WorldWideScience

Sample records for polarization-modulated carrier injection

  1. 12.5 Gb/s carrier-injection silicon Mach—Zehnder optical modulator

    International Nuclear Information System (INIS)

    Chen Hongtao; Ding Jianfeng; Yang Lin

    2012-01-01

    We demonstrate a 12.5 Gb/s carrier-injection silicon Mach—Zehnder optical modulator. Under a nonreturn-zero (NRZ) pre-emphasized electrical drive signal with voltage swing of 6.3 V and forward bias of 0.7 V, the eye is clearly opened with an extinction ratio of 8.4 dB. The device exhibits high modulation efficiency, with a figure of merit V π L of 0.036 V·mm. (semiconductor devices)

  2. Capacity upgrade in short-reach optical fibre networks: simultaneous 4-PAM 20 Gbps data and polarization-modulated PPS clock signal using a single VCSEL carrier

    Science.gov (United States)

    Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-11-01

    In this work, a four-level pulse amplitude modulation (4-PAM) format with a polarization-modulated pulse per second (PPS) clock signal using a single vertical cavity surface emitting laser (VCSEL) carrier is for the first time experimentally demonstrated. We propose uncomplex alternative technique for increasing capacity and flexibility in short-reach optical communication links through multi-signal modulation onto a single VCSEL carrier. A 20 Gbps 4-PAM data signal is directly modulated onto a single mode 10 GHz bandwidth VCSEL carrier at 1310 nm, therefore, doubling the network bit rate. Carrier spectral efficiency is further maximized by exploiting the inherent orthogonal polarization switching of the VCSEL carrier with changing bias in transmission of a PPS clock signal. We, therefore, simultaneously transmit a 20 Gbps 4-PAM data signal and a polarization-based PPS clock signal using a single VCSEL carrier. It is the first time a signal VCSEL carrier is reported to simultaneously transmit a directly modulated 20 Gbps 4-PAM data signal and a polarization-based PPS clock signal. We further demonstrate on the design of a software-defined digital signal processing (DSP)-assisted receiver as an alternative to costly receiver hardware. Experimental results show that a 3.21 km fibre transmission with simultaneous 20 Gbps 4-PAM data signal and polarization-based PPS clock signal introduced a penalty of 3.76 dB. The contribution of polarization-based PPS clock signal to this penalty was found out to be 0.41 dB. Simultaneous distribution of data and timing clock signals over shared network infrastructure significantly increases the aggregated data rate at different optical network units (ONUs), without costly investment.

  3. Gigascale Silicon Photonic Transmitters Integrating HBT-based Carrier-injection Electroabsorption Modulator Structures

    Science.gov (United States)

    Fu, Enjin

    Demand for more bandwidth is rapidly increasing, which is driven by data intensive applications such as high-definition (HD) video streaming, cloud storage, and terascale computing applications. Next-generation high-performance computing systems require power efficient chip-to-chip and intra-chip interconnect yielding densities on the order of 1Tbps/cm2. The performance requirements of such system are the driving force behind the development of silicon integrated optical interconnect, providing a cost-effective solution for fully integrated optical interconnect systems on a single substrate. Compared to conventional electrical interconnect, optical interconnects have several advantages, including frequency independent insertion loss resulting in ultra wide bandwidth and link latency reduction. For high-speed optical transmitter modules, the optical modulator is a key component of the optical I/O channel. This thesis presents a silicon integrated optical transmitter module design based on a novel silicon HBT-based carrier injection electroabsorption modulator (EAM), which has the merits of wide optical bandwidth, high speed, low power, low drive voltage, small footprint, and high modulation efficiency. The structure, mechanism, and fabrication of the modulator structure will be discussed which is followed by the electrical modeling of the post-processed modulator device. The design and realization of a 10Gbps monolithic optical transmitter module integrating the driver circuit architecture and the HBT-based EAM device in a 130nm BiCMOS process is discussed. For high power efficiency, a 6Gbps ultra-low power driver IC implemented in a 130nm BiCMOS process is presented. The driver IC incorporates an integrated 27-1 pseudo-random bit sequence (PRBS) generator for reliable high-speed testing, and a driver circuit featuring digitally-tuned pre-emphasis signal strength. With outstanding drive capability, the driver module can be applied to a wide range of carrier

  4. Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide

    Science.gov (United States)

    Jin, Lin; Wen, Long; Liang, Li; Chen, Qin; Sun, Yunfei

    2018-02-01

    CMOS-compatible plasmonic modulators operating at the telecom wavelength are significant for a variety of on-chip applications. Relying on the manipulation of the transverse magnetic (TM) mode excited on the metal-dielectric interface, most of the previous demonstrations are designed to response only for specific polarization state. In this case, it will lead to a high polarization dependent loss, when the polarization-sensitive modulator integrates to a fiber with random polarization state. Herein, we propose a plasmonic modulator utilizing a metal-oxide indium tin oxide (ITO) wrapped around the silicon waveguide and investigate its optical modulation ability for both the vertical and horizontal polarized guiding light by tuning electro-absorption of ITO with the field-induced carrier injection. The electrically biased modulator with electron accumulated at the ITO/oxide interface allows for epsilon-near-zero (ENZ) mode to be excited at the top or lateral portion of the interface depending on the polarization state of the guiding light. Because of the high localized feature of ENZ mode, efficient electro-absorption can be achieved under the "OFF" state of the device, thus leading to large extinction ratio (ER) for both polarizations in our proposed modulator. Further, the polarization-insensitive modulation is realized by properly tailoring the thickness of oxide in two different stacking directions and therefore matching the ER values for device operating at vertical and horizontal polarized modes. For the optimized geometry configuration, the difference between the ER values of two polarization modes, i.e., the ΔER, as small as 0.01 dB/μm is demonstrated and, simultaneously with coupling efficiency above 74%, is obtained for both polarizations at a wavelength of 1.55 μm. The proposed plasmonic-combined modulator has a potential application in guiding and processing of light from a fiber with a random polarization state.

  5. Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators

    Science.gov (United States)

    Nagarjun, K. P.; Selvaraja, Shankar Kumar; Supradeepa, V. R.

    2016-03-01

    High repetition-rate frequency combs with tunable repetition rate and carrier frequency are extensively used in areas like Optical communications, Microwave Photonics and Metrology. A common technique for their generation is strong phase modulation of a CW-laser. This is commonly implemented using Lithium-Niobate based modulators. With phase modulation alone, the combs have poor spectral flatness and significant number of missing lines. To overcome this, a complex cascade of multiple intensity and phase modulators are used. A comb generator on Silicon based on these principles is desirable to enable on-chip integration with other functionalities while reducing power consumption and footprint. In this work, we analyse frequency comb generation in carrier injection based Silicon modulators. We observe an interesting effect in these comb generators. Enhanced absorption accompanying carrier injection, an undesirable effect in data modulators, shapes the amplitude here to enable high quality combs from a single modulator. Thus, along with reduced power consumption to generate a specific number of lines, the complexity has also been significantly reduced. We use a drift-diffusion solver and mode solver (Silvaco TCAD) along with Soref-Bennett relations to calculate the variations in refractive indices and absorption of an optimized Silicon PIN - waveguide modulator driven by an unbiased high frequency (10 Ghz) voltage signal. Our simulations demonstrate that with a device length of 1 cm, a driving voltage of 2V and minor shaping with a passive ring-resonator filter, we obtain 37 lines with a flatness better than 5-dB across the band and power consumption an order of magnitude smaller than Lithium-Niobate modulators.

  6. Self-scaling minority carrier lifetime imaging using periodically modulated electroluminescence

    Science.gov (United States)

    Kropp, Timo; Berner, Marcel; Werner, Jürgen H.

    2017-11-01

    We present a straightforward self-scaling imaging technique to extract the effective minority carrier lifetime image of silicon solar cells using periodically modulated electroluminescence. This novel modulation technique overcomes main limiting factors linked to camera integration time. Our approach is based on comparing three luminescence images taken during current modulation. One image is taken while periodically injecting excess charge carriers with a pulsed current stimulation followed by an open-circuit luminescence decay. A second image with the same injection profile is taken while additionally extracting excess charge carriers at the falling edge, accelerating the luminescence decay. Both images are normalized to a steady-state image. The camera integration time is several orders of magnitude longer than the modulation period length, and no synchronization of image acquisition is needed. The intensity difference between both modulated images is used for determining a calibration factor to convert the steady-state image into the effective minority carrier lifetime image: Our modulation method enables carrier lifetime images completely independent of the image integration time. First carrier lifetime images show good agreement with data from time resolved electroluminescence.

  7. Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes

    Science.gov (United States)

    Rashidi, A.; Nami, M.; Monavarian, M.; Aragon, A.; DaVico, K.; Ayoub, F.; Mishkat-Ul-Masabih, S.; Rishinaramangalam, A.; Feezell, D.

    2017-07-01

    This work describes a small-signal microwave method for determining the differential carrier lifetime and transport effects in electrically injected InGaN/GaN light-emitting diodes (LEDs). By considering the carrier diffusion, capture, thermionic escape, and recombination, the rate equations are used to derive an equivalent small-signal electrical circuit for the LEDs, from which expressions for the input impedance and modulation response are obtained. The expressions are simultaneously fit to the experimental data for the input impedance and modulation response for nonpolar InGaN/GaN micro-LEDs on free-standing GaN substrates. The fittings are used to extract the transport related circuit parameters and differential carrier lifetimes. The dependence of the parameters on the device diameter and current density is reported. We also derive approximations for the modulation response under low and high injection levels and show that the transport of carriers affects the modulation response of the device, especially at low injection levels. The methods presented are relevant to the design of high-speed LEDs for visible-light communication.

  8. Direct visualization of polarization reversal of organic ferroelectric memory transistor by using charge modulated reflectance imaging

    Science.gov (United States)

    Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2017-11-01

    By using the charge modulated reflectance (CMR) imaging technique, charge distribution in the pentacene organic field-effect transistor (OFET) with a ferroelectric gate insulator [P(VDF-TrFE)] was investigated in terms of polarization reversal of the P(VDF-TrFE) layer. We studied the polarization reversal process and the carrier spreading process in the OFET channel. The I-V measurement showed a hysteresis behavior caused by the spontaneous polarization of P(VDF-TrFE), but the hysteresis I-V curve changes depending on the applied drain bias, possibly due to the gradual shift of the polarization reversal position in the OFET channel. CMR imaging visualized the gradual shift of the polarization reversal position and showed that the electrostatic field formed by the polarization of P(VDF-TrFE) contributes to hole and electron injection into the pentacene layer and the carrier distribution is significantly dependent on the direction of the polarization. The polarization reversal position in the channel region is governed by the electrostatic potential, and it happens where the potential reaches the coercive voltage of P(VDF-TrFE). The transmission line model developed on the basis of the Maxwell-Wagner effect element analysis well accounts for this polarization reversal process in the OFET channel.

  9. Conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation using optically injected semiconductor lasers.

    Science.gov (United States)

    Hung, Yu-Han; Tseng, Chin-Hao; Hwang, Sheng-Kwang

    2018-06-01

    This Letter investigates an optically injected semiconductor laser for conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation. The underlying mechanism relies solely on nonlinear laser characteristics and, thus, only a typical semiconductor laser is required as the key conversion unit. This conversion can be achieved for a broadly tunable frequency range up to at least 65 GHz. After conversion, the microwave phase quality, including linewidth and phase noise, is mostly preserved, and simultaneous microwave amplification up to 23 dB is feasible.

  10. Pulse-amplitude modulation of optical injection-locked quantum-dot lasers

    Science.gov (United States)

    Zhou, Yue-Guang; Wang, Cheng

    2018-02-01

    This work theoretically investigates the four-level pulse-amplitude modulation characteristics of quantum dot lasers subject to optical injection. The rate equation model takes into account carrier dynamics in the carrier reservoir, in the excited state, and in the ground state, as well as photon dynamics and phase dynamics of the electric field. It is found that the optical injection significantly improves the eye diagram quality through suppressing the relaxation oscillation, while the extinction ratio is reduced as well. In addition, both the adiabatic chirp and the transient chirp of the signal are substantially suppressed.

  11. Study of excess carrier dynamics in polar, semi-polar, and non-polar (In,Ga)N epilayers and QWs

    Energy Technology Data Exchange (ETDEWEB)

    Aleksiejunas, R. [Institute of Applied Research, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania); Laser Research Center, Vilnius University, Sauletekio Ave. 10, 10222 Vilnius (Lithuania); Lubys, L.; Jarasiunas, K. [Institute of Applied Research, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania); Vengris, M. [Laser Research Center, Vilnius University, Sauletekio Ave. 10, 10222 Vilnius (Lithuania); Wernicke, T.; Hoffmann, V.; Netzel, C.; Knauer, A.; Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12498 Berlin (Germany); Kneissl, M. [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12498 Berlin (Germany); Institute of Solid State Physics, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany)

    2011-07-15

    We studied carrier recombination and diffusion in GaN/sapphire templates, (In,Ga)N layers, and (In,Ga)N quantum well structures oriented along the polar [0001], semi-polar [11-22], and non-polar [11-20] orientations by means of light induced transient grating, differential transmission, and photoluminescence optical techniques. We show that the lifetime of excess carriers drops by orders of magnitude when changing the orientation from polar to non-polar, both in GaN templates and (In,Ga)N layers. We attribute the shorter lifetime to carrier trapping by extended structural defects that are more abundant in non-polar grown samples. In addition, we observe pronounced carrier localization effects in the semi- and non-polar layers. We show that thick (In,Ga)N layers inherit the properties of the GaN templates. However, the thin quantum well structures show a lower carrier trapping activity. So, a better electrical quality can be assumed as compared to the thick (In,Ga)N layers. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Spin Injection from Ferromagnetic Metal Directly into Non-Magnetic Semiconductor under Different Injection Currents

    International Nuclear Information System (INIS)

    Ning, Deng; Lei, Zhang; Shu-Chao, Zhang; Pei-Yi, Chen; Jian-Shi, Tang

    2010-01-01

    For ferromagnetic metal (FM)/semiconductor (SC) structure with ohmic contact, the effect of carrier polarization in the semiconductor combined with drift part of injection current on current polarization is investigated. Based on the general model we established here, spin injection efficiency under different injection current levels is calculated. Under a reasonable high injection current, current polarization in the semiconductor is actually much larger than that predicted by the conductivity mismatch model because the effect of carrier polarization is enhanced by the increasing drift current. An appreciable current polarization of 1% could be achieved for the FM/SC structure via ohmic contact, which means that efficient spin injection from FM into SC via ohmic contact is possible. The reported dependence of current polarization on temperature is verified quantitatively. To achieve even larger spin injection efficiency, a gradient doping semiconductor is suggested to enhance the drift current effect

  13. Pulsed Electrical Spin Injection into InGaAs Quantum Dots: Studies of the Electroluminescence Polarization Dynamics

    International Nuclear Information System (INIS)

    Asshoff, P.; Loeffler, W.; Fluegge, H.; Zimmer, J.; Mueller, J.; Westenfelder, B.; Hu, D. Z.; Schaadt, D. M.; Kalt, H.; Hetterich, M.

