteron-induced activities of nuclides produced in SS316 and F82H alloys used as the accelerator structural material were also measured to validate the measured cross sections comprehensively. It demonstrated that the measured activities of almost all the nuclides were in agreement with evaluated ones based on the measured cross sections within error. (author)

  12. Determination of light elements concentration in aerosols by X emission induced by deuteron

    International Nuclear Information System (INIS)

    Morales, J.R.; Romo, C.

    1983-01-01

    Absolute concentrations for Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe and Cu were obtained in the range from 10 ng/m 3 to 10 4 ng/m 3 in aerosols from Santiago. A 4,2 MeV deuteron beam was used to induce characteristic X-ray emission. It was found that relative abundance of these elements is maintained for days of high and low total suspended particulates. (Author)

  13. Polarization-dependent spectra in the photoassociative ionization of cold atoms in a bright sodium beam

    International Nuclear Information System (INIS)

    Ramirez-Serrano, Jaime; DeGraffenreid, William; Weiner, John

    2002-01-01

    We report measurements of cold photoassociative ionization (PAI) spectra obtained from collisions within a slow, bright Na atomic beam. A high-brightness atom flux, obtained by optical cooling and focusing of the atom beam, permits a high degree of alignment and orientation of binary collisions with respect to the laboratory atom-beam axis. The results reveal features of PAI spectra not accessible in conventional magneto-optical trap studies. We take advantage of this high degree of alignment to selectively excite autoionizing doubly excited states of specific symmetry

  14. Probing Anomalous WW γ and WWZ Couplings with Polarized Electron Beam at the LHeC and FCC-Ep Collider

    CERN Document Server

    Turk Cakir, I; Tasci, A T; Cakir, O

    2016-01-01

    We study the anomalous WWγ and WWZ couplings by calculating total cross sections of two processes at the LHeC with electron beam energy Ee=140 GeV and the proton beam energy Ep=7 TeV, and at the FCC-ep collider with the polarized electron beam energy Ee=80 GeV and the proton beam energy Ep=50 TeV. At the LHeC with electron beam polarization, we obtain the results for the difference of upper and lower bounds as (0.975, 0.118) and (0.285, 0.009) for the anomalous (∆κγ, λγ) and (∆κz, λz) couplings, respectively. As for FCC-ep collider, these bounds are obtained as (1.101, 0.065) and (0.320, 0.002) at an integrated luminosity of Lint=100 fb-1.

  15. Intermediate energy nucleon-deuteron scattering theory.

    Science.gov (United States)

    Wilson, J. W.

    1973-01-01

    Sloan's conclusion (1969) that terms of the multiple-scattering series beyond single scattering contribute only to S- and P-wave amplitudes in an S-wave separable model is examined. A comparison of experiments with the calculation at 146 MeV shows that the conclusion is valid in nucleon-deuteron scattering applications.

  16. Electric dipole moment of the deuteron in the standard model with NN - ΛN - ΣN coupling

    Science.gov (United States)

    Yamanaka, Nodoka

    2017-07-01

    We calculate the electric dipole moment (EDM) of the deuteron in the standard model with | ΔS | = 1 interactions by taking into account the NN - ΛN - ΣN channel coupling, which is an important nuclear level systematics. The two-body problem is solved with the Gaussian Expansion Method using the realistic Argonne v18 nuclear force and the YN potential which can reproduce the binding energies of Λ3H, Λ3He, and Λ4He. The | ΔS | = 1 interbaryon potential is modeled by the one-meson exchange process. It is found that the deuteron EDM is modified by less than 10%, and the main contribution to this deviation is due to the polarization of the hyperon-nucleon channels. The effect of the YN interaction is small, and treating ΛN and ΣN channels as free is a good approximation for the EDM of the deuteron.

  17. Neutron yield of thick {sup 12}C and {sup 13}C targets with 20 and 30 MeV deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Lhersonneau, G.; Fadil, M. [GANIL, Caen (France); Malkiewicz, T. [CSC - IT Center for Science Ltd., Espoo (Finland); Gorelov, D.; Sorri, J.; Trzaska, W.H. [University of Jyvaskyla, Department of Physics, Jyvaskyla (Finland); Jones, P.; Ngcobo, P.Z. [iThemba Laboratory for Accelerator Based Science, Western Cape (South Africa)

    2016-12-15

    The neutron yield of thick targets of carbon, natural and enriched in {sup 13}C, bombarded by deuterons of 20 and 30 MeV has been measured by the activation method. The gain with respect to a {sup 12}C target is the same as with protons beams. The yield ratio is about 1.2 only and hardly can justify the use of a {sup 13}C target with deuteron beams. The data, apart from being of interest for the design of facilities where secondary neutron beams are used, provide a test case for calculations where both beam and target have a weakly bound neutron. The MCNPx code version 2.6.0, despite failing to reproduce some details of the experimental distributions, describes their global properties fairly well, especially the relative yields of the {sup 12}C and {sup 13}C targets. (orig.)

  18. Calibration of the Gamma-RAy Polarimeter Experiment (GRAPE) at a polarized hard X-ray beam

    International Nuclear Information System (INIS)

    Bloser, P.F.; Legere, J.S.; McConnell, M.L.; Macri, J.R.; Bancroft, C.M.; Connor, T.P.; Ryan, J.M.

    2009-01-01

    The Gamma-RAy Polarimeter Experiment (GRAPE) is a concept for an astronomical hard X-ray Compton polarimeter operating in the 50-500 keV energy band. The instrument has been optimized for wide-field polarization measurements of transient outbursts from energetic astrophysical objects such as gamma-ray bursts and solar flares. The GRAPE instrument is composed of identical modules, each of which consists of an array of scintillator elements read out by a multi-anode photomultiplier tube (MAPMT). Incident photons Compton scatter in plastic scintillator elements and are subsequently absorbed in inorganic scintillator elements; a net polarization signal is revealed by a characteristic asymmetry in the azimuthal scattering angles. We have constructed a prototype GRAPE module containing a single CsI(Na) calorimeter element, at the center of the MAPMT, surrounded by 60 plastic elements. The prototype has been combined with custom readout electronics and software to create a complete 'engineering model' of the GRAPE instrument. This engineering model has been calibrated using a nearly 100% polarized hard X-ray beam at the Advanced Photon Source at Argonne National Laboratory. We find modulation factors of 0.46±0.06 and 0.48±0.03 at 69.5 and 129.5 keV, respectively, in good agreement with Monte Carlo simulations. In this paper we present details of the beam test, data analysis, and simulations, and discuss the implications of our results for the further development of the GRAPE concept.

  19. Creating intense polarized electron beam via laser stripping and spin-orbit interaction

    International Nuclear Information System (INIS)

    Danilov, V.; Ptitsyn, V.; Gorlov, T.

    2010-01-01

    The recent advance in laser field make it possible to excite and strip electrons with definite spin from hydrogen atoms. The sources of hydrogen atoms with orders of magnitude higher currents (than that of the conventional polarized electron cathods) can be obtained from H - sources with good monochromatization. With one electron of H - stripped by a laser, the remained electron is excited to upper state (2P 3/2 and 2P 1/2 ) by a circular polarization laser light from FEL. Then, it is excited to a high quantum number (n=7) with mostly one spin direction due to energy level split of the states with a definite direction of spin and angular momentum in an applied magnetic field and then it is stripped by a strong electric field of an RF cavity. This paper presents combination of lasers and fields to get high polarization and high current electron source.

  20. Effects of solvent polarity on mutual polypropylene grafting by electron beam irradiation

    International Nuclear Information System (INIS)

    Geraldo, A.B.C.; Moura, E.; Somessari, E.S.R.; Silveira, C.G.; Paes, H.A.; Souza, C.A.; Fernandes, W.; Manzoli, J.E.

    2011-01-01

    Complete text of publication follows. Copolymerization by grafting is a process largely known and the advantages of modifying polymers by radiation includes superimposition of properties related to the backbone and the grafted chains in the absence of an initiator. This process produces low byproduct levels, costs and hazards. Since polypropylene is applied in many industrial and commercial sectors, the grafting process is an alternative to improve some of its physical and chemical properties. The aim of this work was to verify the effect of distinct organic solvents on polypropylene grafting process by mutual irradiation applying absorbed doses from 30 kGy to 100 kGy at dose rates of 2.2 kGy/s and 22.4 kGy/s. All process were performed in atmosphere air presence. Styrene was the monomer grafted on polymer substrate and some non-polar and polar organic solvents, like toluene, xylene, acetone, methanol and its homologous, were used at distinct concentrations. The grafted samples were evaluated by degree of styrene grafting (gravimetric determination) and the Mid-FTIR spectrophotometry. As a general behavior, the degree of grafting increases when absorbed dose values increase in a specific solvent until a maximum dose value (50-70 kGy), after this, the degree of grafting decreases. Moreover, the grafting process have high yields when protic polar solvents are used. These results suggest the grafting process does not have dependence of substrate swelling, that is expected when a non-polar substrate and a non-polar media are in contact. The grafting, in this case, can be related to the free radical generation at protic polar solvents in a first step of process mechanism; these reactive specimens start the reaction on substrate surface to allow the accessibility of monomer species to active sites. Some reaction mechanisms are proposed.

  1. Measurement of azimuthal asymmetries associated with deeply virtual Compton scattering on a longitudinally polarized deuterium target

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Physikalisches Institut, Universitaet Giessen, 35392 Giessen (Germany)] [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Akopov, N. [Yerevan Physics Institute, 375036 Yerevan (Armenia); Akopov, Z. [DESY, 22603 Hamburg (Germany); Aschenauer, E.C. [DESY, 15738 Zeuthen (Germany); Augustyniak, W. [Andrzej Soltan Institute for Nuclear Studies, 00-689 Warsaw (Poland); Avakian, R.; Avetissian, A. [Yerevan Physics Institute, 375036 Yerevan (Armenia); Avetisyan, E. [DESY, 22603 Hamburg (Germany); Belostotski, S. [Petersburg Nuclear Physics Institute, Gatchina, Leningrad region 188300 (Russian Federation); Bianchi, N. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati (Italy); Blok, H.P. [National Institute for Subatomic Physics (Nikhef), 1009 DB Amsterdam (Netherlands)] [Department of Physics and Astronomy, VU University, 1081 HV Amsterdam (Netherlands); Borissov, A. [DESY, 22603 Hamburg (Germany); Bowles, J. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Brodski, I. [Physikalisches Institut, Universitaet Giessen, 35392 Giessen (Germany); Bryzgalov, V. [Institute for High Energy Physics, Protvino, Moscow region 142281 (Russian Federation); Burns, J. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Capiluppi, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara and Dipartimento di Fisica, Universita di Ferrara, 44100 Ferrara (Italy); Capitani, G.P. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati (Italy); Cisbani, E. [Istituto Nazionale di Fisica Nucleare, Sezione Roma 1, Gruppo Sanita and Physics Laboratory, Istituto Superiore di Sanita, 00161 Roma (Italy); Ciullo, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara and Dipartimento di Fisica, Universita di Ferrara, 44100 Ferrara (Italy)

    2011-01-21

    Azimuthal asymmetries in exclusive electroproduction of a real photon from a longitudinally polarized deuterium target are measured with respect to target polarization alone and with respect to target polarization combined with beam helicity and/or beam charge. The asymmetries appear in the distribution of the real photons in the azimuthal angle {phi} around the virtual photon direction, relative to the lepton scattering plane. The asymmetries arise from the deeply virtual Compton scattering process and its interference with the Bethe-Heitler process. The results for the beam-charge and beam-helicity asymmetries from a tensor polarized deuterium target with vanishing vector polarization are shown to be compatible with those from an unpolarized deuterium target, which is expected for incoherent scattering dominant at larger momentum transfer. Furthermore, the results for the single target-spin asymmetry and for the double-spin asymmetry are found to be compatible with the corresponding asymmetries previously measured on a hydrogen target. For coherent scattering on the deuteron at small momentum transfer to the target, these findings imply that the tensor contribution to the cross section is small. Furthermore, the tensor asymmetry is found to be compatible with zero.

  2. Method of generating intense nuclear polarized beams by selective photodetachment of negative ions

    International Nuclear Information System (INIS)

    Hershcovitch, A.

    1986-01-01

    A novel method for production of nuclear polarized negative hydrogen ions by selective neutralization with a laser of negative hydrogen ions in a magnetic field is described. This selectivity is possible since a final state of the neutralized atom, and hence the neutralization energy, depends on its nuclear polarization. The main advantages of this scheme are the availability of multi-ampere negative ion sources and the possibility of neutralizing negative ions with very high efficiency. An assessment of the required laser power indicates that this method is in principle feasible with today's technology

  3. Dual sightline measurements of MeV range deuterons with neutron and gamma-ray spectroscopy at JET

    DEFF Research Database (Denmark)

    Eriksson, J.; Nocente, M.; Binda, F.

    2015-01-01

    Observations made in a JET experiment aimed at accelerating deuterons to the MeV range by third harmonic radio-frequency (RF) heating coupled into a deuterium beam are reported. Measurements are based on a set of advanced neutron and gamma-ray spectrometers that, for the first time, observe...... the plasma simultaneously along vertical and oblique lines of sight. Parameters of the fast ion energy distribution, such as the high energy cut-off of the deuteron distribution function and the RF coupling constant, are determined from data within a uniform analysis framework for neutron and gamma...... around the resonance, which is not correctly portrayed within the adopted one dimensional model. A framework to calculate neutron and gamma-ray emission from a spatially resolved, two-dimensional deuteron distribution specified by energy/pitch is thus developed and used for a first comparison...

  4. Tight focusing of a higher-order radially polarized beam transmitting through multi-zone binary phase pupil filters.

    Science.gov (United States)

    Guo, Hanming; Weng, Xiaoyu; Jiang, Man; Zhao, Yanhui; Sui, Guorong; Hu, Qi; Wang, Yang; Zhuang, Songlin

    2013-03-11

    When the pupil filters are used to improve the performance of the imaging system, the conversion efficiency is a critical characteristic for real applications. Here, in order to take full advantage of the subwavelength focusing property of the radially polarized higher-order Laguerre-Gaussian (LG) beam, we introduce the multi-zone binary phase pupil filters into the imaging system to deal with the problem that the focal spot is split along the z axis for the small size parameter of the incident LG beam. We provide an easy-to-perform procedure for the design of multi-zone binary phase pupil filters, where the zone numbers of π phase are uncertain when the optimizing procedure starts. Based on this optimizing procedure, we successfully find the set of optimum structures of a seventeen-belt binary phase pupil filters and generate the excellent focal spot, where the depth of focus, the focal spot transverse size, the Strehl ratio, and the sidelobe intensity are 9.53λ, 0.41λ, 41.75% and 16.35% in vacuum, respectively. Most importantly, even allowing the power loss of the incident LG beam truncated by the pupil of the imaging system, the conversion efficiency is still as high as 37.3%. Theoretical calculations show that we succeed to have sufficient conversion efficiency while utilizing the pupil filters to decrease the focal spot and extend the depth of focus.

  5. A Polarized High-Energy Photon Beam for Production of Exotic Mesons

    Energy Technology Data Exchange (ETDEWEB)

    Senderovich, Igor [Univ. of Connecticut, Storrs, CT (United States)

    2012-01-01

    This work describes design, prototyping and testing of various components of the Jefferson Lab Hall D photon beamline. These include coherent bremsstrahlung radiators to be used in this facility for generating the photon beam, a fine resolution hodoscope for the facility's tagging spectrometer, and a photon beam position sensor for stabilizing the beam on a collimator. The principal instrumentation project was the hodoscope: its design, implementation and beam testing will be thoroughly described. Studies of the coherent bremsstrahlung radiators involved X-ray characterization of diamond crystals to identify the appropriate line of manufactured radiators and the proper techniques for thinning them to the desired specification of the beamline. The photon beam position sensor project involved completion of a designed detector and its beam test. The results of these shorter studies will also be presented. The second part of this work discusses a Monte Carlo study of a possible photo-production and decay channel in the GlueX experiment that will be housed in the Hall D facility. Specifically, the γ p → Xp → b1 π → ω π+1 π-1 channel was studied including its Amplitude Analysis. This exercise attempted to generate a possible physics signal, complete with internal angular momentum states, and be able to reconstruct the signal in the detector and find the proper set of JPC quantum numbers through an amplitude fit. Derivation of the proper set of amplitudes in the helicity basis is described, followed by a discussion of the implementation, generation of the data sets, reconstruction techniques, the amplitude fit and results of this study.

  6. Measurement of the Deuteron Spin Structure Function g1d(x) for 1 (GeV/c)2 2 2

    International Nuclear Information System (INIS)

    Sorrell, Lee.

