WorldWideScience

Sample records for polarized cold neutrons

  1. Optimization of a solid state polarizing bender for cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, V.R.; Washington, A.L.; Stonaha, P.; Ashkar, R.; Kaiser, H. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington IN (United States); Krist, T. [Helmholtz Zentrum Berlin, 14109 Berlin (Germany); Pynn, Roger [Center for the Exploration of Energy and Matter, Indiana University, Bloomington IN (United States); Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge TN (United States)

    2014-12-21

    We have designed a solid state bender to polarize cold neutrons for the Spin Echo Scattering Angle Measurement (SESAME) instrument at the Low Energy Neutron Source (LENS) at Indiana University. The design attempts to achieve high neutron polarization across a wide range of neutron wavelengths and divergence angles by optimizing the supermirror coating materials. The transmission and polarizing efficiency of the bender were modeled using the VITESS software, then measured at both continuous-wave and pulsed neutron sources. While the measured peak neutron transmission and polarization agree reasonably well with simulations, neither quantity has been successfully modeled for long wavelength neutrons. These results imply an insufficient understanding of the magnetic microstructure of the supermirror coatings used.

  2. Precision Polarization of Neutrons

    Science.gov (United States)

    Martin, Elise; Barron-Palos, Libertad; Couture, Aaron; Crawford, Christopher; Chupp, Tim; Danagoulian, Areg; Estes, Mary; Hona, Binita; Jones, Gordon; Klein, Andi; Penttila, Seppo; Sharma, Monisha; Wilburn, Scott

    2009-05-01

    Determining polarization of a cold neutron beam to high precision is required for the next generation neutron decay correlation experiments at the SNS, such as the proposed abBA and PANDA experiments. Precision polarimetry measurements were conducted at Los Alamos National Laboratory with the goal of determining the beam polarization to the level of 10-3 or better. The cold neutrons from FP12 were polarized using optically polarized ^3He gas as a spin filter, which has a highly spin-dependent absorption cross section. A second ^ 3He spin filter was used to analyze the neutron polarization after passing through a resonant RF spin rotator. A discussion of the experiment and results will be given.

  3. Imaging with cold neutrons

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-01-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  4. Imaging with cold neutrons

    Science.gov (United States)

    Lehmann, E. H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-09-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 Å). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects—choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  5. Support for cold neutron utilization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kye Hong; Han, Young Soo; Choi, Sungmin; Choi, Yong; Kwon, Hoon; Lee, Kwang Hee

    2012-06-15

    - Support for experiments by users of cold neutron scattering instrument - Short-term training of current and potential users of cold neutron scattering instrument for their effective use of the instrument - International collaboration for advanced utilization of cold neutron scattering instruments - Selection and training of qualified instrument scientists for vigorous research endeavors and outstanding achievements in experiments with cold neutron - Research on nano/bio materials using cold neutron scattering instruments - Bulk nano structure measurement using small angle neutron scattering and development of analysis technique.

  6. Support for cold neutron utilization

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Han, Young Soo; Choi, Sungmin; Choi, Yong; Kwon, Hoon; Lee, Kwang Hee

    2012-06-01

    - Support for experiments by users of cold neutron scattering instrument - Short-term training of current and potential users of cold neutron scattering instrument for their effective use of the instrument - International collaboration for advanced utilization of cold neutron scattering instruments - Selection and training of qualified instrument scientists for vigorous research endeavors and outstanding achievements in experiments with cold neutron - Research on nano/bio materials using cold neutron scattering instruments - Bulk nano structure measurement using small angle neutron scattering and development of analysis technique

  7. Cold neutron production and application

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Watanabe, Noboru.

    1976-01-01

    The first part gives general introduction to cold neutrons, namely the definition and the role as a probe in basic science and technology. The second part reviews various methods of cold neutron production. Some physical characteristics required for cold moderators are presented, and a list summarizes a number of cold moderators and their reactor physics constants. The definition of flux gain factor and the measured values for liquid light- and heavy-hydrogen are also given. The cold neutron spectra in methane and liquid hydrogen measured by LINAC time-of-flight method are presented to show the advantage of solid methane. The cold neutron sources using experimental reactors or linear accelerators are explained along with the examples of existing facilities. Two Japanese programs, the one is the use of a high flux reactor and the other is the use of a LINAC, are also presented. The third part of this report reviews the application areas of cold neutrons. (Aoki, K.)

  8. A large angle cold neutron bender using sequential garland reflections for pulsed neutron source

    International Nuclear Information System (INIS)

    Ebisawa, T.; Tasaki, S.; Soyama, K.; Suzuki, J.

    2001-01-01

    We discuss a basic structure and performance of a new cold neutron bender using sequential garland reflections, in order to bend a neutron beam with large divergence by large angle. Using this bender for a pulsed neutron source we could not only avoid the frame overlap for cold neutrons but also install a plural spectrometers at a cold guide and obtain polarized neutron beams if necessary. (author)

  9. Parity-nonconserving cold neutron-parahydrogen interactions

    Science.gov (United States)

    Partanen, T. M.

    2012-12-01

    Three pion-dominated observables of the parity-nonconserving interactions between the cold neutrons and parahydrogen are calculated. The transversely polarized neutron spin rotation, unpolarized neutron longitudinal polarization, and photon asymmetry of the radiative polarized neutron capture are considered. For the numerical evaluation of the observables, the strong interactions are taken into account by the Reid93 potential and the parity-nonconserving interactions by the DDH and EFT models including two different EFT parity-nonconserving two-pion exchange potentials.

  10. POLARIZED NEUTRONS IN RHIC

    Energy Technology Data Exchange (ETDEWEB)

    COURANT,E.D.

    1998-04-27

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

  11. Imaging with Polarized Neutrons

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2018-01-01

    Full Text Available Owing to their zero charge, neutrons are able to pass through thick layers of matter (typically several centimeters while being sensitive to magnetic fields due to their intrinsic magnetic moment. Therefore, in addition to the conventional attenuation contrast image, the magnetic field inside and around a sample can be visualized by detecting changes of polarization in a transmitted beam. The method is based on the spatially resolved measurement of the cumulative precession angles of a collimated, polarized, monochromatic neutron beam that traverses a magnetic field or sample.

  12. Polarized neutrons for Australian scientific research

    International Nuclear Information System (INIS)

    Kennedy, Shane J.

    2005-01-01

    Polarized neutron scattering has been a feature at ANSTO's HIFAR research reactor since the first polarization analysis (PA) spectrometer Longpol began operation over 30 years ago. Since that time, we have improved performance of Longpol and added new capabilities in several reincarnations of the instrument. Most of the polarized neutron experiments have been in the fields of magnetism and superconductivity, and most of that research has involved PA. Now as we plan our next generation neutron beam facility, at the Replacement Research Reactor (RRR), we intend to continue the tradition of PA but with a far broader scope in mind. Our new capabilities will combine PA and energy analysis with both cold and thermal neutron source spectra. We will also provide capabilities for research with polarized neutrons in small-angle neutron scattering and in neutron reflectometry. The discussion includes a brief historical account of the technical developments with a summary of past and present applications of polarized neutrons at HIFAR, and an outline of the polarized neutron capabilities that will be included in the first suite of instruments, which will begin operation at the new reactor in 2006

  13. A polarizing neutron periscope for neutron imaging

    International Nuclear Information System (INIS)

    Schulz, Michael; Boeni, Peter; Calzada, Elbio; Muehlbauer, Martin; Neubauer, Andreas; Schillinger, Burkhard

    2009-01-01

    Optical neutron polarizers like guides or benders destroy the collimation of a neutron beam due to multiple reflections or scattering. This makes them unsuitable for their use in polarized neutron radiography, because the beam collimation is essential to obtain high spatial resolution. We have developed a neutron polarizer based on the principle of an optical periscope with a zigzag double reflection on two parallel high-m supermirror polarizers. If the supermirrors are perfectly parallel and flat, the beam collimation is left unchanged by such a device. A first proof of concept version of this type of polarizer was built and tested. We expect to achieve a beam polarization of up to 99% with an improved version yet to be built.

  14. A polarizing neutron periscope for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael [FRM II, Lichtenbergstr. 1, 85748 Garching (Germany); Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany)], E-mail: Michael.Schulz@frm2.tum.de; Boeni, Peter [Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany); Calzada, Elbio; Muehlbauer, Martin [FRM II, Lichtenbergstr. 1, 85748 Garching (Germany); Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany); Neubauer, Andreas [Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany); Schillinger, Burkhard [FRM II, Lichtenbergstr. 1, 85748 Garching (Germany); Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany)

    2009-06-21

    Optical neutron polarizers like guides or benders destroy the collimation of a neutron beam due to multiple reflections or scattering. This makes them unsuitable for their use in polarized neutron radiography, because the beam collimation is essential to obtain high spatial resolution. We have developed a neutron polarizer based on the principle of an optical periscope with a zigzag double reflection on two parallel high-m supermirror polarizers. If the supermirrors are perfectly parallel and flat, the beam collimation is left unchanged by such a device. A first proof of concept version of this type of polarizer was built and tested. We expect to achieve a beam polarization of up to 99% with an improved version yet to be built.

  15. HANARO Cold Neutron Source Design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kye Hong; Choi, Jung Woon; Kim, Hark Rho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yu, Yeoung Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Hwang, Dong Gil [GNEC, Seoul (Korea, Republic of)

    2007-07-01

    The cold neutron source (CNS) design has been completed and confirmed by the full scale mock-up test. When its licensing is expected to be issued within 2007, the CNS will be installed in HANARO in 2009 and be operated from 2010 after the commissioning. The production of cold neutrons from 2009 will enable the neutron guides and the scattering instruments to be commissioned in parallel. From 2010, a new era of neutron science will be open in the area of biotechnology, nano-technology, and material science through the probing capability of cold neutrons with nano-wavelength. The prominent research output that will be created from this cold neutron research facility will ensure the basic science and technology, which will provide the strong foundation for the advanced engineering and technology. This paper presents the design of in-pool assembly including the nuclear design of moderator cell, the manufacturing test of in-pool assembly, the full scale mock-up test, and the safety analysis.

  16. High precision neutron polarization for PERC

    International Nuclear Information System (INIS)

    Klauser, C.

    2013-01-01

    The decay of the free neutron into a proton, an electron and an anti-electron neutrino offers a simple system to study the semi-leptonic weak decay. High precision measurements of angular correlation coefficients of this decay provide the opportunity to test the standard model on the low energy frontier. The Proton Electron Radiation Channel PERC is part of a new generation of expriments pushing the accuracy of such an angular correlation coefficient measurement towards 10 -4 . Past experiments have been limited to an accuracy of 10 -3 with uncertainties on the neutron polarization as one of the leading systematic errors. This thesis focuses on the development of a stable, highly precise neutron polarization for a large, divergent cold neutron beam. A diagnostic tool that provides polarization higher than 99.99 % and analyzes with an accuracy of 10 -4 , the Opaque Test Bench, is presented and validated. It consists of two highly opaque polarized helium cells. The Opaque Test Bench reveals depolarizing effects in polarizing supermirrors commonly used for polarization in neutron decay experiments. These effects are investigated in detail. They are due to imperfect lateral magnetization in supermirror layers and can be minimized by significantly increased magnetizing fields and low incidence angle and supermirror factor m. A subsequent test in the crossed (X-SM) geometry demonstrated polarizations up to 99.97% from supermirrors only, improving neutron polarization with supermirrors by an order of magnitude. The thesis also discusses other neutron optical components of the PERC beamline: Monte-Carlo simulations of the beamline under consideration of the primary guide are carried out. In addition, calculation shows that PERC would statistically profit from an installation at the European Spallation source. Furthermore, beamline components were tested. A radio-frequency spin flipper was confirmed to work with an efficiency higher than 0.9999. (author) [de

  17. Monte Carlo program for the cold neutron beam guide

    International Nuclear Information System (INIS)

    Yoshiki, H.

    1985-02-01

    A Monte Carlo program for the transport of cold neutrons through beam guides has been developed assuming that the neutrons follow the specular reflections. Cold neutron beam guides are normally used to transport cold neutrons (4 ∼ 10 Angstrom) to experimental equipments such as small angle scattering apparatus, TOF measuring devices, polarized neutron spectrometers, and ultra cold neutron generators, etc. The beam guide is about tens of meters in length and is composed from a meter long guide elements made up from four pieces of Ni coated rectangular optical glass. This report describes mathematics and algorithm employed in the Monte Carlo program together with the display of the results. The source program and input data listings are also attached. (Aoki, K.)

  18. Time reversal invariance in polarized neutron decay

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, Eric G. [Harvard Univ., Cambridge, MA (United States)

    1994-03-01

    An experiment to measure the time reversal invariance violating (T-violating) triple correlation (D) in the decay of free polarized neutrons has been developed. The detector design incorporates a detector geometry that provides a significant improvement in the sensitivity over that used in the most sensitive of previous experiments. A prototype detector was tested in measurements with a cold neutron beam. Data resulting from the tests are presented. A detailed calculation of systematic effects has been performed and new diagnostic techniques that allow these effects to be measured have been developed. As the result of this work, a new experiment is under way that will improve the sensitivity to D to 3 x 10-4 or better. With higher neutron flux a statistical sensitivity of the order 3 x 10-5 is ultimately expected. The decay of free polarized neutrons (n → p + e + $\\bar{v}$e) is used to search for T-violation by measuring the triple correlation of the neutron spin polarization, and the electron and proton momenta (σn • pp x pe). This correlation changes sign under reversal of the motion. Since final state effects in neutron decay are small, a nonzero coefficient, D, of this correlation indicates the violation of time reversal invariance. D is measured by comparing the numbers of coincidences in electron and proton detectors arranged symmetrically about a longitudinally polarized neutron beam. Particular care must be taken to eliminate residual asymmetries in the detectors or beam as these can lead to significant false effects. The Standard Model predicts negligible T-violating effects in neutron decay. Extensions to the Standard Model include new interactions some of which include CP-violating components. Some of these make first order contributions to D.

  19. Time reversal invariance in polarized neutron decay

    International Nuclear Information System (INIS)

    Wasserman, E.G.

    1994-03-01

    An experiment to measure the time reversal invariance violating (T-violating) triple correlation (D) in the decay of free polarized neutrons has been developed. The detector design incorporates a detector geometry that provides a significant improvement in the sensitivity over that used in the most sensitive of previous experiments. A prototype detector was tested in measurements with a cold neutron beam. Data resulting from the tests are presented. A detailed calculation of systematic effects has been performed and new diagnostic techniques that allow these effects to be measured have been developed. As the result of this work, a new experiment is under way that will improve the sensitivity to D to 3 x 10 -4 or better. With higher neutron flux a statistical sensitivity of the order 3 x 10 -5 is ultimately expected. The decay of free polarized neutrons (n → p + e + bar v e ) is used to search for T-violation by measuring the triple correlation of the neutron spin polarization, and the electron and proton momenta (σ n · p p x p e ). This correlation changes sign under reversal of the motion. Since final state effects in neutron decay are small, a nonzero coefficient, D, of this correlation indicates the violation of time reversal invariance. D is measured by comparing the numbers of coincidences in electron and proton detectors arranged symmetrically about a longitudinally polarized neutron beam. Particular care must be taken to eliminate residual asymmetries in the detectors or beam as these can lead to significant false effects. The Standard Model predicts negligible T-violating effects in neutron decay. Extensions to the Standard Model include new interactions some of which include CP-violating components. Some of these make first order contributions to D

  20. Cryogenic refrigeration for cold neutron sources

    International Nuclear Information System (INIS)

    Gistau-Baguer, Guy

    1998-01-01

    Neutron moderation by means of a fluid at cryogenic temperature is a very interesting way to obtain cold neutrons. Today, a number of nuclear research reactors are using this technology. This paper deals with thermodynamics and technology which are used for cooling Cold Neutron Sources

  1. Cold neutron radiography using low power accelerator

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Iwasa, Hirokatu

    1993-01-01

    A cold neutron source which can be adopted at a low power accelerator was studied. Time-of-flight radiography using the cold neutron source was performed. It is suggested that time-of-flight cold neutron radiography has possibility to distinguish the materials more clearly than the traditional film method since large contrast differences can be obtained by using digital data of the neutron intensity at different energies from thermal to cold region. Material will be identified at the same time by this method. (author)

  2. International workshop on cold neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States))

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  3. International workshop on cold neutron sources

    International Nuclear Information System (INIS)

    Russell, G.J.; West, C.D.

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources

  4. Cold neutron radiographic apparatus and method

    International Nuclear Information System (INIS)

    Larsen, J.E.

    1979-01-01

    An improved cold neutron radiographic apparatus and method are disclosed wherein neutron temperature is matched to the specific material to be examined. This can be done, in one embodiment, by placing a radioactive source of neutrons, such as californium-252, in a moderator such as solid methane and using a cryogenic refrigeration system to cool the moderator to any preselected cryogenic temperature

  5. Basic physics with ultra cold neutrons

    International Nuclear Information System (INIS)

    Protasov, K.

    2007-01-01

    A short introduction to the physics of Ultra Cold Neutrons (UCN) is given. It covers different aspects from their discovery, their major properties as well as their using in the three experiments of fundamental physics: measurements of the neutron life time and of its electric dipole moment and studies of neutrons quantum states in the Earth's gravitational field. (author)

  6. Development of Cold Neutron Activation Station at HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Sun, G. M.; Hoang, S. M. T.; Moon, J. H.; Chung, Y. S.; Cho, S. J.; Lee, K. H.; Park, B. G.; Choi, H. D.

    2012-01-01

    A new cold neutron source at the HANARO Research Reactor had been constructed in the framework of a five-year project, and ended in 2009. It has seven neutron guides, among which five guides were already allocated for a number of neutron scattering instruments. A new two-year project to develop a Cold Neutron Activation Station (CONAS) was carried out at the two neutron guides since May 2010, which was supported by the program of the Ministry of Education, Science and Technology, Korea. Fig. 1 shows the location of CONAS. CONAS is a complex facility including several radioanalytical instruments utilizing neutron capture reaction to analyze elements in a sample. It was designed to include three instruments like a CN-PGAA (Cold Neutron - Prompt Gamma Activation Analysis), a CN-NIPS (Cold Neutron - Neutron Induced Pair Spectrometer), and a CN-NDP (Cold Neutron - Neutron-induced prompt charged particle Depth Profiling). Fig. 2 shows the conceptual configuration of the CONAS concrete bioshield and the instruments. CN-PGAA and CN-NIPS measure the gamma-rays promptly emitted from the sample after neutron capture, whereas CN-NDP is a probe to measure the charged particles emitted from the sample surface after neutron capture. For this, we constructed two cold neutron guides called CG1 and CG2B guides from the CNS

  7. Neutron measurements in search of cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

    1991-05-10

    We have conducted a search for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 140 neutrons in 500-{mu}s intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of the naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also observed to lead to long-term neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observed neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior.

  8. Neutron measurements in search of cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T.

    1990-01-01

    We have conducted a research for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 145 neutrons in 500-{mu}s intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also to lead to long-term neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observe neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior. 13 refs., 14 figs.

  9. The University of Texas Cold Neutron Source

    International Nuclear Information System (INIS)

    Uenlue, Kenan; Rios-Martinez, Carlos; Wehring, B.W.

    1994-01-01

    A cold neutron source has been designed, constructed, and tested by the Nuclear Engineering Teaching Laboratory (NETL) at The University of Texas at Austin. The Texas Cold Neutron Source (TCNS) is located in one of the beam ports of the NETL 1-MW TRIGA Mark II research reactor. The main components of the TCNS are a cooled moderator, a heat pipe, a cryogenic refrigerator, and a neutron guide. 80 ml of mesitylene moderator are maintained at about 30 K in a chamber within the reactor graphite reflector by the heat pipe and cryogenic refrigerator. The heat pipe is a 3-m long aluminum tube that contains neon as the working fluid. The cold neutrons obtained from the moderator are transported by a curved 6-m long neutron guide. This neutron guide has a radius of curvature of 300 m, a 50x15 mm cross-section, 58 Ni coating, and is separated into three channels. The TCNS will provide a low-background subthermal neutron beam for neutron capture and scattering research. After the installation of the external portion of the neutron guide, a neutron focusing system and a Prompt Gamma Activation Analysis facility will be set up at the TCNS. ((orig.))

  10. ANTARES: Cold neutron radiography and tomography facility

    Directory of Open Access Journals (Sweden)

    Michael Schulz

    2015-08-01

    Full Text Available The neutron imaging facility ANTARES, operated by the Technische Universität München, is located at the cold neutron beam port SR-4a. Based on a pinhole camera principle with a variable collimator located close to the beam port, the facility provides the possibility for flexible use in high resolution and high flux imaging.

  11. Improved cold neutron radiographic apparatus and method

    International Nuclear Information System (INIS)

    1981-01-01

    An improved cold neutron radiography technique is described in which the neutron temperature is matched to the specific material to be analyzed. In addition to a beam source and detector the apparatus incorporates a cryogenic refrigerator which enables the moderator material to be cooled to a predetermined adjustable temperature below the Bragg edge temperature of the sample. (U.K.)

  12. Non-dispersive method for measuring longitudinal neutron coherence length using high frequency cold neutron pulser

    International Nuclear Information System (INIS)

    Kawai, T.; Tasaki, S.; Ebisawa, T.; Hino, M.; Yamazaki, D.; Achiwa, N.

    1999-01-01

    Complete text of publication follows. A non-dispersive method is proposed for measuring the longitudinal coherence length of a neutron using a high frequency cold neutron pulser (hf-CNP) placed between two multilayer spin splitters (MSS) which composes the cold neutron spin interferometer. Two spin eigenstates of a neutron polarized x-y plane are split non-dispersively and longitudinally in time by the hf-CNP which could reflect two components alternatively in time. The reduction of the visibility of interference fringes after being superposed by the second MSS is measured as a function of the frequency of the pulser by TOF method. From the zero visibility point obtained by extrapolation one could obtain the longitudinal coherence length of the neutron. (author)

  13. Spectroscopy with cold and ultra-cold neutrons

    Directory of Open Access Journals (Sweden)

    Abele Hartmut

    2015-01-01

    Full Text Available We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10−4 level. The second method that we refer to as gravity resonance spectroscopy (GRS allows to test Newton’s gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  14. Outer crust of nonaccreting cold neutron stars

    International Nuclear Information System (INIS)

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    2006-01-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars

  15. Cold neutron interferometry and its application. 2. Coherency and cold neutron spin interferometry

    International Nuclear Information System (INIS)

    Achiwa, Norio; Ebisawa, Toru

    1998-03-01

    The second workshop entitled 'Interference studies and cold neutron spin interferometry' was held on 10 and 11 March 1998 at KUR (Kyoto University Research Reactor Institute, Kumatori). Cold neutron spin interferometry is a new field. So it is very important for its development to learn the studies of X-ray and neutron optics which are rapidly developing with long history. In the workshop, the issues related to interference were reviewed such as experimental studies on cold neutron spin interferometry, theoretical and experimental approach on tunneling time, interference experiments by neutrons and its application, interference studies using synchrotron radiation, topics on silicon interferometry and quantum measurement problem and cold neutron interference experiment related to quantum measurement problem. The 8 of the presented papers are indexed individually. (J.P.N.)

  16. Ultra-Cold Neutrons (UCN)

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers working at the Los Alamos Neutron Science Center and eight other member institutions of an international collaboration are constructing the most intense...

  17. Cold neutron source with self-regulation

    International Nuclear Information System (INIS)

    Kawai, T.

    2003-01-01

    A way to increase the cold neutron flux is to cool moderator from where cold neutrons are extracted. Although various kinds of cooling system are considered, the closed thermo-siphon cooling system is adopted in many institutes. The notable feature of this system is to be able to keep the liquid level stable in the moderator cell against thermal disturbances, by using self-regulation, which allows a stable supply of cold neutrons. The main part of the closed thermo-siphon consists of a condenser, a moderator transfer tube and moderator cell, which is called the hydrogen cold system. When an extra heat load is applied to the hydrogen cold system having no flow resistance in a moderator transfer tube, the system pressure rises by evaporation of liquid hydrogen. Then the boiling point of hydrogen rises. The liquefaction capacity of the condenser is increasing with a rise of temperature, because a refrigerating power of the helium refrigerator increases linearly with temperature rise of the system. Therefore, the effect of thermal heat load increase is compensated and cancelled out. The closed thermo-siphon has this feature generally, when the moderator transfer tube is designed to be no flow resistance. The report reviews the concept of self-regulation, and how to design and construct the cold neutron source with self-regulation. (author)

  18. Cold neutron source at KAERI, Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ki [Korea Atomic Energy Research Institute (KAERI), 150-1 Deokjin-Dong, 1045 Daedeokdaero, Yuseong, Daejeon (Korea, Republic of)], E-mail: ykkim1@kaeri.re.kr; Lee, Kye Hong; Kim, Hark Rho [Korea Atomic Energy Research Institute (KAERI), 150-1 Deokjin-Dong, 1045 Daedeokdaero, Yuseong, Daejeon (Korea, Republic of)

    2008-07-15

    The HANARO (High-flux Advance Neutron Application ReactOr), an open tank in a pool type multi-purpose research reactor, generating a high neutron flux (fast: 2.1 x 10{sup 14} n/cm{sup 2}/s, thermal flux: 5 x 10{sup 14} n/cm{sup 2}/s) has been operating at 30 MWth since its first criticality in February 1995. The HANARO provides neutrons to various utilization and research groups for global competition. Based on the world-wide trend for an availability of cold neutrons and the national demand for taking full advantage of such a strong neutron source, Korean government decided to commence with the cold neutron source (CNS) project at the HANARO on 2003. The HANARO will be equipped with a vertical liquid hydrogen-moderated CNS within the next 3 years. A moderator cell, made of 1 mm thickness of aluminium 6061-T6, whose shape is a double cylinder type and is connected to a heat exchanger, establishing two phase flow by a natural convection. These components are contained in the vacuum chamber. The cold neutron flux will be 3.9 x 10{sup 9} n/cm{sup 2}/s at the reactor face and approximately 8.4 x 10{sup 8} n/cm{sup 2}/s at the location of the instruments. This paper presents the current status and future prospect of the CNS project driven by KAERI, Korea.

  19. Polarized neutron reflectometry at Dhruva reactor

    Indian Academy of Sciences (India)

    Abstract. Polarized neutron reflectometry (PNR) is an ideal non-destructive tool for chemical and magnetic characterization of thin films and multilayers. We have installed a position sensitive detector-based polarized neutron reflectometer at Dhruva reactor, Trombay. In this paper we will discuss the results obtained from this ...

  20. Layered magnets: polarized neutron reflection studies

    Energy Technology Data Exchange (ETDEWEB)

    Zabel, H.; Schreyer, A. [Ruhr-Univ. Bochum, Lehrstuhl fuer Experimentalphysik/Festkoerperphysik, Bochum (Germany)

    1996-11-01

    Neutron reflectivity measurements from extended surfaces, thin films and superlattices provide information on the chemical profile parallel to the film normal, including film thicknesses, average composition and interfacial roughness parameters. Reflectivity measurements with polarized neutrons are particularly powerful for analyzing the magnetic density profiles in thin films and superlattices in addition to chemical profiles. The basic theory of polarized neutron reflectivity is provided, followed by some examples and more recent applications concerning polarized neutron reflectivity studies from exchange coupled Fe/Cr superlattices. (author) 5 figs., 13 refs.

  1. Studies and modeling of cold neutron sources

    International Nuclear Information System (INIS)

    Campioni, G.

    2004-11-01

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources

  2. Wave optics with cold neutrons

    International Nuclear Information System (INIS)

    Klein, A.G.; Zeilinger, A.

    1984-01-01

    Various classical wave optics experiments carried out with 20 A neutrons on the H-18 facility at I.L.L. are reviewed, namely Fresnel diffraction from a straight edge, single slit and double slit; focusing with zone plates and interferometry by wavefront division. The motivation of the above experiments is discussed and future extensions and applications are proposed

  3. Conceptual design of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Sim, Cheul Muu; Park, K. N.; Choi, Y. H.

    2002-07-01

    The purpose of the cold source is to increase the available neutron flux delivered to instruments at wavelength 4 ∼ 12 A. The major engineering targets of this CNS facility is established for a reach out of very high gain factors in consideration with the cold neutron flux, moderator, circulation loop, heat load, a simplicity of the maintenance of the facility, safety in the operation of the facility against the hydrogen explosion and a layout of a minimum physical interference with the present facilities. The cold source project has been divided into 5 phases: (1) pre-conceptual (2) conceptual design (3) Testing (4) detailed design and procurement (5) installation and operation. Although there is sometime overlap between the phases, in general, they are sequential. The pre-conceptual design and concept design of KCNS has been performed on elaborations of PNPI Russia and review by Technicatome, Air Liquid, CILAS France. In the design of cold neutron source, the characteristics of cold moderators have been studied to obtain the maximum gain of cold neutron, and the analysis for radiation heat, design of hydrogen system, vacuum system and helium system have been performed. The possibility for materialization of the concept in the proposed conceptual design has been reviewed in view of securing safety and installing at HANARO. Above all, the thermosiphon system to remove heat by circulation of sub-cooled two phase hydrogen has been selected so that the whole device could be installed in the reactor pool with the reduced volume. In order to secure safety, hydrogen safety has been considered on protection to prevent from hydrogen-oxygen reaction at explosion of hydrogen-oxygen e in the containment. A lay out of the installation, a maintenance and quality assurance program and a localization are included in this report. Requirements of user, regulatory, safety, operation, maintenance should be considered to be revised for detailed design, testing, installation

  4. Polarized neutron scattering on HYSPEC: the HYbrid SPECtrometer at SNS

    Energy Technology Data Exchange (ETDEWEB)

    Zaliznyak, Igor [Brookhaven National Laboratory (BNL); Savici, Andrei T [ORNL; Garlea, Vasile O [ORNL; Winn, Barry L [ORNL; Schneelock, John [Brookhaven National Laboratory (BNL); Tranquada, John M. [Brookhaven National Laboratory (BNL); Gu, G. D. [Brookhaven National Laboratory (BNL); Wang, Aifeng [Brookhaven National Laboratory (BNL); Petrovic, C [Brookhaven National Laboratory (BNL)

    2017-01-01

    We describe some of the first polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. We discuss details of the instrument setup and the experimental procedures in the mode with the full polarization analysis. Examples of the polarized neutron diffraction and the polarized inelastic neutron data obtained on single crystal samples are presented.

  5. Design and Applications of a 252Cf Cold Neutron Source

    International Nuclear Information System (INIS)

    Elijah Johnson; Larry Robinson; Li Zhao

    2000-01-01

    The goal was to design a source of cold neutrons from such sources as 252 Cf, 241 Am-Be, 244 Cm-Be, or 124 Sb-Be and to find the limitations when such a source is applied to neutron activation analysis. Here, cold neutrons are neutrons with a kinetic energy 252 Cf nucleus lies in the range from 0.5 to 10 MeV, so moderation is necessary to produce a significant quantity of cold neutrons from these initial neutrons. The same is true for the other three neutron sources. The general design that was selected for the cold neutron source has two moderation regions, and the geometry was restricted to cylindrical symmetry with the sample region along the cylindrical axis. The moderation regions may have different temperatures and may contain different moderating materials. The design tasks are then to find the optimum geometry, moderating materials, and moderating temperatures. A cold neutron flux in the sample region of 2.7 x 10 -3 cold neutrons per source neutron is obtainable in a 252 Cf cold neutron source that has polyethylene as the cold and thermal moderator or with trimethylbenzene as the cold moderator and polyethylene as the thermal moderator. The neutron fluxes obtained are probably within 10% of the fluxes that would be obtained in an actual cold neutron source that is based on the model used. This flux of cold neutrons is adequate for sensitive prompt and delayed neutron activation analysis measurements. The results show that a useful flux of cold neutrons can be obtained from small amounts of 252 Cf, 241 Am, 244 Cm, or 124 Sb

  6. Reactor cold neutron source facility, the first in Japan

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Maeda, Yutaka; Kawai, Takeshi; Tashiro, Tameyoshi; Sakakibara, Shoji; Katada, Minoru.

    1986-01-01

    In the Research Reactor Institute, Kyoto University, the first cold neutron source facility for the reactor in Japan was installed, and various tests are carried out outside the reactor. Nippon Sanso K.K. had manufactured it. After the prescribed tests outside the reactor, this facility will be installed soon in the reactor, and its outline is described on this occasion. Cold neutrons are those having very small energy by being cooled to about-250 deg C. Since the wavelength of the material waves of cold neutrons is long, and their energy is small, they are very advantageous as an experimental means for clarifying the structure of living body molecules and polymers, the atom configuration in alloys, and atomic and molecular movements by neutron scattering and neutron diffraction. The basic principle of the cold neutron source facility is to irradiate thermal neutrons on a cold moderator kept around 20 K, and to moderate and cool the neutrons by nuclear scattering to convert to cold neutrons. The preparatory research on cold neutrons and hydrogen liquefaction, the basic design to put the cold neutron source facility in the graphite moderator facility, the safety countermeasures, the manufacture and quality control, the operation outside the reactor and the performance are reported. The cold neutron source facility comprises a cold moderator tank and other main parts, a deuterium gas tank, a helium refrigerator and instrumentation. (Kako, I.)

  7. Development of cold neutron source

    International Nuclear Information System (INIS)

    Choi, Chang Oong; Cho, M. S.; Park, K. N. and others

    1999-05-01

    The purpose of this study is to develop the CNS facility in Hanaro to extend the scope of the neutron utilization and to carry out the works impossible by thermal neutrons. According to the project schedule, the establishment of the CNS concept and the basic design are performed in the phase 1, and the elementary technologies for basic design will be developed in the phase 2. Finally in the phase 3, the design of CNS will be completed, and the fabrication, the installation will be ended and then the development plan of spectrometers will be decided to establish the foothold to carry out the basic researches. This study is aimed to produce the design data and utilize them in the future basic and detail design, which include the estimation and the measurement of the heat load, the code development for the design of the in pile assembly and the heat removal system, the measurement of the shape of the CN hole, the performance test of thermosiphon and the concept of the general layout of the whole system etc.. (author)

  8. Assessment of cold neutron radiography capability

    International Nuclear Information System (INIS)

    McDonald, T.E. Jr.; Roberts, J.A.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors goals were to demonstrate and assess cold neutron radiography techniques at the Los Alamos Neutron Science Center (LANSCE), Manual Lujan Neutron Scattering Center (Lujan Center), and to investigate potential applications of the capability. The authors have obtained images using film and an amorphous silicon detector. In addition, a new technique they have developed allows neutron radiographs to be made using only a narrow range of neutron energies. Employing this approach and the Bragg cut-off phenomena in certain materials, they have demonstrated material discrimination in radiography. They also demonstrated the imaging of cracks in a sample of a fire-set case that was supplied by Sandia National Laboratory, and they investigated whether the capability could be used to determine the extent of coking in jet engine nozzles. The LANSCE neutron radiography capability appears to have applications in the DOE stockpile maintenance and science-based stockpile stewardship (SBSS) programs, and in industry

  9. Maris polarization in neutron-rich nuclei

    Science.gov (United States)

    Shubhchintak; Bertulani, C. A.; Aumann, T.

    2018-03-01

    We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon-nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p) reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  10. Radiography and tomography with polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Treimer, Wolfgang, E-mail: treimer@helmholtz-berlin.de [University of Applied Sciences, Beuth Hochschule für Technik Berlin, Department Mathematics Physics and Chemistry, Luxemburgerstr. 10, D-13353 Berlin (Germany); Helmholtz Zentrum für Materialien und Energie, Department G – GTOMO, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany)

    2014-01-15

    Neutron imaging became important when, besides providing impressive radiographic and tomographic images of various objects, physical, quantification of chemical, morphological or other parameters could be derived from 2D or 3D images. The spatial resolution of approximately 50 µm (and less) yields real space images of the bulk of specimens with more than some cm{sup 3} in volume. Thus the physics or chemistry of structures in a sample can be compared with scattering functions obtained e.g. from neutron scattering. The advantages of using neutrons become more pronounced when the neutron spin comes into play. The interaction of neutrons with magnetism is unique due to their low attenuation by matter and because their spin is sensitive to magnetic fields. Magnetic fields, domains and quantum effects such as the Meissner effect and flux trapping can only be visualized and quantified in the bulk of matter by imaging with polarized neutrons. This additional experimental tool is gaining more and more importance. There is a large number of new fields that can be investigated by neutron imaging, not only in physics, but also in geology, archeology, cultural heritage, soil culture, applied material research, magnetism, etc. One of the top applications of polarized neutron imaging is the large field of superconductivity where the Meissner effect and flux pinning can be visualized and quantified. Here we will give a short summary of the results achieved by radiography and tomography with polarized neutrons. - Highlights: • Radiography and tomography with polarized neutrons yield new results concerning the suppressed Meissner effect and magnetic flux trapping. • Suppressed Meissner effect was observed in pure lead samples and niobium. • Trapped magnetic fields in cylindrical Pb samples are squeezed around the rod axis. • The shape and the amount of trapped fields could be determined and quantified.

  11. Ultracold and very cold neutron facility in KUR

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Utsuro, Masahiko

    1992-01-01

    The present status of the ultracold and very cold neutron facility installed in the Kyoto University Reactor (KUR) is described in this presentation. It consists of a VCN (very cold neutrons) guide tube, a VCN bender and a supermirror neutron turbine. The guide tube extracts VCN from a liquid deuterium cold neutron source in a graphite thermal column and the neutron turbine converts VCN to UCN (ultracold neutrons). As for the utilization of the present facility, VCN radiography and an UCN gravity spectrometer are shown for the practical examples of the research with VCN and UCN. (author)

  12. Polar ocean stratification in a cold climate.

    Science.gov (United States)

    Sigman, Daniel M; Jaccard, Samuel L; Haug, Gerald H

    2004-03-04

    The low-latitude ocean is strongly stratified by the warmth of its surface water. As a result, the great volume of the deep ocean has easiest access to the atmosphere through the polar surface ocean. In the modern polar ocean during the winter, the vertical distribution of temperature promotes overturning, with colder water over warmer, while the salinity distribution typically promotes stratification, with fresher water over saltier. However, the sensitivity of seawater density to temperature is reduced as temperature approaches the freezing point, with potential consequences for global ocean circulation under cold climates. Here we present deep-sea records of biogenic opal accumulation and sedimentary nitrogen isotopic composition from the Subarctic North Pacific Ocean and the Southern Ocean. These records indicate that vertical stratification increased in both northern and southern high latitudes 2.7 million years ago, when Northern Hemisphere glaciation intensified in association with global cooling during the late Pliocene epoch. We propose that the cooling caused this increased stratification by weakening the role of temperature in polar ocean density structure so as to reduce its opposition to the stratifying effect of the vertical salinity distribution. The shift towards stratification in the polar ocean 2.7 million years ago may have increased the quantity of carbon dioxide trapped in the abyss, amplifying the global cooling.

  13. Efficient polarization analysis for focusing neutron instruments

    Science.gov (United States)

    Stahn, Jochen; Glavic, Artur

    2017-06-01

    Polarized neutrons are a powerful probe to investigate magnetism in condensed matter on length scales from single atomic distances to micrometers. With the ongoing advancement of neutron optics, that allow to transport beams with increased divergence, the demands on neutron polarizes and analyzers have grown as well. The situation becomes especially challenging for new instruments at pulsed sources, where a large wavelength band needs to be polarized to make efficient use of the time structure of the beam. Here we present a polarization analysis concept for highly focused neutron beams that is based on transmission supermirrors that are bend in the shape of equiangular spirals. The method allows polarizations above 95% and good transmission, without negative impact on other beam characteristics. An example of a compact polarizing device already tested on the AMOR reflectometer is presented as well as the concept for the next generation implementation of the technique that will be installed on the Estia instrument being build for the European Spallation Source.

  14. Polarized neutron radiography with a periscope

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael; Neubauer, Andreas; Muehlbauer, Martin; Schillinger, Burkhard; Pfleiderer, Christian; Boeni, Peter [Technische Universitaet Muenchen, Physik Department, E21, Garching (Germany); Calzada, Elbio, E-mail: michael.schulz@frm2.tum.d [Technische Universitaet Muenchen, Forschungsneutronenquelle Heinz Maier Leibnitz (FRM II), Garching (Germany)

    2010-01-01

    The interaction of the magnetic moment of the neutron with magnetic fields provides a powerful probe for spatially resolved magnetisation measurements in magnetic materials. We have tested a periscope as a new type of polarizer providing neutron beams with a high polarization and a low divergence. The observed inhomogeneity of the beam caused by the waviness of the glass substrates was quantified by means of Monte-Carlo simulations using the software package McStas. The results show that beams of high homogeneity can be produced if the waviness is reduced to below 1.0{center_dot}10{sup -5} rad. Finally, it is shown that radiography with polarized neutrons is a powerful method for measuring the spatially resolved magnetisation in optically float-zoned samples of the weak itinerant ferromagnet Ni{sub 3}Al, thereby aiding the identification of the appropriate growth parameters.

  15. Polarized neutron radiography with a periscope

    International Nuclear Information System (INIS)

    Schulz, Michael; Neubauer, Andreas; Muehlbauer, Martin; Schillinger, Burkhard; Pfleiderer, Christian; Boeni, Peter; Calzada, Elbio

    2010-01-01

    The interaction of the magnetic moment of the neutron with magnetic fields provides a powerful probe for spatially resolved magnetisation measurements in magnetic materials. We have tested a periscope as a new type of polarizer providing neutron beams with a high polarization and a low divergence. The observed inhomogeneity of the beam caused by the waviness of the glass substrates was quantified by means of Monte-Carlo simulations using the software package McStas. The results show that beams of high homogeneity can be produced if the waviness is reduced to below 1.0·10 -5 rad. Finally, it is shown that radiography with polarized neutrons is a powerful method for measuring the spatially resolved magnetisation in optically float-zoned samples of the weak itinerant ferromagnet Ni 3 Al, thereby aiding the identification of the appropriate growth parameters.

  16. Basic Design of the Cold Neutron Research Facility in HANARO

    International Nuclear Information System (INIS)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K.

    2005-09-01

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments

  17. Basic Design of the Cold Neutron Research Facility in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K. (and others)

    2005-09-15

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments.

  18. Design of a Cold Neutron Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sang Ik; Kim, Y. K.; Jung, H. S.; Park, Y. C.; Kim, H. G.; Lee, B. C.; Ahn, S. H.; Han, Y. S.; Kim, H. R

    2006-04-15

    This report is summarized of the design results of a Cold Neutron Laboratory Building (CNLB) and its whole technical documents submitted to the regulatory body. This report is composed of the CNLB's safety analysis report in the final version and the question and answer documents carried out for its screening to get an approval. The objective of this report is to keep the design results about following terms. Also, it is intended to record serially the technical work conducted for its screening and to find out easily the whole process of the CNLB project. Civil and Architectural Design for CNLB, Seismic and Structure Analysis for CNLB, Shielding Design of the Neutron Guide and the Experimental Equipment and Design of the Compressed Air, Cooling Water, Ventilation, Fire Protection, Electricity System, and etc on.

  19. The polarized platypus polarized neutron reflectometry made possible

    International Nuclear Information System (INIS)

    Saerbeck, Thomas

    2009-01-01

    Full text: The magnetic moment of the neutron, together with it's highly penetrating non destructive manner, make polarized neutron reflectometry an excellent tool to study magnetic phenomena across surfaces and interfaces of thin films. Unlike other magnetometry techniques which ordinarily yield only average magnetization values or, in case of probes with higher spatial resolution (e.g. electron microscopy or scanning tunnelling microscopy), show a high surface sensitivity, PNR together with magnetic x-ray scattering provides the ability to spatially resolve vector magnetization well beneath the surface [1] The ability to obtain vector magnetization profiles across interfaces and surfaces of thin films and multilayers offers the intriguing possibility to study systematically magnetic configurations and magnetic exchange interactions through intervening layers. In this paper we present the performance of the new polarization system installed on the time of flight neutron reflectometer PLATYPUS at ANSTO's Bragg Institute. The spin state of the neutrons is polarized and analysed by spatial separation of different neutron spin states using polarizing Fe/Si supermirrors before, and after the sample stage. The supermirrors have a large wavelength acceptance bandwidth of 3 A to 12 A. To control the desired spin direction of the incoming and reflected beam from the sample, two sets of RF spin flippers are installed. In the free space between the spin flippers and the sample stage the neutron spin direction is maintained by two sets of magnetic guide field coils. The new sample environment for studies of magnetic samples includes a 1 T electromagnet and a closed cycle refrigerator which gives access to a temperature range from 4K to 3 50 K .

  20. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    Energy Technology Data Exchange (ETDEWEB)

    Makhloufi, M., E-mail: makhloufi_8m@yahoo.fr [Centre de Recherche Nucléaire de Birine (Algeria); Salah, H. [Centre de Recherche Nucléaire d' Alger (Algeria)

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway. - Highlights: • Permit to evaluate the feasibility of a polarized neutron scattering instrument prior to its implementation. • Help to understand the origin of instrumental imperfections and offer an optimized set up configuration. • Provide the possibility to use the FeSi and CoCu supermirrors, designed to polarize spin up cold neutron, to polarize thermal neutron.

  1. The cold neutron facility of the JRR-3M

    International Nuclear Information System (INIS)

    Kumai, T.; Suzuki, M.; Kakefuda, K.

    1992-01-01

    A description is given of a cold neutron source and neutron guide tubes of the JRR-3M. The installation of the cold neutron source (CNS) together with the neutron guide system is one of the principal objectives of the remodeling project of the JRR-3 and this CNS is the first one that was installed in the high neutron flux reactors of 14 orders of magnitude in Japan. The CNS is a liquid hydrogen moderator and vertical thermosyphon type. It mainly consists of a hydrogen plant for liquid hydrogen and helium refrigerator plant for cold helium gas. Five neutron guide tubes are installed to get thermal and cold neutron beams in the beam hall. The CNS and the guide tubes have been operated very well since August 1990. (author)

  2. Design of the cold neutron triple-axis spectrometer at the China Advanced Research Reactor

    International Nuclear Information System (INIS)

    Cheng, P.; Zhang, Hongxia; Bao, W.; Schneidewind, A.; Link, P.; Grünwald, A.T.D.; Georgii, R.; Hao, L.J.; Liu, Y.T.

    2016-01-01

    The design of the first cold neutron triple-axis spectrometer at the China Advanced Research Reactor is presented. Based on the Monte Carlo simulations using neutron ray-tracing program McStas, the parameters of major neutron optics in this instrument are optimized. The neutron flux at sample position is estimated to be 5.6 ×10 7 n/cm 2 /s at neutron incident energy E i =5 meV when the reactor operates normally at the designed 60 MW power. The performances of several neutron supermirror polarizing devices are compared and their critical parameters are optimized for this spectrometer. The polarization analysis will be realized with a flexible switch from the unpolarized experimental mode.

  3. Design of the cold neutron triple-axis spectrometer at the China Advanced Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, P.; Zhang, Hongxia; Bao, W. [Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872 (China); Schneidewind, A. [Jülich Center for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, Outstation at Heinz MaierCLeibnitz Zentrum (MLZ), D-85747 Garching (Germany); Link, P. [Heinz Maier-Leibnitz Zentrum, Technische Universität München, D-85748 Garching (Germany); Grünwald, A.T.D. [II. Physikalisches Institut, Universität zu Köln, D-50937 Köln (Germany); Georgii, R. [Heinz Maier-Leibnitz Zentrum, Technische Universität München, D-85748 Garching (Germany); Hao, L.J.; Liu, Y.T. [China Institute of Atomic Energy, PO Box-275-30, Beijing 102413 (China)

    2016-06-11

    The design of the first cold neutron triple-axis spectrometer at the China Advanced Research Reactor is presented. Based on the Monte Carlo simulations using neutron ray-tracing program McStas, the parameters of major neutron optics in this instrument are optimized. The neutron flux at sample position is estimated to be 5.6 ×10{sup 7} n/cm{sup 2}/s at neutron incident energy E{sub i}=5 meV when the reactor operates normally at the designed 60 MW power. The performances of several neutron supermirror polarizing devices are compared and their critical parameters are optimized for this spectrometer. The polarization analysis will be realized with a flexible switch from the unpolarized experimental mode.

  4. Cold fusion produces more tritium than neutrons

    International Nuclear Information System (INIS)

    Rajagopalan, S.R.

    1989-01-01

    The results of the major cold fusion experiments performed in various laboratories of the world and attempts to explain them are reviewed in brief. Particular reference is made to the experiments carried out in the Bhabha Atomic Research Centre (BARC), Bombay. In BARC experiments, it is found that tritium is the primary product of cold fusion. Author has put forward two hypothetical pictures of D-D fusion. (1) When a metal like Pd or Ti is loaded with D 2 , a crack forms. Propogation of such a crack accelerates deuterons which bombard Pd D 2 /D held by Pd or Ti leading to neutron capture or tritium formation with the release of protons and energy. The released protons might transfer its energy to some other deuteron and a chain reaction is started. This chain reaction terminates when a substantial portion of D in the crack tip is transmuted. This picture explains fusion reaction bursts and the random distribution of reaction sites, but does not explain neutron emission. (2) The deuterons accelerated by a propogating crack may hit a Pd/Ti nucleus instead of a deuterium nucleus and may transmute Pd/Ti. (M.G.B.). 18 refs

  5. Grazing incidence polarized neutron scattering in reflection ...

    Indian Academy of Sciences (India)

    During the year 1980, polarized neutron scattering technique came into being as an ana- lytic tool to measure the ... The discovery of antiferromagnetic coupling was critical to the discovery of GMR, pro- viding as it did ..... Here we consider the incident wave vector ki making an angle αi in the x–z plane while the scattered ...

  6. Some applications of polarized inelastic neutron scattering

    Indian Academy of Sciences (India)

    A brief account of applications of polarized inelastic neutron scattering in condensed matter research is given. ... the itinerant antiferromagnet chromium we demonstrate that the dynamics of the longitudinal and transverse excitations are very different, resolving a long standing puzzle concerning the slope of their dispersion.

  7. Progress towards magnetic trapping of ultra-cold neutrons

    CERN Document Server

    Huffman, P R; Butterworth, J S; Coakley, K J; Dewey, M S; Dzhosyuk, S N; Gilliam, D M; Golub, R; Greene, G L; Habicht, K; Lamoreaux, S K; Mattoni, C E H; McKinsey, D N; Wietfeldt, F E; Doyle, J M

    2000-01-01

    We report progress towards magnetic trapping of ultra-cold neutrons (UCN) in preparation for a neutron lifetime measurement. UCN will be produced by inelastic scattering of cold (0.89 nm) neutrons in a reservoir of superfluid sup 4 He and confined in a three-dimensional magnetic trap. As the trapped neutrons decay, recoil electrons will generate scintillations in the liquid He, which should be detectable with nearly 100% efficiency. This direct measure of the number of UCN decays vs. time can be used to determine the neutron beta-decay lifetime.

  8. Progress towards magnetic trapping of ultra-cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, P.R.; Brome, C.R.; Butterworth, J.S.; Coakley, K.J.; Dewey, M.S.; Dzhosyuk, S.N.; Gilliam, D.M.; Golub, R.; Greene, G.L.; Habicht, K.; Lamoreaux, S.K.; Mattoni, C.E.H.; McKinsey, D.N.; Wietfeldt, F.E.; Doyle, J.M

    2000-02-11

    We report progress towards magnetic trapping of ultra-cold neutrons (UCN) in preparation for a neutron lifetime measurement. UCN will be produced by inelastic scattering of cold (0.89 nm) neutrons in a reservoir of superfluid {sup 4}He and confined in a three-dimensional magnetic trap. As the trapped neutrons decay, recoil electrons will generate scintillations in the liquid He, which should be detectable with nearly 100% efficiency. This direct measure of the number of UCN decays vs. time can be used to determine the neutron beta-decay lifetime.

  9. Experimental studies of very cold neutrons passing through solid deuterium

    CERN Document Server

    Serebrov, A P; Lasakov, M S; Mityukhlyaev, V A; Pirozhkov, A N; Potapov, I A; Varlamov, V E; Vasilev, A V; Zakharov, A A; Young, A R

    2001-01-01

    The studies of spectral dependence of neutron passing thorough solid deuterium has been carried out with a vertical beam of very cold neutrons with the wave length of lambda approx 40-150 A. The work results show the dependence of observed neutron scattering sections on the way of preparation of a solid deuterium sample and on ortho-para composition of deuterium

  10. Polarized neutron reflectometry of magnetic nanostructures

    Science.gov (United States)

    Toperverg, B. P.

    2015-12-01

    Among a number of methods employed to characterize various types of magnetic nano-structures Polarized Neutron Reflectometry (PNR) is shown to be a unique tool providing a scope of quantitative information on magnetization arrangement over relevant scales. Deeply penetrating into materials neutron spins are able to resolve vectorial profile of magnetic induction with accuracy of a fraction of Oersted over a fraction of nano-meters. This property is exploited in measurements of specular PNR which hence constitutes the method of depth resolved vector magnetometry widely used to examine magnetic states in exchange coupled magnetic superlattices, exchange bias systems, spin valves, exchange springs, superconducting/ferromagnetic heterostructure, etc. Off-specular polarized neutron scattering (OS-PNS) measures the in-plane magnetization distribution over scales from hundreds of nanoto hundreds of micrometers providing, in combination with specular PNR, access to lateral long range fluctuations of the magnetization vector and magnetic domains in these systems. OSPNS is especially useful in studies of co-operative magnetization reversal processes in various films and multilayers laterally patterned into periodic arrays of stripes, or islands of various dimentions, shapes, internal structures, etc., representing an interest for e.g. spintronics. Smaller sizes of 10?100 nm are accessed with the method of Polarized Neutrons Grazing Incidence Small Angle Scattering (PN-GISAS), which in a combination with specular PNR and OS-PNS is used to study self-assembling of magnetic nano-particles on flat surfaces, while Polarized Neutron Grazing Incidence Diffraction (PN-GID) complete the scope of magnetic information over wide range of scales in 3D space. The review of recent results obtained employing the methods listed above is preceded by the detailed theoretical consideration and exemplified by new developments addressing with PNR fast magnetic kinetics in nano-systems.

  11. Gravitation in interferometry with cold neutrons

    International Nuclear Information System (INIS)

    Weber, M.

    1998-02-01

    The influence of gravitation on the phase of neutron matter waves has been studied since the mid seventies with perfect silicon crystal interferometers. Colella, Overhauser and Werner were the first to measure the quantum phase shift for neutrons in the earth's gravitational field in 1975. Improved experiments were consistent with theory within an accuracy of about 0,1 %. However, it turned out, that these results had to be corrected by about 4 % due to dynamical diffraction. Recent measurements still show a discrepancy of 0,8 % between experiment and theory. There is a strong need to investigate the gravitational phase shift with a different interferometer. The interferometer for very cold neutrons (VCN), which has been developed in the mid eighties and is now installed at the Institute Laue-Langevin in Grenoble, represents an important alternative to the crystal interferometers. It consists of three flat diffraction grating with a period of 2 μm, manufactured by sputter-etching of a quartz glass substrate. In the VCN interferometer, no dynamical diffraction effects occur. This thesis describes the improvement of the UN interferometer after a four-year reactor shutdown at the ILL. During the work described here, the fringe contrast increased from 30 % to over 55 %. Also, the count rate and the phase stability of the instrument have been improved substantially. The first experiment with the new UN interferometer was the measurement of the gravitational phase shift by tilting the instrument around the beam axis. The results are consistent with theory and a classical measurement of local gravity within an accuracy of 1 %. The accuracy is mainly limited by the uncertainty in the knowledge of the UN wavelength, measured by a time-offlight method. This thesis includes a detailed analysis of the relevant effects which reduce the fringe contrast and describes, how their influence as well as phase drifts have been reduced. (author)

  12. Cold guided beams of polar molecules

    International Nuclear Information System (INIS)

    Motsch, Michael

    2010-01-01

    This thesis reports on experiments characterizing cold guided beams of polar molecules which are produced by electrostatic velocity filtering. This filtering method exploits the interaction between the polar molecules and the electric field provided by an electrostatic quadrupole guide to extract efficiently the slow molecules from a thermal reservoir. For molecules with large and linear Stark shifts such as deuterated ammonia (ND 3 ) or formaldehyde (H 2 CO), fluxes of guided molecules of 10 10 -10 11 molecules/s are produced. The velocities of the molecules in these beams are in the range of 10-200 m/s and correspond to typical translational temperatures of a few Kelvin. The maximum velocity of the guided molecules depends on the Stark shift, the molecular mass, the geometry of the guide, and the applied electrode voltage. Although the source is operated in the near-effusive regime, the number density of the slowest molecules is sensitive to collisions. A theoretical model, taking into account this velocity-dependent collisional loss of molecules in the vicinity of the nozzle, reproduces the density of the guided molecules over a wide pressure range. A careful adjustment of pressure allows an increase in the total number of molecules, whilst yet minimizing losses due to collisions of the sought-for slow molecules. This is an important issue for future applications. Electrostatic velocity filtering is suited for different molecular species. This is demonstrated by producing cold guided beams of the water isotopologs H 2 O, D 2 O, and HDO. Although these are chemically similar, they show linear and quadratic Stark shifts, respectively, when exposed to external electric fields. As a result, the flux of HDO is larger by one order of magnitude, and the flux of the individual isotopologs shows a characteristic dependence on the guiding electric field. The internal-state distribution of guided molecules is studied with a newly developed diagnostic method: depletion

  13. Current status for TRR-II Cold Neutron Source

    International Nuclear Information System (INIS)

    Lee, C.H.; Guung, T.C.; Lan, K.C.; Wang, C.H.; Chan, Y.K.; Shieh, D.J.