    2010-01-01

    We present time-resolved studies of the spin polarization dynamics during and after initialization through pulsed electrical spin injection into InGaAs quantum dots embedded in a p-i-n-type spin-injection light-emitting diode. Experiments are performed with pulse widths in the nanosecond range and a time-resolved single photon counting setup is used to detect the subsequent electroluminescence. We find evidence that the achieved spin polarization shows an unexpected temporal behavior, attributed mainly to many-carrier and non-equilibrium effects in the device.

  14. Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes

    International Nuclear Information System (INIS)

    Feng, Shih-Wei; Liao, Po-Hsun; Leung, Benjamin; Han, Jung; Yang, Fann-Wei; Wang, Hsiang-Chen

    2015-01-01

    Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantages of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED

  15. Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shih-Wei, E-mail: swfeng@nuk.edu.tw; Liao, Po-Hsun [Department of Applied Physics, National University of Kaohsiung, No. 700, Kaohsiung University Rd., Nan Tzu Dist., 811 Kaohsiung, Taiwan (China); Leung, Benjamin; Han, Jung [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520 (United States); Yang, Fann-Wei [Department of Electronic Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Wang, Hsiang-Chen [Graduate Institute of Opto-Mechatronics and Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chia-Yi, Taiwan (China)

    2015-07-28

    Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantages of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED.

  16. Effect of tunneling injection on the modulation response of quantum dot lasers

    Directory of Open Access Journals (Sweden)

    Y. Yekta kiya

    2014-03-01

    Full Text Available In this paper, modulation bandwidth characteristics of InGaAs/GaAs quantum dot (QD laser were theoretically investigated. Simulation was done by using the fourth order Runge-Kutta method. Effect of carrier relaxation life time, temperature and current density on characteristics of tunneling injection QD laser (TIL and conventional QD laser (CL were analyzed. Results showed that tunneling injection in QD laser increases the modulation bandwidth indicating that it is very useful for using in the fiber optic communication systems.

  17. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    KAUST Repository

    Janjua, Bilal; Ng, Tien Khee; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2014-01-01

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Al b → cGa1-b → 1-cN / AldGa 1-dN, where a < d < b < c. A graded layer sandwiched between large bandgap AlGaN materials was found to be effective in simultaneously blocking electrons and providing polarization field enhanced carrier injection. The graded interlayer reduces polarization induced band bending and mitigates the related drawback of impediment of holes injection. Similarly on the n-side, the Alx → yGa1-x → 1-yN / AlzGa 1-zN (x < z < y) barrier acts as a hole blocking layer. The reduced carrier leakage and enhanced carrier density in the active region results in significant improvement in radiative recombination rate compared to a structure with the conventional rectangular EBL layers. The improvement in device performance comes from meticulously designing the hole and electron blocking layers to increase carrier injection efficiency. The quantum well based UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  18. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    KAUST Repository

    Janjua, Bilal

    2014-02-27

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Al b → cGa1-b → 1-cN / AldGa 1-dN, where a < d < b < c. A graded layer sandwiched between large bandgap AlGaN materials was found to be effective in simultaneously blocking electrons and providing polarization field enhanced carrier injection. The graded interlayer reduces polarization induced band bending and mitigates the related drawback of impediment of holes injection. Similarly on the n-side, the Alx → yGa1-x → 1-yN / AlzGa 1-zN (x < z < y) barrier acts as a hole blocking layer. The reduced carrier leakage and enhanced carrier density in the active region results in significant improvement in radiative recombination rate compared to a structure with the conventional rectangular EBL layers. The improvement in device performance comes from meticulously designing the hole and electron blocking layers to increase carrier injection efficiency. The quantum well based UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  19. All-electric spin modulator based on a two-dimensional topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xianbo; Ai, Guoping [School of Computer Science, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004 (China); Liu, Ying; Yang, Shengyuan A., E-mail: shengyuan-yang@sutd.edu.sg [Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372 (Singapore); Liu, Zhengfang [School of Science, East China Jiaotong University, Nanchang 330013 (China); Zhou, Guanghui, E-mail: ghzhou@hunnu.edu.cn [Key Laboratory for Low-Dimensional Structures and Quantum Manipulation (Ministry of Education), and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081 (China)

    2016-01-18

    We propose and investigate a spin modulator device consisting of two ferromagnetic leads connected by a two-dimensional topological insulator as the channel material. It exploits the unique features of the topological spin-helical edge states, such that the injected carriers with a non-collinear spin-polarization direction would travel through both edges and show interference effect. The conductance of the device can be controlled in a simple and all-electric manner by a side-gate voltage, which effectively rotates the spin-polarization of the carrier. At low voltages, the rotation angle is linear in the gate voltage, and the device can function as a good spin-polarization rotator by replacing the drain electrode with a non-magnetic material.

  20. Enhancing Carrier Injection Using Graded Superlattice Electron Blocking Layer for UVB Light-Emitting Diodes

    KAUST Repository

    Janjua, Bilal

    2014-12-01

    We have studied enhanced carrier injection by having an electron blocking layer (EBL) based on a graded superlattice (SL) design. Here, we examine, using a selfconsistent 6 × 6 k.p method, the energy band alignment diagrams under equilibrium and forward bias conditions while also considering carrier distribution and recombination rates (Shockley-Read-Hall, Auger, and radiative recombination rates). The graded SL is based on AlxGa1-xN (larger bandgap) Al0:5Ga0:5N (smaller bandgap) SL, where x is changed from 0.8 to 0.56 in steps of 0.06. Graded SL was found to be effective in reducing electron leakage and enhancing hole injection into the active region. Due to our band engineering scheme for EBL, four orders-of-magnitude enhancement were observed in the direct recombination rate, as compared with the conventional bulk EBL consisting of Al0:8Ga0:2N. An increase in the spatial overlap of carrier wavefunction was obtained due to polarization-induced band bending in the active region. An efficient single quantum-well ultraviolet-B light-emitting diode was designed, which emits at 280 nm. This is the effective wavelength for water disinfection application, among others.

  1. Relative injectivity and CS-modules

    Directory of Open Access Journals (Sweden)

    Mahmoud Ahmed Kamal

    1994-01-01

    Full Text Available In this paper we show that a direct decomposition of modules M⊕N, with N homologically independent to the injective hull of M, is a CS-module if and only if N is injective relative to M and both of M and N are CS-modules. As an application, we prove that a direct sum of a non-singular semisimple module and a quasi-continuous module with zero socle is quasi-continuous. This result is known for quasi-injective modules. But when we confine ourselves to CS-modules we need no conditions on their socles. Then we investigate direct sums of CS-modules which are pairwise relatively inective. We show that every finite direct sum of such modules is a CS-module. This result is known for quasi-continuous modules. For the case of infinite direct sums, one has to add an extra condition. Finally, we briefly discuss modules in which every two direct summands are relatively inective.

  2. Analysis of carrier transport and carrier trapping in organic diodes with polyimide-6,13-Bis(triisopropylsilylethynyl)pentacene double-layer by charge modulation spectroscopy and optical second harmonic generation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Eunju, E-mail: elim@dankook.ac.kr, E-mail: taguchi.d.aa@m.titech.ac.jp, E-mail: iwamoto@pe.titech.ac.jp [Department of Applied Physics, Institute of Nanosensor and Biotechnology, Dankook University, Jukjeon-dong, Gyeonggi-do 448-701 (Korea, Republic of); Taguchi, Dai, E-mail: elim@dankook.ac.kr, E-mail: taguchi.d.aa@m.titech.ac.jp, E-mail: iwamoto@pe.titech.ac.jp; Iwamoto, Mitsumasa, E-mail: elim@dankook.ac.kr, E-mail: taguchi.d.aa@m.titech.ac.jp, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2014-08-18

    We studied the carrier transport and carrier trapping in indium tin oxide/polyimide (PI)/6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene)/Au diodes by using charge modulation spectroscopy (CMS) and time-resolved electric field induced optical second harmonic generation (TR-EFISHG) measurements. TR-EFISHG directly probes the spatial carrier behaviors in the diodes, and CMS is useful in explaining the carrier motion with respect to energy. The results clearly indicate that the injected carriers move across TIPS-pentacene thorough the molecular energy states of TIPS-pentacene and accumulate at the PI/TIPS-pentacene interface. However, some carriers are trapped in the PI layers. These findings take into account the capacitance-voltage and current-voltage characteristics of the diodes.

  3. Polarization division multiple access with polarization modulation for LOS wireless communications

    Directory of Open Access Journals (Sweden)

    Cao Bin

    2011-01-01

    Full Text Available Abstract In this paper, we discuss a potential multiple access and modulation scheme based on polarized states (PS of electromagnetic (EM waves for line-of-sight (LOS communications. The proposed scheme is theoretic different from the existing polar modulation for EDGE and WCDMA systems. We propose the detailed bit representation (modulation and multiple access scheme using PS. Because of the inflexibility of polarization information in the time and frequency domains, as well as independence of frequency and space, the polarization information can be used independently for wireless communications, i.e., another independent resource domain that can be utilized. Due to the independence between the PS and the specific features of signals (such as waveform, bandwidth and data rate, the discussed polarization division multiple access (PDMA and polarization modulation (PM are expected to improve the spectrum utilization effectively. It is proved that the polarization filtering technique can be adopted in the PDMA-PM wireless communications to separate the multiuser signals and demodulate the bit information representing by PS for desired user. Some theoretical analysis is done to demonstrate the feasibility of the proposed scheme, and the simulation results are made to evaluate the performance of the suggested system.

  4. Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Huang Lirong; Yu Yi; Tian Peng; Huang Dexiu

    2009-01-01

    The optical gain of a quantum-dot semiconductor optical amplifier is usually seriously dependent on polarization; we propose a quantum-dot coupled tensile-strained quantum-well structure to obtain polarization insensitivity. The tensile-strained quantum well not only serves as a carrier injection layer of quantum dots but also offers gain to the transverse-magnetic mode. Based on the polarization-dependent coupled carrier rate-equation model, we study carrier competition among quantum well and quantum dots, and study the polarization dependence of the quantum-dot coupled quantum-well semiconductor optical amplifier. We also analyze polarization-dependent photon-mediated carrier distribution among quantum well and quantum dots. It is shown that polarization-insensitive gain can be realized by optimal design

  5. Plasmon-induced carrier polarization in semiconductor nanocrystals

    Science.gov (United States)

    Yin, Penghui; Tan, Yi; Fang, Hanbing; Hegde, Manu; Radovanovic, Pavle V.

    2018-06-01

    Spintronics1 and valleytronics2 are emerging quantum electronic technologies that rely on using electron spin and multiple extrema of the band structure (valleys), respectively, as additional degrees of freedom. There are also collective properties of electrons in semiconductor nanostructures that potentially could be exploited in multifunctional quantum devices. Specifically, plasmonic semiconductor nanocrystals3-10 offer an opportunity for interface-free coupling between a plasmon and an exciton. However, plasmon-exciton coupling in single-phase semiconductor nanocrystals remains challenging because confined plasmon oscillations are generally not resonant with excitonic transitions. Here, we demonstrate a robust electron polarization in degenerately doped In2O3 nanocrystals, enabled by non-resonant coupling of cyclotron magnetoplasmonic modes11 with the exciton at the Fermi level. Using magnetic circular dichroism spectroscopy, we show that intrinsic plasmon-exciton coupling allows for the indirect excitation of the magnetoplasmonic modes, and subsequent Zeeman splitting of the excitonic states. Splitting of the band states and selective carrier polarization can be manipulated further by spin-orbit coupling. Our results effectively open up the field of plasmontronics, which involves the phenomena that arise from intrinsic plasmon-exciton and plasmon-spin interactions. Furthermore, the dynamic control of carrier polarization is readily achieved at room temperature, which allows us to harness the magnetoplasmonic mode as a new degree of freedom in practical photonic, optoelectronic and quantum-information processing devices.

  6. Polarized recombination of acoustically transported carriers in GaAs nanowires

    Science.gov (United States)

    Möller, Michael; Hernández-Mínguez, Alberto; Breuer, Steffen; Pfüller, Carsten; Brandt, Oliver; de Lima, Mauricio M.; Cantarero, Andrés; Geelhaar, Lutz; Riechert, Henning; Santos, Paulo V.

    2012-05-01

    The oscillating piezoelectric field of a surface acoustic wave (SAW) is employed to transport photoexcited electrons and holes in GaAs nanowires deposited on a SAW delay line on a LiNbO3 crystal. The carriers generated in the nanowire by a focused light spot are acoustically transferred to a second location where they recombine. We show that the recombination of the transported carriers occurs in a zinc blende section on top of the predominant wurtzite nanowire. This allows contactless control of the linear polarized emission by SAWs which is governed by the crystal structure. Additional polarization-resolved photoluminescence measurements were performed to investigate spin conservation during transport.

  7. Hot carrier injection degradation under dynamic stress

    International Nuclear Information System (INIS)

    Ma Xiao-Hua; Cao Yan-Rong; Hao Yue; Zhang Yue

    2011-01-01

    In this paper, we have studied hot carrier injection (HCI) under alternant stress. Under different stress modes, different degradations are obtained from the experiment results. The different alternate stresses can reduce or enhance the HC effect, which mainly depends on the latter condition of the stress cycle. In the stress mode A (DC stress with electron injection), the degradation keeps increasing. In the stress modes B (DC stress and then stress with the smallest gate injection) and C (DC stress and then stress with hole injection under V g = 0 V and V d = 1.8 V), recovery appears in the second stress period. And in the stress mode D (DC stress and then stress with hole injection under V g = −1.8 V and V d = 1.8 V), as the traps filled in by holes can be smaller or greater than the generated interface states, the continued degradation or recovery in different stress periods can be obtained. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Injection of spin-polarized current into semiconductor

    International Nuclear Information System (INIS)

    Vedyayev, A.V.; Dieny, B.; Ryzhanova, N.V.; Zhukov, I.V.; Zhuravlev, M.Ye.; Lutz, H.O.