    1999-01-01

    New measurements are reported on the deuteron spin structure function g 1 d . These results were obtained from deep inelastic scattering of 48.3 GeV electrons on polarized deuterons in the kinematic range 0.01 2 2 . These are the first high dose electron scattering data obtained using lithium deuteride ( 6 Li 2 H) as the target material. Extrapolations of the data were performed to obtain moments of g 1 d , including Gamma 1 d , and the net quark polarization Delta Sigma

  7. Measurement of the Deuteron Spin Structure Function g_1^d(x) for 1 (GeV/c)^2 < Q^2 < 40 (GeV/c)^2

    OpenAIRE

    E155 Collaboration

    1999-01-01

    New measurements are reported on the deuteron spin structure function g_1^d. These results were obtained from deep inelastic scattering of 48.3 GeV electrons on polarized deuterons in the kinematic range 0.01 < x < 0.9 and 1 < Q^2 < 40 (GeV/c)^2. These are the first high dose electron scattering data obtained using lithium deuteride (6Li2H) as the target material. Extrapolations of the data were performed to obtain moments of g_1^d, including Gamma_1^d, and the net quark polarization Delta Si...

  8. Measurement of the deuteron spin structure function $g^{d}_1(x)$ for $1\\ (GeV/c)^2 < Q^2 < 40\\ (GeV/c)^2$.

    OpenAIRE

    Anthony , P.L.; Arnold , R.G.; Averett , T.; Band , H.R.; Berisso , M.C.; Borel , H.; Bosted , P.E.; Bultmann , S.L.; Buenerd , M.; Chupp , T.; Churchwell , S.; Court , G.R.; Crabb , D.; Day , D.; Decowski , P.

    1999-01-01

    New measurements are reported on the deuteron spin structure function g_1^d. These results were obtained from deep inelastic scattering of 48.3 GeV electrons on polarized deuterons in the kinematic range 0.01 < x < 0.9 and 1 < Q^2 < 40 (GeV/c)^2. These are the first high dose electron scattering data obtained using lithium deuteride (6Li2H) as the target material. Extrapolations of the data were performed to obtain moments of g_1^d, including Gamma_1^d, and the net quark polarization Delta Si...

  9. Propagation of high-order circularly polarized Bessel beams and vortex generation in uniaxial crystals

    CSIR Research Space (South Africa)

    Belyi, VN

    2011-05-01

    Full Text Available crystals and expand this to the nonlinear regime by outlining a new phase-matching process (full conical phase matching) in second harmonic generation of vector Bessel beams for various symmetries in uniaxial crystals. They demonstrate the principles...

  10. Probing space–time structure of new physics with polarized beams ...

    Indian Academy of Sciences (India)

    Introduction. At the international linear collider, the possibility of considerable beam polariza- tion has led to a series of investigations on using this as a diagnostic aid for ... scalar (P), scalar (S) and tensor (T) interactions could contribute. ... We now determine the forms of the matrices Γi and the tensors Hiµ in the various.

  11. Holographic binary grating liquid crystal cells fabricated by one-step exposure of photocrosslinkable polymer liquid crystalline alignment substrates to a polarization interference ultraviolet beam.

    Science.gov (United States)

    Kawai, Kotaro; Sasaki, Tomoyuki; Noda, Kohei; Sakamoto, Moritsugu; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2015-07-01

    Holographic binary grating liquid crystal (LC) cells, in which the optical anisotropy was rectangularly modulated even as the grating was fabricated using holographic exposure, were fabricated by one-step polarization holographic exposure of an empty glass cell, the interior of which was coated with a photocrosslinkable polymer LC (PCLC). The present study is of great significance in that three types of holographic binary grating LC cells containing twisted alignments can be fabricated by simultaneous exposure of two PCLC substrates to the UV interference beams, which are sinusoidally modulated. The polarization conversion properties of the diffracted beams are explained well by theoretical analysis based on Jones calculus.

  12. Tight focusing of a radially polarized Laguerre–Bessel–Gaussian beam and its application to manipulation of two types of particles

    International Nuclear Information System (INIS)

    Nie, Zhongquan; Shi, Guang; Li, Dongyu; Zhang, Xueru; Wang, Yuxiao; Song, Yinglin

    2015-01-01

    The intensity distributions near the focus for radially polarized Laguerre–Bessel–Gaussian beams by a high numerical aperture objective in the immersion liquid are computed based on the vector diffraction theory. We compare the focusing properties of the radially polarized Laguerre–Bessel–Gaussian beams with those of Laguerre–Gaussian and Bessel–Gaussian modes. Furthermore, the effects of the optimally designed concentric three-zone phase filters on the intensity profiles in the focal region are examined. We further analyze the radiation forces on Rayleigh particles produced by the highly focused radially polarized Laguerre–Bessel–Gaussian beams using the specially engineered three-zone phase filters. - Highlights: • The tightly focusing of radially polarized LBG beams is examined. • The focusing performances of LBG beams are preferable over that of LG and BG modes. • A bright spot and an optical cage can be formed by special phase modulation. • These special focusing patterns can stably manipulate two types of particles

  13. Polarized scintillator targets

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.

    2000-05-01

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as "live" polarized targets in nuclear physics experiments.

  14. Polarized scintillator targets

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, B. van den E-mail: vandenbrandt@psi.ch; Bunyatova, E.I.; Hautle, P.; Konter, J.A.; Mango, S

    2000-05-21

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as 'live' polarized targets in nuclear physics experiments.

  15. Determination of electron beam polarization using electron detector in Compton polarimeter with less than 1% statistical and systematic uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Amrendra [Mississippi State Univ., Mississippi State, MS (United States)

    2015-05-01

    The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scattered photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (?1 GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a

  16. Ion recombination and polarity correction factors for a plane-parallel ionization chamber in a proton scanning beam.

    Science.gov (United States)

    Liszka, Małgorzata; Stolarczyk, Liliana; Kłodowska, Magdalena; Kozera, Anna; Krzempek, Dawid; Mojżeszek, Natalia; Pędracka, Anna; Waligórski, Michael Patrick Russell; Olko, Paweł

    2018-01-01

    To evaluate the effect on charge collection in the ionization chamber (IC) in proton pencil beam scanning (PBS), where the local dose rate may exceed the dose rates encountered in conventional MV therapy by up to three orders of magnitude. We measured values of the ion recombination (k s ) and polarity (k pol ) correction factors in water, for a plane-parallel Markus TM23343 IC, using the cyclotron-based Proteus-235 therapy system with an active proton PBS of energies 30-230 MeV. Values of k s were determined from extrapolation of the saturation curve and the Two-Voltage Method (TVM), for planar fields. We compared our experimental results with those obtained from theoretical calculations. The PBS dose rates were estimated by combining direct IC measurements with results of simulations performed using the FLUKA MC code. Values of k s were also determined by the TVM for uniformly irradiated volumes over different ranges and modulation depths of the proton PBS, with or without range shifter. By measuring charge collection efficiency versus applied IC voltage, we confirmed that, with respect to ion recombination, our proton PBS represents a continuous beam. For a given chamber parameter, e.g., nominal voltage, the value of k s depends on the energy and the dose rate of the proton PBS, reaching c. 0.5% for the TVM, at the dose rate of 13.4 Gy/s. For uniformly irradiated regular volumes, the k s value was significantly smaller, within 0.2% or 0.3% for irradiations with or without range shifter, respectively. Within measurement uncertainty, the average value of k pol , for the Markus TM23343 IC, was close to unity over the whole investigated range of clinical proton beam energies. While no polarity effect was observed for the Markus TM23343 IC in our pencil scanning proton beam system, the effect of volume recombination cannot be ignored. © 2017 American Association of Physicists in Medicine.

  17. Composite nucleon approach to the deuteron problem

    International Nuclear Information System (INIS)

    Agarwal, B.K.

    1975-01-01

    A composite model is suggested for the nucleons by assuming a long-range strong gluon force between a diquark boson B and a quark A. In the proton, A is trapped inside B in an oscillator potential; and in the neutron, A is on the surface of B in a hydrogenlike state. Nucleon form factors are obtained in agreement with experiments. The model contains a mechanism for a large effective mass of the quark A. When B is identified with π and A with μ, one can fix the gluon charge value and obtain the magnetic moments of the proton and neutron. The (μπ) atomic model for the nucleon can be used to construct the deuteron on a hydrogen molecule model. It leads to values for the binding energy, electric quadrupole moment, and form factors of the deuteron that are in agreement with experiments

  18. THEORY OF ELECTRON-DEUTERON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    Durand, L. III

    1963-06-15

    Information on the electromagnetic form factors of the neutron is obtained from the theory of inelastic electrondeuteron scattering. Problems in the analysis of these experiments that are related to the detailed structure of the deuteron and to the strong final state interactions between the emergent nucleons are considered. Problems arising from an ambiguity in the sign of the Dirac or charge form factor are also discussed. (C.E.S.)

  19. Free radicals and polarized targets

    Science.gov (United States)

    Bunyatova, E. I.

    2004-06-01

    Many free radicals were added to organic compounds in search of high proton and deuteron polarizations. Few found practical application. A short review is presented, and special attention is given to some stable nitroxyl radicals which have lately been admixed to organic compounds solid at room temperature, in particular to scintillators.

  20. Free radicals and polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Bunyatova, E.I. E-mail: bunyatel@nusun.jinr.ru

    2004-06-21

    Many free radicals were added to organic compounds in search of high proton and deuteron polarizations. Few found practical application. A short review is presented, and special attention is given to some stable nitroxyl radicals which have lately been admixed to organic compounds solid at room temperature, in particular to scintillators.

  1. Measurement of the polarization of the Ξ0 (Ξ0) hyperon beam by the NA48/1 experiment

    CERN Document Server

    Batley, J R; Lazzeroni, C; Munday, D J; Patel, M; Slater, M W; Wotton, S A; Arcidiacono, R; Bocquet, G; Ceccucci, A; Cundy, D; Doble, N; Falaleev, V; Gatignon, L; Gonidec, A; Grafström, P; Kubischta, W; Mikulec, I; Norton, A; Panzer-Steindel, B; Rubin, P; Wahl, H; Goudzovski, Yu; Hristov, P; Kekelidze, V; Litov, L; Madigozhin, D; Molokanova, N; Potrebenikov, Yu; Stoynev, S; Zinchenko, A; Monnier, E; Swallow, E; Winston, R; Sacco, R; Walke, A; Baldini, W; Gianoli, A; Dalpiaz, P; Frabetti, P L; Martini, M; Petrucci, F; Savrié, M; Scarpa, M; Calvetti, M; Collazuol, G; Iacopini, E; Ruggiero, G; Bizzeti, A; Lenti, M; Veltri, M; Behler, M; Eppard, K; Eppard, M; Hirstius, A; Kleinknecht, K; Koch, U; Marouelli, P; Masetti, L; Moosbrugger, U; Morales Morales, C; Peters, A; Wanke, R; Winhart, A; Dabrowski, A; Fonseca Martin, T; Velasco, M; Cenci, P; Lubrano, P; Pepe, M; Anzivino, G; Imbergamo, E; Lamanna, G; Michetti, A; Nappi, A; Petrucci, M C; Piccini, M; Valdata, M; Cerri, C; Fantechi, R; Costantini, F; Fiorini, L; Giudici, S; Pierazzini, G; Sozzi, M; Manelli, I; Cheshkov, C; Cheze, J B; De Beer, M; Debu, P; Gouge, D; Marel, D; Mazzucato, E; Peyaud, B; Vallage, B; Holder, M; Maier 3, A; Ziolkowski, M; Biino, C; Cartiglia, N; Marchetto, F; Pastrone, N; Clemencic, M; Goy Lopez, S; Menichetti, E; Wislicki, W; Dibon, H; Jeitler, M; Markytan, M; Neuhofer, G; Widhalm, L; Dibon, H; Jeitler, M; Markytan, M; Neuhofer, D; Widhalm, L

    2009-01-01

    A total of 368 415 Ξ0 →Λπ0 and 31 171 Ξ0 →Λπ0 were selected from data recorded in the NA48/1 experiment during 2002 data taking. From this sample, the polarization of Ξ0 and Ξ0 hyperons was measured to be PΞ0 = −0.102 ± 0.012(stat) ± 0.008(syst) and P Ξ0 = −0.01 ± 0.04(stat) ± 0.008(syst). The dependence of PΞ0 on the Ξ0 transverse momentum with respect to the primary proton beam is also presented. With the same data sample, the ratio of Ξ0 and Ξ0 fluxes in proton collisions at 400 GeV/c on a beryllium target was measured.

  2. The generation of a complete spiral spot and multi split rings by focusing three circularly polarized vortex beams

    Science.gov (United States)

    Chen, Jiannong; Gao, Xiumin; Zhu, Linwei; Xu, Qinfeng; Ma, Wangzi

    2014-05-01

    We demonstrate that a complete right-handed or left-handed spiral-shaped focus can be created by focusing circularly polarized and three spatially shifted vortex beams through high numerical objective. By dividing the back aperture into multi annular zones and applying an additional phase term, the multi focal spots aligned along z axis of individual three dimensional focal shapes can be generated. The spiral shaped focus provides a pathway of manipulating the micro-particles in a curved trajectory and opens up a possibility of measuring mechanical torque of biological large molecules such as DNA by chemically binding one end on the cover-glass. The multi focal spots aligned along the z axis can eliminate the need of z axis scanning in the direct laser writing fabrication of some metamaterials which is composed of three-dimensional array of specific shapes of building blocks.

  3. Deuteron stripping reactions with Tabakin potential

    International Nuclear Information System (INIS)

    Osman, A.

    1976-05-01

    Deuteron stripping reactions are considered. Due to the strong repulsion between nucleons at very short distances, we have investigated the nuclear short-range correlations. The neutron proton nuclear potential in the deuteron is taken as a short-range repulsive core surrounded by a long-range attractive potential. The neutron-proton potential is taken as the Tabakin separable potential to take into account the short-range correlations. The differential cross-sections for deuteron stripping reactions have been calculated in two different cases by taking Yamaguchi or Breit et al type parameters for the Tabakin potential used. The angular distributions for different (d,p) stripping reactions on the different target nuclei 28 Si, 32 , 34 S, 36 Ar, 40 , 48 Ca, 50 , 52 , 54 Cr have been calculated using the DWBA calculations. Our present theoretical calculations for the angular distributions of the different reactions cosidered have been fitted to the experimental data, where good agreement is obtained. The extracted spectroscopic factors from the present work are found to be more reliable

  4. Search for Δ-Δ component in deuteron

    International Nuclear Information System (INIS)

    Asai, M.; Endo, I.; Harada, M.

    1989-10-01

    We investigated the Δ-Δ states in deuteron by Δ-spectator method in γd reaction. No candidates for spectator Δ ++ originating in deuteron were observed. An upper limit of the Δ-Δ state in deuteron was estimated as 0.14 % at the 95 % CL. This limit is consistent with most of the existing data, but it is incompatible with an earlier measurement with photons of higher energies. (author)

  5. Santilli’s hadronic mechanics of formation of deuteron

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.

    2015-01-01

    In the present communication a brief review of the structure of deuteron proposed by Professor Santilli [1, 2] and its physical properties have been presented. Although Deuteron is a simple molecule, quantum mechanics has been unable to explain its different properties like the spin, magnetic moment, binding energy, stability, charge radius, dipole moment, etc. However, the Hadronic Mechanics developed by Santilli and applied by him [1, 2] to deuteron has succeeded in explaining the above properties to the scientific satisfaction. Santilli proposed Deuteron as a three body system which could take care of all the insufficiencies of quantum mechanics

  6. The deuteron bound state wave function with tensor forces

    International Nuclear Information System (INIS)

    Takemasa, Tadashi

    1991-01-01

    A FORTRAN program named DEUTERON is developed to calculate the binding energy and wave function of a deuteron, when the interaction between two nucleons is described in terms of central, tensor, spin-orbit, and quadratic LS potentials with or without a hard core. An important use of the program is to provide the deuteron wave function required in nuclear reaction calculations involving a deuteron. Also, this program may be employed in nuclear Hartree-Fock calculations using an effective nucleon-nucleon interaction with a tensor component. (author)

  7. Generation of intense polarized beams by selective neutralization of negative ions

    International Nuclear Information System (INIS)

    Hershcovitch, A.I.; Hinds, E.A.