    2001-01-01

    The Taiwan Research Reactor (TRR) project (TRR-II) is carrying out at Institute of Nuclear Energy Research (INER) from October 1998 to December 2006. The purpose of Cold Neutron Source (CNS) project is to build entire CNS facility to generate cold neutrons within TRR-II reactor. The objective of CNS design is to install CNS facility with a competitive brightness of cold neutron beam to other facilities in the world. Based on the TRR-II CNS project schedule, the conceptual design for TRR-II CNS facility has been completed and the mock-up test facility for full-scale hydrogen loop has been designed. (author)

  14. Current status for TRR-II Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.H.; Guung, T.C.; Lan, K.C.; Wang, C.H.; Chan, Y.K.; Shieh, D.J. [Institute of Nuclear Energy Research, Taiwan (China)

    2001-03-01

    The Taiwan Research Reactor (TRR) project (TRR-II) is carrying out at Institute of Nuclear Energy Research (INER) from October 1998 to December 2006. The purpose of Cold Neutron Source (CNS) project is to build entire CNS facility to generate cold neutrons within TRR-II reactor. The objective of CNS design is to install CNS facility with a competitive brightness of cold neutron beam to other facilities in the world. Based on the TRR-II CNS project schedule, the conceptual design for TRR-II CNS facility has been completed and the mock-up test facility for full-scale hydrogen loop has been designed. (author)

  15. Polarized neutron beam properties for measuring parity-violating spin rotation in liquid {sup 4}He

    Energy Technology Data Exchange (ETDEWEB)

    Micherdzinska, A.M., E-mail: amicherd@gwu.ed [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); George Washington University, Washington, DC 20052 (United States); Bass, C.D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Bass, T.D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Gan, K. [George Washington University, Washington, DC 20052 (United States); Luo, D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Markoff, D.M. [North Carolina Central University, Durham, NC 27707 (United States); Mumm, H.P.; Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Opper, A.K. [George Washington University, Washington, DC 20052 (United States); Sharapov, E.I. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Snow, W.M. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Swanson, H.E. [University of Washington/CENPA, Seattle, WA 98195 (United States); Zhumabekova, V. [Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050038 Almaty (Kazakhstan)

    2011-03-01

    Measurements of parity-violating neutron spin rotation can provide insight into the poorly understood nucleon-nucleon weak interaction. Because the expected rotation angle per unit length is small (10{sup -7} rad/m), several properties of the polarized cold neutron beam phase space and the neutron optical elements of the polarimeter must be measured to quantify possible systematic effects. This paper presents (1) an analysis of a class of possible systematic uncertainties in neutron spin rotation measurements associated with the neutron polarimetry, and (2) measurements of the relevant neutron beam properties (intensity distribution, energy spectrum, and the product of the neutron beam polarization and the analyzing power as a function of the beam phase space properties) on the NG-6 cold neutron beam-line at the National Institute of Standards and Technology Center for Neutron Research. We conclude that the phase space nonuniformities of the polarimeter in this beam are small enough that a parity-violating neutron spin rotation measurement in n-{sup 4}He with systematic uncertainties at the 10{sup -7} rad/m level is possible.

  16. Use of cold neutron sources in chemical analysis

    International Nuclear Information System (INIS)

    Zeisler, R.

    1989-01-01

    Modern chemical analysis is concerned with more than determining elemental composition. Needed is the ability to obtain information about the spatial distribution, chemical form, structure, etc., of the elements in investigated materials. Nuclear techniques can play an expanded role in the understanding of the structure and composition of materials. During the past decade, a number of research reactors have installed highly efficient neutron guides with cold neutron sources that are attractive for analytical chemistry uses. Neutron capture prompt gamma activation analysis (PGAA) and neutron depth profiling (NDP) are already established analytical techniques that will greatly benefit from these installations. The guides result in higher neutron fluxes in the sample position as well as increased reaction rates due to the lower energy neutron spectrum. Simultaneously, the background is significantly lower than in today's PGAA and NDP instruments. These factors will lead to lower detection limits and better resolution power of cold neutron beam instruments. The possibility of focusing cold neutron beams may further enhance the sensitivity of chemical assays. Initial applications of parallel and focused beams of cold neutrons in PGAA have demonstrated these advantages

  17. Design and safety aspects of the Cornell cold neutron source

    International Nuclear Information System (INIS)

    Ouellet, Carol G.; Clark, David D.

    1992-01-01

    The cold neutron beam facility at the Cornell University TRIGA Mark II reactor will begin operational testing in early 1993. It is designed to provide a low background subthermal neutron beam that is as free as possible of fast neutrons and gamma rays for applied research and graduate-level instruction. The Cornell cold neutron source differs from the more conventional types of cold sources in that it is inherently safer because it uses a safe handling material (mesitylene) as the moderator instead of hydrogen or methane, avoids the circulation of cryogenic fluids by removing heat from the system by conduction through a 99.99% pure copper rod attached to a cryogenic refrigerator, and is much smaller in its size and loads. The design details and potential hazards are described, where it is concluded that no credible accident involving the cold source could cause damage to the reactor or personnel, or cause release of radioactivity. (author)

  18. Cold source vessel development for the advanced neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.T.; Lucas, A.T. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory (ORNL), will be a user-oriented neutron research facility that will produce the most intense flux of neutrons in the world. Among its many scientific applications, the productions of cold neutrons is a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410 mm diameter sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design are being performed with multi-dimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This paper presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that will be used to verify the final design.

  19. Basic physics with ultra cold neutrons; Physique fondamentale avec des neutrons ultra froids

    Energy Technology Data Exchange (ETDEWEB)

    Protasov, K. [Laboratoire de Physique Subatomique et de Cosmologie, CNRS-IN2P3, Universite Joseph Fourier, INPG, Grenoble (France)

    2007-07-01

    A short introduction to the physics of Ultra Cold Neutrons (UCN) is given. It covers different aspects from their discovery, their major properties as well as their using in the three experiments of fundamental physics: measurements of the neutron life time and of its electric dipole moment and studies of neutrons quantum states in the Earth's gravitational field. (author)

  20. Cold Neutron Research Facility begins operating at NIST

    International Nuclear Information System (INIS)

    Zeman, E.J.

    1991-01-01

    Steady-state neutron beams are generally produced by fission in a nuclear reactor, whereas pulsed beams come from spallation neutron sources. Beams from a reactor have a distribution of wavelengths that is roughly Maxwellian, with a peak wavelength that depends on the temperature of the moderator that surrounds the fuel. Cold neutrons can be selected from the low-energy tail of the distribution, but the flux drops as 1/λ 4 . However, by shifting the whole spectrum to longer wavelengths one can dramatically increase the cold neutron flux. This is achieved by replacing part of the core moderator with a cold moderator, or 'cold source,' such as liquid deuterium (at about 30 K) or D 2 O ice (at about 40 K). Neutrons lose energy to the moderator through collisions, producing a shifted spectrum from which one can select lower-energy neutrons with a roughly ten-fold improvement in the flux. Neutrons exhibit optical behavior such as refraction and total reflection. Thus one can use neutron guides - analogous to optical fibers - to conduct intense beams of neutrons from the reactor into a large experimental hall, dubbed a 'guide hall,' where background radiation is low. The Cold Neutron Research Facility was finally funded in 1987 and opened its doors this past June. CNRF is located at the 20-MW NIST research reactor, which began continuous operation in 1969. With some foresight, the designers of the original reactor allowed space for the addition of a cryogenic moderator, which is only now being exploited. NIST will develop 10 experimental stations for use by the research science community. Additional help in financing the facility comes from participating research teams made up of groups from industry, academe and government

  1. Diffraction of very cold neutrons at phase gratings

    Science.gov (United States)

    Eder, Kurt; Gruber, Manfred; Zeilinger, Anton; Gähler, Roland; Mampe, Walter

    1991-06-01

    We report extensive experiments on the diffraction of very cold neutrons ( λ ≈ 100 Å) at large-area transmission phase gratings with grating constants d = 2 μm and d = 1 μm, respectively. The experimental results are compared with Fresnel-Kirchhoff calculations showing agreement in great detail. Using phase gratings it is possible to shift intensities between different diffraction orders, thus making them very useful for other neutron-optics experiments at low energies. Also, the excellent manufacturing precision of our transmission phase gratings meets the requirements for such experiments like very-cold-neutron interferometry.

  2. Diffraction of very cold neutrons at phase gratings

    International Nuclear Information System (INIS)

    Eder, K.; Gruber, M.; Zeilinger, A.; Gaehler, R.; Mampe, W.

    1991-01-01

    We report extensive experiments on the diffraction of very cold neutrons (λ ≅ 100A) at large-area transmission phase gratings with grating constants d=2μm and d=1μm, respectively. The experimental results are compared with Fresnel-Kirchhoff calculations showing agreement in great detail. Using phase gratings it is possible to shift intensities between different diffraction orders, thus making them very useful for other neutron-optics experiments at low energies. Also, the excellent manufacturing precision of our transmission phase gratings meets the requirements for such experiments like very-cold-neutron interferometry. (orig.)

  3. Optimization of cold neutron beam extraction at ESS

    DEFF Research Database (Denmark)

    Schönfeldt, Troels; Batkov, K.; Klinkby, Esben Bryndt

    from which the moderator is viewed. This study does not only show changes in both cold and thermal neutron flux, depending on extraction position, but also shows that there are significant differences in the wavelength spectrum and origin of neutrons depending on the angel of view.......The present study takes its origin in the baseline design of European Spallation Source where a cold and a thermal moderator are situated next to each other enabling bispectral extraction. The study aims at mapping the differences in various neutron distributions depending on the angle and position...

  4. Research for the concept of Hanaro cold neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Oong; Cho, M. S.; Lee, M. W.; Sohn, J. M.; Park, K. N.; Park, S. H.; Yang, S. Y.; Kang, S. H.; Yang, S. H.; Chang, J. H.; Lee, Y. W.; Chang, C. I.; Cho, Y. S.

    1997-09-01

    This report consists of two parts, one is the conceptual design performed on the collaboration work with PNPI Russia and another is review of Hanaro CNS conceptual design report by Technicatome France, both of which are contained at vol. I and vol. II. representatively. In the vol. I, the analysis for the status of technology development, the technical characteristics of CNS is included, and the conceptual design of Hanaro cold neutron source is contained to establish the concept suitable to Hanaro. The cold neutron experimental facilities, first of all, have been selected to propose the future direction of physics concerning properties of the matter at Korea. And neutron guide tubes, the experimental hall and cold neutron source appropriate to these devices have been selected and design has been reviewed in view of securing safety and installing at Hanaro. (author). 38 refs., 49 tabs., 17 figs.

  5. Accelerator-based cold neutron sources and their cooling system

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Yanai, Masayoshi; Ishikawa, Yoshikazu.

    1985-01-01

    We have developed and installed two accelerator-based cold neutron sources within a electron linac at Hokkaido University and a proton synchrotoron at National Laboratory for High Energy Physics. Solid methane at 20K was adopted as the cold moderator. The methane condensing heat exchangers attached directly to the moderator chambers were cooled by helium gas, which was kept cooled in refrigerators and circulated by ventilation fans. Two cold neutron sources have operated smoothly and safely for the past several years. In this paper we describe some of the results obtained in the preliminary experiments by using a modest capacity refrigerator, the design philosophy of the cooling system for the pulsed cold neutron sources, and outline of two facilities. (author)

  6. Development of Cold Neutron Depth Profiling System at HANARO

    International Nuclear Information System (INIS)

    Park, B. G.; Choi, H. D.; Sun, G. M.

    2012-01-01

    The depth profiles of intentional or intrinsic constituents of a sample provide valuable information for the characterization of materials. A number of analytical techniques for depth profiling have been developed. Neutron Depth Profiling (NDP) system which was developed by Ziegler et al. is one of the leading analytical techniques. In NDP, a thermal or cold neutron beam passes through a material and interacts with certain isotopes that are known to emit monoenergetic-charged particle remaining a recoil nucleus after neutron absorption. The depth is obtained from the energy loss of those charged particles escaping surface of substrate material. For various applications of NDP technique, the Cold Neutron Depth Profiling System (CN-NDP) was developed at a neutron guide CG1 installed at the HANARO cold neutron source. In this study the design features of the cold neutron beam and target chamber for the CN-NDP system are given. Also, some experiments for the performance tests of the CN-NDP system are described

  7. Intensity enhancement of cold neutrons from a coupled liquid-hydrogen moderator for pulsed cold neutron sources

    CERN Document Server

    Ogawa, Y; Kosugi, N; Iwasa, H; Furusaka, M; Watanabe, N

    1999-01-01

    In order to obtain higher cold neutron intensity from a coupled liquid-hydrogen moderator with a premoderator for pulsed cold neutron sources, we examined a partial enhancement method, namely, narrow beam extraction for both a flat liquid-hydrogen moderator and a single-groove one. Combined with the narrow beam extraction, which is especially suitable for small-angle scattering and neutron reflectometry experiments, a single-groove moderator provides higher intensity, by about 30%, than a flat-surface moderator at the region of interest on a viewed surface. The effect of double-side beam extraction from such moderators on the intensity gain factor is also discussed. (author)

  8. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH 2 ) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH 2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  9. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  10. Use of cold neutrons for condensed matter research at the neutron guide laboratory ELLA in Juelich

    International Nuclear Information System (INIS)

    Schaetzler, R.; Monkenbusch, M.

    1998-01-01

    Cold neutrons produced in the FRJ-2 DIDO reactor are guided into the external hall ELLA. It hosts 10 instruments that are red by three major neutron guides. Cold neutrons allow for diffraction and small angle scattering experiments resolving mesoscopic structures (1 to 100 nm). Contrast variation by isotopic substitution in chemically identical species yields information uniquely accessible bi neutrons. Inelastic scattering of cold neutrons allows investigating slow molecular motions because the low neutron velocity results in large relative velocity changes even at small energy transfers. The SANS machines and the HADAS reflectometer serve as structure probes and the backscattering BSS1 and spin-echo spectrometers NSE as main dynamics probes. Besides this the diffuse scattering instrument DNS and the lattice parameter determination instrument LAP deal mainly with crystals and their defects. Finally the beta-NMR and the EKN position allow for methods other than scattering employing nuclear reactions for solid state physics, chemistry and biology/medicine. (author)

  11. Production and storage of ultra cold neutrons at pulse neutron sources with low repetition rates

    International Nuclear Information System (INIS)

    Pokotilovski, Y.N.; Muzychka, A.Yu.

    1996-01-01

    High densities of ultracold neutrons can be stored in experimental volumes if one uses pulse thermal neutron source with a low repetition rate, a very low temperature converter, a high quality curved neutron guide, and a shutter at the entrance window of the storage volume. Some results of a Monte Carlo simulation are presented of the nonstationary transport of very cold (VCN) and ultracold neutrons (UCN) in straight and curved horizontal, and vertical neutron guides with a rectangular cross section, in the presence of neutron losses due to neutron capture and diffuse scattering on imperfectly smooth reflecting surface of the guides wall. The gravitational neutron deceleration and bending of neutron trajectories are taken into account rigorously. The nonstationary storage of UCN in experimental chambers is modelled for a low periodic or aperiodic pulse neutron source. (author)

  12. Neutron Imaging at LANSCE—From Cold to Ultrafast

    Directory of Open Access Journals (Sweden)

    Ronald O. Nelson

    2018-02-01

    Full Text Available In recent years, neutron radiography and tomography have been applied at different beam lines at Los Alamos Neutron Science Center (LANSCE, covering a very wide neutron energy range. The field of energy-resolved neutron imaging with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as quantitative density measurements, was pioneered at the Target 1 (Lujan center, Flight Path 5 beam line and continues to be refined. Applications include: imaging of metallic and ceramic nuclear fuels, fission gas measurements, tomography of fossils and studies of dopants in scintillators. The technique provides the ability to characterize materials opaque to thermal neutrons and to utilize neutron resonance analysis codes to quantify isotopes to within 0.1 atom %. The latter also allows measuring fuel enrichment levels or the pressure of fission gas remotely. More recently, the cold neutron spectrum at the ASTERIX beam line, also located at Target 1, was used to demonstrate phase contrast imaging with pulsed neutrons. This extends the capabilities for imaging of thin and transparent materials at LANSCE. In contrast, high-energy neutron imaging at LANSCE, using unmoderated fast spallation neutrons from Target 4 [Weapons Neutron Research (WNR facility] has been developed for applications in imaging of dense, thick objects. Using fast (ns, time-of-flight imaging, enables testing and developing imaging at specific, selected MeV neutron energies. The 4FP-60R beam line has been reconfigured with increased shielding and new, larger collimation dedicated to fast neutron imaging. The exploration of ways in which pulsed neutron beams and the time-of-flight method can provide additional benefits is continuing. We will describe the facilities and instruments, present application examples and recent results of all these efforts at LANSCE.

  13. Neutron stars with spin polarized self-interacting dark matter

    OpenAIRE

    Rezaei, Zeinab

    2018-01-01

    Dark matter, one of the important portion of the universe, could affect the visible matter in neutron stars. An important physical feature of dark matter is due to the spin of dark matter particles. Here, applying the piecewise polytropic equation of state for the neutron star matter and the equation of state of spin polarized self-interacting dark matter, we investigate the structure of neutron stars which are influenced by the spin polarized self-interacting dark matter. The behavior of the...

  14. Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.

    Science.gov (United States)

    Wood, Mary H; Welbourn, Rebecca J L; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M

    2015-06-30

    Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.

  15. Small accelerator-based pulsed cold neutron sources

    International Nuclear Information System (INIS)

    Lanza, Richard C.

    1997-09-01

    Small neutron sources could be used by individual researchers with the convenience of an adequate local facility. Although these sources would produce lower fluxes than the national facilities, for selected applications, the convenience and availability may overcome the limitations on source strength. Such sources might also be useful for preliminary testing of ideas before going to a larger facility. Recent developments in small, high-current pulsed accelerators makes possible such a local source for pulsed cold neutrons.

  16. Progress on the Magnetic Trapping of Ultra-cold Neutrons

    Science.gov (United States)

    Doyle, John M.

    1998-04-01

    Ultra-cold neutrons (UCN) have been instrumental in making improved measurements of the neutron beta-decay lifetime and in searches for a permanent electric dipole moment.(R. Golub, D. Richardson and S.K. Lamoreaux, Ultra-cold Neutrons), Adam Hilger, 1991 The most accurate experiments have taken place using in-core devices at ILL (Grenoble, France) and PNPI (St. Petersburg, Russia). Superthermal techniques offer the promise of high-density sources of UCN via scattering of cold neutrons. Cold neutron beams are available at many neutron facilities. We are currently working on the development of a superfluid helium UCN source using the Cold Neutron Research Facility at the NIST Research Reactor (Gaithersburg) . Our first experiment plans to use superthermal scattering of neutrons in superfluid helium to produce UCN within a magnetic trapping volume. A magnetic trap 30 cm long and 4 cm diameter will be filled with helium at about 100 mK. Cold neutrons (around 11 K) will be introduced into the trapping region where some of them scatter to low enough energies (around 1 mK) so that they are magnetically trapped. Once trapped the UCN travel undisturbed; they have a very small probability of upscattering. Detection will be accomplished as the UCN beta-decay. The resultant high-energy electron creates excited molecular helium dimers, a portion which decay in less than 10 ns and emit radiation in the XUV (50-100 nm). We have developed techniques to measure these scintillations. Analysis indicates that a high accuracy measurement of the neutron beta decay lifetime should be possible using our techniques. An apparatus has been constructed and initial runs are underway. An overview of the experiment, discussion of systematic errors and recent experimental progress will be presented. This work is done in collaboration with C. Brome, J. Butterworth, S. Dzhosyuk, P. Huffman, C. Mattoni, D. McKinsey, M. Cooper, G. Greene, S. Lamoreaux, R. Golub, K. Habicht, K. Coakley, S. Dewey, D

  17. Development of the RRR cold neutron beam facility

    International Nuclear Information System (INIS)

    Lovotti, Osvaldo; Masriera, Nestor; Lecot, Carlos; Hergenreder, Daniel

    2002-01-01

    This paper describes some general design issues on the neutron beam facilities (cold neutron source and neutron beam transport system) of the Replacement Research Reactor (RRR) for the Australian Nuclear Science and Technology Organisation (ANSTO). The description covers different aspect of the design: the requirements that lead to an innovative design, the overall design itself, the definition of a technical approach in order to develop the necessary design solutions, and finally the organizational framework by which international expertise from five different institutions is integrated. From the technical viewpoint, the RRR-CNS is a liquid Deuterium (LD2) moderator, sub-cooled to ensure maximum moderation efficiency, flowing within a closed natural circulation thermosyphon loop. The thermosyphon is surrounded by a zirconium alloy CNS vacuum containment that provides thermal insulation and a multiple barriers scheme to prevent Deuterium from mixing with water or air. Consistent with international practice, this vessel is designed to withstand any hypothetical energy reaction should Deuterium and air mix in its interior. The 'cold' neutrons are then taken by the NBTS and transported by the neutron guide system into the reactor beam hall and neutron guide hall, where neutron scattering instruments are located. From the management viewpoint, the adopted distributed scheme is successful to manage the complex interfacing between highly specialized technologies, allowing a smooth integration within the project. (author)

  18. Cold neutron diffraction contrast tomography of polycrystalline material.

    Science.gov (United States)

    Peetermans, S; King, A; Ludwig, W; Reischig, P; Lehmann, E H

    2014-11-21

    Traditional neutron imaging is based on the attenuation of a neutron beam through scattering and absorption upon traversing a sample of interest. It offers insight into the sample's material distribution at high spatial resolution in a non-destructive way. In this work, it is expanded to include the diffracted neutrons that were ignored so far and obtain a crystallographic distribution (grain mapping). Samples are rotated in a cold neutron beam of limited wavelength band. Projections of the crystallites formed by the neutrons they diffract are captured on a two dimensional imaging detector. Their positions on the detector reveal their orientation whereas the projections themselves are used to reconstruct the shape of the grains. Indebted to established synchrotron diffraction contrast tomography, this 'cold neutron diffraction contrast tomography' is performed on recrystallized aluminium for experimental comparison between both. Differences between set-up and method are discussed, followed by the application range in terms of sample properties (crystallite size and number, mosaicity and typical materials). Neutron diffraction contrast tomography allows to study large grains in bulky metallic structures.

  19. Study and production of polarized monochromatic thermal neutron beams

    International Nuclear Information System (INIS)

    Beiln, H.

    1963-06-01

    Results obtained with a recently built neutron spectrometer producing monochromatic polarized neutron beams,in the energy rang (10 -3 - 10) eV and using a series of artificial (Co: 92 per cent - Fe: 8 per cent) monocrystal as polarizers and analysers, are given. A high precision method for cutting monocrystals is explained. A description of the installation itself as well as some results obtained with Fe 3 O 4 crystals are also given. Experimental result pertaining to various magnetic guide and 'spin flip' system, as required in the handling of such polarized neutron beams, are also discussed. (author) [fr

  20. Edge localized modes of cold neutrons in periodic condensed media

    Science.gov (United States)

    Belyakov, V. A.

    2017-06-01

    It is found that for certain energies of discreet cold neutrons, quasi-stationary eigen solutions of the corresponding Schrodinger equation, which are localized in the layer of a periodic medium, exist. The localization time of these solutions is strongly dependent on the layer thickness, being finite for a finite layer thickness and increasing indefinitely upon a infinite growth of the layer thickness as the third power of the layer thickness. The problem has been solved in the two-wave approximation of the dynamic diffraction theory for the neutron propagation direction coinciding with the periodicity axes (normal incidence of the neutron beam on the layer). The expressions for neutron eigenwave functions in a periodic medium, the reflection and transmission coefficients, and the neutron wavefunction in the layer as a function of the neutron energy incident on the layer have been determined. It turns out that for the certain discrete neutron energies, the amplitudes of the neutron wavefunction in the layer reach sharp maxima. The corresponding energies are just outside of the neutron stop band (energies forbidden for neutron propagation in the layer) and determine the energies of neutron edge modes (NEMs) localized in the layer, which are direct analogs of the optical edge modes for photonic crystals. The dispersion equation for the localized neutron edge modes has been obtained and analytically solved for the case of thick layers. A rough estimate for the localization length L is L ( db N)-1, where b is the neutron scattering length, d is the crystal period, and N is the density of nuclei in the crystal. The estimates of the localized thermal neutron lifetime show that acheaving of a lifetime close to the free neutron lifetime seems nonrealistic due to absorption of thermal neutrons and requires a perfect large size crystal. Nevertheless, acheaving the localized neutron lifetime exceeding by 104 times the neutron time of flight through the layer appears as

  1. Non-uniform transmission of supermirror devices for neutron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Tong, X., E-mail: tongx@ornl.gov [Instrument and Source Design Division, Oak Ridge National Laboratory, Oak Ridge 37831, TN (United States); Robertson, J.L. [Instrument and Source Design Division, Oak Ridge National Laboratory, Oak Ridge 37831, TN (United States); Pynn, R. [Instrument and Source Design Division, Oak Ridge National Laboratory, Oak Ridge 37831, TN (United States); Indiana University Center for the Exploration of Energy and Matter, Bloomington 47408, IN (United States)

    2014-12-21

    Polarizing supermirrors have been widely used in neutron scattering facilities where they have been employed as neutron spin filters to polarize neutron beams as well as analyze their polarization. In the past, the performance of polarizing supermirrors has been limited by their small acceptance angle, which made them less suitable for use at short wavelengths or with highly divergent beams. Recent advances in supermirror coatings have led to an array of devices designed to, at least partially, overcome this limitation. V-polarizers and multi-channel polarizers have been employed in several different types of neutron scattering instruments. However, our observations in the field where these types of polarizers are in use have raised concerns about their performance. In this paper, we report on detailed Monte-Carlo simulations performed on a multi-channel polarizer used on a prototype Spin-Echo Small Angle Neutron Scattering (SESANS) instrument to better understand its performance. Our results show that careful simulations of polarizers based on mirror reflection are needed to determine whether a particular design is suitable for SESANS applications.

  2. Time-gated energy-selected cold neutron radiography

    CERN Document Server

    McDonald, T E; Claytor, T N; Farnum, E H; Greene, G L; Morris, C

    1999-01-01

    A technique is under development at the Los Alamos Neutron Science Center (LANSCE), Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) for producing neutron radiography using only a narrow energy range of cold neutrons. The technique, referred to as time-gated energy-selected (TGES) neutron radiography, employs the pulsed neutron source at the Lujan Center with time of flight to obtain a neutron pulse having an energy distribution that is a function of the arrival time at the imager. The radiograph is formed on a short persistence scintillator and a gated, intensified, cooled CCD camera is employed to record the images, which are produced at the specific neutron energy range determined by the camera gate. The technique has been used to achieve a degree of material discrimination in radiographic images. For some materials, such as beryllium and carbon, at energies above the Bragg cutoff the neutron scattering cross section is relatively high while at energies below the Bragg cutoff the scattering cross ...

  3. Installation Test of Cold Neutron Soruce In-pool Assembly

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Choi, J.; Wu, S. I.; Kim, Y. K.; Cho, Y. G.; Lee, C. H.; Kim, K. R.

    2006-04-01

    Before installation of the final cold neutron source in-pool assembly (IPA) in the vertical CN hole at the HANARO, the research reactor, the installation test of IPA has been conducted in the CN hole of the reactor using a full-scaled mock-up in-pool assembly. The well-known cold neutron sources, being safely operated or being now constructed, had been constructed together with each research reactor; therefore, there was little limitation to obtain the optimal cold neutron source since a cold neutron source had been decided to be installed in the reactor from the beginning of the design for the reactor construction. Unlikely, the HANARO has been operated for 10 years so that we have got lots of design limitation in terms of the decisions in the optimal shape, size, minimal light-water gap, and adhesion degree to the CN beam tube, IPA installation tools, etc. for the construction of the CNS. Accordingly, the main objective of this test is to understand any potential problem or interference happened inside the reactor by installing the mock-up IPA and installation bracket. The outcomes from this test is reflected on the finalizing process of the IPA detail design

  4. Studies of magnetism with inelastic scattering of cold neutrons

    International Nuclear Information System (INIS)

    Jacrot, B.

    1964-01-01

    Inelastic scattering of cold neutrons can be used to study some aspects of magnetism: spins waves, exchange integrals, vicinity of Curie point. After description of the experimental set-up, several experiments, in the fields mentioned above, are analysed. (author) [fr

  5. Study of liquid hydrogen and liquid deuterium cold neutron sources

    International Nuclear Information System (INIS)

    Harig, H.D.

    1969-01-01

    In view of the plant of the cold neutron source for a high flux reactor (maximal thermal flux of about 10 15 n/cm 2 s) an experimental study of several cold sources of liquid hydrogen and liquid deuterium has been made in a low power reactor (100 kW, about 10 12 n/cm 2 s). We have investigated: -cold neutron sources of liquid hydrogen shaped as annular layers of different thickness. Normal liquid hydrogen was used as well as hydrogen with a high para-percentage. -Cold neutron sources of liquid deuterium in cylinders of 18 and 38 cm diameter. In this case the sources could be placed into different positions to the reactor core within the heavy water reflector. This report gives a general description of the experimental device and deals more detailed with the design of the cryogenic systems. Then, the measured results are communicated, interpreted and finally compared with those of a theoretical study about the same cold moderators which have been the matter of the experimental investigation. (authors) [fr

  6. The new cold neutron tomography set-up at SINQ

    CERN Document Server

    Baechler, S; Cauwels, P; Dierick, M; Jolie, J; Materna, T; Mondelaers, W

    2002-01-01

    A new cold neutron tomography set-up is operational at the neutron spallation source SINQ of the Paul Scherrer Institute (PSI) in Villigen, Switzerland. The detection system is based on a sup 6 LiF/ZnS:Ag conversion screen and a CCD camera. Several tests have been carried out to characterize the quality of the tomography system, such as homogeneity, reproducibility, L/D-ratio and spatial resolution. The high flux and the good efficiency of the detector lead to very short exposure times. Thus, a typical set of tomography scans can be performed in only 20 min. Then, 3D computed tomography objects were calculated using the filtered back-projection reconstruction method. Initial results of various samples show that cold neutron tomography can be a useful tool for industry, geology and dentistry. Furthermore, suitable applications can be found in the field of archaeology.

  7. Development of polarized {sup 3}He filter for polarized neutron experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, K.; Sato, H.; Yoshimi, A.; Asahi, K. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Masuda, Y.; Muto, S.; Ishimoto, S.; Morimoto, K.

    1996-08-01

    A high-pressure polarized {sup 3}He gas cell, pumped with two diode lasers, has been developed at KEK for use as a polarizer and a spin analyzer for low energy neutrons. The polarization attained of {sup 3}He was determined through the measurement of the transmission of the unpolarized neutrons through the {sup 3}He cell. So far we obtained P{sub He}=18% at 10 atm and P{sub He}=12% at 20 atm. (author)

  8. Local magnetic structure determination using polarized neutron holography

    Science.gov (United States)

    Szakál, Alex; Markó, Márton; Cser, László

    2015-05-01

    A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems.

  9. Local magnetic structure determination using polarized neutron holography

    International Nuclear Information System (INIS)

    Szakál, Alex; Markó, Márton; Cser, László

    2015-01-01

    A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems

  10. Invited Article: Polarization ``Down Under'': The polarized time-of-flight neutron reflectometer PLATYPUS

    Science.gov (United States)

    Saerbeck, T.; Klose, F.; Le Brun, A. P.; Füzi, J.; Brule, A.; Nelson, A.; Holt, S. A.; James, M.

    2012-08-01

    This review presents the implementation and full characterization of the polarization equipment of the time-of-flight neutron reflectometer PLATYPUS at the Australian Nuclear Science and Technology Organisation (ANSTO). The functionality and efficiency of individual components are evaluated and found to maintain a high neutron beam polarization with a maximum of 99.3% through polarizing Fe/Si supermirrors. Neutron spin-flippers with efficiencies of 99.7% give full control over the incident and scattered neutron spin direction over the whole wavelength spectrum available in the instrument. The first scientific experiments illustrate data correction mechanisms for finite polarizations and reveal an extraordinarily high reproducibility for measuring magnetic thin film samples. The setup is now fully commissioned and available for users through the neutron beam proposal system of the Bragg Institute at ANSTO.

  11. Application of a double reflection multilayer monochromator to small-angle cold neutron scattering

    International Nuclear Information System (INIS)

    Sugiyama, Masaaki; Kawai, Takeshi; Ebisawa, Toru; Tasaki, Seiji; Maeda, Yutaka.

    1994-01-01

    The flux profile and the spectra of the neutron beam from the cold neutron guide tube, CN-2, which is installed at the cold neutron source of Kyoto University Reactor were measured with Au foil activation and time-of-flight methods. By using the cold neutron beam, the characteristics of a double reflection multilayer monochromator were studied for a small angle neutron scattering spectrometer. The reflectivity of the monochromator and the wavelength resolution were found to be 78% and 15% at the wavelength of 5.5 A respectively. These values indicate that the monochromator gives quite a good performance for small-angle cold neutron scattering experiments. (author)

  12. A Precision Measurement of Neutron β-Decay Angular Correlations with Pulsed Cold Neutrons — The abBA Experiment

    Science.gov (United States)

    Seo, P.-N.; Bowman, J. D.; Calarco, J. R.; Chupp, T. E.; Cianciolo, T. V.; Desai, D.; De Souza, R. T.; O'Donnell, J. M.; Frlež, E.; Gentile, T.; Greene, G. L.; Grzywacz, R. K.; Gudkov, V.; Hersman, F. W.; Jones, G. L.; Mitchell, G. S.; Penttilä, S. I.; Počanić, D.; Rykaczewski, K. P.; Snow, W. M.; Wilburn, W. S.; Young, G. R.

    2005-05-01

    The abBA collaboration is developing a new type of field-expansion spectrometer to measure neutron beta decay angular parameters, a, b, B, and A, to the 0.1% precision level. This precision will be achieved by combining three new technical approaches; a pulsed cold neutron beam, a 3He neutron spin filter, and segmented large-area thin-dead layer silicon detectors. Both the electron and proton resulting from the decay will be guided by electric and magnetic fields and detected in coincidence by two 2π solid-angle silicon detectors. For the neutron polarization-dependent observables A and B, a novel precision neutron polarimetry technique has been developed. The parameters a and b will be obtained from the proton time-of-flight and the measured electron energy spectrum. Measurement of the four parameters in the same apparatus provides a redundant determination of parameter λ=gA/gV, providing a test of the standard electroweak interaction.

  13. A Precision Measurement of Neutron β-Decay Angular Correlations with Pulsed Cold Neutrons -- The abBA Experiment

    International Nuclear Information System (INIS)

    Seo, P.-N.; Bowman, J.D.; O'Donnell, J.M.; Mitchell, G.S.; Penttilae, S.I.; Wilburn, W.S.; Calarco, J.R.; Hersman, F.W.; Chupp, T.E.; Cianciolo, T.V.; Rykaczewski, K.P.; Young, G.R.; Desai, D.; Grzywacz, R.K.; Souza, R.T. de; Snow, W.M.; Frlez, E.; Pocanic, D.; Gentile, T.; Greene, G.L.

    2005-01-01

    The abBA collaboration is developing a new type of field-expansion spectrometer to measure neutron beta decay angular parameters, a, b, B, and A, to the 0.1% precision level. This precision will be achieved by combining three new technical approaches; a pulsed cold neutron beam, a 3He neutron spin filter, and segmented large-area thin-dead layer silicon detectors. Both the electron and proton resulting from the decay will be guided by electric and magnetic fields and detected in coincidence by two 2π solid-angle silicon detectors. For the neutron polarization-dependent observables A and B, a novel precision neutron polarimetry technique has been developed. The parameters a and b will be obtained from the proton time-of-flight and the measured electron energy spectrum. Measurement of the four parameters in the same apparatus provides a redundant determination of parameter λ=gA/gV, providing a test of the standard electroweak interaction

  14. Prospects for a new cold neutron beam measurement of the neutron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Geoffrey L [ORNL; Snow, William M [ORNL; Dewey, M. [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Gilliam, D [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Nico, Jeffrey S [ORNL; Coakley, K [National Institute of Standards and Technology (NIST), Boulder; Yue, A [University of Tennessee, Knoxville (UTK); Laptev, A [Los Alamos National Laboratory (LANL); Wietfeldt, F [Tulane University

    2009-01-01

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  15. Prospects for a new cold neutron beam measurement of the neutron lifetime

    Science.gov (United States)

    Dewey, M.; Coakley, K.; Gilliam, D.; Greene, G.; Laptev, A.; Nico, J.; Snow, W.; Wietfeldt, F.; Yue, A.

    2009-12-01

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  16. Prospects for a new cold neutron beam measurement of the neutron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, M., E-mail: mdewey@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Coakley, K., E-mail: kevin.coakley@nist.go [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Gilliam, D., E-mail: david.gilliam@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Greene, G., E-mail: greenegl@ornl.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Lab, Building 6010, Oak Ridge, TN 37831 (United States); Laptev, A., E-mail: alaptev@nist.go [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nico, J., E-mail: jnico@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Snow, W., E-mail: wsnow@indiana.ed [Indiana University/IUCF, Bloomington, IN 47408 (United States); Wietfeldt, F., E-mail: few@tulane.ed [Tulane University, New Orleans, LA 70118 (United States); Yue, A., E-mail: ayue@nist.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States)

    2009-12-11

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  17. High-pressure neutron diffraction with hybrid-anvil-cell on cold neutron TOF diffractometer WISH. Application for multiferroics

    International Nuclear Information System (INIS)

    Terada, Noriki

    2016-01-01

    Recently, we have developed the experimental setup for high pressure neutron diffraction experiment with using Hybrid-Anvil-Cell in combination with high flux cold neutron time of flight (TOF) diffractometer WISH at ISIS. By using this unique setup, we have succeeded in measuring pressure induced magnetic Bragg reflections for the multiferroic compounds CuFeO 2 and TbMnO 3 . The former shows pressure induced polar magnetic phases up to 7.9 GPa. For the latter compound, we have determined the magnetic structures under not only high pressure (5 GPa) but also high magnetic field (8T) condition. In this article, I would like to show utilization of the combination, and encourage researchers in other fields as well as multiferroics to use the unique combination. (author)

  18. An ultra-cold neutron source at the MLNSC

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, T.J.; Brun, T.; Hill, R.; Morris, C.; Seestrom, S.J. [Los Alamos National Lab., NM (United States); Crow, L. [Univ. of Rhode Island, Kingston, RI (United States); Serebrov, A. [Petersburg Nuclear Physics Inst. (Russian Federation)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out the research and development of an Ultra-Cold Neutron (UCN) source at the Manuel Lujan Neutron Scattering Center (MLNSC). A first generation source was constructed to test the feasibility of a rotor source. The source performed well with an UCN production rate reasonably consistent with that expected. This source can now provide the basis for further development work directed at using UCN in fundamental physics research as well as possible applications in materials science.

  19. Beryllium phonon spectrum from cold neutron measurements

    International Nuclear Information System (INIS)

    Bulat, I.A.

    1979-01-01

    The inelastic coherent scattering of neutrons with the initial energy E 0 =4.65 MeV on the spectrometer according to the time of flight is studied in polycrystalline beryllium. The measurements are made for the scattering angles THETA=15, 30, 45, 60, 75 and 90 deg at 293 K. The phonon spectrum of beryllium, i-e. g(w) is reestablished from the experimental data. The data obtained are compared with the data of model calculations. It is pointed out that the phonon spectrum of beryllium has a bit excessive state density in the energy range from 10 to 30 MeV. It is caused by the insufficient statistical accuracy of the experiment at low energy transfer

  20. Absolute calibration of a cold and thermal neutron detector using monochromatic neutron beam

    Science.gov (United States)

    Choi, Jin Ha; Cude-Woods, Christopher; Ito, Takeyasu; Young, Albert

    2017-09-01

    Time of flight spectra for cold neutrons exiting the moderator volume of the LANSCE UCN source has been obtained using a commercial neutron scintillator, EJ-426, coupled to a Hamamatsu R1355. The absolute efficiency for this detector system was determined using a 37.4 meV (monochromatic) neutron beam from the Neutron Powder Diffraction Facility (NPDF) at North Carolina State University's PULSTAR reactor. We measured the absolute neutron flux at the NPDF through thin foil activation and explored threshold effects through analysis of the measured pulse height distribution for effectively pure neutron signals from the NPDF beam. Non-uniformity of the flux profile across the detector and the detection efficiency as a function of the point of incidence of neutrons on the scintillator was explored using a X-Y translation system to perform scans using either fixed or movable apertures. The results are generally consistent with our expectations for this system, and provide a quantitative assessment of the sensitivity of this system to cold and thermal neutrons. This project was funded by the National Science Foundation and the Department of Energy.

  1. Plans for an Ultra Cold Neutron source at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L. [Los Alamos National Lab., NM (United States)

    1996-08-01

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of be a frozen deuterium source. If successful, a source of this type could be implemented at future spallation source, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors. (author)

  2. Resonant production of $\\gamma$ rays in jolted cold neutron stars

    CERN Document Server

    Kusenko, A

    1998-01-01

    Acoustic shock waves passing through colliding cold neutron stars can cause repetitive superconducting phase transitions in which the proton condensate relaxes to its equilibrium value via coherent oscillations. As a result, a resonant non-thermal production of gamma rays in the MeV energy range with power up to 10^(52) erg/s can take place during the short period of time before the nuclear matter is heated by the shock waves.

  3. Studies and modeling of cold neutron sources; Etude et modelisation des sources froides de neutron

    Energy Technology Data Exchange (ETDEWEB)

    Campioni, G

    2004-11-15

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources.

  4. Surface physics with cold and thermal neutron reflectometry

    International Nuclear Information System (INIS)

    Steyerl, A.

    1991-11-01

    Three aspects of the research project ''Surface physics with cold and ultracold neutron reflectometry'' were stressed during the present first year: (1) Setup of the reflectometer facility at the research reactor of the Rhode Island Nuclear Science Center. The installation provides a narrow ''pencil beam'' analyzed by time of flight using a chopper system. Following beam characterization and a test measurement of the total cross section of copper single crystal first reflectivity measurements are currently performed using a supermirror. (2) Design stud for the ultracold neutron imaging system, with involvement of the relevant industry. Bids are available for several components indicating that it will be very difficult to build the entire system unless further funds become available. (3) Analysis of features of neutron reflection from surfaces with special emphasis on the effect of surface roughness both on the specular beam and the diffusely reflected and refracted intensity. Previous theoretical studies were supplemented by further numerical calculations of diffuse scattering distributions using different models. Application of ultracold and cold neutron reflectometry to the study of liquid-vapor phase transition were discussed. The theoretical work also includes the development of tentative ideas for novel fundamental physics experiments

  5. Dynamically polarized samples for neutron protein crystallography at the Spallation Neutron Source

    Science.gov (United States)

    Zhao, Jinkui; Pierce, Josh; Myles, Dean; Robertson, J. L.; Herwig, Kenneth W.; Standaert, Bob; Cuneo, Matt; Li, Le; Meilleur, Flora

    2016-09-01

    To prepare for the next generation neutron scattering instruments for the planned second target station at the Spallation Neutron Source (SNS) and to broaden the scientific impact of neutron protein crystallography at the Oak Ridge National Laboratory, we have recently ramped up our efforts to develop a dynamically polarized target for neutron protein crystallography at the SNS. Proteins contain a large amount of hydrogen which contributes to incoherent diffraction background and limits the sensitivity of neutron protein crystallography. This incoherent background can be suppressed by using polarized neutron diffraction, which in the same time also improves the coherent diffraction signal. Our plan is to develop a custom Dynamic Nuclear Polarization (DNP) setup tailored to neutron protein diffraction instruments. Protein crystals will be polarized at a magnetic field of 5 T and temperatures of below 1 K. After the dynamic polarization process, the sample will be brought to a frozen-spin mode in a 0.5 T holding field and at temperatures below 100 mK. In a parallel effort, we are also investigating various ways of incorporating polarization agents needed for DNP, such as site specific spin labels, into protein crystals.

  6. A new polarized neutron interferometry facility at the NCNR

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, C.B. [Physics and Engineering Physics Department, Tulane University, New Orleans, LA 70188 (United States); Arif, M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Cory, D.G. [Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada N2L 2Y5 (Canada); Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Mineeva, T. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Nsofini, J.; Sarenac, D. [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Williams, C.J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Huber, M.G., E-mail: michael.huber@nist.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pushin, D.A., E-mail: dmitry.pushin@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada)

    2016-03-21

    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  7. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    International Nuclear Information System (INIS)

    Wehring, B.W.; Uenlue, K.

    1995-01-01

    Funds were received for the first year of a three year DOE Nuclear Engineering Research Grant, ''Study of Neutron Focusing at the Texas Cold Neutron Source'' (FGO2-92ER75711). The purpose of this three year study was to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility was also to be designed, setup, and tested under the three year project. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which we wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, we obtained gains of 3 to 5 for the neutron flux averaged over an area of 1 x 1 cm

  8. Generation of neutron standing waves at total reflection of polarized neutrons

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Nikitenko, Yu.V.; Kozhevnikov, S.V.; Radu, F.; Kruijs, R.; Rekveldt, M.Th.

    1999-01-01

    The regime of neutron standing waves at reflection of polarized thermal neutrons from the structure glass/Cu (1000 A Angstrom)/Ti (2000 A Angstrom)/Co (60 A Angstrom)/Ti (300 A Angstrom) in a magnetic field directed at an angle to the sample plane is realized. The intensity of neutrons with a particular spin projection on the external magnetic field direction appears to be a periodic function of the neutron wavelength and the glancing angle of the reflected beam. It is shown that the neutron standing wave regime can be a very sensitive method for the determination of changes in the spatial position of magnetic noncollinear layers. (author)

  9. Vessel for moderator in cold neutron source device

    International Nuclear Information System (INIS)

    Kumai, Toshio.

    1996-01-01

    A vessel for moderators has a substantially funnel-like shape diverging upwardly at least in a vertical cross section along a neutron moving direction. The substantially funnel-like shape may be of such vertical cross section along the neutron moving direction as having inclination on one or both sides thereof. The height of the vessel is preferably from 100 to 400mm. The width of the vessel in the neutron moving direction in the vessel is preferably from 10 to 100mm at the upper portion of the funnel-like shape. The vessel is preferably made of metal or glass, and, especially a heat resistant stainless steel such as SUH660 optimum in view of good radiation resistance. Even if the moderators are boiled by nuclear heat generation to cause bubbles, the substantial distance of thermal neutrons moving in the moderators is made constant. Accordingly, cold neutrons can be obtained over the entire region of the vessel uniformly and efficiently. (I.N.)

  10. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    International Nuclear Information System (INIS)

    Rich, D.R.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Espy, M.A.; Haseyama, T.; Jones, G.; Keith, C.D.; Knudson, J.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilae, S.I.; Pomeroy, V.R.; Smith, D.A.; Snow, W.M.; Szymanski, J.J.; Stephenson, S.L.; Thompson, A.K.; Yuan, V.

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3 He spin filter and a relative transmission measurement technique. 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method

  11. Limitations on the accuracy of polarized-neutron diffractometry

    International Nuclear Information System (INIS)

    Moon, R.M.; Koehler, W.C.; Shull, C.G.

    1975-01-01

    The magnetic force on a neutron as it enters a high-field magnet can influence the results of polarized-neutron diffraction experiments. The position of the Bragg peak is slightly different for neutrons in the two spin states and the peak intensity is slightly different. The magnitudes of these effects are calculated and experimental evidence confirming the peak shift calculation is presented. Suggestions for experimental procedures to minimize these effects are presented. The discussion is directed toward experiments in which flipping-ratio accuracies approaching 5x10 -5 are desired. (Auth.)

  12. Cold neutron imaging detection with a GSO scintillator

    CERN Document Server

    Tokanai, F; Oku, T; Ino, T; Suzuki, J I; Ikeda, T; Ootani, W; Otani, C; Sato, H; Shimizu, H M; Kiyanagi, Y; Hirota, T

    2000-01-01

    The pulse-height spectrum and two-dimensional image of a 0.5 mm thick GSO scintillator were investigated for a 6 A cold neutron beam. The 31 and 81 keV peaks resulting from neutron absorption by Gd nuclei were identified in the pulse-height spectrum by using a photomultiplier tube. Images of 1.5 and 2.1 mm (FWHM) in diameter were observed for 1 and 2 mm diameter incident beams with an image intensifier and viewed by a CCD camera, corresponding to a position resolution of 1.3 mm (FWHM). The result implies that a position resolution of better than 100 mu m would be achievable by employing a GSO scintillator thinner than 20 mu m.

  13. Beam-transport optimization for cold-neutron spectrometer

    Directory of Open Access Journals (Sweden)

    Nakajima Kenji

    2015-01-01

    Full Text Available We report the design of the beam-transport system (especially the vertical geometry for a cold-neutron disk-chopper spectrometer AMATERAS at J-PARC. Based on the elliptical shape, which is one of the most effective geometries for a ballistic mirror, the design was optimized to obtain, at the sample position, a neutron beam with high flux without serious degrading in divergence and spacial homogeneity within the boundary conditions required from actual spectrometer construction. The optimum focal point was examined. An ideal elliptical shape was modified to reduce its height without serious loss of transmission. The final result was adapted to the construction requirements of AMATERAS. Although the ideas studied in this paper are considered for the AMATERAS case, they can be useful also to other spectrometers in similar situations.

  14. Grazing incidence polarized neutron scattering in reflection ...

    Indian Academy of Sciences (India)

    along with suppression of training effect in exchange coupled system was microscopically identified using neutron ..... reversal mechanism and suppression of training in an exchange-coupled system by Paul et al are worth ...... density functional calculations based on Korringa–Kohn–Rostoker–Coherent potential-.

  15. Structural Analysis and Seismic Design for Cold Neutron Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sangik; Kim, Y. K.; Kim, H. R

    2007-05-15

    This report describes all the major results of the dynamic structural analysis and seismic design for the Cold Neutron Laboratory Building which is classified in seismic class II. The results are summarized of the ground response spectrum as seismic input loads, mechanical properties of subsoil, the buoyancy stability due to ground water, the maximum displacement of the main frame under the seismic load and the member design. This report will be used as a basic design report to maintenance its structural integrity in future.

  16. Structural Analysis and Seismic Design for Cold Neutron Laboratory Building

    International Nuclear Information System (INIS)

    Wu, Sangik; Kim, Y. K.; Kim, H. R.

    2007-05-01

    This report describes all the major results of the dynamic structural analysis and seismic design for the Cold Neutron Laboratory Building which is classified in seismic class II. The results are summarized of the ground response spectrum as seismic input loads, mechanical properties of subsoil, the buoyancy stability due to ground water, the maximum displacement of the main frame under the seismic load and the member design. This report will be used as a basic design report to maintenance its structural integrity in future

  17. Measurement of the polarized neutron---polarized {sup 3}He total cross section

    Energy Technology Data Exchange (ETDEWEB)

    Keith, C.D.; Gould, C.R.; Haase, D.G.; Seely, M.L. [North Carolina State University, Raleigh, North Carolina 27695 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); Huffman, P.R.; Roberson, N.R.; Tornow, W.; Wilburn, W.S. [Duke University, Durham, North Carolina 27708 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States)

    1995-05-10

    The first measurements of polarized neutron--polarized {sup 3}He scattering in the few MeV energy region are reported. The total cross section difference {Delta}{sigma}{sub {ital T}} for transversely polarized target and beam has been measured for neutron energies between 1.9 and 7.5 MeV. Comparison is made to predictions of {Delta}{sigma}{sub {ital T}} using various descriptions of the {sup 4}He continuum. A brute-force polarized target of solid {sup 3}He has been developed for these measurements. The target is 4.3{times}10{sup 22} atoms/cm{sup 2} thick and is polarized to 38% at 7 Telsa and 12 mK. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  18. Development of a Fresnel lens for cold neutrons based on neutron refractive optics

    CERN Document Server

    Oku, T; Moriyasu, S; Yamagata, Y; Ohmori, H; Takizawa, Y; Shimizu, H M; Hirota, T; Kiyanagi, Y; Ino, T; Furusaka, M; Suzuki, J

    2001-01-01

    We have developed compound refractive lenses (CRLs) for cold neutrons, which are made of vitreous silica and have an effective potential of (90.1-2.7x10 sup - sup 4 i) neV. In the case of compound refractive optics, neutron absorption by the material deteriorates lens performance. Thus, to prevent an increase in neutron absorption with increasing beam size, we have developed Fresnel lenses using the electrolytic in-process dressing grinding technique. The lens characteristics were carefully investigated with experimental and numerical simulation studies. The lenses functioned as a neutron focusing lens, and the focal length of 14 m was obtained with a 44-element series of the Fresnel lenses for 10 A neutrons. Moreover, good neutron transmission of 0.65 for 15 A neutrons was obtained due to the shape effect. According to comprehensive analysis of the obtained results, it is possible to realize a CRL for practical use by choosing a suitable lens shape and material.

  19. Radiography of weakly ferromagnetic metals with polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael; Calzada, Elbio; Muehlbauer, Martin; Schillinger, Burkhard [FRM II, Garching (Germany); E21, Physik Department TUM, Garching (Germany); Boeni, Peter; Neubauer, Andreas; Pfleiderer, Christian [E21, Physik Department TUM, Garching (Germany)

    2009-07-01

    The depolarization of a neutron beam passing through a ferromagnet crucially depends on the magnetic properties of the sample. Combining neutron depolarisation measurements with neutron radiography allows obtaining spatially resolved information about these properties. For measuring the depolarization, we have installed a longitudinal polarized beam setup at the ANTARES beamline consisting of {sup 3}He polarizers and flat coil spin flippers. With this setup we have performed radiography with polarized neutrons in the weak itinerant ferromagnets Pd{sub 1-x}Ni{sub x} in order to determine the spatial distribution of the Curie temperatures T{sub C} in the samples. The results show that the single crystals are rather inhomogeneous showing large variations in T{sub C}. The data allows firstly to cut out small crystals with improved homogeneity for neutron scattering experiments and secondly to provide feedback for improving the growth techniques for the crystals. In the future we hope to use the potential of this method to map out magnetic domains across large volume samples.

  20. Polarized 3He Gas Circulating Technologies for Neutron Analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Watt, David [Xemed LLC, Durham, NH (United States); Hersman, Bill [Xemed LLC, Durham, NH (United States)

    2014-12-10

    We describe the development of an integrated system for quasi-continuous operation of a large volume neutron analyzer. The system consists of a non-magnetic diaphragm compressor, a prototype large volume helium polarizer, a surrogate neutron analyzer, a non-depolarizing gas storage reservoir, a non-ferrous valve manifold for handling gas distribution, a custom rubidium-vapor gas return purifier, and wire-wound transfer lines, all of which are immersed in a two-meter external magnetic field. Over the Phase II period we focused on three major tasks required for the successful deployment of these types of systems: 1) design and implementation of gas handling hardware, 2) automation for long-term operation, and 3) improvements in polarizer performance, specifically fabrication of aluminosilicate optical pumping cells. In this report we describe the design, implementation, and testing of the gas handling hardware. We describe improved polarizer performance resulting from improved cell materials and fabrication methods. These improvements yielded valved 8.5 liter cells with relaxation times greater than 12 hours. Pumping this cell with 1500W laser power with 1.25nm linewidth yielded peak polarizations of 60%, measured both inside and outside the polarizer. Fully narrowing this laser to 0.25nm, demonstrated separately on one stack of the four, would have allowed 70% polarization with this cell. We demonstrated the removal of 5 liters of polarized helium from the polarizer with no measured loss of polarization. We circulated the gas through a titanium-clad compressor with polarization loss below 3% per pass. We also prepared for the next phase of development by refining the design of the polarizer so that it can be engineer-certified for pressurized operation. The performance of our system far exceeds comparable efforts elsewhere.