    2003-01-01

    A quantum-statistical theory of injection of spin-polarized current into a semiconductor in ferromagnet/tunnel barrier/semiconductor system is presented. The presence of Schottky barrier in the semiconductor is taken into account. The case of degenerated and non-degenerated semiconductors are considered. Both the diffusive and ballistic transport regime are investigated. The dependence of current polarization on barrier thickness and temperature is calculated

  9. Proximity Effect Induced Spin Injection in Phosphorene on Magnetic Insulator.

    Science.gov (United States)

    Chen, Haoqi; Li, Bin; Yang, Jinlong

    2017-11-08

    Black phosphorus is a promising candidate for future nanoelectronics with a moderate electronic band gap and a high carrier mobility. Introducing the magnetism into black phosphorus will widely expand its application scope and may present a bright prospect in spintronic nanodevices. Here, we report our first-principles calculations of spin-polarized electronic structure of monolayer black phosphorus (phosphorene) adsorbed on a magnetic europium oxide (EuO) substrate. Effective spin injection into the phosphorene is realized by means of interaction with the nearby EuO(111) surface, i.e., proximity effect, which results in spin-polarized electrons in the 3p orbitals of phosphorene, with the spin polarization at Fermi level beyond 30%, together with an exchange-splitting energy of ∼0.184 eV for conduction-band minimum of the adsorbed phosphorene corresponding to an energy region where only one spin channel is conductive. The energy region of these exchange-splitting and spin-polarized band gaps of the adsorbed phosphorene can be effectively modulated by in-plane strain. Intrinsically high and anisotropic carrier mobilities at the conduction-band minimum of the phosphorene also become spin-polarized mainly due to spin polarization of deformation potentials and are not depressed significantly after the adsorption. These extraordinary properties would endow black phosphorus with great potentials in the future spintronic nanodevices.

  10. Bioelectric modulation of macrophage polarization

    Science.gov (United States)

    Li, Chunmei; Levin, Michael; Kaplan, David L.

    2016-02-01

    Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells’ resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine.

  11. Organic Spin-Valves and Beyond: Spin Injection and Transport in Organic Semiconductors and the Effect of Interfacial Engineering.

    Science.gov (United States)

    Jang, Hyuk-Jae; Richter, Curt A

    2017-01-01

    Since the first observation of the spin-valve effect through organic semiconductors, efforts to realize novel spintronic technologies based on organic semiconductors have been rapidly growing. However, a complete understanding of spin-polarized carrier injection and transport in organic semiconductors is still lacking and under debate. For example, there is still no clear understanding of major spin-flip mechanisms in organic semiconductors and the role of hybrid metal-organic interfaces in spin injection. Recent findings suggest that organic single crystals can provide spin-transport media with much less structural disorder relative to organic thin films, thus reducing momentum scattering. Additionally, modification of the band energetics, morphology, and even spin magnetic moment at the metal-organic interface by interface engineering can greatly impact the efficiency of spin-polarized carrier injection. Here, progress on efficient spin-polarized carrier injection into organic semiconductors from ferromagnetic metals by using various interface engineering techniques is presented, such as inserting a metallic interlayer, a molecular self-assembled monolayer (SAM), and a ballistic carrier emitter. In addition, efforts to realize long spin transport in single-crystalline organic semiconductors are discussed. The focus here is on understanding and maximizing spin-polarized carrier injection and transport in organic semiconductors and insight is provided for the realization of emerging organic spintronics technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Minority-carrier injection-enhanced annealing of radiation damage to InGaP solar cells

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Okuda, T.; Taylor, S.J.

    1997-01-01

    The observation of minority-carrier injection-enhanced annealing of radiation-induced defects in InGaP is reported. 1-MeV electron irradiation results demonstrate superior radiation-resistance of InGa 0.5 P 0.5 solar cells compared to GaAs-on-Ge cells. Moreover, minority-carrier injection under forward bias conditions is shown to enhance defect annealing in InGaP and to result in the recovery of InGaP solar cell properties. These results suggest that the radiation-resistance of InGaP-based devices such as InGaP/GaAs(/Ge) multijunction solar cells and InGaP(As) light-emitting devices is further improved under minority-carrier injection condition. copyright 1997 American Institute of Physics

  13. Study of Charge Carrier Transport in GaN Sensors

    Science.gov (United States)

    Gaubas, Eugenijus; Ceponis, Tomas; Kuokstis, Edmundas; Meskauskaite, Dovile; Pavlov, Jevgenij; Reklaitis, Ignas

    2016-01-01

    Capacitor and Schottky diode sensors were fabricated on GaN material grown by hydride vapor phase epitaxy and metal-organic chemical vapor deposition techniques using plasma etching and metal deposition. The operational characteristics of these devices have been investigated by profiling current transients and by comparing the experimental regimes of the perpendicular and parallel injection of excess carrier domains. Profiling of the carrier injection location allows for the separation of the bipolar and the monopolar charge drift components. Carrier mobility values attributed to the hydride vapor phase epitaxy (HVPE) GaN material have been estimated as μe = 1000 ± 200 cm2/Vs for electrons, and μh = 400 ± 80 cm2/Vs for holes, respectively. Current transients under injection of the localized and bulk packets of excess carriers have been examined in order to determine the surface charge formation and polarization effects. PMID:28773418

  14. Injection and detection of a spin-polarized current in a light-emitting diode

    Science.gov (United States)

    Fiederling, R.; Keim, M.; Reuscher, G.; Ossau, W.; Schmidt, G.; Waag, A.; Molenkamp, L. W.

    1999-12-01

    The field of magnetoelectronics has been growing in practical importance in recent years. For example, devices that harness electronic spin-such as giant-magnetoresistive sensors and magnetoresistive memory cells-are now appearing on the market. In contrast, magnetoelectronic devices based on spin-polarized transport in semiconductors are at a much earlier stage of development, largely because of the lack of an efficient means of injecting spin-polarized charge. Much work has focused on the use of ferromagnetic metallic contacts, but it has proved exceedingly difficult to demonstrate polarized spin injection. More recently, two groups have reported successful spin injection from an NiFe contact, but the observed effects of the spin-polarized transport were quite small (resistance changes of less than 1%). Here we describe a different approach, in which the magnetic semiconductor BexMnyZn1-x-ySe is used as a spin aligner. We achieve injection efficiencies of 90% spin-polarized current into a non-magnetic semiconductor device. The device used in this case is a GaAs/AlGaAs light-emitting diode, and spin polarization is confirmed by the circular polarization state of the emitted light.

  15. [Research on Spectral Polarization Imaging System Based on Static Modulation].

    Science.gov (United States)

    Zhao, Hai-bo; Li, Huan; Lin, Xu-ling; Wang, Zheng

    2015-04-01

    The main disadvantages of traditional spectral polarization imaging system are: complex structure, with moving parts, low throughput. A novel method of spectral polarization imaging system is discussed, which is based on static polarization intensity modulation combined with Savart polariscope interference imaging. The imaging system can obtain real-time information of spectral and four Stokes polarization messages. Compared with the conventional methods, the advantages of the imaging system are compactness, low mass and no moving parts, no electrical control, no slit and big throughput. The system structure and the basic theory are introduced. The experimental system is established in the laboratory. The experimental system consists of reimaging optics, polarization intensity module, interference imaging module, and CCD data collecting and processing module. The spectral range is visible and near-infrared (480-950 nm). The white board and the plane toy are imaged by using the experimental system. The ability of obtaining spectral polarization imaging information is verified. The calibration system of static polarization modulation is set up. The statistical error of polarization degree detection is less than 5%. The validity and feasibility of the basic principle is proved by the experimental result. The spectral polarization data captured by the system can be applied to object identification, object classification and remote sensing detection.

  16. Large enhancement of deuteron polarization with frequency modulated microwaves

    CERN Document Server

    AUTHOR|(CDS)2067425; Arik, S; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin,; Baum, G; Berglund, P; Betev, L; Birda, I G; Birsa, R; Bjrkholm, P; Bonner, B E; de Botton, N; Boutemeur, M; Bradamante, Franco; Bressan, A; Brullc, A; Buchanan, J; Bültmann, S; Burtin, E; Cavata, C; Chen, J P; Clement, J; Clocchiatti, M; Corcoran, M D; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Deshpande, S; Dalla Torre, A; Van Dantzig, R; Dhawan, S; Dulya, C; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Day, D; Feinstein, F; Fernández, C; Frois, B; Garabatos, C; Garzón, J A; Gaussiran, T; Giorgi, M; von Goeler, E; Goloutvin, Igor A; Gómez, A; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, D; von Harrach, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; De Jong, M; Kabu, E M; Kageya, T; Kaiser, R; Karev, A; Kessler, H J; Ketel, T J; Kiryushin, Yu T; Kishi, A; Kisselev, Yu; Klostermann, L; Krämer, Dietrich; Kukhtin, V; Kyynarinen, J; Lamanna, M; Landgraf, U; Lau, V; Krivokhijinea, K; Layda, T; Le Go, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; López-Ponte, S; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B; McCarthy, J S; van Middelkoop, K; Medved, G; Miller, D; Mitchell, J; Mori, K; Moromisato, J; Mutchler, G S; Nagaitsev, A; Nassalski, J; Naumann, Lutz; Neganov, B; Niinikoski, T O; Oberski, J E J; Ogawa, A; Okumi, S; Ozben, C S; Penzo, Aldo L; Pérez, C A; Perrot-Kunne, F; Piegaia, R; Pinsky, L; Platchkov, S; Pló, M; Pose, D; Postma, D; Peshekhonov, H; Pretz, J; Pussieux, T; Pyrlik, J; Reyhancan, I; Rieubland, Jean Michel; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, E; Rondon, O; Ropelewski, Leszek; Rosado, A; Sabo, I; Saborido, J; Salvato, G; Sandacz, A; Sanders, D; Savin, I; Schiavon, Paolo; Schüler, K P; Segel, R; Seitz, R; Semertzidis, Y; Sergeev, S; Sever, F; Shanahan, P; Sichtermann, E P; Smirnov, G; Staude, A; Steinmetz, A; Stuhrmann, H; Teichert, K M; Tessarotto, F; Thiel, W; Velasco, M; Vogt, J; Voss, R; Weinstein, R; Whitten, C; Willumeit, R; Windmolders, R; Wislicki, W; Witzmann, A; Yañez, A; Zanetti, A M; Zhao, J; Zamiatin, N I

    1996-01-01

    We report a large enhancement of 1.7 in deuteron polarization up to values of 0.6 due to frequency modulation of the polarizing microwaves in a two liters polarized target using the method of dynamic nuclear polarization. This target was used during a deep inelastic polarized muon-deuteron scattering experiment at CERN. Measurements of the electron paramagnetic resonance absorption spectra show that frequency modulation gives rise to additional microwave absorption in the spectral wings. Although these results are not understood theoretically, they may provide a useful testing ground for the deeper understanding of dynamic nuclear polarization.

  17. An intense polarized beam by a laser ionization injection

    International Nuclear Information System (INIS)

    Ohmori, Chihiro; Hiramatsu, Shigenori; Nakamura, Takeshi.

    1990-12-01

    Accumulation of protons and polarized protons by photo-ionization injection are described. This method consists of (1)producing the neutral hydrogen beam by Lorentz stripping, (2)excitation of the neutral hydrogen beam with a laser, and (3)ionization of the hydrogen beam in the 2P excited state with another laser. When the laser for the excitation is circularly polarized, we can get a polarized proton beam. An ionization efficiency of 98% and a polarization of 80% can be expected by an intense laser beam from a FEL(Free Electron Laser). (author)

  18. Spin-polarized carrier injection effect in ferromagnetic semiconductor/diffusive semiconductor/superconductor junctions

    Energy Technology Data Exchange (ETDEWEB)

    Akazaki, T [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198 Japan (Japan); Sawa, Y; Yokoyama, T; Tanaka, Y [Department of Applied Physics, Nagoya University, Nagoya, 464-8603 Japan (Japan); Golubov, A A [Faculty of Science and Technology, University of Twente, Enschede (Netherlands); Munekata, H [Image Science and Engineering Lab., Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503 Japan (Japan); Nishizawa, N; Takayanagi, H [International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 3-13 Sakura, Tsukuba, 305-0003 Japan (Japan)], E-mail: h-taka@rs.kagu.tus.ac.jp

    2009-02-01

    We study the transport properties of a p-InMnAs/n-InAs/Nb junction where a p-InMnAs can be regarded as a spin injector. Differential conductance of the n-InAs channel is measured as a function of injection current from p-InMnAs or from Nb at 20 mK. A conductance minimum appears at zero-bias voltage with no current injection. As the injection current from p-InMnAs increases, the minimum gradually disappears. This conductance behaviour is very different from that of the injection case from Nb. We also calculate the conductance in the n-InAs channel by taking account of the exchange field in the InAs channel that is induced by InMnAs ferromagnet. The difference between the conductance behaviours on injection current direction can be explained by the inverse proximity effect that the exchange field is also induced in the superconducting electrode.

  19. Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Hurtado, A.; Al Seyab, R. K.; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Korpijarvi, V.-M.; Guina, M. [Optoelectronics Research Centre (ORC), Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2014-11-03

    We experimentally demonstrate the control of the light polarization emitted by a 1310 nm dilute nitride spin-Vertical Cavity Surface Emitting Laser (VCSEL) at room temperature. This is achieved by means of a combination of polarized optical pumping and polarized optical injection. Without external injection, the polarization of the optical pump controls that of the spin-VCSEL. However, the addition of the externally injected signal polarized with either left- (LCP) or right-circular polarization (RCP) is able to control the polarization of the spin-VCSEL switching it at will to left- or right-circular polarization. A numerical model has been developed showing a very high degree of agreement with the experimental findings.

  20. Modulating the line shape of magnetoconductance by varying the charge injection in polymer light-emitting diodes

    Directory of Open Access Journals (Sweden)

    Nidya Chitraningrum

    2018-02-01

    Full Text Available We fabricate the phenyl-substituted poly(p-phenylene vinylene copolymer (super yellow, SY-PPV-based polymer light-emitting diodes (PLEDs with different device architectures to modulate the injection of opposite charge carriers and investigate the corresponding magnetoconductance (MC responses. At the first glance, we find that all PLEDs exhibit the positive MC responses. By applying the mathematical analysis to fit the curves with two empirical equations of a non-Lorentzian and a Lorentzian function, we are able to extract the hidden negative MC component from the positive MC curve. We attribute the growth of the negative MC component to the reduced interaction of the triplet excitons with charges to generate the free charge carriers as modulated by the applied magnetic field, known as the triplet exciton-charge reaction, by analyzing MC responses for PLEDs of the charge-unbalanced and hole-blocking device configurations. The negative MC component causes the broadening of the line shape in MC curves.