    1983-01-01

    A novel scheme is proposed. This method is based on selective neutralization by laser negative hydrogen ions in a magnetic field. This selectivity is based on the fact that the final state of the neutralized atom depends on nuclear polarization in the magnetic field. A two-scenario approach is to be followed: one in which the resulting neutral atom is in the ground state, and in the other the neutral atom is in the n = 2 level. Limiting factors are discussed. The main advantages of this scheme are the availability of multi-ampere negative ion sources and the possibility to neutralize negative ions with very high efficiency. 15 references, 2 figures

  8. Measurement of the polarization transfer coefficient K sub LS in the p vectorp yields d vector. pi. sup + reaction

    Energy Technology Data Exchange (ETDEWEB)

    Abegg, R.; Green, P.W.; Greeniaus, L.G.; Hutcheon, D.A. (TRIUMF, Vancouver, British Columbia (Canada) Centre for Subatomic Research, Univ. Alberta, Edmonton (Canada)); Yanlin, Y.; Korkmaz, E.; Mack, D.; Moss, G.A.; Olsen, W.C. (Centre for Subatomic Research, Univ. Alberta, Edmonton (Canada)); Stevenson, N.R. (Dept. of Physics, Univ. Saskatchewan, Saskatoon (Canada))

    1992-04-06

    We have measured the polarization transfer asymmetries of the reaction p vectorp{yields}d vector{pi}{sup +} from the longitudinally polarized proton to the sideways polarized deuteron for deuteron center-of-mass angles from 25deg to 140deg. Our longitudinal to sideways polarization transfer data are best represented by the partial-wave amplitude fits of Bugg et al. while several model calculations are only in qualitative agreement. (orig.).

  9. Measurement of the polarization transfer coefficient KLS in the p vectorp→d vectorπ+ reaction

    International Nuclear Information System (INIS)

    Abegg, R.; Green, P.W.; Greeniaus, L.G.; Hutcheon, D.A.; Yanlin, Y.; Korkmaz, E.; Mack, D.; Moss, G.A.; Olsen, W.C.; Stevenson, N.R.

    1992-01-01

    We have measured the polarization transfer asymmetries of the reaction p vectorp→d vectorπ + from the longitudinally polarized proton to the sideways polarized deuteron for deuteron center-of-mass angles from 25deg to 140deg. Our longitudinal to sideways polarization transfer data are best represented by the partial-wave amplitude fits of Bugg et al. while several model calculations are only in qualitative agreement. (orig.)

  10. Angular distributions of the quasifree deuteron-proton and deuteron-neutron scattering in the reaction dd → dpn

    International Nuclear Information System (INIS)

    Schneider, H.

    1978-06-01

    The mechanism of the quasifree scattering (QFS) in the reaction dd → dpn has been investigated systematically by means of kinematically complete coincidence experiments using 52 MeV deuterons. In order to measure the angular distributions of the quasifree dp scattering and the quasifree dn scattering, the kinematical conditions were chosen to favour quasifree scattering of deuterons on bound nucleons of the target deuteron. (orig.) [de

  11. Impact of the Tilted Detector Solenoid on the Ion Polarization at JLEIC

    Science.gov (United States)

    Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.; Derbenev, Ya S.; Lin, F.; Morozov, V. S.; Zhang, Y.

    2017-12-01

    Jefferson Lab Electron Ion Collider (JLEIC) is a figure-8 collider “transparent” to the spin. This allows one to control the ion polarization using a universal 3D spin rotator based on weak solenoids. Besides the 3D spin rotator, a coherent effect on the spin is produced by a detector solenoid together with the dipole correctors and anti-solenoids compensating betatron oscillation coupling. The 4 m long detector solenoid is positioned along a straight section of the electron ring and makes a 50 mrad horizontal angle with a straight section of the ion ring. Such a large crossing angle is needed for a quick separation of the two colliding beams near the interaction point to make sufficient space for placement of interaction region magnets and to avoid parasitic collisions of shortly-spaced 476 MHz electron and ion bunches. We present a numerical analysis of the detector solenoid effect on the proton and deuteron polarizations. We demonstrate that the effect of the detector solenoid on the proton and deuteron polarizations can be compensated globally using an additional 3D rotator located anywhere in the ring. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contracts DE-AC05-06OR23177 and DE-AC02-06CH11357.

  12. Spallation reaction study for fission products in nuclear waste: Cross section measurements for {sup 137}Cs and {sup 90}Sr on proton and deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H., E-mail: wanghe@ribf.riken.jp [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Otsu, H.; Sakurai, H.; Ahn, D.S. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aikawa, M. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Doornenbal, P.; Fukuda, N.; Isobe, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kawakami, S. [Department of Applied Physics, University of Miyazaki, Miyazaki 889-2192 (Japan); Koyama, S. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kubo, T.; Kubono, S.; Lorusso, G. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Maeda, Y. [Department of Applied Physics, University of Miyazaki, Miyazaki 889-2192 (Japan); Makinaga, A. [Graduate School of Medicine, Hokkaido University, North-14, West-5, Kita-ku, Sapporo 060-8648 (Japan); Momiyama, S. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Nakano, K. [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Niikura, M. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Shiga, Y. [Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501 (Japan); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Söderström, P.-A. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); and others

    2016-03-10

    We have studied spallation reactions for the fission products {sup 137}Cs and {sup 90}Sr for the purpose of nuclear waste transmutation. The spallation cross sections on the proton and deuteron were obtained in inverse kinematics for the first time using secondary beams of {sup 137}Cs and {sup 90}Sr at 185 MeV/nucleon at the RIKEN Radioactive Isotope Beam Factory. The target dependence has been investigated systematically, and the cross-section differences between the proton and deuteron are found to be larger for lighter spallation products. The experimental data are compared with the PHITS calculation, which includes cascade and evaporation processes. Our results suggest that both proton- and deuteron-induced spallation reactions are promising mechanisms for the transmutation of radioactive fission products.

  13. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs and 90Sr on proton and deuteron

    Directory of Open Access Journals (Sweden)

    H. Wang

    2016-03-01

    Full Text Available We have studied spallation reactions for the fission products 137Cs and 90Sr for the purpose of nuclear waste transmutation. The spallation cross sections on the proton and deuteron were obtained in inverse kinematics for the first time using secondary beams of 137Cs and 90Sr at 185 MeV/nucleon at the RIKEN Radioactive Isotope Beam Factory. The target dependence has been investigated systematically, and the cross-section differences between the proton and deuteron are found to be larger for lighter spallation products. The experimental data are compared with the PHITS calculation, which includes cascade and evaporation processes. Our results suggest that both proton- and deuteron-induced spallation reactions are promising mechanisms for the transmutation of radioactive fission products.

  14. Production of deuterons in 16Op - collisions at 3.25 A GeV/C

    International Nuclear Information System (INIS)

    Bazarov, E.; Gulamov, K.G.; Kratenko, M.Yu.; Lutpullaev, S.L.; Olimov, K.; Yuldashev, A.A.; Glagolev, V.V.; Khamidov, Kh.Sh.; Fazylov, M.I.; Yuldashev, B.S.; Sharipova, S.

    2004-01-01

    Full text: One of the central problems of high energy physics is relativistic nuclei fragmentation mechanisms research in their interactions with nucleons and nuclei. The most effective way to solve this question is, on our opinion, to study light fragments production processes ( 1 H 1 , 2 H 1 , 3 H 1 , 3 He 2 and 4 He 2 ). There is a lack of data on deuterons production in hadron-nucleus collisions, and their major part was obtained by means of electronic methods in a narrow solid angle, and therefore deuterons production momentum interval is not fully covered. This, in turn, significantly narrows a range of useful information on the deuterons production dynamics. In connection to the above mentioned it is of great interest to obtain new experimental data on neutron yield in 16 Op-collisions at high energies (at 4 π-geometry) covering almost whole deuterons production momentum region. The experimental data is compared to the cascade-fragmentation evaporation model (CFEM) [1]. In frames of CFEM for interaction of light nuclei with nucleons the main mechanism fragments (excluding nucleons) production is break-up of excited thermalized remnant nucleus after completion of intranuclear cascade. For light nuclei such as 16 O the evaporative mechanism of fragments (including nucleons) production is neglected. Thus, for 16Op-collisions in frames of CFEM the main mechanism of multinucleon fragments production is Fermi break-up. Discussed below data was obtained from 1-meter HEL JINR hydrogen bubble chamber irradiated by oxygen-16 nuclei beam at momentum of 3.25 A GeV/C. Statistics analyzed In This Work consists of 11098 measured 16 Op-events. Topics related to the processing of stereo images from 1-meter bubble chamber as well as with secondary particles and fragments identification procedures are presented in [2-4]. For the first time, in 4π-geometry, deuterons production in 16 Op-collisions at 3.25 A GeV/C was studied. These studies resulted in the following: in

  15. Experimental cross-sections of deuteron-induced reaction on Y-89 up to 20 MeV; comparison of Ti-nat(d,x)V-48 and Al-27(d,x)Na-24 monitor reactions

    Czech Academy of Sciences Publication Activity Database

    Lebeda, Ondřej; Štursa, Jan; Ráliš, Jan

    2015-01-01

    Roč. 360, OCT (2015), s. 118-128 ISSN 0168-583X R&D Projects: GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : deuteron-induced nuclear reactions * excitation functions * Na, Mg, Sc, V, Sr, Y and Zr radioisotopes * deuteron beam monitors * U-120M cyclotron Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.389, year: 2015

  16. Proton-deuteron elastic scattering for E > 0

    International Nuclear Information System (INIS)

    Alt, E.O.; Mukhamedzhanov, A.M.; Sattarov, A.I.

    1999-01-01

    We report on the first reliable numerical results for proton-deuteron elastic scattering observables for energies above the deuteron breakup threshold, for the Paris potential. The calculations have been performed within the screening and renormalisation approach. The theoretical results are compared with recent experimental data. Refs. 12, fig. 1 (author)

  17. Measurements of the deuteron and proton magnetic form factors at large momentum transfers

    International Nuclear Information System (INIS)

    Bosted, P.E.; Katramatou, A.T.; Arnold, R.G.; Benton, D.; Clogher, L.; DeChambrier, G.; Lambert, J.; Lung, A.; Petratos, G.G.; Rahbar, A.; Rock, S.E.; Szalata, Z.M.; Debebe, B.; Frodyma, M.; Hicks, R.S.; Hotta, A.; Peterson, G.A.; Gearhart, R.A.; Alster, J.; Lichtenstadt, J.; Dietrich, F.; van Bibber, K.

    1990-01-01

    Measurements of the deuteron elastic magnetic structure function B(Q 2 ) are reported at squared four-momentum transfer values 1.20≤Q 2 ≤2.77 (GeV/c) 2 . Also reported are values for the proton magnetic form factor G Mp (Q 2 ) at 11 Q 2 values between 0.49 and 1.75 (GeV/c) 2 . The data were obtained using an electron beam of 0.5 to 1.3 GeV. Electrons backscattered near 180 degree were detected in coincidence with deuterons or protons recoiling near 0 degree in a large solid-angle double-arm spectrometer system. The data for B(Q 2 ) are found to decrease rapidly from Q 2 =1.2 to 2 (GeV/c) 2 , and then rise to a secondary maximum around Q 2 =2.5 (GeV/c) 2 . Reasonable agreement is found with several different models, including those in the relativistic impulse approximation, nonrelativistic calculations that include meson-exchange currents, isobar configurations, and six-quark configurations, and one calculation based on the Skyrme model. All calculations are very sensitive to the choice of deuteron wave function and nucleon form factor parametrization. The data for G Mp (Q 2 ) are in good agreement with the empirical dipole fit

  18. Measurement of the Electric and Magnetic Elastic Structure Functions of the Deuteron at Large Momentum Transfers

    Energy Technology Data Exchange (ETDEWEB)

    Suleiman, Riad S. [Kent State Univ., Kent, OH (United States)

    1999-12-01

    The deuteron elastic structure functions, A(Q2) and B(Q2), have been extracted from cross section measurements of elastic electron-deuteron scattering in coincidence using the Continuous Electron Beam Accelerator and Hall A Facilities of Jefferson Laboratory. Incident electrons were scattered off a high-power cryogenic deuterium target. Scattered electrons and recoil deuterons were detected in the two High Resolution Spectrometers of Hall A. A(Q2) was extracted from forward angle cross section measurements in the squared four-momentum transfer range 0.684 ≤ Q2 ≤ 5.90 (GeV/c)2. B(Q2) was determined by means of a Rosenbluth separation in the range 0.684 ≤ Q2 ≤ 1.325 (GeV/c)2. The data are compared to theoretical models based on the impulse approximation with the inclusion of meson-exchange currents and to predictions of quark dimensional scaling and perturbative quantum chromodynamics. The results are expected to provide insights into the transition from meson-nucleon to quark-gluon descriptions of the nuclear two-body system.

  19. Relativistic classical and quantum dynamics in intense crossed laser beams of various polarizations

    Directory of Open Access Journals (Sweden)

    M. Verschl

    2007-02-01

    Full Text Available The dynamics of an electron in crossed laser fields is investigated analytically. Two different standing wave configurations are compared. The counterpropagating laser waves are either linearly or circularly polarized. Both configurations have in common that there are one-dimensional trajectories on which the electron can oscillate with vanishing Lorentz force. The dynamics is analyzed for the situations when the electron moves in the vicinity of these ideal axes. If the laser intensities imply nonrelativistic electron dynamics, the system is described quantum mechanically. A semiclassical treatment renders the strongly relativistic regime accessible as well. To describe relativistic wave packets, the results of the classical analysis are employed for a Monte Carlo ensemble. This allows for a comparison of the wave packet dynamics for both configurations in the strongly relativistic regime. It is found for certain cases that relativity slows down the dynamics, i.e., for higher laser intensities, wave packet spreading and the drift away from the ideal axis of vanishing Lorentz force are shown to be increasingly suppressed.

  20. Anti-neutrino disintegration of the deuteron

    International Nuclear Information System (INIS)

    Mueller, W.; Gari, M.; Max-Planck-Institut fuer Chemie

    1981-01-01

    The anti-neutrino disintegration of the deuteron (anti ν + D → anti ν + n + p and anti νsub(e) + D → + e + + n + n) is calculated using realistic two-body states. Meson-exchange currents are considered in the one-boson-exchange limit. The results are discussed as corrections to the cross sections obtained in effective range approximations. It is shown that the ratio of the cross sections (sigma - /sigma 0 ) for reactor antineutrinos is practically independent of the nuclear physics uncertainties. (orig.)

  1. Deuteron forward photodisintegration: meson currents and relativity

    International Nuclear Information System (INIS)

    Friar, J.L.

    1983-01-01

    The few-nucleon problem in nuclear physics and the few-electron problem in atomic physics are shown to possess similarities. Relativistic aspects of the latter are reviewed. The radiative decay of the 3 P 1 excited state of helium-like ions to the 1 S 0 ground state is shown to be a theoretical analogue of low-energy deuteron forward photodisintegration. Both have large relativistic components. The extended Siegert's theorem, which permits application of Siegert's technique to arbitrary photon wave lengths, is applied to both transitions. Physical arguments for the two processes are stressed, and the relevance of interaction currents is discussed. 28 references

  2. Precise calculations of the deuteron quadrupole moment

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-06-01

    Recently, two calculations of the deuteron quadrupole moment have have given predictions that agree with the measured value to within 1%, resolving a long-standing discrepancy. One of these uses the covariant spectator theory (CST) and the other chiral effective field theory (cEFT). In this talk I will first briefly review the foundations and history of the CST, and then compare these two calculations with emphasis on how the same physical processes are being described using very different language. The comparison of the two methods gives new insights into the dynamics of the low energy NN interaction.

  3. A study of rates of (n, f), (n, γ), and (n, 2n) reactions in natU and 232Th produced by the neutron fluence in the graphite set-up (gamma-3) irradiated by 2.33 GeV deuteron beam

    International Nuclear Information System (INIS)

    Adam, J.; Chitra Bhatia; Katovskij, K.

    2011-01-01

    Spallation neutrons produced in a collision of 2.33 GeV deuteron beam with the large lead target are moderated by the thick graphite block surrounding the target and used to activate the radioactive samples of nat U and Th put at the three different positions, identified as holes 'a', 'b' and 'c' in the graphite block. Rates of the (n, f), (n, γ), and (n, 2n) reactions in the two samples are determined using the gamma spectrometry. Ratio of the experimental reaction rates, R(n, 2n)/R(n, f) for the 232 Th and nat U are estimated in order to understand the role of reactions of (n, xn) type in Accelerator Driven Subcritical Systems. For the Th-sample, the ratio is ∼ 54(10)% in case of hole 'a' and ∼ 95(57)% in case of hole 'b' compared to 1.73(20)% for the hole 'a' and 0.710(9)% for the hole 'b' in case of the nat U sample. Also the ratio of fission rates in uranium to thorium, nat U(n, f)/ 232 Th(n, f), is ∼ 11.2(17) in case of hole 'a' and 26.8(85) in hole 'b'. Similarly, ratio 238 U(n, 2n)/ 232 Th(n, 2n) is 0.36(4) for the hole 'a' and 0.20(10) for the hole 'b' showing that 232 Th is more prone to the (n, xn) reaction than 238 U. All the experimental reaction rates are compared with the simulated ones by generating neutron fluxes at the three holes from MCNPX 2.6c and making use of LA150 library of cross sections. The experimental and calculated rates of all the three reactions are in good agreement. The transmutation power of the set-up is estimated using the rates of (n, γ) and (n, 2n) reactions for both the samples in the three holes and compared with some of the results of the 'Energy plus Transmutation' set-up and TARC experiment

  4. Efficient tight focusing of laser beams optimally matched to their thin-film linear-to-radial polarization conversion: Method, implementation, and field near focus

    Science.gov (United States)

    Sedukhin, Andrey G.; Poleshchuk, Alexander G.