  1. Coherence approach to neutron polarization propagation in instruments

    NARCIS (Netherlands)

    De Haan, V.O.; Van Well, A.A.; Plomp, J.

    2008-01-01

    The propagation of the mutual coherence function is a well known method to describe the effects of neutron’s propagation through scattering instruments. This method is extended with the description of the coherence matrix to account for neutron polarization effects and its propagation through an

  2. Polarized 3He Neutron Spin Filters

    Energy Technology Data Exchange (ETDEWEB)

    Sno, William Michael [Indiana Univ., Bloomington, IN (United States)

    2016-01-12

    The goal of this grant to Indiana University and subcontractors at Hamilton College and Wisconsin and the associated Interagency Agreement with NIST was to extend the technique of polarized neutron scattering by the development and application of polarized 3He-based neutron spin filters. This effort was blessed with long-term support from the DOE Office of Science, which started in 2003 and continued until the end of a final no-cost extension of the last 3-year period of support in 2013. The steady support from the DOE Office of Science for this long-term development project was essential to its eventual success. Further 3He neutron spin filter development is now sited at NIST and ORNL.

  3. A Monte Carlo Simulation of Ultra-Cold Neutron Production by Bragg Reflection from a Moving Single Crystal

    DEFF Research Database (Denmark)

    Steenstrup, S.

    1978-01-01

    A Monte Carlo simulation was performed of a “Gedanken Experiment” where ultra-cold neutrons are produced by Bragg reflection from a moving mosaic single crystal. It is shown that ultra-cold neutrons can be obtained by using thermal or cold neutrons (in practice only the latter). The space...... of the major axis increases with the ratio of the velocity of the incident neutrons to the velocity of the reflected neutrons. The proposed method of production of ultra-cold neutrons might be useful in cases where a beam of ultra-cold quasi-monochromatic neutrons is required....

  4. Production and guide tube transmission of very cold neutrons from pulsed cold source

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Okumura, Kiyoshi

    1982-01-01

    The intensity and the energy spectra of Very Cold Neutrons (VCN) transmitted through a curved guide tube were measured by using the time-of-flight method of VCN. In the measurements, the curved guide tube having a characteristic neutron velocity of about 70 m/s is combined to a pulsed cold source of an electron linac in an internal target geometry. A space dependence of the VCN spectra was observed on the radial positions of a detector at the guide tube exit. A simple theoretical analysis on the transmission of VCN in the curved guide tube is also presented with taking into consideration about the effects of a finite size and a finite distance of the VCN-emitting source, and simple analytical formulas for the exit spectra of the guide tube are given. Comparisons between the experimental results and the theoretical calculations show good agreements, and the satisfactory performance of the present VCN guide tube assembly was ascertained. These results present also instructive features for understanding the structures and the space dependence of the exit spectra of a neutron guide tube. The VCN spectra at the guide tube exit can be divided into a few energy regions according to the transmission processes of VCN. Thus, the present study provides useful informations for the preparations of a VCN source with a curved guide tube. (author)

  5. Materials Selection for the HFIR Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, K.

    2001-08-24

    In year 2002 the High Flux Isotope Reactor (HFIR) will be fitted with a source of cold neutrons to upgrade and expand its existing neutron scattering facilities. The in-reactor components of the new source consist of a moderator vessel containing supercritical hydrogen gas moderator at a temperature of 20K and pressure of 15 bar, and a surrounding vacuum vessel. They will be installed in an enlarged beam tube located at the site of the present horizontal beam tube, HB-4; which terminates within the reactor's beryllium reflector. These components must withstand exceptional service conditions. This report describes the reasons and factors underlying the choice of 6061-T6 aluminum alloy for construction of the in-reactor components. The overwhelming considerations are the need to minimize generation of nuclear heat and to remove that heat through the flowing moderator, and to achieve a minimum service life of about 8 years coincident with the replacement schedule for the beryllium reflector. 6061-T6 aluminum alloy offers the best combination of low nuclear heating, high thermal conductivity, good fabricability, compatibility with hydrogen, superior cryogenic properties, and a well-established history of satisfactory performance in nuclear environments. These features are documented herein. An assessment is given of the expected performance of each component of the cold source.

  6. Data processing workflow for time of flight polarized neutrons inelastic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Savici, Andrei T [ORNL; Zaliznyak, Igor [Brookhaven National Laboratory (BNL); Garlea, Vasile O [ORNL; Winn, Barry L [ORNL

    2017-01-01

    We discuss the data processing workflow for polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. The effects of the focusing Heusler crystal polarizer and the wide-angle supermirror transmission polarization analyzer are added to the data processing flow of the non-polarized case. The implementation is done using the Mantid software package.

  7. Ultra-small-angle scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Jericha, E.; Badurek, G.; Trinker, M.

    2007-01-01

    Ultra-small-angle neutron scattering (USANS) has been established as an effective technique for the study of structures in the micrometre range in recent years. Consequentially this method has been extended to magnetic structures of corresponding size. We present the instrument arrangement and first experimental results. The instrument itself is a double crystal diffractometer in Bonse-Hart configuration which takes advantage of the narrow angular width of the perfect crystal reflection to obtain an extremely high angular resolution of the scattering vector. The neutrons are loss-free polarized by permanent magnetic prisms located between the monochromator crystal and the sample. Neutrons with opposite polarization are separated to a large extent and their different scattering behaviour may be studied in a single measurement without additional manipulation of the neutron spin. In this manner we are able to separate the magnetic and nuclear contribution to the scattering. We present first exemplifying measurements on ferromagnetic rods and wires, and on soft-magnetic ribbons. Related experiments were performed at the USANS facility of the TRIGA reactor at the Vienna University of Technology and at the combined neutron interferometer/USANS instrument S18 at the ILL, Grenoble

  8. Ultra-small-angle scattering with polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Jericha, E. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria)]. E-mail: jericha@ati.ac.at; Badurek, G. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Trinker, M. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria)

    2007-07-15

    Ultra-small-angle neutron scattering (USANS) has been established as an effective technique for the study of structures in the micrometre range in recent years. Consequentially this method has been extended to magnetic structures of corresponding size. We present the instrument arrangement and first experimental results. The instrument itself is a double crystal diffractometer in Bonse-Hart configuration which takes advantage of the narrow angular width of the perfect crystal reflection to obtain an extremely high angular resolution of the scattering vector. The neutrons are loss-free polarized by permanent magnetic prisms located between the monochromator crystal and the sample. Neutrons with opposite polarization are separated to a large extent and their different scattering behaviour may be studied in a single measurement without additional manipulation of the neutron spin. In this manner we are able to separate the magnetic and nuclear contribution to the scattering. We present first exemplifying measurements on ferromagnetic rods and wires, and on soft-magnetic ribbons. Related experiments were performed at the USANS facility of the TRIGA reactor at the Vienna University of Technology and at the combined neutron interferometer/USANS instrument S18 at the ILL, Grenoble.

  9. Chip-based microtrap arrays for cold polar molecules

    Science.gov (United States)

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2017-12-01

    Compared to the atomic chip, which has been a powerful platform to perform an astonishing range of applications from rapid Bose-Einstein condensate (BEC) production to the atomic clock, the molecular chip is only in its infant stages. Recently a one-dimensional electric lattice was demonstrated to trap polar molecules on a chip. This excellent work opens up the way to building a molecular chip laboratory. Here we propose a two-dimensional (2D) electric lattice on a chip with concise and robust structure, which is formed by arrays of squared gold wires. Arrays of microtraps that originate in the microsize electrodes offer a steep gradient and thus allow for confining both light and heavy polar molecules. Theoretical analysis and numerical calculations are performed using two types of sample molecules, N D3 and SrF, to justify the possibility of our proposal. The height of the minima of the potential wells is about 10 μm above the surface of the chip and can be easily adjusted in a wide range by changing the voltages applied on the electrodes. These microtraps offer intriguing perspectives for investigating cold molecules in periodic potentials, such as quantum computing science, low-dimensional physics, and some other possible applications amenable to magnetic or optical lattice. The 2D adjustable electric lattice is expected to act as a building block for a future gas-phase molecular chip laboratory.

  10. Monte Carlo simulation of the nonstationary transport of very cold and ultracold neutrons in vertical neutron guides and the storage of ultracold neutrons

    International Nuclear Information System (INIS)

    Muzychka, A.Yu.; Pokotilovski, Yu.N.

    1996-01-01

    The results are presented of Monte Carlo simulation of the transport of very cold (VCN) and ultracold neutrons (UCN) in straight and curved vertical neutron guides with a rectangular cross section in the presence of neutron losses due to neutron capture and diffuse scattering on imperfectly smooth reflecting surface of the guide wall. The gravitational neutron deceleration and bending of neutron trajectories are rigorously taken into account. The nonstationary storage of UCN in experimental chambers is modelled for a low periodic or a periodic pulse neutron source. (orig.)

  11. Partial neutron capture cross sections of actinides using cold neutron prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Genreith, Christoph

    2015-01-01

    Nuclear waste needs to be characterized for its safe handling and storage. In particular long-lived actinides render the waste characterization challenging. The results described in this thesis demonstrate that Prompt Gamma Neutron Activation Analysis (PGAA) with cold neutrons is a reliable tool for the non-destructive analysis of actinides. Nuclear data required for an accurate identification and quantification of actinides was acquired. Therefore, a sample design suitable for accurate and precise measurements of prompt γ-ray energies and partial cross sections of long-lived actinides at existing PGAA facilities was presented. Using the developed sample design the fundamental prompt γ-ray data on 237 Np, 241 Am and 242 Pu were measured. The data were validated by repetitive analysis of different samples at two individual irradiation and counting facilities - the BRR in Budapest and the FRM II in Garching near Munich. Employing cold neutrons, resonance neutron capture by low energetic resonances was avoided during the experiments. This is an improvement over older neutron activation based works at thermal reactor neutron energies. 152 prompt γ-rays of 237 Np were identified, as well as 19 of 241 Am, and 127 prompt γ-rays of 242 Pu. In all cases, both high and lower energetic prompt γ-rays were identified. The most intense line of 237 Np was observed at an energy of E γ =182.82(10) keV associated with a partial capture cross section of σ γ =22.06(39) b. The most intense prompt γ-ray lines of 241 Am and of 242 Pu were observed at E γ =154.72(7) keV with σ γ =72.80(252) b and E γ =287.69(8) keV with σ γ =7.07(12) b, respectively. The measurements described in this thesis provide the first reported quantifications on partial radiative capture cross sections for 237 Np, 241 Am and 242 Pu measured simultaneously over the large energy range from 45 keV to 12 MeV. Detailed uncertainty assessments were performed and the validity of the given uncertainties was

  12. The new cold neutron radiography and tomography instrument CONRAD at HMI Berlin

    Science.gov (United States)

    Hilger, A.; Kardjilov, N.; Strobl, M.; Treimer, W.; Banhart, J.

    2006-11-01

    The new cold neutron radiography instrument CONRAD is a multifunctional facility for radiography and tomography with cold neutrons at Hahn-Meitner Institut, Berlin. It is located at the end of a curved neutron guide, which faces the cold-neutron source of the BER-II research reactor. The geometry provides a cold-neutron beam with wavelengths between 2 and 12 Å. Two measuring positions are available for radiography and tomography investigations. The first one is placed at the end of the guide and it is optimized for in situ experiments in which a high neutron flux is required. The available flux at this position is approximately 10 8 cm -2 s -1. The second measuring position uses a pin-hole geometry which allows better beam collimation ( L/ D up to 1000) and higher image resolution in the range of 200 μm in the CCD based detector system (10×10 cm 2). The use of cold neutrons for radiography purposes increases the image contrast and improves the sensibility e.g., the detection of small amounts of water and hydrogen-containing materials in metal matrixes. On the other hand the cold-neutron beam can be modified easily by using diffraction and neutron optical techniques. This enables to perform radiography and tomography experiments with more sophisticated measuring techniques. Recent examples of research and industrial applications will be presented.

  13. The polarized neutron reflectometer 'Reverans'

    Energy Technology Data Exchange (ETDEWEB)

    Radzhabov, A.K. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation)]. E-mail: akr@pnpi.spb.ru; Gordeev, G.P. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation); Lazebnik, I.M. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation); Axelrod, L.A. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation); Zabenkin, V.N. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation)

    2007-07-15

    The polarized neutron reflectometer 'Reverans' with a vertical plane of scattering is being installed at the VVR-M reactor (Gatchina, Russia). It will be used for research on phase boundaries, interfaces and free surfaces. Systems under study can be both magnetic and nonmagnetic ones. At present the installation of the reflectometer is at the final stage. The parameters and abilities of the reflectometer are presented.

  14. Neutron spectrum and flux of the cold neutron beam port (C2-3) in JRR-3M

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Ebisawa, Toru; Tasaki, Seiji; Suzuki, Masatoshi; Soyama, Kazuhiko

    2000-03-01

    Neutron beam research in JRR-3M has been promoted and novel experiments using quite very low energy neutrons are proposed in these days. To cope with these new demands, the neutron spectrum and the flux at the end of the cold neutron beam (C2-3) were measured. Both of the time of flight method and the θ -2 θ method were used to measure the spectrum in the very long wavelength range until 4.5 nm. It showed the possibility of the very low energy neutron application. The neutron flux was also measured by the gold foil activation method and it is 2.3x10 8 n/cm 2 /s. These measured results shows the agreements with the results of the commissioning test of JRR-3M about 10 years ago. The aged deterioration of the cold guide tube is not found out. (author)

  15. Report on the international workshop on cold moderators for pulsed neutron sources.

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J. M.

    1999-01-06

    The International Workshop on Cold Moderators for Pulsed Neutron Sources resulted from the coincidence of two forces. Our sponsors in the Materials Sciences Branch of DOE's Office of Energy Research and the community of moderator and neutron facility developers both realized that it was time. The Neutron Sources Working Group of the Megascience Forum of the Organization for Economic Cooperation and Development offered to contribute its support by publishing the proceedings, which with DOE and Argonne sponsorship cemented the initiative. The purposes of the workshop were: to recall and improve the theoretical groundwork of time-dependent neutron thermalization; to pose and examine the needs for and benefits of cold moderators for neutron scattering and other applications of pulsed neutron sources; to summarize experience with pulsed source, cold moderators, their performance, effectiveness, successes, problems and solutions, and the needs for operational data; to compile and evaluate new ideas for cold moderator materials and geometries; to review methods of measuring and characterizing pulsed source cold moderator performance; to appraise methods of calculating needed source characteristics and to evaluate the needs and prospects for improvements; to assess the state of knowledge of data needed for calculating the neutronic and engineering performance of cold moderators; and to outline the needs for facilities for testing various aspects of pulsed source cold moderator performance.

  16. Report on the international workshop on cold moderators for pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J. M.

    1999-01-01

    The International Workshop on Cold Moderators for Pulsed Neutron Sources resulted from the coincidence of two forces. Our sponsors in the Materials Sciences Branch of DOE's Office of Energy Research and the community of moderator and neutron facility developers both realized that it was time. The Neutron Sources Working Group of the Megascience Forum of the Organization for Economic Cooperation and Development offered to contribute its support by publishing the proceedings, which with DOE and Argonne sponsorship cemented the initiative. The purposes of the workshop were: to recall and improve the theoretical groundwork of time-dependent neutron thermalization; to pose and examine the needs for and benefits of cold moderators for neutron scattering and other applications of pulsed neutron sources; to summarize experience with pulsed source, cold moderators, their performance, effectiveness, successes, problems and solutions, and the needs for operational data; to compile and evaluate new ideas for cold moderator materials and geometries; to review methods of measuring and characterizing pulsed source cold moderator performance; to appraise methods of calculating needed source characteristics and to evaluate the needs and prospects for improvements; to assess the state of knowledge of data needed for calculating the neutronic and engineering performance of cold moderators; and to outline the needs for facilities for testing various aspects of pulsed source cold moderator performance

  17. Engineering and control of cold molecules. Making manipulating and exploiting ultra-cold polar molecules

    International Nuclear Information System (INIS)

    Bigelow, N.P.; Haimberger, C.; Kleinert, J.; Tscherneck, M.; Holmes, M.E.

    2005-01-01

    In the last 12 months several groups have demonstrated the use of photo association to create cold heteronuclear (polar) molecules. We report on the formation of translationally cold NaCs molecules starting from a laser-cooled atomic vapor of Na and Cs atoms. Colliding atoms are transferred into bound molecular states in a two-step photoactivated process. We find a translational temperature of T ≅ 260 mK. To increase the density and number of trapped atoms, dark-spot techniques are used on the MOT and a Zeeman slowed sodium beam is used to load the sodium atoms into the trap. Spectroscopy of these molecules is underway using time-of-flight ion detection and trap-loss. Initial REMPI measurements indicate that both singlet and triplet states are being populated by the spontaneous-decay driven process. We measure a rate constant for molecule formation of K NaCs = 7.43 · 10 15 cm 3 s -1 . (author)

  18. Radiative capture of polarized neutrons by aluminium and manganese nuclei

    International Nuclear Information System (INIS)

    1979-01-01

    This investigation treats the angular dependence of the intensity and of the circular polarization of gamma-radiation, that is emitted after capture of polarized neutrons by polarized and unpolarized targets. Interference effects between the (n,γ)-reaction amplitudes with different channel spin are discussed and angular distribution coefficients are calculated in case mixing of dipole and quadrupole radiation occurs. It is indicated how the influence of p-wave capture may be taken into account. The nuclear orientation experiments on aluminium yield the values of the angular distribution coefficients of primary and secondary gamma-ray transitions and by a chi 2 -analysis five spin values are assigned uniquely and several α-values are determined. The nuclear orientation experiments on manganese lead to α-values and unique spin assigments for thirteen nuclear states in 56 Mn. (Auth.)

  19. Neutron-optical effects at very cold neutrons scattering on the spherical particles of different sizes

    International Nuclear Information System (INIS)

    Grinev, V.G.; Kudinova, O.I.; Novokshonova, L.A.; Kuznetsov, S.P.; Udovenko, A.I.; Shelagin, A.V.

    2006-01-01

    Very cold neutrons (VCN) with the wavelength λ > 4.0 ran are convenient tool for investigating the super molecular structures of different nature. Using a Born approximation (BA) to the analysis of dependencies on the wavelength of the VCN scattering cross sections, it is possible to obtain information about average sizes (R) and concentrations of the scattering particles with R∼ λ. However, with an increasing the sizes of scatterers the conditions for BA applicability can be disrupted. In this work we investigated the possibilities of BA, eikonal and geometric-optical approximations for the analysis of VCN scattering on the spherical particles with R ≥ λ

  20. Fundamental design of systems and facilities for cold neutron source in the Hanaro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Jeong, H. S.; Kim, Y. K.; Wu, S. I

    2006-01-15

    The CNS(Cold Neutron Source) development project has been carried out as the partial project of the reactor utilization R and D government enterprise since 2003. In the advantage of lower energy and long wave length for the cold neutron, it can be used with the essential tool in order to investigate the structure of protein, amino-acid, DNA, super lightweight composite and advanced materials in the filed of high technology. This report is mainly focused on the basic design of the systems and facilities for the HANARO cold neutron source, performed during the second fiscal project year.

  1. Fundamental design of systems and facilities for cold neutron source in the Hanaro

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Jeong, H. S.; Kim, Y. K.; Wu, S. I.

    2006-01-01

    The CNS(Cold Neutron Source) development project has been carried out as the partial project of the reactor utilization R and D government enterprise since 2003. In the advantage of lower energy and long wave length for the cold neutron, it can be used with the essential tool in order to investigate the structure of protein, amino-acid, DNA, super lightweight composite and advanced materials in the filed of high technology. This report is mainly focused on the basic design of the systems and facilities for the HANARO cold neutron source, performed during the second fiscal project year

  2. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    International Nuclear Information System (INIS)

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel's inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design

  3. Investigation of propagation algorithms for ray-tracing simulation of polarized neutrons

    DEFF Research Database (Denmark)

    Bergbäck Knudsen, Erik; Tranum-Rømer, A.; Willendrup, Peter Kjær

    2014-01-01

    Ray-tracing of polarized neutrons faces a challenge when the neutron propagates through an inhomogeneous magnetic field. This affects simulations of novel instruments using encoding of energy or angle into the neutron spin. We here present a new implementation of propagation of polarized neutrons...... within the McStas simulation package and show that it outperforms the de-facto standard method implemented in the NISP package by Seeger and Daemen. We include simulation of a simplified model of a spin-echo instrument, including a simple virtual experiment.......Ray-tracing of polarized neutrons faces a challenge when the neutron propagates through an inhomogeneous magnetic field. This affects simulations of novel instruments using encoding of energy or angle into the neutron spin. We here present a new implementation of propagation of polarized neutrons...

  4. Neutron diffraction analysis of Cr–Ni–Mo–Ti austenitic steel after cold plastic deformation and fast neutrons irradiation

    International Nuclear Information System (INIS)

    Voronin, V.I.; Valiev, E.Z.; Berger, I.F.; Goschitskii, B.N.; Proskurnina, N.V.; Sagaradze, V.V.; Kataeva, N.F.

    2015-01-01

    A quantitative assessment is presented of the dislocation density and relative fractions of edge and screw dislocations in reactor-steel samples 16Cr–15Ni–3Mo–1Ti subjected to preliminary cold deformation by rolling and subsequent fast neutron irradiation using neutron diffraction analysis. The Williamson–Hall modified method was used for calculations. It is shown that the fast neutron irradiation leads to a decrease in the density of dislocations that appeared after samples deformation. The applicability of neutron diffraction analysis to the examination of dislocation structure of deformed and irradiated materials is shown

  5. Neutron diffraction analysis of Cr-Ni-Mo-Ti austenitic steel after cold plastic deformation and fast neutrons irradiation

    Science.gov (United States)

    Voronin, V. I.; Valiev, E. Z.; Berger, I. F.; Goschitskii, B. N.; Proskurnina, N. V.; Sagaradze, V. V.; Kataeva, N. F.

    2015-04-01

    A quantitative assessment is presented of the dislocation density and relative fractions of edge and screw dislocations in reactor-steel samples 16Cr-15Ni-3Mo-1Ti subjected to preliminary cold deformation by rolling and subsequent fast neutron irradiation using neutron diffraction analysis. The Williamson-Hall modified method was used for calculations. It is shown that the fast neutron irradiation leads to a decrease in the density of dislocations that appeared after samples deformation. The applicability of neutron diffraction analysis to the examination of dislocation structure of deformed and irradiated materials is shown.

  6. Diffraction Experiments at the IBR-2 Pulsed Reactor with Methane Cold Neutron Source

    CERN Document Server

    Balagurov, A M; Mironova, G M; Pole, A V; Simkin, V G

    2000-01-01

    A new methane cold neutron source has been tested at the IBR-2 pulsed reactor at the Frank Laboratory of Neutron Physics. In a paper the results of experiments at neutron diffractometers HRFD and DN-2 which are placed at the IBR-2 from the methane moderator side are given. A comparison with the results obtained with the conventional water comb-like moderator is performed. The perspectives of the cold source for various kinds of neutron diffraction experiments, including atomic and magnetic structural analysis and real time experiments are discussed. It is shown, that for a huge number of the experiments which are performing at both HRFD and DN-2 the methane cold neutron source provides the better conditions than water comb-like moderator.

  7. The new cold neutron research facility at the Budapest Research Reactor

    International Nuclear Information System (INIS)

    Rosta, L.

    2001-01-01

    The new cold neutron research facility is routinely operated at the Budapest Neutron Centre since February 2001. At the 10 MW research reactor a liquid hydrogen cold neutron source (CNS) has been installed. The commissioning of the CNS has been followed by the replacement of the old neutron guides by a new supermirror guide system both for the in-pile and out-of pile part. The ensemble of the CNS and new guides provides an intensity gain of the order of 30-60. The cold neutron channel has a take-off for three beams. The first guide serves for a triple axis spectrometer and a prompt gamma activation analysis station. A small angle scattering spectrometer is installed on the middle guide, and a reflectometer is operated on the third one. (author)

  8. Polarized 3He gas circulating technologies for neutron analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Watt, David W. [Xemed, LLC, Durham, NH (United States)

    2017-10-02

    We outline our project to develop a circulating polarized helium-3 system for developing of large, quasi-continuously operating neutron analyzers. The project consisted of four areas: 1) Development of robust external cavity narrowed diode laser output with spectral line width < 0.17 nm and power of 2000 W. 2) Development of large glass polarizing cells using cell surface treatments to obtain long relaxation lifetimes. 3) Refinements of the circulation system with an emphasis on gas purification and materials testing. 4) Design/fabrication of a new polarizer system. 5) Preliminary testing of the new polarizer. 1. Developed Robust High-Power Narrowed Laser The optical configuration of the laser was discussed in the proposal and will be reviewed in the body of this report. The external cavity is configured to mutually lock the wavelength of five 10-bar laser stacks. All the logistical milestones were been met and critical subsystems- laser stack manifold and power divider, external laser cavity, and output telescope- were assembled and tested at low power. Each individual bar is narrowed to ~0.05 nm; when combined the laser has a cumulative spectral width of 0.17 nm across the entire beam due to variations of the bars central wavelength by +/- 0.1 nm, which is similar to that of Volume Bragg Grating narrowed laser bars. This configuration eliminates the free-running “pedestal” that occurs in other external cavity diode lasers. The full-scale laser was completed in 2016 and was used in both the older and newer helium polarizers. This laser was operated at 75% power for periods of up to 8 hours. Once installed, the spectrum became slightly broader (~.25 nm) at full power; this is likely due to very slight misalignments that occurred during handling. 2. Developed the processes to create uniform sintered sol-gel coatings. Our work on cell development comprised: 1) Production of large GE180 cells and explore different means of cell preparation, and 2) Development of

  9. Development of the RRR Cold Neutron Source facility

    International Nuclear Information System (INIS)

    Masriera, N.; Lecot, C.; Hergenreder, D.; Lovotti, O.; Serebrov, A.; Zakharov, A.; Mityukhlyaev, V.

    2003-01-01

    This paper describes some general design issues on the Cold Neutron Source (CNS) of the Replacement Research Reactor (RRR) for the Australian Nuclear Science and Technology Organisation (ANSTO). The description covers different aspects of the design: the requirements that lead to an innovative design, the overall design itself and the definition of a technical approach in order to develop the necessary design solutions. The RRR-CNS has liquid Deuterium (LD2) moderator, sub-cooled to ensure maximum moderation efficiency, flowing within a closed natural circulation Thermosiphon loop. The Thermosiphon is surrounded by a CNS Vacuum Containment made of zirconium alloy, that provides thermal insulation and a multiple barriers scheme to prevent Deuterium from mixing with water or air. Consistent with international practice, this vessel is designed to withstand any hypothetical energy reaction should Deuterium and air mix in its interior. The applied design approach allows ensuring that the RRR-CNS, in spite of being innovative, will meet all the design, performance and quality requirements. (author)

  10. Demonstration of a solid deuterium source of ultra-cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, A.; Anaya, J.M.; Bowles, T.J.; Filippone, B.W.; Geltenbort, P.; Hill, R.E.; Hino, M.; Hoedl, S.; Hogan, G.E.; Ito, T.M.; Jones, K.W.; Kawai, T.; Kirch, K.; Lamoreaux, S.K.; Liu, C.-Y.; Makela, M.; Marek, L.J.; Martin, J.W.; Morris, C.L.; Mortensen, R.N.; Pichlmaier, A.; Seestrom, S.J.; Serebrov, A.; Smith, D.; Teasdale, W.; Tipton, B.; Vogelaar, R.B.; Young, A.R.; Yuan, J

    2004-07-22

    Ultra-cold neutrons (UCN), neutrons with energies low enough to be confined by the Fermi potential in material bottles, are playing an increasing role in measurements of fundamental properties of the neutron. The ability to manipulate UCN with material guides and bottles, magnetic fields, and gravity can lead to experiments with lower systematic errors than have been obtained in experiments with cold neutron beams. The UCN densities provided by existing reactor sources limit these experiments. The promise of much higher densities from solid deuterium sources has led to proposed facilities coupled to both reactor and spallation neutron sources. In this Letter we report on the performance of a prototype spallation neutron-driven solid deuterium source. This source produced bottled UCN densities of 145{+-}7 UCN/cm{sup 3}, about three times greater than the largest bottled UCN densities previously reported. These results indicate that a production UCN source with substantially higher densities should be possible.

  11. Aharonov-Bohm and gravity experiments with the very-cold-neutron interferometer

    CERN Document Server

    Zouw, G V D; Felber, J; Gähler, R; Geltenbort, P; Zeilinger, Anton

    2000-01-01

    We report on the specific techniques associated with experiments with the interferometer for very-cold neutrons at the Institute Laue-Langevin (ILL). Two recent experiments are presented: one to measure the gravitational phase shift to high precision and one to demonstrate the non-dispersivity of the scalar Aharonov-Bohm effect for neutrons.

  12. Accelerator-based neutron source using a cold deuterium target with degenerate electrons

    Directory of Open Access Journals (Sweden)

    R. E. Phillips

    2013-07-01

    Full Text Available A neutron generator is considered in which a beam of tritons is incident on a hypothetical cold deuterium target with degenerate electrons. The energy efficiency of neutron generation is found to increase substantially with electron density. Recent reports of potential targets are discussed.

  13. Polarized neutron reflectivity and scattering studies of magnetic heterostructures

    Science.gov (United States)

    Zabel, H.; Theis-Bröhl, K.

    2003-02-01

    The current interest in the magnetism of ultrathin films and multilayers is driven by their manifold applications in the magneto-and spin-electronic areas, for instance as magnetic field sensors or as information storage devices. In this regard, there is a large interest in exploring spin structures and spin disorder at the interface of magnetic heterostructures, to investigate magnetic domains in thin films and superlattices, and to understand remagnetization processes of various laterally shaped magnetic nanostructures. Traditionally neutron scattering has played a dominant role in the determination of spin structures, phase transitions and magnetic excitations in bulk materials. Today, its potential for the investigation of thin magnetic films has to be redefined. Polarized neutron reflectivity (PNR) at small wavevectors can provide precise information on the magnetic field distribution parallel to the film plane and on layer resolved magnetization vectors. In addition, PNR is not only sensitive to structural interface roughness but also to the magnetic roughness. Furthermore, magnetic hysteresis measurements from polarized small angle Bragg reflections allows us to filter out correlation effects during magnetization reversals of magnetic stripes and islands. An overview is provided on most recent PNR investigations of magnetic heterostructures.

  14. Polarized neutron reflectivity and scattering studies of magnetic heterostructures

    International Nuclear Information System (INIS)

    Zabel, H; Theis-Broehl, K

    2003-01-01

    The current interest in the magnetism of ultrathin films and multilayers is driven by their manifold applications in the magneto-and spin-electronic areas, for instance as magnetic field sensors or as information storage devices. In this regard, there is a large interest in exploring spin structures and spin disorder at the interface of magnetic heterostructures, to investigate magnetic domains in thin films and superlattices, and to understand remagnetization processes of various laterally shaped magnetic nanostructures. Traditionally neutron scattering has played a dominant role in the determination of spin structures, phase transitions and magnetic excitations in bulk materials. Today, its potential for the investigation of thin magnetic films has to be redefined. Polarized neutron reflectivity (PNR) at small wavevectors can provide precise information on the magnetic field distribution parallel to the film plane and on layer resolved magnetization vectors. In addition, PNR is not only sensitive to structural interface roughness but also to the magnetic roughness. Furthermore, magnetic hysteresis measurements from polarized small angle Bragg reflections allows us to filter out correlation effects during magnetization reversals of magnetic stripes and islands. An overview is provided on most recent PNR investigations of magnetic heterostructures

  15. Fire Hazard Analysis for the Cold Neutron Source System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Won; Kim, Young Ki; Wu, Sang Ik; Park, Young Cheol; Kim, Bong Soo; Kang, Mee Jin; Oh, Sung Wook

    2006-04-15

    As the Cold Neutron Source System for its installation in HANARO has been designing, the fire hazard analysis upon the CNS system becomes required under No. 2003-20 of the MOST notice, Technical Standard about the Fire Hazard Analysis. As a moderator, the strongly flammable hydrogen is filled in the hydrogen system of CNS. Against the fire or explosion in the reactor hall, accordingly, the physical damage on the reactor safety system should be evaluated in order to reflect the safety protection precaution in the design of CNS system. For the purpose of fire hazard analysis, the accident scenarios were divided into three: hydrogen leak during the hydrogen charging in the system, hydrogen leak during the normal operation of CNS, explosion of hydrogen buffer tank by the external fire. The analysis results can be summarized as follows. First, there is no physical damage threatening the reactor safety system although all hydrogen gas came out of the system then ignited as a jet fire. Second, since the CNS equipment island (CEI) is located enough away from the reactor, no physical damage caused by the buffer tank explosion is on the reactor in terms of the overpressure except the flying debris so that the light two-hour fireproof panel is installed in an one side of hydrogen buffer tank. Third, there are a few combustibles on the second floor of CEI so that the fire cannot be propagated to other areas in the reactor hall; however, the light two-hour fireproof panel will be built on the second floor against the external or internal fire so as to play the role of a fire protection area.

  16. A fan analyzer of neutron beam polarization on the spectrometer REMUR at the pulsed reactor IBR-2

    International Nuclear Information System (INIS)

    Ul'yanov, V.A.; Pusenkov, V.M.; Pleshanov, N.K.

    2004-01-01

    The new spectrometer of polarized neutrons REMUR has been created and put in operation at the Frank Laboratory of Neutron Physics (JINR, Dubna). The spectrometer is dedicated to investigations of multilayer structures and surfaces by registering the reflection of polarized neutrons and of the inhomogeneous state of solid matter by measuring the small-angle scattering of polarized neutrons. The spectrometer's working range of neutron wavelengths is 1.5-10 Angstroem. The spectrometer is equipped with a linear position-sensitive detector and a focused supermirror polarization analyzer (the fan-like polarization analyzer) with a solid angle of polarized neutron detection of 2.2·10 -4 rad. This paper describes the design and the principle of operation of the fan analyzer of neutron polarization together with the results of the fan tests on a polarized neutron beam

  17. A Long-Pulse Spallation Source at Los Alamos: Facility description and preliminary neutronic performance for cold neutrons

    International Nuclear Information System (INIS)

    Russell, G.J.; Weinacht, D.J.; Pitcher, E.J.; Ferguson, P.D.

    1998-03-01

    The Los Alamos National Laboratory has discussed installing a new 1-MW spallation neutron target station in an existing building at the end of its 800-MeV proton linear accelerator. Because the accelerator provides pulses of protons each about 1 msec in duration, the new source would be a Long Pulse Spallation Source (LPSS). The facility would employ vertical extraction of moderators and reflectors, and horizontal extraction of the spallation target. An LPSS uses coupled moderators rather than decoupled ones. There are potential gains of about a factor of 6 to 7 in the time-averaged neutron brightness for cold-neutron production from a coupled liquid H 2 moderator compared to a decoupled one. However, these gains come at the expense of putting ''tails'' on the neutron pulses. The particulars of the neutron pulses from a moderator (e.g., energy-dependent rise times, peak intensities, pulse widths, and decay constant(s) of the tails) are crucial parameters for designing instruments and estimating their performance at an LPSS. Tungsten is the reference target material. Inconel 718 is the reference target canister and proton beam window material, with Al-6061 being the choice for the liquid H 2 moderator canister and vacuum container. A 1-MW LPSS would have world-class neutronic performance. The authors describe the proposed Los Alamos LPSS facility, and show that, for cold neutrons, the calculated time-averaged neutronic performance of a liquid H 2 moderator at the 1-MW LPSS is equivalent to about 1/4th the calculated neutronic performance of the best liquid D 2 moderator at the Institute Laue-Langevin reactor. They show that the time-averaged moderator neutronic brightness increases as the size of the moderator gets smaller

  18. ``Skew'' Scattering of Cold Unpolarized Neutrons in Ferromagnetic Crystal

    Science.gov (United States)

    Udalov, Oleg Georgievich

    2013-06-01

    The problem of neutron scattering by a single magnetic atom is theoretically considered in the second order perturbation theory. It is demonstrated that the elastic scattering of unpolarized neutron by a magnetic atom is skewed, i.e., it contains a term including the symmetry of a mixed product of the atom magnetic moment and the wave vectors of incident and scattered neutrons ([\\mbi{k}× \\mbi{k}']\\cdot \\mbi{h}). The problem of dynamical diffraction of unpolarized neutrons by a perfect ferromagnetic crystal is investigated. We consider the case when the Bragg condition is satisfied for two reciprocal lattice vectors. In this situation the neutron skew scattering manifests itself as a dependence of the diffracted beam intensity on the sign of the crystal magnetization. The diffraction of unpolarized neutrons by a Co crystal has been calculated. The change in the intensity through the magnetization reversal in this case is estimated at 40%.

  19. Interface alloying in multilayer thin films using polarized neutron reflectometry

    International Nuclear Information System (INIS)

    Basu, Saibal

    2013-01-01

    Polarized Neutron Reflectometry (PNR) is an excellent tool to probe magnetic depth profile in multilayer thin film samples. In case of multilayer films with alternating magnetic and non-magnetic layers, PNR can provide magnetic depth profile at the interfaces with better than nanometer resolution. Using PNR and Xray Reflectometry (XRR) together one can obtain chemical composition and magnetic structure, viz. magnetic moment density at interfaces in multilayer films. We have used these two techniques to obtain kinetics of alloy formation at the interfaces and the magnetic nature of the alloy at the interfaces in several important thin films with magnetic/non-magnetic bilayers. These include Ni/Ti, Ni/Al and Si/Ni pairs. Results obtained from these studies will be presented in this talk. (author)

  20. Measurement of anisotropy constant in US with polarized neutrons

    DEFF Research Database (Denmark)

    Lander, G.H.; Brooks, M.S.S.; Lebech, B.

    1991-01-01

    than found in TbFe2 at 0 K. The method we have used is with polarized neutrons. Because the neutron interaction with the magnetic moment is vectorial in nature we can determine individually the magnitude and direction of the moment in an applied field. In many cases this method has advantages over......Uranium compounds can have an anisotropy that is considerably greater than that found in rare‐earth compounds. Early estimates of K1 in ferromagnetic US (Tc = 178 K), for example, were that K1 ≳ 108 erg/cm3. We have re‐examined this cubic material and determined K1 in the range of reduced moment (μ....../μ0) from 0.1 magnitude. The highest measured K1 is 2 × 108 erg/cm3 at (μ/μ0) = 0.7, but an extrapolation, which we anticipate on arguments of symmetry, to (μ/μ0)=1, (T=0 K) gives K1 ∼ 1010 erg/cm3, some 20 times more...

  1. Indian summer monsoon forcing on the deglacial polar cold reversals

    Indian Academy of Sciences (India)

    Virupaxa K Banakar

    2017-09-01

    Sep 1, 2017 ... ing depletion in its atmospheric concentration did not occur during these cold reversals; instead,. CO2 concentration remained constant at ~240 ppmv (Monnin et al. 2001). An anti-phased inter- hemispheric ocean-heat-budget is a necessity for the operation of Atlantic Meridional Overturn- ing Circulation ...

  2. T-odd angular correlations in the emission of prompt gamma rays and neutrons in nuclear fission induced by polarized neutrons

    Science.gov (United States)

    Danilyan, G. V.; Klenke, J.; Krakhotin, V. A.; Kopach, Yu. N.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2011-05-01

    Study of the T-odd three-vector correlation in the emission of prompt neutrons from 235U fission by polarized cold neutrons has been continued at the facility MEPHISTO of the FRM II reactor (Technical University of Munich). The sought correlation was not found within experimental error of 2.3 × 10-5. The upper limit for the asymmetry coefficient has been set to | D n | fission correlation coefficient D α = (170±20) × 10-5. This limit casts doubt on a model that explains the three-vector correlation in ternary fission by the Coriolis mechanism. At the same time, five-vector correlation in the emission of prompt fission neutrons has been measured, which describes the rotation of the fissioning nucleus at the moment it breaks (ROT effect). At the angle 22.5° to the fission axis, the correlation coefficient was found to be (1.57 ± 0.20) × 10-4, while at the angle of 67.5° it is zero within the experimental uncertainty. The existence of ROT effect in the emission of prompt fission neutrons can be explained by the anisotropy of neutron emission in the rest frame of the fragment (fission fragments are aligned with respect to the axis of deformation of the fissioning nucleus), similar to the mechanism of ROT effect in the emission of prompt γ-rays.

  3. Small-angle neutron scattering investigations of magnetic nanostructures and interfaces using polarized neutrons

    Science.gov (United States)

    Wiedenmann, Albrecht

    2001-03-01

    Using polarized neutrons, the relative contrasts for small-angle scattering are strongly modified which allows a precise evaluation of magnetization, density and composition profiles at surfaces and interfaces of nanoscaled materials. In Co ferrofluids, the magnetic core behaves as a non-interacting single domain. The core is encapsulated by a shell of surfactant molecules which was found to be impenetrable for the solvent. In soft magnetic Fe-Si-B-(Nb,Cu) and Fe-Nb-B alloys, the presence of a weak magnetic interface between ferromagnetic nanocrystals and amorphous matrix has been demonstrated which breaks the exchange interactions.

  4. Prospects for a new cold neutron beam measurement of theneutron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, M. [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Gilliam, D [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Coakley, K [National Institute of Standards and Technology (NIST), Boulder; Greene, G [University of Tennessee, Knoxville (UTK); Yue, A [University of Tennessee, Knoxville (UTK); Greene, G [Oak Ridge National Laboratory (ORNL); Laptev, A [Los Alamos National Laboratory (LANL); Snow, W [Indiana University Cyclotron Facility, Bloomington, IN; Wietfeldt, F [Tulane University

    2009-01-01

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  5. The HB-2D Polarized Neutron Development Beamline at the High Flux Isotope Reactor

    Science.gov (United States)

    Crow, Lowell; Hamilton, WA; Zhao, JK; Robertson, JL

    2016-09-01

    The Polarized Neutron Development beamline, recently commissioned at the HB-2D position on the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, provides a tool for development and testing of polarizers, polarized neutron devices, and prototyping of polarized neutron techniques. With available monochromators including pyrolytic graphite and polarizing enriched Fe-57 (Si), the instrument has operated at 4.25 and 2.6 Å wavelengths, using crystal, supermirror, or He-3 polarizers and analyzers in various configurations. The Neutron Optics and Development Team has used the beamline for testing of He-3 polarizers for use at other HFIR and Spallation Neutron Source (SNS) instruments, as well as a variety of flipper devices. Recently, we have acquired new supermirror polarizers which have improved the instrument performance. The team and collaborators also have continuing demonstration experiments of spin-echo focusing techniques, and plans to conduct polarized diffraction measurements. The beamline is also used to support a growing use of polarization techniques at present and future instruments at SNS and HFIR.

  6. Polarized 3He Neutron Spin Filters at Oak Ridge National Laboratory

    Science.gov (United States)

    Jiang, C. Y.; Tong, X.; Brown, D. R.; Lee, W. T.; Ambaye, H.; Craig, J. W.; Crow, L.; Culbertson, H.; Goyette, R.; Graves-Brook, M. K.; Hagen, M. E.; Kadron, B.; Lauter, V.; McCollum, L. W.; Robertson, J. L.; Winn, B.; Vandegrift, A. E.

    The unique advantages of using polarized 3He as neutron spin filters, such as broadband and wide angular acceptance of neutron beams, have made it widely used in most neutron facilities. Over the last several years, we have developed a polarized 3He program to meet the increasing needs of 3He based neutron spin filters at the Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS). At ORNL, polarized 3He is produced using Spin Exchange Optical Pumping (SEOP). We have constructed a 3He cell fabrication station to produce 3He cells of different pressures and dimensions. Two optical pumping stations have been built in the lab to perform ex situ pumping of 3He. A compact in situ3He analyzer has been constructed and installed for the Magnetism Reflectometer (MAGICS) at SNS. A novel polarized 3He filling station for the Hybrid Spectrometer (HYSPEC) at SNS is under development.

  7. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    Energy Technology Data Exchange (ETDEWEB)

    Cieplicka-Oryńczak, N. [INFN sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland); Fornal, B.; Szpak, B. [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland); Leoni, S.; Bottoni, S. [INFN sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Bazzacco, D. [Dipartimento di Fisica e Astronomia dell’Università, I-35131 Padova (Italy); INFN Sezione di Padova, I-35131 Padova (Italy); Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T. [Institute Laue-Langevin, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Bocchi, G. [Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); France, G. de [GANIL, Bd. Becquerel, BP 55027, 14076 CAEN Cedex 05 (France); Simpson, G. [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, F-38026 Grenoble Cedex (France); Ur, C. [INFN Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Urban, W. [Faculty of Physics, University of Warsaw, ul. Hoża 69, 02-681, Warszawa (Poland)

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility of testing the calculations involving the core excitations.

  8. ASIC Development for Three-Dimensional Silicon Imaging Array for Cold Neutrons

    International Nuclear Information System (INIS)

    Britton, C.L.; Jagadish, U.; Bryan, W.L.

    2004-01-01

    An Integrated Circuit (IC) readout chip with four channels arranged so as to receive input charge from the corners of the chip was designed for use with 5- to 7-mm pixel detectors. This Application Specific IC (ASIC) can be used for cold neutron imaging, for study of structural order in materials using cold neutron scattering or for particle physics experiments. The ASIC is fabricated in a 0.5-(micro)m n-well AMI process. The design of the ASIC and the test measurements made is reported. Noise measurements are also reported

  9. Moderators for the design of a cold neutron source for the RA 3 reactor

    International Nuclear Information System (INIS)

    Cantargi, F; Sbaffoni, M; Granada, R

    2004-01-01

    The cold neutron production of hydrogenous materials was studied, taking into account their radiation resistance, for the conceptual design of a cold neutron source for the RA-3 reactor.Low spontaneous release of chemical energy was found in mesitylene.Libraries for hidrogen in mesitylene were generated using the NJOY nuclear processing system and the resulting cross sections were compared with experimental data.Good agreement between measurements and calculations was found in those cases where data are available.New calculations using the RA-3 geometry and these validated libraries will be performed [es

  10. Thermo-siphon mock-up test for the cold neutron source of HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jungwoon, E-mail: ex-jwchoi@kaeri.re.k [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseng, Daejeon 305-353 (Korea, Republic of); Kim, Myong-seop; Kim, Bong Soo; Lee, Kye Hong; Kim, Hark Rho [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseng, Daejeon 305-353 (Korea, Republic of)

    2010-02-15

    Due to the national demand for a cold neutron beam utilization, a cold neutron research facility project has been carried out since July 2003 to install a cold neutron source (CNS) in HANARO. The CNS adopts a two-phase thermo-siphon of liquid hydrogen as a working fluid to remove a heat load. The CNS consists of an in-pool assembly (IPA) and other components including a hydrogen buffer tank. The liquid level in the moderator cell is measured by a gamma-ray densitometer under a normal cold operation, and the cool down time to fill the required liquid hydrogen into the moderator cell is numerically simulated and compared with the experimental data from a thermo-siphon mock-up test. The self-regulating characteristic of the two-phase thermo-siphon loop is also confirmed by a comparison of a model simulation's results, which use a thermodynamic model, with the experiment's results. From these results, the HANARO-CNS is found to maintain the required conditions for a stable cold neutron production against a heat load variation along with the reactor's power. Furthermore, the thermodynamic behavior in the IPA is observed to determine whether or not the integrity of the IPA is maintained under an abnormal condition of the helium refrigeration system.

  11. Multi-wire proportional chamber for ultra-cold neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.L. [Physics Division, Group P-25, Mail Stop H846, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States)], E-mail: cmorris@lanl.gov; Bowles, T.J.; Gonzales, J.; Hill, R.; Hogan, G.; Makela, M.; Mortenson, R.; Ramsey, J.; Saunders, A.; Seestrom, S.J.; Sondheim, W.E.; Teasdale, W. [Physics Division, Group P-25, Mail Stop H846, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Back, H.O.; Pattie, R.W.; Holley, A.T.; Young, A.R. [North Carolina State University, Raleigh, NC 27695 (United States); Broussard, L.J. [Duke University, Durham, NC 27708 (United States); Hickerson, K.P.; Liu, J.; Mendenhall, M.P. [California Institute of Technology, Pasadena, CA 91125 (United States)] (and others)

    2009-02-11

    In this paper we describe the principles that have guided our design and the experience we have gained building multi-wire proportional chambers detectors for the ultra-cold neutron (UCN) source at the Los Alamos Neutron Science Center (LANSCE). Simple robust detectors with 50 cm{sup 2} of active area have been designed. These have been used both in ion chamber and proportional mode for the detection of UCN.

  12. Pulsed neutron source cold moderators --- concepts, design and engineering

    International Nuclear Information System (INIS)

    Bauer, Guenter S.

    1997-01-01

    Moderator design for pulsed neutron sources is becoming more and more an interface area between source designers and instrument designers. Although there exists a high degree of flexibility, there are also physical and technical limitations. This paper aims at pointing out these limitations and examining ways to extend the current state of moderator technology in order to make the next generation neutron sources even more versatile and flexible tools for science in accordance with the users' requirements. (auth)

  13. Cold neutron production in liquid para- and normal-H sub 2 moderators

    CERN Document Server

    Morishima, N

    2002-01-01

    A neutron transport analysis is performed for liquid H sub 2 moderators with 100% para and normal (ortho:para=0.75:0.25) fractions. Four sets of energy-averaged cross-sections (group constants) for liquid ortho- and para-H sub 2 at melting and boiling points are generated and neutron energy range between 0.1 mu eV and 10 eV is broken into 80 groups. Basic moderating characteristics are studied of a model cold-neutron source in a one-dimensional bare-slab geometry. It is shown that liquid para-H sub 2 is superior in cold neutron production to liquid normal H sub 2 on account of a para-to-ortho transition (molecular rotational excitation) and a good transmission property with a mean free path of about 10 cm. In the case of neutron extraction from the inside of the source, high intensity of cold neutrons is possible with liquid normal H sub 2 at higher temperatures up to the boiling point.

  14. Storage of cold and thermal neutrons with perfect crystals at the pulsed source

    International Nuclear Information System (INIS)

    Jericha, E.

    1996-12-01

    The possibility of storing cold neutrons by sequential Bragg reflections between two parallel perfect crystal plates in backscattering geometry has been implemented as the parasitic instrument VESTA at the pulsed neutron source ISIS. Filling the neutrons into and releasing them from the storage cavity is accomplished by applying a short-pulsed magnetic field at the crystal plates. The method takes advantage of the conservation of the axial component of the neutron wave vector after Bragg reflection and its Zeeman shift in a magnetic field. The setup at ISIS is presented where a monochromatic neutron beam with wavelength 6.27 A and 2.9 x 10 4 n/scm 2 flux is taken out of the neutron guide leading to the IRIS backscattering spectrometer by a pyrolytic graphite crystal monochromator. The longest storage period obtained with the setup was 2.655 s which corresponds to 1574 consecutive Bragg reflections and a distance traveled of 1675 n. The measurements are analyzed by heuristic methods developed for neutron storage experiments. The apparatus is seen as a passive resonator system and characteristics like stored neutron intensity, the efficiency of the storage process, the probability to remain in the system, the mirror reflectivity, the dispersion of the stored distribution, the penetration depth of a neutron into a crystal mirror and the figure of merit of the resonator system are discussed. Monte Carlo simulations of the extracted beam and of the stored neutron distribution were performed to deepen the understanding of the experimental results. (author)

  15. Origin of Cold-Air Outbreaks: Polar Air Mass Formation from a Radiation Perspective

    Science.gov (United States)

    Bliankinshtein, N.; Huang, Y.; Gyakum, J. R.; Atallah, E.

    2017-12-01

    It is well known that arctic processes have significant impacts on mid-latitude weather systems. As a general representation of these processes, one can imagine the polar vortex, which is a large upper-level low-pressure system above the North Pole with cold and dense air masses underneath, and surrounded by a jet stream. This jet stream is essentially a large amplitude Rossby wave propagating eastward. When it makes a cyclonic loop, it encloses a region of the vortex that may extend far to the south causing a cold wave, cold spell or a cold-air outbreak. Cold-air outbreaks event can be associated not only with anomalously low temperatures but also with extreme precipitation and persistent weather regimes occurring at mid-latitude sites, so forecasting of these events is challenging. This study focuses on the formation of the air masses trapped in these regions, from a radiation perspective. We consider both observational and modeling approaches to the phenomenon. A common way to consider cold air mass formation is to implement a single-column radiative-convective equilibrium model and to run it under the conditions of polar night. Thus one can simulate a transition of a warm maritime air mass to a cold continental one as a result of longwave radiative cooling without energy supply in the form of solar radiation. The lack of solar heating is relevant not only for the absolute darkness of polar night, but also when the sun shines just above the horizon, because of a large solar zenith angle and a high albedo. In this study we use reanalysis data to identify the events of cold-air formation over Canada's North and construct a radiative-convective model based on the Rapid Radiative Transfer Model and parameterized convective schemes. We analyze and simulate the evolution of the air masses in a Lagrangian framework and quantify the radiative contribution to these processes.

  16. Confinement of ultra-cold neutron in a multiple cusp magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Nobumichi; Inoue, Nobuyuki; Nihei, Hitoshi; Kinosita, Ken-ichi [Tokyo Univ. (Japan). Faculty of Engineering

    1996-08-01

    A new confinement system of ultra-cold neutrons is proposed. The neutron bottle is made of a rectangular vacuum chamber with the size of 40 cm x 40 cm x 30 cm covered with arrays of bar type permanent magnets. The operation of bottle requires neither cooling system nor high electric power supply, and thereby the bottle is appropriate to use in the room which is located in controlled area. The maximum kinetic energy of neutrons confined is 20 neV. Experimental scheme to test the performance of the bottle is described. (author)

  17. Cold Neutron Focusing Multiple Biconcave Lenses and Anti-Gravity Prisms for 40m Small Angle Neutron Scattering Instrument

    International Nuclear Information System (INIS)

    Sim, Jun-Bo; Choi, Sung-Min

    2007-01-01

    Small angle neutron scattering (SANS) instrument with long flight path is a very powerful tool to investigate the structures of various nanoscale materials. Currently, a new 40m SANS instrument is under development to be installed at HANARO, which will be one of the key facilities for nano-characterization in Korea. To enhance the measurement capability of the 40m SANS, especially in the low Q region, cold neutron focusing and cancellation of gravity effects using multiple biconcave lenses and prisms are suggested. In this paper, we present recent Monte Carlo simulation studies on the refractive focusing and anti-gravity optics

  18. Tunable disorder in a crystal of cold polar molecules

    International Nuclear Information System (INIS)

    Herrera, Felipe; Krems, Roman V.; Litinskaya, Marina

    2010-01-01

    We show that a two-species mixture of polar molecules trapped on an optical lattice gives rise to a system of rotational excitons in the presence of tunable impurities. The exciton-impurity interactions can be controlled by an external electric field, which can be exploited for quantum simulation of localization phenomena in disordered media. We demonstrate that an external electric field can be used to induce resonant enhancement of the exciton-impurity scattering cross sections and delocalization of excitonic states in a correlated one-dimensional disorder potential.

  19. Development of scintillation imaging device for cold neutrons

    CERN Document Server

    Gorin, A; Manuilov, I V; Morimoto, K; Oku, T; Ryazantsev, A; Shimizu, H M; Suzuki, J I; Tokanai, F

    2002-01-01

    As an application of the wavelength-shifting (WLS) fiber technique recently developed in the field of high-energy physics, a novel type of imaging device for neutrons has been successfully investigated; a space resolution of 1 mm FWHM with detection efficiency of 55% for 10 A neutrons has been experimentally confirmed with a prototype made of a 0.5-mm-thick ZnS(Ag)+ sup 6 LiF scintillator plate optically coupled to WLS fiber arrays. In addition to promising results obtained in this study, its simple structure and reliable operation allow us to foresee a new generation of imaging devices to meet the increasing demand for large-area and high space-resolution imaging devices for several new projects on spallation neutron sources in the world.