  1. Insight into carrier lifetime impact on band-modulation devices

    Science.gov (United States)

    Parihar, Mukta Singh; Lee, Kyung Hwa; Park, Hyung Jin; Lacord, Joris; Martinie, Sébastien; Barbé, Jean-Charles; Xu, Yue; El Dirani, Hassan; Taur, Yuan; Cristoloveanu, Sorin; Bawedin, Maryline

    2018-05-01

    A systematic study to model and characterize the band-modulation Z2-FET device is developed bringing light to the relevance of the carrier lifetime influence. This work provides guidelines to optimize the Z2-FETs for sharp switching, ESD protection, and 1T-DRAM applications. Lower carrier lifetime in the Z2-FET helps in attaining the sharp switch. We provide new insights into the correlation between generation/recombination, diffusion, electrostatic barriers and carrier lifetime.

  2. Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization.

    Science.gov (United States)

    Shayan, Mahdis; Padmanabhan, Jagannath; Morris, Aaron H; Cheung, Bettina; Smith, Ryan; Schroers, Jan; Kyriakides, Themis R

    2018-06-01

    Polarization of macrophages by chemical, topographical and mechanical cues presents a robust strategy for designing immunomodulatory biomaterials. Here, we studied the ability of nanopatterned bulk metallic glasses (BMGs), a new class of metallic biomaterials, to modulate murine macrophage polarization. Cytokine/chemokine analysis of IL-4 or IFNγ/LPS-stimulated macrophages showed that the secretion of TNF-α, IL-1α, IL-12, CCL-2 and CXCL1 was significantly reduced after 24-hour culture on BMGs with 55 nm nanorod arrays (BMG-55). Additionally, under these conditions, macrophages increased phagocytic potential and exhibited decreased cell area with multiple actin protrusions. These in vitro findings suggest that nanopatterning can modulate biochemical cues such as IFNγ/LPS. In vivo evaluation of the subcutaneous host response at 2 weeks demonstrated that the ratio of Arg-1 to iNOS increased in macrophages adjacent to BMG-55 implants, suggesting modulation of polarization. In addition, macrophage fusion and fibrous capsule thickness decreased and the number and size of blood vessels increased, which is consistent with changes in macrophage responses. Our study demonstrates that nanopatterning of BMG implants is a promising technique to selectively polarize macrophages to modulate the immune response, and also presents an effective tool to study mechanisms of macrophage polarization and function. Implanted biomaterials elicit a complex series of tissue and cellular responses, termed the foreign body response (FBR), that can be influenced by the polarization state of macrophages. Surface topography can influence polarization, which is broadly characterized as either inflammatory or repair-like. The latter has been linked to improved outcomes of the FBR. However, the impact of topography on macrophage polarization is not fully understood, in part, due to a lack of high moduli biomaterials that can be reproducibly processed at the nanoscale. Here, we studied

  3. Observing the Cosmic Microwave Background Polarization with Variable-delay Polarization Modulators for the Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Harrington, Kathleen; CLASS Collaboration

    2018-01-01

    The search for inflationary primordial gravitational waves and the optical depth to reionization, both through their imprint on the large angular scale correlations in the polarization of the cosmic microwave background (CMB), has created the need for high sensitivity measurements of polarization across large fractions of the sky at millimeter wavelengths. These measurements are subjected to instrumental and atmospheric 1/f noise, which has motivated the development of polarization modulators to facilitate the rejection of these large systematic effects.Variable-delay polarization modulators (VPMs) are used in the Cosmology Large Angular Scale Surveyor (CLASS) telescopes as the first element in the optical chain to rapidly modulate the incoming polarization. VPMs consist of a linearly polarizing wire grid in front of a moveable flat mirror; varying the distance between the grid and the mirror produces a changing phase shift between polarization states parallel and perpendicular to the grid which modulates Stokes U (linear polarization at 45°) and Stokes V (circular polarization). The reflective and scalable nature of the VPM enables its placement as the first optical element in a reflecting telescope. This simultaneously allows a lock-in style polarization measurement and the separation of sky polarization from any instrumental polarization farther along in the optical chain.The Q-Band CLASS VPM was the first VPM to begin observing the CMB full time in 2016. I will be presenting its design and characterization as well as demonstrating how modulating polarization significantly rejects atmospheric and instrumental long time scale noise.

  4. Spin-polarization dependent carrier recombination dynamics and spin relaxation mechanism in asymmetrically doped (110) n-GaAs quantum wells

    Science.gov (United States)

    Teng, Lihua; Jiang, Tianran; Wang, Xia; Lai, Tianshu

    2018-05-01

    Carrier recombination and electron spin relaxation dynamics in asymmetric n-doped (110) GaAs/AlGaAs quantum wells are investigated with time-resolved pump-probe spectroscopy. The experiment results reveal that the measured carrier recombination time depends strongly on the polarization of pump pulse. With the same pump photon flux densities, the recombination time of spin-polarized carriers is always longer than that of the spin-balanced carriers except at low pump photon flux densities, this anomaly originates from the polarization-sensitive nonlinear absorption effect. Differing from the traditional views, in the low carrier density regime, the D'yakonov-Perel' (DP) mechanism can be more important than the Bir-Aronov-Pikus (BAP) mechanism, since the DP mechanism takes effect, the spin relaxation time in (110) GaAs QWs is shortened obviously via asymmetric doping.

  5. Self-injection locking of the DFB laser through an external ring fiber cavity: Polarization behavior

    Directory of Open Access Journals (Sweden)

    J.L. Bueno Escobedo

    Full Text Available We study stability of self-injection locking realized with DFB laser coupled with an external fiber optic ring cavity. Polarization behavior of the radiation circulating in the feedback loop is reported. Two regimes of mode hopping have been observed; one of them is accompanied by polarization bistability involving two orthogonal polarization states. Keywords: Self-injection locking, Polarization, Optical fiber

  6. Polarization modulation in Young's interference experiment

    International Nuclear Information System (INIS)

    Tervo, Jani

    2008-01-01

    Polarization properties at the observation screen in Young's interference experiment are examined. Several recent results on the modulation of Stokes parameters, including the minimum number of modulated parameters, are reviewed. The theory is then applied to find out the relation between the Stokes parameters at the pinholes and the Pancharatnam-Berry phase at the screen.

  7. Investigation of focusing and correcting aberrations with binary amplitude and polarization modulation.

    Science.gov (United States)

    Fiala, Peter; Li, Yunqi; Dorrer, Christophe

    2018-02-01

    We investigate the focusing and correcting wavefront aberration of an optical wave using binary amplitude and polarization modulation. Focusing is performed by selectively modulating the field in different zones of the pupil to obtain on-axis constructive interference at a given distance. The conventional Soret zone plate (binary amplitude profile) is expanded to a polarization Soret zone plate with twice the focusing efficiency. Binary pixelated devices that approximate the sinusoidal transmission profile of a Gabor zone plate by spatial dithering are also investigated with amplitude and polarization modulation. Wavefront aberrations are corrected by modulation of the field in the pupil plane to prevent destructive interference in the focal plane of an ideal focusing element. Polarization modulation improves the efficiency obtained by amplitude-only modulation, with a gain that depends on the aberration. Experimental results obtained with Cr-on-glass devices for amplitude modulation and liquid crystal devices operating in the Mauguin condition for polarization modulation are in very good agreement with simulations.

  8. Spin injection into GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Bernhard

    2013-11-01

    In this work spin injection into GaAs from Fe and (Ga,Mn)As was investigated. For the realization of any spintronic device the detailed knowledge about the spin lifetime, the spatial distribution of spin-polarized carriers and the influence of electric fields is essential. In the present work all these aspects have been analyzed by optical measurements of the polar magneto-optic Kerr effect (pMOKE) at the cleaved edge of the samples. Besides the attempt to observe spin pumping and thermal spin injection into n-GaAs the spin solar cell effect is demonstrated, a novel mechanism for the optical generation of spins in semiconductors with potential for future spintronic applications. Also important for spin-based devices as transistors is the presented realization of electrical spin injection into a two-dimensional electron gas.

  9. High repetition rate driver circuit for modulation of injection lasers

    International Nuclear Information System (INIS)

    Dornan, B.R.; Goel, J.; Wolkstein, H.J.

    1981-01-01

    An injection laser modulator comprises a self-biased field effect transistor (FET) and an injection laser to provide a quiescent state during which lasing of the injection laser occurs in response to a high repetition rate signal of pulse coded modulation (pcm). The modulator is d.c. coupled to an input pulse source of pcm rendering it compatible with an input pulse referenced to ground and not being subject to voltage level shifting of the input pulse. The modulator circuit in its preferred and alternate embodiments provides various arrangements for high impedance input and low impedance output matching. In addition, means are provided for adjusting the bias of the FET as well as the bias of the injection laser

  10. Optical vector network analyzer with improved accuracy based on polarization modulation and polarization pulling.

    Science.gov (United States)

    Li, Wei; Liu, Jian Guo; Zhu, Ning Hua

    2015-04-15

    We report a novel optical vector network analyzer (OVNA) with improved accuracy based on polarization modulation and stimulated Brillouin scattering (SBS) assisted polarization pulling. The beating between adjacent higher-order optical sidebands which are generated because of the nonlinearity of an electro-optic modulator (EOM) introduces considerable error to the OVNA. In our scheme, the measurement error is significantly reduced by removing the even-order optical sidebands using polarization discrimination. The proposed approach is theoretically analyzed and experimentally verified. The experimental results show that the accuracy of the OVNA is greatly improved compared to a conventional OVNA.

  11. Bidirectional fiber-wireless and fiber-IVLLC integrated system based on polarization-orthogonal modulation scheme.

    Science.gov (United States)

    Lu, Hai-Han; Li, Chung-Yi; Chen, Hwan-Wei; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Yang, Zih-Yi; Lin, Xin-Yao

    2016-07-25

    A bidirectional fiber-wireless and fiber-invisible laser light communication (IVLLC) integrated system that employs polarization-orthogonal modulation scheme for hybrid cable television (CATV)/microwave (MW)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and demonstrated. To our knowledge, it is the first one that adopts a polarization-orthogonal modulation scheme in a bidirectional fiber-wireless and fiber-IVLLC integrated system with hybrid CATV/MW/MMW/BB signal. For downlink transmission, carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) perform well over 40-km single-mode fiber (SMF) and 10-m RF/50-m optical wireless transport scenarios. For uplink transmission, good BER performance is obtained over 40-km SMF and 50-m optical wireless transport scenario. Such a bidirectional fiber-wireless and fiber-IVLLC integrated system for hybrid CATV/MW/MMW/BB signal transmission will be an attractive alternative for providing broadband integrated services, including CATV, Internet, and telecommunication services. It is shown to be a prominent one to present the advancements for the convergence of fiber backbone and RF/optical wireless feeder.

  12. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.

    Science.gov (United States)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-08

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  13. Specificity of the Human Frequency Following Response for Carrier and Modulation Frequency Assessed Using Adaptation.

    Science.gov (United States)

    Gockel, Hedwig E; Krugliak, Alexandra; Plack, Christopher J; Carlyon, Robert P

    2015-12-01

    The frequency following response (FFR) is a scalp-recorded measure of phase-locked brainstem activity to stimulus-related periodicities. Three experiments investigated the specificity of the FFR for carrier and modulation frequency using adaptation. FFR waveforms evoked by alternating-polarity stimuli were averaged for each polarity and added, to enhance envelope, or subtracted, to enhance temporal fine structure information. The first experiment investigated peristimulus adaptation of the FFR for pure and complex tones as a function of stimulus frequency and fundamental frequency (F0). It showed more adaptation of the FFR in response to sounds with higher frequencies or F0s than to sounds with lower frequency or F0s. The second experiment investigated tuning to modulation rate in the FFR. The FFR to a complex tone with a modulation rate of 213 Hz was not reduced more by an adaptor that had the same modulation rate than by an adaptor with a different modulation rate (90 or 504 Hz), thus providing no evidence that the FFR originates mainly from neurons that respond selectively to the modulation rate of the stimulus. The third experiment investigated tuning to audio frequency in the FFR using pure tones. An adaptor that had the same frequency as the target (213 or 504 Hz) did not generally reduce the FFR to the target more than an adaptor that differed in frequency (by 1.24 octaves). Thus, there was no evidence that the FFR originated mainly from neurons tuned to the frequency of the target. Instead, the results are consistent with the suggestion that the FFR for low-frequency pure tones at medium to high levels mainly originates from neurons tuned to higher frequencies. Implications for the use and interpretation of the FFR are discussed.

  14. Development of a Precise Polarization Modulator for UV Spectropolarimetry

    Science.gov (United States)

    Ishikawa, S.; Shimizu, T.; Kano, R.; Bando, T.; Ishikawa, R.; Giono, G.; Tsuneta, S.; Nakayama, S.; Tajima, T.

    2015-10-01

    We developed a polarization modulation unit (PMU) to rotate a waveplate continuously in order to observe solar magnetic fields by spectropolarimetry. The non-uniformity of the PMU rotation may cause errors in the measurement of the degree of linear polarization (scale error) and its angle (crosstalk between Stokes-Q and -U), although it does not cause an artificial linear polarization signal (spurious polarization). We rotated a waveplate with the PMU to obtain a polarization modulation curve and estimated the scale error and crosstalk caused by the rotation non-uniformity. The estimated scale error and crosstalk were {PMU will be used as a waveplate motor for the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) rocket experiment. We confirm that the PMU performs and functions sufficiently well for CLASP.

  15. Advances in coherent optical modems and 16-QAM transmission with feedforward carrier recovery

    Science.gov (United States)

    Noé, Reinhold; Hoffmann, Sebastian; Wördehoff, Christian; Al-Bermani, Ali; El-Darawy, Mohamed

    2011-01-01

    Polarization multiplexing and quadrature phase shift keying (QPSK) both double spectral efficiency. Combined with synchronous coherent polarization diverse intradyne receivers this modulation format is ultra-robust and cost-efficient. A feedforward carrier recovery is required in order to tolerate phase noise of normal DFB lasers. Signal processing in the digital domain permits compensation of at least chromatic and polarization mode dispersion. Some companies have products on the market, others are working on them. For 100 GbE transmission, 50 GHz channel spacing is sufficient. 16ary quadrature amplitude modulation (16-QAM) is attractive to double capacity once more, possibly in a modulation format flexible transponder which is switched down to QPSK only if system margin is too low. For 16-QAM the phase noise problem is sharply increased. However, also here a feedforward carrier recovery has been implemented. A number of carrier phase angles is tested in parallel, and the recovered data is selected for that phase angle where squared distance of recovered data to the nearest constellation point, averaged over a number of symbols, is minimum. An intradyne/selfhomodyne synchronous coherent 16-QAM experiment (2.5 Gb/s, 81 km) is presented.