    2018-01-01

    A method is proposed for efficient, rotationally symmetric, tight mirror focusing of laser beams that is optimally matched to their thin-film linear-to-radial polarization conversion by a constant near-Brewster angle of incidence of the beams onto a polarizing element. Two optical systems and their modifications are considered that are based on this method and on the use of Toraldo filters. If focusing components of these systems operate in media with refractive indices equal to that of the focal region, they take the form of an axicon and an annular reflector generated by the revolution of an inclined parabola around the optical axis. Vectorial formulas for calculating the diffracted field near the focus of these systems are derived. Also presented are the results of designing a thin-film obliquely illuminated polarizer and a numerical simulation of deep UV laser beams generated by one of the systems and focused in an immersion liquid. The transverse and axial sizes of a needle longitudinally polarized field generated by the system with a simplest phase Toraldo filter were found to be 0.39 λ and 10.5 λ, with λ being the wavelength in the immersion liquid.

  5. Study of a filament with a circularly polarized beam at 3.8 cm

    International Nuclear Information System (INIS)

    Straka, R.M.; Papagiannis, M.D.; Kogut, J.A.

    1975-01-01

    Extensive observations of left and right circularly polarized emission were carried out with the 120 ft Haystack antenna, which at 3.8 cm has a HPBW of 4.4 minutes of arc. During a very quite period, September 22-26, 1974, two regions were observed in the southern hemisphere of the sun with brightness temperatures approximately 10% below the surrounding solar disk temperature. Hα photographs show that the main region was associated with a long filament. The separation between the center of the radio depression and the filament increased as the filament advanced toward the limb, with the depression finally disappearing when the filament was at a radial distance >0.8 R(Sun) from the center of the solar disk. These observations are in agreement with a filament model consisting of a thin, tall and exceedingly long sheet of enhanced density encaged in a large and equally long tunnel-like cavity of lower density. The electron density at the 3.8 cm emission level which occurs immediately below the transition zone was estimated to be lower inside the cavity than outside by a factor of 2. The origin of the other depression remains unclear because no relation to any Hα or magnetic feature could be found. A possible association with a coronal hole could not be established because no pertinent EUV or X-ray data were available. It would be of interest to investigate in future observations if a secondary depression is normally associated with the primary depression region over a long filament. (Auth.)

  6. Investigations on ring-shaped pumping distributions for the generation of beams with radial polarization in an Yb:YAG thin-disk laser.

    Science.gov (United States)

    Dietrich, Tom; Rumpel, Martin; Graf, Thomas; Ahmed, Marwan Abdou

    2015-10-05

    We present experimental investigations on the generation of radially polarized laser beams excited by a ring-shaped pump intensity distribution in combination with polarizing grating waveguide mirrors in an Yb:YAG thin-disk laser resonator. Hollow optical fiber components were implemented in the pump beam path to transform the commonly used flattop pumping distribution into a ring-shaped distribution. The investigation was focused on finding the optimum mode overlap between the ring-shaped pump spot and the excited first order Laguerre-Gaussian (LG(01)) doughnut mode. The power, efficiency and polarization state of the emitted laser beam as well as the thermal behavior of the disk was compared to that obtained with a standard flattop pumping distribution. A maximum output power of 107 W with a high optical efficiency of 41.2% was achieved by implementing a 300 mm long specially manufactured hollow fiber into the pump beam path. Additionally it was found that at a pump power of 280 W the maximum temperature increase is about 21% below the one observed with standard homogeneous pumping.

  7. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  8. BNL alternating gradient synchrotron with four helical magnets to minimize the losses of the polarized proton beam

    Directory of Open Access Journals (Sweden)

    N. Tsoupas

    2013-04-01

    Full Text Available The principle of using multiple partial helical magnets to preserve the polarization of the proton beam during its acceleration was applied successfully to the alternating gradient synchrotron (AGS which currently operates with two partial helical magnets. In this paper we further explore this idea by using four partial helical magnets placed symmetrically in the AGS ring. This provides many advantages over the present setup of the AGS, which uses two partial helical magnets. First, the symmetric placement of the four helical magnets and their relatively lower field of operation allows for better control of the AGS optics with reduced values of the beta functions especially near beam injection and allows both the vertical and horizontal tunes to be placed within the “spin tune gap,” therefore eliminating the horizontal and vertical intrinsic spin resonances of the AGS during the acceleration cycle. Second, it provides a wider spin tune gap. Third, the vertical spin direction during beam injection and extraction is closer to vertical. Although the spin tune gap, which is created with four partial helices, can also be created with a single or two partial helices, the high field strength of a single helical magnet which is required to generate such a spin tune gap makes the use of the single helical magnet impractical, and that of the two helical magnets rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare them with those from the present setup of the AGS that uses two partial helical magnets. Although in this paper we specifically discuss the effect of the four partial helices on the AGS, this method which can eliminate simultaneously the vertical and horizontal intrinsic spin resonances is a general method and can be applied to any medium energy synchrotron which operates in similar energy range like the AGS and provides the required space to

  9. Field theory for a deuteron quantum liquid

    Science.gov (United States)

    Berezhiani, Lasha; Gabadadze, Gregory; Pirtskhalava, David

    2010-04-01

    Based on general symmetry principles we study an effective Lagrangian for a neutral system of condensed spin-1 deuteron nuclei and electrons, at greater-than-atomic but less-than-nuclear densities. We expect such matter to be present in thin layers within certain low-mass brown dwarfs. It may also be produced in future shock-wave-compression experiments as an effective fuel for laser-induced nuclear fusion. We find a background solution of the effective theory describing a net spin zero condensate of deuterons with their spins aligned and anti-aligned in a certain spontaneously emerged preferred direction. The spectrum of low energy collective excitations contains two spin-waves with linear dispersions — like in antiferromagnets — as well as gapped longitudinal and transverse modes related to the Meissner effect — like in superconductors. We show that counting of the Nambu-Goldstone modes of spontaneously broken internal and space-time symmetries obeys, in a nontrivial way, the rules of the Goldstone theorem for Lorentz non-invariant systems. We discuss thermodynamic properties of the condensate, and its potential manifestation in the low-mass brown dwarfs.

  10. Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, 5 Bisbee Ct., Santa Fe, NM 87508 (United States); Li, R.X., E-mail: rxli@mail.xidian.edu.cn [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071 (China); Guo, L.X. [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071 (China); Ding, C.Y. [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China)

    2015-10-15

    A complete description of vector Bessel (vortex) beams in the context of the generalized Lorenz–Mie theory (GLMT) for the electromagnetic (EM) resonance scattering by a dielectric sphere is presented, using the method of separation of variables and the subtraction of a non-resonant background (corresponding to a perfectly conducting sphere of the same size) from the standard Mie scattering coefficients. Unlike the conventional results of standard optical radiation, the resonance scattering of a dielectric sphere in air in the field of EM Bessel beams is examined and demonstrated with particular emphasis on the EM field’s polarization and beam order (or topological charge). Linear, circular, radial, azimuthal polarizations as well as unpolarized Bessel vortex beams are considered. The conditions required for the resonance scattering are analyzed, stemming from the vectorial description of the EM field using the angular spectrum decomposition, the derivation of the beam-shape coefficients (BSCs) using the integral localized approximation (ILA) and Neumann–Graf’s addition theorem, and the determination of the scattering coefficients of the sphere using Debye series. In contrast with the standard scattering theory, the resonance method presented here allows the quantitative description of the scattering using Debye series by separating diffraction effects from the external and internal reflections from the sphere. Furthermore, the analysis is extended to include rainbow formation in Bessel beams and the derivation of a generalized formula for the deviation angle of high-order rainbows. Potential applications for this analysis include Bessel beam-based laser imaging spectroscopy, atom cooling and quantum optics, electromagnetic instrumentation and profilometry, optical tweezers and tractor beams, to name a few emerging areas of research.

  11. The study of the dp{yields}ppn reaction at 500 MeV of the deuteron energy at ITS Nuclotron

    Energy Technology Data Exchange (ETDEWEB)

    Piyadin, S.M., E-mail: piyadin@jinr.ru [LHEP-JINR, 141-980 Dubna, Moscow region (Russian Federation); Janek, M. [LHEP-JINR, 141-980 Dubna, Moscow region (Russian Federation); Physics Dept, University of Zilina, 010 26 Zilina (Slovakia); Gurchin, Yu.V.; Isupov, A.Yu. [LHEP-JINR, 141-980 Dubna, Moscow region (Russian Federation); Karachuk, J.-T. [LHEP-JINR, 141-980 Dubna, Moscow region (Russian Federation); Advanced Research Institute for Electrical Engineering, Bucharest (Romania); Khrenov, A.N.; Krasnov, V.A.; Kurilkin, A.K.; Kurilkin, P.K.; Ladygin, V.P.; Livanov, A.N. [LHEP-JINR, 141-980 Dubna, Moscow region (Russian Federation); Martinska, G. [P.J.Safarik University, Kosice (Slovakia); Reznikov, S.G. [LHEP-JINR, 141-980 Dubna, Moscow region (Russian Federation); Semenov, A.K. [Moscow University Radioelectronic and Avtomatic, Dubna, Moscow region (Russian Federation); Terekhin, A.A. [LHEP-JINR, 141-980 Dubna, Moscow region (Russian Federation); Tumanov, A.E. [Moscow University Radioelectronic and Avtomatic, Dubna, Moscow region (Russian Federation); Vasiliev, T.A. [LHEP-JINR, 141-980 Dubna, Moscow region (Russian Federation)

    2011-10-15

    The experiment on dp non-mesonic breakup at Internal Target Station at Nuclotron-M is presented. The first results on the study of the dp-breakup reaction with 500 MeV unpolarized deuteron beam are discussed. Selection procedure of useful events for the dp{yields}ppn reaction with the registration of two protons is shown.

  12. Features of possible polarized photon beams at high energy and corresponding physics programme or the proton structure function using real photons

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1980-01-01

    In the range of electron energies available at Fermilab, 100 GeV less than or equal to E less than or equal to 500 GeV, coherent Bremsstrahlung in crystals, particularly diamond, gives a huge enhancement to the equivalent photon spectrum at large values of x where x = k/E. The photons in this enhancement are polarized. Requirements on electron beam energy spread, angular divergence and spot size imposed by the use of a diamond as a radiator are discussed. The physics program emphasizes hard processes and tests of QCD using polarization

  13. Broadband silicon polarization beam splitter with a high extinction ratio using a triple-bent-waveguide directional coupler.

    Science.gov (United States)

    Ong, Jun Rong; Ang, Thomas Y L; Sahin, Ezgi; Pawlina, Bryan; Chen, G F R; Tan, D T H; Lim, Soon Thor; Png, Ching Eng

    2017-11-01

    We report on the design and experimental demonstration of a broadband silicon polarization beam splitter (PBS) with a high extinction ratio (ER)≥30  dB. This was achieved using triple-bent-waveguide directional coupling in a single PBS, and cascaded PBS topology. For the single PBS, the bandwidths for an ER≥30  dB are 20 nm for the quasi-TE mode, and 70 nm for the quasi-TM mode when a broadband light source (1520-1610 nm) was employed. The insertion loss (IL) varies from 0.2 to 1 dB for the quasi-TE mode and 0.2-2 dB for the quasi-TM mode. The cascaded PBS improved the bandwidth of the quasi-TE mode for an ER≥30  dB to 90 nm, with a low IL of 0.2-2 dB. To the best of our knowledge, our PBS system is one of the best broadband PBSs with an ER as high as ∼42  dB and a low IL below 1 dB around the central wavelength, and experimentally demonstrated using edge-coupling.

  14. Giant quadrupole resonance in 12C, 24Mg, and 27Al observed via deuteron inelastic scattering

    International Nuclear Information System (INIS)

    Chang, C.C.; Didelez, J.P.; Kwiatowski, K.; Wo, J.R.

    1977-06-01

    Giant quadrupole resonance in 12 C, 24 Mg, and 27 Al was studied using 70 MeV deuteron beam. The results clearly show, in all three targets, resonance-like structures peaked at E/sub x/ approximately 63A/sup -1/3/ MeV, with a width of about 10 MeV. The experimental angular distributions for these resonances agree well with the l = 2 DWBA prediction. For 12 C, a binary splitting was observed, and for 24 Mg, there are indications of finer structure in the main giant quadrupole resonance region

  15. Measurement of the Spin Structure of the Deuteron in the DIS Region

    CERN Document Server

    Ageev, E.S.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Badelek, B.; Balestra, F.; Ball, J.; Baum, G.; Bedfer, Y.; Berglund, P.; Bernet, C.; Bertini, R.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Cerini, L.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Dasgupta, S.S.; De Masi, R.; Dedek, N.; Denisov, O.Yu.; Dhara, L.; Diaz Kavka, V.; Dinkelbach, A.M.; Dolgopolov, A.V.; Donskov, S.V.; Dorofeev, V.A.; Doshita, N.; Duic, V.; Dunnweber, W.; Ehlers, J.; Eversheim, P.D.; Eyrich, W.; Fabro, M.; Faessler, M.; Falaleev, V.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Fuchs, U.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Grajek, O.; Grasso, A.; Grube, B.; Grunemaier, A.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Ijaduola, R.B.; Ilgner, C.; Ioukaev, A.I.; Ishimoto, S.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N.I.; Kabuss, E.; Kalinnikov, V.; Kang, D.; Karstens, F.; Kastaun, W.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Khomutov, N.V.; Kisselev, Yu.; Klein, F.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, Kay; Konoplyannikov, A.K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kowalik, K.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Ladygin, M.E.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Manuilov, I.V.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matsuda, T.; Maximov, A.N.; Medved, K.S.; Meyer, W.; Mielech, A.; Mikhailov, Yu.V.; Moinester, M.A.; Nahle, O.; Nassalski, J.; Neliba, S.; Neyret, D.P.; Nikolaenko, V.I.; Nozdrin, A.A.; Obraztsov, V.F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pereira, H.D.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Platzer, K.; Pochodzalla, J.; Polyakov, V.A.; Popov, A.A.; Pretz, J.; Quintans, C.; Ramos, S.; Rebourgeard, P.C.; Reicherz, G.; Reymann, J.; Rith, K.; Rojdestvenski, A.M.; Rondio, E.; Sadovski, A.B.; Saller, E.; Samoylenko, V.D.; Sandacz, A.; Sapozhnikov, M.G.; Savin, Igor A.; Schiavon, P.; Schill, C.; Schmidt, T.; Schmitt, L.; Schmitt, H.; Shevchenko, O.Yu.; Shishkin, A.A.; Siebert, H.; Sinha, L.; Sissakian, A.N.; Skachkova, A.; Slunecka, M.; Smirnov, G.I.; Sugonyaev, V.P.; Srnka, A.; Stinzing, F.; Stolarski, M.; Sulc, M.; Sulej, R.; Takabayashi, N.; Tchalishev, V.V.; Thers, D.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Toeda, T.; Tretyak, V.I.; Trusov, Sergey V.; Varanda, M.; Virius, M.; Vlassov, N.V.; Wagner, M.; Walcher, T.; Webb, R.; Weise, E.; Weitzel, Q.; Wiesmann, M.; Windmolders, R.; Wirth, S.; Wislicki, W.; Zanetti, A.M.; Zaremba, K.; Zhao, J.; Ziegler, R.; Zvyagin, A.

    2005-01-01

    We present a new measurement of the longitudinal spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 < Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised 6-LiD target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 < x < 0.03.

  16. USING A 100 KV DC LOAD LOCK PHOTOGUN TO MEASURE PHOTOCATHODE LIFETIME OF HIGH POLARIZATION STRAINED SUPERLATTICE GAAS/GAASP AT BEAM INTENSITY >1 MILLIAMP

    International Nuclear Information System (INIS)

    Joseph Grames; Benard Poelker; Philip Adderley; Joshua Brittian; James Clark; John Hansknecht; Danny Machie; Marcy Stutzman; Kenneth Surles-law; Riad Suleiman

    2007-01-01

    A new GaAs DC high voltage load lock photogun has been constructed at Jefferson Laboratory (JLab), with improved vacuum and photocathode preparation capabilities. As reported previously, this gun was used to study photocathode lifetime with bulk GaAs at DC beam currents between 1 and 10 mA. In this submission, lifetime measurements were performed using high polarization strained-superlattice GaAs photocathode material at beam currents up to 1 mA, with near bandgap light from a fiber based drive laser having picosecond optical pulses and RF time structure

  17. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  18. Polarized Electrons at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, C.K.