  20. The design of the cold neutron source of the OPAL reactor

    International Nuclear Information System (INIS)

    Rechiman, L.M.; Bonetto, Fabian J.; Buscaglia, Gustavo C.

    2007-01-01

    The present work describes the conceptual design process of the first cold neutron source developed by INVAP for the nuclear research reactor OPAL. The analysis begins from the requirements given by the client and continues with the chosen solutions. Furthermore, we studied how impact in the design the fully illuminated constraint with the finite remote source model. (author) [es

  1. Mechanical properties and microstructure of neutron irradiated cold worked Al-6063 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Munitz, A.; Shtechman, A.; Cotler, C.; Dahan, S. [Nuclear Res. Center-Negev, Beer-Sheva (Israel); Talianker, M. [Ben-Gurion Univ., Beer-Sheva (Israel). Dept. of Materials Science

    1998-01-01

    The impact of neutron irradiation on the mechanical properties and fracture morphology of cold worked Al-6063 were studied, using scanning and transmission electron microscopy, and tensile measurements. Specimens (50 mm long and 6 mm wide gauge sections) were punched out from an Al-6063 23% cold worked tubes, which had been exposed to prolonged neutron irradiation of up to 4.5 x 10{sup 25} thermal neutrons/m{sup 2} (E < 0.625 eV). The temperature ranged between 41 and 52 C. The tensile specimens were then tensioned till fracture in an Instron tensiometer with strain rate of 2 x 10{sup -3} s{sup -1}. The uniform elongation and the ultimate tensile strength increase as functions of fluence. Metallographic examination and fractography reveal a decrease in the local area reduction of the final fracture necking. This reduction is accompanied with a morphology transition from ductile transgranular shear rupture to a combination of transgranular shear with intergranular dimpled rupture. The intergranular rupture area increases with fluence. No voids could be observed up to the maximum fluence. The dislocation density of cold worked Al decreases with the thermal neutron fluence. Prolonged annealing of unirradiated cold worked Al-6063 at 52 C revealed similar results. It thus appears that under our irradiation conditions the temperature during irradiation is the major factor influencing the mechanical properties and the microstructure during irradiation. (orig.). 23 refs.

  2. On the design of a cold neutron irradiator (CNI) for quantitative materials characterization

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Alexander Grover [Cornell Univ., Ithaca, NY (United States)

    1997-08-01

    A design study of a cold neutron irradiator (CNI) for materials characterization using prompt gamma-ray neutron activation analysis (PGNAA) is presented. Using 252Cf neutron sources in a block of moderator, a portion of which is maintained at a cryogenic temperature, the CNI employs cold neutrons instead of thermal neutrons to enhance the neutron capture reaction rate in a sample. Capture gamma rays are detected in an HPGe photon detector. Optimization of the CNI with respect to elemental sensitivity (counts per mg) is the primary goal of this design study. Monte Carlo simulation of radiation transport, by means of the MCNP code and the ENDF/B cross-section libraries, is used to model the CNI. A combination of solid methane at 22 K, room-temperature polyethylene, and room-temperature beryllium has been chosen for the neutron delivery subsystem of the CNI. Using four 250-microgram 252Cf neutron sources, with a total neutron emission rate of 2.3 x 109 neutrons/s, a thermal-equivalent neutron flux of 1.7 x 107 neutrons/cm2-s in an internally located cylindrical sample space of diameter 6.5 cm and height 6.0 cm is predicted by MCNP calculations. A cylindrical port with an integral annular collimator composed of bismuth, lead, polyethylene, and lithium carbonate, is located between the sample and the detector. Calculations have been performed of gamma-ray and neutron transport in the port and integral collimator with the objective of optimizing the statistical precision with which one can measure elemental masses in the sample while also limiting the fast neutron flux incident upon the HPGe detector to a reasonable level. The statistical precision with which one can measure elemental masses can be enhanced by a factor of between 2.3 and 5.3 (depending on the origin of the background gamma rays) compared with a neutron irradiator identical to the CNI except for the replacement of the cryogenic solid methane by room

  3. The polarized neutron spectrometer REMUR at the pulsed reactor IBR-2

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Zhernenkov, K.N.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.; Lauter, H.J.; Lauter-Pasyuk, V.

    2004-01-01

    At the Laboratory of Neutron Physics (JINR, Dubna) the new polarized neutron spectrometer REMUR has been constructed and commissioned. The spectrometer REMUR is dedicated to investigations of multilayers and surfaces by polarized neutron reflection and of the inhomogeneous state of solids by diffuse small-angle polarized neutron scattering. The spectrometer operates in the neutron wavelength interval 1-10 Angstroem. In the reflectometry mode it allows one to complete polarization analysis and neutron position-sensitive detection within the solid angle of scattering 2.2·10 -4 rad. The spectrometer ensures good statistics of the reflectometric data in the scattering wave vector interval 3·10 -3 - 5·10 -1 Angstroem -1 . In the small-angle scattering mode the spectrometer allows the investigation of neutron scattering processes without spin-flip over the detector's neutron registration solid angle interval from 4·10 -3 to 10 -1 rad and the scattering wave vector interval from 0.006-0.15 to 0.03-0.7 Angstroem -1 , respectively

  4. Mechanical Properties and Microstructure of Neutron Irradiated Cold-worked Al-1050 and Al-6063 Alloys

    International Nuclear Information System (INIS)

    Munitz, A.; Cotler, A; Talianker, M.

    1998-01-01

    The impact of neutron irradiation on the internal microstructure, mechanical properties and fracture morphology of cold-worked Al-1050 and Al-6063 alloys was studied, using scanning and transmission electron microscopy, and tensile measurements. Specimens consisting of 50 mm long and 6 mm wide gauge sections, were punched out from Al-1050 and Al-6063 23% cold-worked tubes. They were exposed to prolonged neutron irradiation of up to 4.5x10 25 and 8x10 25 thermal neutrons/m 2 (E -3 s -1 . In general, the uniform and total elongation, the yield stress, and the ultimate tensile strength increase as functions of fluence. However, for Al-1050 a decrease in the ultimate tensile strength and yield stress was observed up to a fluence of 1x10 25 thermal neutrons/m 2 which then increase with thermal neutrons fluence. Metallographic examination and fractography for Al-6063 revealed a decrease in the local area reduction of the final fracture necking. This reduction is accompanied by a morphology transition from ductile transgranular shear rupture to a combination of transgranular shear with intergranular dimpled rupture. The intergranular rupture area increases with fluence. In contrast, for Al-1050, fracture morphology remains ductile transgranular shear rupture and the final local area reduction remains almost constant No voids could be observed in either alloy up to the maximum fluence. The dislocation density of cold-worked Al was found to decrease with the thermal neutron fluence. Prolonged annealing of unirradiated cold-worked Al-6063 at 52 degree led to similar results. Thus, it appears that, under our irradiation conditions, whereby the temperature encompassing the samples increases the exposure to this thermal field is the major factor influencing the mechanical properties and microstructure of aluminum alloys

  5. Texture analysis and accuracy of the measurement in cold rolled aluminum sheets using neutron diffraction

    International Nuclear Information System (INIS)

    Park, No Jin; Lee, Moon Kyu; Kim, Sung Jin; Seong, Baek Seok; Lee, Chang Hee; Shin, Eun Joo

    2000-01-01

    The neutron diffraction method is a powerful technique for the texture investigation owing to its high penetration capability, when compared with the X-ray diffraction method. The complete pole figures can be measured and the whole through-thickness texture can be analysed with the neutron diffraction method. Accordingly, the texture measured by means of the neutron diffraction is successfully applied to evaluate the anisotropic properties of the textured materials. Cold rolling of aluminum sheets was carried out with and without lubrication to investigate the formation of inhomogeneous textures as well as to compare the both measurement techniques (neutron and X-ray). The texture of the cold rolled aluminum sheets mainly resides along β-fiber. However, rolling without lubrication led to the formation of the (001)smaller than 110 greater than orientation at the surface layer which was clearly confirmed by X-ray diffraction. With neutron diffraction the whole through-thickness textures were measured. Accuracy of the measurement and texture analysis was estimated using such parameters as RP (hk1) , RP1 (hk1 )-value, PF (hk1) -dispersion and ΔC. It is proved that the texture analysis by the neutron diffraction is more accurate than that by the X-ray diffraction. (author)

  6. The High-Energy Polarization-Limiting Radius of Neutron Star Magnetospheres 1, Slowly Rotating Neutron Stars

    CERN Document Server

    Heyl, J S; Lloyd, D; CERN. Geneva; Heyl, Jeremy S.; Shaviv, Nir J.; Lloyd, Don

    2003-01-01

    In the presence of strong magnetic fields, the vacuum becomes a birefringent medium. We show that this QED effect decouples the polarization modes of photons leaving the NS surface. Both the total intensity and the intensity in each of the two modes is preserved along a ray's path through the neutron-star magnetosphere. We analyze the consequences that this effect has on aligning the observed polarization vectors across the image of the stellar surface to generate large net polarizations. Counter to previous predictions, we show that the thermal radiation of NSs should be highly polarized even in the optical. When detected, this polarization will be the first demonstration of vacuum birefringence. It could be used as a tool to prove the high magnetic field nature of AXPs and it could also be used to constrain physical NS parameters, such as $R/M$, to which the net polarization is sensitive.

  7. Prompt gamma-ray analysis using cold and thermal guided neutron beams

    International Nuclear Information System (INIS)

    Yonezawa, C.; Magara, M.; Hoshi, M.; Tachikawa, E.; Sawahata, H.; Ito, Y.

    1995-01-01

    A permanent and stand-alone neutron-induced prompt γ-ray analysis (PGA) system, usable at both cold and thermal neutron beam guides of JRR-3M has been constructed. The characteristics of the system, including neutron beam and γ-ray spectrometer were measured. Owing to the absence of fast neutrons and the low γ-ray background, analytical sensitivities and detection limits better than those in other PGA systems have been achieved. Analytical results of ten elements in Standard Reference Material of Coal Fly Ash agreed well with those obtained by other methods. Isotopic analysis of Ni and its application to accurate and precise determination of Ni by stable isotope dilution method were performed. (author) 14 refs.; 4 figs.; 1 tab

  8. Development of instrumentation for imaging scattered cold neutrons. Phase 1 report

    International Nuclear Information System (INIS)

    Walter, J.

    1988-01-01

    The project involves the development of a cold neutron imaging array consisting of a neutron to charged particle convertor and an array of Si detector pixels. Each detector pixel has its own preamplifier/signal conditioning chain and its own data storage registers. The parallel processing capability will be contained on WSI-ASIC sub-array wafers with 196 channels per wafer. Such sub-arrays can be assembled into large focal plane arrays. The high speed of the silicon detectors and signal conditioning chains makes 100,000 cps per pixel a realistic goal. Calculations and experimental measurements of neutron detection efficiency as a function of neutron wavelength are very encouraging. Preliminary design studies of the preamplifier/signal conditioning chain appear to present no insurmountable technical problems

  9. The Polarized Neutron Spectrometer REMUR at the Pulsed Reactor IBR-2

    CERN Document Server

    Aksenov, V L; Kozhevnikov, S V; Lauter, H; Lauter-Pasyuk, V; Nikitenko, Yu V; Petrenko, A V

    2004-01-01

    A new polarized neutron spectrometer REMUR has been constructed and commissioned. The spectrometer REMUR is dedicated to investigations of multilayers and surfaces by polarized neutron reflection and of the inhomogeneous state of solids by diffuse small-angle polarized neutron scattering. The spectrometer operates in the neutron wavelength interval 1\\div 10 A. In the reflectometry mode it allows one to complete polarization analysis and neutron position-sensitive detection within the solid angle of scattering 2.2\\cdot 10^{-4} rad. The spectrometer ensures good statistics of the reflectometric data in the scattering wave vector interval 3\\cdot 10^{-3}\\div 5\\cdot 10^{-1} A^{-1}. In the small-angle scattering mode the spectrometer allows the investigation of neutron scattering processes without spin-flip over the detector's neutron registration solid angle interval from 4\\cdot 1-^{-3} to 10^{-1} rad and the scattering wave vector interval from 0.006\\div 0.15 to 0.03\\div 0.7 A^{-1}, respectively.

  10. Texture studies of cold rolled steel, Cu and Ni by neutron diffraction

    International Nuclear Information System (INIS)

    Cernik, M.; Neov, D.; Lukas, P.; Mikula, P.

    1999-01-01

    Complete text of publication follows. Texture investigations are presented of some polycrystalline materials subjected to cold rolling process. Using neutron diffraction the textures of rolled steel, Cu and electrolytic Ni having the cubic BCC of FCC lattices were studied. On the basis of pole figures of Fe(110), Fe(200), Fe(112), Cu(111), Cu(200), Cu(220) and Ni(111), Ni(200), Ni(220), ODFs (Orientation Distribution Function) fully describing the texture of individual samples could be determined [1,2]. It has been observed that cold rolling significantly changes the texture and a complete anisotropy of the original material. The specific method of cold working - cold rolling - creates in the rolled material a fibre structure with α and γ fibres. The texture investigations were parallely done also by means of X-ray diffraction and the obtained bulk and surface texture information, respectively, was compared. (author)

  11. Actinide Sputtering Induced by Fission with Ultra-cold Neutrons

    Science.gov (United States)

    Shi, Tan; Venuti, Michael; Fellers, Deion; Martin, Sean; Morris, Chris; Makela, Mark

    2017-09-01

    Understanding the effects of actinide sputtering due to nuclear fission is important for a wide range of applications, including nuclear fuel storage, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. By controlling the UCN energy, it is possible to induce fission at the sample surface within a well-defined depth. It is therefore an ideal tool for studying the effects of fission-induced sputtering as a function of interaction depth. Since the mechanism for fission-induced surface damage is not well understood, this work has the potential to deconvolve the various damage mechanisms. During the irradiation with UCN, NaI detectors are used to monitor the fission events and were calibrated by monitoring fission fragments with an organic scintillator. Alpha spectroscopy of the ejected actinide material is performed in an ion chamber to determine the amount of sputtered material. Actinide samples with various sample properties and surface conditions are irradiated and analyzed. In this talk, I will discuss our experimental setup and present the preliminary results from the testing of multiple samples. This work has been supported by Los Alamos National Laboratory and Seaborg Summer Research Fellowship.

  12. Neutron lifetime measurement with a double trap for ultra cold neutrons

    International Nuclear Information System (INIS)

    Pichlmaier, A.; Nesvizhevsky, V.; Neumaier, S.; Geltenbort, P.; Schreckenbach, K.; Varlamov, V.

    1997-01-01

    The main troubles met during experiments dealing with free neutrons beta decay lifetime measurement by ultracold neutron storage in a double trap are discussed. The main improvements for the experiment successful realization are considered. These are the following. The neutrons are stored in traps which walls are covered with Fomblin oil. The outer volume serves for preliminary storage and as an ultracold neutrons monochromator by gravity and the absorber plate. The inner volume presents a storage volume of variable size for the neutron lifetime measurement. The neutrons are first filled into the outer trap. Then the storage trap is filled and closed by the shutter against the outer trap. After the storage time the shutter is opened and the remaining ultracold neutrons are counted in the detector. It is shown that while the lifetime in the preliminary storage volume is of the order of 200 sec the lifetime in the main storage volume is typically only 20 % shorter than the lifetime of the free neutron

  13. Neutron diffraction on a moving grating and quasi-energy of cold neutrons

    International Nuclear Information System (INIS)

    Frank, A.I.; Nosov, V.G.

    1994-01-01

    A solution is found to the problem of the motion of an absorbing or phase grating across a monochromatic neutron beam. It is found that a very close connection exists between this problem and the problem of fast periodic chopping of a neutron beam. (orig.)

  14. Investigation of neutron emission in a cold fusion experiment in palladium

    International Nuclear Information System (INIS)

    Szustakowski, M.; Farny, J.; Muniak, M.; Nowak, A.; Parys, P.; Skrzeczanowski, W.; Socha, R.; Teter, J.; Wolski, J.; Wolowski, J.; Woryna, E.

    1989-01-01

    This paper reports on the experiments dealing with performance of nuclear fusion at room temperature actually which create a great sensation and are carried out in various laboratories. This interest arises from the results achieved by Fleischmann and Pons, and it results from their paper that there exists a possibility of obtaining an ignition owing to nuclear fusion reactions during usual electrochemical process--namely the electrolysis of D O with use of the system of Pd-Pt electrodes. From this reason the measurements of the yield and behavior of neutron emission give the information about processes of interest. At the IPPLM the cold fusion experiments have been conducted from the beginning of April 1989. In the first experiment the reliable evidence of neutron emission was obtained. A number of irregularly repeated neutron pulses of the level of 10 5 per pulse was recorded. The measurements of the neutron emission, in this experiment, were performed with the use of three independent methods employing the 2.5 MeV neutron spectrometer, the scintillation neutron detector as well as the nuclear track detector. neutron emission had been first recorded after 106 hours of the electrolysis process of D 2 O

  15. Ultra- cold neutron sources: UCN production rate in solid deuterium converter

    Directory of Open Access Journals (Sweden)

    R Gheisari

    2016-06-01

    Full Text Available A new model is presented herein to calculate optimal value for ultra-cold neutron (UCN production rate of a UCN source. The cold neutron (CN converter is the main component of UCN source. In this paper, we study the UCN source which contains the D2O neutron moderator, the sD2 converter, 590 Mev proton beam, and the spallation target (a mixture of Pb, D2O and Zr. In order to determine the quantities, the neutron transport equation, written in MATLAB, has been combined with the MCNPX simulation code. The neutron transport equation in cylindrical coordinate has been solved everywhere in sD2 by using simulated CN flux as boundary value. By loading a cylindrical shell with different materials, surrounding the converter, different values for UCN production rate and density were obtained. The results of the UCN production rate and density and their comparison with previous results show that the present method has a good capability for optimization of UCN source parameters.

  16. On the yield of cold and ultracold neutrons for liquid hydrogen at low temperatures near the melting point

    CERN Document Server

    Morishima, N

    1999-01-01

    The neutron scattering cross sections for liquid hydrogen in the temperature range from the melting point to the boiling point are calculated. It is shown that lowering the temperature results in a significant increase in the yield of cold neutrons: for instance, a 44% increase for an incident neutron energy of 19.4 meV. The major cause of this increment is the para-to-ortho transition of a hydrogen molecule though accompanied by an appreciable increase in the density. The results of the cold- and ultracold-neutron yields are discussed in connection with the experimental results of Altarev et al. at the WWR-M reactor.

  17. Development of a new superfluid helium ultra-cold neutron source and a new magnetic trap for neutron lifetime measurements

    International Nuclear Information System (INIS)

    Leung, Kent Kwan Ho

    2013-01-01

    The development of an Ultra-Cold Neutron (UCN) source at the Institut Laue-Langevin (ILL) based on super-thermal down-scattering of a Cold Neutron (CN) beam in superfluid 4 He is described. A continuous flow, self-liquefying 3 He cryostat was constructed. A beryllium coated prototype converter vessel with a vertical, window-less extraction system was tested on the PF1b CN beam at the ILL. Accumulation measurements with a mechanical valve, and continuous measurements with the vessel left open, were made. The development of a new magnetic UCN trap for neutron lifetime (τ β ) measurements is also described. A 1.2 m long octupole made from permanent magnets, with a bore diameter of 94 mm and surface field of 1.3 T, was assembled. This will be combined with a superconducting coil assembly and used with vertical confinement of UCN by gravity. A discussion of the systematic effects, focussing on the cleaning of above-threshold UCNs, is given. The possibility of detecting the charged decay products is also discussed. UCN storage experiments with the magnetic array and a fomblin-coated piston were performed on PF2 at the ILL. These measurements studied depolarization, spectrum cleaning, and loss due to material reflections in the trap experimentally.

  18. On the reliability of neutron diffraction for residual stress measurement in cold-drawn steels

    International Nuclear Information System (INIS)

    Ruiz-Hervias, J; Atienza, J M; Mompean, F; Hofmann, M

    2011-01-01

    Residual strains were measured in the ferrite phase of pearlitic steel rods along the radial, axial and hoop directions. Two samples with different initial diameters were subjected to one drawing pass (using same drawing parameters) with 20% section reduction and measured in two different neutron diffraction instruments. The results show that the residual strain state is very similar in both cases, regardless of the diameter of the initial rod. This means that the final residual strain-stress state is unique and it is related to the cold-drawing process parameters. In addition, the results show the reliability of strain scanning with different neutron instruments and experimental conditions.

  19. Geometrical shape optimization of a cold neutron source using artificial intelligence strategies

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1989-01-01

    A new approach is developed for optimizing the geometrical shape of a cold neutron source to maximize its cold neutron outward leakage. An analogy is drawn between the shape optimization problem and a state space search, which is the fundamental problem in Artificial Intelligence applications. The new optimization concept is implemented in the computer code DAIT in which the physical model is represented by a two group, r-z geometry nodal diffusion method, and the state space search is conducted via the Nearest Neighbor algorithm. The accuracy of the nodal diffusion method solution is established on meshes of interest, and is shown to behave qualitatively the same as transport theory solutions. The dependence of the optimum shape and its value on several physical and search parameters is examined via numerical experimentation. 10 refs., 6 figs., 2 tabs

  20. Wide-angle polarization analysis with 3He for neutron scattering instrumentation at the JCNS

    Science.gov (United States)

    Ioffe, A.; Babcock, E.; Pipich, V.; Radulescu, A.

    2011-06-01

    Polarization analysis is an important technique for polarized neutron scattering as it allows one to obtain the full information about the vector magnetization in the sample that is critically important for detailed understanding of physical properties of molecular magnets, new superconductors, spin electronic and magnetic nanostructures, as well as the self-organization of magnetic nanostructures. In the simplified 1-dimensional version polarization analysis allows for the separation of coherent and incoherent scattering, making it a potentially important technique for studies of non-deuterated biological objects that themselves produce unavoidable background. We compare some of the major considerations between two different methods for the polarization analysis - supermirror based analyzers and polarized 3He neutron spin filters and point out when the latter is beneficial from the point of view of our neutron experiments and instrumentation. We will also discuss some specific requirements to such neutron spin filters and summarize the classes of instrumentation where they will be applied at the JCNS. Finally we will describe a successful application for small-angle neutron scattering from a biological sample.

  1. Wide-angle polarization analysis with 3He for neutron scattering instrumentation at the JCNS

    International Nuclear Information System (INIS)

    Ioffe, A; Babcock, E; Pipich, V; Radulescu, A

    2011-01-01

    Polarization analysis is an important technique for polarized neutron scattering as it allows one to obtain the full information about the vector magnetization in the sample that is critically important for detailed understanding of physical properties of molecular magnets, new superconductors, spin electronic and magnetic nanostructures, as well as the self-organization of magnetic nanostructures. In the simplified 1-dimensional version polarization analysis allows for the separation of coherent and incoherent scattering, making it a potentially important technique for studies of non-deuterated biological objects that themselves produce unavoidable background. We compare some of the major considerations between two different methods for the polarization analysis - supermirror based analyzers and polarized 3 He neutron spin filters and point out when the latter is beneficial from the point of view of our neutron experiments and instrumentation. We will also discuss some specific requirements to such neutron spin filters and summarize the classes of instrumentation where they will be applied at the JCNS. Finally we will describe a successful application for small-angle neutron scattering from a biological sample.

  2. Main effects of the Earth's rotation on the stationary states of ultra-cold neutrons

    International Nuclear Information System (INIS)

    Arminjon, Mayeul

    2008-01-01

    The relativistic corrections in the Hamiltonian for a particle in a uniformly rotating frame are discussed. They are shown to be negligible in the case of ultra-cold neutrons (UCN) in the Earth's gravity. The effect, on the energy levels of UCN, of the main term due to the Earth's rotation, i.e. the angular-momentum term, is calculated. The energy shift is found proportional to the energy level itself

  3. Looking for spectral changes occurring during storage of ultra-cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Steyerl, A.; Malik, S.S. [Rhode Island Univ., Kingston, RI (United States); Geltenbort, P. [Institut Max von Laue - Paul Langevin (ILL), 38 -Grenoble (France)

    1997-04-01

    It seems that the spectrum of ultra-cold neutrons does change. The measured data indicate with 5{sigma} reliability, that a small heating by about 2{center_dot}10{sup -10} eV ({approx} 2 mm of rise height against the earth`s gravity) occurred during the initial {approx} 10{sup 3} wall reflections, and no change thereafter. The reason of this effect is searched for. (author). 3 refs.

  4. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: The EXILL campaign

    Directory of Open Access Journals (Sweden)

    Blanc A.

    2013-12-01

    Full Text Available One way to explore exotic nuclei is to study their structure by performing γ-ray spectroscopy. At the ILL, we exploit a high neutron flux reactor to induce the cold fission of actinide targets. In this process, fission products that cannot be accessed using standard spontaneous fission sources are produced with a yield allowing their detailed study using high resolution γ-ray spectroscopy. This is what was pursued at the ILL with the EXILL (for EXOGAM at the ILL campaign. In the present work, the EXILL setup and performance will be presented.

  5. Performance of the prototype LANL solid deuterium ultra-cold neutron source

    CERN Document Server

    Hill, R E; Bowles, T J; Greene, G L; Hogan, G; Lamoreaux, S; Marek, L; Mortenson, R; Morris, C L; Saunders, A; Seestrom, S J; Teasdale, W A; Hoedl, S; Liu, C Y; Smith, D A; Young, A; Filippone, B W; Hua, J; Ito, T; Pasyuk, E A; Geltenbort, P; García, A; Fujikawa, B; Baessler, S; Serebrov, A

    2000-01-01

    A prototype of a solid deuterium (SD sub 2) source of Ultra-Cold Neutrons (UCN) is currently being tested at LANSCE. The source is contained within an assembly consisting of a 4 K polyethylene moderator surrounded by a 77 K beryllium flux trap in which is embedded a spallation target. Time-of-flight measurements have been made of the cold neutron spectrum emerging directly from the flux trap assembly. A comparison is presented of these measurements with results of Monte Carlo (LAHET/MCNP) calculations of the cold neutron fluxes produced in the prototype assembly by a beam of 800 MeV protons incident on the tungsten target. A UCN detector was coupled to the assembly through a guide system with a critical velocity of 8 m/s ( sup 5 sup 8 Ni). The rates and time-of-flight data from this detector are compared with calculated values. Measurements of UCN production as a function of SD sub 2 volume (thickness) are compared with predicted values. The dependence of UCN production on SD sub 2 temperature and proton beam...

  6. Study and production of polarized monochromatic thermal neutron beams; Etude et production de faisceaux monochromatiques polarises de neutrons lents

    Energy Technology Data Exchange (ETDEWEB)

    Beiln, H. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-06-15

    Results obtained with a recently built neutron spectrometer producing monochromatic polarized neutron beams,in the energy rang (10{sup -3} - 10) eV and using a series of artificial (Co: 92 per cent - Fe: 8 per cent) monocrystal as polarizers and analysers, are given. A high precision method for cutting monocrystals is explained. A description of the installation itself as well as some results obtained with Fe{sub 3}O{sub 4} crystals are also given. Experimental result pertaining to various magnetic guide and 'spin flip' system, as required in the handling of such polarized neutron beams, are also discussed. (author) [French] Nous donnons les resultats obtenus avec un spectrometre produisant des neutrons monochromatiques polarises d'energie comprise entre quelques milliemes d'electronvolts et quelques electronvotts qui utilise une serie de monocristaux artificiels de Co: 92 pour cent - Fe: 8 pour cent, comme polariseurs et analyseurs. Nous discutons egalement une methode de taille de monocristaux a tres haute precision. Le dispositif experimental ainsi que quelques resultats preliminaires obtenus avec des monocristaux de Fe{sub 3}O{sub 4} sont egalement donnes. Nous discutons egalement des resultats experimentaux obtenus avec differents systemes de guidage magnetique et de renversement du spin. (auteur)

  7. Evaluation of a completely automated cold fiber device using compounds with varying volatility and polarity.

    Science.gov (United States)

    Jiang, Ruifen; Carasek, Eduardo; Risticevic, Sanja; Cudjoe, Erasmus; Warren, Jamie; Pawliszyn, Janusz

    2012-09-12

    A fully automated cold fiber solid phase microextraction device has been developed by coupling to a GERSTEL multipurpose (MPS 2) autosampler and applied to the analysis of volatiles and semi-volatiles in aqueous and solid matrices. The proposed device was thoroughly evaluated for its extraction performance, robustness, reproducibility and reliability by gas chromatograph/mass spectrometer (GC/MS). With the use of a septumless head injector, the entire automated setup was capable of analyzing over 200 samples without any GC injector leakages. Evaluation of the automated cold fiber device was carried out using a group of compounds characterized by different volatilities and polarities. Extraction efficiency as well as analytical figures of merit was compared to commercial solid phase microextraction fibers. The automated cold fiber device showed significantly improved extraction efficiency compared to the commercial polydimethylsiloxane (PDMS) and cold fiber without cooling for the analysis of aqueous standard samples due to the low temperature of the coating. Comparing results obtained from cold fiber and commercial divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber temperature profile demonstrated that the temperature gap between the sample matrix and the coating improved the distribution coefficient and therefore the extraction amount. The linear dynamic range of the cold fiber device was 0.5 ng mL(-1) to 100 ng mL(-1) with a linear regression coefficient ≥0.9963 for all compounds. The limit of detection for all analytes ranged from 1.0 ng mL(-1) to 9.4 ng mL(-1). The newly automated cold fiber device presents a platform for headspace analysis of volatiles and semi-volatiles for large number of samples with improved throughput and sensitivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Measurement of Angular Correlations in the Decay of Polarized Neutrons

    DEFF Research Database (Denmark)

    Christensen, Carl Jørgen; Krohn, V.E.; Ringo, G.R.

    1970-01-01

    The electron-momentum-neutron-spin correlation coefficient was found to be A=-0.115±0.008, and the antineutrino-momentum-neutron-spin correlation coefficient was found to be B=1.00±0.05. The value of A leads to |GA/GV|=1.26±0.02 for the ratio of Gamow-Teller-to-Fermi coupling constants in β decay...

  9. Magnetic nanostructures studied by polarized small angle neutron scattering

    International Nuclear Information System (INIS)

    Wiedenmann, Albrecht; Kammel, Martin; Heinemann, Andre

    2005-01-01

    Small Angle Neutron Scattering using polarised neutrons is introduced as a contrast variation technique for magnetic systems. The potential of this technique is illustrated on diluted Ferrofluids. Composition, magnetization and size distributions of magnetic core-shell composite particles and magnetic aggregates could be precisely evaluated beside non-magnetic micelles and free surfactants of similar sizes. Structure factors have been extracted which revealed a local pseudo-crystalline ordering of the magnetic particles induced by magnetic fields

  10. Polarized neutron diffraction - a tool for testing extinction models: application to yttrium iron garnet

    International Nuclear Information System (INIS)

    Bonnet, M.; Delapalme, A.; Becker, P.

    1976-01-01

    This paper shows that polarized neutron experiments, which do not depend on any scale factor, are very dependent on extinction and provide original tests for extinction models. Moon, Koehler, Cable and Child (1972) have formulated the problem and proposed a first-order solution applicable only when the extinction is small. In the first part, some analytical derivations of secondary extinction corrections are discussed, using the formalism of Becker and Coppens (1974). In the second part, the main principles governing polarized neutron diffraction are briefly reviewed, with a special discussion of extinction problems. The method is then applied to the case of yttrium iron garnet (YIG). This experiment shows the technique of polarized neutrons to be very powerful for testing extinction models and for deciding whether the crystal behaves dynamically or kinematically (following Kato's criterion). (Auth.)

  11. Fundamental studies for the proton polarization technique in neutron protein crystallography

    International Nuclear Information System (INIS)

    Tanaka, Ichiro; Kusaka, Katsuhiro; Chatake, Toshiyuki; Niimura, Nobuo

    2013-01-01

    Fundamental trials to realise the proton polarization technique for detecting hydrogen with higher sensitivity in neutron protein crystallography are described. The isotope effect in conventional neutron protein crystallography (NPC) can be eliminated by the proton polarization technique (ppt). Furthermore, the ppt can improve detection sensitivity of hydrogen (relative neutron scattering length of hydrogen) by approximately eight times in comparison with conventional NPC. Several technical difficulties, however, should be overcome in order to perform the ppt. In this paper, two fundamental studies to realise ppt are presented: preliminary trials using high-pressure flash freezing has shown the advantage of making bulk water amorphous without destroying the single crystal; and X-ray diffraction and liquid-chromatography/mass-spectrometry analyses of standard proteins after introducing radical molecules into protein crystals have shown that radical molecules could be distributed non-specifically around proteins, which is essential for better proton polarization

  12. Investigation of TbMn2O5 by polarized neutron diffraction.

    Science.gov (United States)

    Zobkalo, Igor Aleksandrovich; Gavrilov, Sergei; Sazonov, Andrew; Hutanu, Vladimir

    2018-04-13

    In order to make a new approach to the elucidation of the microscopic mechanisms of multiferroicity in RMn2O5 family, experiments with different methods of polarized neutrons scattering were performed on a TbMn2O5 single crystal. We employed three different techniques of polarized neutron diffraction: without the analysis after scattering, the XYZ-polarization analysis, and technique of spherical neutron polarimetry (SNP). Measurements with SNP were undertaken both with and without external electric field. A characteristic difference in the population of "right" and "left" helix domains in all magnetically ordered phases of TbMn2O5, was observed. This difference can be controlled by an external electric field in the field-cooled mode. The analysis of the results gives an evidence that antisymmetric Dzyaloshinsky-Moria exchange is effective in all the magnetic phases in TbMn2O5. © 2018 IOP Publishing Ltd.

  13. Washing Up with Hot and Cold Running Neutrons: Tests of Fundamental Physical Laws

    International Nuclear Information System (INIS)

    Lamoreaux, Steve K.

    2005-01-01

    The properties of the Neutron and its interactions with matter have been long applied to tests of fundamental physical principles. An example of such an application is a test of the stability of the fundamental constants of physics based on possible changes in low energy absorption resonances and the isotopic composition of a prehistoric natural reactor that operated two billion years ago in equatorial Africa. A recent re-analysis of this event indicates that some fundamental constants have changed. The focus of the presentation will be on the uses of cold and ultracold neutrons (UCNs), and in particular, the experimental search for the neutron electric dipole moment (EDM) which would be evidence for time reversal asymmetry in the microscopic interactions within the neutron. Ultracold neutrons are neutrons with kinetic energy sufficiently low that they can be reflected from material surfaces for all angles of incidence, allowing UCNs to be stored in material bottles for times approaching the beta decay lifetime of the neutron. Vagaries associated with the production, transport, and storage of UCNs will be described, and an overview progress on development of a new neutron EDM experiment to be operated at LANSCE will be presented. This new experiment has potential to improve the measurement sensitivity by a factor of 100. Although an EDM has not be observed for any elementary particle, experimental limits have been crucial for testing extensions to the so-called Standard Model of Electroweak Interactions. Our anticipated sensitivity will be sufficient to address questions regarding the observed matter-antimatter asymmetry in the Universe

  14. Interstitial Iron Effects on Magnetic Excitations in Parent Phases Fe1+xTe from Polarized and Inelastic Neutron Scattering

    Science.gov (United States)

    Rodriguez, Efrain

    2012-02-01

    One of the simplest systems of the iron-based superconducting family, Fe1+xCh (where Ch = S, Se, or Te) presents ample opportunity to study the relationship between antiferromagnetism and superconductivity. Several studies have demonstrated how the makeup of the Ch anions changes the electronic properties drastically, but the effect of excess interstitial iron, the x in Fe1+xCh, is not as well understood. Our previous diffraction experiments on samples varying x from 4 % to 16 % demonstrated how the magnetic ordering changes from collinear antiferromagnetic to helical incommensurate via a spin-density wave state at the special composition of x 12%. We present inelastic neutron scattering measurements of the phases Fe1+xTe for two amounts of interstitial iron in the lattice, 5% and 14 %. We have combined data from cold neutron triple-axis, thermal neutron triple-axis, and spallation source time-of-flight to provide a full picture of the magnetic excitations in Fe1+xTe for x=14 % from 0.5 meV to 150 meV. In addition, we present polarized inelastic studies on this particular composition to investigate the nature of the spin waves, i.e. longitudinal vs. transverse. The results are compared with those found in the phase with low amounts of interstitial iron ( 5 %), in order to understand the nature of the exchange interactions in this important parent compound.

  15. Thermodynamic consideration on self-regulating characteristics of cold neutron source with cylinder annulus type cold moderator cell

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Yoshino, Hiroshi; Kawabata, Yuji; Hino, Masahiro

    2000-01-01

    Shapes of moderator baths of ORPHEE and NIST without bottom of inner cylinder, entering liquid from downward and push down the liquid by steam formed nuclear exotherm to fill inner part of the inner cylinder with steam, require to determine a number of parameters to be optimum to realize a state storing steam in inner cylinder and liquid in shell portion. Then, for a modulator bath with a structure shielding the inner cylinder from shell portion by preparing bottom without any pore and supplying steam into the cylinder through a steam return pipe mounted with pores at its upper portion. By such structure, a cold neutron source with self-balance-ability and capable of following output without time delaying. And, its liquid volume can also be controlled by system pressure. And that, as its structure is simple, it has another characteristic that its connection structure of transmission pipe portion with moderator bath portion. (G.K.)

  16. Development of high-polarization Fe/Ge neutron polarizing supermirror: Possibility of fine-tuning of scattering length density in ion beam sputtering

    Science.gov (United States)

    Maruyama, R.; Yamazaki, D.; Akutsu, K.; Hanashima, T.; Miyata, N.; Aoki, H.; Takeda, M.; Soyama, K.

    2018-04-01

    The multilayer structure of Fe/Si and Fe/Ge systems fabricated by ion beam sputtering (IBS) was investigated using X-ray and polarized neutron reflectivity measurements and scanning transmission electron microscopy with energy-dispersive X-ray analysis. The obtained result revealed that the incorporation of sputtering gas particles (Ar) in the Ge layer gives rise to a marked reduction in the neutron scattering length density (SLD) and contributes to the SLD contrast between the Fe and Ge layers almost vanishing for spin-down neutrons. Bundesmann et al. (2015) have shown that the implantation of primary Ar ions backscattered at the target is responsible for the incorporation of Ar particles and that the fraction increases with increasing ion incidence angle and increasing polar emission angle. This leads to a possibility of fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. Fe/Ge polarizing supermirror with m = 5 fabricated under the same condition showed a spin-up reflectivity of 0.70 at the critical momentum transfer. The polarization was higher than 0.985 for the qz range where the correction for the polarization inefficiencies of the beamline works properly. The result of the polarized neutron reflectivity measurement suggests that the "magnetically-dead" layers formed at both sides of the Fe layer, together with the SLD contrast, play a critical role in determining the polarization performance of a polarizing supermirror.

  17. A newly developed technique of wireless remote controlled visual inspection system for neutron guides of cold neutron research facilities at HANARO

    International Nuclear Information System (INIS)

    Huh, Hyung; Cho, Yeong Garp; Kim, Jong In

    2012-01-01

    KAERI developed a neutron guide system for cold neutron research facilities at HANARO from 2003 to 2010. In 2008, the old plug shutter and instruments were removed, and a new plug and primary shutter were installed as the first cold neutron delivery system at HANARO. At the beginning of 2010, all the neutron guides and accessories had been successfully installed as well. The neutron guide system of HANARO consists of the in pile plug assembly with in pile guides, the primary shutter with in shutter guides, the neutron guides in the guide shielding room with secondary shutter, and the neutron guides in the neutron guide hall. Three kinds of glass materials were selected with optimum lengths by considering their lifetime, shielding, maintainability and cost as well. Radiation damage of the guides can occur on the coating and glass by neutron capturing in the glass. It is a big challenge to inspect a guide failure because of the difficult surrounding environment, such as high level radiation, limited working space, and massive hard work for removing and reinstalling the shielding blocks as shown in Fig 1. Therefore, KAERI has developed a wireless remote controlled visual inspection system for neutron guides using an infrared light camera mounted on the vehicle moving in the guide

  18. Ab initio calculations versus polarized neutron diffraction for the spin density of free radicals

    CERN Document Server

    Ressouche, E

    2003-01-01

    The determination of the magnetization distribution using polarized neutron diffraction has played a key role during the last twenty years in the field of molecular magnetism. This distribution can also be obtained by first principle ab initio calculations. Such calculations always rely on approximations and the question that arises is to know whether the obtained results are reliable enough to represent accurately the properties of these molecules. The comparison between polarized neutron experimental results and ab initio calculations has turned to provide stringent tests for these methods. In the resent article a comparison between experimental and theoretical results is made and is illustrated by examples based on magnetic free radicals. (author)

  19. Recent advancements of wide-angle polarization analysis with 3He neutron spin filters

    International Nuclear Information System (INIS)

    Chen, W.C.; Gentile, T.R.; Ye, Q.; Kirchhoff, A.; Watson, S.M.; Rodriguez-Rivera, J.A.; Qiu, Y.; Broholm, C.

    2016-01-01

    Wide-angle polarization analysis with polarized 3 He based neutron spin filters (NSFs) has recently been employed on the Multi-Axis Crystal Spectrometer (MACS) at the National Institute of Standards and Technology Center for Neutron Research (NCNR). Over the past several years, the apparatus has undergone many upgrades to address the fundamental requirements for wide angle polarization analysis using spin exchange optical pumping based 3 He NSFs. In this paper, we report substantial improvements in the on-beam-line performance of the apparatus and progress toward routine user capability. We discuss new standard samples used for 3 He NSF characterization and the flipping ratio measurement on MACS. We further discuss the management of stray magnetic fields produced by operation of superconducting magnets on the MACS instrument, which can significantly reduce the 3 He polarization relaxation time. Finally, we present the results of recent development of horseshoe-shaped wide angle cells. (paper)

  20. Multi detector input and function generator for polarized neutron experiments

    International Nuclear Information System (INIS)

    De Blois, J.; Beunes, A.J.H.; Ende, P. v.d.; Osterholt, E.A.; Rekveldt, M.T.; Schipper, M.N.; Velthuis, S.G.E. te

    1998-01-01

    In this paper a VME module is described for static or stroboscopic measurements with a neutron scattering instrument, consisting essentially of a series of up to 64 3 He neutron detectors around a sample environment. Each detector is provided with an amplifier and a discriminator to separate the neutrons from noise. To reduce the wiring, the discriminator outputs are connected to the module by coding boxes. Two 16-inputs to one-output coding boxes generate serial output codes on a fiber optic connection. This basically fast connection reduces the dead time introduced by the coding, and the influence of environmental noise. With stroboscopic measurements a periodic function is used to affect the sample surrounded by a field coil. Each detected neutron is labeled with a data label containing the detector number and the time of detection with respect to a time reference. The data time base can be programmed on a linear or a nonlinear scale. An external source or an attribute of the periodic function may generate the time reference pulse. A 12-bit DAC connected to the output of an 8 K, 16-bits memory, where the pattern of the current has been stored before, generates the function. The function memory is scanned by the programmable function time base. Attributes are set by the four remaining bits of the memory. One separate detector input connects a monitor detector in the neutron beam with a 32-bit counter/timer that provides measuring on a preset count, preset time or preset frame. (orig.)

  1. Time reversal in polarized neutron decay: the emiT experiment

    CERN Document Server

    Jones, G L; Anaya, J M; Bowles, T J; Chupp, T E; Coulter, K P; Dewey, M S; Freedman, S J; Fujikawa, B K; García, A; Greene, G L; Hwang, S R; Lising, L J; Mumm, H P; Nico, J S; Robertson, R G H; Steiger, T D; Teasdale, W A; Thompson, A K; Wasserman, E G; Wietfeldt, F E; Wilkerson, J F

    2000-01-01

    The standard electro-weak model predicts negligible violation of time-reversal invariance in light quark processes. We report on an experimental test of time-reversal invariance in the beta decay of polarized neutrons as a search for physics beyond the standard model. The emiT collaboration has measured the time-reversal-violating triple-correlation in neutron beta decay between the neutron spin, electron momentum, and neutrino momentum often referred to as the D coefficient. The first run of the experiment produced 14 million events which are currently being analyzed. However, a second run with improved detectors should provide greater statistical precision and reduced systematic uncertainties.

  2. Influence of an absorbing sublayer on polarizing property of magnetic neutron mirrors

    International Nuclear Information System (INIS)

    Korneev, D.A.; Pasyuk, V.V.; Petrenko, A.V.

    1991-01-01

    Measurements of the neutron reflectivity profile from absorbing thin film mirrors deposited onto glass substrates are presented and the results compared with theoretical predictions. The spectral dependence of the scattering length of natural Gd and GdTi alloy has been determined for the first time for the thermal neutron energy range. The unstable behavior of the neutron scattering length of Gd and consequently the principle impossibility of its compensation in a wide interval of neutron wavelengths is the reason of the strong decreasing of the polarizing properties of neutron guides with ferromagnetic mirrors. The possibility is discussed of producing a new absorbing sublayers with an important decrease of reflection in the neutron wavelength range from 1 to 10 A. The neutron reflectivity was analyzed for absorbing thin BTi, BV and CdV alloys on glass substrates. The calculated reflectivity as a function of neutron wavelength was optimized for concentration and layer thickness. Fist experimental data have been performed at the Laboratory of Neutron Physics (Joint Institute for Nuclear Research, Dubna) and are presented. (author). 7 refs, 7 figs

  3. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    International Nuclear Information System (INIS)

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A.; Pantell, R. H.; Feinstein, J.; Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B.

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  4. Neutron spin filter based on optically polarized sup 3 He in a near-zero magnetic field

    CERN Document Server

    Skoy, V R; Sorokin, V N; Kolachevsky, N N; Sobelman, I I; Sermyagin, A V

    2003-01-01

    A test of polarization of sup 3 He nuclei via spin-exchange collisions with optically pumped rubidium atoms in an extremely low applied magnetic field was carried out. Permalloy magnetic shields were used to prevent a fast relaxation of sup 3 He polarization owing to the inhomogeneity of a surrounding magnetic field. The whole installation was placed at the neutron beam line of the IBR-30 facility, and used as a neutron spin filter. Thus, a prototype of new design of neutron polarizer was introduced. We intend to apply this experience for the full-scale KaTRIn facility to test the time reversal violation in neutron-nuclear reactions.

  5. Measurement of cold neutron spectra at a model of cryogenic moderator of the IBR-2M reactor

    International Nuclear Information System (INIS)

    Kulikov, S.A.; Chernikov, A.N.; Shabalin, E.P.; Kalinin, I.V.; Morozov, V.M.; Novikov, A.G.; Puchkov, A.V.

    2010-01-01

    The article is dedicated to methods and results of experimental determination of cold neutron spectra from solid mesitylene at neutron moderator temperatures 10-50 K. Experiments were fulfilled at the DIN-2PI spectrometer of the IBR-2 reactor. The main goals of this work were to examine a system of constants for Monte Carlo calculation of cryogenic moderators of the IBR-2M reactor and to determine the temperature dependence of cold neutron intensity from the moderator. A reasonable agreement of experimental and calculation results for mesitylene at 20 K has been obtained. The cold neutron intensity at temperature of moderator 10 K is about 1.8 times higher than at T=50 K

  6. Performance of the Los Alamos National Laboratory spallation-driven solid-deuterium ultra-cold neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, A.; Makela, M.; Bagdasarova, Y.; Boissevain, J.; Bowles, T. J.; Currie, S. A.; Hill, R. E.; Hogan, G.; Morris, C. L.; Mortensen, R. N.; Ramsey, J.; Seestrom, S. J.; Sondheim, W. E.; Teasdale, W.; Wang, Z. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Back, H. O.; Broussard, L. J.; Hoagland, J.; Holley, A. T.; Pattie, R. W. Jr. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); and others

    2013-01-15

    In this paper, we describe the performance of the Los Alamos spallation-driven solid-deuterium ultra-cold neutron (UCN) source. Measurements of the cold neutron flux, the very low energy neutron production rate, and the UCN rates and density at the exit from the biological shield are presented and compared to Monte Carlo predictions. The cold neutron rates compare well with predictions from the Monte Carlo code MCNPX and the UCN rates agree with our custom UCN Monte Carlo code. The source is shown to perform as modeled. The maximum delivered UCN density at the exit from the biological shield is 52(9) UCN/cc with a solid deuterium volume of {approx}1500 cm{sup 3}.

  7. Cosmic microwave background polarization as a probe of the anomalous nature of the cold spot

    Science.gov (United States)

    Vielva, P.; Martínez-González, E.; Cruz, M.; Barreiro, R. B.; Tucci, M.

    2011-01-01

    One of the most interesting explanations for the non-Gaussian cold spot detected in the Wilkinson Microwave Anisotropy Probe (WMAP) data by Vielva et al. is that it arises from the interaction of the cosmic microwave background radiation with a cosmic texture. In this case, a lack of polarization is expected in the region of the spot, as compared to the typical values associated to large fluctuations of a Gaussian and isotropic random field. In addition, other physical processes related to a non-linear evolution of the gravitational field could lead to a similar scenario. However, some of these alternative scenarios (e.g. a large void in the large-scale structure) have been shown to be very unlikely. In this work we characterize the polarization properties of the cold spot under both hypotheses: a large Gaussian fluctuation and an anomalous feature generated, for instance, by a cosmic texture. We also propose a methodology to distinguish between them, and we discuss its discrimination power as a function of the instrumental noise level. In particular, we address the cases of current experiments, like WMAP and Planck, and others in development as the Q, U and I Joint Tenerife Experiment (QUIJOTE). We find that for an ideal experiment with a high-polarization sensitivity, the Gaussian hypothesis could be rejected at a significance level better than 0.8 per cent. While WMAP is far from providing useful information in this respect, we find that Planck will be able to reach a significance level of around 7 per cent; in addition, we show that the ground-based experiment QUIJOTE could provide a significance level of around 1 per cent, close to the ideal case. If these results are combined with the significance level found for the cold spot in temperature, the capability of QUIJOTE and Planck to reject the alternative hypothesis becomes 0.025 and 0.124 per cent, respectively.

  8. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-01

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load

  9. Measurements Of Spin Observables In Pseudoscalar-Meson Photo-Production Using Polarized Neutrons In Solid HD

    Energy Technology Data Exchange (ETDEWEB)

    Kageya, Tsuneo

    2014-01-01

    Psuedo-scalar meson photo production measurements have been carried out with longitudinally-polarized neutrons using the circularly and linearly polarized photon beams and the CLAS at Thomas Jefferson National Accelerator Facility (Jlab). The experiment aims to obtain a complete set of spin observables on an efficient neutron target. Preliminary E asymmetries for the exclusive reaction, gamma + n(p)--> pi- + p(p), selecting quasi free neutron kinematics are discussed.

  10. Report on polarised and inelastic cold neutron scattering at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    2004-01-01

    The ANSTO's Instrument Workshop on Polarised and Inelastic Cold Neutron Scattering, was held at Lucas Heights on 27-28 January. 30 participants attended, from 6 Australian Universities, 3 ANSTO Divisions, and 5 overseas countries in Asia, Europe and North America. All participants had the opportunity to give their vision for work in 2005 and beyond. The recommendation was that ANSTO proceed with a monochromator/ shield/ polariser system and appropriate dance floor on a cold guide, in such a way that alternative secondary spectrometers (3-axis, LONGPOL-type, reflectometry) can be installed. If the National Science Council of Taiwan proceeds with its cold 3-axis project, ANSTO should then implement the LONGPOL / polarised-beam reflectometry option. If not, ANSTO should implement the cold 3-axis spectrometer. The workshop came to the following additional conclusions: There was a strong sense that any 3-axis spectrometer should have a multi-analyser/multidetector combination, or at least an upgrade path to this. At this stage, there is no case for 2 cold-neutron triple-axis spectrometers at the RRR. The desired Q-range is 0.02-5 Angstroms -1 ; with an energy transfer range of 20 μeV - 15 meV. The instrument is likely to run unpolarised for 2/3 of the time and polarised for the remainder, and the instrument(s) should be designed to allow easy changeover between polarised and unpolarised operation. We expect roughly equal interest/demand in studying single crystals, powders, surfaces/interfaces and naturally disordered systems. There was a strong sense that the facility should eventually have a cold-neutron time-of-flight spectrometer of the IN5 or IN6 type, with a polarised incident beam option, and designed in such a way that polarisation analysis could be implemented if inexpensive large-area analysers become available. This should be a high priority for the next wave of instruments that ANSTO plans to build after 2005

  11. Quasi-specular reflection of cold neutrons from nano-dispersed media at above-critical angles

    International Nuclear Information System (INIS)

    Cubitt, R.; Lychagin, E.V.; Muzychka, A.Yu.; Nekhaev, G.V.; Nesvizhevsky, V.V.; Pignol, G.; Protasov, K.V.; Strelkov, A.V.

    2010-01-01

    We have predicted and observed for the first time a new phenomenon of quasi-specular reflection of cold neutrons at small incidence angles from nano-dispersed media. this is due to multiple small-angle scattering of neutrons from nano-sized inhomogeneities in the scattering potential. The reflection angle as well as the half-width of angular distribution of diffusively reflected neutrons is approximately equal to the incidence angle. For the powder of diamond nanoparticles used, the reflection probability was equal to ∼30% within the detector angular size, which corresponds to 40-50% of total probability (albedo) of quasi-specular reflection. The tangential velocity component of incident neutrons was up to an order of magnitude larger than the critical velocity for pure diamond. We provide an example of potential application of the discovered phenomenon for increasing cold neutron fluxes available for experiments.

  12. Spin density measurement of water-bridged Co-dimer using polarized neutrons

    DEFF Research Database (Denmark)

    Damgaard-Møller, Emil; Overgaard, Jacob; Chilton, Nick

    present an experimentally determined spin density using polarized neutron diffraction in a simple water-bridged cobalt dimer [Co2(H2O)(piv)4(Hpiv)2(py)2] which is known to have a small ferromagnetic coupling between the spin centers. Visualizing the SDD could get us one step further in understanding...

  13. Inverse beta decay of arbitrarily polarized neutrons in a magnetic field

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 62; Issue 5. Inverse beta decay of arbitrarily polarized neutrons in a magnetic field. Kaushik Bhattacharya Palash B Pal. Research Articles Volume 62 Issue 5 May 2004 pp 1041-1058. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Relativistic theory of inverse beta-decay of polarized neutron in ...

    Indian Academy of Sciences (India)

    The relativistic theory of the inverse beta-decay of polarized neutron, + → + -, in strong magnetic field is developed. For the proton wave function we use the exact solution of the Dirac equation in the magnetic filed that enables us to account exactly for effects of the proton momentum quantization in the magnetic ...

  15. Anomalous spin distribution in the superconducting ferromagnet UCoGe studied by polarized neutron diffraction

    NARCIS (Netherlands)

    Prokeš, K.; de Visser, A.; Huang, Y.K.; Fåk, B.; Ressouche, E.

    2010-01-01

    We report a polarized neutron-diffraction study conducted to reveal the nature of the weak ferromagnetic moment in the superconducting ferromagnet UCoGe. We find that the ordered moment in the normal phase in low magnetic fields (B∥c) is predominantly located at the U atom and has a magnitude of

  16. Asymmetry in ternary fission induced by polarized neutrons and fission mechanism

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Gennenvajn, F.; Dzhessinger, P.; Mutterer, M.; Petrov, G.A.

    2003-01-01

    The results of measuring the P-odd, P-even (right-left) and T-odd asymmetries of the charged particles emission in the double and ternary fission, induced by the polarized neutrons, are considered. It is shown, what kind of information on the mechanism of the ternary nuclear fission may be obtained from the theoretical analysis of these data [ru

  17. Design of a cold-neutron source for the Bariloche LINAC with solid mesitylene as moderator material

    International Nuclear Information System (INIS)

    Torres, Lourdes; Granada, J.R.