  16. RECOVERY OF LARGE ANGULAR SCALE CMB POLARIZATION FOR INSTRUMENTS EMPLOYING VARIABLE-DELAY POLARIZATION MODULATORS

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N. J.; Marriage, T. A.; Appel, J. W.; Bennett, C. L.; Eimer, J.; Essinger-Hileman, T.; Harrington, K.; Rostem, K.; Watts, D. J. [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Chuss, D. T. [Department of Physics, Villanova University, 800 E Lancaster, Villanova, PA 19085 (United States); Wollack, E. J.; Fixsen, D. J.; Moseley, S. H.; Switzer, E. R., E-mail: Nathan.J.Miller@nasa.gov [Observational Cosmology Laboratory, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-02-20

    Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r = 0.01. Indeed, r < 0.01 is achievable with commensurately improved characterizations and controls.

  17. Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes

    International Nuclear Information System (INIS)

    Kim, Kyu-Sang; Han, Dong-Pyo; Kim, Hyun-Sung; Shim, Jong-In

    2014-01-01

    Two kinds of green InGaN light emitting diodes (LEDs) have been investigated in order to understand the different slopes in logarithmic light output power-current (L-I) curves. Through the analysis of the carrier rate equation and by considering the carrier density-dependent the injection efficiency into quantum wells, the slopes of the logarithmic L-I curves can be more rigorously understood. The low current level, two as the tunneling current is initially dominant. The high current level beyond the peak of the external quantum efficiency (EQE) diminishes below one as the carrier overflow becomes dominant. In addition, the normalized carrier injection efficiency can be obtained by analyzing the slopes of the logarithmic L-I curves. The carrier injection efficiency decreases after the EQE peak of the InGaN LEDs, determined from the analysis of the slopes of the logarithmic L-I curves

  18. SCIENTIFIC VERIFICATION OF FARADAY ROTATION MODULATORS: DETECTION OF DIFFUSE POLARIZED GALACTIC EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Moyerman, S.; Bierman, E.; Kaufman, J.; Keating, B. G. [Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92037 (United States); Ade, P. A. R. [Department of Physics and Astronomy, University of Wales, Cardiff CF24 3YB (United Kingdom); Aiken, R.; Hristov, V. V.; Jones, W. C.; Mason, P. V. [Department of Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Barkats, D. [Joint ALMA Observatory, ESO, Santiago (Chile); Bischoff, C.; Kovac, J. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bock, J. J.; Dowell, C. D. [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States); Chiang, H. C. [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Duband, L. [SBT, Commissariat a l' Energie Atomique (apostrophe), F-38054 Grenoble (France); Hivon, E. F. [Insititut d' Astrophysique de Paris, F-75014 Paris (France); Holzapfel, W. L. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720 (United States); Kuo, C. L. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Palo Alto, CA 94305 (United States); Leitch, E. M., E-mail: smoyerma@ucsd.edu [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); and others

    2013-03-01

    The design and performance of a wide bandwidth linear polarization modulator based on the Faraday effect is described. Faraday Rotation Modulators (FRMs) are solid-state polarization switches that are capable of modulation up to 10 kHz. Six FRMs were utilized during the 2006 observing season in the Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment; three FRMs were used at each of BICEP's 100 and 150 GHz frequency bands. The technology was verified through high signal-to-noise detection of Galactic polarization using two of the six FRMs during four observing runs in 2006. The features exhibit strong agreement with BICEP's measurements of the Galaxy using non-FRM pixels and with the Galactic polarization models. This marks the first detection of high signal-to-noise mm-wave celestial polarization using fast, active optical modulation. The performance of the FRMs during periods when they were not modulated was also analyzed and compared to results from BICEP's 43 pixels without FRMs.

  19. Scientific Verification of Faraday Rotation Modulators: Detection of Diffuse Polarized Galactic Emission

    Science.gov (United States)

    Moyerman, S.; Bierman, E.; Ade, P. A. R.; Aiken, R.; Barkats, D.; Bischoff, C.; Bock, J. J.; Chiang, H. C.; Dowell, C. D.; Duband, L.; hide

    2012-01-01

    The design and performance of a wide bandwidth linear polarization-modulator based on the Faraday effect is described. Faraday Rotation Modulators (FRMs) are solid-state polarization switches that are capable of modulation up to approx 10 kHz. Six FRMs were utilized during the 2006 observing season in the Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment; three FRMs were used at each of BICEP fs 100 and 150 GHz frequency bands. The technology was verified through high signal-to-noise detection of Galactic polarization using two of the six FRMs during four observing runs in 2006. The features exhibit strong agreement with BICEP fs measurements of the Galaxy using non-FRM pixels and with the Galactic polarization models. This marks the first detection of high signal-to-noise mm-wave celestial polarization using fast, active optical modulation. The performance of the FRMs during periods when they were not modulated was also analyzed and compared to results from BICEP fs 43 pixels without FRMs.

  20. Influence of injected charge carriers on photocurrents in polymer solar cells

    NARCIS (Netherlands)

    Wehenkel, D.J.; Koster, L.J.A.; Wienk, M.M.; Janssen, R.A.J.

    2012-01-01

    We determine and analyze the photocurrent Jph in polymer solar cells under conditions where, no, one, or two different charge carriers can be injected by choosing appropriate electrodes and compare the experimental results to simulations based on a drift-diffusion device model that accounts for

  1. Transverse and polarization effects in index-guided vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Torre, M. S.; Masoller, C.; Mandel, Paul

    2006-01-01

    We study numerically the polarization dynamics of vertical-cavity surface-emitting lasers (VCSEL's) operating in the fundamental transverse mode. We use an extension of the spin-flip model that not only accounts for the vector nature of the laser field, but also considers spatial transverse effects. The model assumes two orthogonal, linearly polarized fields, which are coupled to two carrier populations, associated with different spin sublevels of the conduction and valence bands in the quantum-well active region. Spatial effects are taken into account by considering transverse profiles for the two polarizations, for the two carrier populations, and for the carrier diffusion. The optical profile is the LP 01 mode, suitable for describing index-guided VCSEL's with cylindrical symmetry emitting on the fundamental transverse mode for both polarizations. We find that in small-active-region VCSEL's, fast carrier diffusion induces self-sustained oscillations of the total laser output, which are not present in larger-area devices or with slow carrier diffusion. These self-pulsations appear close to threshold, and, as the injection current increases, they grow in amplitude; however, there is saturation and the self-pulsations disappear at higher injection levels. The dependence of the oscillation amplitude on various laser parameters is investigated, and the results are found to be in good qualitative agreement with those reported by Van der Sande et al. [Opt. Lett. 29, 53 (2004)], based on a rate-equation model that takes into account transverse inhomogeneities through an intensity-dependent confinement factor

  2. ZIFL1.1 transporter modulates polar auxin transport by stabilizing membrane abundance of multiple PINs in Arabidopsis root tip

    Science.gov (United States)

    Remy, Estelle; Baster, Pawel; Friml, Jiří; Duque, Paula

    2013-01-01

    Cell-to-cell directional flow of the phytohormone auxin is primarily established by polar localization of the PIN auxin transporters, a process tightly regulated at multiple levels by auxin itself. We recently reported that, in the context of strong auxin flows, activity of the vacuolar ZIFL1.1 transporter is required for fine-tuning of polar auxin transport rates in the Arabidopsis root. In particular, ZIFL1.1 function protects plasma-membrane stability of the PIN2 carrier in epidermal root tip cells under conditions normally triggering PIN2 degradation. Here, we show that ZIFL1.1 activity at the root tip also promotes PIN1 plasma-membrane abundance in central cylinder cells, thus supporting the notion that ZIFL1.1 acts as a general positive modulator of polar auxin transport in roots. PMID:23857365

  3. ANALYSIS OF HARMONIC INJECTION TO THE MODULATION OF ...

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... Abstract. This paper explores the analysis of third and ninth harmonic injection to the modulation of a multi- level diode clamped converter (DCC) at a varying modulation index. The spectral distributions of the various multi-level waveforms obtained under normal modulation index of 0.8 and over modulation ...

  4. Modeling of carrier dynamics in quantum-well electroabsorption modulators

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Mørk, Jesper

    2002-01-01

    We present a comprehensive drift-diffusion-type electroabsorption modulator (EAM) model. The model allows us to investigate both steady-state properties and to follow the sweep-out of carriers after pulsed optical excitation. Furthermore, it allows for the investigation of the influence that vari...... in the field near each well affect the escape of carriers from that well. Finally, we look at the influence that the separate-confinement heterostructure barriers have on the carrier sweep-out....... that various design parameters have on the device properties, in particular how they affect the carrier dynamics and the corresponding field dynamics. A number of different types of results are presented. We calculate absorption spectra and steady-state field screening due to carrier pile-up at the separate......-confinement heterobarriers. We then move on to look at carrier sweep-out upon short-pulse optical excitation. For a structure with one well, we analyze how the well position affects the carrier sweep-out and the absorption recovery. We calculate the field dynamics in a multiquantum-well structure and discuss how the changes...

  5. Enhanced optical spin current injection in the hexagonal lattice with intrinsic and Rashba spin–orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Jianfei, E-mail: zoujianfei@hhu.edu.cn; Tang, Chunmei; Zhang, Aimei

    2017-04-04

    We study the photo-induced spin current injection in a hexagonal lattice with both intrinsic and Rashba spin–orbit interactions which is irradiated by a polarized light beam. It is found that the spin current injection rate could be enhanced as the graphene lattice is in the topological insulator state. Furthermore, the spin current injection rate could be remarkably modulated by the degree of polarization of light and its frequency. - Highlights: • The optical spin current could be enhanced by the intrinsic spin–orbit interaction. • The optical spin current could be modulated by the degree of polarization of light. • The maximum of the spin current injection rate is obtained.

  6. Sensitized charge carrier injection into organic crystals studied by isotope effects in weak magnetic fields

    International Nuclear Information System (INIS)

    Bube, W.; Michel-Beyerle, M.E.; Haberkorn, R.; Steffens, E.

    1977-01-01

    The magnetic field (H approximately 50 Oe) dependence of the rhodamine sensitized triplet exciton density in anthracene crystals is influenced by isotopic substitution. This confirms the hyperfine interaction as mechanism explaining the change of the spin multiplicity in the initially formed singlet state of the radical pair. The isotope effect occurs in the sensitizing dye ( 14 N/ 15 N) rather than at the molecular site of the injected charge within the crystal. This can be understood in terms of the high hopping frequency of the charge carriers as compared to the time constant of the hyperfine induced singlet-triplet transition. Since the dye molecules adsorb in an oriented fashion, the angular dependence of the magnetic field modulation of the triplet exciton density can be interpreted without assuming any additional interactions. (Auth.)

  7. Polarization states encoded by phase modulation for high bit rate quantum key distribution

    International Nuclear Information System (INIS)

    Liu Xiaobao; Tang Zhilie; Liao Changjun; Lu Yiqun; Zhao Feng; Liu Songhao

    2006-01-01

    We present implementation of quantum cryptography with polarization code by wave-guide type phase modulator. At four different low input voltages of the phase modulator, coder encodes pulses into four different polarization states, 45 o , 135 o linearly polarized or right, left circle polarized, while the decoder serves as the complementary polarizers

  8. Double resonance modulation characteristics of optically injection-locked Fabry–Perot lasers

    International Nuclear Information System (INIS)

    Dorogush, E S; Afonenko, A A

    2015-01-01

    The distributed resonator model is used to show the presence of several resonance responses on the modulation characteristic of optically injection-locked Fabry–Perot lasers. The positions of the resonance peaks on the modulation characteristic are determined by the resonator length and frequency detuning of optical injection. It is shown that an appropriate choice of the resonator length and injection locking conditions allows one to obtain efficient modulation in two ranges near 40 – 60 GHz or to increase the direct modulation bandwidth up to 50 GHz. (control of laser radiation parameters)

  9. Double resonance modulation characteristics of optically injection-locked Fabry–Perot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dorogush, E S; Afonenko, A A [Belarusian State University, Minsk (Belarus)

    2015-12-31

    The distributed resonator model is used to show the presence of several resonance responses on the modulation characteristic of optically injection-locked Fabry–Perot lasers. The positions of the resonance peaks on the modulation characteristic are determined by the resonator length and frequency detuning of optical injection. It is shown that an appropriate choice of the resonator length and injection locking conditions allows one to obtain efficient modulation in two ranges near 40 – 60 GHz or to increase the direct modulation bandwidth up to 50 GHz. (control of laser radiation parameters)

  10. Effects of electric field and magnetic induction on spin injection into organic semiconductors

    International Nuclear Information System (INIS)

    Wang, Y.M.; Ren, J.F.; Yuan, X.B.; Dou, Z.T.; Hu, G.C.

    2011-01-01

    Spin-polarized injection and transport into ferromagnetic/organic semiconductor structure are studied theoretically in the presence of the external electric field and magnetic induction. Based on the spin-drift-diffusion theory and Ohm's law, we obtain the charge current polarization, which takes into account the special carriers of organic semiconductors. From the calculation, it is found that the current spin polarization is enhanced by several orders of magnitude by tuning the magnetic induction and electric fields. To get an apparent current spin polarization, the effects of spin-depended interfacial resistances and the special carriers in the organic semiconductor, which are polarons and bipolarons, are also discussed. -- Research highlights: → Current polarization in ferromagnetic/organic semiconductor structure is obtained. → Calculations are based on spin-drift-diffusion theory and Ohm's law. → Current polarization is enhanced by tuning magnetic induction and electric fields. → Effects of interfacial resistances and the special carriers are also discussed.

  11. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals

    Science.gov (United States)

    Kan, Tetsuo; Isozaki, Akihiro; Kanda, Natsuki; Nemoto, Natsuki; Konishi, Kuniaki; Takahashi, Hidetoshi; Kuwata-Gonokami, Makoto; Matsumoto, Kiyoshi; Shimoyama, Isao

    2015-10-01

    Active modulation of the polarization states of terahertz light is indispensable for polarization-sensitive spectroscopy, having important applications such as non-contact Hall measurements, vibrational circular dichroism measurements and anisotropy imaging. In the terahertz region, the lack of a polarization modulator similar to a photoelastic modulator in the visible range hampers expansion of such spectroscopy. A terahertz chiral metamaterial has a huge optical activity unavailable in nature; nevertheless, its modulation is still challenging. Here we demonstrate a handedness-switchable chiral metamaterial for polarization modulation employing vertically deformable Micro Electro Mechanical Systems. Vertical deformation of a planar spiral by a pneumatic force creates a three-dimensional spiral. Enantiomeric switching is realized by selecting the deformation direction, where the polarity of the optical activity is altered while maintaining the spectral shape. A polarization rotation as high as 28° is experimentally observed, thus providing a practical and compact polarization modulator for the terahertz range.

  12. Study of axial injection of polarized protons into the grenoble cyclotron

    International Nuclear Information System (INIS)

    Pabot, J.