    1997-12-31

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented.

  19. Polarized electrons at Jefferson laboratory

    International Nuclear Information System (INIS)

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously. Initial operational experience with the polarized source will be presented

  20. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs, 90Sr and 107Pd on proton and deuteron

    Directory of Open Access Journals (Sweden)

    Wang He

    2017-01-01

    Full Text Available Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes.

  1. Deuteron form factor measurements at low momentum transfers

    Directory of Open Access Journals (Sweden)

    Schlimme B. S.

    2016-01-01

    Full Text Available A precise measurement of the elastic electron-deuteron scattering cross section at four-momentum transfers of 0.24 fm−1 ≤ Q ≤ 2.7 fm−1 has been performed at the Mainz Microtron. In this paper we describe the utilized experimental setup and the necessary analysis procedure to precisely determine the deuteron charge form factor from these data. Finally, the deuteron charge radius rd can be extracted from an extrapolation of that form factor to Q2 = 0.

  2. Photoproduction of ηπ pairs off nucleons and deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Kaeser, A.; Mueller, F.; Dieterle, M.; Garni, S.; Jaegle, I.; Keshelashvili, I.; Krusche, B.; Maghrbi, Y.; Oberle, M.; Pheron, F.; Rostomyan, T.; Strub, T.; Walford, N.K.; Witthauer, L. [University of Basel, Department of Physics, Basel (Switzerland); Ahrens, J.; Arends, H.J.; Bartolome, P.A.; Ostrick, M.; Otte, P.; Thomas, A. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); Annand, J.R.M.; Hamilton, D.; Howdle, D.; Livingston, K.; MacGregor, I.J.D.; Mancell, J.; McGeorge, J.C.; McNicoll, E.; Robinson, J. [University of Glasgow, SUPA School of Physics and Astronomy, Glasgow (United Kingdom); Bantawa, K.; Manley, D.M. [Kent State University, Kent, OH (United States); Beck, R.; Nikolaev, A.; Schumann, S.; Unverzagt, M. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); University Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Braghieri, A.; Costanza, S.; Mushkarenkov, A.; Pedroni, P. [INFN Sezione di Pavia, Pavia (Italy); Briscoe, W.J.; Marinides, Z. [The George Washington University, Center for Nuclear Studies, Washington (United States); Cherepnya, S.; Fil' kov, L.V. [Lebedev Physical Institute, Moscow (Russian Federation); Downie, E.J. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); University of Glasgow, SUPA School of Physics and Astronomy, Glasgow (United Kingdom); The George Washington University, Center for Nuclear Studies, Washington (United States); Drexler, P.; Metag, V.; Novotny, R.; Thiel, M. [University of Giessen, II. Physikalisches Institut, Giessen (Germany); Fix, A. [Tomsk Polytechnic University, Laboratory of Mathematical Physics, Tomsk (Russian Federation); Glazier, D.I. [University of Glasgow, SUPA School of Physics and Astronomy, Glasgow (United Kingdom); University of Edinburgh, SUPA School of Physics, Edinburgh (United Kingdom); Hornidge, D.; Middleton, D.G. [Mount Allison University, Sackville, New Brunswick (Canada); Huber, G.M. [University of Regina, Regina (Canada); Jude, T.C.; Sikora, M.H.; Watts, D.P. [University of Edinburgh, SUPA School of Physics, Edinburgh (United Kingdom); Kashevarov, V.L. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); Lebedev Physical Institute, Moscow (Russian Federation); Kondratiev, R.; Lisin, V.; Polonski, A. [Institute for Nuclear Research, Moscow (Russian Federation); Korolija, M.; Mekterovic, D.; Micanovic, S.; Supek, I. [Rudjer Boskovic Institute, Zagreb (Croatia); Oussena, B. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); The George Washington University, Center for Nuclear Studies, Washington (United States); Prakhov, S.; Starostin, A. [University of California Los Angeles, Los Angeles, California (United States); Sober, D. [The Catholic University of America, Washington (United States); Werthmueller, D. [University of Basel, Department of Physics, Basel (Switzerland); University of Glasgow, SUPA School of Physics and Astronomy, Glasgow (United Kingdom); Collaboration: The A2 Collaboration

    2016-09-15

    Quasi-free photoproduction of πη-pairs has been investigated from threshold up to incident photon energies of 1.4 GeV, respectively up to photon-nucleon invariant masses up to 1.9 GeV. Total cross sections, angular distributions, invariant-mass distributions of the πη and meson-nucleon pairs, and beam-helicity asymmetries have been measured for the reactions γp → pπ{sup 0}η, γn → nπ{sup 0}η, γp → nπ{sup +}η, and γn → pπ{sup -}η from nucleons bound inside the deuteron. For the γp initial-state data for free protons have also been analyzed. Finally, the total cross sections for quasi-free production of π{sup 0}η pairs from nucleons bound in {sup 3} He nuclei have been investigated in view of final state interaction (FSI) effects. The experiments were performed at the tagged photon beam facility of the Mainz MAMI accelerator using an almost 4π covering electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. The shapes of all differential cross section data and the asymmetries are very similar for protons and neutrons and agree with the conjecture that the reactions are dominated by the sequential Δ*3/2{sup -} → ηΔ(1232) → πηN decay chain, mainly with Δ(1700)3/2{sup -} and Δ(1940)3/2{sup -}. The ratios of the magnitude of the total cross sections also agree with this assumption. However, the absolute magnitudes of the cross sections are reduced by FSI effects with respect to free proton data. (orig.)

  3. Precision measurements of g1 of the proton and the deuteron with 6 GeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Prok, Yelena; Bosted, Peter; Kvaltine, Nicholas; Adhikari, Krishna; Adikaram-Mudiyanselage, Dasuni; Aghasyan, Mher; Amaryan, Moskov; Anderson, Mark; Anefalos Pereira, Sergio; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Ball, Jacques; Baltzell, Nathan; Battaglieri, Marco; Biselli, Angela; Bono, Jason; Briscoe, William; Brock, Joseph; Brooks, William; Bueltmann, Stephen; Burkert, Volker; Carlin, Christopher; Carman, Daniel; Celentano, Andrea; Chandavar, Shloka; Colaneri, Luca; Cole, Philip; Contalbrigo, Marco; Cortes, Olga; Crabb, Donald; Crede, Volker; D' Angelo, Annalisa; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Deur, Alexandre; Djalali, Chaden; Dodge, Gail; Doughty, David; Dupre, Raphael; El Alaoui, Ahmed; El Fassi, Lamiaa; Elouadrhiri, Latifa; Fedotov, Gleb; Fegan, Stuart; Fersch, Robert; Fleming, Jamie; Forest, Tony; Garcon, Michel; Gevorgyan, Nerses; Ghandilyan, Yeranuhi; Gilfoyle, Gerard; Girod-Gard, Francois-Xavier; Giovanetti, Kevin; Goetz, John; Gohn, Wesley; Gothe, Ralf; Griffioen, Keith; Guegan, Baptiste; Guler, Nevzat; Hafidi, Kawtar; Hanretty, Charles; Harrison, Nathan; Hattawy, Mohammad; Hicks, Kenneth; Ho, Dao; Holtrop, Maurik; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Jawalkar, Sucheta; Jiang, Xiaodong; Jo, Hyon-Suk; Joo, Kyungseon; Kalantarians, Narbe; Keith, Christopher; Keller, Daniel; Khandaker, Mahbubul; Kim, Andrey; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Koirala, Suman; Kubarovsky, Valery; Kuhn, Sebastian; Kuleshov, Sergey; Lenisa, Paolo; Livingston, Kenneth; Lu, Haiyun; MacGregor, Ian; Markov, Nikolai; Mayer, Michael; McKinnon, Bryan; Meekins, David; Mineeva, Taisiya; Mirazita, Marco; Mokeev, Viktor; Montgomery, Rachel; MOUTARDE, Herve; Movsisyan, Aram; Munevar Espitia, Edwin; Munoz Camacho, Carlos; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria; Osipenko, Mikhail; Ostrovidov, Alexander; Pappalardo, Luciano; Paremuzyan, Rafayel; Park, K; Peng, Peng; Phillips, J J; Pierce, Joshua; Pisano, Silvia; Pogorelko, Oleg; Pozdniakov, Serguei; Price, John; Procureur, Sebastien; Protopopescu, Dan; Puckett, Andrew; Raue, Brian; Rimal, Dipak; Ripani, Marco; Rizzo, Alessandro; Rosner, Guenther; Rossi, Patrizia; Roy, Priyashree; Sabatie, Franck; Saini, Mukesh; Salgado, Carlos; Schott, Diane; Schumacher, Reinhard; Seder, Erin; Sharabian, Youri; Simonyan, Ani; Smith, Claude; Smith, Gregory; Sober, Daniel; Sokhan, Daria; Stepanyan, Stepan; Stepanyan, Samuel; Strakovski, Igor; Strauch, Steffen; Sytnik, Valeriy; Taiuti, Mauro; Tang, Wei; Tkachenko, Svyatoslav; Ungaro, Maurizio; Vernarsky, Brian; Vlasov, Alexander; Voskanyan, Hakob; Voutier, Eric; Walford, Natalie; Watts, Daniel; Weinstein, Lawrence; Zachariou, Nicholas; Zana, Lorenzo; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen; Zonta, Irene

    2014-08-01

    The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

  4. Deuteron-, triton - and alpha - clusters in nuclear matter

    International Nuclear Information System (INIS)

    Bando, H.; Coelho, H.T.; Delfino, A.

    1981-01-01

    It is studied with a simple model how deuteron-, triton- and α-clusters behave concerning their cluster structure identities during the scatterring process and just after reaching nuclear matter of finite size. (Author) [pt

  5. Neutron production by deuteron breakup on 4He

    International Nuclear Information System (INIS)

    Schmidt, D.

    1994-10-01

    Neutron spectra of the deuteron breakup on 4 He have been measured at eight deuteron incident energies between 4.7 MeV and 12.1 MeV using the TOF method. The measurements carried out at angles of 0 deg, 5 deg and 10 deg were completed by measurements at 2.5 deg and 7.5 deg at some energies. The cross sections for these angles were reliably interpolated for the other energies. The normalization to absolute cross sections was carried out by reference to the well known data of the DD reaction. When a relative energy scale is introduced the spectral shape is almost angle-independent. It is shown that the use of the deuteron breakup on 4 He can considerably refine the correction for the deuteron breakup on deuterium in scattering experiments made with Monte Carlo simulations. (orig.)

  6. dc power system for deuteron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Creek, K.O.; Liska, D.J.

    1981-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility dc power system provides excitation current for all linac and High-Energy Beam Transport (HEBT) quadrupole and bending magnets, excitation for horizontal and vertical beam steering, and current-bypass shunts.

  7. Measurement of the Deuteron Spin Structure Function g{sub 1}{sup d}(x) for 1 (GeV/c){sup 2} < Q{sup 2} < 40 (GeV/c){sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Perry Anthony; R.G. Arnold; Todd Averett; H.R. Band; M.C. Berisso; H. Borel; Peter Bosted; Stephen Bueltmann; M. Buenerd; T. Chupp; Steve Churchwell; G.R. Court; Donald Crabb; Donal Day; Piotr Decowski; P. DePietro; R. Erbacher; R. Erickson; Andrew Feltham; Helene Fonvieille; Emil Frlez; R. Gearhart; V. Ghazikhanian; Javier Gomez; Keith Griffioen; C. Harris; M.A. Houlden; E.W. Hughes; Charles Hyde-Wright; G. Igo; Sebastien Incerti; John Jensen; J.R. Johnson; Paul King; Yu.G. Kolomensky; Sebastian Kuhn; Richard Lindgren; R.M. Lombard-Nelsen; Jacques Marroncle; James Mccarthy; Paul McKee; W. Meyer; G.S. Mitchell; Joseph Mitchell; Michael Olson; S. Penttila; Gerald Peterson; Gerassimos Petratos; R. Pitthan; Dinko Pocanic; R. Prepost; C. Prescott; Liming Qin; Brian Raue; D. Reyna; L.S. Rochester; Stephen Rock; Oscar Rondon-Aramayo; Franck Sabatie; Ingo Sick; T. Smith; L. Sorrell; F. Staley; S. St. Lorant; L.M. Stuart; Z. Szalata; Y. Terrien; William Tobias; Luminita Todor; T. Toole; S. Trentalange; Dieter Walz; Robert Welsh; Frank Wesselmann; T.R. Wright; C.C. Young; Markus Zeier; Hong Guo Zhu; Benedikt Zihlmann

    1999-09-30

    New measurements are reported on the deuteron spin structure function g{sub 1}{sup d}. These results were obtained from deep inelastic scattering of 48.3 GeV electrons on polarized deuterons in the kinematic range 0.01 < x < 0.9 and 1 < Q{sup 2} < 40 (GeV/c){sup 2}. These are the first high dose electron scattering data obtained using lithium deuteride ({sup 6}Li{sup 2}H) as the target material. Extrapolations of the data were performed to obtain moments of g{sub 1}{sup d}, including {Gamma}{sub 1}{sup d}, and the net quark polarization {Delta} {Sigma}.

  8. Charged particle beams for radiobiology at RARAF

    International Nuclear Information System (INIS)

    Colvett, R.D.; Rohrig, N.; Marino, S.A.

    1977-01-01

    (1) The extent to which the internal structure of a molecule might affect the separation of its constituent atoms after the molecule dissociates was investigated. Scattered intensity vs. lateral distance is shown (at 46 cm) for beams of 1.25-MeV monatomic deuterons, 2.5-MeV diatomic deuterons, and 3.75-MeV triatomic deuterons. It was found that the three species of ions have essentially indistinguishable scattering parameters; i.e., molecular effects are negligible. (2) Representative LET spectra are shown for deuterons of 2.2, 1.9, and 1.7 MeV and 3 He of 6.2 MeV. 3 figures

  9. Measurement of the Proton and Deuteron Spin Structure Function g1 in the Resonance Region

    International Nuclear Information System (INIS)

    Abe, K.; Akagi, T.; Perry Anthony; Antonov, R.; Arnold, R.G.; Todd Averett; Band, H.R.; Bauer, J.M.; Borel, H.; Peter Bosted; Vincent Breton; Button-Shafer, J.; Jian-Ping Chen; T.E. Chupp; J. Clendenin; C. Comptour; K.P. Coulter; G. Court; Donald Crabb; M. Daoudi; Donal Day; F.S. Dietrich; James Dunne; H. Dutz; R. Erbacher; J. Fellbaum; Andrew Feltham; Helene Fonvieille; Emil Frlez; D. Garvey; R. Gearhart; Javier Gomez; P. Grenier; Keith Griffioen; S. Hoeibraten; Emlyn Hughes; Charles Hyde-Wright; J.R. Johnson; D. Kawall; Andreas Klein; Sebastian Kuhn; M. Kuriki; Richard Lindgren; T.J. Liu; R.M. Lombard-Nelsen; Jacques Marroncle; Tomoyuki Maruyama; X.K. Maruyama; James Mccarthy; Werner Meyer; Zein-Eddine Meziani; Ralph Minehart; Joseph Mitchell; J. Morgenstern; Gerassimos Petratos; R. Pitthan; Dinko Pocanic; C. Prescott; R. Prepost; P. Raines; Brian Raue; D. Reyna; A. Rijllart; Yves Roblin; L. Rochester; Stephen Rock; Oscar Rondon-Aramayo; Ingo Sick; Lee Smith; Tim Smith; M. Spengos; F. Staley; P. Steiner; S. St. Lorant; L.M. Stuart; F. Suekane; Z.M. Szalata; Huabin Tang; Y. Terrien; Tracy Usher; Dieter Walz; Frank Wesselmann; J.L. White; K. Witte; C. Young; Brad Youngman; Haruo Yuta; G. Zapalac; Benedikt Zihlmann; Zimmermann, D.

    1997-01-01

    We have measured the proton and deuteron spin structure functions g 1 p and g 1 d in the region of the nucleon resonances for W 2 2 and Q 2 ≅ 0.5 and Q 2 ≅ 1.2 GeV 2 by inelastically scattering 9.7 GeV polarized electrons off polarized 15 NH 3 and 15 ND 3 targets. We observe significant structure in g 1 p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W 2 , to extract Γ(Q 2 ) (triple b ond) ∫ 0 1 g 1 (x,Q 2 ) dx. This is the first information on the low-Q 2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q 2 = 0

  10. Progress in Scintillating Polarized Targets for Spin Physics

    Science.gov (United States)

    van den Brandt, B.; Hautle, P.; Konter, J. A.; Bunyatova, E. I.