    2006-01-01

    We present the results of calculations performed with the code MCNP-4C relative to the neutron-field behaviour within the moderator for the Bariloche-LINAC cold-neutron source, using mesitylene at 89 K as moderating material. Throughout the design calculations we used preliminary nuclear-data libraries for that material that were previously generated and partially validated. The optimum dimensions for a slab and a cylindrical moderator were obtained, with and without a premoderator, from the point of view of neutron production and time-width of the neutron pulse

  18. Cold-neutron multi-chopper spectrometer for MLF, J-PARC

    International Nuclear Information System (INIS)

    Nakajima, Kenji; Kajimoto, Ryoich; Nakamura, Mistutaka; Arai, Masatoshi; Sato, Taku J.; Osakabe, Toyotaka; Matsuda, Masaaki; Metoki, Naoto; Kakurai, Kazuhisa; Itoh, Shinichi

    2005-01-01

    We are planning to construct a cold-neutron multi-chopper spectrometer for a new spallation neutron source at Materials and Life Science Facility (MLF) at J-PARC, which is dedicated to investigation of low energy excitations and quasi-elastic excitations in the field of solid state physics, chemistry, materials science, soft matter science and biomaterial science. The planned spectrometer will be installed at a H 2 -coupled moderator and will be equipped with a pulse-shaping disk-chopper in addition to a monochromating disk-chopper, and realizes both high-energy resolution (ΔE/E i ≥1%) and high-intensity (one order of magnitude higher than the present state-of-the-art chopper spectrometers)

  19. A cold neutron beam bender using multiple thin plastic films as curved guides

    International Nuclear Information System (INIS)

    Sutherland, C.J.; Wroe, H.

    1975-01-01

    A device has been developed for deflecting beems of cold neutrons through angles of a few degrees by transmission through a stack of curved, metal-coated plastic films separated by air spaces. Deflections of 5deg have been obtained in a stack of 11 copper coated foils of thickness 0.025 mm separated by 0.25 mm and glued to a curved mold of the radius 1880 mm. The method of manufacture is briefly described and the results of transmission measurements are given in comparison to the theoretical predictions of a computer model. At a neutron wavelength of 12 A, a transmission of 40% was observed as compared to a predicted value of 56%. Reasons for the discrepancy are discussed

  20. Safety report for the test rig of the cold neutron source at FRM

    International Nuclear Information System (INIS)

    Kraehling, E.

    1986-07-01

    In order to raise the flux of long wave neutrons (λ > A) at the Munich Research Reactor (FRM), a socalled cold neutron source is to be installed, in which liquid hydrogen is used as the refrigerated moderator. As a preliminary stage, a test rig is installed outside the reactor pond in the reactor hall, with which, together with complete parts of the plant, a trial run with liquid hydrogen is to be carried out. Before the planned trial run with liquid hydrogen, several test runs were done with refrigerated helium gas in the hydrogen system. The planned design data were confirmed from the operating data obtained, so that the intended control behaviour of the refrigeration plant and the functioning of the important operating and safety devices could be proved. (orig./HP) [de

  1. Neutron-diffraction measurement of residual stresses in Al-Cu cold-cut welding

    CERN Document Server

    Fiori, F

    2002-01-01

    Usually, when it is necessary to join different materials with a large difference in their melting points, welding should be avoided. To overcome this problem we designed and built a device to obtain cold-cut welding, which is able to strongly decrease oxidation problems of the surfaces to be welded. Thanks to this device it is possible to achieve good joining between different pairs of materials (Al-Ti, Cu-Al, Cu-Al alloys) without reaching the material melting point. The mechanical and microstructural characterisation of the joining and the validation of its quality were obtained using several experimental methods. In particular, in this work neutron-diffraction experiments for the evaluation of residual stresses in Cu-Al junctions are described, carried out at the G5.2 diffractometer of LLB, Saclay. Neutron-diffraction results are presented and related to other experimental tests such as microstructural characterisation (through optical and scanning electron microscopy) and mechanical characterisation (ten...

  2. Spatial and temporal distributions of Martian north polar cold spots before, during, and after the global dust storm of 2001

    Science.gov (United States)

    Cornwall, C.; Titus, T.N.

    2009-01-01

    In the 1970s, Mariner and Viking observed features in the Mars northern polar region that were a few hundred kilometers in diameter with 20 fj,m brightness temperatures as low as 130 K (considerably below C02 ice sublimation temperatures). Over the past decade, studies have shown that these areas (commonly called "cold spots") are usually due to emissivity effects of frost deposits and occasionally to active C02 snowstorms. Three Mars years of Mars Global Surveyor Thermal Emission Spectrometer data were used to observe autumn and wintertime cold spot activity within the polar regions. Many cold spots formed on or near scarps of the perennial cap, probably induced by adiabatic cooling due to orographic lifting. These topographically associated cold spots were often smaller than those that were not associated with topography. We determined that initial grain sizes within the cold spots were on the order of a few millimeters, assuming the snow was uncontaminated by dust or water ice. On average, the half-life of the cold spots was 5 Julian days. The Mars global dust storm in 2001 significantly affected cold spot activity in the north polar region. Though overall perennial cap cold spot activity seemed unaffected, the distribution of cold spots did change by a decrease in the number of topographically associated cold spots and an increase in those not associated with topography. We propose that the global dust storm affected the processes that form cold spots and discuss how the global dust storm may have affected these processes. ?? 2009 by the American Geophysical Union.

  3. Deep inelastic scattering of polarized electrons by polarized 3 He and the study of the neutron spin structure

    International Nuclear Information System (INIS)

    Arnold, R.G.; Bosted, P.E.; Dunne, J.; Fellbaum, J.; Keppel, C.; Rock, S.E.; Spengos, M.; Szalata, Z.M.; White, J.L.; Breton, V.; Fonvieille, H.; Roblin, Y.; Shapiro, G.; Hughes, E.W.; Borel, H.; Lombard-Nelsen, R.M.; Marroncle, J.; Morgenstern, J.; Staley, F.; Terrien, Y.; Anthony, P.L.; Dietrich, F.S.; Chupp, T.E.; Smith, T.; Thompson, A.K.; Kuhn, S.E.; Cates, G.D.; Middleton, H.; Newbury, N.R.; Anthony, P.L.; Gearhart, R.; Hughes, E.W.; Maruyama, T.; Meyer, W.; Petratos, G.G.; Pitthan, R.; Rokni, S.H.; Stuart, L.M.; White, J.L.; Woods, M.; Young, C.C.; Erbacher, R.; Kawall, D.; Kuhn, S.E.; Meziani, Z.E.; Holmes, R.; Souder, P.A.; Xu, J.; Meziani, Z.E.; Band, H.R.; Johnson, J.R.; Maruyama, T.; Prepost, R.; Zapala, G.

    1996-01-01

    The neutron longitudinal and transverse asymmetries A 1 n and A 2 n have been extracted from deep inelastic scattering of polarized electrons by a polarized 3 He target at incident energies of 19.42, 22.66 and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions g 1 n (x, Q 2 ) and g 2 n (x, Q 2 ) over the range 0.03 2 of 2 (GeV/c) 2 . The data are used for the evaluation of the Ellis-Jaffe and Bjorken sum rules. The neutron spin structure function g 1 n (x, Q 2 ) is small and negative within the range of our measurement, yielding an integral ∫ 0.03 0.6 g 1 n (x)dx - 0.028 ± 0.006 (stat) ± 0.006 (syst). Assuming Regge behavior at low x, we extract Γ 1 n ∫ 0 1 g 1 n (x)dx = - 0.031 ± 0.006 (stat) ± 0.009 (syst). Combined with previous proton integral results from SLAC experiment E143, we find Γ 1 p - Γ 1 n = 0.160 ± 0.015 in agreement with the Bjorken sum rule prediction Γ 1 p - Γ 1 p 0.176 ± 0.008 at a Q 2 value of 3 (GeV/c) 2 evaluated using α s 0.32 ± 0.05. (authors)

  4. Aspects of ultra-cold neutron production in radiation fields at the FRM II

    Energy Technology Data Exchange (ETDEWEB)

    Wlokka, Stephan Albrecht

    2016-08-17

    Neutrons are called ''ultra-cold'', if they are reflected by a material surface under all angles of incident. They can then be stored for long times (ca. 1000s). In the new UCN source at the FRM II, Deuterium will be used to produce the UCN. Its behaviour under irradiation was investigated. Additionally the transport properties of new UCN guides were tested. Also, the helium-3 content of purified helium samples was examined, because using this type of helium greatly reduces the tritium production when used at the reactor.

  5. Thermodynamic considerations on self-regulating characteristics of a cold neutron source with a closed thermosiphon

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Utsuro, Masahiko; Ogino, Fumimaru.

    1991-01-01

    The present report describes that a cold neutron source (CNS) having a closed-thermosiphon cooling loop shows a self-regulating characteristic under thermal disturbances if the effect of the moderator transfer tube is negligible. Due to this property, the liquid level in the moderator cell is kept almost constant under thermal disturbances. The thermodynamic meaning of the self-regulating property in the idealized closed-thermosiphon and the effect of the moderator transfer tube to the self-regulation are described. (author)

  6. High brilliant thermal and cold moderator for the HBS neutron source project Jülich

    International Nuclear Information System (INIS)

    Cronert, T; Zakalek, P; Rücker, U; Brückel, T; Dabruck, J P; Doege, P E; Nabbi, R; Bessler, Y; Hofmann, M; Butzek, M; Klaus, M; Lange, C; Hansen, W

    2016-01-01

    The proposed High Brilliance Neutron Source (HBS), recognized within the Helmholtz Association of German Research Centres, will optimize the entire chain from particle source through particle accelerator, target, moderator, reflector, shielding, beam extraction, beam transport all the way to the detector, utilizing the nuclear Be(p,n) or Be(d,n) reaction in the lower MeV energy range. A D 2 O moderating reflector prototype (MRP) and a cold source were constructed and build according to MCNP parameter studies. The MRP was tested in a feasibility study at the TREFF instrument at MLZ (Garching). Cold beam extraction from the flux maximum within the moderator based on liquid para H 2 and other cold moderators will be tested by energy spectroscopy via TOF-method. Different ratios of liquid ortho/para H 2 will be fed to the cold moderator. The ratio will be controlled by feeding from reservoires of natural liquid H 2 and a storage loop with an ortho/para converter and determined via online heat capacity measurement. (paper)

  7. Preliminary ANS [Advanced Neutron Source] reactor cold source gain factor calculations for liquid deuterium and liquid nitrogen-15

    International Nuclear Information System (INIS)

    Henderson, D.L.

    1988-11-01

    Individual energy group gain factors are computed for liquid nitrogen-15 and liquid deuterium cold source moderators using simple one-dimensional slab and spherical geometry calculational models. The energy spectrum of the neutron source is assumed to be that of a thermalized Maxwellian flux at 20/degree/C. The slab geometry calculations indicate that the optimum thickness for neutron transmission through a slab given an isotropic incident flux is for wavelengths above .6 nm, approximately .20 m for liquid deuterium and between .28 and .32 m for liquid nitrogen-15. The gain factors at .8 nm corresponding to these thicknesses are 15.5 for liquid deuterium and 3.50 for liquid nitrogen-15. The spherical geometry analysis showed that the cold neutron current below 10 MeV of 1.36 n/m 2 -s for the neutron component entering the cavity of a .16 m thick liquid deuterium spherical shell exceeds the neutron leakage current of 1.08 n/cm 2 -s from a .38 m diameter liquid deuterium solid sphere. However, the cold neutron factors for the neutron entering the void region are considerably lower than for the solid sphere case. 15 refs., 24 figs., 7 tabs

  8. Experimental physics with polarized protons, neutrons and deuterons

    CERN Document Server

    Lehar, František; Wilkin, Colin

    2015-01-01

    The monograph gives a comprehensive overview of the diverse aspects of the experimental study of polarization phenomena in nucleon-nucleon and nucleon-deuteron collisions. The special nature of this volume is that it is based on the original physics results and knowledge gained by one of the authors (F. Lehar), who was a respected researcher in the field for nearly fifty years. The results of these experiments provide valuable information on the spin dependence of the forces acting between nucleons in atomic nuclei, of which all matter is ultimately composed. The fundamental importance of the results means that the subject will remain topical for years to come. The book is designed for teachers and students of natural sciences, espe - cially those with interests in nuclear and particle physics, as well as for ex - perimental physicists who are investigating polarization phenomena using accelerators of charged particles. The writing of the book was initiated by F. Lehar who was the driving force beh...

  9. Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact!

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2002-01-01

    Whether metabolic cold adaptation in polar fish, based on measurements of aerobic standard metabolic rate, is a fact or an artefact has been a dispute since Holeton asked the question in 1974. So far polar fish had been considered to be metabolically cold adapted because they were reported to have...... a considerably elevated resting oxygen consumption, or standard metabolic rate, compared with oxygen consumption values of tropical or temperate fish extrapolated to similar low polar temperatures. Recent experiments on arctic and Antarctic fish, however, do not show elevated resting aerobic oxygen consumption...... values, or standard metabolic rate, and hence it is concluded that that metabolic cold adaptation in the traditional sense is an artefact....

  10. Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact!

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2002-01-01

    a considerably elevated resting oxygen consumption, or standard metabolic rate, compared with oxygen consumption values of tropical or temperate fish extrapolated to similar low polar temperatures. Recent experiments on arctic and Antarctic fish, however, do not show elevated resting aerobic oxygen consumption......Whether metabolic cold adaptation in polar fish, based on measurements of aerobic standard metabolic rate, is a fact or an artefact has been a dispute since Holeton asked the question in 1974. So far polar fish had been considered to be metabolically cold adapted because they were reported to have...... values, or standard metabolic rate, and hence it is concluded that that metabolic cold adaptation in the traditional sense is an artefact....

  11. Diting: A polarized time-of-flight neutron reflectometer at CMRR reactor in China

    Science.gov (United States)

    Li, Xinxi; Huang, Chaoqiang; Wang, Yan; Chen, Bo; Sun, Guang'ai; Liu, Yaoguang; Gong, Jian; Kang, Wu; Liu, Hangang

    2016-11-01

    A new time-of-flight neutron reflectometer with a polarization option is developed and tested at the Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, China. Its scattering geometry is horizontal. The constructed neutron reflectometer is a multipurpose instrument that can be used for the characterization of a stratified microstructure and hidden interfaces of solid thin films. Diting is designed for both magnetic and nonmagnetic multi-layer thin films. Spin polarization and analysis are achieved by transmission magnetized supermirrors. The sample unit is equipped with an electromagnet, which can provide a vertical magnetic field range of 0-1.2 tesla. The available neutron beam is a white beam with wavelength range of 0.15-1.25 nm, which can be cut into different wavelength resolution neutron pulses by a four-disk chopper. A two-dimensional position-sensitive detector is employed to count the specular and off-specular reflected neutron beam. A minimum reflectivity of 10-6 is measured on this instrument.

  12. Efficient, High Brightness Sources of Polarized Neutrons and Photons and Their Uses

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, James E.

    2000-05-18

    There are many applications that could benefit from an easily accessible source of monochromatic, high brightness, polarized gammas and neutrons. A compact and comparatively inexpensive system is discussed based on a low-energy, electron storage ring with undulators that is expected to provide 10{sup 11} epithermal n/s and 10{sup 15} {gamma}/s. This method could provide a more efficient, cleaner way to produce epithermal neutrons than conventional means. Technical innovations that make it feasible are described together with some fundamental and practical applications that also take advantage of developments in the field of high power lasers.

  13. MACS—a new high intensity cold neutron spectrometer at NIST

    International Nuclear Information System (INIS)

    Rodriguez, J A; Adler, D M; Brand, P C; Cook, J C; Brocker, C; Huang, Z; Hundertmark, P; Lynn, J W; Maliszewskyj, N C; Moyer, J; Pierce, D; Pike, T D; Vilaseca, R; Broholm, C; Hammond, R; Orndorff, J; Scharfstein, G; Smee, S A

    2008-01-01

    We describe a novel cold neutron spectrometer under development at NIST optimized for wave vector resolved spectroscopy with incident energies between 2.1 meV and 20 meV and energy resolution from 0.05 meV (E i = 2.1 meV) to 3.0 meV (E i = 20 meV). By using a 1428 cm 2 double focusing PG (0 0 2) monochromator close to the National Institute of Standards and Technology (NIST) cold neutron source the instrument provides up to 5 × 10 8 neutrons cm −2 s −1 on a 8 cm 2 sample area. The measured performance is consistent with Monte Carlo simulations. The monochromating system, which includes radial collimators, three filters and a variable beam aperture, offers considerable flexibility in optimizing Q-resolution, energy resolution and intensity. The detector system will consist of an array of 20 channels which combined will subtend a solid angle of 0.2 sr. This is approximately a factor of 40 more than a conventional triple axis spectrometer. Each detector channel contains a vertically focusing double crystal analyzer system (DXAL) actuated by a single stepping motor. We find identical integrated reflectivity at approximately 10% coarser energy resolution for the 130' mosaic double bounce analyzer as compared to a conventional 25' analyzer at the same energy. The vertical focusing of the DXAL allows for smaller detectors for enhanced signal to noise with 8° vertical acceptance. Options for post sample collimators and filters provide flexibility in the choice of scattered beam energy and wavevector resolution

  14. Time-of-Flight Polarized Neutron Reflectometry on PLATYPUS: Status and Future Developments

    Science.gov (United States)

    Saerbeck, T.; Cortie, D. L.; Brück, S.; Bertinshaw, J.; Holt, S. A.; Nelson, A.; James, M.; Lee, W. T.; Klose, F.

    Time-of-flight (ToF) polarized neutron reflectometry enables the detailed investigation of depth-resolved magnetic structures in thin film and multilayer magnetic systems. The general advantage of the time-of-flight mode of operation over monochromatic instruments is a decoupling of spectral shape and polarization of the neutron beam with variable resolution. Thus, a wide Q-range can be investigated using a single angle of incidence, with resolution and flux well-adjusted to the experimental requirement. Our paper reviews the current status of the polarization equipment of the ToF reflectometer PLATYPUS and presents first results obtained on stratified Ni80Fe20/α-Fe2O3 films, revealing the distribution of magnetic moments in an exchange bias system. An outlook on the future development of the PLATYPUS polarization system towards the implementation of a polarized 3He cell is presented and discussed with respect to the efficiency and high Q-coverage up to 1 Å-1 and 0.15 Å-1 in the vertical and lateral momentum transfer, respectively.

  15. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering.

    Science.gov (United States)

    Kohagen, Miriam; Mason, Philip E; Jungwirth, Pavel

    2016-03-03

    Modeled ions, described by nonpolarizable force fields, can suffer from unphysical ion pairing and clustering in aqueous solutions well below their solubility limit. The electronic continuum correction takes electronic polarization effects of the solvent into account in an effective way by scaling the charges on the ions, resulting in a much better description of the ionic behavior. Here, we present parameters for the sodium ion consistent with this effective polarizability approach and in agreement with experimental data from neutron scattering, which could be used for simulations of complex aqueous systems where polarization effects are important.

  16. Search for Time Reversal Violation in Neutron Decay: A Measurement of the Transverse Polarization of Electrons

    International Nuclear Information System (INIS)

    Bodek, K.; Kaczmarek, A.; Kistryn, St.; Kuzniak, M.; Zejma, J.; Pulut, J.; Kirch, K.; Bialek, A.; Kozela, A.; Ban, G.; Naviliat-Cuncic, O.; Gorel, P.; Beck, M.; Lindroth, A.; Severijns, N.; Stephan, E.; Czarnecki, A.

    2006-01-01

    A non-zero value of the R-correlation coefficient due to the e - polarization component, perpendicular to the plane spanned by the spin of the decaying neutron and the electron momentum, would signal a violation of time reversal symmetry and thus physics beyond the Standard Model. The value of the N-correlation coefficient, given by the transverse e - polarization component within that plane, is expected to be finite. The measurement of N serves as an important systematic check of the apparatus for the R-measurement. The first phase of data taking has been completed. Preliminary results from a limited data sample show no deviations from the Standard Model predictions

  17. Off-specular polarized neutron reflectometry study of magnetic dots with a strong shape anisotropy

    CERN Document Server

    Temst, K; Moshchalkov, V V; Bruynseraede, Y; Fritzsche, H; Jonckheere, R

    2002-01-01

    We have measured the off-specular polarized neutron reflectivity of a regular array of rectangular magnetic polycrystalline Co dots, which were prepared by a combination of electron-beam lithography, molecular beam deposition, and lift-off processes. The dots have a length-to-width ratio of 4:1 imposing a strong shape anisotropy. The intensity of the off-specular satellite reflection was monitored as a function of the magnetic field applied parallel to the rows of dots and in the plane of the sample, allowing us to analyze the magnetization-reversal process using the four spin-polarized cross sections. (orig.)

  18. Polarized neutron powder diffraction studies of antiferromagnetic order in bulk and nanoparticle NiO

    DEFF Research Database (Denmark)

    Brok, Erik; Lefmann, Kim; Deen, Pascale P.

    2015-01-01

    In many materials it remains a challenge to reveal the nature of magnetic correlations, including antiferromagnetism and spin disorder. Revealing the spin structure in magnetic nanoparticles is further complicated by the large incoherent neutron scattering cross section from water adsorbed...... surface contribution to the magnetic anisotropy. Here we explore the potential use of polarized neutron diffraction to reveal the magnetic structure in NiO bulk and nanoparticle powders by applying the XYZ-polarization analysis method. Our investigations address in particular the spin orientation in bulk...... at the particle surfaces and by the broadening of diffraction peaks due to the finite crystallite size. Moreover, the spin structure in magnetic nanoparticles may deviate significantly from that of the corresponding bulk material because of the low-symmetry surroundings of surface atoms and the large relative...

  19. Fundamental studies for the proton polarization technique in neutron protein crystallography.

    Science.gov (United States)

    Tanaka, Ichiro; Kusaka, Katsuhiro; Chatake, Toshiyuki; Niimura, Nobuo

    2013-11-01

    The isotope effect in conventional neutron protein crystallography (NPC) can be eliminated by the proton polarization technique (ppt). Furthermore, the ppt can improve detection sensitivity of hydrogen (relative neutron scattering length of hydrogen) by approximately eight times in comparison with conventional NPC. Several technical difficulties, however, should be overcome in order to perform the ppt. In this paper, two fundamental studies to realise ppt are presented: preliminary trials using high-pressure flash freezing has shown the advantage of making bulk water amorphous without destroying the single crystal; and X-ray diffraction and liquid-chromatography/mass-spectrometry analyses of standard proteins after introducing radical molecules into protein crystals have shown that radical molecules could be distributed non-specifically around proteins, which is essential for better proton polarization.

  20. The Spin Structure of the Neutron Determined Using a Polarized He-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, H

    2004-01-06

    Described is a study of the internal spin structure of the neutron performed by measuring the asymmetry in spin-dependent deep inelastic scattering of polarized electrons from nuclear polarized {sup 3}He. Stanford Linear Accelerator experiment E142's sample of 400 million scattering events collected at beam energies between 19 and 26 GeV led to the most precise measurement of a nucleon spin structure function to date. The {sup 3}He target represents a major advance in polarized target technology, using the technique of spin exchange with optically pumped rubidium vapor to produce a typical {sup 3}He nuclear polarization of 34% in a 30cm long target cell with a gas density of 2.3 x 10{sup 20} cm{sup -3}. The target polarization was measured to {+-}7% using an Adiabatic Fast Passage NMR system calibrated with the thermal equilibrium polarization of the protons in a sample of water. The relatively high polarization and target thickness were the result of the development of large volume glass target cells which had inherent nuclear spin relaxation times for the {sup 3}He gas of as long as 70 hours. A target cell production procedure is presented which focuses on special glass blowing techniques to minimize surface interactions with the {sup 3}He nuclei and careful gas purification and vacuum system procedures to reduce relaxation inducing impurities.

  1. Preliminary probabilistic design accident evaluation of the cold source facilities of the advanced neutron source

    International Nuclear Information System (INIS)

    Harrington, R.M.; Ramsey, C.T.

    1995-08-01

    Consistent with established Advanced Neutron Source (ANS) project policy for the use of probabilistic risk assessment (PRA) in design, a task has been established to use PRA techniques to help guide the design and safety analysis of the ANS cold sources. The work discussed in this report is the first formal output of the cold source PRA task. The major output at this stage is a list of design basis accidents, categorized into approximate frequency categories. This output is expected to focus attention on continued design work to define and optimize the design such that design basis accidents are better defined and have acceptable outcomes. Categorizing the design basis events (DBEs) into frequency categories should prove helpful because it will allow appropriate acceptance criteria to be applied. Because the design of the cold source is still proceeding, it is beyond the scope of this task to produce detailed event probability calculations or even, in some cases, detailed event sequence definitions. That work would take place as a logically planned follow-on task, to be completed as the design matures. Figure 1.1 illustrates the steps that would typically be followed in selecting design basis accidents with the help of PRA. Only those steps located above the dashed line on Fig. 1.1 are included in the scope of the present task. (Only an informal top-level failure modes and effects analysis was done.) With ANS project closeout expected in the near future, the scope of this task has been abbreviated somewhat beyond the state of available design information on the ANS cold sources, or what could be achieved in a reasonable time. This change was necessary to ensure completion before the closeout and because the in-depth analytical support necessary to define fully some of the accidents has already been curtailed

  2. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    Science.gov (United States)

    Cook, J. C.; Barker, J. G.; Rowe, J. M.; Williams, R. E.; Gagnon, C.; Lindstrom, R. M.; Ibberson, R. M.; Neumann, D. A.

    2015-08-01

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  3. GLE and Sub-GLE Redefinition in the Light of High-Altitude Polar Neutron Monitors

    Science.gov (United States)

    Poluianov, S. V.; Usoskin, I. G.; Mishev, A. L.; Shea, M. A.; Smart, D. F.

    2017-11-01

    The conventional definition of ground-level enhancement (GLE) events requires a detection of solar energetic particles (SEP) by at least two differently located neutron monitors. Some places are exceptionally well suitable for ground-based detection of SEP - high-elevation polar regions with negligible geomagnetic and reduced atmospheric energy/rigidity cutoffs. At present, there are two neutron-monitor stations in such locations on the Antarctic plateau: SOPO/SOPB (at Amundsen-Scott station, 2835 m elevation), and DOMC/DOMB (at Concordia station, 3233 m elevation). Since 2015, when the DOMC/DOMB station started continuous operation, a relatively weak SEP event that was not detected by sea-level neutron-monitor stations was registered by both SOPO/SOPB and DOMC/DOMB, and it was accordingly classified as a GLE. This would lead to a distortion of the homogeneity of the historic GLE list and the corresponding statistics. To address this issue, we propose to modify the GLE definition so that it maintains the homogeneity: A GLE event is registered when there are near-time coincident and statistically significant enhancements of the count rates of at least two differently located neutron monitors, including at least one neutron monitor near sea level and a corresponding enhancement in the proton flux measured by a space-borne instrument(s). Relatively weak SEP events registered only by high-altitude polar neutron monitors, but with no response from cosmic-ray stations at sea level, can be classified as sub-GLEs.

  4. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Guillaume; Agarkova, Irina; Grimwood, Jane; Kuo, Alan; Brueggeman, Andrew; Dunigan, David D.; Gurnon, James; Ladunga, Istvan; Lindquist, Erika; Lucas, Susan; Pangilinan, Jasmyn; Proschold, Thomas; Salamov, Asaf; Schmutz, Jeremy; Weeks, Donald; Tamada, Takashi; Lomsadze, Alexandre; Borodovsky, Mark; Claverie, Jean-Michel; Grigoriev, Igor V.; Van Etten, James L.

    2012-02-13

    Background Little is known about the mechanisms of adaptation of life to the extreme environmental conditions encountered in polar regions. Here we present the genome sequence of a unicellular green alga from the division chlorophyta, Coccomyxa subellipsoidea C-169, which we will hereafter refer to as C-169. This is the first eukaryotic microorganism from a polar environment to have its genome sequenced. Results The 48.8 Mb genome contained in 20 chromosomes exhibits significant synteny conservation with the chromosomes of its relatives Chlorella variabilis and Chlamydomonas reinhardtii. The order of the genes is highly reshuffled within synteny blocks, suggesting that intra-chromosomal rearrangements were more prevalent than inter-chromosomal rearrangements. Remarkably, Zepp retrotransposons occur in clusters of nested elements with strictly one cluster per chromosome probably residing at the centromere. Several protein families overrepresented in C. subellipsoidae include proteins involved in lipid metabolism, transporters, cellulose synthases and short alcohol dehydrogenases. Conversely, C-169 lacks proteins that exist in all other sequenced chlorophytes, including components of the glycosyl phosphatidyl inositol anchoring system, pyruvate phosphate dikinase and the photosystem 1 reaction center subunit N (PsaN). Conclusions We suggest that some of these gene losses and gains could have contributed to adaptation to low temperatures. Comparison of these genomic features with the adaptive strategies of psychrophilic microbes suggests that prokaryotes and eukaryotes followed comparable evolutionary routes to adapt to cold environments.

  5. The New Cold Neutron Radiography Facility (CNRF) at the Mianyang Research Reactor of the China Academy of Engineering Physics

    Science.gov (United States)

    Bin, Tang; Heyong, Huo; Ke, Tang; Rogers, John; Haste, Martin; Christodoulou, Marios

    A new cold neutron radiography beamline has been designed and constructed for the Mianyang reactor at the Institute of Nuclear Physics and Chemistry of the China Academy of Engineering Physics. This paper describes the components of the system and demonstrates the achievable image resolution.

  6. The effect of, within the sphere confined, particle diffusion on the line shape of incoherent cold neutron scattering spectra

    International Nuclear Information System (INIS)

    Cvikl, B.; Dahlborg, U.; Calvo-Dahlborg, M.

    1999-01-01

    Based upon the model of particles diffusion within the sphere of partially absorbing boundaries, the possibilities of the detection, by the incoherent cold neutron scattering method, of particle precipitation on the boundary walls, has been investigated. The calculated scattering law as a function of the boundary absorption properties exhibits distinct characteristic which might, under favorable conditions, make such an experimental attempt feasible.(author)

  7. The Design of a Moderator for a Cold Neutron Source for the LINAC of the Centro Atomico Bariloche

    International Nuclear Information System (INIS)

    Torres, Lourdes; Gilette, Victor

    2003-01-01

    The results obtained in the design of a moderator to a cold neutron source for LINAC are given. Light water ice at 100 deg K was used as a moderator and we calculated its optimum dimension.We also calculated a grid moderator

  8. Texture investigations of low carbon cold rolled steel using the X-ray and neutron diffraction methods

    International Nuclear Information System (INIS)

    Jordanova, I.; Vratislav, S.; Dlouha, M.; Kostova, M.

    1987-01-01

    The texture in low carbon cold rolled steel killed with aluminium is investigated using X-ray and neutron diffraction methods. The Roe's and Bunge's mathematical formalisms are used to describe the texture respectivelly. The results are discussed in terms of optimization of the technology

  9. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    International Nuclear Information System (INIS)

    Bastrukov, S I; Yang, J; Podgainy, D V; Weber, F

    2003-01-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameters taken from early and current works on transport coefficients of dense matter. It is found that the effect of viscosity is crucial for the lifetime of magneto-torsion vibrations but it does not appreciably affect the periods of this seismic mode which fall in the realm of periods of pulsed emission of soft gamma-ray repeaters and anomalous x-ray pulsars - young super-magnetized neutron stars, radiating, according to the magnetar model, at the expense of the magnetic energy release. Finally, we present arguments that the long periodic pulsed emission of these stars in a quiescent regime of radiation can be interpreted as a manifestation of weakly damped seismic magneto-torsion vibrations exhibiting the field induced spin polarization of baryon matter

  10. Positive and negative hydration effects as determined by quasielastic cold neutron scattering

    International Nuclear Information System (INIS)

    Novikov, A.G.; Savostin, V.V.; Sobolev, O.V.; Rodnikova, M.N.

    1997-01-01

    2 M solutions of cesium and lithium chlorides are investigated by the cold neutron scattering method. Quasielastic scattering law is derived from the complete experimental scattering law by means of inelastic component removal. Its analysis allows one to judge about the diffusion processes in the solutions in question. Coefficients of lithium and cesium ion hydrate water molecule selfdiffusion, continuous diffusion of water molecules in the first hydrate sphere of ions studied are obtained, periods of water molecule settles life in different regions of solution, hydration dynamic numbers of lithium and cesium ions are evaluated. Comparison to the data on pure water makes it possible to judge about cesium ion loosing effect on hydrogen bond grid and about negative hydration of that ion. (author)

  11. Structural Integrity Evaluation of Cold Neutron Laboratory Building by Design Change of Guide Shielding Room

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sangik; Kim, Youngki; Kim, Harkrho

    2007-06-15

    This report summarizes the results of the structural integrity evaluation for the cold neutron laboratory building by design change of guide shielding room. The design of the guide shielding room was changed by making its structure members in normal concrete (2.3 g/cc) instead of heavy concrete (3.5 g/cc) because the heavy concrete could be not supplied to meet its design specification. Therefore, it was decided that the guide shielding room is made of the normal concrete. And, the shielding performance of the normal concrete was recalculated to confirm satisfying its design specification, which is of a 9000 zone according to HANARO radiation region classification. The change makes the shielding wall thicker than existing design, and then it is caused to qualify the structural integrity evaluation of the CNLB. Finally, the structural integrity of the CNLB was re-evaluated by considering the design change of the guide shielding room.

  12. Residual stresses in cold-coiled helical compression springs for automotive suspensions measured by neutron diffraction

    International Nuclear Information System (INIS)

    Matejicek, J.; Brand, P.C.; Drews, A.R.; Krause, A.; Lowe-Ma, C.

    2004-01-01

    Residual stresses in cold-coiled helical compression springs for automotive suspensions were determined at several manufacturing stages using neutron diffraction. These results indicate that the residual stresses in the as-coiled springs are nearly uniaxial with peak values of ±900 MPa and independent of coil position. A factory stress-relieved spring showed the same pattern of stresses, but with the peak values reduced to ∼±200 MPa. Residual stresses in a spring annealed in a laboratory furnace at 56 K over the normal factory annealing temperature were ∼35% lower. The effect of cutting the springs either by electric discharge machining (EDM) or by abusive grinding was also examined. From these data, the smallest spring segment that can yield reliable stress data was determined

  13. Dynamic response of thermal neutron measurements in electrochemically produced cold fusion subject to pulsed current

    International Nuclear Information System (INIS)

    Granada, Jose; Converti, Jose; Mayer, Roberto; Guido, German; Florido, Pablo; Patino, Nestor; Sobehart, Leonardo; Gomez, Silvia; Larreteguy, Axel

    1988-01-01

    The present work shows the results of measurements performed on electrolytic cells using a high efficiency (22%) neutron detection system in combination with a procedure involving a non-stationary current through the cell's circuit. Cold fusion was produced in electrolytic cells containing LiH dissolved in heavy water with a palladium cathode. The dynamic response to low frequency current pulses was measured. Characteristic patterns showing one or two bumps were obtained in a repeatable fashion. These patterns are strongly dependent on the previous charging history of the cathode. The technique employed seems to be very convenient as a research tool for a systematic study of the different variables governing the phenomenon. (Author)

  14. New POLDI - project of reincarnation of a polarized neutron diffractometer at the reactor PIK

    Science.gov (United States)

    Zobkalo, I.; Gavrilov, S.; Matveev, V.; Fenske, J.

    2017-06-01

    The project of a considerable modernization of the polarized neutron diffractometer POLDI is discussed. It assumes the adoption of POLDI to a broader range of magnetic investigations such as determination of magnetic structures, detailed investigation of complex magnetic structures, studies of magnetic domains, study of the magnetization density maps, magnetic form-factor particularities, local susceptibility, etc. The flexible construction should permit to use either spherical neutron polarimetry technique or flipping ratio technique. Different types of polarization system were analyzed. Original focusing fan-like bender is proposed as polarizer unit. Our simulations give evidence that for the wavelength range 1.3 - 3 Å and with suitable size, such a device can give much better efficiency than 3He cells, which are often in use. The higher flux at the sample position of a factor of at least 3.3, with lower divergence and good polarization degree from 98% (1.3 Å) to above 94% (3 Å) makes the bender set-up favorable over the layout with a 3He-cell.

  15. Conceptual design of facilities and systems for cold neutron source in HANARO

    International Nuclear Information System (INIS)

    Kim, Y. K.; Jung, H. S.; Wu, S. I.; Ahn, S. H.; Park, Y. C.; Cho, Y. G.; Ryu, J. S.; Kim, Y. J.

    2004-05-01

    The systems and facilities for the HANARO cold neutron source consist of hydrogen handling system, vacuum system, gas blanket system, helium refrigeration system and electrical and instrumentation and control system. The overriding safety goal in the system design is to prevent the escape of hydrogen from the system boundary or the ingress of air into the hydrogen boundary. Of primary concern is the release of hydrogen (or intrusion of oxygen) into an area where any subsequent reaction could possibly result in damage to the reactor building or safety systems or components, as well as jeopardize personnel safety. It has been an general rule that all aspects of the system design were based on the demonstrated technology of long standing world-wide. In some cases, other options are also suggested for the flexibility of independent review process. This report hopefully serves as basis for the coming detail design and engineering. This report is mainly concentrated on the conceptual system design performed during the first project year. It includes the key safety design requirements in the beginning, followed by the description of the preliminary system design. At the rear part, building layout and equipment arrangement are briefly introduced for easy understanding of the whole pictures. The design status for the In-Pool Assembly including safety analysis and neutron guide and instruments will be discussed in another report

  16. Neutron-diffraction measurement of residual stresses in Al-Cu cold-cut welding

    International Nuclear Information System (INIS)

    Fiori, F.; Marcantoni, M.

    2002-01-01

    Usually, when it is necessary to join different materials with a large difference in their melting points, welding should be avoided. To overcome this problem we designed and built a device to obtain cold-cut welding, which is able to strongly decrease oxidation problems of the surfaces to be welded. Thanks to this device it is possible to achieve good joining between different pairs of materials (Al-Ti, Cu-Al, Cu-Al alloys) without reaching the material melting point. The mechanical and microstructural characterisation of the joining and the validation of its quality were obtained using several experimental methods. In particular, in this work neutron-diffraction experiments for the evaluation of residual stresses in Cu-Al junctions are described, carried out at the G5.2 diffractometer of LLB, Saclay. Neutron-diffraction results are presented and related to other experimental tests such as microstructural characterisation (through optical and scanning electron microscopy) and mechanical characterisation (tensile-strength tests) of the welded interface. (orig.)

  17. Neutron-diffraction measurement of residual stresses in Al-Cu cold-cut welding

    Science.gov (United States)

    Fiori, F.; Marcantoni, M.

    Usually, when it is necessary to join different materials with a large difference in their melting points, welding should be avoided. To overcome this problem we designed and built a device to obtain cold-cut welding, which is able to strongly decrease oxidation problems of the surfaces to be welded. Thanks to this device it is possible to achieve good joining between different pairs of materials (Al-Ti, Cu-Al, Cu-Al alloys) without reaching the material melting point. The mechanical and microstructural characterisation of the joining and the validation of its quality were obtained using several experimental methods. In particular, in this work neutron-diffraction experiments for the evaluation of residual stresses in Cu-Al junctions are described, carried out at the G5.2 diffractometer of LLB, Saclay. Neutron-diffraction results are presented and related to other experimental tests such as microstructural characterisation (through optical and scanning electron microscopy) and mechanical characterisation (tensile-strength tests) of the welded interface.

  18. Design of a cold neutron source for 25MeV Linac of CAB (Centro Atomico Bariloche - Argentina)

    International Nuclear Information System (INIS)

    Torres, Lourdes

    2006-01-01

    Cold neutrons are widely used in fields of research such as the dynamics of solids and liquids, the investigation of magnetic materials, material science, biology, and nuclear physics in general. Accelerator-based cold neutron sources have already proved to be well adapted to perform neutron scattering studies in all those fields.In this work we present the design of a cold neutron source in the electron Linac-based pulsed source at Centro Atomico Bariloche.The objective of this work is to develop an inexpensive yet efficient cold source with a simple moderator material.Although ideal materials for that purpose would be solid methane or liquid H2, due to economical and safety reasons light water ice, benzene or solid mesitylene were considered as cold moderators. In order to proceed with the design and optimization process of the neutron source, total cross sections for light water ice, benzene and mesitylene were measured at low temperature and thermal nuclear data libraries for such materials had to be developed.The purpose of these calculations was to optimize shape and size for the moderator at a working temperature.To calculations were performed using the MCNP-4C code and our libraries, together with files for (free-atom) carbon, hydrogen and oxygen at that temperature.The geometry studied consisted of a neutron source and different moderator (slab, cylindrical slab, grids, and sets premoderator - moderator with and without coupled).To simplify the system cooler, the slab geometry was changed to a coin shaped moderator using liquid nitrogen as cooler.From the variety of simulations performed, it was clear that a premoderator was necessary to obtain higher intensities.Furthermore, with a premoderator the thickness of the moderator was reduced, simplifying the cooling system.Finally, we adopted for our cold neutron source, a slab premoderator of PLE at room temperature, and a cylindrical moderator of mesitylene at 89K with a cooler system of stainless steel with

  19. Different Stratospheric Polar Vortex States linked to Cold-Spells in North America and Northern Eurasia

    Science.gov (United States)

    Kretschmer, M.; Cohen, J. L.; Runge, J.; Coumou, D.

    2017-12-01

    The stratospheric polar vortex in boreal winter can influence the tropospheric circulation and thereby surface weather in the mid-latitudes. Weak states of the vortex, e.g. associated with Sudden Stratospheric Warmings (SSWs), often precede a negative phase of the North Atlantic Oscillation (NAO), and thus increase the risk of mid-latitude cold-spells especially over Eurasia. Here we show using cluster analysis that next to the well-documented relationship between a zonally symmetric disturbed vortex and a negative NAO, there exists a zonally asymmetric pattern linked to a negative Western Pacific Oscillation (WPO) and cold-spells in the northeastern US, like for example observed in February 2014. The latter is more synoptic in time-scale but occurs more frequently than SSWs. A causal effect network (CEN) approach gives insights into the underlying physical pathways and time-lags showing that high-pressure around Greenland leads to vertical wave activity over eastern Siberia leading to downward propagating waves over Alaska and high pressure over the North Pacific. Moreover, composites propose that a rather strong mid-stratospheric vortex seems to be favorable for this zonally asymmetric and reflective mechanism. Overall, the mutual relationship between stratospheric circulation and high-latitude blocking in both the Pacific and Atlantic Oceans is complex and involves mechanisms operating at different time-scales. Our results suggest that the stratospheric influence on winter circulation should not exclusively be analyzed in terms of a downward propagating Northern Annular Mode (NAM) signal and SSWs. In particular when studying the stratospheric impacts on North American temperature it is crucial to also consider the more transient and zonally asymmetric events which might help to improve seasonal winter predictions for this region.

  20. The Precision Measurement of the Neutron Spin Structure Function Using Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X

    2004-01-05

    Using a 48.6 GeV polarized electron beam scattering off a polarized {sup 3}He target at Stanford Linear Accelerator Centre (SLAC), they measured the neutron spin structure function g{sub 1}{sup n} over kinematic(x) ranging 0.014 < x <0.7 and 1 < Q{sup 2} < 17GeV{sup 2}. The measurement gave the integral result over the neutron spin structure function {integral}{sub 0.014}{sup 0.7} g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.004(stat) {+-} 0.005(syst) at an average Q{sup 2} = 5GeV{sup 2}. Along with the proton results from SLAC E143 experiment (0.03 < x) and SMC experiment (0.014 < x < 0.03), they find the Bjorken sum rule appears to be largely saturated by the data integrated down to x of 0.014. However, they observe relatively large values for g{sub 1}{sup n} at low x. The result calls into question the usual methods (Regge theory) for extrapolating to x = 0 to find the full neutron integral {integral}{sub 0}{sup t} g{sub 1}{sup n}(x) dx, needed for testing the Quark-Parton Model (QMP).

  1. Ices on Mercury: Chemistry of volatiles in permanently cold areas of Mercury's north polar region

    Science.gov (United States)

    Delitsky, M. L.; Paige, D. A.; Siegler, M. A.; Harju, E. R.; Schriver, D.; Johnson, R. E.; Travnicek, P.

    2017-01-01

    Observations by the MESSENGER spacecraft during its flyby and orbital observations of Mercury in 2008-2015 indicated the presence of cold icy materials hiding in permanently-shadowed craters in Mercury's north polar region. These icy condensed volatiles are thought to be composed of water ice and frozen organics that can persist over long geologic timescales and evolve under the influence of the Mercury space environment. Polar ices never see solar photons because at such high latitudes, sunlight cannot reach over the crater rims. The craters maintain a permanently cold environment for the ices to persist. However, the magnetosphere will supply a beam of ions and electrons that can reach the frozen volatiles and induce ice chemistry. Mercury's magnetic field contains magnetic cusps, areas of focused field lines containing trapped magnetospheric charged particles that will be funneled onto the Mercury surface at very high latitudes. This magnetic highway will act to direct energetic protons, ions and electrons directly onto the polar ices. The radiation processing of the ices could convert them into higher-order organics and dark refractory materials whose spectral characteristics are consistent with low-albedo materials observed by MESSENGER Laser Altimeter (MLA) and RADAR instruments. Galactic cosmic rays (GCR), scattered UV light and solar energetic particles (SEP) also supply energy for ice processing. Cometary impacts will deposit H2O, CH4, CO2 and NH3 raw materials onto Mercury's surface which will migrate to the poles and be converted to more complex Csbnd Hsbnd Nsbnd Osbnd S-containing molecules such as aldehydes, amines, alcohols, cyanates, ketones, hydroxides, carbon oxides and suboxides, organic acids and others. Based on lab experiments in the literature, possible specific compounds produced may be: H2CO, HCOOH, CH3OH, HCO, H2CO3, CH3C(O)CH3, C2O, CxO, C3O2, CxOy, CH3CHO, CH3OCH2CH2OCH3, C2H6, CxHy, NO2, HNO2, HNO3, NH2OH, HNO, N2H2, N3, HCN, Na2O, Na

  2. Measurement of the Spin Structure Function of the Neutron G1(N) from Deep Inelastic Scattering of Polarized Electrons from Polarized Neutrons in He-3

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J

    2004-01-06

    Polarized electrons of energies 19.42, 22.67, and 25.5 GeV were scattered off a polarized {sup 3}He target at SLAC's End Station A to measure the spin asymmetry of the neutron. From this asymmetry, the spin dependent structure function g{sub 1}{sup n}(x) was determined over a range in x from 0.03 to 0.6 with an average Q{sup 2} of 2 (GeV/C){sup 2}. The value of the integral of g{sub 1}{sup n} over x is {integral}g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.009. The results were interpreted in the frame work of the Quark Parton Model (QPM) and used to test the Ellis-Jaffe and Bjorken sum rules. The value of the integral is 2.6 standard deviations from the Ellis-Jaffe prediction while the Bjorken sum rule was found to be in agreement with this data and proton data from SMC and E-143.

  3. Measurement of neutrino and proton asymmetry in the decay of polarized neutrons

    International Nuclear Information System (INIS)

    Schumann, M.

    2007-01-01

    The Standard Model of Particle Physics is in excellent agreement with all experimental results. However, it is not believed to be the most fundamental theory. It requires, for example, too many free parameters and is not able to explain the existence of effects such as parity-violation or CP-violation. Thus measurements have to be performed to probe the Standard Model and to search for ''new physics''. An ideal laboratory for this is the decay of the free polarized neutron. In this thesis, we present measurements of the neutrino asymmetry B and the proton asymmetry C in neutron decay. These coefficients describe the correlation between neutron spin and momentum of the respective particle, and provide detailed information on the structure of the underlying theory. The experiment was performed using the electron spectrometer PERKEO II installed at the Institut Laue-Langevin (ILL). It was equipped with a combined electron-proton detector to reconstruct the neutrino in a coincidence measurement. The uncertainty of our neutrino asymmetry result, B=0.9802(50), is comparable to the present best measurement, and, for the first time ever, we obtained a precise value for the proton asymmetry, C=-0.2377(36). Both results are used to analyze neutron decay for hints on ''Physics beyond the Standard Model'' by studying possible admixtures of right-handed currents and of scalar and tensor couplings to the interaction. (orig.)

  4. Measurement of neutrino and proton asymmetry in the decay of polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, M.

    2007-05-09

    The Standard Model of Particle Physics is in excellent agreement with all experimental results. However, it is not believed to be the most fundamental theory. It requires, for example, too many free parameters and is not able to explain the existence of effects such as parity-violation or CP-violation. Thus measurements have to be performed to probe the Standard Model and to search for ''new physics''. An ideal laboratory for this is the decay of the free polarized neutron. In this thesis, we present measurements of the neutrino asymmetry B and the proton asymmetry C in neutron decay. These coefficients describe the correlation between neutron spin and momentum of the respective particle, and provide detailed information on the structure of the underlying theory. The experiment was performed using the electron spectrometer PERKEO II installed at the Institut Laue-Langevin (ILL). It was equipped with a combined electron-proton detector to reconstruct the neutrino in a coincidence measurement. The uncertainty of our neutrino asymmetry result, B=0.9802(50), is comparable to the present best measurement, and, for the first time ever, we obtained a precise value for the proton asymmetry, C=-0.2377(36). Both results are used to analyze neutron decay for hints on ''Physics beyond the Standard Model'' by studying possible admixtures of right-handed currents and of scalar and tensor couplings to the interaction. (orig.)

  5. Polarized small-angle neutron scattering (SANSPOL) for discrimination of nano sized components in ferro fluids

    International Nuclear Information System (INIS)

    Heinemann, A.; Wiedenmann, A.; Kammel, M.; Hoell, A.

    2003-01-01

    The use of polarized neutron technique in small-angle scattering (SANS) have led to new results in the case of magnetic nanometer-scale structure analysis. Different magnetic cross sections for spin-up and spin-down neutron scattering can be combined with chemical contrast variation methods. We show that the analysis of the interference term of nuclear and magnetic scattering respectively enables the extraction of additional information on the composition and magnetization profiles of the samples. This technique profits by the clear distinction between the magnetic and nonmagnetic scattering contributions and the strong auxiliary conditions for model fitting procedures. Beside general formulas for some special cases of present experimental interest, we apply the approach to cobalt bases ferro fluid scattering data obtained in the HMI-V4 experiment. (authors)

  6. Low-angle polarized neutron and X-ray scattering from magnetic nanolayers and nanostructures

    CERN Document Server

    Paul, Amitesh

    2017-01-01

    This research monograph presents the latest results related to the characterization of low dimensional systems. Low-angle polarized neutron scattering and X-ray scattering at grazing incidence are used as the two main techniques to explore various physical phenomena of these systems. Special focus is put on systems like thin film transition metal and rare-earth layers, oxide heterostructures, hybrid systems, self-assembled nanostructures and self-diffusion.  Readers will gain in-depth knowledge about the usage of specular scattering and off-specular scattering techniques. Investigation of in-plane and out-of-plane structures and magnetism with vector magnetometric information is illustrated comprehensively. The book caters to a wide audience working in the field of nano-dimensional magnetic systems and the neutron and X-ray reflectometry community in particular.

  7. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    CERN Document Server

    Bastrukov, S I; Podgainy, D V; Weber, F

    2003-01-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameter...

  8. Model-free polarized neutron diffraction study of an acentric crystal: Metamagnetic UCoAl

    International Nuclear Information System (INIS)

    Papoular, R.J.; Delapalme, A.

    1994-01-01

    For the first time, a model-free procedure is developed to analyze polarized neutron diffraction data pertaining to acentric crystals. It consists of a two-step process, featuring first an effective flipping ratio and second a linear inverse problem. The latter is solved either by a new generalized inverse Fourier transform or by using maximum entropy. Using metamagnetic UCoAl as a test case, we find the following results: (i) the U and Co(2) moments increase with an applied magnetic field whereas the Co(1) moment remains almost constant, (ii) the U and Co(2) magnetic densities are weakly anisotropic

  9. Anomalous spin distribution in the superconducting ferromagnet UCoGe studied by polarized neutron diffraction

    OpenAIRE

    Prokes, K.; de Visser, A.; Huang, Y. K.; Fak, B.; Ressouche, E.

    2010-01-01

    We report a polarized neutron diffraction study conducted to reveal the nature of the weak ferromagnetic moment in the superconducting ferromagnet UCoGe. We find that the ordered moment in the normal phase in low magnetic fields (B // c) is predominantly located at the U atom and has a magnitude of about 0.1 muB at 3 T, in agreement with bulk magnetization data. By increasing the magnetic field the U moment grows to about 0.3 muB in 12 T and most remarkably, induces a substantial moment (abou...

  10. Spin susceptibility of the topological superconductor UPt3 from polarized neutron diffraction

    Science.gov (United States)

    Gannon, W. J.; Halperin, W. P.; Eskildsen, M. R.; Dai, Pengcheng; Hansen, U. B.; Lefmann, K.; Stunault, A.

    2017-07-01

    Experiment and theory indicate that UPt3 is a topological superconductor in an odd-parity state, based in part from the temperature independence of the NMR Knight shift. However, quasiparticle spin-flip scattering near a surface, where the Knight shift is measured, might be responsible. We use polarized neutron scattering to measure the bulk susceptibility with H ∥c , finding consistency with the Knight shift but inconsistency with theory for this field orientation. We infer that neither spin susceptibility nor a Knight shift are a reliable indication of odd parity.

  11. Neutron xyz – polarization analysis at a time-of-flight instrument

    Directory of Open Access Journals (Sweden)

    Ehlers G.

    2015-01-01

    Full Text Available When implementing a dedicated polarization analysis setup at a neutron time-of-flight instrument with a large area detector, one faces enormous challenges. Nevertheless, significant progress has been made towards this goal over the last few years. This paper addresses systematic limitations of the traditional method that is used to make these measurements, and a possible strategy to overcome these limitations. This will be important, for diffraction as well as inelastic experiments, where the scattering occurs mostly out-of-plane.

  12. The Phase-Space Transformer Instrument (PASTIS) and the Phase-Space Transformation on Ultra-Cold Neutrons

    International Nuclear Information System (INIS)

    Henggeler, W.; Boehm, M.

    2003-11-01

    Both reports - part I by Wolfgang Henggeler and part II by Martin Boehm - serve as a comprehensive basis for the realisation of a PST (phase-space transformation) instrument coupled either to cold or ultra-cold neutrons, respectively. This publication accidentally coincides with the 200 th birthday of the Austrian physicist C.A. Doppler who discovered the principle (i.e., the effect denoted later by his name) giving rise to the phase-space transformation described in the present work. (author)

  13. Magnetization distribution in paramagnetic CoO: a polarized neutron diffraction study

    CERN Document Server

    Kernavanois, N; Brown, P J; Henry, J Y; Lelievre-Berna, E

    2003-01-01

    Unpolarized and polarized neutron diffraction by a single crystal have been used to study the magnetization distribution in the paramagnetic phase of cobalt oxide CoO. Highly accurate magnetic structure factors have been measured using the classical polarized beam method. A detailed description of the magnetization distribution is presented. The magnetization around the cobalt site has a radial distribution which is contracted by approx = 5% with respect to that of the free ion and a symmetry which approximates more closely to e sub g than to the form t sub 2 sub g sup 5 /e sub g sup 2 expected for the Co sup 2 sup + 3d sup 7 configuration. A significant magnetization, corresponding to some 8% of the total moment, is found at the oxygen site.

  14. Circular polarization of γ-quanta radiated in the capture of polarized neutrons by protons and the quark compound bag model

    International Nuclear Information System (INIS)

    Grach, I.L.; Shmatkov, M.Zh.