    1969-01-01

    By injecting ions axially into a cyclotron, it is possible to accelerate particles (polarized particles, heavy ions, etc...) obtainable only with difficulty when an internal ion source is used. In this work, after justifying the choice of an axial injection device equipped with a 'pseudo-cylindrical' deflector for the Grenoble cyclotron, we study theoretically the principle of such a detector, the choice of its parameters, and the effect of this choice on the conditions of acceleration of the beam by the cyclotron. From the experimental point of view, this report describes two operations which made it possible to check that the chosen injection device operated satisfactorily, qualitatively initially (electron model), then quantitatively (proton model). In conclusion, we believe that the Grenoble cyclotron thus equipped will be able to provide a relatively dense beam of polarized protons. (author) [fr

  13. Modulation of electromagnetic fields by a depolarizer of random polarizer array

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Wang, Wei

    2016-01-01

    The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers with ran......The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers...... with randomly distributed polarization angles, where the incident fields experience a random polarization modulation after passing through the depolarizer. The propagation of the modulated electric fields through any quadratic optical system is examined within the framework of the complex ABCD matrix to show...

  14. Variable-delay Polarization Modulators for the CLASS Telescope

    Science.gov (United States)

    Harrington, Kathleen; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Marriage, T.; Mehrle, N.; Miller, A. D.; Miller, N.; Mirel, P.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    The challenges of measuring faint polarized signals at microwave wavelengths have motivated the development of rapid polarization modulators. One scalable technique, called a Variable-delay Polarization Modulator (VPM), consists of a stationary wire array in front of a movable mirror. The mirror motion creates a changing phase difference between the polarization modes parallel and orthogonal to the wire array. The Cosmology Large Angular Scale Surveyor (CLASS) will use a VPM as the first optical element in a telescope array that will search for the signature of inflation through the “B-mode” pattern in the polarization of the cosmic microwave background. In the CLASS VPMs, parallel transport of the mirror is maintained by a voice-coil actuated flexure system which will translate the mirror in a repeatable manner while holding tight parallelism constraints with respect to the wire array. The wire array will use 51 μm diameter copper-plated tungsten wire with 160 μm pitch over a 60 cm clear aperture. We present the status of the construction and testing of the mirror transport mechanism and wire arrays for the CLASS VPMs.

  15. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  16. Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers.

    Science.gov (United States)

    Meng, Bo; Wang, Qi Jie

    2012-01-16

    In this study, we report for the first time to our knowledge theoretical investigation of modulation responses of injection-locked mid-infrared quantum cascade lasers (QCLs) at wavelengths of 4.6 μm and 9 μm, respectively. It is shown through a three-level rate equations model that the direct intensity modulation of QCLs gives the maximum modulation bandwidths of ~7 GHz at 4.6 μm and ~20 GHz at 9 μm. By applying the injection locking scheme, we find that the modulation bandwidths of up to ~30 GHz and ~70 GHz can be achieved for QCLs at 4.6 μm and 9 μm, respectively, with an injection ratio of 5 dB. The result also shows that an ultrawide modulation bandwidth of more than 200 GHz is possible with a 10 dB injection ratio for QCLs at 9 μm. An important characteristic of injection-locked QCLs is the nonexistence of unstable locking region in the locking map, in contrast to their diode laser counterparts. We attribute this to the ultra-short upper laser state lifetimes of QCLs.

  17. Optimal strategy for polarization modulation in the LSPE-SWIPE experiment

    Science.gov (United States)

    Buzzelli, A.; de Bernardis, P.; Masi, S.; Vittorio, N.; de Gasperis, G.

    2018-01-01

    Context. Cosmic microwave background (CMB) B-mode experiments are required to control systematic effects with an unprecedented level of accuracy. Polarization modulation by a half wave plate (HWP) is a powerful technique able to mitigate a large number of the instrumental systematics. Aims: Our goal is to optimize the polarization modulation strategy of the upcoming LSPE-SWIPE balloon-borne experiment, devoted to the accurate measurement of CMB polarization at large angular scales. Methods: We departed from the nominal LSPE-SWIPE modulation strategy (HWP stepped every 60 s with a telescope scanning at around 12 deg/s) and performed a thorough investigation of a wide range of possible HWP schemes (either in stepped or continuously spinning mode and at different azimuth telescope scan-speeds) in the frequency, map and angular power spectrum domain. In addition, we probed the effect of high-pass and band-pass filters of the data stream and explored the HWP response in the minimal case of one detector for one operation day (critical for the single-detector calibration process). We finally tested the modulation performance against typical HWP-induced systematics. Results: Our analysis shows that some stepped HWP schemes, either slowly rotating or combined with slow telescope modulations, represent poor choices. Moreover, our results point out that the nominal configuration may not be the most convenient choice. While a large class of spinning designs provides comparable results in terms of pixel angle coverage, map-making residuals and BB power spectrum standard deviations with respect to the nominal strategy, we find that some specific configurations (e.g., a rapidly spinning HWP with a slow gondola modulation) allow a more efficient polarization recovery in more general real-case situations. Conclusions: Although our simulations are specific to the LSPE-SWIPE mission, the general outcomes of our analysis can be easily generalized to other CMB polarization experiments.

  18. Alternative laser system for cesium magneto-optical trap via optical injection locking to sideband of a 9-GHz current-modulated diode laser.

    Science.gov (United States)

    Diao, Wenting; He, Jun; Liu, Zhi; Yang, Baodong; Wang, Junmin

    2012-03-26

    By optical injection of an 852-nm extended-cavity diode laser (master laser) to lock the + 1-order sideband of a ~9-GHz-current-modulated diode laser (slave laser), we generate a pair of phase-locked lasers with a frequency difference up to ~9-GHz for a cesium (Cs) magneto-optical trap (MOT) with convenient tuning capability. For a cesium MOT, the master laser acts as repumping laser, locked to the Cs 6S₁/₂ (F = 3) - 6P₃/₂ (F' = 4) transition. When the + 1-order sideband of the 8.9536-GHz-current-modulated slave laser is optically injection-locked, the carrier operates on the Cs 6S₁/₂ (F = 4) - 6P₃/₂ (F' = 5) cooling cycle transition with -12 MHz detuning and acts as cooling/trapping laser. When carrying a 9.1926-GHz modulation signal, this phase-locked laser system can be applied in the fields of coherent population trapping and coherent manipulation of Cs atomic ground states.

  19. Dependence of InGaN solar cell performance on polarization-induced electric field and carrier lifetime

    International Nuclear Information System (INIS)

    Yang Jing; Zhao De-Gang; Jiang De-Sheng; Liu Zong-Shun; Chen Ping; Li Liang; Wu Liang-Liang; Le Ling-Cong; Li Xiao-Jing; He Xiao-Guang; Yang Hui; Wang Hui; Zhu Jian-Jun; Zhang Shu-Ming; Zhang Bao-Shun

    2013-01-01

    The effects of Mg-induced net acceptor doping concentration and carrier lifetime on the performance of a p—i—n InGaN solar cell are investigated. It is found that the electric field induced by spontaneous and piezoelectric polarization in the i-region could be totally shielded when the Mg-induced net acceptor doping concentration is sufficiently high. The polarization-induced potential barriers are reduced and the short circuit current density is remarkably increased from 0.21 mA/cm 2 to 0.95 mA/cm 2 by elevating the Mg doping concentration. The carrier lifetime determined by defect density of i-InGaN also plays an important role in determining the photovoltaic properties of solar cell. The short circuit current density severely degrades, and the performance of InGaN solar cell becomes more sensitive to the polarization when carrier lifetime is lower than the transit time. This study demonstrates that the crystal quality of InGaN absorption layer is one of the most important challenges in realizing high efficiency InGaN solar cells. (interdisciplinary physics and related areas of science and technology)

  20. Spin Coulomb Dragging Inhibition of Spin-Polarized Electric Current Injecting into Organic Semiconductors

    International Nuclear Information System (INIS)

    Jun-Qing, Zhao; Shi-Zhu, Qiao; Zhen-Feng, Jia; Ning-Yu, Zhang; Yan-Ju, Ji; Yan-Tao, Pang; Ying, Chen; Gang, Fu

    2008-01-01

    We introduce a one-dimensional spin injection structure comprising a ferromagnetic metal and a nondegenerate organic semiconductor to model electric current polarizations. With this model we analyse spin Coulomb dragging (SCD) effects on the polarization under various electric fields, interface and conductivity conditions. The results show that the SCD inhibits the current polarization. Thus the SCD inhibition should be well considered for accurate evaluation of current polarization in the design of organic spin devices

  1. Design and implementation of VUV-CD and LD measurements using an ac modulated polarizing undulator

    International Nuclear Information System (INIS)

    Yagi-Watanabe, K.; Yamada, T.; Tanaka, M.; Kaneko, F.; Kitada, T.; Ohta, Y.; Nakagawa, K.

    2005-01-01

    VUV circular dichroism (CD) and linear dichroism (LD) have been successfully measured at wavelengths beyond the conventional limit by using an ac modulated polarizing undulator. We have developed CD and LD measuring technique by polarization modulation at the source, without using transmission type polarizing modulator, to extend to the coverage to wavelengths shorter than 140-bar nm. AIST developed in 1986 ac polarizing undulator by using a electron storage ring 'TERAS' based on an original concept. The undulator which can produce any desired polarization of vertical- and horizontal-linear polarization (VLP and HLP) and right- and left-handed circular polarization (RCP and LCP) is specially well suited to both measurements of CD and LD. With this undulator, the polarization alternate in the order of VLP-RCP-HLP-RCP-VLP-LCP-HLP-LCP-VLP-, i.e. when circular polarization is modulated in f Hz, linear polarization alters in 2f Hz. This allows us simultaneous measurements of CD and LD. Since the TERAS can produce ac-modulated polarized radiation of wavelength as short as 40-bar nm, it is expected to have CD and LD measurement extended to 40-bar nm

  2. Polarization tunable photogenerated carrier transfer of CH3NH3PbI3/polyvinylidene fluoride heterostructure

    Science.gov (United States)

    Yang, Kang; Deng, Zun-Yi; Feng, Hong-Jian

    2017-10-01

    The integration of ferroelectrics and organic-inorganic halide perovskites could be a promising way to facilitate the separation of electron-hole pairs and charge extraction for the application of solar cells. To explore the effect of the external ferroelectric layer on the CH3NH3PbI3 (MAPbI3) side, we perform first-principles calculations to study the charge transfer properties of the MAPbI3/polyvinylidene fluoride (PVDF) heterostructure. Our calculations demonstrate that the ferroelectric polarization pointing to the PVDF side can clearly facilitate the separation of photo-induced carriers and enhance charge extraction from MAPbI3, while opposite polarization direction hinders the charge extraction and collection. Notably, the carrier behavior at the interface is strongly tuned by the electric field associated with the ferroelectric polarization. In addition, excited state simulation confirms the tunable charge transfer of the MAPbI3/PVDF heterojunction. Therefore, the polarization-driven charge transfer mechanism provides a route for fabricating the ferroelectrics-based high-efficiency photovoltaics and switchable diode devices.

  3. Digital Communication System Based on Polarization Self-Modulation in Lasers

    Science.gov (United States)

    Tabarin, V. A.; Ikonnikov, V. P.; Shatalov, A. N.

    2014-09-01

    Polarization self-modulation in lasers can be used to create instruments for generating optical pulses at very high repetition rates without using high-speed electronics. Self-oscillation is observed when part of the output of a laser is returned to the laser after a 90° polarization change. A practical scheme based on polarization self-modulation in a 3.39-μm helium-neon laser is proposed for pulsed code data transmission with an yttrium-iron garnet magnetooptical Q-switch. Highly efficient transmission of digital signals is implemented with a repetition rate of 75 MHz, equivalent to half the free spectral range of the laser.

  4. Spread Spectrum Modulation by Using Asymmetric-Carrier Random PWM

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Lungeanu, Florin; Sera, Dezso

    2012-01-01

    is very effective and is independent from the modulation index. The flat motor current spectrum generates an acoustical noise close to the white noise, which improves the acoustical performance of the drive. The new carrier wave is easy to implement digitally, without employing any external circuits...

  5. Silicon based light emitter utilizing tunnel injection of excess carriers via MIS structure

    Energy Technology Data Exchange (ETDEWEB)

    Arguirov, Tzanimir; Kittler, Martin [IHP - Innovations for High Performance Microelectronics, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); IHP/BTU Joint Lab BTU Cottbus, Konrad-Wachsmann-Allee 1, 03013 Cottbus (Germany); Wenger, Christian; Lukosius, Mindaugas [IHP - Innovations for High Performance Microelectronics, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Mchedlidze, Teimuraz [IHP/BTU Joint Lab BTU Cottbus, Konrad-Wachsmann-Allee 1, 03013 Cottbus (Germany); Reiche, Manfred [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2011-04-15

    We report on electro-luminescence from metal-insulator-semiconductor diodes (MISLED). MISLEDs prepared on silicon with HfO2 layers of different thicknesses were investigated and their properties compared with such prepared by using SiO2 insulator layer. The role of the insulator layer was studied in view of the efficiency of the band-to-band radiation from silicon. We show that the luminescence efficiency depends on the dielectric constant of the insulator as well as on its ability to conduct carriers by tunnelling. Efficiency enhancement of 3.3 times was detected when the SiO{sub 2} insulator was substituted by HfO{sub 2} in the MIS emitter. Optimal injection current exists, which leads to a maximal efficiency of the luminescence. The optimal current depends strongly on the thickness of the oxide. We relate the existence of an optimal current with the depth at which the injected minority carriers recombine radiatively. Thus the electric field in the semiconductor and the surface recombination are the factors determining the optimal injection (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Charge transport in non-polar and semi-polar III-V nitride heterostructures

    International Nuclear Information System (INIS)

    Konar, Aniruddha; Verma, Amit; Fang, Tian; Zhao, Pei; Jana, Raj; Jena, Debdeep

    2012-01-01

    Compared to the intense research focus on the optical properties, the transport properties in non-polar and semi-polar III-nitride semiconductors remain relatively unexplored to date. The purpose of this paper is to discuss charge-transport properties in non-polar and semi-polar orientations of GaN in a comparative fashion to what is known for transport in polar orientations. A comprehensive approach is adopted, starting from an investigation of the differences in the electronic bandstructure along different polar orientations of GaN. The polarization fields along various orientations are then discussed, followed by the low-field electron and hole mobilities. A number of scattering mechanisms that are specific to non-polar and semi-polar GaN heterostructures are identified, and their effects are evaluated. Many of these scattering mechanisms originate due to the coupling of polarization with disorder and defects in various incarnations depending on the crystal orientation. The effect of polarization orientation on carrier injection into quantum-well light-emitting diodes is discussed. This paper ends with a discussion of orientation-dependent high-field charge-transport properties including velocity saturation, instabilities and tunneling transport. Possible open problems and opportunities are also discussed. (paper)

  7. Galectin-3 modulates the polarized surface delivery of β1-integrin in epithelial cells.

    Science.gov (United States)

    Hönig, Ellena; Ringer, Karina; Dewes, Jenny; von Mach, Tobias; Kamm, Natalia; Kreitzer, Geri; Jacob, Ralf

    2018-05-10

    Epithelial cells require a precise intracellular transport and sorting machinery in order to establish and maintain their polarized architecture. This machinery includes beta-galactoside binding galectins for glycoprotein targeting to the apical membrane. Galectin-3 sorts cargo destined for the apical plasma membrane into vesicular carriers. After delivery of cargo to the apical milieu, galectin-3 recycles back into sorting organelles. We analyzed the role of galectin-3 in the polarized distribution of β1-integrin in MDCK cells. Integrins are located primarily at the basolateral domain of epithelial cells. We demonstrate that a minor pool of β1-integrin interacts with galectin-3 at the apical plasma membrane. Knockdown of galectin-3 decreases apical delivery of β1-integrin. This loss is restored by supplementation with recombinant galectin-3 and galectin-3 overexpression. Our data suggest that galectin-3 targets newly synthesized β1-integrin to the apical membrane and promotes apical delivery of β1-integrin internalized from the basolateral membrane. In parallel, galectin-3 knockout results in a reduction in cell proliferation and an impairment in proper cyst development. Our results suggest that galectin-3 modulates the surface distribution of β1-integrin and affects the morphogenesis of polarized cells. © 2018. Published by The Company of Biologists Ltd.