    2003-06-01

    At PSI polarized scintillating targets have been operated in several particle physics experiments over extended periods of time. They proved to be very robust and reliable. Proton polarizations of more than 80%, and deuteron polarizations of 25% in fully deuterated polystyrene based scintillator have been reached in a vertical dilution refrigerator with optical access. New choices of materials and preparation procedures show potential for an improvement of the scintillation and polarization properties.

  11. Spin observables in charged pion photo-production from polarized neutrons in solid HD at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Kageya, Tsuneo [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ho, Dao [Carnegie Mellon Univ., Pittsburgh, PA (United States); Peng, Peng [Univ. of Virginia, Charlottesville, VA (United States); Klein, Franz [George Washington Univ., Washington, DC (United States); Sandorfi, Andrew M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Schumacher, Reinhard A. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2018-04-01

    E asymmetries have been extracted from double-polarizationexperiments in Hall-B of the Thomas Jefferson National Accelerator Facility (JLab). Results have been obtained from the E06-101 (g14) experiment, using circularly polarized photon beams, longitudinally polarized Deuterons in solid HD targets, and the CEBAF Large Acceptance Spectrometer (CLAS). The results cover a range inW from 1.48 to 2.32 GeV. Three independent analyses, using distinctly different methods, have been combined to obtain the final values, which have been published recently. Partial wave analyses (PWA), which have had to rely on a sparse neutron data base, havebeen significantly changed with the inclusion of these g14 asymmetries.

  12. Analyzing the propagation behavior of coherence and polarization degrees of a phase-locked partially coherent radial flat-topped array laser beam in underwater turbulence.

    Science.gov (United States)

    Kashani, Fatemeh Dabbagh; Yousefi, Masoud

    2016-08-10

    In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs.

  13. Design and cold model experiment of a continuous-wave deuteron radio-frequency quadrupole

    Directory of Open Access Journals (Sweden)

    Q. Fu

    2017-12-01

    Full Text Available A deuteron radio-frequency quadrupole (RFQ is being built by the RFQ group at Peking University. It is a very compact high-current RFQ, operating at 162.5 MHz in continuous-wave mode. By optimizing the beam dynamics design, our simulations reached 98% transmission efficiency for acceleration of the 50-mA deuteron beam from 50 keV to 1 MeV, with an intervane voltage of 60 kV and a length of 1.809 m. This RFQ adopts a window-type structure, with low power consumption and sufficient mode separation, with no stabilizing rods required. Its magnetic coupling windows have been optimized by both electromagnetic simulation and the construction of an equivalent circuit model. The empirical equation based on the circuit model provides a new way to evaluate the effect of the window size on the frequency. In addition, an aluminum model of the full-length RFQ has been built and tested, and the results show good agreement with the simulations. During the tuning process, the magnetic coupling effect between quadrants was found to be unique to the window-type RFQ. We also propose a method to estimate the effects of different degrees of electric field unflatness on the beam transmission. For the cooling system design, the results of thermostructural analysis, verified by comparing results from ansys and cst, show that the special cooling channels provide a high cooling efficiency around the magnetic coupling windows. The maximal deformation of the structure was approximately 75  μm. The beam-loading effect caused by a high current, and the coupler design, are also discussed.

  14. Design and cold model experiment of a continuous-wave deuteron radio-frequency quadrupole

    Science.gov (United States)

    Fu, Q.; Zhu, K.; Lu, Y. R.; Easton, M. J.; Gao, S. L.; Wang, Z.; Jia, F. J.; Li, H. P.; Gan, P. P.; He, Y.

    2017-12-01

    A deuteron radio-frequency quadrupole (RFQ) is being built by the RFQ group at Peking University. It is a very compact high-current RFQ, operating at 162.5 MHz in continuous-wave mode. By optimizing the beam dynamics design, our simulations reached 98% transmission efficiency for acceleration of the 50-mA deuteron beam from 50 keV to 1 MeV, with an intervane voltage of 60 kV and a length of 1.809 m. This RFQ adopts a window-type structure, with low power consumption and sufficient mode separation, with no stabilizing rods required. Its magnetic coupling windows have been optimized by both electromagnetic simulation and the construction of an equivalent circuit model. The empirical equation based on the circuit model provides a new way to evaluate the effect of the window size on the frequency. In addition, an aluminum model of the full-length RFQ has been built and tested, and the results show good agreement with the simulations. During the tuning process, the magnetic coupling effect between quadrants was found to be unique to the window-type RFQ. We also propose a method to estimate the effects of different degrees of electric field unflatness on the beam transmission. For the cooling system design, the results of thermostructural analysis, verified by comparing results from ansys and cst, show that the special cooling channels provide a high cooling efficiency around the magnetic coupling windows. The maximal deformation of the structure was approximately 75 μ m . The beam-loading effect caused by a high current, and the coupler design, are also discussed.

  15. Novel Microstrip Patch Antennas with Frequency Agility, Polarization Reconfigurability, Dual Null Steering Capability and Phased Array Antenna with Beam Steering Performance

    Science.gov (United States)

    Babakhani, Behrouz

    Nowadays the wireless communication technology is playing an important role in our daily life. People use wireless devices not only as a conventional communication device but also as tracking and navigation tool, web browsing tool, data storage and transfer tool and so for many other reasons. Based on the user demand, wireless communication engineers try to accommodate as many as possible wireless systems and applications in a single device and therefore, creates a multifunctional device. Antenna, as an integral part of any wireless communication systems, should also be evolved and adjusted with development of wireless transceiver systems. Therefore multifunctional antennas have been introduced to support and enhance the functionality on modern wireless systems. The main focus and contribution of this thesis is design of novel multifunctional microstrip antennas with frequency agility, polarization reconfigurablity, dual null steering capability and phased array antenna with beam steering performance. In this thesis, first, a wide bandwidth(1.10 GHz to 1.60 GHz) right-handed circularly polarized (RHCP) directional antenna for global positioning system (GPS) satellite receive application has been introduced which covers all the GPS bands starting from L1 to L5. This design consists of two crossed bow-tie dipole antennas fed with sequentially phase rotated feed network backed with an artificial high impedance surface (HIS) structure to generate high gain directional radiation patterns. This design shows good CP gain and axial ratio (AR) and wide beamwidth performance. Although this design has good radiation quality, the size and the weight can be reduced as future study. In the second design, a frequency agile antenna was developed which also covers the L-band (L1 to L5) satellite communication frequencies. This frequency agile antenna was designed and realized by new implementation of varactor diodes in the geometry of a circular patch antenna. Beside wide frequency

  16. Efficient generation of cylindrically polarized beams in an Yb:YAG thin-disk laser enabled by a ring-shaped pumping distribution

    Science.gov (United States)

    Dietrich, Tom; Rumpel, Martin; Graf, Thomas; Abdou Ahmed, Marwan

    2016-04-01

    The efficient generation of a cylindrically (radially or azimuthally) polarized LG01 mode was investigated using a ring-shaped pumping distribution in a high-power Yb:YAG thin-disk laser setup. This was realized by implementing a 300 mm long customized fused silica fiber capillary in the pump beam path of the pumping optics of a thin-disk laser. Furthermore, a grating waveguide mirror based on the leaky-mode coupling mechanism was used as one of the cavity end mirrors to allow sufficient reduction of the reflectivity of the polarization state to be suppressed in the resonator. In order to achieve efficient laser operation, an optimized mode overlap between the ring-shaped pump spot and the excited first order Laguerre-Gaussian doughnut mode is required. This was investigated theoretically by analyzing the intensity distribution generated by different fiber geometries using a commercially raytracing software (Zemax). The output power, polarization state and efficiency of the emitted laser beam were compared to that obtained with a standard flattop pumping distribution. In particular, the thermal behavior of the disk was investigated since the excessive fluorescence caused by the non-saturated excitation in the center of the homogeneously pumped disk leads to a strong heating of the crystal. This considerable heating source is avoided in the case of the ring-shaped pumping and a reduction of the temperature increase on the disk surface of about 21% (at 280 W of pump power) was observed. This should allow higher pump power densities without increasing the risk of damaging the disk or distorting the polarization purity. With a laser efficiency of 41.2% to be as high as in the case of the flattop pumping, a maximum output power of 107 W was measured.

  17. Gamma Ray Production Cross-Sections from Deuteron Induced Nuclear Reaction Measurements

    International Nuclear Information System (INIS)

    Kiss, A.Z.

    2013-01-01

    In the context of the present PIGE CRP our group decided to take part in several p-PIGE and d-PIGE thin target cross section measurements. The first task was the energy calibration of our accelerator, followed by the determination of the efficiency curve of the HPGe gamma-ray detector, and finally, to perform gamma-yield measurements and determine the first cross section values as a function of bombarding beam energy. For this experimental programme we chose deuterons as bombarding particles because d-PIGE data are scarce in IBANDL. Silicon nitride was selected as target material, since it has the advantage of being commercially available, and of giving data simultaneously for nitrogen and silicon. The proton and deuteron beams necessary for calibration and measurement were provided by the 5 MV electrostatic accelerator of ATOMKI. The accelerator has a 90-degree homogeneous field analysing magnet with adjustable energy defining slits before and after it. The magnetic field of the magnet is measured by a nuclear magnetic resonance (NMR) fluxmeter. After passing through a switching magnet, the beam was transported to the PIGE reaction chamber specifically dedicated to this project and installed to the J30 beam-line. The rather small chamber (with a diameter of 9.5 cm) was insulated from the rest of the beam pipe, but both shared a common vacuum system. The chamber had several diaphragms in its long entrance tube to form a beam of 2 mm diameter and also to eliminate secondary particles, and ended in a long Faraday cup. The accumulated beam charge was measured by an ORTEC 439 Digital Current Integrator. According to the test measurements, the stability of charge measurement was below 1%.. Gamma-rays were detected by a CANBERRA Model GR4025-7600SL coaxial type HPGe detector (59.5 mm diameter, 170 cm 3 volume, energy resolution 2.3 keV at 1.33 MeV) at an angle of 55 o relative to the incident beam direction and at a distance of 9.5 cm between the front face of the

  18. Deuteron induced Tb-155 production, a theranostic isotope for SPECT imaging and auger therapy.

    Science.gov (United States)

    Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2016-12-01

    Several terbium isotopes are suited for diagnosis or therapy in nuclear medicine. Tb-155 is of interest for SPECT imaging and/or Auger therapy. High radionuclide purity is mandatory for many applications in medicine. The quantification of the activity of the produced contaminants is therefore as important as that of the radionuclide of interest. The experiments performed at the ARRONAX cyclotron (Nantes, France), using the deuteron beam delivered up to 34MeV, provide an additional measurement of the excitation function of the Gd-nat(d,x)Tb-155 reaction and of the produced terbium and gadolinium contaminants. In this study, we investigate the achievable yield for each radionuclide produced in natural gadolinium as a function of the deuteron energy. Other reactions are discussed in order to define the production route that could provide Tb-155 with a high yield and a high radionuclide purity. This article aims to improve data for the Gd-nat(d,x) reaction and to optimize the irradiation conditions required to produce Tb-155. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Cu-62, Cu-64 and Cu-66 production with 4.2 MeV deuterons

    International Nuclear Information System (INIS)

    Avila, Mario; Morales, J.R.; Riquelme, H.O.

    1996-01-01

    Full text: The natural copper irradiation with deuterons produces the Cu-62, Cu-64 and Cu-66 radionuclides. Of two radioisotopes, those with deficiencies in neutrons, are applied in nuclear medicine diagnostic processes, mainly for the nuclear characteristic of the decay modes. The positron emitters, of short life mean Cu-62 (9.1 min, β + ) and Cu(12.7 h), are radionuclides applied in radio pharmacological preparation for brain, core, blood flux studies. The radiochemical process consists in the de solution of the irradiated metallic copper target, in acid medium. The result solution, can be neutralized with a base or a buffer at wished pH. Using a deuteron beam of 4,2 ± 0,1 MeV energy has been obtained total yields of 1,103 ± 0,011 μCl/μAh medium for 62 Cu and of 0,148 ± 0,015 μCl/μAh for 64 Cu

  20. Quasielastic electron-deuteron scattering in the weak binding approximation

    Energy Technology Data Exchange (ETDEWEB)

    Ethier, Jacob J. [William and Mary College, JLAB; Doshi, Nidhi P. [Carnegie Mellon University; Malace, Simona P. [JLAB; Melnitchouk, Wally [JLAB

    2014-06-01

    We perform a global analysis of all available electron-deuteron quasielastic scattering data using Q^2-dependent smearing functions that describe inclusive inelastic e-d scattering within the weak binding approximation. We study the dependence of the cross sections on the deuteron wave function and the off-shell extrapolation of the elastic electron-nucleon cross section, which show particular sensitivity at x >> 1. The excellent overall agreement with data over a large range of Q^2 and x suggest a limited need for effects beyond the impulse approximation, with the exception of the very high-x or very low-Q^2 regions, where short-distance effects in the deuteron become more relevant.

  1. Exclusive $\\rho^0$ muoproduction on transversely polarised protons and deuterons

    CERN Document Server

    Adolph, C.; Alexakhin, V.Yu.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Antonov, A.A.; Austregesilo, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Buchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Dalla Torre, S.; Das, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J.M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmuller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Guthorl, T.; Haas, F.; von Harrach, D.; Heinsius, F.H.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Hoppner, Ch.; d'Hose, N.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Korzenev, A.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kroumchtein, Z.V.; Kunne, F.; Kurek, K.; Lauser, L.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.K.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu.V.; Moinester, M.A.; Morreale, A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Negrini, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Nowak, W.D.; Nunes, A.S.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Rajotte, J.F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Rocco, E.; Rondio, E.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Sapozhnikov, M.G.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schluter, T.; Schmidt, K.; Schmitt, L.; Schonning, K.; Schopferer, S.; Schott, M.; Schroder, W.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Tkatchev, L.G.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vlassov, N.V.; Wang, L.; Wilfert, M.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhuravlev, N.; Zvyagin, A.

    2012-01-01

    The transverse target spin azimuthal asymmetry A_UT in hard exclusive production of rho^0 mesons was measured at COMPASS by scattering 160 GeV/c muons off transversely polarised protons and deuterons. The measured asymmetry is sensitive to the nucleon helicity-flip generalised parton distributions E^q, which are related to the orbital angular momentum of quarks in the nucleon. The Q^2, x_B and p_t^2 dependence of A_UT is presented in a wide kinematic range. Results for deuterons are obtained for the first time. The measured asymmetry is small in the whole kinematic range for both protons and deuterons, which is consistent with the theoretical interpretation that contributions from GPDs E^u and E^d approximately cancel.

  2. OBSERVATION OF STRONG - STRONG AND OTHER BEAM - BEAM EFFECTS IN RHIC

    International Nuclear Information System (INIS)

    FISCHER, W.; BLASKIEWICZ, M.; BRENNAN, J.M.; CAMERON, P.; CONNOLLY, R.; MONTAG, C.; PEGGS, S.; PILAT, F.; PTITSYN, V.; TEPIKIAN, S.; TRBOJEVIC, D.; VAN ZEIJTS, J.

    2003-01-01

    RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. For the first time, coherent beam-beam modes were observed in a bunched beam hadron collider. Other beam-beam effects in RHIC were observed in operation and in dedicated experiments with gold ions, deuterons and protons. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. During ramps unequal radio frequencies in the two rings cause the crossing points to move longitudinally. Thus bunches experience beam-beam interactions only in intervals and the tunes are modulated. In this article we summarize the most important beam-beam observations made so far

  3. Deuteron NMR study of the role of ammonium ions in the antiferroelectric transition in ND4D2AsO4

    International Nuclear Information System (INIS)

    Blinc, R.; Slak, J.; Luzar, M.

    1977-01-01

    The antiferroelectric transition mechanism, the temperature dependence of the quadrupole coupling tensor of the ND 4 deuterons in a partially deuterated NH 4 H 2 AsO 4 (ADA) single crystal is determined. The antiferroelectric transition in ADA is connected by an ordering of the 0 - H...0 hydrogen as well as by a significant distortion of the ammonium ions, the direction of which depends on the orientation of the sublattice polarization

  4. Probing CP Violation with the Deuteron Electric Dipole Moment

    CERN Document Server

    Lebedev, Oleg; Pospelov, Maxim; Ritz, Adam; Lebedev, Oleg; Olive, Keith A.; Pospelov, Maxim; Ritz, Adam

    2004-01-01

    We present an analysis of the electric dipole moment (EDM) of the deuteron as induced by CP-violating operators of dimension 4, 5 and 6 including theta QCD, the EDMs and color EDMs of quarks, four-quark interactions and the Weinberg operator. We demonstrate that the precision goal of the EDM Collaboration's proposal to search for the deuteron EDM, (1-3)\\times 10^{-27} e cm, will provide an improvement in sensitivity to these sources of one-two orders of magnitude relative to the existing bounds. We consider in detail the level to which CP-odd phases can be probed within the MSSM.