    1983-01-01

    The circular polarization Psub(γ) of γ-quanta radiated in the capture of polarized neutrons by protons is calculated The contribution of the M1 and E2 radiation of nucleons to Psub(γ) is found using the accurate wave functions of the continuous spectrum. The contribution of the six-quark bag to the polarization Psub(γ) is determined. The value of Psub(γ) is related to the admixture of the 6q-bag in the deuteron. Experimental value of Psub(γ) corresponds to small (< or approximately 0.7%) admixture of the bag

  15. Self-regulating characteristics of cold neutron source with annular cylindrical moderator cell

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Takeshi; Lee Chien-Hsiung; Chan Yea-Kuang; Guung Tai-Cheng [Institute of Nuclear Energy Research ROCAEC, Taiwan (China); Yoshino, Hirofumi; Kawabata, Yuji; Hino, Masahiro [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst

    2001-03-01

    The conditions, in which the ORPHEE type cold neutron source with an annular cylindrical moderator cell could have self-regulating characteristics, were obtained through thermodynamic considerations. >From a viewpoint of engineering, it is not easy to establish these conditions because three parameters are involved even in an idealized system without the effect of the mass transfer resistance in the moderator transfer tube between the condenser and the moderator cell. The inner shell of the ORPHEE moderator cell is open in the bottom, but it is expected that only hydrogen vapor is contained in the inner shell and liquid hydrogen in the outer shell. The thermodynamic considerations show that such a state is maintained only when a liquefaction capacity of the condenser is large compared to heat lead and three parameters are optimized with a good balance. We proposed another type of a moderator cell, which has an inner cylindrical cavity with no hole in the bottom but a vapor inlet opening at the uppermost part of the cavity. In this structure, a self-regulating characteristic is established easily and the liquid level in the outer shell is maintained almost constant against thermal disturbances. Therefore it is enough to control one parameter, that is, the reservoir tank pressure corresponding to the liquefaction capacity of the condenser given by the refrigeration power of the helium refrigerator. (author)

  16. Technical review and evaluation for the installation of cold neutron source facility at HANARO

    International Nuclear Information System (INIS)

    Choi, Chang Woong; Kim, Dong Hoon; Lee, Mu Woong; Cho, Man Soon; Oh, Yun Woo; Park, Sun Hee; Park, Kuk Nam; Lee, Chang Hee

    1996-01-01

    The principle subjects of this study are to analyze the technical characteristics of cold neutron source(CNS) and take measures to cope with the matters regarding the installation of CNS facility at HANARO. This report, thus, reviews the current status of the CNS facilities that are now in operation worldwide and classifies the system and equipment to select the appropriate type for HANARO and provides advice and guidance for the future basic and detail design. As we have none of CNS facility here and very few experienced persons yet, this report provides some information for domestic users through the investigation of the utilization fields and experimental facilities of CNS, and presents the estimated total cost for the project based on JRR-3M. In addition, the work scope of the conceptual design, which will be performed in advance of the basic and detail design, and cooperative program with the countries having the advanced technology of CNS is presented in this report. 43 tabs., 57 figs., 22 refs. (Author)

  17. Accretion dynamics and polarized x-ray emission of magnetized neutron stars

    International Nuclear Information System (INIS)

    Arons, J.

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such as star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-rays from the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40% at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of ''photon bubbles,'' regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scales. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined

  18. Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity.

    Science.gov (United States)

    Mishra, D; Benitez, M J; Petracic, O; Badini Confalonieri, G A; Szary, P; Brüssing, F; Theis-Bröhl, K; Devishvili, A; Vorobiev, A; Konovalov, O; Paulus, M; Sternemann, C; Toperverg, B P; Zabel, H

    2012-02-10

    We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles. Using polarized neutron reflectivity we have also determined the long range magnetic correlations parallel and perpendicular to the layers in addition to the structural ones. In a field of 5 kOe we determine a magnetization value of about 80% of the saturation value. At remanence the global magnetization is close to zero. However, polarized neutron reflectivity reveals the existence of regions in which magnetic moments of nanoparticles are well aligned, while losing order over longer distances. These findings confirm that in the nanoparticle assembly the magnetic dipole-dipole interaction is rather strong, dominating the collective magnetic properties at room temperature.

  19. Application of cold neutron radiography for freshness measurement of fruit and vegetables. Moisture content in chrysanthemum cut flower

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, U. [Ryukyu Univ., Faculty of Agriculture, Nishihara, Okinawa (Japan); Kawabata, Y. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Institute; Horie, T. [Kawasaki Heavy Industries, Ltd., Tokyo (Japan)

    2003-01-01

    Metabolism of crops is suppressed at a low temperature. Pre-cooling of the crops before a long term preservation is very valid for keeping their freshness. Vacuum pre-cooling is possible to decrease quickly the temperature of fruit and vegetables using the latent heat of moisture evaporation. Many cut flowers of chrysanthemum, however are pointed out to lose their freshness on long-haul transportation. The changes of moisture content in the chrysanthemum cut flowers before and after the vacuum pre-cooling are measured by cold neutron radiography. High contrast images of the cut flowers obtained by the cold neutron radiography are considered as the change of hydrogen contents in the cut flowers at before and after the vacuum pre-cooling. The degree of brightness in the images of cut flowers after the pre-cooling increases in comparison with the one before the pre-cooling. The water equivalent thickness of the leaves of chrysanthemum after the pre-cooling decreases in comparison with the one before the pre-cooling. The moisture contents evaporated from the injured leaves of chrysanthemum are shown clearly and quantitatively in the images of cold neutron radiography. (M. Suetake)

  20. Precision neutron polarimetry for neutron beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Penttila, S. I. (Seppo I.); Bowman, J. D. (J. David)

    2004-01-01

    The abBA collaboration is developing a new type of field-expansion spectrometer for measurement of the three correlation coefficients a, A, and B and shape parameter b. The measurement of A and B requires precision neutron polarimetry. We will polarize a pulsed cold neutron beam from SNS using a {sup 3}He neutron spin filter. The well-known polarizing cross section for n-{sup 3}He has 1/v dependence, which is used to determine the absolute beam polarization through a time-of-flight (TOF) measurement. We show that measuring the TOF dependence of A and B, the coefficients and the neutron polarization can be determined with small loss of statistical precision and negligible systematic error. We conclude that it is possible to determine the neutron polarization averaged over a run in the neutron beta decay experiment to better than 10{sup -3}. We discuss various sources of systematic uncertainties in the measurement of A and B and conclude that they are less than 10{sup -4}.

  1. Precision neutron polarimetry for neutron beta decay

    International Nuclear Information System (INIS)

    Penttila, S.I.; Bowman, J.D.

    2004-01-01

    The abBA collaboration is developing a new type of field-expansion spectrometer for measurement of the three correlation coefficients a, A, and B and shape parameter b. The measurement of A and B requires precision neutron polarimetry. We will polarize a pulsed cold neutron beam from SNS using a 3 He neutron spin filter. The well-known polarizing cross section for n- 3 He has 1/v dependence, which is used to determine the absolute beam polarization through a time-of-flight (TOF) measurement. We show that measuring the TOF dependence of A and B, the coefficients and the neutron polarization can be determined with small loss of statistical precision and negligible systematic error. We conclude that it is possible to determine the neutron polarization averaged over a run in the neutron beta decay experiment to better than 10 -3 . We discuss various sources of systematic uncertainties in the measurement of A and B and conclude that they are less than 10 -4 .

  2. Measurement of the ROT effect in the neutron induced fission of 235U in the 0.3 eV resonance at a hot source of polarized neutrons

    Science.gov (United States)

    Kopatch, Yuri; Novitsky, Vadim; Ahmadov, Gadir; Gagarsky, Alexei; Berikov, Daniyar; Danilyan, Gevorg; Hutanu, Vladimir; Klenke, Jens; Masalovich, Sergey

    2018-03-01

    The TRI and ROT asymmetries in fission of heavy nuclei have been extensively studied during more than a decade. The effects were first discovered in the ternary fission in a series of experiments performed at the ILL reactor (Grenoble) by a collaboration of Russian and European institutes, and were carefully measured for a number of fissioning nuclei. Later on, the ROT effect has been observed in the emission of prompt gamma rays and neutrons in fission of 235U and 233U, although its value was an order of magnitude smaller than in the α-particle emission from ternary fission. All experiments performed so far are done with cold polarized neutrons, what assumes a mixture of several spin states, the weights of these states being not well known. The present paper describes the first attempt to get "clean" data by performing the measurement of gamma and neutron asymmetries in an isolated resonance of 235U at the POLI instrument of the FRM2 reactor in Garching.

  3. In situ Polarized Neutron Reflectometry: Epitaxial Thin-Film Growth of Fe on Cu(001) by dc Magnetron Sputtering

    Science.gov (United States)

    Kreuzpaintner, Wolfgang; Wiedemann, Birgit; Stahn, Jochen; Moulin, Jean-François; Mayr, Sina; Mairoser, Thomas; Schmehl, Andreas; Herrnberger, Alexander; Korelis, Panagiotis; Haese, Martin; Ye, Jingfan; Pomm, Matthias; Böni, Peter; Mannhart, Jochen

    2017-05-01

    The stepwise growth of epitaxial Fe on Cu (001 )/Si (001 ) , investigated by in situ polarized neutron reflectometry is presented. A sputter deposition system was integrated into the neutron reflectometer AMOR at the Swiss neutron spallation source SINQ, which enables the analysis of the microstructure and magnetic moments during all deposition steps of the Fe layer. We report on the progressive evolution of the accessible parameters describing the microstructure and the magnetic properties of the Fe film, which reproduce known features and extend our knowledge on the behavior of ultrathin iron films.

  4. New experimental set up for the determination of the ratio gA/gV from a cold neutron beam

    International Nuclear Information System (INIS)

    Avenier, Michel.

    1976-01-01

    A new experimental set up is being developed for an improved measurement of the electron momentum-neutron spin angular correlation coefficient A, in polarized free neutron beta decay, in order to determine with a greater accuracy the ratio gA/gV of the coupling constants of the weak interaction. With the institut Laue-Langevin high flux beam facilities it seems unnecessary to register the electrons in coincidence with the recoil protons as in previous experiments. Two beta counters will be symetrically placed about the beam and, by flipping periodically the beam polarization and defining the geometry of the experiment such as to minimize the backscattering, the accuracy of the measurement could be better than 5% which would correspond to an accuracy of [fr

  5. The behavior of a type-II superconductor Nb in a magnetic field as investigated in polarized-neutron transmission experiments

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.

    1995-01-01

    The type-II superconducting polycrystal Nb was investigated on the SPN-1 polarized-neutron spectrometer at the high-intensity pulsed reactor IBR-2 at Dubna. In polarized-neutron transmission experiments the magnetic-field dependence of the neutron beam polarization was measured. Experiments were performed over a wide magnetic-field range from 0 to H c2 at a temperature of 4.8 K. A quasiperiodic variation of the neutron depolarization as a function of magnetic-field strength was observed. (orig.)

  6. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T

    2003-11-05

    This thesis describes a precision measurement of the neutron spin dependent structure function, g{sub 1}{sup n}(x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a {sup 3}He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized {sup 3}He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the {sup 3}He polarization. The fraction of events which originated in the {sup 3}He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure {sup 3}He reference cell in place of the polarized {sup 3}He target. The spin dependent structure function g{sub 1}{sup n}(z) was measured in the Bjorken x range of 0.014 < x < 0.7 with an average Q{sup 2} of 5 (GeV/c){sup 2}. One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g{sub 1}{sup n}(x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g{sub 1}{sup n}(x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g

  7. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: the EXILL campaign

    Directory of Open Access Journals (Sweden)

    de France G.

    2014-03-01

    Full Text Available A combination of germanium detectors has been installed at the PF1B neutron guide of the ILL to perform the prompt spectroscopy of neutron-rich nuclei produced in the neutron-capture induced-fission of 235U and 241Pu. In addition LaBr3 detectors from the FATIMA collaboration have been installed in complement with the EXOGAM clovers to measure lifetimes of low-lying excited states. The measured characteristics and online spectra indicate very good performances of the overall setup.

  8. Possible cause of anomalies in storage time of ultra-cold neutrons

    International Nuclear Information System (INIS)

    Frank, I.M.

    Various possible causes of anomalies in the storage time of ultracold neutrons are considered. It is concluded that anomalies in extreme ultracold neutrons, at least partially, are related to surface waves and that this problem requires more detailed theoretical study

  9. Novel type of neutron polarization analysis using the multianalyzer-equipment of the three-axes spectrometer PUMA

    Science.gov (United States)

    Schwesig, Steffen; Maity, Avishek; Sobolev, Oleg; Ziegler, Fabian; Eckold, Götz

    2018-01-01

    The combination of polarization analysis and multianalyzer system available at the three axes spectrometer PUMA@FRM II allows the simultaneous determination of both spin states of the scattered neutrons and the absolute value of the polarization. The present paper describes the technical details along with the basic formalism used for the precise calibration. Moreover, the performance of this method is illustrated by several test experiments including first polarized inelastic studies of the magnetic excitations of CuO in the multiferroic and the uniaxial antiferromagnetic phases.

  10. Spin-wave dynamics in Invar Fe65Ni35 studied by small-angle polarized neutron scattering

    NARCIS (Netherlands)

    Brück, E.H.; Grigoriev, S.V.; Deriglazov, V.V.; Okorokov, A.I.; Dijk van, N.H.; Klaasse, J.C.P.

    2002-01-01

    Abstract. Spin dynamics in Fe65Ni35 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below TC=485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping & were obtained by

  11. Spin disorder in maghemite nanoparticles investigated using polarized neutrons and nuclear resonant scattering

    Science.gov (United States)

    Herlitschke, M.; Disch, S.; Sergueev, I.; Schlage, K.; Wetterskog, E.; Bergström, L.; Hermann, R. P.

    2016-04-01

    The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small-angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4 nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization to 44% and 58% of the theoretical maghemite bulk value, observed consistently by both techniques.

  12. Polarized neutron diffraction by D sub 2 chemisorbed on a nickel powder

    Energy Technology Data Exchange (ETDEWEB)

    Beaufils, J.P. (Inst. Laue-Langevin, 38 - Grenoble (France))

    1992-02-01

    The theory of surface differential diffraction (SDD) is extended to the case of polarized neutron diffraction. Nuclear and magnetic surface contributions are thus separated. A method for coherent description of the geometry of the grains is proposed. A saturated D layer chemisorbed on Ni carried by silica is studied with the following results: (111) faces represent the majority of the surface; D atoms sit above the centers of surface Ni triangles with no Ni atom in the underlying layer, the Ni-D distance is equal to 0.215(7) nm; the magnetic-moment modification induced by chemisorption is mainly localized in the surface layer of nickel. Two possible interpretations of the magnetic structure factor are discussed: One assumes no magnetic moment on D atoms but Ni displacements; the other is based on opposite assumptions. (orig.).

  13. Experimental evidence for lamellar magnetism in hemo-ilmenite by polarized neutron scattering

    DEFF Research Database (Denmark)

    Brok, Erik; Sales, Morten; Lefmann, Kim

    2014-01-01

    Large local anomalies in the Earth's magnetic field have been observed in Norway, Sweden, and Canada. These anomalies have been attributed to the unusual magnetic properties of naturally occurring hemo-ilmenite, consisting of a paramagnetic ilmenite host (alpha-Fe2O3-bearing FeTiO3) with exsolution...... lamellae (approximate to 3 μm m thick) of canted antiferromagnetic hematite (FeTiO3-bearing α-Fe2O3) and the mutual exsolutions of the same phases on the micron to nanometer scale. The origin of stable natural remanent magnetization (NRM) in this system has been proposed to be uncompensated magnetic...... moments in the contact layers between the exsolution lamellae. This lamellar magnetism hypothesis is tested here by using polarized neutron diffraction to measure the orientation of hematite spins as a function of an applied magnetic field in a natural single crystal of hemo-ilmenite from South Rogaland...

  14. Production of ultra cold neutrons with a solid deuterium converter; Produktion von ultrakalten Neutronen mit einem festen Deuteriumkonverter

    Energy Technology Data Exchange (ETDEWEB)

    Frei, Andreas

    2008-10-28

    Spontaneous breaking of fundamental symmetries is an attractive topic in modern particle physics. Understanding qualitative and quantitative the parameters involved in these kind of processes could help to explain the unbalanced presence in the universe of matter (baryons) with respect to antimatter (anti-baryons). Due to their intrinsic properties, ultra cold neutrons (UCN) are excellent candidates for experiments measuring with high level of accuracy parameters like the electric dipole moment (EDM), the neutron lifetime ({tau}{sub n}), the axial-vector coupling constant (g{sub A}), or in search of quantum effects of gravity. In this work the setup of a source for ultra cold neutrons with a solid deuterium converter is described, which serves as a prototype for a new, strong UCN source, that is currently designed and constructed at the FRMII in Garching. The prototype source has been taken into operation and important parameters have been measured. These experimental results have been compared with theoretical models to prove calculations for the performance of the new source at the FRMII. (orig.)

  15. Laser - Polarized HE-3 Target Used for a Precision Measurement of the Neutron Spin Structure

    Energy Technology Data Exchange (ETDEWEB)

    Romalis, M

    2003-11-05

    This thesis describes a precision measurement of the deep inelastic neutron spin structure function g{sub 1}{sup n}(x). The main motivation for the experiment is a test of the Bjorken sum rule. Because of smaller statistical errors and broader kinematic coverage than in previous experiments, we are able to study in detail the behavior of the spin structure function g{sub 1}{sup n}(x) for low values of the Bjorken scaling variable x. We find that it has a strongly divergent behavior, in contradiction to the naive predictions of the Regge theory. This calls into question the methods commonly used for extrapolation of g{sub 1}{sup n}(x) to x = 0. The difference between the proton and the neutron spin structure functions is less divergent at low x, so a test of the Bjorken sum rule is possible. We confirm the sum rule with an accuracy of 8%. The experiment was performed at SLAC using a 50 GeV polarized electron beam and a polarized {sup 3}He target. In this thesis the polarized target is described in detail. We used the technique of Rb optical pumping and Rb-He spin exchange to polarize the {sup 3}He. Because of a novel mechanical design our target had the smallest dilution ever achieved for a high density gas target. Since this is a precision measurement, particular efforts were made to reduce the systematic errors due to the uncertainty in the target parameters. Most important parameters were measured by more than one method. We implemented novel techniques for measuring the thickness of the glass windows of the target, the {sup 3}He density, and the polarization. In particular, one of the methods for measuring the gas density relied on the broadening of the Rb optical absorption lines by collisions with {sup 3}He atoms. The calibration of this technique resulted in the most precise measurements of the pressure broadening parameters for {sup 3}He as well as several other gases, which are described in an Appendix. The polarization of the {sup 3}He was also measured by

  16. LAP-ND: a new instrument for vector polarization analysis and neutron depolarization measurements at FRJ-2

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, Alexander; Bussmann, Klaus; Dohmen, Ludwig; Axelrod, Leonid; Gordeev, Gennadi; Brueckel, Thomas

    2004-07-15

    The method of vector analysis of the neutron polarization allows for the determination of both the magnitude and the direction of the magnetization vector in the sample. A directional distribution of the magnetization in a sample results in a spread of the direction of the polarization vector in space and thus in the depolarization of the incident beam. A new neutron depolarization set up is installed at the research reactor FRJ-2 of the Forschungszentrum Juelich. The main feature of the set up is the use of rather long wavelength, {lambda}=(4-6.5) A, neutrons thus allowing for a significant increase in the sensitivity of depolarization measurements. The set up uses a non-cryogenic zero-field sample chamber with the residual magnetic field of about 1 mG. It will be used for the determination of the sample magnetization at mesoscopic and macroscopic levels and for the study of magnetic phase transitions, magnetic nanostructures, magnetic glasses, etc.

  17. Some like it cold: microbial transformations of mercury in polar regions

    DEFF Research Database (Denmark)

    Barkay, Tamar; Kroer, Niels A.; Poulain, Alexandre J.

    2011-01-01

    The contamination of polar regions with mercury that is transported from lower latitudes as inorganic mercury has resulted in the accumulation of methylmercury (MeHg) in food chains, risking the health of humans and wildlife. While production of MeHg has been documented in polar marine and terres......The contamination of polar regions with mercury that is transported from lower latitudes as inorganic mercury has resulted in the accumulation of methylmercury (MeHg) in food chains, risking the health of humans and wildlife. While production of MeHg has been documented in polar marine...

  18. Study of magnetic thin films by polarized neutron reflectivity. Off-specular diffusion on periodical structures

    International Nuclear Information System (INIS)

    Ott, F.

    1998-01-01

    Theoretical (Zeeman energy effects) and experimental (beam polarisation problems) progress have been made in the understanding of polarized neutron reflectivity with polarisation analysis. It has been shown that modelization and numerical simulations makes it possible to avoid to have to systematically measure a full set of reflectivity curves for each field and temperature condition. It has been possible to determine a magnetic profile as a function of the field in a magnetic bilayer system by using only a few points in the reciprocal space. This technique allows to considerable reduce the experiment time. In single nickel layer systems, we have shown that it is possible to induce magnetic rotation inhomogeneities when these systems are subjects to deformation strains. The effect are related to magneto-elastic constants gradients. In trilayer systems, with a ME constant modulation, we have been able to induce large magnetic rotation gradients. A new magneto-optic technique to measure the magnetization direction without rotating the magnetic field has been developed. The field of neutron reflectivity has been extended to off-specular studies. It has been possible to account quantitatively of the off-specular diffusion on 2-D model systems (prepared by optical lithography). This new technique should make it possible in the future to determine magnetic structures with a in-depth as well as lateral resolution. (author)

  19. Using CMB polarization to constrain the anomalous nature of the Cold Spot with an incomplete-sky coverage

    Science.gov (United States)

    Fernández-Cobos, R.; Vielva, P.; Martínez-González, E.; Tucci, M.; Cruz, M.

    2013-11-01

    Recent results of the ESA Planck satellite have confirmed the existence of some anomalies in the statistical distribution of the cosmic microwave background (CMB) anisotropies. One of the most intriguing anomalies is the cold spot, first detected in the Wilkinson Microwave Anisotropy Probe (WMAP) data by Vielva et al. In a later paper, Vielva et al. (2011) developed a method to probe the anomalous nature of the cold spot by using the cross-correlation of temperature and polarization of the CMB fluctuations. Whereas this work was built under the assumption of analysing full-sky data, in this paper we extend such approach to deal with realistic data sets with a partial-sky coverage. In particular, we exploit the radial and tangential polarization patterns around temperature spots. We explore the capacity of the method to distinguish between a standard Gaussian CMB scenario and an alternative one, in which the cold spot arises from a physical process that does not present correlated polarization features (e.g. topological defects), as a function of the instrumental-noise level. Moreover, we consider more in detail the case of an ideal noise-free experiment and the ones with the expected instrumental-noise levels in QUIJOTE and Planck experiments. We also present an application to the 9-year WMAP data, without being able to obtain firm conclusions, with a significance level of 32 per cent. In the ideal case, the alternative scenario could be rejected at a significance level of around 1 per cent, whereas for expected noise levels of QUIJOTE and Planck experiments the corresponding significance levels are 1.5 and 7.4 per cent, respectively.

  20. Focusing and polarized neutron ultra-small-angle scattering spectrometer (SANS-J-II) at Research Reactor JRR3, Japan

    International Nuclear Information System (INIS)

    Koizumi, Satoshi; Iwase, Hiroki; Suzuki, Jun-ichi; Oku, Takayuki; Motokawa, Ryuhei; Sasao, Hajime; Tanaka, Hirokazu; Yamaguchi, Daisuke; Shimizu, Hirohiko M.; Hashimoto, Takeji

    2006-01-01

    By employing focusing lenses of sextupole permanent magnet and biconcave MgF 2 crystal, and high-resolution photomultiplier, SANS-J (pinhole small-angle neutron scattering spectrometer at research reactor JRR3, Tokai) was reconstructed to focusing and polarized neutron ultra-small-angle scattering spectrometer (SANS-J-II). Consequently, an accessible minimum wave number q min was improved from 3x10 -3 A -1 to 3x10 -4 A -1 . Furthermore, we added 3 He sub-detectors with an analyzer super mirror at a sample position. With this setup, we perform polarization analysis at high q (>0.2 A -1 ) in order to quantitatively discriminate spin incoherent scattering from hydrogen or to perform spin contrast variation, by a dynamic nuclear polarization method (>0.2 A -1 )

  1. Preliminary design of the cold neutron source for the Centro Atomico Bariloche Electron LINAC Facility. I. Solid benzene as moderating material

    International Nuclear Information System (INIS)

    Torres, Lourdes; Granada, Jose R.

    2004-01-01

    We present the results of preliminary calculations performed with the code MCNP-4C relative to the neutron field behavior within the moderator for the CAB-LINAC cold neutron source, using benzene at 89 K as moderating material. Throughout the design calculations nuclear data libraries previously generated and validated were used. The optimum dimensions for a slab and a grid moderator were calculated, with and without a pre moderator, from the point of view of neutron production and the time-width of the neutron pulse. (author)

  2. The single-collision thermalization approximation for application to cold neutron moderation problems

    International Nuclear Information System (INIS)

    Ritenour, R.L.

    1989-01-01

    The single collision thermalization (SCT) approximation models the thermalization process by assuming that neutrons attain a thermalized distribution with only a single collision within the moderating material, independent of the neutron's incident energy. The physical intuition on which this approximation is based is that the salient properties of neutron thermalization are accounted for in the first collision, and the effects of subsequent collisions tend to average out statistically. The independence of the neutron incident and outscattering energy leads to variable separability in the scattering kernel and, thus, significant simplification of the neutron thermalization problem. The approximation also addresses detailed balance and neutron conservation concerns. All of the tests performed on the SCT approximation yielded excellent results. The significance of the SCT approximation is that it greatly simplifies thermalization calculations for CNS design. Preliminary investigations with cases involving strong absorbers also indicates that this approximation may have broader applicability, as in the upgrading of the thermalization codes

  3. The time-of-flight small-angle scattering spectrometer SAN at the KENS pulsed cold neutron source

    International Nuclear Information System (INIS)

    Ishikawa, Y.; Furusaka, M.; Hasegawa, K.

    1986-01-01

    This paper describes the configuration and performance of a new time-of-flight (TOF) small-angle neutron scattering spectrometer SAN installed at the pulsed cold neutron source (KENS) at the National Laboratory for High Energy Physics (KEK). The spectrometer has advantages over conventional small-angle scattering apparatus: one is its capability for simultaneous measurements over a wide Q range (0.003≤Q≤4 A -1 ) and another is the new information that it provides by exploiting the wavelength dependence of the scattering. For example, the inelastic and elastic scattering can be separated without performing an energy analysis. The design principles of this type of spectrometer are also discussed. (orig.)

  4. Experimental characterization of a prototype secondary spectrometer for vertically scattering multiple energy analysis at cold-neutron triple axis spectrometers

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Groitl, Felix; Kure, Mathias

    2016-01-01

    A thorough experimental characterization of a multiplexing backend with multiple energy analysis on a cold-neutron triple axis spectrometer (cTAS) is presented. The prototype employs two angular segments (2 theta-segments) each containing five vertically scattering analyzers (energy channels...... to the energy resolution of a standard cTAS. The dispersion relation of the antiferromagnetic excitations in MnF2 has been mapped out by performing constant energy transfer maps. These results show that the tested setup is virtually spurion free. In addition, focusing effects due to (mis...

  5. Voluminous D2 source for intense cold neutron beam production at the ESS

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Batkov, K.; Mezei, F.

    2014-01-01

    the target for the complementary needs of certain fundamental physics experiments. To facilitate experiments depending on the total number of neutrons in a sizable beam, the option of a voluminous D2 moderator, in a large cross-section extraction guide is discussed and its neutronic performance is assessed....

  6. The influence of short-term cold stress on the metabolism of non-structural carbohydrates in polar grasses

    Directory of Open Access Journals (Sweden)

    Łopieńska-Biernat Elżbieta

    2017-06-01

    Full Text Available Plants adapt to extremely low temperatures in polar regions by maximizing their photosynthetic efficiency and accumulating cryoprotective and osmoprotective compounds. Flowering plants of the family Poaceae growing in the Arctic and in the Antarctic were investigated. Their responses to cold stress were analyzed under laboratory conditions. Samples were collected after 24 h and 48 h of cold treatment. Quantitative and qualitative changes of sugars are found among different species, but they can differ within a genus of the family Poaceae. The values of the investigated parameters in Poa annua differed considerably depending to the biogeographic origin of plants. At the beginning of the experiment, Antarctic plants were acclimatized in greenhouse characterized by significantly higher content of sugars, including storage reserves, sucrose and starch, but lower total protein content. After 24 h of exposure to cold stress, much smaller changes in the examined parameters were noted in Antarctic plants than in locally grown specimens. Total sugar content and sucrose, starch and glucose levels were nearly constant in P. annua, but they varied significantly. Those changes are responsible for the high adaptability of P. annua to survive and develop in highly unsupportive environments and colonize new regions.

  7. Effect of nanodiamond fluorination on the efficiency of quasispecular reflection of cold neutrons

    Science.gov (United States)

    Nesvizhevsky, V. V.; Dubois, M.; Gutfreund, Ph.; Lychagin, E. V.; Nezvanov, A. Yu.; Zhernenkov, K. N.

    2018-02-01

    Nanomaterials, which show large reflectivity for external radiation, are of general interest in science and technology. We report a result from our ongoing research on the reflection of low-energy neutrons from powders of detonation diamond nanoparticles. Our previous work showed a large probability for quasispecular reflection of neutrons from this medium. The model of neutron scattering from nanoparticles, which we have developed, suggests two ways to increase the quasispecular reflection probability: (1) the reduction of incoherent scattering by substitution of hydrogen with fluorine inside the nanoparticles, and (2) the sharpening of the neutron optical potential step by removal of amorphous s p2 carbon from the nanoparticle shells. We present experimental results on scattering of slow neutrons from both raw and fluorinated diamond nanoparticles with amorphous s p2 carbon removed by gas-solid fluorination. These results show a clear increase in quasispecular reflection probability.

  8. The effect of prior cold-work on the deformation behaviour of neutron irradiated AISI 304 austenitic stainless steel

    Science.gov (United States)

    Karlsen, Wade; Van Dyck, Steven

    2010-11-01

    Cold-work is intentionally employed to increase the yield strength of austenitic stainless steels and also occurs during fabrication processes, but it has also been associated with greater incidence of stress corrosion cracking. This study examined the effect of up to 3.85 dpa neutron irradiation on the deformation behaviour and microstructures of 30% cold-worked AISI 304 material tensile tested at 300 °C. While the deformation behaviour of 0.07 dpa material was similar to non-irradiated material tested at the same temperature, its stress-strain curve was shifted upwards by about 200 MPa. Materials irradiated to over 2 dpa hardened some 400-500 MPa, but showed limited strain hardening capacity, exhibiting precipitous softening with further straining beyond the yield point. The observed behaviour is most likely a consequence of planar deformation products serving as strengtheners to the unirradiated bulk on the one hand, while promoting strain localization on the other, behaviour exacerbated by the subsequent neutron irradiation.

  9. The upgraded cold neutron three-axis spectrometer FLEXX at BER II at HZB

    DEFF Research Database (Denmark)

    Duc Le, Manh; Skoulatos, Markos; Quintero-Castro, Diana Lucía

    2014-01-01

    Larmor labeling is seen as one of the key ingredients in the development of novel neutron instrumentation. FLEXX puts special emphasis on exploiting the neutron resonance spin echo (NRSE) technique for high-resolution spectroscopy on dispersive quasi-particle excitations. This enables unique...... capabilities for quantum magnetism, heavy-fermion systems and unconventional superconductivity. For example inelastic experiments in magnetic fields up to 17 T are now proven to be feasible. Energy research with inelastic neutron instruments will be strengthened through inhouse research, thereby fostering...

  10. Polarized-neutron-scattering study of the spin-wave excitations in the 3-k ordered phase of uranium antimonide.

    Science.gov (United States)

    Magnani, N; Caciuffo, R; Lander, G H; Hiess, A; Regnault, L-P

    2010-03-24

    The anisotropy of magnetic fluctuations propagating along the [1 1 0] direction in the ordered phase of uranium antimonide has been studied using polarized inelastic neutron scattering. The observed polarization behavior of the spin waves is a natural consequence of the longitudinal 3-k magnetic structure; together with recent results on the 3-k-transverse uranium dioxide, these findings establish this technique as an important tool to study complex magnetic arrangements. Selected details of the magnon excitation spectra of USb have also been reinvestigated, indicating the need to revise the currently accepted theoretical picture for this material.

  11. First measurement of the electric formfactor of the neutron in the exclusive quasielastic scattering of polarized electrons from polarized 3He

    International Nuclear Information System (INIS)

    Meyerhoff, M.; Eyl, D.; Frey, A.; Andresen, H.G.; Annand, J.R.M.; Aulenbacher, K.; Becker, J.; Blume-Werry, J.; Dombo, T.; Drescher, P.; Ducret, J.E.; Fischer, H.; Grabmayr, P.; Hall, S.; Hartmann, P.; Hehl, T.; Heil, W.; Hoffmann, J.; Kellie, J.D.; Klein, F.; Leduc, M.; Moeller, H.; Nachtigall, C.; Ostrick, M.; Otten, E.W.; Owens, R.O.; Pluetzer, S.; Reichert, E.; Rohe, D.; Schaefer, M.; Schearer, L.D.; Schmieden, H.; Steffens, K.; Surkau, R.; Walcher, T.

    1995-01-01

    A first measurement of the asymmetry in quasielastic scattering of longitudinally polarized electrons from a polarized 3 He gas target in coincidence with the knocked out neutron is reported. This measurement was made feasible by the cw beam of the 855 meV Mainz Microtron MAMI. It allows a determination of the electric formfactor of the neutron G n E independent of binding effects to first order. At bar Q 2 =0.31 (GeV/c) 2 two asymmetries bar A parallel (rvec S He parallel rvec q) and bar A perpendicular (rvec S He perpendicular rvec q) have been measured giving bar A parallel =(-7.40±0.73%) and bar A perpendicular =(0.89±0.30)%. The ratio bar A perpendicular /bar A parallel is independent of the absolute value of the electron and target polarization and yields G n E =0.035±0.012±0.005. copyright 1995 American Institute of Physics

  12. Development of low temperature solid state detectors for ultra-cold neutrons within superfluid sup 4 He

    CERN Document Server

    Baker, C A; Green, K; Grinten, M G D; Iaydjiev, P S; Ivanov, S N; Pendlebury, J M; Shiers, D B; Tucker, M A H; Yoshiki, H; Geltenbort, P

    2003-01-01

    As part of an R and D programme for the development of a next-generation experiment to measure the neutron electric dipole moment, in which ultra-cold neutrons (UCN) are produced and stored in superfluid sup 4 He (superthermal source), we have developed cryogenic detectors of UCN that can operate in situ within the superfluid. Surface barrier detectors and PIN diode detectors have been tested and proven to work well at temperatures as low as 80 mK. When combined with a layer of sup 6 LiF which converts neutrons to charged particles, these detectors form a reliable UCN detection system which has been tested in liquid helium down to 430 mK. The detectors have operated within superfluid helium for periods of up to 30 days with no signs of degradation. The development of this detection system has enabled us to measure the flux of UCN from a superthermal UCN source with no intervening transmission windows which can attenuate the flux. The addition of thin films of magnetically aligned iron also enables these detec...

  13. Observation of a reorientation of the holmium moments in HoAl2 with polarized neutron diffraction

    International Nuclear Information System (INIS)

    Barbara, B.; Boucherle, J.X.; Rossignol, M.F.; Schweizer, J.

    1976-01-01

    Magnetization measurements performed on a single crystal of HoAl 2 show that the easy axis of magnetization is [110] at low temperature and suggest near 20 0 K a rotation of the easy direction of magnetization. This rotation has been strikingly demonstrated by polarized neutron diffraction experiments including measurements of intensities with both spin states and of depolarization through the sample. This result allows the interpretation of the magnetic properties of HoAl 2 in terms of crystal field

  14. Search for the existence of circulating currents in high-Tc superconductors using the polarized neutron scattering technique

    International Nuclear Information System (INIS)

    Sidis, Y.; Fauque, B.; Aji, V.; Bourges, P.

    2007-01-01

    We review experimental attempts using polarized neutron scattering technique to reveal the existence in high temperature superconductors of a long-range ordered state characterized by the spontaneous appearance of current loops. We draw particular attention to our recent results (B. Fauque et al., Phys. Rev. Lett. 96 (2006) 197001) that, up to now, can be explained only by the theory of circulating currents proposed by Varma

  15. Nanostructures and ordering phenomena in ferrofluids investigated using polarized small angle neutron scattering

    International Nuclear Information System (INIS)

    Wiedenmann, A; Kammel, M; Heinemann, A; Keiderling, U

    2006-01-01

    Polarized small angle neutron scattering (SANSPOL) was used to investigate the microstructure of various ferrofluids (FF) where magnetic materials (Co, Fe magnetite), stabilization mechanisms (electrostatic, monolayers and bilayers of surfactants) and carrier liquids (water, organic solvents) have been systematically varied. Magnetic core-shell particles, non-magnetic micelles and magnetic aggregates were identified and size distributions and density, composition, and magnetization profiles were determined. Partial penetrations of solvent molecules inside the surfactant layer and formation of non-magnetic oxide coatings were established. The magnetic nanostructure in diluted samples consists of non-interacting ferromagnetic single domain particles. In concentrated Co FF a pseudo-crystalline ordering was found to be induced by an external magnetic field where cobalt core-shell particles are arranged in hexagonal planes. The particle ordering and magnetic moment direction followed the direction of the applied field. In addition, segments of uncorrelated dipolar chains were found to be present. The dynamics of the field induced ordering was studied by means of time-resolved SANS. Individual particle moments are stuck by field induced dipolar interactions in domains of local hexagonal ordering which relax by rotational diffusion when the field is switched off, with a characteristic time of a few seconds

  16. Nanostructures and ordering phenomena in ferrofluids investigated using polarized small angle neutron scattering

    Science.gov (United States)

    Wiedenmann, A.; Kammel, M.; Heinemann, A.; Keiderling, U.

    2006-09-01

    Polarized small angle neutron scattering (SANSPOL) was used to investigate the microstructure of various ferrofluids (FF) where magnetic materials (Co, Fe magnetite), stabilization mechanisms (electrostatic, monolayers and bilayers of surfactants) and carrier liquids (water, organic solvents) have been systematically varied. Magnetic core-shell particles, non-magnetic micelles and magnetic aggregates were identified and size distributions and density, composition, and magnetization profiles were determined. Partial penetrations of solvent molecules inside the surfactant layer and formation of non-magnetic oxide coatings were established. The magnetic nanostructure in diluted samples consists of non-interacting ferromagnetic single domain particles. In concentrated Co FF a pseudo-crystalline ordering was found to be induced by an external magnetic field where cobalt core-shell particles are arranged in hexagonal planes. The particle ordering and magnetic moment direction followed the direction of the applied field. In addition, segments of uncorrelated dipolar chains were found to be present. The dynamics of the field induced ordering was studied by means of time-resolved SANS. Individual particle moments are stuck by field induced dipolar interactions in domains of local hexagonal ordering which relax by rotational diffusion when the field is switched off, with a characteristic time of a few seconds.

  17. A polarized neutron study of the magnetization distribution in Co2FeSi

    International Nuclear Information System (INIS)

    Brown, P J; Kainuma, R; Kanomata, T; Okubo, A; Neumann, K-U; Umetsu, R Y; Ziebeck, K R A

    2013-01-01

    The magnetization distribution in Co 2 FeSi which has the largest moment per formula unit ∼6 μ B of all Heusler alloys, has been determined using polarized neutron diffraction. The experimentally determined magnetization has been integrated over spheres centred on the three sites of the L1 2 structure giving μ Fe = 3.10(3) μ B and μ Co = 1.43(2) μ B , results which are slightly lower than the moments in atomic spheres of similar radii obtained in recent LDA + U band structure calculations (Li et al 2010 Chin. Phys. B 19 097102). Approximately 50% of the magnetic carriers at the Fe sites were found to be in orbitals with e g symmetry. This was higher, ≃65%, at the Co sites. Both Fe and Co were found to have orbital moments that are larger than those predicted. Comparison with similar results obtained for related alloys suggests that there must be a finite density of states in both spin bands at the Fermi energy indicating that Co 2 FeSi is not a perfect half-metallic ferromagnet. (paper)

  18. Polarized small angle neutron scattering of MnO/Mn3O4 nanocrystals

    Science.gov (United States)

    Dedon, L.; Ijiri, Y.; Booth, R.; Krycka, K.; Borchers, J. A.; Chen, W. C.; Watson, S.; Rhyne, J. J.; Majetich, S. A.

    2012-02-01

    Monodisperse magnetic nanoparticles are of great interest for biomedical and data storage applications, particularly in cases where the core and shell can be carefully controlled to alter properties like magnetic anisotropy. However, it is often difficult to determine the underlying moment arrangements and correlations in these systems. Here, we focus on manganese (II) oxide/manganese (II,III) oxide core/shell nanoparticles, using polarized small angle neutron scattering (SANS) to probe the magnetic intra and interparticle interactions. The 30nm diameter particles with 4-5nm shell were prepared by solution chemistry methods and self-assembled into 3D nanocrystals. SANS measurements were conducted in magnetic fields from remanence-1T and temperatures from 10-300K. Magnetic and structural scattering components were separated using an algorithm previously described in [1]. The magnetic signature depended on the field and temperature history of the sample. Modeling work has been done to further quantify the interparticle length scales and the effects of crystal packing. This work was supported in part by NSF grants DMR-0454672, -0704178, -0804779, -1104489, and DOE grant DE-FG02-08ER40481. [1] K.L. Krycka, et al. Phys. Rev. Lett. 104, 207203 (2010).

  19. Low moment ferrimagnetism in Mn3Al as probed by Polarized Neutron Reflectometry

    Science.gov (United States)

    Jamer, Michelle; Wang, Yung-Jui; Borchers, Julie; Kirby, Brian; Barbiellini, Bernardo; Bansil, Arun; Heiman, Don

    For future spintronic devices, it is paramount to limit stray magnetic interactions which can negatively impact spin injection. A new class of materials called half-metallic antiferromagnets or compensated ferrimagnets have been proposed to remedy this problem. In this work, Mn3Al thin films have shown promising room temperature low-moment ferrimagnetic magnetic properties. Epitaxial Mn3Al thin films (50 nm) were grown on desorbed GaAs(001) substrates via MBE at 200 °C and annealed further to temperatures between 250 - 350 °C. The D03 Heusler-type phase was determined by X-ray diffraction with texturing in the [311] direction. Density functional theory, performed using VASP, indicated that the crystallographic structure of Mn3Al is able to form energetically with a low magnetic moment (0.017 μB/f.u.) despite some epitaxial distortion. SQUID magnetometry confirmed the low magnetic moment and high Curie temperature (610 K) of the structure. Polarized Neutron Reflectometry was used to determine the effect of epitaxy on the magnetic moment of Mn3Al, and analysis confirms a low magnetic moment (0.11 μB/f.u.) for the samples annealed at temperatures between 200-300 °C. This analysis further suggests that the relaxation of the Mn3Al at the interface. National Science Foundation ECCS-1402738.

  20. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    Science.gov (United States)

    Hershcovitch, A.

    1984-02-13

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  1. Test of parity-conserving time-reversal invariance using polarized neutrons and nuclear spin aligned holmium

    International Nuclear Information System (INIS)

    Huffman, P.R.; Roberson, N.R.; Wilburn, W.S.; Gould, C.R.; Haase, D.G.; Keith, C.D.; Raichle, B.W.; Seely, M.L.; Walston, J.R.

    1997-01-01

    A test of parity-conserving, time-reversal noninvariance (PC TRNI) has been performed in 5.9 MeV polarized neutron transmission through nuclear spin aligned holmium. The experiment searches for the T-violating fivefold correlation via a double modulation technique emdash flipping the neutron spin while rotating the alignment axis of the holmium. Relative cross sections for spin-up and spin-down neutrons are found to be equal to within 1.2x10 -5 (80% confidence). This is a two orders of magnitude improvement compared to traditional detailed balance studies of time reversal, and represents the most precise test of PC TRNI in a dynamical process, to our knowledge. copyright 1997 The American Physical Society

  2. A portable cryostat for the cold transfer of polarized solid HD targets: HDice-I

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Christopher D. [JLAB, Newport News, VA (United States); Sandorfi, Andy M. [JLAB, Newport News, VA (United States); Bade, C.; Blecher, M.; Caracappa, A.; D' Angelo, A.; Deur, A.; Dezern, G.; Glueckler, H.; Hanretty, C.; Ho, D.; Kageya, T.; Khandaker, M.; Laine, V.; Lincoln, F.; Lowry, M. M.; Mahon, J. C.; Connell, T. O.; Peng, P.; Preedom, B.; Seyfarth, H.; Stroeher, H.; Thorn, C. E.; Wei, X.; Whisnant, C. S.

    2014-02-01

    A device has been developed with moveable liquid nitrogen and liquid helium volumes that is capable of reaching over two meters into the coldest regions of a cryostat or dilution refrigerator and reliably extracting or installing a target of solid, polarized hydrogen deuteride (HD). This Transfer Cryostat incorporates a cylindrical neodymium rare-earth magnet that is configured as a Halbach dipole, which is maintained at 77 K and produces a 0.1 T field around the HD target. Multiple layers provide a hermetic 77 K-shield as the device is used to maintain a target at 2 K during a transfer between cryostats. Tests with frozen-spin HD show negligible polarization loss for either H or D over typical transfer periods. Multiple target transfers with this apparatus have shown an overall reliability of about 95% per transfer, which is a significant improvement over earlier versions of the device.

  3. A portable cryostat for the cold transfer of polarized solid HD targets: HDice-I

    Energy Technology Data Exchange (ETDEWEB)

    Bass, C.D., E-mail: bassc@lemoyne.edu [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Bade, C. [Ohio University, Athens, OH 45701 (United States); Blecher, M. [Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Caracappa, A. [Brookhaven National Laboratory, Upton, NY 11973 (United States); D' Angelo, A. [Universita’ di Roma “Tor Vergata” and INFN Sezione di Roma2, 00133 Roma (Italy); Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Deur, A.; Dezern, G. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Glueckler, H. [Forschungszentrum Jülich GmbH, Jülich (Germany); Hanretty, C. [University of Virginia, Charlottesville, VA 22903 (United States); Ho, D. [Carnegie-Mellon University, Pittsburgh, PA 15213 (United States); Honig, A. [Syracuse University, Syracuse, NY 13210 (United States); Kageya, T. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Khandaker, M. [Norfolk State University, Norfolk, VA 23504 (United States); Laine, V. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Université Blaise Pascal, Clermont-Ferrand, 63177 Aubiere (France); Lincoln, F. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Lowry, M.M. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States); Mahon, J.C. [Ohio University, Athens, OH 45701 (United States); O' Connell, T. [University of Connecticut, Storrs-Mansfield, CT 06269 (United States); and others

    2014-02-11

    A device has been developed with moveable liquid nitrogen and liquid helium volumes that is capable of reaching over 2 m into the coldest regions of a cryostat or dilution refrigerator and reliably extracting or installing a target of solid, polarized hydrogen deuteride (HD). This Transfer Cryostat incorporates a cylindrical neodymium rare-earth magnet that is configured as a Halbach dipole, which is maintained at 77 K and produces a 0.1 T field around the HD target. Multiple layers provide a hermetic 77 K-shield as the device is used to maintain a target at 2 K during a transfer between cryostats. Tests with frozen-spin HD show very little polarization loss for either H (−1±2%, relative) or D (0±3%, relative) over typical transfer periods. Multiple target transfers with this apparatus have shown an overall reliability of about 95% per transfer, which is a significant improvement over earlier versions of the device.

  4. Polarization-dependent spectra in the photoassociative ionization of cold atoms in a bright sodium beam

    International Nuclear Information System (INIS)

    Ramirez-Serrano, Jaime; DeGraffenreid, William; Weiner, John

    2002-01-01

    We report measurements of cold photoassociative ionization (PAI) spectra obtained from collisions within a slow, bright Na atomic beam. A high-brightness atom flux, obtained by optical cooling and focusing of the atom beam, permits a high degree of alignment and orientation of binary collisions with respect to the laboratory atom-beam axis. The results reveal features of PAI spectra not accessible in conventional magneto-optical trap studies. We take advantage of this high degree of alignment to selectively excite autoionizing doubly excited states of specific symmetry

  5. Determining the {sup 6}Li doped side of a glass scintillator for ultra cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Blair, E-mail: bl.jamieson@uwinnipeg.ca; Rebenitsch, Lori Ann

    2015-08-01

    Ultracold neutron (UCN) detectors using two visually very similar, to the microscopic level, pieces of optically contacted cerium doped lithium glasses have been proposed for high rate UCN experiments. The chief difference between the two glass scintillators is that one side is {sup 6}Li depleted and the other side {sup 6}Li doped. This note outlines a method to determine which side of the glass stack is doped with {sup 6}Li using AmBe and {sup 252}Cf neutron sources, and a Si surface barrier detector. The method sees an excess of events around the α and triton energies of neutron capture on {sup 6}Li when the enriched side is facing the Si surface barrier detector.

  6. Neutron and proton tests of different technologies for the upgrade of cold readout electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    Nagel, Martin

    2012-01-01

    The expected increase of total integrated luminosity by a factor of ten at the HL-LHC compared to the design goals for LHC essentially eliminates the safety factor for radiation hardness realized at the current cold amplifiers of the ATLAS Hadronic Endcap Calorimeter (HEC). New more radiation hard technologies have been studied: SiGe bipolar, Si CMOS FET and GaAs FET transistors have been irradiated with neutrons up to an integrated fluence of 2.2 \\cdot 10^{16} n/cm2 and with 200 MeV protons up to an integrated fluence of 2.6 \\cdot 10^{14} p/cm2. Comparisons of transistor parameters such as the gain for both types of irradiations are presented.

  7. Residual stresses in cold-coiled helical compression springs for automotive suspensions measured by neutron diffraction

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Brand, P. C.; Drews, A. R.; Krause, A.; Lowe-Ma, C.

    2004-01-01

    Roč. 367, 1-2 (2004), s. 306-311 ISSN 0921-5093 Institutional research plan: CEZ:AV0Z2043910 Keywords : residual stress, automotive springs, neutron diffraction Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.445, year: 2004

  8. Rapid climate variability during warm and cold periods in polar regions and Europe

    DEFF Research Database (Denmark)

    Masson-Delmotte, V.; Landais, A.; Combourieu-Nebout, N.

    2005-01-01

    Typical rapid climate events punctuating the last glacial period in Greenland, Europe and Antarctica are compared to two rapid events occurring under warmer conditions: (i) Dansgaard-Oeschger event 25, the first abrupt warming occurring during last glacial inception; (ii) 8.2 ka BP event, the only...... rapid cooling recorded during the Holocene in Greenland ice cores and in Ammersee, Germany. The rate of warming during previous warmer interglacial periods is estimated from polar ice cores to 1.5 °C per millennium, without abrupt changes. Climate change expected for the 21st century should however...

  9. Estimation of water flow velocity in small plants using cold neutron imaging with D 2O tracer

    Science.gov (United States)

    Matsushima, U.; Herppich, W. B.; Kardjilov, N.; Graf, W.; Hilger, A.; Manke, I.

    2009-06-01

    Water flow imaging may help to better understand various problems related to water stress of plants. It may help to fully understand the water relations of plants. The objective of this research was to estimate the velocity of water flow in plant samples. Cut roses ( Rosa hybrida, var. 'Milva') were used as samples. Cold neutron radiography (CNR) was conducted at CONRAD, Helmholtz Center Berlin for Materials and Energy, Berlin, Germany. D 2O and H 2O were interchangeably injected into the water feeding system of the sample. After the uptake of D 2O, the neutron transmission increased due to the smaller attenuation coefficient of D 2O compared to H 2O. Replacement of D 2O in the rose peduncle was clearly observed. Three different optical flow algorithms, Block Matching, Horn-Schunck and Lucas-Kanade, were used to calculate the vector of D 2O tracer flow. The quality of sequential images providing sufficient spatial and temporal resolution allowed to estimate flow vector.

  10. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble.

    Science.gov (United States)

    Vernaz-Gris, Pierre; Huang, Kun; Cao, Mingtao; Sheremet, Alexandra S; Laurat, Julien

    2018-01-25

    Quantum memory for flying optical qubits is a key enabler for a wide range of applications in quantum information. A critical figure of merit is the overall storage and retrieval efficiency. So far, despite the recent achievements of efficient memories for light pulses, the storage of qubits has suffered from limited efficiency. Here we report on a quantum memory for polarization qubits that combines an average conditional fidelity above 99% and efficiency around 68%, thereby demonstrating a reversible qubit mapping where more information is retrieved than lost. The qubits are encoded with weak coherent states at the single-photon level and the memory is based on electromagnetically-induced transparency in an elongated laser-cooled ensemble of cesium atoms, spatially multiplexed for dual-rail storage. This implementation preserves high optical depth on both rails, without compromise between multiplexing and storage efficiency. Our work provides an efficient node for future tests of quantum network functionalities and advanced photonic circuits.

  11. Development and optimisation of a ultracold neutron polarizing system in the framework of a new measurement of the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Pierre, Edgard

    2012-01-01

    The work presented in this thesis has been performed within the framework of an experiment located at the Paul Scherrer Institut (PSI) and dedicated to the measurement of the neutron electric dipole moment (nEDM). The expected sensitivity is 10 -27 e cm at the end of 2013. The experiment requires a polarized ultracold neutron (UCN) beam. A new polarizing system, a spin transport device and a spin reversal system have been developed for this purpose. Their study is detailed in this thesis. These systems are currently installed on the experiment. Thanks to magnetic field mappings done on the spectrometer, to magnetic field simulations using the Radia and Maentouch programs and also to Monte-Carlo simulations using the Geant4 software, the efficiency of the device has been calculated. The measured efficiency is 88.5±0.3%, which is slightly less than the expected value of 95%. Furthermore, this preliminary data taken in October 2011 allows the determination of some fundamental parameters of the experiment such as the filling, storage and longitudinal depolarization time constants of the spectrometer. These parameters are promising for the continuation of the experiment. (author) [fr

  12. In-Situ Imaging of Liquid Phase Separation in Molten Alloys Using Cold Neutrons

    Directory of Open Access Journals (Sweden)

    Nicholas Alexander Derimow

    2017-12-01

    Full Text Available Understanding the liquid phases and solidification behaviors of multicomponent alloy systems becomes difficult as modern engineering alloys grow more complex, especially with the discovery of high-entropy alloys (HEAs in 2004. Information about their liquid state behavior is scarce, and potentially quite complex due to the presence of perhaps five or more elements in equimolar ratios. These alloys are showing promise as high strength materials, many composed of solid-solution phases containing equiatomic CoCrCu, which itself does not form a ternary solid solution. Instead, this compound solidifies into highly phase separated regions, and the liquid phase separation that occurs in the alloy also leads to phase separation in systems in which Co, Cr, and Cu are present. The present study demonstrates that in-situ neutron imaging of the liquid phase separation in CoCrCu can be observed. The neutron imaging of the solidification process may resolve questions about phase separation that occurs in these alloys and those that contain Cu. These results show that neutron imaging can be utilized as a characterization technique for solidification research with the potential for imaging the liquid phases of more complex alloys, such as the HEAs which have very little published data about their liquid phases. This imaging technique could potentially allow for observation of immiscible liquid phases becoming miscible at specific temperatures, which cannot be observed with ex-situ analysis of solidified structures.

  13. Polarized neutron source and detectors for the TUNL parity-even test of time reversal invariance

    International Nuclear Information System (INIS)

    Huffman, P.R.; Roberson, N.R.; Wilburn, W.S.

    1995-01-01

    The development and implementation of a 10 MHz neutron production target and detector system are presented. The system has been used in a test of parity-even time reversal invariance in neutron transmission through an aligned target. Neutrons were produced via the D(d,n) 3 He reaction using a liquid nitrogen cooled deuterium gas cell. The cryogenic cell required temperature stabilization for minimization of systematic effects. Two four-detector arrays of neutron detectors were developed for 0 degrees transmission measurements and flux monitoring. The system allowed transmission asymmetries to be measured to accuracies better than 10 -6 in a parity-conserving test of time reversal invariance

  14. Polarized neutron tomography of Ni{sub 3}Al and Fe{sub 2}TiSn

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Andreas; Schulz, Michael; Pfleiderer, Christian; Boeni, Peter [Physik Department E21, Technische Universitaet Muenchen, Garching (Germany); Koehler, Anke; Wizent, Nadja; Behr, Guenther [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung Dresden (Germany)

    2009-07-01

    The transition metal compounds Ni{sub 3}Al and Fe{sub 2}TiSn are weakly ferromagnetic metals, for which the magnetic properties are extremely sensitive to composition. We have attempted the growth of polycrystalline and single-crystal rods of these compounds with an UHV compatible image furnace. The polycrystalline starting material as well as the floating-zoned rods have been characterized by means of conventional bulk properties and EDX. As a new method we have additionally carried out polarized neutron tomography. The depolarization of the neutron beam proves to be extremely sensitive to tiny variations of the ferromagnetic transition temperature, thus providing key information on the metallurgical phase diagram and the ideal growth conditions. The possible implications of our observations for the nature of quantum criticality in these compounds are discussed.