  8. INFLUENCE OF POLARIZATION MODE DISPERSION ON THE EFFECT OF CROSS-PHASE MODULATION IN INTENSITY MODULATION-DIRECT DETECTION WDM TRANSMISSION SYSTEM

    Directory of Open Access Journals (Sweden)

    M S Islam

    2010-03-01

    Full Text Available Cross-phase modulation (XPM changes the state-of-polarization (SOP of the channels through nonlinear polarization rotation and induces nonlinear time dependent phase shift for polarization components that leads to amplitude modulation of the propagating waves in a wavelength division multiplexing (WDM system. Due to the presence of birefringence, the angle between the SOP changes randomly and as a result polarization mode dispersion (PMD causes XPM modulation amplitude fluctuation random in the perturbed channel. In this paper we analytically determine the probability density function of the random angle between the SOP of pump and probe, and evaluate the impact of polarization mode dispersion on XPM in terms of bit error rate, channel spacing etc for a two channel intensity modulation-direct detection WDM system at 10 Gb/s. It is found that the XPM induced crosstalk is polarization independent for channel spacing greater than 3 nm or PMD coefficient larger than 2 ps/√km. We also investigate the dependence of SOP variance on PMD coefficient and channel spacing.

  9. Modeling of carrier transport in multi-quantum-well p-i-n modulators

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Mørk, Jesper

    2002-01-01

    The dynamical properties of InGaAsP multi-quantum-well electroabsorption modulators are investigated using a comprehensive numerical device model. We calculate the time-dependent sweep-out of photo-generated carriers and the corresponding time-dependent absorption change. The sweep-out is influen......The dynamical properties of InGaAsP multi-quantum-well electroabsorption modulators are investigated using a comprehensive numerical device model. We calculate the time-dependent sweep-out of photo-generated carriers and the corresponding time-dependent absorption change. The sweep......-out is influenced by carriers being recaptured into subsequent wells as they move towards the contacts. This process drastically increases the sweep-out time in our ten-well structure (similar to25 ps) compared to the pure drift-time (similar to1 ps). We also compare the saturation properties of two components...

  10. Polarization modulational instability in a birefringent optical fiber ...

    Indian Academy of Sciences (India)

    We obtain conditions for the occurrence of polarization modulational instability in the anomalous and normal dispersion regimes for the coupled nonlinear Schrödinger equation modelling fourth order dispersion effects when the linearly polarized pump is oriented at arbitrary angles with respect to the slow and fast axes of ...

  11. Double-Carrier Phase-Disposition Pulse Width Modulation Method for Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Zhou, Fayun; Luo, An; Li, Yan

    2017-01-01

    Modular multilevel converters (MMCs) have become one of the most attractive topologies for high-voltage and high-power applications. A double-carrier phase disposition pulse width modulation (DCPDPWM) method for MMCs is proposed in this paper. Only double triangular carriers with displacement ang......, the proposed method and theoretical analysis are verified by simulation and experimental results. View Full-Text...

  12. Analysis of Harmonic Injection to the Modulation of Multi-Level ...

    African Journals Online (AJOL)

    This paper explores the analysis of third and ninth harmonic injection to the modulation of a multilevel diode clamped converter (DCC) at a varying modulation index. The spectral distributions of the various multi-level waveforms obtained under normal modulation index of 0.8 and over modulation index of 1.15 were ...

  13. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fengjiao [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Ave. Urbana IL 61801 USA; Dai, Xiaojuan [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 P. R. China; Zhu, Weikun [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Ave. Urbana IL 61801 USA; Chung, Hyunjoong [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Ave. Urbana IL 61801 USA; Diao, Ying [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Ave. Urbana IL 61801 USA

    2017-05-10

    Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C8-benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This paper further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor–acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall.

  14. Temporal and spectral studies of high-order harmonics generated by polarization-modulated infrared fields

    International Nuclear Information System (INIS)

    Sola, I. J.; Zaier, A.; Cormier, E.; Mevel, E.; Constant, E.; Lopez-Martens, R.; Johnsson, P.; Varju, K.; Mauritsson, J.; L'Huillier, A.; Strelkov, V.

    2006-01-01

    The temporal confinement of high harmonic generation (HHG) via modulation of the polarization of the fundamental pulse is studied in both temporal and spectral domains. In the temporal domain, a collinear cross-correlation setup using a 40 fs IR pump for the HHG and a 9 fs IR pulse to probe the generated emission is used to measure the XUV pulse duration. The observed temporal confinement is found to be consistent with theoretical predictions. An increased confinement is observed when a 9 fs pulse is used to generate the harmonics. An important spectral broadening, including a continuum background, is also measured. Theoretical calculations show that with 10 fs driving pulses, either one or two main attosecond pulses are created depending on the value of the carrier envelope phase

  15. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner.

    Directory of Open Access Journals (Sweden)

    Daniel J Sobczynski

    Full Text Available The nanoscale plasma protein interaction with intravenously injected particulate carrier systems is known to modulate their organ distribution and clearance from the bloodstream. However, the role of this plasma protein interaction in prescribing the adhesion of carriers to the vascular wall remains relatively unknown. Here, we show that the adhesion of vascular-targeted poly(lactide-co-glycolic-acid (PLGA spheres to endothelial cells is significantly inhibited in human blood flow, with up to 90% reduction in adhesion observed relative to adhesion in simple buffer flow, depending on the particle size and the magnitude and pattern of blood flow. This reduced PLGA adhesion in blood flow is linked to the adsorption of certain high molecular weight plasma proteins on PLGA and is donor specific, where large reductions in particle adhesion in blood flow (>80% relative to buffer is seen with ∼60% of unique donor bloods while others exhibit moderate to no reductions. The depletion of high molecular weight immunoglobulins from plasma is shown to successfully restore PLGA vascular wall adhesion. The observed plasma protein effect on PLGA is likely due to material characteristics since the effect is not replicated with polystyrene or silica spheres. These particles effectively adhere to the endothelium at a higher level in blood over buffer flow. Overall, understanding how distinct plasma proteins modulate the vascular wall interaction of vascular-targeted carriers of different material characteristics would allow for the design of highly functional delivery vehicles for the treatment of many serious human diseases.

  16. Spectrophotometric determination of Tl carrier in 201Tl-TlCl injection

    International Nuclear Information System (INIS)

    Gong Quansheng; Jing Lie

    1997-01-01

    A simple and sensitive method for the spectrophotometric determination of carrier content (Thallium) in 201 Tl-TlCl injection is described. Thallium (I) is oxidised to Thallium (III) by aqueous bromine, then excess bromine is removed by adding sulfosalicylic acid. In buffer solution (NH 4 Cl-NH 4 OH) at pH 11.7 with the presence of emulsifier OP, thallium (III) and cadion form a complex having an absorption maximum at 469 nm with a molar absorptivity of 1.37 x 10 4 m 2 /mol. Beer's law is obeyed in the concentration range of 0-7 μg/5 mL. The effect of impurity elements in 201 Tl-TlCl injection is examined. It is an ideal method for the analysis of radioactive solution

  17. Carrier Injection and Transport in Blue Phosphorescent Organic Light-Emitting Device with Oxadiazole Host

    Directory of Open Access Journals (Sweden)

    Tien-Lung Chiu

    2012-06-01

    Full Text Available In this paper, we investigate the carrier injection and transport characteristics in iridium(IIIbis[4,6-(di-fluorophenyl-pyridinato-N,C2']picolinate (FIrpic doped phosphorescent organic light-emitting devices (OLEDs with oxadiazole (OXD as the bipolar host material of the emitting layer (EML. When doping Firpic inside the OXD, the driving voltage of OLEDs greatly decreases because FIrpic dopants facilitate electron injection and electron transport from the electron-transporting layer (ETL into the EML. With increasing dopant concentration, the recombination zone shifts toward the anode side, analyzed with electroluminescence (EL spectra. Besides, EL redshifts were also observed with increasing driving voltage, which means the electron mobility is more sensitive to the electric field than the hole mobility. To further investigate carrier injection and transport characteristics, FIrpic was intentionally undoped at different positions inside the EML. When FIrpic was undoped close to the ETL, driving voltage increased significantly which proves the dopant-assisted-electron-injection characteristic in this OLED. When the undoped layer is near the electron blocking layer, the driving voltage is only slightly increased, but the current efficiency is greatly reduced because the main recombination zone was undoped. However, non-negligible FIrpic emission is still observed which means the recombination zone penetrates inside the EML due to certain hole-transporting characteristics of the OXD.

  18. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Lu, Yu-Hsuan; Pilkuhn, Manfred H.; Fu, Yi-Keng; Chu, Mu-Tao; Huang, Shyh-Jer; Su, Yan-Kuin; Wang, Kang L.

    2014-01-01

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL

  19. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yu-Hsuan; Pilkuhn, Manfred H. [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Fu, Yi-Keng; Chu, Mu-Tao [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Huang, Shyh-Jer, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States); Su, Yan-Kuin, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electronic Engineering, Kun-Shan University, Tainan 71003, Taiwan (China); Wang, Kang L. [Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States)

    2014-03-21

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL.

  20. Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode.

    Science.gov (United States)

    Chi, Yu-Chieh; Li, Yi-Cheng; Wang, Huai-Yung; Peng, Peng-Chun; Lu, Hai-Han; Lin, Gong-Ru

    2012-08-27

    Coherently injection-locked and directly modulated weak-resonant-cavity laser diode (WRC-FPLD) for back-to-back optical 16-quadrature-amplitude-modulation (QAM) and 52-subcarrier orthogonal frequency division multiplexing (OFDM) transmission with maximum bit rate up to 4 Gbit/s at carrier frequency of 2.5 GHz is demonstrated. The WRC-FPLD transmitter source is a specific design with very weak-resonant longitudinal modes to preserve its broadband gain spectral characteristics for serving as a colorless WDM-PON transmitter. Under coherent injection-locking, the relative-intensity noise (RIN) of the injection-locked WRC-FPLD can be suppressed to ?105 dBc/Hz and the error vector magnitude of the received optical OFDM data is greatly reduced with the amplitude error suppressed down 5.5%. Such a coherently injection-locked single-mode WRC-FPLD can perform both the back-to-back and the 25-km-SMF 16-QAM-52-OFDM transmissions with a symbol rate of 20-MSa/s in each OFDM subcarrier. After coherent injection locking, the BER of the back-to-back transmitted 16-QAM-52-OFDM data is reduced to 2.5 × 10(-5) at receiving power of ?10 dBm. After propagating along a 25-km-long SMF, a receiving power sensitivity of ?7.5 dBm is required to obtain a lowest BER of 2.5 × 10(-5), and a power penalty of 2.7 dB is observed when comparing with the back-to-back transmission.

  1. An assessment of envelope-based demodulation in case of proximity of carrier and modulation frequencies

    Science.gov (United States)

    Shahriar, Md Rifat; Borghesani, Pietro; Randall, R. B.; Tan, Andy C. C.

    2017-11-01

    Demodulation is a necessary step in the field of diagnostics to reveal faults whose signatures appear as an amplitude and/or frequency modulation. The Hilbert transform has conventionally been used for the calculation of the analytic signal required in the demodulation process. However, the carrier and modulation frequencies must meet the conditions set by the Bedrosian identity for the Hilbert transform to be applicable for demodulation. This condition, basically requiring the carrier frequency to be sufficiently higher than the frequency of the modulation harmonics, is usually satisfied in many traditional diagnostic applications (e.g. vibration analysis of gear and bearing faults) due to the order-of-magnitude ratio between the carrier and modulation frequency. However, the diversification of the diagnostic approaches and applications shows cases (e.g. electrical signature analysis-based diagnostics) where the carrier frequency is in close proximity to the modulation frequency, thus challenging the applicability of the Bedrosian theorem. This work presents an analytic study to quantify the error introduced by the Hilbert transform-based demodulation when the Bedrosian identity is not satisfied and proposes a mitigation strategy to combat the error. An experimental study is also carried out to verify the analytical results. The outcome of the error analysis sets a confidence limit on the estimated modulation (both shape and magnitude) achieved through the Hilbert transform-based demodulation in case of violated Bedrosian theorem. However, the proposed mitigation strategy is found effective in combating the demodulation error aroused in this scenario, thus extending applicability of the Hilbert transform-based demodulation.

  2. Exciton versus Free Carrier Photogeneration in Organometal Trihalide Perovskites Probed by Broadband Ultrafast Polarization Memory Dynamics

    Science.gov (United States)

    Sheng, ChuanXiang; Zhang, Chuang; Zhai, Yaxin; Mielczarek, Kamil; Wang, Weiwei; Ma, Wanli; Zakhidov, Anvar; Vardeny, Z. Valy

    2015-03-01

    We studied the ultrafast transient response of photoexcitations in two hybrid organic-inorganic perovskite films used for high efficiency photovoltaic cells, namely, CH3NH3PbI3 and CH3NH3PbI1.1Br1.9 using polarized broadband pump-probe spectroscopy in the spectral range of 0.3-2.7 eV with 300 fs time resolution. For CH3NH3PbI3 with above-gap excitation we found both photogenerated carriers and excitons, but only carriers are photogenerated with below-gap excitation. In contrast, mainly excitons are photogenerated in CH3NH3PbI1.1Br1.9 . Surprisingly, we also discovered in CH3NH3PbI3 , but not in CH3NH3PbI1.1Br1.9 , transient photoinduced polarization memory for both excitons and photocarriers, which is also reflected in the steady state photoluminescence. From the polarization memory dynamics we obtained the excitons diffusion constant in CH3NH3PbI3 , D ≈0.01 cm2 s-1 .