  5. Cross-sections of residual nuclei from deuteron irradiation of thin thorium target at energy 7 GeV

    Directory of Open Access Journals (Sweden)

    Vespalec Radek

    2017-01-01

    Full Text Available The residual nuclei yields are of great importance for the estimation of basic radiation-technology characteristics (like a total target activity, production of long-lived nuclides etc. of accelerator driven systems planned for transmutation of spent nuclear fuel and for a design of radioisotopes production facilities. Experimental data are also essential for validation of nuclear codes describing various stages of a spallation reaction. Therefore, the main aim of this work is to add new experimental data in energy region of relativistic deuterons, as similar data are missing in nuclear databases. The sample made of thin natural thorium foil was irradiated at JINR Nuclotron accelerator with a deuteron beam of the total kinetic energy 7 GeV. Integral number of deuterons was determined with the use of aluminum activation detectors. Products of deuteron induced spallation reaction were qualified and quantified by means of gamma-ray spectroscopy method. Several important spectroscopic corrections were applied to obtain results of high accuracy. Experimental cumulative and independent cross-sections were determined for more than 80 isotopes including meta-stable isomers. The total uncertainty of results rarely exceeded 9%. Experimental results were compared with MCNP6.1 Monte-Carlo code predictions. Generally, experimental and calculated cross-sections are in a reasonably good agreement, with the exception of a few light isotopes in a fragmentation region, where the calculations are highly under-estimated. Measured data will be useful for future development of high-energy nuclear codes. After completion, final data will be added into the EXFOR database.

  6. Progress on using deuteron-deuteron fusion generated neutrons for 40Ar/39Ar sample irradiation

    Science.gov (United States)

    Rutte, Daniel; Renne, Paul R.; Becker, Tim; Waltz, Cory; Ayllon Unzueta, Mauricio; Zimmerman, Susan; Hidy, Alan; Finkel, Robert; Bauer, Joseph D.; Bernstein, Lee; van Bibber, Karl

    2017-04-01

    We present progress on the development and proof of concept of a deuteron-deuteron fusion based neutron generator for 40Ar/39Ar sample irradiation. Irradiation with deuteron-deuteron fusion neutrons is anticipated to reduce Ar recoil and Ar production from interfering reactions. This will allow dating of smaller grains and increase accuracy and precision of the method. The instrument currently achieves neutron fluxes of ˜9×107 cm-2s-1 as determined by irradiation of indium foils and use of the activation reaction 115In(n,n')115mIn. Multiple foils and simulations were used to determine flux gradients in the sample chamber. A first experiment quantifying the loss of 39Ar is underway and will likely be available at the time of the presentation of this abstract. In ancillary experiments via irradiation of K salts and subsequent mass spectrometric analysis we determined the cross-sections of the 39K(n,p)39Ar reaction at ˜2.8 MeV to be 160 ± 35 mb (1σ). This result is in good agreement with bracketing cross-section data of ˜96 mb at ˜2.45 MeV and ˜270 mb at ˜4 MeV [Johnson et al., 1967; Dixon and Aitken, 1961 and Bass et al. 1964]. Our data disfavor a much lower value of ˜45 mb at 2.59 MeV [Lindström & Neuer, 1958]. In another ancillary experiment the cross section for 39K(n,α)36Cl at ˜2.8 MeV was determined as 11.7 ± 0.5 mb (1σ), which is significant for 40Ar/39Ar geochronology due to subsequent decay to 36Ar as well as for the determination of production rates of cosmogenic 36Cl. Additional experiments resolving the cross section functions on 39K between 1.5 and 3.6 MeV are on their way using the LICORNE neutron source of the IPN Orsay tandem accelerator. Results will likely be available at the time of the presentation of this abstract. While the neutron generator is designed for fluxes of ˜109 cm-2s-1, arcing in the sample chamber currently limits the power—straightforwardly correlated to the neutron flux—the generator can safely be run at. Further

  7. A review of polarized ion sources

    International Nuclear Information System (INIS)

    Schmor, P.W.

    1995-06-01

    The two main types of polarized ion sources in use on accelerators today are the Atomic Beam Polarized Ion Source (ABIS) source and the Optically Pumped Polarized Ion Source (OPPIS). Both types can provide beams of nuclearly polarized light ions which are either positively or negatively charged. Heavy ion polarized ion sources for accelerators are being developed. (author). 35 refs., 1 tab

  8. Polarization at SLC

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs

  9. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy.

    Science.gov (United States)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R

    2014-04-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  10. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    International Nuclear Information System (INIS)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-01-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  11. Heidelberg polarized alkali source

    International Nuclear Information System (INIS)

    Kraemer, D.; Steffens, E.; Jaensch, H.; Philipps Universitaet, Marburg, Germany)

    1984-01-01

    A new atomic beam type polarized alkali ion source has been installed at Heidelberg. In order to improve the beam polarization considerably optical pumping is applied in combination with an adiabatic medium field transition which results in beams in single hyperfine sublevels. The m state population is determined by laser-induced fluorescence spectroscopy. Highly polarized beams (P/sub s/ > 0.9, s = z, zz) with intensities of 30 to 130 μA can be extracted for Li + and Na + , respectively

  12. Dependency on the silicon detector working bias for proton–deuteron particle identification at low energies

    International Nuclear Information System (INIS)

    Dueñas, J.A.; Mengoni, D.; Assie, M.; Parkar, V.V.; Sánchez Benítez, A.M.; Shrivastava, A.; Triossi, A.; Beaumel, D.; Martel, I.

    2013-01-01

    Proton–deuteron identification at energies between 2.5 MeV and 6 MeV has been studied as a function of the detector working bias. Digital pulse shape analysis (DPSA) has been used to perform the separation from the two mono-energetic beams. The technique makes use of the current signal delivered by a 500μm neutron transmutation doped (NTD) silicon detector, which was setup for low-field injection. It is shown that identification of the H isotopes is better when the detector working bias is close to the depletion voltage rather than over-depletion. The presence of high frequency noise diminished the possibility of identification, however, the use of a simple triangular smoothing algorithm counteracted this

  13. Analysis of closed orbit deviations for a first direct deuteron electric dipole moment measurement at the cooler synchrotron COSY

    Science.gov (United States)

    Schmidt, V.; Lehrach, A.

    2017-07-01

    The Jülich Electric Dipole moment Investigations (JEDI) collaboration in Julich is preparing a direct EDM measurement of protons and deuterons first at the storage ring COSY (COoler SYnchrotron) and later at a dedicated storage ring. Ensuring a precise measurement, various beam and spin manipulating effects have to be considered and investigated. A distortion of the closed orbit is one of the major sources for systematic uncertainties. Therefore misalignments of magnets and residual power supply oscillations are simulated using the MAD-X code in order to analyse their effect on the orbit. The underlying model for all simulations includes the dipoles, quadrupoles and sextupoles at COSY as well as the corrector magnets and BPMs (Beam Position Monitors). Since most sextupoles are only used during beam extraction, the sextupole strengths are set to zero resulting in a linear machine. The optics is adjusted in a way that the dispersion is zero in the straight sections. The closed orbit studies are performed for deuterons with a momentum of 970 MeV/c.

  14. Alpha-deuteron elastic scattering around 40 MeV

    International Nuclear Information System (INIS)

    De, A.; Karmakar, S.; Roychaudhury, T.; Dasgupta, S.S.; Chintalapudi, S.N.; Ismail, M.; Banerjee, S.R.; Divatia, A.S.

    1989-01-01

    Differential cross section for alpha-deuteron elastic scattering has been measured at several energies around 40 MeV incident alpha. General behaviour of angular distributions remaining close to that predicted by Faddeev type calculations, a sharp energy dependence is observed. (author). 8 refs

  15. Study of double scattering effect in antiproton--deuteron annihilation

    International Nuclear Information System (INIS)

    Zemany, P.D.

    1975-01-01

    The double scattering process in the deuteron is investigated for the reaction anti pd → p/sub s/ + mesons. About 30 percent of the apparent anti pn annihilations are involved in double scattering. A model which describes the properties of protons emerging from apparent anti pn annihilations is presented

  16. A Study of the Luminosity Produced by AN Electron Beam-Emitting Rocket in the Polar Ionosphere: Echo 7

    Science.gov (United States)

    Franz, Robert Curtis

    Optical observations made during the ECHO 7 experiment show for the first time the luminous manifestations of the Beam-Plamsa-Interaction in a space environment. The optical observations were made using photometers and a low-light-level television camera over an altitude range of 90 to 290 km. Imagery, obtained for the first time in the ECHO series, show the luminous spatial characteristics of the BPI including the formation of diffuse luminous columns extending along the magnetic field in the same and opposite directions as beam propagation. The beam -plasma-discharge (BPD) evolved from the BPI, igniting first about 140 km, and quenching at 115 km. The BPD appeared as discrete enhancements in the intensity of portions of the diffuse columns extending 200 to 225 m along the magnetic field line. Relaxations oscillations, or non-steady BPD with frequencies between 20 and 45 Hz were observed prior to BPD initiation. At 108 km, the distinct Larmor spiral structure of the beam became visible for a distance of about 300 meters along the field. Periodic attitude control system (ACS) Nitrogen gas releases producing spectacular luminosity patterns were seen during the gun operation throughout the flight. The injected gas affected the vehicle neutralization current flow pattern causing current to be concentrated in the gas plume as it flowed toward the MAIN payload. In the absence of ACS gas, the luminosity pattern surrounding the MAIN payload showed an asymmetry, being brighter at the opposite end of the MAIN away from the electron gun.

  17. A study of the luminosity produced by an electron beam-emitting rocket in the polar ionosphere: ECHO 7

    International Nuclear Information System (INIS)

    Franz, R.C.

    1991-01-01

    Optical observations made during the ECHO 7 experiment show for the first time the luminous manifestations of the Beam-Plasma-Interaction in a space environment. The optical observations were made using photometers and a low-light-level television camera over an altitude range of 90 to 290 km. Imagery, obtained for the first time in the ECHO series, show the luminous spatial characteristics of the BPI including the formation of diffuse luminous columns extending along the magnetic field in the same and opposite directions as beam propagation. The beam-plasma-discharge (BPD) evolved from the BPI, igniting first about 140 km, and quenching at 115 km. The BPD appeared as discrete enhancements in the intensity of portions of the diffuse columns extending 200 to 225 m along the magnetic field line. Relaxations oscillations, or non-steady BPD with frequencies between 20 and 45 Hz were observed prior to BPD initiation. At 108 km, the distinct Larmor spiral structure of the beam became visible for distance of about 300 meters along the field. Periodic attitude control system (ACS) Nitrogen gas releases producing spectacular luminosity patterns were seen during the gun operation throughout the flight. The injected gas affected the vehicle neutralization current flow pattern causing current to be concentrated in the gas plume as it flowed toward the MAIN payload. In the absence of ACS gas, the luminosity pattern surrounding the MAIN payload showed an asymmetry, being brighter at the opposite end of the MAIN away from the electron gun

  18. Fluid dynamics characteristics of IFMIF Li-jet under deuteron load

    International Nuclear Information System (INIS)

    Fuertes, F.M.; Casal, N.; Barbero, R.; Garcia, A.; Branas, B.; Riccardi, B.

    2006-01-01

    IFMIF is an accelerator-based neutron source with the purpose of testing and fully qualify fusion candidate materials. Two 40 MeV deuteron beams, 125 mA current each, strike a target of liquid lithium flowing over a concave back-plate. The deuteron-lithium stripping reactions produce an intense high energy neutron flux which simulates the fusion reactor irradiation. To remove the beam power deposited on it (up to 10 MW), the lithium jet must have a speed around 20 m/s, which may give rise to flow instabilities. However, a stable liquid free surface is a very critical requirement of the target system, otherwise the neutron field could be altered. Therefore, the possible occurrences that could affect the hydrodynamical stability of the lithium jet are being examined in the frame of EFDA Technology Workprogramme. This paper summarizes the studies of the fluid dynamics characteristics of the lithium jet under the deuteron heat load, based on applications of the CFX 5.7 code, a commercial Navier-Stokes equations solver with specific modelling of turbulence, like the classical k - ε among others. Significant effort has been dedicated to develop an optimized and reliable numerical mesh, able to illustrate the behaviour of the lithium free surface and other issues like heat transport along the stream and to the back-plate, and lithium vaporization. First activities were dedicated to explore the effects on the results of a three-dimensional unstructured numerical mesh covering the area from the nozzle upstream the target to the exit of the target region. Subsequently, a more effective approach to this issue has been undertaken by developing a fine two-dimensional mesh along the longitudinal flow direction, with refined areas in the free surface and close to the wall regions. The numerical convergence criteria have been found to be strongly sensitive with respect to small modifications of the adopted unstructured mesh. Owing to the uncertainties associated with modelling

  19. A polarized alkali ion source

    International Nuclear Information System (INIS)

    Boettger, R.; Tungate, G.; Bauer, B.; Egelhof, P.; Moebius, K.H.; Steffens, E.

    1978-01-01

    The beam foil technique has been applied to detect nuclear vector polarization of a 10 keV 23 Na + beam. The result was about 70% of the atomic beam polarization thus limiting the depolarization by the surface ionizer to at most 30%. In a Coulomb excitation experiment with a tensor polarized 42 MeV 23 Na 7+ beam an effect of 0.011 +- 0.003 was measured yielding a value of t 20 approx. 0.04 for the beam polarization. The depolarization during the acceleration process can be estimated to be about 0.8. (orig.) [de

  20. Polarized nuclei in plastic scintillators: a new class of polarized targets

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.; Nemchonok, I. B.

    2001-06-01

    Polarized scintillating targets are now routinely available: protons, deuterons or other nuclei in blocks of scintillating organic polymer, doped with the free radical TEMPO, are polarized dynamically in a field of 2.5 T in a vertical 3He-4He dilution refrigerator. A 19 mm diameter plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable nuclear polarizations have been achieved newly in boron enriched polystyrene-based scintillating material. A scintillator target with high detection sensitivity for low energy neutrons has been so made available, in which both protons and boron nuclei are polarized. .

  1. Propagation properties of right-hand circularly polarized Airy-Gaussian beams through slabs of right-handed materials and left-handed materials.

    Science.gov (United States)

    Huang, Jiayao; Liang, Zijie; Deng, Fu; Yu, Weihao; Zhao, Ruihuang; Chen, Bo; Yang, Xiangbo; Deng, Dongmei

    2015-11-01

    The propagation of right-hand circularly polarized Airy-Gaussian beams (RHCPAiGBs) through slabs of right-handed materials (RHMs) and left-handed materials (LHMs) is investigated analytically and numerically with the transfer matrix method. An approximate analytical expression for the RHCPAiGBs passing through a paraxial ABCD optical system is derived on the basis of the Huygens diffraction integral formula. The intensity and the phase distributions of the RHCPAiGBs through RHMs and LHMs are demonstrated. The influence of the parameter χ0 on the propagation of RHCPAiGBs through RHM and LHM slabs is investigated. The RHCPAiGBs possess transverse-momentum currents, which shows that the physics underlying this intriguing accelerating effect is that of the combined contributions of the transverse spin and transverse orbital currents. Additionally, we go a step further to explore the radiation force including the gradient force and scattering force of the RHCPAiGBs.

  2. Analyzing power in inclusive π+ and π- production at high xF with a 200 GeV polarized proton beam

    International Nuclear Information System (INIS)

    Adams, D.L.; Bonner, B.E.; Buchanan, J.A.; Clement, J.M.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Phillips, G.C.; Roberts, J.B.; Skeens, J.; White, J.L.; Akchurin, N.; Langland, J.; Onel, Y.; Belikov, N.I.; Derevschikov, A.A.; Grachov, O.A.; Matulenko, Yu.A.; Meschanin, A.P.; Nurushev, S.B.; Patalakha, D.I.; Rykov, V.L.; Solovyanov, V.L.; Vasiliev, A.N.; Bystricky, J.; Lehar, F.; Lesquen, A. de; Cossairt, J.D.; Read, A.L.; En'yo, H.; Funahashi, H.; Goto, Y.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Grosnick, D.P.; Hill, D.A.; Lopiano, D.; Ohashi, Y.; Spinka, H.; Stanek, R.W.; Underwood, D.G.; Yokosawa, A.; Iwatani, K.; Krueger, K.W.; Kuroda, K.; Michalowicz, A.; Luehring, F.C.; Miller, D.H.; Maki, T.; Pauletta, G.; Penzo, A.; Schiavon, P.; Zanetti, A.; Van Rossum, L.; Salvato, G.; Villari, A.; Takashima, R.; Takeutchi, F.; Tamura, N.; Tanaka, N.; Yoshida, T.