  15. Neutron fluxes and spectra of the neutron guide tubes in the upgraded JRR-3

    International Nuclear Information System (INIS)

    Kawabata, Y.; Suzuki, M.; Tsuruno, A.; Onishi, N.

    1992-01-01

    A cold neutron source with two thermal and three cold neutron guide tubes has been installed in the upgraded JRR-3. Neutron fluxes, time-of-flight spectra and the gain of the cold neutron source were measured at the end of the neutron guide tubes. The neutron beam distributions were found by neutron radiography films. (orig.)

  16. CONRAD-2: Cold Neutron Tomography and Radiography at BER II (V7

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2016-11-01

    Full Text Available V7 has widely been recognized as a versatile and flexible instrument for innovative neutron imaging and has made decisive contributions to the development of new methods by exploiting different contrast mechanisms for imaging. The reason for the success in method development is the flexibility of the facility which permits very fast change of the instrument’s configuration and allows for performing non-standard experiments. The ability for complementary experiments with the laboratory X-ray tomographic scanner (MicroCT Lab offers the opportunity to study samples at different contrast levels and spatial resolution scales.

  17. Residual-Charge Induced Memory Effect of Electric Polarization in Multiferroic CuFe1-xGaxO2 as Seen via Polarized Neutron Diffraction

    Science.gov (United States)

    Nakajima, Taro; Mitsuda, Setsuo; Yamazaki, Hiroe; Matsuura, Masato

    2013-02-01

    We have investigated ferroelectric polarization memory effect in a magneto-electric (ME) multiferroic CuFe1-x GaxO2 (CFGO) with x=0.035, which exhibits a spin-driven ferroelectric phase below TC˜ 7 K in zero magnetic field. In a previous study on CFGO(x=0.035), we have reported that the ferroelectric polarization induced by an applied electric field is retrieved after heating the sample to a non-ferroelectric high-temperature phase and then cooling down to the ferroelectric phase without electric field. [Mitsuda et al. Physica B 404 (2009) 2532] By measuring thermally stimulated electric current in detail, the previous study has elucidated that residual charges trapped in the sample are relevant to the memory effect. In the present study, we have performed polarized neutron diffraction measurements on CFGO(x=0.035) with applied electric fields, in order to investigate the multiferroic domain structure, which can reflect spatial distribution of internal electric fields due to the trapped charges. The present results have shown that the effect of the internal electric fields is significantly different from that of the ``uniform'' electric field applied on the first cooling. To explain the present results, we suggest a model that the residual charges are trapped on boundaries between the three types of magnetic domains originating from the trigonal symmetry of the crystal, implying that the presence of the bound charges of the ferroelectric polarization on the domain boundaries is a key to the memory effect in this system.

  18. Spin observables in charged pion photo-production from polarized neutrons in solid HD at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Kageya, Tsuneo [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ho, Dao [Carnegie Mellon Univ., Pittsburgh, PA (United States); Peng, Peng [Univ. of Virginia, Charlottesville, VA (United States); Klein, Franz [George Washington Univ., Washington, DC (United States); Sandorfi, Andrew M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Schumacher, Reinhard A. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2018-04-01

    E asymmetries have been extracted from double-polarizationexperiments in Hall-B of the Thomas Jefferson National Accelerator Facility (JLab). Results have been obtained from the E06-101 (g14) experiment, using circularly polarized photon beams, longitudinally polarized Deuterons in solid HD targets, and the CEBAF Large Acceptance Spectrometer (CLAS). The results cover a range inW from 1.48 to 2.32 GeV. Three independent analyses, using distinctly different methods, have been combined to obtain the final values, which have been published recently. Partial wave analyses (PWA), which have had to rely on a sparse neutron data base, havebeen significantly changed with the inclusion of these g14 asymmetries.

  19. Cross-section model for cold neutron scattering in solid and liquid methane

    CERN Document Server

    Morishima, N

    2002-01-01

    Incoherent neutron scattering cross-sections for solid CH sub 4 in the temperature range of 20.4-90.7 K and liquid CH sub 4 at temperatures between 90.7 and 111.7 K are evaluated. A space-time correlation approach is used to describe a double-differential scattering cross-section which is basically expressed by a generalized frequency distribution. The cross-section model includes molecular translations and rotations as well as intramolecular vibrations. The former are concerned with very short-time free-gas like translation, short-lived vibration and long-time diffusion (only in liquid state). The latter consists of short-time free rotation and long-time isotropic rotational diffusion. Numerical calculations on double-differential and total cross-sections are carried out for incident neutron energies covered 0.1 mu eV to 10 eV. Good agreement with experimental results at many different temperatures is found.

  20. A combined H2/CH4 cold moderator for a short pulsed neutron source

    International Nuclear Information System (INIS)

    Williamson, K.D.; Lucas, A.T.

    1989-01-01

    Both the ISIS (Rutherford-Appleton Laboratory) spallation source and the Los Alamos Neutron Scattering Center (LANSCE) were designed to produce neutrons as a result of an 800-MeV proton beam being incident on a target. Both systems are intended to accept beam intensities up to 200 μA. Cryogenic moderators of liquid hydrogen and methane are either in use or are planned for service at both facilities. Very low temperature methane would be an ideal moderating material as it has a high hydrogen density and many low frequency modes, which facilitate thermalization. Such moderators are in service at two major world facilities, KEK (Japan) and Argonne National Laboratory (USA). Unfortunately, solid methane has very low thermal conductivity and is subject to radiation damage making a moderator of this type impractical for use in high-intensity beam, such as indicated above. This report outlines a possible alternative using small spheres of solid methane in a matrix of supercritical hydrogen at 25 K. 4 figs

  1. Production of neutron-rich isotopes by cold fragmentation in the reaction 197Au + Be at 950 A MeV

    International Nuclear Information System (INIS)

    Benlliure, J.; Pereira, J.; Schmidt, K.H.; Cortina-Gil, D.; Enqvist, T.; Heinz, A.; Junghans, A.R.; Farget, F.; Taieb, J.

    1999-09-01

    The production cross sections and longitudinal-momentum distributions of very neutron-rich isotopes have been investigated in the fragmentation of a 950 A MeV 179 Au beam in a beryllium target. Seven new isotopes ( 193 Re, 194 Re, 191 W, 192 W, 189 Ta, 187 Hf and 188 Hf) and the five-proton-removal channel were observed for the first time. The reaction mechanism leading to the formation of these very neutron-rich isotopes is explained in terms of the cold-fragmentation process. An analytical model describing this reaction mechanism is presented. (orig.)

  2. Setup for polarized neutron imaging using in situ3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline.

    Science.gov (United States)

    Dhiman, I; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X; Jiang, C Y; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3 He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe 3 Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3 He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  3. Setup for polarized neutron imaging using in situ 3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline

    Science.gov (United States)

    Dhiman, I.; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X.; Jiang, C. Y.; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe3Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  4. Interfacial mixing in as-deposited Si/Ni/Si layers analyzed by x-ray and polarized neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debarati, E-mail: debarati@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Basu, Saibal; Singh, Surendra [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Roy, Sumalay; Dev, Bhupendra Nath [Department of Materials Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032 (India)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Room temperature diffusion in Si/Ni/Si trilayer detected through complementary x-ray and polarized neutron reflectometry. Black-Right-Pointing-Pointer Analyses of XPNR data generated the construction of the layered structure in terms of physical parameters along with alloy layers created by diffusion. Black-Right-Pointing-Pointer Scattering length density information from XPNR provided quantitative assessment of the stoichiometry of alloys formed at the Si/Ni and Ni/Si interfaces. - Abstract: Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni-Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.

  5. Reconciling the MOLA, TES, and Neutron Observations of the North Polar CO2 Mass Budget on Mars

    Science.gov (United States)

    Haberle, R. M.; Mattingly, B.; Titus, T. N.

    2003-01-01

    There are now three independent observations of the CO2 polar cap mass budget of Mars' north polar cap. The first is based elevation changes detected by the Mars Orbiter Laser Altimeter (MOLA) on the Mars Global Surveyor (MGS). The second is based on MGS Thermal Emission Spectrometer (TES) broadband observations of the solar and infrared radiation fields at the top of the atmosphere. The third is based on neutron counts measured by the neutron spectrometer (NS) on Odyssey. The TES data are based on an energy balance. The net radiative loss (gain) in a column is balanced by latent heating due condensation (sublimation) of CO2. In calculating the mass budget, the other main energy sources, atmospheric heat transport and subsurface conduction, were neglected. At the pole, atmospheric heat transport is indeed a small term. However, subsurface heat conduction can be significant because at the North Pole water ice, which has a high thermal conductivity compared to bare soil, is a dominant component of the subsurface. Thus, heat conducted down into the ice during summer will slowly bleed back out during fall and winter reducing the amount of CO2 that condenses on the pole. We have taken a first cut at quantifying this effect by fitting a curve to Paige's estimates of the conducted energy flux in his analysis of Viking IRTM data.

  6. Inelastic neutron scattering facilities at the Budapest Neutron Center

    Energy Technology Data Exchange (ETDEWEB)

    Toeroek, Gy.; Nagy, A. [Research Institute for Solid State Physics and Optics, P.O.B.49, 1525 Budapest (Hungary); Lebedev, V.T.; Gordeev, G.P. [Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Zsigmond, G. [Hahn Meitner Institute, Glienicker str 100, 14109 Berlin (Germany)

    2004-11-01

    Two Triple Axis spectrometers are commissioned now at the Budapest Neutron Center. The Thermal Triple Axis Spectrometer (TAST) is installed on the 8-th beam (60 mm diameter) and supplied with a 120 mm-long sapphire crystal placed inside the channel (2 m far from monochromator) to filter fast neutrons. The Eulerian cradle can be placed at the sample position to carry out holographic measurements. Otherwise a normal goniometer (carrying up to 100 kg weight for orientation, e.g. Cryostat/magnet/heavy sample) is used. This spectrometer's resolution was modeled by VITESS program package. The second (cold) neutron spectrometer (ATHOS) on a curved (4200 m) neutron guide is mounted at the 19 m-position from the cold source. The neutron guide 1.5{theta}{sub c}, made of boron glass, is coated with NiTi multilayer. This instrument, developed into the RITA-type spectrometer, is supplied with a 190 x 190 mm{sup 2} position sensitive detector and a polarization option (stacked polarizer). In addition it has the optional COMPACT Neutron Spin Echo setup, based on Larmor precession, for energy analysis with the resolution of 10 {mu}eV. The test measurements are presented. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments

    Directory of Open Access Journals (Sweden)

    Maxime Deutsch

    2014-05-01

    Full Text Available Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.

  8. Polarized neutron study of the magnetic mesostructure in (Pd{sub 1-x}Fe{sub x}){sub 1-y}Mn{sub y}

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, G.P.; Axelrod, L.A.; Lazebnik, I.M.; Zabenkin, V.N. [Petersburg Nuclear Physics Institute, 188300, Gatchina (Russian Federation); Wagner, V. [Physikalisch-Technische Bundesanstalt, 38116, Braunschweig (Germany)

    2002-07-01

    In PdFeMn alloys with different Fe-atom concentrations, the behaviour of both mean magnetization and neutron depolarization in the magnetization/demagnetization process was observed by three-dimensional analysis of neutron-beam polarization. Both magnetization and depolarization have a hysteresis loop for the same values of an applied field. Depolarization loops are sharply distinguished for different alloys. This gives evidence of different magnetic mesostructures in these alloys. (orig.)

  9. Polarized neutron study of the magnetic mesostructure in (Pd sub 1 sub - sub x Fe sub x) sub 1 sub - sub y Mn sub y

    CERN Document Server

    Gordeev, G P; Lazebnik, I M; Zabenkin, V N; Wagner, V

    2002-01-01

    In PdFeMn alloys with different Fe-atom concentrations, the behaviour of both mean magnetization and neutron depolarization in the magnetization/demagnetization process was observed by three-dimensional analysis of neutron-beam polarization. Both magnetization and depolarization have a hysteresis loop for the same values of an applied field. Depolarization loops are sharply distinguished for different alloys. This gives evidence of different magnetic mesostructures in these alloys. (orig.)

  10. Transverse electron polarization in the neutron decay - Direct search for scalar and tensor couplings in weak interaction

    Science.gov (United States)

    Bodek, Kazimierz

    2012-09-01

    The Standard Model (SM) predictions of T-violation for weak decays of systems built up of u and d quarks are by 7 to 10 orders of magnitude lower than the experimental accuracies attainable at present. It is a general presumption that time reversal phenomena are caused by a tiny admixture of exotic interaction terms. Therefore, weak decays provide a favorable testing ground in a search for such feeble forces. Physics with very slow, polarized neutrons has a great potential in this respect. An experiment seeking for small deviations from the SM in two observables, N and R, that are for the first time addressed experimentally in free neutron decay and that are exclusively sensitive to real and imaginary parts of the same linear combination of the scalar and tensor interaction coupling constants has been completed at the Paul Scherrer Institute, Villigen, Switzerland. The analysis of the experimental data has been completed recently leading to, among others, the best direct constraint for the imaginary part of the R-parity violating MSSM contribution. The success of the applied technique results in a new project devoted to the simultaneous measurement of seven correlation coefficients: H, L, N, R, S, U and V. Five of them (H, L, S, U and V) have never before been measured in weak decays. Such a systematic exploration of the transverse electron polarization will generate from the neutron decay alone a complete set of constraints for the real and imaginary parts of the weak scalar and tensor interactions on the level of 5 × 10-4 or better.

  11. Thermal hydraulic analysis of two-phase closed thermosyphon cooling system for new cold neutron source moderator of Breazeale research reactor at Penn State

    Science.gov (United States)

    Habte, Melaku

    A cold neutron source cooling system is required for the Penn State's next generation cold neutron source facility that can accommodate a variable heat load up to about ˜10W with operating temperature of about 28K. An existing cold neutron source cooling system operating at the University of Texas Cold Neutron Source (TCNS) facility failed to accommodate heat loads upwards of 4W with the moderator temperature reaching a maximum of 44K, which is the critical temperature for the operating fluid neon. The cooling system that was used in the TCNS cooling system was a two-phase closed thermosyphon with a reservoir (TPCTR). The reservoir containing neon gas is kept at room temperature. In this study a detailed thermal analysis of the fundamental operating principles of a TPCTR were carried out. A detailed parametric study of the various geometric and thermo-physical factors that affect the limits of the operational capacity of the TPCTR investigated. A CFD analysis is carried out in order to further refine the heat transfer analysis and understand the flow structure inside the thermosyphon and the two-phase nucleate boiling in the evaporator section of the thermosyphon. In order to help the new design, a variety of ways of increasing the operating range and heat removal capacity of the TPCTR cooling system were analyzed so that it can accommodate the anticipated heat load of 10W or more. It is found, for example, that doubling the pressure of the system will increase the capacity index zeta by 50% for a system with an initial fill ratio FR of 1. A decrease in cryorefrigeration performance angle increases the capacity index. For example taking the current condition of the TCNS system and reducing the angle from the current value of ˜700 by half (˜350) will increase the cooling power 300%. Finally based on detailed analytic and CFD analysis the best operating condition were proposed.

  12. Neutron diffraction and optics in noncentrosymmetric crystals New feasibility of a search for neutron EDM

    International Nuclear Information System (INIS)

    Fedorov, V.V.; Voronin, V.V.

    2003-01-01

    Recently strong electric fields (up to 10 9 V/cm) have been discovered, which affect the neutrons moving in noncentrosymmetric crystals. Such fields allow for new polarization phenomena in the neutron diffraction and in the optics and provide, for instance, a new method of a search for the neutron electric dipole moment (EDM). A strong interplanar electric field of the crystal and a sufficiently long time for the neutron passage through the crystal for Bragg angle close to π/2 in the case of Laue diffraction make it possible to exceed the sensitivity achieved with the magnetic resonance method using ultra cold neutrons (UCN method). The pilot setup has been created and mounted at the neutron beam at the WWR-M reactor in Gatchina. It allows to study the optics and the dynamical diffraction of polarized neutrons in thick (1-10 cm) crystals, using the direct diffraction beam and Bragg angles close to 90 deg. . The first experimental results are discussed on observing new effects in both the Laue diffraction and the optics of cold neutrons. These results confirm the opportunity to increase more than by an order of magnitude the sensitivity of the method to neutron EDM, using the diffraction angles close to 90 deg. and give a real prospect to exceed the sensitivity of the UCN method

  13. BET surface area distributions in polar stream sediments: Implications for silicate weathering in a cold-arid environment

    Science.gov (United States)

    Marra, Kristen R.; Elwood Madden, Megan E; Soreghan, Gerilyn S.; Hall, Brenda L

    2014-01-01

    BET surface area values are critical for quantifying the amount of potentially reactive sediments available for chemical weathering and ultimately, prediction of silicate weathering fluxes. BET surface area values of fine-grained (<62.5 μm) sediment from the hyporheic zone of polar glacial streams in the McMurdo Dry Valleys, Antarctica (Wright and Taylor Valleys) exhibit a wide range (2.5–70.6 m2/g) of surface area values. Samples from one (Delta Stream, Taylor Valley) of the four sampled stream transects exhibit high values (up to 70.6 m2/g), which greatly exceed surface area values from three temperate proglacial streams (0.3–12.1 m2/g). Only Clark stream in Wright Valley exhibits a robust trend with distance, wherein surface area systematically decreases (and particle size increases) in the mud fraction downstream, interpreted to reflect rapid dissolution processes in the weathering environment. The remaining transects exhibit a range in variability in surface area distributions along the length of the channel, likely related to variations in eolian input to exposed channel beds, adjacent snow drifts, and to glacier surfaces, where dust is trapped and subsequently liberated during summer melting. Additionally, variations in stream discharge rate, which mobilizes sediment in pulses and influences water:rock ratios, the origin and nature of the underlying drift material, and the contribution of organic acids may play significant roles in the production and mobilization of high-surface area sediment. This study highlights the presence of sediments with high surface area in cold-based glacier systems, which influences models of chemical denudation rates and the impact of glacial systems on the global carbon cycle.

  14. Comparative analysis of the structure of sterically stabilized ferrofluids on polar carriers by small-angle neutron scattering.

    Science.gov (United States)

    Avdeev, M V; Aksenov, V L; Balasoiu, M; Garamus, V M; Schreyer, A; Török, Gy; Rosta, L; Bica, D; Vékás, L

    2006-03-01

    Results of experiments on small-angle neutron scattering from ferrofluids on polar carriers (pentanol, water, methyl-ethyl-ketone), with double-layer sterical stabilization of magnetic nanoparticles, are reported. Several types of spatial structural organization are observed. The structure of highly stable pentanol-based samples is similar to that of stable ferrofluids based on organic non-polar carriers (e.g., benzene) with mono-layer covered magnetic nanoparticles. At the same time, the effect of the interparticle interaction on the scattering is stronger in polar ferrofluids because of the structural difference in the surfactant shell. The structure of the studied methyl-ethyl-ketone- and water-based ferrofluids essentially different from the previous case. The formation of large (>100 nm in size) elongated or fractal aggregates, respectively, is detected even in the absence of external magnetic field, which corresponds to weaker stability of these types of ferrofluids. The structure of the fractal aggregates in water-based ferrofluids does not depend on the particle concentration, but it is sensitive to temperature. A temperature increase results in a decrease in their fractal dimension reflecting destruction of the aggregates. In addition, in water-based ferrofluids these aggregates consist of small (radius approximately 10 nm) and temperature-stable primary aggregates.

  15. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering

    Czech Academy of Sciences Publication Activity Database

    Kohagen, Miriam; Mason, Philip E.; Jungwirth, Pavel

    2016-01-01

    Roč. 120, č. 8 (2016), s. 1454-1460 ISSN 1520-6106 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : molecular dynamics * neutron scattering * agueous sodium chloride Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.177, year: 2016

  16. On the interpretation of flipping ratio measurements on rocking curves in polarized neutron diffraction

    International Nuclear Information System (INIS)

    Dobrzynski, L.

    1980-01-01

    The measurements of the flipping ratio, R, vs crystal misseting angle, σ, from the Bragg position may bring important information on the homogeneity of the mosaic block distribution in ferro or ferrimagnetic crystals. It is shown that even if the sample is free from extinction, a small variation of the flipping ratio may be present if the neutron spin-flipper used in the experiment has efficiency dependence on the neutron wavelength. This effect is rather trivial and may be of importance only if both R and σ are sufficiently large. By far more important effect is due to the multiple Bragg scattering. This phenomenon is also neutron wavelength dependent and depends much on the resolution of the neutron diffractometer. While the differential equations for multiple Bragg scattering are of Zachariassen's type the resolution is treated within the framework of Caglioti et al. theory. It is shown that the multiple scattering, if present, affects seriously the shape of R(σ) and may be a source of errors in the interpretation of e.g. magnetic form factor data. A good example of this is given by the (331) reflection from Cosub(0.92)Fesub(0.08) alloy. (author)

  17. Detection of 10B distributions in histological samples by NCAR using thermal and cold neutrons and photoluminiscent imaging plates. New results

    International Nuclear Information System (INIS)

    Rant, J.; Skvarc, J.; Ilic, R.; Gabel, D.; Bayon, G.; Yanagie, H.; Kobayashi, H.; Lehmann, E.; Kuehne, G.

    1999-01-01

    The Neutron Capture Autoradiography (NCAR) using various Solid State Nuclear Track Detectors (SSNTDs) is a well established and accurate method to detect and measure the distributions of 10 B in the ppm range on macroscopic and microscopic level in biological samples, such as histological sections of tumours loaded with 10 B compounds used for BNCT (e.g. 1,2). recently a new technique of NCAR using sensitive photoluminescent Imaging Plates (IP) has been proposed to detect 10 B distributions in histological sections (3), exploiting excellent detection properties of IP systems such as very high detection sensitivity and quantum detection efficiency, broad linear response and dynamic range, very small image distortion, reusability of IP and possibilities of digital autoradiography. The advantage of IP-NCAR vs. NCAR with SSNTDs should be the much lower neutron fluence (10 7 10 9 vs. 10 10 10 13 n/cm 2 with SSNTDs), no intermediate chemical treatment (track etching) and direct and fast compuitational handling and evaluation of the digitized autoradiographic image. However, the spatial resolution of the present available IP detection systems is somewhat lower (∼ 0,04 mm) than with SSNTDs (∼ 0,01 mm). Another problem with IP NCAR is rather high sensitivity of IP to all types of ionizing radiations. Therefore the background of direct and induced gamma-rays as well as of epithermal and fast neutrons has to be filtered out of thermal neutron beam to be used for IP-NCAR. To improve the signal/background ratio and to increase the detectibility of 10 B we propose to use clean cold neutron beams for the IP-NCAR of 10 B distributions in histological samples in BNCT experiments (4,5). In the present work the recent results of experiments in IP-NCAR with cold neutrons from the neutron radiographic channel of the ORPHEE reactor in Saclay and with the rather clean thermal neutron beam of the NEUTRA neutron radiography facility of the PSI (Villingen) will be presented. For the

  18. The measurement of g1n polarized structure of the neutron by the E154 experiment at SLAC

    International Nuclear Information System (INIS)

    Incerti, Sebastien

    1998-01-01

    This thesis presents the precision measurement of the neutron polarized structure g 1 n performed by the E154 collaboration at the Standford Linear Accelerator Center, USA, in autumn 1995, using a 48.3 GeV polarized electron beam scattered off a polarized Helium 3 target. The scattered electrons were detected using two spectrometer arms, covering the deep inelastic scattering range: 0.0134 2 2 2 at an average value of Q 2 = 5 GeV 2 . Two electromagnetic calorimeters have been designed by the LPC in Clermont-Ferrand and the SphN-CEA in Saclay to measure the scattered electron energy and to eject the contaminating hadron background using, a cellular automaton and a neural network, widely described in this thesis. The analysis performed in Clermont-Ferrand and presented in this document led us to the integral on the measurement region of g 1 n equaling: - 0.34 ± 0.003 STAT ± 0.004 SYST ± 0.001 EVOL at Q 2 = 5 GeV 2 , where our data have been evolved to Q 2 = 5 GeV 2 using the next-to-leading order DGLAP evolution equations and a world parametrization of the polarized parton distributions. The Ellis and Jaffe sum rule is clearly violated. Using different low x extrapolations, our integral is compatible with the Bjorken sum rule. The quark contribution to the nucleon spin is ΔΣ = 29 ± 6 % in the M S-bar scheme and ΔΣ = 37 ± 7% in the AB scheme, at Q 2 = 5 GeV 2 . The gluon contribution seems to be positive and within the range: 0 < ΔG < 2. (author)

  19. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado-Velázquez, M. [Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, 04510 (Mexico); Barrón-Palos, L., E-mail: libertad@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 (Mexico); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Snow, W.M. [Indiana University, Bloomington, IN 47405 (United States)

    2017-05-11

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10{sup −7} rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  20. Polarization and collision velocity dependence of associative ionization in cold Na (3p)-Na(3p) collisions

    NARCIS (Netherlands)

    Meijer, H.A.J.

    1990-01-01

    We studied the polarization dependence of the associative ionization (AI) process Na(3p) + Na(3p) → Na2+ at collision velocities between 100 and 700 m/s (5 and 200 K), using linearly and circularly polarized light for the excitation. We found that the polarization dependence varies strongly in the

  1. Quantitative spatial magnetization distribution in iron oxide nanocubes and nanospheres by polarized small-angle neutron scattering

    International Nuclear Information System (INIS)

    Disch, S; Hermann, R P; Brückel, Th; Wetterskog, E; Salazar-Alvarez, G; Bergström, L; Wiedenmann, A; Vainio, U

    2012-01-01

    By means of polarized small-angle neutron scattering, we have resolved the long-standing challenge of determining the magnetization distribution in magnetic nanoparticles in absolute units. The reduced magnetization, localized in non-interacting nanoparticles, indicates strongly particle shape- dependent surface spin canting with a 0.3(1) and 0.5(1) nm thick surface shell of reduced magnetization found for ∼9 nm nanospheres and ∼8.5 nm nanocubes, respectively. Further, the reduced macroscopic magnetization in nanoparticles results not only from surface spin canting, but also from drastically reduced magnetization inside the uniformly magnetized core as compared to the bulk material. Our microscopic results explain the low macroscopic magnetization commonly found in nanoparticles. (paper)

  2. Amorphous soft-magnetic ribbons studied by ultra-small-angle polarized neutron scattering

    International Nuclear Information System (INIS)

    Badurek, G; Jericha, E; Groessinger, R; Sato-Turtelli, R

    2010-01-01

    When we investigated the magnetic structure of a variety of soft-magnetic amorphous ribbons by means of ultra-small-angle neutron scattering (USANSPOL) we were confronted with one particularly interesting Fe 65.7 Co 18 Si 0.8 B 15.5 ribbon, provided by VAC Hanau. Due to a special thermal treatment during production a field- and stress-induced transverse domain texture was expected. Although the USANSPOL technique encountered its resolution limits during the investigation of this specific sample ribbon, such a texture could indeed be verified.

  3. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  4. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  5. Application of gamma densitometer for measurement of void fraction in liquid hydrogen moderator of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Kim, Myong-Seop; Choi, Jungwoon; Sun, Gwang-Min; Lee, Kye-Hong

    2009-01-01

    The void fraction in the liquid hydrogen used for the moderator of the HANARO cold neutron source (CNS) was measured by using a gamma densitometer technique. A mock-up of the HANARO CNS facility with an electric heating system as the heat source instead of radiations was constructed. The photon transmissions through the hydrogen moderator were simulated to search for an optimum experimental condition. From the simulation, it was confirmed that Am-241 was suitable for the measurement of the void fraction in the liquid hydrogen medium. A gamma densitometer using the Am-241 gamma-ray source was designed and installed at the mock-up of the CNS. The attenuation of 59.5 keV gamma-rays from the Am-241 through the hydrogen medium was measured by using an HPGe detector. The void fraction was determined using the amount of the gamma-ray attenuation. The void fractions in the hydrogen moderator were measured for stable thermo-siphon loops with several electric heat loads applied to the moderator cell of the CNS mock-up. The longitudinal distribution of the void fraction inside the moderator cell was also determined. The void fraction measured at a heat load of 720 W had values of 8-41% depending on the height from the bottom of the moderator cell. The overall void fraction was obtained by volume-weighted averaging of its longitudinal distribution. The void fraction at the nuclear heating power expected at the normal operation condition of the HANARO CNS facility was determined to be about 20%. The large uncertainty was expected in the void fraction determination by a gamma densitometer for the liquid hydrogen medium with the void fraction less than 10%. When the void fraction of the liquid hydrogen was near 20%, the uncertainty in the void fraction determination by using a gamma densitometer became relatively small, and it was regarded as an acceptable level. The measurements for the void fraction will be very useful for the design and operation of the HANARO CNS.

  6. Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison.

    Science.gov (United States)

    Brünger, A T; Karplus, M

    1988-01-01

    A method for the prediction of hydrogen positions in proteins is presented. The method is based on the knowledge of the heavy atom positions obtained, for instance, from X-ray crystallography. It employs an energy minimization limited to the environment of the hydrogen atoms bound to a common heavy atom or to a single water molecule. The method is not restricted to proteins and can be applied without modification to nonpolar hydrogens and to nucleic acids. The method has been applied to the neutron diffraction structures of trypsin, ribonuclease A, and bovine pancreatic trypsin inhibitor. A comparison of the constructed and the observed hydrogen positions shows few deviations except in situations in which several energetically similar conformations are possible. Analysis of the potential energy of rotation of Lys amino and Ser, Thr, Tyr hydroxyl groups reveals that the conformations of lowest intrinsic torsion energies are statistically favored in both the crystal and the constructed structures.

  7. Polarization phenomena in the e-vector d-vector → enp process. Neutron electric form fa>ctor and deuteron structure

    International Nuclear Information System (INIS)

    Rekalo, M.N.; Gakh, G.I.; Rekalo, A.P.

    1987-01-01

    Polarization effects in the e - d→e - np process with longitudinally polarized electrons and vector polarized deuterons have been studied in the relativistic impulse approximation (which takes into account the t-, u-, s-channel pole and contact diagrams). The polarization observables which are most sensitive to the neutron electric form factor G En value have been determined. When calculating both the relativistic Buck-Gross deuteron wave function (DWF) and DWF for the Paris and Reid soft-core potentials are used. In the region of the quasielastic peak (at the nucleon emission angle Θ p =0 deg or 180 deg in c.m.s. of the np-system) the investigated asymmetries are practically independent of the DWF choice. The calculation shows that the asymmetries which are caused by the deuteron spin orientation perpendicular to the momentum transfer are most suitable for the G En determination

  8. The polarized neutron reflectivity and X-ray reflectivity studies of the magnetic profiles of epitaxial Ni80Fe20/Ru multilayers

    International Nuclear Information System (INIS)

    Su, H.-C.; Peir, J.-J.; Lee, C.-H.; Lin, M.-Z.; Wu, P.-T.; Huang, J.C.A.; Tun Zin

    2005-01-01

    The depth profiles of the epitaxial Ni 80 Fe 20 (1 1 1)/Ru(0 0 0 1) multilayers were studied by polarized neutron reflectivity and X-ray reflectivity. At the Ru thickness that the anti-ferromagnetic coupling was found, the magnetic moments between two Ni 80 Fe 20 interlayers show a biquadratic coupling effect with a double unit cell at low applied fields. A magnetic dead layer of about 0.3 nm was also found at the interface boundaries. The maximal polarization effect applied to the Ru layer is less than 0.03μ B

  9. Review on Recent Results from RHIC Polarized Collider; Unexpected Forward Neutron Asymmetry

    Science.gov (United States)

    Nakagawa, Itaru

    The polarized proton-proton collider at RHIC provides an unique opportunity to study the spin structure of the proton. The latest highlights from both transverse and longitudinal RHIC spin program are introduced in this document. For the transverse program, two asymmetry measurements are discussed here which are distinguished by the production mechanism either soft (diffractive) or hard perturbative QCD natures depending on the rapidity region of the hadron production. The former is the very forwardneutron asymmetry measurements which showed unexpectedly drastic dependence on the atomic mass. The latter is the forward pion production whose origin of the large asymmetry has been under debate for theoretical understanding over two decades. For longitudinal program, the latest highlights from the measurements on the gluon and the sea quark spin components of the proton spin are discussed.

  10. Project COLD.

    Science.gov (United States)

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  11. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    The experimental efforts over the past 5 years have been aimed at carrying out ICF shots with spin-polarized D fuel. The authors successfully prepared polarized D in HD, and solved the problems of loading target shells with their carefully prepared isotopic mixtures, polarizing them so that the D polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted into the OMEGA fusion chamber. A principal concern during this past year was overcoming difficulties encountered in maintaining the integrity of the fragile cold target during the multitude of cold-transfers required for the experiment. These difficulties arose from insufficient rigidity of the cold transfer systems, which were constrained to be of small diameter by the narrow central access bore of the dilution refrigerator, and were exacerbated by the multitude of required target shell manipulations between different environments, each with different coupling geometry, including target shell permeation, polarization, storage, transport, retrieval and insertion into OMEGA. The authors did solve all of these problems, and were able to position a cold, high density but unpolarized target with required precision in OMEGA. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was due to mal-timing or insufficient retraction rate of OMEGA's fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spite of this, all elements of the complex experiment the authors originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods they developed are being utilized on the ICF upgrades at Rochester and at Livermore

  12. Investigation of Liquid Fluoropolymers as Possible Materials for Low Temperature Liquid Wall Chambers for Storage Ultra Cold Neutrons

    CERN Document Server

    Pokotilovski, Yu N

    2002-01-01

    Several hydrogen-free liquid low temperature fluoropolymers are investigated from the point of view of their possible use as material for walls of UCN traps with low losses. Viscosity was measured in the temperature range \\sim 150-300 K, and neutron scattering cross sections were measured on the temperature range 10-300 K and in the neutron wavelength range 1-20 \\AA. Some conclusions are made for their possible UCN bottle properties. Quasielastic neutron reflection from the surface of viscous liquid is considered in the frame of Maxwell dynamic model.

  13. Quantum entanglement in manganese(II) hexakisimidazole nitrate: on electronic structure imaging - A polarized neutron diffraction and DFT study

    Science.gov (United States)

    Wallace, Warren A.

    2016-04-01

    Quantum entanglement has been visualized for the first time, in view of the spin density distribution and electronic structure for manganese in manganese(II)hexakisimidazole nitrate. Using polarized neutron diffraction and density functional theory modelling we have found for the complex, which crystallizes in the R3¯ spacegroup, a = b = 12.4898(3) Å, c = 14.5526(4) Å, α = γ = 90°, β = 120°, Z = 3, that spatially antisymmetric and spatially symmetric shaped regions of negative spin density, in the spin density map for manganese, are a result of quantum entanglement of the high spin d5 configuration due to dative imidazole- manganese π- donation and σ-bonding interactions respectively. We have found leakage of the entangled states for manganese observed as regions of positive spin density with spherical (3.758(2) μB) and non-spherical (1.242(3) μB) contributions. Our results, which are supportive of Einstein's theory of general relativity, provide evidence for the existence of a black hole spin density distribution at the origin of an electronic structure and also address the paradoxical views of entanglement and quantum mechanics. We have also found the complex, which is an insulator, to be suitable for spintronic studies.

  14. Design and realization of a sputter deposition system for the in situ- and in operando-use in polarized neutron reflectometry experiments

    Science.gov (United States)

    Schmehl, Andreas; Mairoser, Thomas; Herrnberger, Alexander; Stephanos, Cyril; Meir, Stefan; Förg, Benjamin; Wiedemann, Birgit; Böni, Peter; Mannhart, Jochen; Kreuzpaintner, Wolfgang

    2018-03-01

    We report on the realization of a sputter deposition system for the in situ- and in operando-use in polarized neutron reflectometry experiments. Starting with the scientific requirements, which define the general design considerations, the external limitations and boundaries imposed by the available space at a neutron beamline and by the neutron and vacuum compatibility of the used materials, are assessed. The relevant aspects are then accounted for in the realization of our highly mobile deposition system, which was designed with a focus on a quick and simple installation and removability at the beamline. Apart from the general design, the in-vacuum components, the auxiliary equipment and the remote control via a computer, as well as relevant safety aspects are presented in detail.

  15. Shape coexistence in the N=19 neutron-rich nucleus 31Mg explored by β–γ spectroscopy of spin-polarized 31Na

    Directory of Open Access Journals (Sweden)

    H. Nishibata

    2017-04-01

    Full Text Available The structure of excited states in the neutron-rich nucleus 31Mg, which is in the region of the “island of inversion” associated with the neutron magic number N=20, is studied by β–γ spectroscopy of spin-polarized 31Na. Among the 31Mg levels below the one neutron separation energy of 2.3 MeV, the spin values of all five positive-parity levels are unambiguously determined by observing the anisotropic β decay. Two rotational bands with Kπ=1/2+ and 1/2− are proposed based on the spins and energies of the levels. Comparison on a level-by-level basis is performed between the experimental results and theoretical calculations by the antisymmetrized molecular dynamics (AMD plus generator coordinate method (GCM. It is found that various nuclear structures coexist in the low excitation energy region in 31Mg.

  16. Interferometric study of the effect of laser intensity and polarization on the cold-drawing of virgin polypropylene fibres

    Science.gov (United States)

    Shams El-Din, M. A.; El-Tawargy, A. S.

    2017-11-01

    With the aid of the Mach-Zehnder interferometer, the drawability of polypropylene fibres (PP) was optically studied. The effect of varying the intensity of He-Ne laser on PP opto-mechanical properties was investigated. The state of polarization of the used laser was found to influence the optical and mechanical properties of PP fibres, such as the refractive index, elongation at break, work of rupture and the stress-strain curves. As a key finding, it is found that the PP fibres break at different draw ratios when the state of polarization is changed from 0° to 90°.

  17. Polarimetric neutron scattering

    International Nuclear Information System (INIS)

    Tasset, F.

    2001-01-01

    Polarimetric Neutron Scattering in introduced, both by, explaining methodological issues and the corresponding instrumental developments. After a short overview of neutron spin polarization and the neutron polarization 3d-vector a pictorial approach of the microscopic theory is used to show how a polarized beam interacts with lattice and magnetic Fourier components in a crystal. Examples are given of using Spherical Neutron Polarimetry (SNP) and the corresponding Cryopad polarimeter for the investigation of non-collinear magnetic structures. (R.P.)

  18. Use of neutron and synchrotron X-ray diffraction for evaluation of residual stresses in a 2024-T351 aluminum alloy variable-polarity plasma-arc weld

    Science.gov (United States)

    Ganguly, S.; Fitzpatrick, M. E.; Edwards, L.

    2006-02-01

    The residual stress fields associated with variable-polarity plasma-arc (VPPA) welds in 2024-T351 aluminum alloy plates have been measured nondestructively using neutron and synchrotron X-ray diffraction. Neutron diffraction allows in-depth measurements of the full strain tensor to be made in thick components; synchrotron X-rays allow for rapid measurements of strains inside components, although their penetration is less than that of the neutrons and constraints arising from the diffraction geometry generally lead to only two strain components being easily measurable. Hence, a combination of the two techniques, applied as described herein, is ideal for a detailed nondestructive evaluation of residual stresses in plates. The residual stresses in a 12-mm-thick VPPA-welded aluminum 2024-T351 alloy plate have been measured using neutron diffraction. The stresses were then remeasured by a combination of neutron and synchrotron X-ray diffraction after the plate had been reduced in thickness (or, skimmed) to 7 mm by machining both sides of the weld, mimicking the likely manufacturing operation, should such welds be used in aerospace structures. A strong tensile residual stress field was measured in the longitudinal direction, parallel to the weld, in both the as-welded and skimmed specimens. There was only a slight modification of the residual stress state on skimming.

  19. Magnetic properties of the SiO2(Co)/GaAs interface: Polarized neutron reflectometry and SQUID magnetometry

    Science.gov (United States)

    Ukleev, V. A.; Grigoryeva, N. A.; Dyadkina, E. A.; Vorobiev, A. A.; Lott, D.; Lutsev, L. V.; Stognij, A. I.; Novitskiy, N. N.; Mistonov, A. A.; Menzel, D.; Grigoriev, S. V.

    2012-10-01

    The effect of giant injection magnetoresistance (GIMR) was recently observed in a granular SiO2/(54-75 at. % Co) film on a semiconductor GaAs substrate in a temperature range near T=300 K. The magnetoresistance coefficient reaches a value of 105% in a magnetic field of 1.9 T and at a voltage of 90 V. A structural model of the film was proposed based on the results of the grazing-incidence small-angle scattering (GISAXS) and x-ray reflectivity, which showed a specific interface layer 70-75 Å thick separating bulk SiO2(Co) granular film from the semiconductor substrate. This layer is formed by a monolayer of flattened Co particles which are laterally spaced apart much further than the particles in the bulk film. In the present work, using polarized neutron reflectometry (PNR), we study both the structural and magnetic properties of SiO2(Co) film separately in the bulk and in the interface layer, which is possible due to the depth resolution of the method. Temperature-dependent PNR and magnetization measurements performed by Superconducting Quantum Interference Device (SQUID) revealed the occurrence of two types of magnetic nanoparticles with different blocking temperatures and magnetization. The magnetization hysteresis curve demonstrated specific two-loop structure in fields 0.5-2 T. Thus our self-consistent results of PNR, GISAXS, and SQUID measurements emphasize the role of the interface features in the SiO2(Co)/GaAs heterostructures and show a direction for further development of the GIMR theory.

  20. Neutron and proton tests of different technologies for the upgrade of the cold readout electronics of the ATLAS Hadronic End-cap Calorimeter

    CERN Document Server

    INSPIRE-00030110

    2013-01-01

    The expected increase of total integrated luminosity by a factor ten at the HL-LHC compared to the design goals for LHC essentially eliminates the safety factor for radiation hardness realized at the current cold amplifiers of the ATLAS Hadronic End-cap Calorimeter (HEC). New more radiation hard technologies have been studied: SiGe bipolar, Si CMOS FET and GaAs FET transistors have been irradiated with neutrons up to an integrated fluence of 2.2 x 10^{16} n/cm^2 and with 200 MeV protons up to an integrated fluence of 2.6 x 10^{14} p/cm^2. Comparisons of transistor parameters such as the gain for both types of irradiations are presented.

  1. Probing the neutron star interior and the Equation of State of cold dense matter with the SKA

    NARCIS (Netherlands)

    Watts, A.; Xu, R.; Espinoza, C.; Andersson, N.; Antoniadis, J.; Antonopoulou, D.; Buchner, S.; Dai, S.; Demorest, P.; Freire, P.; Hessels, J.; Margueron, J.; Oertel, M.; Patruno, A.; Possenti, A.; Ransom, S.; Stairs, I.; Stappers, B.

    2015-01-01

    With an average density higher than the nuclear density, neutron stars (NS) provide a unique testground for nuclear physics, quantum chromodynamics (QCD), and nuclear superfluidity. Determination of the fundamental interactions that govern matter under such extreme conditions is one of the major

  2. EXILL - a high-efficiency, high-resolution setup for gamma-spectroscopy at an intense cold neutron beam facility

    Czech Academy of Sciences Publication Activity Database

    Jentschel, M.; Blanc, A.; de France, G.; Koster, U.; Leoni, S.; Mutti, P.; Simpson, G. S.; Krtička, M.; Tomandl, Ivo; Valenta, S.

    2017-01-01

    Roč. 12, č. 11 (2017), č. článku P11003. ISSN 1748-0221 Institutional support: RVO:61389005 Keywords : instrumentation for neutron sources * gamma detectors * spectrometers Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Nuclear physics Impact factor: 1.220, year: 2016

  3. Observation of stars produced during cold fusion

    International Nuclear Information System (INIS)

    Matsumoto, T.

    1992-01-01

    It has been indicated tht multiple-neutron nuclei such as quad-neutrons can be emitted during cold fusion. These multiple-neutrons might bombard the nuclei of materials outside a cold fusion cell to cause nuclear reactions. In this paper, observations of nuclear emulsions that were irradiated during a cold fusion experiment with heavy water and palladium foil are described. Various traces, like stars, showing nuclear reactions caused by the multiple-neutrons have been clearly observed

  4. Study of the dynamic and magnetic properties of solids using inelastic scattering and polarized neutron techniques. Part of a coordinated programme on the use of neutron scattering techniques in the study of solids

    International Nuclear Information System (INIS)

    Iyengar, P.

    1977-12-01

    Magnetic moment density distributions of several cubic spinel ferrites were obtained by using the neutron diffraction technique. The investigated materials were magnetite, MnFe 2 O 4 , MnAlGe, and Cu 2 MnAl. Information about the static and time-averaged behaviour of the magnetic electrons was deduced. The diffuse scattering technique with polarized neutrons which permits to isolate the magnon-scattering profile from other neutron profiles, was utilized to explore the acoustic magnon branches in ferro and ferrimagnetic materials such as MnFe 2 O 4 . The lattice and molecular dynamics has been studied in a number of condensed systems. Librational motions of water molecules in crystal hydrates were determined by the technique of polarization dependence of incoherent scattering cross section. Librations of amino and methyl groups in amino acids have been studied. Mixed salts of various ammonium and potassium compounds were investigated with a view to elucidate the nature of potential function and reorientational motions of reorienting ions

  5. A Measurement of the neutron electric form factor at very large momentum transfer using polaried electrions scattering from a polarized helium-3 target

    Energy Technology Data Exchange (ETDEWEB)

    Kelleher, Aidan [College of William and Mary, Williamsburg, VA (United States)

    2010-02-01

    Knowledge of the electric and magnetic elastic form factors of the nucleon is essential for an understanding of nucleon structure. Of the form factors, the electric form factor of the neutron has been measured over the smallest range in Q2 and with the lowest precision. Jefferson Lab experiment 02-013 used a novel new polarized 3 He target to nearly double the range of momentum transfer in which the neutron form factor has been studied and to measure it with much higher precision. Polarized electrons were scattered off this target, and both the scattered electron and neutron were detected. Gn E was measured to be 0.0242 ± 0.0020(stat) ± 0.0061(sys) and 0.0247 ± 0.0029(stat) ± 0.0031(sys) at Q2 = 1.7 and 2.5 GeV2 , respectively.

  6. Neutron and X-ray diffraction analysis of residual stresses in cold-rolled pearlitic steel sheet

    Czech Academy of Sciences Publication Activity Database

    Seefeldt, M.; Walentek, A.; Van Houtte, P.; Vrána, Miroslav; Lukáš, Petr

    524/525, - (2006), s. 375-380 ISSN 0255-5476 Institutional research plan: CEZ:AV0Z10480505 Keywords : pearlitic steel sheet * cold rolling * residual stresses Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.399, year: 2005

  7. Polarized single crystal neutron diffraction study of the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x =0.024 )

    Science.gov (United States)

    Chatterji, T.; Stunault, A.; Brown, P. J.

    2018-02-01

    We have determined the temperature evolution of the spin and orbital moments in the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x = 0.024) by combining polarized and unpolarized single crystal neutron diffraction data. The sensitivity of the polarized neutron technique has allowed the moment values to be determined with a precision of ≈0.1 μB . Our results clearly demonstrate that, when magnetized by a field of 8 T, the spin and orbital moments in Sm1 -xGdxAl2 are oppositely directed, so that the net magnetization is very small. Below 60 K the contributions from spin and orbital motions are both about 2 μB , with that due to orbital motion being slightly larger than that due to spin. Between 60 and 65 K the contributions of each to the magnetization fall rapidly and change sign at Tcomp ≈67 K , above which the aligned moments recover but with the orbital magnetization still slightly higher than the spin one. These results imply that above Tcomp the small resultant magnetization of the Sm3 + ion is oppositely directed to the magnetizing field. It is suggested that this anomaly is due to polarization of conduction electron spin associated with the doping Gd3 + ions.

  8. On possible contribution of standing wave like spacer dynamics in polymer liquid crystals to quasi-elastic cold neutron scattering spectra

    International Nuclear Information System (INIS)

    Jecl, R.; Cvikl, B.

    1998-01-01

    The quasi-elastic cold neutron incoherent scattering law, QNS, for the assumed case of transversal standing wave type of motion of the linear chain a spacer-of the polyacrylate polymer liquid crystal, based upon the random walk of the particle between two perfectly potential barriers, is derived. The spacer protons are taken to vibrate (within the stationary plane) transversely to the line joining the oxygen atoms in a way where they are all simultaneously displaced in the same direction with amplitudes of the standing wave fundamental mode of the vibration excited. The calculated relevant incoherent scattering law is found to be a non-distinct function of the scattering vector Q, in the sense that the postulated dynamical effect of the spacer protons causes the peak value of the calculated incoherent scattering law, S(Q,ω), to remain constant throughout the experimentally accessible range of the scattering vector Q. It appears that, when the experimental resolution broadening effects is taken into account, the contribution of the postulated dynamical behavior to the measured QNS spectra might be small, particularly so, if dome additional motion of the scatters is present, and consequently the standing wave like spacer dynamics in polymer liquid crystals will be very difficult to be identified uniquely in the quasielastic neutron scattering experiments.(author)

  9. Tourism in Cold Water Islands: A Matter of Contract? Experiences from Destination Management in the Polar North

    Directory of Open Access Journals (Sweden)

    Per Åke Nilsson

    2008-05-01

    Full Text Available Lack of local understanding and low preparedness for tourism characterise many remote communities of the Polar North, thus undermining positive attitudes towards tourism even if tourism is seen as a development force. The relatively new interest in Arctic regions as a tourist destination combined with different exogenous forces like globalization and climate change make the situation even more complex. The peripheral and insular location often renders cruise tourism as the only option. Under these circumstances, the readiness to accept tourism as a development tool varies from destination to destination, ranging from being seen as a passport to development to a threat to local culture and traditional life. In order to bridge these perception gaps, the idea of a mental or written contract between tourists and local residents is discussed.

  10. When combined X-ray and polarized neutron diffraction data challenge high-level calculations: spin-resolved electron density of an organic radical.

    Science.gov (United States)

    Voufack, Ariste Bolivard; Claiser, Nicolas; Lecomte, Claude; Pillet, Sébastien; Pontillon, Yves; Gillon, Béatrice; Yan, Zeyin; Gillet, Jean Michel; Marazzi, Marco; Genoni, Alessandro; Souhassou, Mohamed

    2017-08-01

    Joint refinement of X-ray and polarized neutron diffraction data has been carried out in order to determine charge and spin density distributions simultaneously in the nitronyl nitroxide (NN) free radical Nit(SMe)Ph. For comparison purposes, density functional theory (DFT) and complete active-space self-consistent field (CASSCF) theoretical calculations were also performed. Experimentally derived charge and spin densities show significant differences between the two NO groups of the NN function that are not observed from DFT theoretical calculations. On the contrary, CASSCF calculations exhibit the same fine details as observed in spin-resolved joint refinement and a clear asymmetry between the two NO groups.

  11. Accessible length scale of the in-plane structure in polarized neutron off-specular and grazing-incidence small-angle scattering measurements

    Science.gov (United States)

    Maruyama, R.; Bigault, T.; Wildes, A. R.; Dewhurst, C. D.; Saerbeck, T.; Honecker, D.; Yamazaki, D.; Soyama, K.; Courtois, P.

    2017-06-01

    Polarized neutron off-specular and grazing-incidence small-angle scattering measurements are useful methods to investigate the in-plane structure and its correlation of layered systems. Although these measurements give information on complementary and overlapping length scale, the different characteristics between them need to be taken into account when performed. In this study, the difference in the accessible length scale of the in-plane structure, which is one of the most important characteristics, was discussed using an Fe/Si multilayer together with simulations based on the distorted wave Born approximation.

  12. Effect of lattice distortion on uranium magnetic moments in U4Ru7Ge6 studied by polarized neutron diffraction

    Science.gov (United States)

    Vališka, Michal; Klicpera, Milan; Doležal, Petr; Fabelo, Oscar; Stunault, Anne; Diviš, Martin; Sechovský, Vladimír

    2018-03-01

    In a cubic ferromagnet, small spontaneous lattice distortions are expected below the Curie temperature, but the phenomenon is usually neglected. This study focuses on such an effect in the U4Ru7Ge6 compound. Based on DFT calculations, we propose a lattice distortion from the cubic I m -3 m space group to a lower, rhombohedral, symmetry described by the R -3 m space group. The strong spin-orbit coupling of the uranium ions plays an essential role in lowering the symmetry, giving rise to two different U sites (U1 and U2). Using polarized neutron diffraction in applied magnetic fields of 1 and 9 T in the ordered state (1.9 K ) and in the paramagnetic state (20 K ), we bring convincing experimental evidence of this splitting of the U sites, with different magnetic moments. The data have been analyzed both by maximum entropy calculations and by a direct fit in the dipolar approximation. In the ordered phase, the μL/μS ratio of the orbital and spin moments on the U2 site is remarkably lower than for the free U3 + or U4 + ion, which points to a strong hybridization of the U 5 f wave functions with the 4 d wave functions of the surrounding Ru. On the U1 site, the μL/μS ratio exhibits an unexpectedly low value: the orbital moment is almost quenched, like in metallic α -uranium. As a further evidence of the 5 f -4 d hybridization in the U4Ru7Ge6 system, we observe the absence of a magnetic moment on the Ru1 site, but a rather large induced moment on the Ru2 site, which is in closer coordination with both U positions. Very similar results are obtained at 20 K in the ferromagnetic regime induced by the magnetic field of 9 T . This shows that applying a strong magnetic field above the Curie temperature also leads to the splitting of the uranium sites, which further demonstrates the intimate coupling of the magnetic ordering and structural distortion. We propose that the difference between the magnetic moment on the U1 and U2 sites results from the strong spin

  13. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.; Berger, E.; Kasen, D.; Metzger, B. D.; Elias, J.; Briceño, C.; Alexander, K. D.; Blanchard, P. K.; Chornock, R.; Cowperthwaite, P. S.; Eftekhari, T.; Fong, W.; Margutti, R.; Villar, V. A.; Williams, P. K. G.; Brown, W.; Annis, J.; Bahramian, A.; Brout, D.; Brown, D. A.; Chen, H. -Y.; Clemens, J. C.; Dennihy, E.; Dunlap, B.; Holz, D. E.; Marchesini, E.; Massaro, F.; Moskowitz, N.; Pelisoli, I.; Rest, A.; Ricci, F.; Sako, M.; Soares-Santos, M.; Strader, J.

    2017-10-16

    We present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the SOAR and Magellan telescopes; the UV spectrum was obtained with the \\textit{Hubble Space Telescope} at 5.5 days. Our data reveal a rapidly-fading blue component ($T\\approx5500$ K at 1.5 days) that quickly reddens; spectra later than $\\gtrsim 4.5$ days peak beyond the optical regime. The spectra are mostly featureless, although we identify a possible weak emission line at $\\sim 7900$ \\AA\\ at $t\\lesssim 4.5$ days. The colours, rapid evolution and featureless spectrum are consistent with a "blue" kilonova from polar ejecta comprised mainly of light $r$-process nuclei with atomic mass number $A\\lesssim 140$. This indicates a sight-line within $\\theta_{\\rm obs}\\lesssim 45^{\\circ}$ of the orbital axis. Comparison to models suggests $\\sim0.03$ M$_\\odot$ of blue ejecta, with a velocity of $\\sim 0.3c$. The required lanthanide fraction is $\\sim 10^{-4}$, but this drops to $<10^{-5}$ in the outermost ejecta. The large velocities point to a dynamical origin, rather than a disk wind, for this blue component, suggesting that both binary constituents are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta, the high mass favors a small neutron star radius of $\\lesssim 12$ km. This mass also supports the idea that neutron star mergers are a major contributor to $r$-process nucleosynthesis.

  14. Cold-neutron depth profiling as a research tool for the study of surface oxides on metals

    International Nuclear Information System (INIS)

    Tun, Z.; Bohdanowicz, T.

    2009-01-01

    Full text: The shiny surface of most metals, with the exceptions of gold and platinum, is actually coated with a thin layer of oxide. Although typically only a few nanometres (nm) thick, the oxide layer is key for the metal's survival in our 02-containing atmosphere. Consequently, there is a continuing need to develop experimental techniques to study oxide layers on metals. The need for a technique that could track the movement of an oxygen-containing layer first came to our attention when we studied the growth of anodic oxide on Ti with neutron reflectometry. As new oxide grew with oxygen ions derived from an aqueous solution, a small amount of hydrogen was found to be incorporated into the oxide layer, and remained adjacent to the oxide/water interface. Whether the H remains attached to its companion 0, i.e., as an OH ion, or if the ion dissociates once inside the oxide layer is unknown. Whether the original air-grown oxide acts as a passive screen during anodization, or if it plays an active in the hopping of ions from site to site is also unknown. These questions could be answered unambiguously only if we can somehow label the original 0 atoms. Isotopic labeling combined with neutron scattering is not an option since the coherent scattering lengths of all three 0 isotopes are very similar. Fortunately, one of the isotopes, 170, is sensitive to neutron depth-profiling via the (n,a) reaction (1). We hereby report encouraging results obtained by a preliminary experiment carried out to assess the potential of this technique.

  15. A measurement of correlation parameters in the decay of polarized free neutrons: The abBA experiment

    Science.gov (United States)

    Barrón-Palos, L.; Chávez, E.; Crawford, C.; Curiel-García, Q.; Huerta, A.; Juárez-Rosete, M. A.; Marín-Lámbarri, D. J.; Martin, E.; Ortiz, M. E.; Penttilä, S. I.; Rodríguez-Zamora, P.; Salas, A.; Tang, Z.; Wilburn, W. S.

    2010-07-01

    The abBA experiment will measure, in the same apparatus, four correlation parameters in the free neutron β-decay: the electron-antineutrino angular correlation (a), the Fierz interference term (6), and the asymmetries, with respect to the neutron spin direction, of the electron (A)and antineutrino (B).The precise determination of these parameters, together with the neutron lifetime, will provide important information about the Standard Model (SM) and will establish constraints for new physics. In this paper we describe the experimental methodology of abBA as well as some of the advances that have been done so far.

  16. A measurement of correlation parameters in the decay of polarized free neutrons: The abBA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Barron-Palos, L; Chavez, E; Curiel-Garcia, Q; Huerta, A; Juarez-Rosete, M A; Marin-Lambarri, D J; Ortiz, M E [Universidad Nacional Autonoma de Mexico, Mexico, D.F. 04510 (Mexico); Crawford, C; Martin, E [University of Kentucky, Lexington, KY 40506 (United States); Penttilae, S I [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Salas, A; Wilburn, W S [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tang, Z [Indiana University, Bloomington, IN 47405 (United States); RodrIguez-Zamora, P, E-mail: libertad@fisica.unam.m

    2010-07-01

    The abBA experiment will measure, in the same apparatus, four correlation parameters in the free neutron {beta}-decay: the electron-antineutrino angular correlation (a), the Fierz interference term (6), and the asymmetries, with respect to the neutron spin direction, of the electron (A)and antineutrino (B).The precise determination of these parameters, together with the neutron lifetime, will provide important information about the Standard Model (SM) and will establish constraints for new physics. In this paper we describe the experimental methodology of abBA as well as some of the advances that have been done so far.

  17. A measurement of correlation parameters in the decay of polarized free neutrons: The abBA experiment

    International Nuclear Information System (INIS)

    Barron-Palos, L; Chavez, E; Curiel-Garcia, Q; Huerta, A; Juarez-Rosete, M A; Marin-Lambarri, D J; Ortiz, M E; Crawford, C; Martin, E; Penttilae, S I; Salas, A; Wilburn, W S; Tang, Z; RodrIguez-Zamora, P

    2010-01-01

    The abBA experiment will measure, in the same apparatus, four correlation parameters in the free neutron β-decay: the electron-antineutrino angular correlation (a), the Fierz interference term (6), and the asymmetries, with respect to the neutron spin direction, of the electron (A)and antineutrino (B).The precise determination of these parameters, together with the neutron lifetime, will provide important information about the Standard Model (SM) and will establish constraints for new physics. In this paper we describe the experimental methodology of abBA as well as some of the advances that have been done so far.

  18. Cold fusion

    International Nuclear Information System (INIS)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik

    1995-02-01

    So called 'cold fusion phenomena' are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording 4 He, 3 He, 3 H, which are not rich in quantity basically. An experiment where plenty of 4 He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author)

  19. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  20. No evidence for orbital loop currents in charge-ordered YBa2Cu3O6 +x from polarized neutron diffraction

    Science.gov (United States)

    Croft, T. P.; Blackburn, E.; Kulda, J.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Hayden, S. M.

    2017-12-01

    It has been proposed that the pseudogap state of underdoped cuprate superconductors may be due to a transition to a phase which has circulating currents within each unit cell. Here, we use polarized neutron diffraction to search for the corresponding orbital moments in two samples of underdoped YBa2Cu3O6 +x with doping levels p =0.104 and 0.123. In contrast to some other reports using polarized neutrons, but in agreement with nuclear magnetic resonance and muon spin rotation measurements, we find no evidence for the appearance of magnetic order below 300 K. Thus, our experiment suggests that such order is not an intrinsic property of high-quality cuprate superconductor single crystals. Our results provide an upper bound for a possible orbital loop moment which depends on the pattern of currents within the unit cell. For example, for the CC-θI I pattern proposed by Varma, we find that the ordered moment per current loop is less than 0.013 μB for p =0.104 .

  1. Neutron Compound Refractive Prisms - DOE SBIR Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, Jr, Jay Theodore

    2011-06-25

    The results of the research led to a pulsed electromagnetic periodic magnetic field array (PMF), which coupled with a pair of collimation slits, and a mechanical chopper slit, were able to deflect spin-up neutrons to a band of line-fused neutrons a focal plane heights that correspond to the time-varying magnetic field amplitude. The electromagnetic field PMF produced 5.4 pulses per minute in which each pulse was 50 msec in duration with a full width half maximum (FWHM) of 7.5 msec. The calculated 7.7 mm vertical height of the band of focused spin-up neutrons corresponded closely to the measured 7.5 mm height of the center line of the imaged band of neutrons. The band of deflected spin-up neutrons was 5 mm in vertical width and the bottom of the band was 5 mm above the surface of the PMF pole. The limited exposure time of 3 hours and the smaller 0.78 T magnetic field allowed focused and near focused neutrons of 1.8 to 2.6 neutrons, which were in the tails of the McClellan Nuclear Radiation Center Bay 4 Maxwell Boltzmann distribution of neutrons with peak flux at 1.1-1.2. The electromagnetic PMF was expected to produces a 2.0 T peak magnetic field amplitude, which would be operational at a higher duty factor, rather than the as built 7.5 msec FWHM with pulse repetition frequency of 5.4 pulses per minute. The fabricated pulsed electromagnetic PMF with chopper is expected to perform well on a cold, very cold or ultra cold beam line as a spectrometer or monochromator source of spin-up polarized neutron. In fact there may be a possible use of the PMF to do ultra-cold neutron trapping, see paper by A. I. Frank1, V. G. Nosov, Quantum Effects in a One-Dimensional Magnetic Gravitational Trap for Ultracold Neutrons, JETP Letters, Vol. 79, No. 7, 2004, pp. 313-315. The next step is to find a cold or very cold neutron facility, where further testing or use of the pulsed magnetic field PMF can be pursued.

  2. Neutron beam instruments for neutron science at HANARO

    International Nuclear Information System (INIS)

    Kim, Y.K.

    2009-01-01

    HANARO (Highly Advanced Neutron Application Reactor) came on line as the first criticality achieved in 1995. Since then a lot of experimental facilities for various utilizations have been gradually installed over the years up until now. Neutron science actually began with the neutron radiography facility completed in 1997. Thereafter, a series of thermal neutron beam instruments have been added and opened for the users. Some of them are high resolution power diffractometer, four circle diffractometer, small angle neutron spectrometer, and vertical-type reflectometer. The cold neutron research facility project was initiated in 2003, which envisions installation of cold neutron source, related systems, 5 neutron guides, and 7 instruments to satisfy the needs of cold neutron beam as the indispensable tool in NT, BT and other emerging technologies. Cold neutron guide building had been completed in October, 2008. Cold neutrons are planned to be produced later this year. Installations of neutron guides and associated instruments are to be finalized by the middle of 2010, ready for use. A 20 m detector vacuum tank and 20 m pre-sample flight path for 40 m SANS are already in place at the guide hall. Currently, there are about 450 users working with thermal neutron instruments. Once cold neutron instruments are available, we expect the number of users will double within next 3 years. (author)

  3. Investigation of structure and polar domain dynamics of Sr1-xCaxTiO3 compounds by using neutron scattering

    International Nuclear Information System (INIS)

    Tyagi, Shekhar; Sharma, Gaurav; Sathe, V.G.

    2016-01-01

    Sr 1-x Ca x TiO 3 (SCT) compound shows very interesting behaviour. It behaves like a relax or ferroelectric in the concentration range of (0.016polar domains with the application of pressure is reflected in our pressure dependent Raman spectroscopy studies. We probed the effect of high pressure on the local Nano-polar domains phase. We concluded that the rotation of octahedra and shifting of Ti atoms from the centre of unit cell upon doping as well increasing external pressure plays an important role in formation of nano-domains. Therefore, we would like to further extend these studies by using temperature dependent neutron diffraction studies. Unlike x-rays, neutron is more sensitive towards the position of ions in unit cell and hence we expect an accurate information of the displacement of ions and tilt of oxygen octahedral in the two regions i.e. relaxor and anti-ferroelectric regions. We propose to carry out temperature dependent neutron diffraction studies in four compositions, x=0.0, 0.06, 0.25 and 0.35 across the transition temperature. (author)

  4. Characterization of neutron supermirror V-bender

    Energy Technology Data Exchange (ETDEWEB)

    Shin, E. J.; Seong, B. S.; Lee, J. S.; Hong, K. P.; Choi, B. H.; Lee, C. H

    2004-05-15

    Neutron supermirror is used not only for neutron guide tubes that their make it possible to transmit neutrons for long distance with low losses in intensity but for neutron benders used as a beam splitter. These devices are of main components of advanced neutron diffractometer or spectrometer with cold neutrons. In this report, the basic principles and applications of neutron guide tube and neutron supermirror as well as the performance test results of neutron V-bender were introduced. These information will be used for the development of advance cold neutron spectrometers in the future.

  5. Characterization of neutron supermirror V-bender

    International Nuclear Information System (INIS)

    Shin, E. J.; Seong, B. S.; Lee, J. S.; Hong, K. P.; Choi, B. H.; Lee, C. H.

    2004-05-01

    Neutron supermirror is used not only for neutron guide tubes that their make it possible to transmit neutrons for long distance with low losses in intensity but for neutron benders used as a beam splitter. These devices are of main components of advanced neutron diffractometer or spectrometer with cold neutrons. In this report, the basic principles and applications of neutron guide tube and neutron supermirror as well as the performance test results of neutron V-bender were introduced. These information will be used for the development of advance cold neutron spectrometers in the future

  6. Recent developments in very low energy neutron technology

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Kawabata, Yuji; Yamaguchi, Akira; Yoshiki, Hajime.

    1993-01-01

    In this report, the recent state of the research and technical development of the neutrons in the energy region below 0.5 meV is introduced. The neutrons in this region are further divided into very cold neutrons (VCN) and ultracold neutrons (UCN). The UCNs are known by such characteristic behavior that they can be confined in a neutron bottle for long time. The attempt to verify the break of T conversion symmetry using neutrons is carried out. The experiment to show the break of T conversion symmetry by grasping the asymmetry of particle emission accompanying the beta decay of polarized neutrons is conceivable. In these cases, the use of UCNs in neutron bottles is effective. The optical properties of VCNs and UCNs are peculiar and resemble to those of light. The only VCN source in Japan is installed in the liquid deuterium CN source in the graphite facility of the KUR. VCNs are taken out from the reactor, and are converted to UCNs using a neutron turbine. The characteristics of an UCN bottle were measured, and the life of neutrons was determined as 887.6 ± 3s. The UCN experiment using superfluid helium was carried out, and the application of gravity to UCN spectrometry was developed as NESSIE. (K.I.)

  7. Cold Urticaria

    Science.gov (United States)

    Cold urticaria Overview Cold urticaria (ur-tih-KAR-e-uh) is a skin reaction to cold that appears within minutes after cold exposure. Affected skin develops reddish, itchy welts (hives). People with cold urticaria experience widely different symptoms. ...

  8. Investigation of magnetic mesostructure of (Pd{sub 0.984}Fe{sub 0.016}){sub 0.95}Mn{sub 0.05} alloy by polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, G. [Petersburg Nuclear Physics Institute RAS, 188300 Gatchina, St. Petersburg (Russian Federation)]. E-mail: ggordev@pnpi.spb.ru; Zabenkin, V. [Petersburg Nuclear Physics Institute RAS, 188300 Gatchina, St. Petersburg (Russian Federation); Axelrod, L. [Petersburg Nuclear Physics Institute RAS, 188300 Gatchina, St. Petersburg (Russian Federation); Lazebnik, I. [Petersburg Nuclear Physics Institute RAS, 188300 Gatchina, St. Petersburg (Russian Federation); Wagner, V. [Physikalish-Technishe Bundesanstalt D-38116, Braunschweig (Germany); Eckerlebe, H. [Forschung Zentrum GKSS, Geesthacht (Germany)

    2007-07-15

    Neutron depolarization measurements and a simple model for depolarization were used to determine the geometrical sizes of magnetic inhomogeneities in the (Pd{sub 0.984}Fe{sub 0.016}){sub 0.95}Mn{sub 0.05} alloy. Polarized small angle scattering shows an asymmetric part, which should be attributed to a chiral ordering of the spins.

  9. Spin-wave dynamics in Invar Fe sub 6 sub 5 Ni sub 3 sub 5 alloy studied by small-angle polarized neutron scattering

    CERN Document Server

    Grigoriev, S V; Deriglazov, V V; Okorokov, A I; Dijk, N H V; Brück, E; Klaasse, J C P; Eckerlebe, H; Kozik, G

    2002-01-01

    Spin dynamics in Fe sub 6 sub 5 Ni sub 3 sub 5 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below T sub C =485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping GAMMA were obtained by fitting the antisymmetrical contribution to the scattering. The spin-wave stiffness extrapolated by a (T/T sub C) sup 5 sup / sup 2 law to T=0 K is D sub 0 =117+-2 meVA sup 2 , which is somewhat smaller than the spin-wave stiffness obtained by triple-axis spectrometry. (orig.)

  10. Study of magnetic thin films by polarized neutron reflectivity. Off-specular diffusion on periodical structures; Etude de couches minces magnetiques par reflectivite de neutrons polarises. Diffusion non speculaire sur des structures periodiques

    Energy Technology Data Exchange (ETDEWEB)

    Ott, F

    1998-11-26

    Theoretical (Zeeman energy effects) and experimental (beam polarisation problems) progress have been made in the understanding of polarized neutron reflectivity with polarisation analysis. It has been shown that modelization and numerical simulations makes it possible to avoid to have to systematically measure a full set of reflectivity curves for each field and temperature condition. It has been possible to determine a magnetic profile as a function of the field in a magnetic bilayer system by using only a few points in the reciprocal space. This technique allows to considerable reduce the experiment time. In single nickel layer systems, we have shown that it is possible to induce magnetic rotation inhomogeneities when these systems are subjects to deformation strains. The effect are related to magneto-elastic constants gradients. In trilayer systems, with a ME constant modulation, we have been able to induce large magnetic rotation gradients. A new magneto-optic technique to measure the magnetization direction without rotating the magnetic field has been developed. The field of neutron reflectivity has been extended to off-specular studies. It has been possible to account quantitatively of the off-specular diffusion on 2-D model systems (prepared by optical lithography). This new technique should make it possible in the future to determine magnetic structures with a in-depth as well as lateral resolution. (author)

  11. Dence Cold Matter

    Directory of Open Access Journals (Sweden)

    Stavinskiy Alexey

    2014-04-01

    Full Text Available Possible way to create dense cold baryonic matter in the laboratory is discussed. The density of this matter is comparable or even larger than the density of neutron star core. The properties of this matter can be controlled by trigger conditions. Experimental program for the study of properties of dense cold matter for light and heavy ion collisions at initial energy range √sNN~2-3GeV is proposed..

  12. Visualization of water usage and photosynthetic activity of street trees exposed to 2 ppm of SO2-A combined evaluation by cold neutron and chlorophyll fluorescence imaging

    International Nuclear Information System (INIS)

    Matsushima, U.; Kardjilov, N.; Hilger, A.; Manke, I.; Shono, H.; Herppich, W.B.

    2009-01-01

    Photosynthetic efficacy and auto-exhaust-fume resistance of street trees were evaluated by cold neutron radiography (CNR) with D 2 O tracer and chlorophyll fluorescence (CF) imaging. With these techniques, information on the responses of water usage and photosynthetic activity of plants exposed to simulate toxic auto-exhaust fumes (2 ppm SO 2 in air) were obtained. Branches of hibiscus trees were detached, placed into a tub with aerated water and used for the experiments after rooting. A CF image was taken before SO 2 was applied for 1 h. During the experiment, CNR and CF imaging were conduced. H 2 O and D 2 O in the plant container were exchanged every 30 min to observe water uptake. D 2 O tracer clearly showed water uptake into the hibiscus stem during each treatment. When the atmosphere was changed from simulated auto-exhaust fumes to normal air again, the amount of D 2 O and, hence, water uptake increased. CF imaging was well suited to evaluate the effects of SO 2 as simulated toxic auto-exhaust fumes on plants. The maximum photochemical efficiency (F v /F m ), a sensitive indicator of the efficacy and the integrity of plants' photosynthesis, immediately dropped by 30% after supplying the simulated auto-exhaust fumes. This indicates that toxic auto-exhaust fumes negatively affected the photosynthetic activity of hibiscus leaves. Simultaneous CNR and CF imaging successfully visualized variations of photosynthetic activity and water uptake in the sample. Thus, this combination method was effective to non-destructive analyze the physiological status of plants.

  13. Contrast variation by dynamic nuclear polarization and time-of-flight small-angle neutron scattering. I. Application to industrial multi-component nanocomposites.

    Science.gov (United States)

    Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-Ichi; Ohishi, Kazuki; Suzuki, Jun-Ichi

    2016-12-01

    Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization ( P H ). The following samples were prepared: (i) a binary mixture of styrene-butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = -35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å -1 ) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å -1 ) decreased with increasing P H , which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H . At P H = -35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix

  14. Contrast variation by dynamic nuclear polarization and time-of-flight small-angle neutron scattering. I. Application to industrial multi-component nanocomposites1

    Science.gov (United States)

    Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-ichi; Ohishi, Kazuki; Suzuki, Jun-ichi

    2016-01-01

    Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization (P H). The following samples were prepared: (i) a binary mixture of styrene–butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = −35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å−1) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å−1) decreased with increasing P H, which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H. At P H = −35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix

  15. What are the mesoscopic magnetic inhomogeneities in the dilute PdFeMn alloy? Polarized neutron study

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, G.; Axelrod, L.; Zabenkin, V.; Lazebnik, I.; Grigoriev, S.; Wagner, V.; Eckerlebe, H

    2003-07-01

    The 3D analysis of neutron depolarization was carried out for different thermomagnetic treatment of the dilute PdFeMn alloy versus temperature and magnetic field applied in magnetizing/demagnetizing cycles. Both the macroscopic magnetization and the mean fluctuation of local magnetization behavior were subtracted from experimental data. A complicated behavior of the latter was observed. The hysteresis of local magnetization fluctuations is found out but that of macroscopic magnetization is practically absent. The effort to apply the simple model for the description of magnetic inhomogeneities was made in order to understand the mesostructure of this alloy.

  16. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  17. Neutron imaging and tomography with MCPs

    OpenAIRE

    Pinto, Serge Duarte; Ortega, Raquel; Ritzau, Steve; Pasquale, David; Laprade, Bruce; Mrotek, Sharon; Gardell, Sean; Zhou, Zhou; Plomp, Jeroen; van Eijck, Lambert; Bilheux, Hassina; Dhiman, Indu

    2017-01-01

    A neutron imaging detector based on neutron-sensitive microchannel plates (MCPs) was constructed and tested at beamlines of thermal and cold neutrons. The MCPs are made of a glass mixture containing B-10 and natural Gd, which makes the bulk of the MCP an efficient neutron converter. Contrary to the neutron sensitive scintillator screens normally used in neutron imaging, spatial resolution is not traded off with detection efficiency. While the best neutron imaging scintillators have a detectio...

  18. Effect of surfactant excess on the stability of low-polarity ferrofluids probed by small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Petrenko, V. I., E-mail: vip@nf.jinr.ru; Avdeev, M. V. [Joint Institute for Nuclear Research (Russian Federation); Bulavin, L. A. [Taras Shevchenko National University of Kyiv (Ukraine); Almasy, L. [Hungarian Academy of Science, Wigner Research Centre for Physics (Hungary); Grigoryeva, N. A. [St. Petersburg State University (Russian Federation); Aksenov, V. L. [National Research Centre “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation)

    2016-01-15

    The structures of ferrofluids (FFs) based on nonpolar solvent decahydronaphthalene, stabilized by saturated monocarboxylic acids with hydrocarbon chains of different lengths, C16 (palmitic acid) and ?12 (lauric acid), with an excess of acid molecules, have been studied by small-angle neutron scattering. It is found that the addition of acid to an initially stable system with optimal composition leads to more significant structural changes (related to aggregation) than those observed previously for this class of FFs. A comparison of the influence of monocarboxylic acids on the stability of nonpolar FFs suggests that the enhancement of aggregation is much more pronounced in the case of palmitic acid excess. This fact confirms the conclusion of previous studies, according to which an increase in the hydrocarbon chain length in a saturated acid reduces the efficiency of the corresponding FF stabilization.

  19. Characterization of a solid deuterium converter for ultra-cold neutrons (UCN) in the framework of the Mini-D{sub 2} project at the FRM-II reactor in Munich

    Energy Technology Data Exchange (ETDEWEB)

    Tortorella, D.

    2007-02-07

    Spontaneous breaking of fundamental symmetries is an attractive topic in modern particles physic. Understanding qualitative and quantitative the parameters involved in these kind of processes could help to explain the unbalanced presence in the universe of matter (baryons) with respect to antimatter (anti-baryons). Due to their intrinsic properties, ultra cold neutrons (UCN) are excellent candidates in experiments measuring with high level of accuracy parameters like the electric dipole moment (EDM), the axial-vector coupling constant (g{sub A}), the neutron lifetime ({tau}{sub n}) or in search of quantum effect of gravity. In this work are presented several contributions in the framework of the Mini-D2 project, an innovative strong UCN source under construction at the FRM-II reactor in Munich. An important component of this facility, the solid deuterium UCN converter, is one subject of the thesis. (orig.)

  20. Characterization of a solid deuterium converter for ultra-cold neutrons (UCN) in the framework of the Mini-D2 project at the FRM-II reactor in Munich

    International Nuclear Information System (INIS)

    Tortorella, D.

    2007-01-01

    Spontaneous breaking of fundamental symmetries is an attractive topic in modern particles physic. Understanding qualitative and quantitative the parameters involved in these kind of processes could help to explain the unbalanced presence in the universe of matter (baryons) with respect to antimatter (anti-baryons). Due to their intrinsic properties, ultra cold neutrons (UCN) are excellent candidates in experiments measuring with high level of accuracy parameters like the electric dipole moment (EDM), the axial-vector coupling constant (g A ), the neutron lifetime (τ n ) or in search of quantum effect of gravity. In this work are presented several contributions in the framework of the Mini-D2 project, an innovative strong UCN source under construction at the FRM-II reactor in Munich. An important component of this facility, the solid deuterium UCN converter, is one subject of the thesis. (orig.)

  1. Advances in neutron tomography

    Indian Academy of Sciences (India)

    much improved test experiments using polarized neutrons for radiographic imaging. For this purpose the CONRAD instrument of the HMI was equipped with polarizing and analysing benders very similar to conventional scattering experiments using polarized neu- trons. Magnetic fields in different coils and in samples ...

  2. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    Our experimental efforts over the past 5 years have been aimed at cazrying out ICF shots with spin-polarized 0 fuel. We successfully prepared polarized 0 in HD, and solved the problems of loading target shells with our carefully prepared isotopic -rnixt.l.l?-es, polarizing them so that the 0 polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted fusion chamber. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was dus to mal-timing or insufficient retraction rate of OMEGA'S fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spits of this, all alements of the complex experiment we originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods we developed are being utilized on the ICF upgrades at Rochester and at Livermore. In addition to the solution of the interface problems, we obtained novel results on polymer shell characteristics at low temperatures, and continuation of these experiments is c = ently supported by KLUP. Extensive additional mappings were ca=ied out of nuclear spin relaxation rates of H and D in solid HD in the temperature-magnetic field rangs of 0.01 to 4.2K and 0 - 13 Tesla. New phenomena were discovered, such as association of impurity clustering with very low temperature motion, and inequality of the growth-rate and decay-rate of the magnetization

  3. Study of the nuclear structure far from stability: Coulomb excitation of neutron-rich Rb isotopes around N=60; Production of nuclear spin polarized beams using the tilted foils technique

    International Nuclear Information System (INIS)

    Sotty, C.

    2013-01-01

    The underlying structure in the region A ∼ 100, N ∼ 60 has been under intensive and extensive investigation, mainly by β-decay and γ-ray spectroscopy from fission processes. Around N ∼ 60, by adding just few neutrons, protons a rapid shape change occurs from spherical-like to well deformed g.s. shape. Shape coexistence has been observed in the Sr and Zr nuclei, and is expected to take place in the whole region. The mechanisms involved in the appearance of the deformation is not well understood. The interplay between down-sloping and up-sloping neutron Nilsson orbital is evoked as one of the main reasons for the sudden shape change. However, a clear identification of the active proton and neutron orbitals was still on-going. For that purpose, the neutron rich 93;95;97;99 Rb isotopes have been studied by Coulomb excitation at CERN (ISOLDE) using the REX-ISOLDE post-accelerator and the MINIBALL setup. The completely unknown structures of 97;99 Rb have been populated and observed. Prompt γ-ray coincidences of low-lying states have been observed and time-correlated in order to build level schemes. The associated transition strengths have been extracted with the GOSIA code. The observed matrix elements of the electromagnetic operator constituted new inputs of further theoretical calculations giving new insight on the involved orbitals. The sensitivity of such experiment can be increased using nuclear spin polarized radioactive ion beam. For that purpose the Tilted Foils Technique (TFT) of polarization has been investigated at CERN. This technique consists to spin polarize the ion beam, passing through thin foils tilted at an oblique angle with respect to the beam direction. The initially obtained atomic polarization is transferred to the nucleus by hyperfine interaction. This technique does not depend on the chemical nature of the element. Short lived nuclei can be polarized in-flight without any need to be stopped in a catcher. It opens up the possibility to

  4. Non magnetic neutron spin quantum precession using multilayer spin splitter and a phase-spin echo interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, T.; Tasaki, S.; Kawai, T.; Akiyoshi, T. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Achiwa, N.; Hino, M.; Otake, Y.; Funahashi, H.

    1996-08-01

    The authors have developed cold neutron optics and interferometry using multilayer mirrors. The advantages of the multilayer mirrors are their applicability to long wavelength neutrons and a great variety of the mirror performance. The idea of the present spin interferometry is based on nonmagnetic neutron spin quantum precession using multilayer spin splitters. The equation for polarized neutrons means that the polarized neutrons are equivalent to the coherent superposition of two parallel spin eigenstates. The structure and principle of a multilayer spin splitter are explained, and the nonmagnetic gap layer of the multilayer spin splitter gives rise to neutron spin quantum precession. The performance test of the multilayer spin splitter were made with a new spin interferometer, which is analogous optically to a spin echo system with vertical precession field. The spin interferometers were installed at Kyoto University research reactor and the JRR-3. The testing method and the results are reported. The performance tests on a new phase-spin echo interferometer are described, and its applications to the development of a high resolution spin echo system and a Jamin type cold neutron interferometer are proposed. (K.I.)

  5. First results of micro-neutron tomography by use of a focussing neutron lens

    CERN Document Server

    Masschaele, B; Cauwels, P; Dierick, M; Jolie, J; Mondelaers, W

    2001-01-01

    Since the appearance of high flux neutron beams, scientists experimented with neutron radiography. This high beam flux combined with modern neutron to visible light converters leads to the possibility of performing fast neutron micro-tomography. The first results of cold neutron tomography with a neutron lens are presented in this article. Samples are rotated in the beam and the projections are recorded with a neutron camera. The 3D reconstruction is performed with cone beam reconstruction software.

  6. Neutron imaging and tomography with MCPS

    Science.gov (United States)

    Duarte Pinto, S.; Ortega, R.; Ritzau, S.; Pasquale, D.; Laprade, B.; Mrotek, S.; Gardell, S.; Zhou, Z.; Plomp, J.; van Eijck, L.; Bilheux, H.; Dhiman, I.

    2017-12-01

    A neutron imaging detector based on neutron-sensitive microchannel plates (MCPS) was constructed and tested at beamlines of thermal and cold neutrons. The MCPS are made of a glass mixture containing 10B and natural Gd, which makes the bulk of the MCP an efficient neutron converter. Contrary to the neutron-sensitive scintillator screens normally used in neutron imaging, spatial resolution is not traded off with detection efficiency. While the best neutron imaging scintillators have a detection efficiency around a percent, a detection efficiency of around 50% for thermal neutrons and 70% for cold neutrons has been demonstrated with these MCPS earlier. Our tests show a performance similar to conventional neutron imaging detectors, apart from the orders of magnitude better sensitivity. We demonstrate a spatial resolution better than 150 μm. The sensitivity of this detector allows fast tomography and neutron video recording, and will make smaller reactor sites and even portable sources suitable for neutron imaging.

  7. Polar Science Is Cool!

    Science.gov (United States)

    Weeks, Sophie

    2012-01-01

    Children are fascinated by the fact that polar scientists do research in extremely cold and dangerous places. In the Arctic they might be viewed as lunch by a polar bear. In the Antarctic, they could lose toes and fingers to frostbite and the wind is so fast it can rip skin off. They camp on ice in continuous daylight, weeks from any form of…

  8. NUCLEON POLARIZATION IN 3-BODY MODELS OF POLARIZED LI-6

    NARCIS (Netherlands)

    SCHELLINGERHOUT, NW; KOK, LP; COON, SA; ADAM, RM

    1993-01-01

    Just as He-3 --> can be approximately characterized as a polarized neutron target, polarized Li-6D has been advocated as a good isoscalar nuclear target for the extraction of the polarized gluon content of the nucleon. The original argument rests upon a presumed ''alpha + deuteron'' picture of Li-6,

  9. Measurements of the neutron electric to magnetic form-factor ratio G(En) / G(Mn) via the H-2(polarized-e, e-prime,polarized-n)H-1 reaction to Q**2 = 1.45-(GeV/c)**2

    Energy Technology Data Exchange (ETDEWEB)

    Bradley Plaster; A.Yu. Semenov; A. Aghalaryan; Erick Crouse; Glen MacLachlan; Shigeyuki Tajima; William Tireman; Abdellah Ahmidouch; Brian Anderson; Hartmuth Arenhovel; Razmik Asaturyan; O. Baker; Alan Baldwin; David Barkhuff; Herbert Breuer; Roger Carlini; Michael Christy; Steve Churchwell; Leon Cole; Samuel Danagoulian; Donal Day; T. Eden; Mostafa Elaasar; Rolf Ent; Manouchehr Farkhondeh; Howard Fenker; John Finn; Liping Gan; Ashot Gasparian; Kenneth Garrow; Paul Gueye; Calvin Howell; Bitao Hu; Mark Jones; James Kelly; Cynthia Keppel; Mahbubul Khandaker; Wooyoung Kim; Stanley Kowalski; Allison Lung; David Mack; Richard Madey; D. Manley; Pete Markowitz; Joseph Mitchell; Hamlet Mkrtchyan; Allena Opper; Charles Perdrisat; Vina Punjabi; Brian Raue; Tilmann Reichelt; Joerg Reinhold; Julie Roche; Yoshinori Sato; Nikolai Savvinov; Irina Semenova; Wonick Seo; Neven Simicevic; Gregory Smith; Stepan Stepanyan; Vardan Tadevosyan; Liguang Tang; Shawn Taylor; Paul Ulmer; William Vulcan; John Watson; Steven Wells; Frank Wesselmann; Stephen Wood; Seunghoon Yang; Lulin Yuan; Wei-Ming Zhang; Hong Guo Zhu; Xiaofeng Zhu

    2006-02-01

    We report values for the neutron electric to magnetic form factor ratio, G{sub En}/G{sub Mn}, deduced from measurements of the neutron's recoil polarization in the quasielastic {sup 2}H({rvec e}, e{prime}{rvec n}) {sup 1}H reaction, at three Q{sup 2} values of 0.45, 1.13, and 1.45 (GeV/c){sup 2}. The data at Q{sup 2} = 1.13 and 1.45 (GeV/c){sup 2} are the first direct experimental measurements of GEn employing polarization degrees of freedom in the Q{sup 2} > 1 (GeV/c){sup 2} region and stand as the most precise determinations of GEn for all values of Q{sup 2}.

  10. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  11. Neutron scattering. Experiment manuals

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  12. Neutron scattering. Experiment manuals

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, the neutron polarization analyzer DNS, the neutron spin-echo spectrometer J-NSE, the small-angle neutron diffractometers KWS-1/-2, the very-small-angle neutron diffractometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  13. Neutron imaging and tomography with MCPS

    NARCIS (Netherlands)

    Duarte Pinto, S.C.; Ortega, R; Ritzau, S.; Pasquale, D; Laprade, B.; Mrotek, S.; Gardell, S.; Zhou, Z.; Plomp, J.; van Eijck, L.; Bilheux, H.; Dhiman, I.

    2017-01-01

    A neutron imaging detector based on neutron-sensitive microchannel plates (mcps) was constructed and tested at beamlines of thermal and cold neutrons. The mcps are made of a glass mixture containing 10B and natural Gd, which makes the bulk of the mcp an efficient neutron converter. Contrary to the

  14. Gradual Localization of 5f States in Orthorhombic UTX Ferromagnets:Polarized Neutron Diffraction Study of Ru Substituted UCoGe

    Science.gov (United States)

    Vališka, Michal; Pospíšil, Jiří; Stunault, Anne; Takeda, Yukiharu; Gillon, Béatrice; Haga, Yoshinori; Prokeš, Karel; Abd-Elmeguid, Mohsen M.; Nénert, Gwilherm; Okane, Tetsuo; Yamagami, Hiroshi; Chapon, Laurent; Gukasov, Arsene; Cousson, Alain; Yamamoto, Etsuji; Sechovský, Vladimír

    2015-08-01

    We report on a microscopic study of the evolution of ferromagnetism in the Ru substituted ferromagnetic superconductor (FM SC) UCoGe crystallizing in the orthorhombic TiNiSi-type structure. For that purpose, two single crystals with composition UCo0.97Ru0.03Ge and UCo0.88Ru0.12Ge have been prepared and characterized by magnetization, AC susceptibility, specific heat and electrical resistivity measurements. Both compounds have been found to order ferromagnetically below TC = 6.5 and 7.5 K, respectively, which is considerably higher than the TC = 3 K of the parent compound UCoGe. The higher values of TC are accompanied by enhanced values of the spontaneous moment μspont = 0.11 μB/f.u. and μspont = 0.21 μB/f.u., respectively in comparison to the tiny spontaneous moment of UCoGe (about 0.07 μB/f.u.). No sign of superconductivity was detected in either compound. The magnetic moments of the samples were investigated on the microscopic scale using polarized neutron diffraction (PND) and for UCo0.88Ru0.12Ge also by soft X-ray magnetic circular dichroism (XMCD). The analysis of the PND results indicates that the observed enhancement of ferromagnetism is mainly due to the growth of the orbital part of the uranium 5f moment μ LU, reflecting a gradual localization of the 5f electrons with Ru substitution. In addition, the parallel orientation of the U and Co moments has been established in both substituted compounds. The results are discussed and compared with related isostructural ferromagnetic UTX compounds (T: transition metals, X: Si, Ge) in the context of a varying degree of the 5f-ligand hybridization.

  15. Problems and prospects of neutron imaging

    International Nuclear Information System (INIS)

    Kobayashi, Hisao

    2008-01-01

    Technical problems and future prospects of neutron imaging and neutron radiography are reviewed and discussed for further development. For technical problems, neutron sources together with cold neutron, ultra-cold neutron, epithermal and fast-neutron beams, energy converters, and the intensity of neutron beam, dynamic range associated with imaging procedure, etc, are reviewed. As standardization, such indicators as beam purity, sensitivity, image quality, and beam quality are discussed and limitation of neutron radiography is also presented. As neutron imaging has developed as a nondestructive testing technique in industrial applications, further problems and prospects of quality control and qualification to perform neutron radiography, standardization and international cooperation of neutron imaging are discussed. (S. Ohno)

  16. Measuring the Neutron Lifetime with Magnetically Trapped Ultracold Neutrons

    Science.gov (United States)

    Mumm, H. P.; Huber, M. G.; Yue, A. T.; Thompson, A. K.; Dewey, M. S.; Huffer, C. R.; Huffman, P. R.; Schelhammer, K. W.; O'Shaughnessy, C.; Coakley, K. J.

    2014-03-01

    We describe an experiment to measure the neutron lifetime using a technique with a set of systematic uncertainties largely different than those of previous measurements. In this approach, ultracold neutrons (UCN) are produced by inelastic scattering of cold (0.89 nm) neutrons in a reservoir of superfluid 4He. These neutrons are then confined using a three-dimensional magnetic trap. As the trapped neutrons beta decay, the energetic electrons produced in the decay generate scintillations in the liquid He; each decay is detectable with nearly 100 % efficiency. The neutron lifetime can be directly determined by measuring the scintillation rate as a function of time.

  17. Probing lateral magnetic nanostructures by polarized GISANS

    International Nuclear Information System (INIS)

    Kentzinger, E.; Frielinghaus, H.; Ruecker, U.; Ioffe, A.; Richter, D.; Brueckel, Th.

    2007-01-01

    While structural and magnetic lateral correlations in thin film materials can be investigated at the μm length scale by neutron off-specular scattering (OSS) with polarization analysis, they can also be investigated at the nm length scale by grazing incidence small-angle scattering of polarized neutrons (polarized GISANS). We exemplify this issue showing a combined OSS and GISANS study of the lateral correlations in a remanent polarizing supermirror

  18. Probing lateral magnetic nanostructures by polarized GISANS

    Science.gov (United States)

    Kentzinger, E.; Frielinghaus, H.; Rücker, U.; Ioffe, A.; Richter, D.; Brückel, Th.

    2007-07-01

    While structural and magnetic lateral correlations in thin film materials can be investigated at the μm length scale by neutron off-specular scattering (OSS) with polarization analysis, they can also be investigated at the nm length scale by grazing incidence small-angle scattering of polarized neutrons (polarized GISANS). We exemplify this issue showing a combined OSS and GISANS study of the lateral correlations in a remanent polarizing supermirror.

  19. Dynamics in γ-Fe2O3 nanoparticles studied by time-of-flight polarized neutron scattering

    DEFF Research Database (Denmark)

    Kuhn, L.T.; Lefmann, K.; Klausen, S.N.

    2004-01-01

    The inelastic neutron-scattering signal from magnetic nanoparticles contains information on magnetic dynamics like superparamagnetic relaxation and collective magnetic excitations. Often another, very broad quasi-elastic component is observed in addition. We have studied this quasi-elastic neutron...

  20. Time reversal invariance - a test in free neutron decay

    Energy Technology Data Exchange (ETDEWEB)

    Lising, Laura Jean [Univ. of California, Berkeley, CA (United States)

    1999-01-01

    Time reversal invariance violation plays only a small role in the Standard Model, and the existence of a T-violating effect above the predicted level would be an indication of new physics. A sensitive probe of this symmetry in the weak interaction is the measurement of the T-violating ''D''-correlation in the decay of free neutrons. The triple-correlation Dσn∙pe x pv involves three kinematic variables, the neutron spin, electron momentu, and neutrino (or proton) momentum, and changes sign under time reversal. This experiment detects the decay products of a polarized cold neutron beam with an octagonal array of scintillation and solid-state detectors. Data from first run at NIST's Cold Neutron Research Facility give a D-coefficient of -0.1 ± 1.3(stat.) ± 0.7(syst) x 10-3 This measurement has the greatest bearing on extensions to the Standard model that incorporate leptoquarks, although exotic fermion and lift-right symmetric models also allow a D as large as the present limit.

  1. Neutron Imaging Development at China Academy of Engineering Physics (CAEP)

    Science.gov (United States)

    Li, Hang; Wang, Sheng; Cao, Chao; Huo, Heyong; Tang, Bin

    Based the China Mianyang Research Reactor (CMRR) and D-T accelerator neutron source, thermal neutron, cold neutron and fast neutron imaging facilities are all installed at China Academy of Engineering Physics (CAEP). Various samples have been imaged by different energy neutrons and shown the neutron imaging application in industry, aerospace and so on. The facilities parameters and recent neutron imaging development will be shown in this paper.

  2. [Comporison Sduty of Microstructure by Metallographicalk on the Polarized Light and Texture by XRD of CC 5083 and CC 5182 Aluminium Alloy after Cold Rolling and Recrystallization].

    Science.gov (United States)

    Chen, Ming-biao; Li, Yong-wei; Tan, Yuan-biao; Ma, Min; Wang, Xue-min; Liu, Wen-chang

    2015-03-01

    At present the study of relation between microstructure, texture and performance of CC 5083 aluminium alloy after cold tolling and recrystallization processes is still finitude. So that the use of the CC 5083 aluminium alloy be influenced. Be cased into electrical furnace, hot up with unlimited speed followed the furnace hot up to different temperature and annealed 2h respectively, and be cased into salt-beth furnace, hot up quickly to different temperature and annealed 30 min respectively for CC 5083 and CC 5182 aluminum alloy after cold roling with 91.5% reduction. The microstructure be watched use metallographic microscope, the texture be inspected by XRD. The start temperature of recrystallization and grain grow up temperature within annealing in the electric furnace of CC 5083 aluminum alloy board is 343 degrees C, and the shap of grain after grow up with long strip (the innovation point ); The start temperature of recrystallization within annealling in the salt bath furnace of CC 5083 is 343 degrees C. The start temperature and end temperature of recrystallization within annealling of CC 5083 and CC 5182 aluminum alloy is 371 degrees C. The grain grow up outstanding of cold rooled CC 5152 aluminum alloy after annealed with 454 degrees C in the electric furnace and salt bath furnace. The start temperature of grain grow up of CC 5083 alluminurn alloy annealed in the electric furnace and salt bath furnace respectively is higher than the start temperature of grain grow up of CC 5182 alluminum alloy annealed in the electric furnace and salt bath furnace respectively. The strat temperature of recrystallization grain grow up is higher than which annealled with other three manner annealing process. The recrystallization temperature of CC 5182 annealed in the salt bath furnace is higher than which annealed in the electric furnace. The recrystallization temperature of the surface layer of CC 5083 and CC 5182 aluminum alloy is higher than the inner layer (the innovation

  3. A slow neutron polarimeter for the measurement of parity-odd neutron rotary power

    Energy Technology Data Exchange (ETDEWEB)

    Snow, W. M.; Anderson, E.; Bass, T. D.; Dawkins, J. M.; Fry, J.; Haddock, C.; Horton, J. C.; Luo, D.; Micherdzinska, A. M.; Walbridge, S. B. [Indiana University and Center for the Exploration of Energy and Matter, 2401 Milo B. Sampson Lane, Bloomington, Indiana 47408 (United States); Barrón-Palos, L.; Maldonado-Velázquez, M. [Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, D.F. 04510, México (Mexico); Bass, C. D. [LeMoyne College, 1419 Salt Springs Road, Syracuse, New York 13214 (United States); Crawford, B. E. [Gettysburg College, 300 North Washington Street, Gettysburg, Pennsylvania 17325 (United States); Crawford, C. [University of Kentucky, 177 Chem.-Phys. Building, 505 Rose Street, Lexington, Kentucky 40506-0055 (United States); Esposito, D. [University of Dayton, 300 College Park, Dayton, Ohio 45469 (United States); Gardiner, H. [Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Gan, K. [The George Washington University, 2121 I Street N.W., Washington, District of Columbia 20052 (United States); Heckel, B. R.; Swanson, H. E., E-mail: swanson@npl.washington.edu [University of Washington/Center for Experimental Nuclear Physics and Astrophysics, Box 354290, Seattle, Washington 98195 (United States); and others

    2015-05-15

    We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10{sup −7} rad/m.

  4. Polarized advanced fuel reactors

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1987-07-01

    The d- 3 He reaction has the same spin dependence as the d-t reaction. It produces no neutrons, so that if the d-d reactivity could be reduced, it would lead to a neutron-lean reactor. The current understanding of the possible suppression of the d-d reactivity by spin polarization is discussed. The question as to whether a suppression is possible is still unresolved. Other advanced fuel reactions are briefly discussed. 11 refs

  5. Cold intolerance

    Science.gov (United States)

    ... Causes Some causes of cold intolerance are: Anemia Anorexia nervosa Blood vessel problems, such as Raynaud phenomenon ... of being cold? Medical history: What is your diet like? How is your general health? What are ...

  6. Neutron scattering. Experiment manuals

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2014-01-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  7. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2014-07-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  8. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  9. Constraining the Depth of Polar Ice Deposits and Evolution of Cold Traps on Mercury with Small Craters in Permanently Shadowed Regions

    Science.gov (United States)

    Deutsch, Ariel N.; Head, James W.; Neumann, Gregory A.; Chabot, Nancy L.

    2017-01-01

    Earth-based radar observations revealed highly reflective deposits at the poles of Mercury [e.g., 1], which collocate with permanently shadowed regions (PSRs) detected from both imagery and altimetry by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft [e.g., 2]. MESSENGER also measured higher hydrogen concentrations at the north polar region, consistent with models for these deposits to be composed primarily of water ice [3]. Enigmatic to the characterization of ice deposits on Mercury is the thickness of these radar-bright features. A current minimum bound of several meters exists from the radar measurements, which show no drop in the radar cross section between 13- and 70-cm wavelength observations [4, 5]. A maximum thickness of 300 m is based on the lack of any statistically significant difference between the height of craters that host radar-bright deposits and those that do not [6]. More recently, this upper limit on the depth of a typical ice deposit has been lowered to approximately 150 m, in a study that found a mean excess thickness of 50 +/- 35 m of radar-bright deposits for 6 craters [7]. Refining such a constraint permits the derivation of a volumetric estimate of the total polar ice on Mercury, thus providing insight into possible sources of water ice on the planet. Here, we take a different approach to constrain the thickness of water-ice deposits. Permanently shadowed surfaces have been resolved in images acquired with the broadband filter on MESSENGER's wide-angle camera (WAC) using low levels of light scattered by crater walls and other topography [8]. These surfaces are not featureless and often host small craters (less than a few km in diameter). Here we utilize the presence of these small simple craters to constrain the thickness of the radar-bright ice deposits on Mercury. Specifically, we compare estimated depths made from depth-to-diameter ratios and depths from individual Mercury Laser Altimeter (MLA

  10. Neutron physics

    International Nuclear Information System (INIS)

    Beckurts, K.H.; Wirtz, K.

    1974-01-01

    This textbook consists of four sections which deal with the following subjects: 1. Production of neutrons and their interactions with the nuclei; neutron sources; neutron detectors; cross-section measurements. 2. Theory of neutron interactions with macroscopic media; neutron slowing down; space distribution of moderated neutrons; neutron thermalization; neutron scattering. 3. Radioactive probe measurements of thermal neutron fluxes; activation by means of epithermal neutrons; threshold detectors of fast neutrons; neutron calibration. 4. Neutron energy; slowing down kernels; neutron age; diffusion length and absorption of neutrons

  11. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M. [Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima (Peru)

    2016-07-07

    Even-odd effects of the maximal total kinetic energy (K{sub max}) as a function of charge (Z) and mass (A) of fragments from thermal neutron induced fission of actinides are questioned by other authors. In this work, visiting old results on thermal neutron induced fission of {sup 235}U, those even-odd effects are reconfirmed. The cases seeming to contradict even-odd effects are interpreted with the Coulomb effect hypothesis. According to Coulomb effect hypothesis, K{sub max} is equal to the Coulomb interaction energy of the most compact scission configuration. As a consequence, between two isobaric charge splits with similar Q-values, the more asymmetrical one will get the more compact scission configuration and then it will reach the higher K{sub max}-value. In some cases, the more asymmetrical charge split corresponds, by coincidence, to an odd charge split; consequently its higher K{sub max}-value may be misinterpreted as anti-even-odd effect. Another experimental result reported in the literature is the increasing of even-odd effects on charge distribution on the more asymmetrical fragmentations region. In this region, the difference between K{sub max} and Q-values increases with asymmetry, which means that the corresponding scission configuration needs higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break nucleon pairs. Consequently, in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number must increase with asymmetry.

  12. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of 235U

    International Nuclear Information System (INIS)

    Modesto, Montoya

    2014-01-01

    The Coulomb effects hypothesis is used to interpret even-odd effects of maximum total kinetic energy as a function of mass and charge of fragments from thermal neutron induced fission of 235 U. Assuming spherical fragments at scission, the Coulomb interaction energy between fragments (C sph ) is higher than the Q-value, the available energy. Therefore at scission the fragments must be deformed, so that the Coulomb interaction energy does not exceed the Q-value. The fact that the even-odd effects in the maximum total kinetic energy as a function of the charge and mass, respectively, are lower than the even-odd effects of Q is consistent with the assumption that odd mass fragments are softer than the even-even fragments. Even-odd effects of charge distribution in super asymmetric fragmentation also are interpreted with the Coulomb effect hypothesis. Because the difference between C sph and Q increases with asymmetry, fragmentations require higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break pairs of nucleons. This explains why in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number increases with asymmetry. (author).

  13. Hydrogen Distribution in the Lunar Polar Regions

    Science.gov (United States)

    Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Bakhtin, B. N.; Bodnarik, J. G.; Boynton, W. V.; Chin, G.; Evans, L. G.; Harshmann, K.; Fedosov, F.; hide

    2016-01-01

    We present a method of conversion of the lunar neutron counting rate measured by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) instrument collimated neutron detectors, to water equivalent hydrogen (WEH) in the top approximately 1 m layer of lunar regolith. Polar maps of the Moon’s inferred hydrogen abundance are presented and discussed.

  14. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  15. Measurement of inclusive quasielastic scattering of polarized electrons from polarized 3He

    International Nuclear Information System (INIS)

    Woodward, C.E.; Beise, E.J.; Belz, J.E.; Carr, R.W.; Filippone, B.W.; Lorenzon, W.B.; McKeown, R.D.; Mueller, B.; O'Neill, T.G.; Dodson, G.; Dow, K.; Farkhondeh, M.; Kowalski, S.; Lee, K.; Makins, N.; Milner, R.; Thompson, A.; Tieger, D.; van den Brand, J.; Young, A.; Yu, X.; Zumbro, J.

    1990-01-01

    We report a measurement of the asymmetry in spin-dependent quasielastic scattering of longitudinally polarized electrons from a polarized 3 He gas target. This measurement represents the first demonstration of a new method for studying electromagnetic nuclear structure: the scattering of polarized electrons from a polarized nuclear target. The measured asymmetry is in good agreement with a Faddeev calculation and supports the picture of spin-dependent quasielastic scattering from polarized 3 He as predominantly scattering from a polarized neutron

  16. A long neutron optical horn for the ILL neutron-antineutron oscillation experiment

    International Nuclear Information System (INIS)

    Bitter, T.; Eisert, F.; El-Muzeini, P.; Kessler, M.; Klemt, E.; Lippert, W.; Meienburg, W.; Dubbers, D.

    1992-01-01

    In the neutron-antineutron oscillation experiment at ILL the divergence of the free flying cold neutron beam was strongly reduced without loss of intensity by the use of a 34 m long neutron-optical horn system. The divergence reduction was accurately studied in order to maintain the total width of the neutron beam below 1.1 m after a neutron free flight distance of about 80 m. The fabrication and performance of this system are described. (orig.)

  17. A new experiment to measure the electric dipole moment of the neutron?

    International Nuclear Information System (INIS)

    Lamoreaux, Steve; Cooper, Martin; Greene, Geoffrey; Penttilae, Seppo; Espy, Michelle; Marek, Larry; Tupa, Dale; Krause, Robert; Doyle, John; Golub, Robert

    1997-01-01

    For nearly fifty years, the limits on the electric dipole moment of the neutron have provided information of great importance in our understanding of the fundamental symmetries of nature. Current experiments using bottled Ultra Cold Neutrons (UCN) provide the best experimental limits on the neutron EDM. While modest improvements may be expected by extension of current methods, major reductions in the experimental error appear unlikely due to statistical sensitivity and systematic effects. This situation is unfortunate as several theoretical notions (supersymmetry and the origin of the baryon asymmetry) suggest a magnitude for the neutron EDM which may be only one or two orders of magnitude below the current limit. Recently, Golub and Lamoreaux (1) have suggested a new method for the measurement of the neutron EDM that uses a novel feature of the interaction between low energy neutron and superfluid 4 He to provide a very high density of UCN in an experimental volume. The proposed method also promises a significant reduction in the dominant systematic effect using a polarized 3 He co-magnetometer in the same volume. Their careful analysis suggests that an improvement of two orders of magnitude in the uncertainty of the neutron EDM may be possible. A review of the current experimental situation is given and the prospects for the realization of such a new experiment are discussed

  18. A new experiment to measure the electric dipole moment of the neutron?

    International Nuclear Information System (INIS)

    Lamoreaux, S.; Cooper, M.; Greene, G.; Penttilae, S.; Espy, M.; Marek, L.; Tupa, D.; Krause, R.; Doyle, J.; Golub, R.

    1997-01-01

    For nearly fifty years, the limits on the electric dipole moment of the neutron have provided information of great importance in our understanding of the fundamental symmetries of nature. Current experiments using bottled Ultra Cold Neutrons (UCN) provide the best experimental limits on the neutron EDM. While modest improvements may be expected by extension of current methods, major reductions in the experimental error appear unlikely due to statistical sensitivity and systematic effects. This situation is unfortunate as several theoretical notions (supersymmetry and the origin of the baryon asymmetry) suggest a magnitude for the neutron EDM which may be only one or two orders of magnitude below the current limit. Recently, Golub and Lamoreaux (1) have suggested a new method for the measurement of the neutron EDM that uses a novel feature of the interaction between low energy neutron and superfluid 4 He to provide a very high density of UCN in an experimental volume. The proposed method also promises a significant reduction in the dominant systematic effect using a polarized 3 He co-magnetometer in the same volume. Their careful analysis suggests that an improvement of two orders of magnitude in the uncertainty of the neutron EDM may be possible. A review of the current experimental situation is given and the prospects for the realization of such a new experiment are discussed. copyright 1997 American Institute of Physics

  19. High resolution spectroscopy at FRM II: neutron resonance spin echo, back scattering and time-of-flight instrumentation

    International Nuclear Information System (INIS)

    Petry, W.

    2001-01-01

    The new German neutron source FRM II is equipped with a D 2 cold source placed in the maximum of the thermal flux in the D 2 O moderator. This cold source feeds six large neutron guides. Among others a neutron resonance spin echo (NRSE), a back scattering (BS) and a time-of-flight (TOF) spectrometer will be placed at end positions of theses guides. By detailed Monte-Carlo simulations each of the instruments is optimized for highest intensity without scarifying energy resolution. A polarized neutron guide in combination with a non magnetic wave-length selector provides high flux at the sample position of the NRSE instrument with typical spin-echo times of 30 ns at all accessible scattering angles. The BS instrument uses phase-space transformation to compress a large spread of incoming wave length to an intense monoenergetic but angular disperse beam at the sample. An intensity gain by a factor of four has been calculated without losses in energy resolution of <1 μeV (fwhm) when compared to conventional BS. The TOF spectrometer suppresses background from fast neutrons by a S-curved super-mirror guide and focusses a large incoming neutron beam onto a small sample volume, thereby increasing the flux at the sample position by a factor 3.2. Energy resolution of typical 30 μeV (fwhm) at a wave length of λ=5 A is achieved by extremely fast turning chopper discs made of carbon fiber. (author)

  20. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2018-01-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements. PMID:29503479