    1991-01-01

    The analyzing power in inclusive charged pion production has been measured using the 200 GeV Fermilab polarized proton beam. A striking dependence in χ F is observed in which A N increases from 0 to 0.42 with increasing χ F for the π + data and decreases from 0 to -0.38 with increasing χ F for π - data. The kinematic range covered is 0.2≤χ F ≤0.9 and 0.2≤p T ≤2.0 GeV/c. In a simple model our data indicate that at large χ F the transverse spin of the proton is correlated with that of its quark constituents. (orig.)

  3. Analyzing power measurement of pp elastic scattering in the Coulomb-nuclear interference region with the 200-GeV/c polarized-proton beam at Fermilab

    International Nuclear Information System (INIS)

    Akchurin, N.; Langland, J.; Onel, Y.; Bonner, B.E.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Roberts, J.B.; Skeens, J.; White, J.L.; Bravar, A.; Giacomich, R.; Penzo, A.; Schiavon, P.; Zanetti, A.; Bystricky, J.; Lehar, F.; de Lesquen, A.; van Rossum, L.; Cossairt, J.D.; Read, A.L.; Derevschikov, A.A.; Matulenko, Y.A.; Meschanin, A.P.; Nurushev, S.B.; Patalakha, D.I.; Rykov, V.L.; Solovyanov, V.L.; Vasiliev, A.N.; Grosnick, D.P.; Hill, D.A.; Laghai, M.; Lopiano, D.; Ohashi, Y.; Shima, T.; Spinka, H.; Stanek, R.W.; Underwood, D.G.; Yokosawa, A.; Funahashi, H.; Goto, Y.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Iwatani, K.; Kuroda, K.; Michalowicz, A.; Luehring, F.C.; Miller, D.H.; Maki, T.; Pauletta, G.; Rappazzo, G.F.; Salvato, G.; Takashima, R.

    1993-01-01

    The analyzing power A N of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5x10 -3 to 5.0x10 -2 (GeV/c) 2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed

  4. Internal Spin Structure of the Nucleon in Polarized Deep Inelastic Muon-Nucleon Scattering

    International Nuclear Information System (INIS)

    Wislicki, W.

    1998-01-01

    We present the study of the internal spin structure of the nucleon in spin-dependent deep inelastic scattering of muons on nucleons. The data were taken by the NA47 experiment of the Spin Muon Collaboration (SMC) on the high energy muon beam at CERN. The experiment used the polarized proton and deuteron targets. The structure function g 1 p (x) and g 1 d (x) were determined from the asymmetries of the spin-dependent event rates in the range of 0.003 2 >=10 GeV 2 . Using the first moments of these structure functions an agreement with the Bjorken sum rule prediction was found within one standard deviation. The first moments of g 1 (x), for both proton and deuteron, are smaller than the Ellis-Jaffe sum rule prediction. This disagreement can be interpreted in terms of negative polarization of the strange sea in the nucleon. The singlet part of the axial current matrix element can be interpreted as an overall spin carried by quarks in the nucleon. Its value is significantly smaller than nucleon spin. Semi-inclusive asymmetries of yields of positive and negative hadrons produced on both targets were also measured and analysed in term of quark-parton model, together with inclusive asymmetries. From this analysis the quark spin distributions were determined, separately for valence u and d quarks and for non-strange sea quarks. Valence u quarks are positively polarized and their polarization increases with x. Valence d quarks are negatively polarized and their polarization does not exhibit any x-dependence. The non-strange sea is unpolarized in the whole measured range of x. The first moments of the valance quark spin distributions were found consistent with the values obtained from weak decay constants F and D and their second moments are consistent with lattice QCD calculations. In the QCD analysis of the world data the first moment of the gluon spin distribution was found with a large error. Also, a search for a non-perturbative anomaly at high x was done on the world

  5. Photoproduction of Neutral Kaons on Deuterons

    Science.gov (United States)

    Beckford, Brian

    2006-11-01

    Experimentation to greater understand the strangeness production mechanism can be performed by observing the electromagnetic interaction that leads to Kaon photoproduction. The n (γ, K^0) λ reaction may assist in answering questions about the strangeness photo-production process. An experiment into the elementary Kaon photoproduction process was investigated in an experiment conducted at the Laboratory of Nuclear Science of Tohoku University (LNS) using the Neutral Kaon Spectrometer. (NKS). The experiment was conducted by the d (γ, K^0) reaction. K^0 will be measured in the K^0->π^+π^- decay chain by the NKS. The NKS implements many detectors working in coincidence: These ranging from the Tagged Photon Beam generated by the 1.2 GeV Electron beam via bremsstrahlung, an Inner Plastic Scintillator Hodoscope (IH), a Straw Drift Chamber (SDC), a Cylindrical Drift Chamber (CDC), and an Outer Plastic Scintillator Hodoscope. Due to the background produced through the γ-> e+e- process, electron veto counters (EV) were placed in the middle of the OH to reject charged particles in the horizontal plane of the beam line. Preliminary analysis of the data indicates the need for pulse height correction. This was achieved by analysis of the Inner and Outer hodoscopes, and determining the energy deposit in the scintillators.

  6. Theoretical predictions for the polarization of the J = 0 - 1 neonlike germanium X-ray laser line in the presence of a directed beam of hot electrons

    International Nuclear Information System (INIS)

    Inal, M.K.; Dubau, J.; Cornille, M.

    1998-01-01

    The polarization of the neonlike germanium J = 0 - 1 laser line, which would arise from the existence of a directed beam of hot electrons in the amplifying plasma, is theoretically investigated. The relative populations of the magnetic sublevels in the lower J = 1 laser level have been determined by allowing for the processes of direct excitation from the 2p 6 ground level and collisional de-excitation from the upper J = 0 laser level. Elastic collisions leading to transitions between the M J = 0 and M J =1 sublevels within the lower level of the lasing line have also been taken into account. The required elastic and inelastic collision strengths for transitions between magnetic sublevels have been computed in a semi-relativistic distorted-wave approximation, for incident electron energies up to 15 keV. Our calculations predict a rather low degree of polarization for the J = 0 - 1 line, although the elastic collisions are found to play a negligibly small role in the redistribution of magnetic sublevel populations. (author)

  7. HDice, Highly-Polarized Low-Background Frozen-Spin HD Targets for CLAS experiments at Jefferson Lab

    International Nuclear Information System (INIS)

    Large, portable frozen-spin HD (Deuterium-Hydride) targets have been developed for studying nucleon spin properties with low backgrounds. Protons and Deuterons in HD are polarized at low temperatures (∼10mK) inside a vertical dilution refrigerator (Oxford Kelvinox-1000) containing a high magnetic field (up to 17T). The targets reach a frozen-spin state within a few months, after which they can be cold transferred to an In-Beam Cryostat (IBC). The IBC, a thin-walled dilution refrigerator operating either horizontally or vertically, is use with quasi-4π detector systems in open geometries with minimal energy loss for exiting reaction products in nucleon structure experiments. The first application of this advanced target system has been used for Spin Sum Rule experiments at the LEGS facility in Brookhaven National Laboratory. An improved target production and handling system has been developed at Jefferson Lab for experiments with the CEBAF Large Acceptance Spectrometer, CLAS

  8. What can we learn from polarized structure function data?

    CERN Document Server

    Ball, Richard D.; Altarelli, Guido; Forte, Stefano; Ball, Richard D.; Ridolfi, Giovanni; Altarelli, Guido; Forte, Stefano

    1997-04-20

    We summarise the perturbative QCD analysis of the structure function data for g_1 from longitudinally polarized deep inelastic scattering from proton, deuteron and neutron targets, with particular emphasis on testing sum rules, determining helicity fractions, and extracting the strong coupling from both scaling violations and the Bjorken sum rule.

  9. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.

    1992-01-01

    This report discusses the following topics relating to inertial confinement with spin polarized hydrogen targets: low temperature implementation of mating a target to omega; dilution-refrigerator cold-entry and retrieval system; target shell tensile strength characterization at low temperatures; and proton and deuteron spin-lattice relaxation measurements in HD in the millikelvin temperature range

  10. Some developments in polarized ion sources

    International Nuclear Information System (INIS)

    Witteveen, G.J.

    1979-01-01

    Investigations concerning an atomic beam source are presented and a new polarized ion source of a more universal type is introduced. Polarized and unpolarized beams of positively or negatively charged ions can be produced with this new version and the theoretical limits are a polarized negative hydrogen ion beam with an intensity of about 1 mH and a polarized proton beam with an intensity of 10 mH. (C.F.)

  11. Modeling of polarization phenomena due to RF sheaths and electron beams in magnetized plasma; Modelisation de phenomenes de polarisation par des gaines rf et des faisceaux electroniques dans un plasma magnetise

    Energy Technology Data Exchange (ETDEWEB)

    Faudot, E

    2005-07-01

    This work investigates the problematic of hot spots induced by accelerated particle fluxes in tokamaks. It is shown that the polarization due to sheaths in the edge plasma in which an electron beam at a high level of energy is injected, can reach several hundreds volts and thus extend the deposition area. The notion of obstructed sheath is introduced and explains the acceleration of energy deposition by the decreasing of the sheath potential. Then, a 2-dimensional fluid modeling of flux tubes in front of ICRF antennae allows us to calculate the rectified potentials taking into account RF polarization currents transverse to magnetic field lines. The 2-dimensional fluid code designed validates the analytical results which show that the DC rectified potential is 50% greater with polarization currents than without. Finally, the simultaneous application of an electron beam and a RF potential reveals that the potentials due to each phenomenon are additives when RF potential is much greater than beam polarization. The density depletion of polarized flux tubes in 2-dimensional PIC (particles in cells) simulations is characterized but not yet explained. (author)

  12. a Calculation of the Deuteron as a Biskyrmion.

    Science.gov (United States)

    Schramm, Alec Judah

    A numerical relaxation procedure is used to find a suitable deuteron configuration in the Skyrme model of low energy strong interactions. The initial configuration used is that of two single skyrmion solutions place side by side on a lattice using the so-called product ansatz, without any a priori symmetry assumptions. Two such configurations are investigated, one with chiral symmetry explicitly broken by a massive pion field, the other in the chiral limit using a massless pion. A bound biskymion state is found for both cases, and the symmetry of the configurations explored. It is discovered that the relaxed configurations no longer appear to be that of a product of chiral fields, thus strengthening the validity of this ab initio approach to the deuteron. The research was conducted on the FPS -164 attached array processor at the Triangle Universities Computation Center.

  13. Relativistic correction to the deuteron magnetic moment and angular condition

    International Nuclear Information System (INIS)

    Kondratyuk, L.A.; Strikman, M.I.

    1983-01-01

    The relativistic correction (RC) to the deuteron magnetic moment μsub(d) is investigated using the light-cone dynamics. The restrictions imposed by the angular condition on the electromagnetic current operator of deuteron are discussed in detail. It is shown that the additive model for the current operator of interacting consistuencies is consistent with the angular condition only for the two first terms of expansion of the ''good'' electromagnetic current component jsub(+) in powers of the momentum transfer q. The RC into μsub(d) is calculated using the mattix element of the ''good'' component. The account of RC decreases essentially the discrepancy between the theoretical and experimental values. The value of Δsub(μ) is determined for the Hamada-Johnston potential hard core potential (0.93x10 -2 ) for the Reid soft core potential (0.71x10 -2 ) and for the Paris potential (0.63x10 -2 )

  14. Final-state interaction in processes of deuteron breaking

    International Nuclear Information System (INIS)

    Thome Filho, Z.D.

    1974-12-01

    Interaction between particles in the final state of reactions can strongly affect the experimental angular distributions, as in the scattering processes with the breaking of the deuteron target, where the final state interaction is responsible for the disappearance of the differential cross section in the front direction. It is then necessary to include the contribution of the final state interaction to small angles of incoherent processes particle-deuteron. In this work line, an analysis is made of the process πd → πpn for different values of the incident energy. The data obtained are compared with existing experimental data. The hypothesis is also considered of the nucleon which collides with the incident particle being outside the mass layer. An analytical extension of the resonant amplitude πN outwards the mass layer is also used

  15. Dipole stabilizer rods for 400 keV deuteron RFQ

    International Nuclear Information System (INIS)

    Sista, V.L.S. Rao; Srivastava, S.C.L.; Pande, Rajni; Roy, Shweta; Singh, P.

    2009-01-01

    In our 400 keV deuteron RFQ for neutron production, the destructive dipolar modes are very close to the required quadrupolar mode. In order to increase the spacing between the quadrupole and dipole modes the dipolar stabilizer rods (DSR's) are used. The design of the DSR's is done using the computer code CST Microwave studio. The variation of the quadrupole and dipolar mode frequencies with the radius and length of the DSR's are studied. (author)

  16. Low-energy deuteron-induced reactions on Nb-93

    Czech Academy of Sciences Publication Activity Database

    Avrigeanu, M.; Avrigeanu, V.; Bém, Pavel; Fischer, U.; Honusek, Milan; Koning, A.J.; Mrázek, Jaromír; Šimečková, Eva; Štefánik, Milan; Závorka, Lukáš

    2013-01-01

    Roč. 88, č. 1 (2013), 014612 ISSN 0556-2813 R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : deuteron-induced reactions * cross sections * breakup mechanism Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.881, year: 2013 http://prc. aps .org/pdf/PRC/v88/i1/e014612

  17. Birefringence (spin rotation and spin dichroism) of high-energy deuterons

    International Nuclear Information System (INIS)

    Baryshevskij, V.G.; Rovba, A.A.

    2016-01-01

    The phenomenon of birefringence (spin rotation and spin dichroism) of high-energy deuterons, currently observed in experiments, is the macroscopic quantum effect similar to the birefringence effect known in optics. This paper considers the contribution coming to the spin dichroism effect from the interaction of deuteron electric quadrupole moment and nuclear electric field. The effect proves to be responsive to the behavior of deuteron ground state wave functions at a small distance. [ru

  18. Production of (anti)deuterons in heavy-ion collisions at SPS energies

    CERN Document Server

    Kolesnikov, Vadim Ivanovich

    2015-01-01

    In this paper NA49 results on the production of deuterons and anti-deuterons in semi-central Pb+Pb collisions at 158A GeV are presented. Midrapidity transverse momentum spectra of d ( ̄ d ) are analysed in several centrality bins. A combined analysis of (anti)deuterons and (anti)protons iss performed in the framework of the coalescence model.

  19. Preliminary design study and problem definition for intense CW superconducting deuteron ion linac for fusion material study

    International Nuclear Information System (INIS)

    Tanabe, Y.; Kakutani, N.; Ota, T.; Yamaguchi, A.; Takeda, O.; Wachi, Y.; Yamazaki, C.; Morii, Y.

    1997-01-01

    The advantages of superconducting (SC) cavity have been verified for many electron accelerators and the application of SC cavity to high intensity CW ion linacs is currently being considered. These linacs have been required for neutron irradiation tests of materials, transmutation of nuclear waste and so on. An SC linac consisting of SC cavities, SC quadrupole magnets and cryostats, was preliminarily designed to investigate the feasibility of applying to deuteron machine. Beam dynamics analysis was also carried out by using a modified PARMILA code in order to confirm no beam loss. Since radiation damage of superconductors is especially severe for such a machine, data relating to the damage were surveyed and discussed. Moreover, other major facilities such as cryogenic system, radio frequency amplifier and RF control system were considered. Many problems to be solved were defined but no critical issues were found. In consequence, it became clear that SC linac is very attractive and competitive with a room-temperature linac. (orig.)

  20. Determination of scattering coefficient considering wavelength and absorption dependence of anisotropy factor measured by polarized beam for biological tissues

    Science.gov (United States)

    Fukutomi, D.; Ishii, K.; Awazu, K.

    2015-12-01

    Anisotropy factor g, one of the optical properties of biological tissues, is the most important parameter to accurately determine scattering coefficient μs in the inverse Monte Carlo (iMC) simulation. It has been reported that g has wavelength and absorption dependence, however, there are few attempts in order to calculate μs of biological tissue considering the wavelength and absorption dependence of g. In this study, the scattering angular distributions of biological tissue phantoms were measured in order to determine g by using goniometric measurements with three polarization conditions at strongly and weakly absorbing wavelengths of hemoglobin. Then, optical properties, especially, μs were measured by integrating sphere measurements and iMC simulation in order to confirm the influence of measured g on optical properties in comparison of with general value of g (0.9) for soft biological tissue. Consequently, it was found that μs was overestimated at strongly absorbing wavelength, however, μs was underestimated at weakly absorbing wavelength if the g was not considered its wavelength and absorption dependence.