  3. Electron injection by evolution of self-modulated laser wakefields

    International Nuclear Information System (INIS)

    Kim, Changbum; Kim, Guang-Hoon; Kim, Jong-Uk; Lee, Hae June; Suk, Hyyong; Ko, In Soo

    2003-01-01

    Self-injection mechanisms in the self-modulated laser wakefield acceleration (SM-LWFA) are investigated. Two-dimensional (2D) particle-in-cell (PIC) simulations show that a significant amount of plasma electrons can be self-injected into the acceleration phase of a laser wakefield by a dynamic increase in the wake wavelength in the longitudinal direction. In this process, it is found that the wake wavelength increases due to the relativistic effect and this leads to a large amount of electron injection into the wakefields. In this paper, the injection phenomena are studied with 2D simulations and a brief explanation of the new self-injection mechanism is presented. (author)

  4. The radio-on-fiber-wavelength-division-multiplexed-passive-optical network (WDM-RoF-PON) for wireless and wire layout with linearly-polarized dual-wavelength fiber laser and carrier reusing

    Science.gov (United States)

    Ji, Wei; Chang, Jun

    2013-07-01

    In this paper, we design a WDM-RoF-PON based on linearly-polarized dual-wavelength fiber laser and CSRZ-DPSK, which can achieve wire-line and wireless access synchronously. With the CSRZ-DPSK modulation, the wireless access in ONU can save RF source and the frequency of radio carrier can be controlled by OLT. The dual-wavelength fiber laser is the union light source of WDM-PON with polarization multiplexing. By the RSOA and downstream light source reusing, the ONU can save omit laser source and makes the WDM-PON to be colorless. The networking has the credible transmission property, including wireless access and fiber transmission. The networking also has excellent covering range.

  5. Characterization of polarization-independent phase modulation method for practical plug and play quantum cryptography

    International Nuclear Information System (INIS)

    Kwon, Osung; Lee, Min-Soo; Woo, Min Ki; Park, Byung Kwon; Kim, Il Young; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung

    2015-01-01

    We characterized a polarization-independent phase modulation method, called double phase modulation, for a practical plug and play quantum key distribution (QKD) system. Following investigation of theoretical backgrounds, we applied the method to the practical QKD system and characterized the performance through comparing single phase modulation (SPM) and double phase modulation. Consequently, we obtained repeatable and accurate phase modulation confirmed by high visibility single photon interference even for input signals with arbitrary polarization. Further, the results show that only 80% of the bias voltage required in the case of single phase modulation is needed to obtain the target amount of phase modulation. (paper)

  6. Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods

    Science.gov (United States)

    Welchko, Brian A [Torrance, CA

    2012-02-14

    Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.

  7. Tuning the conductivity threshold and carrier density of two-dimensional electron gas at oxide interfaces through interface engineering

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-08-01

    Full Text Available The two-dimensional electron gas (2DEG formed at the perovskite oxides heterostructures is of great interest because of its potential applications in oxides electronics and nanoscale multifunctional devices. A canonical example is the 2DEG at the interface between a polar oxide LaAlO3 (LAO and non-polar SrTiO3 (STO. Here, the LAO polar oxide can be regarded as the modulating or doping layer and is expected to define the electronic properties of 2DEG at the LAO/STO interface. However, to practically implement the 2DEG in electronics and device design, desired properties such as tunable 2D carrier density are necessary. Here, we report the tuning of conductivity threshold, carrier density and electronic properties of 2DEG in LAO/STO heterostructures by insertion of a La0.5Sr0.5TiO3 (LSTO layer of varying thicknesses, and thus modulating the amount of polarization of the oxide over layers. Our experimental result shows an enhancement of carrier density up to a value of about five times higher than that observed at the LAO/STO interface. A complete thickness dependent metal-insulator phase diagram is obtained by varying the thickness of LAO and LSTO providing an estimate for the critical thickness needed for the metallic phase. The observations are discussed in terms of electronic reconstruction induced by polar oxides.

  8. ANALYSIS OF SEEING-INDUCED POLARIZATION CROSS-TALK AND MODULATION SCHEME PERFORMANCE

    International Nuclear Information System (INIS)

    Casini, R.; De Wijn, A. G.; Judge, P. G.

    2012-01-01

    We analyze the generation of polarization cross-talk in Stokes polarimeters by atmospheric seeing, and its effects on the noise statistics of spectropolarimetric measurements for both single-beam and dual-beam instruments. We investigate the time evolution of seeing-induced correlations between different states of one modulation cycle and compare the response to these correlations of two popular polarization modulation schemes in a dual-beam system. Extension of the formalism to encompass an arbitrary number of modulation cycles enables us to compare our results with earlier work. Even though we discuss examples pertinent to solar physics, the general treatment of the subject and its fundamental results might be useful to a wider community.

  9. Polarization-sensitive surface plasmon enhanced ellipsometry biosensor using the photoelastic modulation technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Ho, Ho Pui; Wu, S.Y.

    2009-01-01

    A surface plasmon enhanced ellipsometry (SPEE) biosensor scheme based on the use of a photoelastic modulator (PEM) is reported. We show that the polarization parameters of a laser beam, tan , cos and ellipse orientation angle , can be directly measured by detecting the modulation signals at the f......A surface plasmon enhanced ellipsometry (SPEE) biosensor scheme based on the use of a photoelastic modulator (PEM) is reported. We show that the polarization parameters of a laser beam, tan , cos and ellipse orientation angle , can be directly measured by detecting the modulation signals...... at the first and second harmonics of the modulated frequency under a certain birefringence geometry. This leads to accurate measurement of refractive index variations within the evanescent field region close to the gold sensor surface, thereby enabling biosensing applications. Our experimental results confirm...

  10. Synchronous-digitization for video rate polarization modulated beam scanning second harmonic generation microscopy

    Science.gov (United States)

    Sullivan, Shane Z.; DeWalt, Emma L.; Schmitt, Paul D.; Muir, Ryan D.; Simpson, Garth J.

    2015-03-01

    Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen.

  11. PWM pulse pattern optimization method using carrier frequency modulation. Carrier shuhasu hencho ni yoru PWM pulse pattern saitekikaho

    Energy Technology Data Exchange (ETDEWEB)

    Iwaji, Y.; Fukuda, S. (Hokkaido University, Sapporo (Japan))

    1991-07-15

    Sinusoidal inverters are getting more widely used keeping pace with the development of semiconductor switching elements. This paper discusses optimizing a PWM pulse pattern at an inverter output to drive an induction motor, proposes methods for improving distortion and torque ripples using a carrier frequency modulation (CFM), and describes a method for realizing the improvement through use of a single-chip microcomputer. The method defines evaluation parameters corresponding to the distortion and torque ripples, and optimizes the CFM depth to the parameters. The PWM pulse pattern has its voltage vector and time width so selected that the time integrated space vector of a three-phase voltage approaches a circular locus. Furthermore, the carrier frequency, that is the sampling frequency of the inverter, is also adjusted so that the above evaluation parameters are minimized. The addition of a new variable called the frequency modulation provides freedom in selecting an output characteristic as called for by the purpose. 12 refs., 18 figs.

  12. Perceptual interaction between carrier periodicity and amplitude modulation in broadband stimuli: A comparison of the autocorrelation and modulation-filterbank model

    DEFF Research Database (Denmark)

    Stein, A.; Ewert, Stephan; Wiegrebe, L.

    2005-01-01

    , autocorrelation is applied. Considering the large overlap in pitch and modulation perception, this is not parsimonious. Two experiments are presented to investigate the interaction between carrier periodicity, which produces strong pitch sensations, and envelope periodicity using broadband stimuli. Results show......Recent temporal models of pitch and amplitude modulation perception converge on a relatively realistic implementation of cochlear processing followed by a temporal analysis of periodicity. However, for modulation perception, a modulation filterbank is applied whereas for pitch perception...

  13. The TDDB Characteristics of Ultra-Thin Gate Oxide MOS Capacitors under Constant Voltage Stress and Substrate Hot-Carrier Injection

    Directory of Open Access Journals (Sweden)

    Jingyu Shen

    2018-01-01

    Full Text Available The breakdown characteristics of ultra-thin gate oxide MOS capacitors fabricated in 65 nm CMOS technology under constant voltage stress and substrate hot-carrier injection are investigated. Compared to normal thick gate oxide, the degradation mechanism of time-dependent dielectric breakdown (TDDB of ultra-thin gate oxide is found to be different. It is found that the gate current (Ig of ultra-thin gate oxide MOS capacitor is more likely to be induced not only by Fowler-Nordheim (F-N tunneling electrons, but also by electrons surmounting barrier and penetrating electrons in the condition of constant voltage stress. Moreover it is shown that the time to breakdown (tbd under substrate hot-carrier injection is far less than that under constant voltage stress when the failure criterion is defined as a hard breakdown according to the experimental results. The TDDB mechanism of ultra-thin gate oxide will be detailed. The differences in TDDB characteristics of MOS capacitors induced by constant voltage stress and substrate hot-carrier injection will be also discussed.

  14. Performance enhancement of pentacene-based organic thin-film transistors using 6,13-pentacenequinone as a carrier injection interlayer

    Science.gov (United States)

    Fan, Ching-Lin; Lin, Wei-Chun; Chen, Hao-Wei

    2018-06-01

    This work demonstrates pentacene-based organic thin-film transistors (OTFTs) fabricated by inserting a 6,13-pentacenequinone (PQ) carrier injection layer between the source/drain (S/D) metal Au electrodes and pentacene channel layer. Compared to devices without a PQ layer, the performance characteristics including field-effect mobility, threshold voltage, and On/Off current ratio were significantly improved for the device with a 5-nm-thick PQ interlayer. These improvements are attributed to significant reduction of hole barrier height at the Au/pentacene channel interfaces. Therefore, it is believed that using PQ as the carrier injection layer is a good candidate to improve the pentacene-based OTFTs electrical performance.

  15. Effects of GC temperature and carrier gas flow rate on on-line oxygen isotope measurement as studied by on-column CO injection.

    Science.gov (United States)

    Chen, Zhi-Gang; Yin, Xi-Jie; Zhou, Youping

    2015-08-01

    Although deemed important to δ 18 O measurement by on-line high-temperature conversion techniques, how the GC conditions affect δ 18 O measurement is rarely examined adequately. We therefore directly injected different volumes of CO or CO-N 2 mix onto the GC column by a six-port valve and examined the CO yield, CO peak shape, CO-N 2 separation, and δ 18 O value under different GC temperatures and carrier gas flow rates. The results show the CO peak area decreases when the carrier gas flow rate increases. The GC temperature has no effect on peak area. The peak width increases with the increase of CO injection volume but decreases with the increase of GC temperature and carrier gas flow rate. The peak intensity increases with the increase of GC temperature and CO injection volume but decreases with the increase of carrier gas flow rate. The peak separation time between N 2 and CO decreases with an increase of GC temperature and carrier gas flow rate. δ 18 O value decreases with the increase of CO injection volume (when half m/z 28 intensity is rate. On average, the δ 18 O value of the injected CO is about 1‰ higher than that of identical reference CO. The δ 18 O distribution pattern of the injected CO is probably a combined result of ion source nonlinearity and preferential loss of C 16 O or oxygen isotopic exchange between zeolite and CO. For practical application, a lower carrier gas flow rate is therefore recommended as it has the combined advantages of higher CO yield, better N 2 -CO separation, lower He consumption, and insignificant effect on δ 18 O value, while a higher-than-60 °C GC temperature and a larger-than-100 µl CO volume is also recommended. When no N 2 peak is expected, a higher GC temperature is recommended, and vice versa. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Kinetics of photo-activated charge carriers in Sn:CdS

    Energy Technology Data Exchange (ETDEWEB)

    Patidar, Manju Mishra, E-mail: manjumishra.iuc@gmail.com; Gorli, V. R.; Gangrade, Mohan; Nath, R.; Ganesan, V. [UGC-DAE CSR, University Campus, Khandwa Road, Indore (M.P.)-452001 (India); Panda, Richa [S.S. Jain Subodh Girls College, Airport Road Sanganer, Jaipur - 302029 (India)

    2016-05-23

    Kinetics of the photo-activated charge carriers has been investigated in Tin substituted Cadmium Sulphide, Cd{sub 1-x}Sn{sub x}S (x=0, 0.05, 0.10 and 0.15), thin films prepared by spray pyrolysis. X-Ray Diffraction shows an increase in strain that resulted in the decreased crystallite size upon Sn substitution. At the first sight, the photo current characteristics show a quenching effect on Sn substitution. However, survival of persistent photocurrents is seen even up to 15% of Sn substitution. Transient photo current decay could be explained with a 2τ relaxation model. CdS normally has an n-type character and the Sn doping expected to inject hole carriers. The two fold increase in τ{sub 1}, increase in activation energy and the decrease in photocurrents upon Sn substitution point towards a band gap cleaning scenario that include compensation and associated carrier injection dynamics. In addition Atomic Force Microscopy shows a drastic change in microstructure that modulates the carrier dynamics as a whole.

  17. Low-voltage and high-efficiency white organic light emitting devices with carrier balance

    International Nuclear Information System (INIS)

    Wei Fuxiang; Huang, Y.; Fang, L.

    2010-01-01

    White organic light emitting devices with the structure of ITO/m-MTDATA:x%4F-TCNQ/NPB/TBADN:EBDP:DCJTB/Bphen:Liq/LiF/Al have been demonstrated in this paper. High-mobility m-MTDATA:4F-TCNQ is added into the region between ITO and NBP to increase hole injection and transport. The high-mobility Bphen:Liq layer is added into the region between cathode and emission layers to lower cathode barrier and facilitate carrier injection. In the meanwhile, an effective carrier balance (number of holes is equal to number of electrons) between holes and electrons is considered to be one of the most important factors for improving OLEDs. During the experiment, by modulating the doping concentration of 4F-TCNQ, we can control hole injection and transport to make the carriers reach a high-level balance. The maximum current efficiency and power efficiency of devices were 9.3 cd/A and 4.6 lm/A, respectively.

  18. High modulation bandwidth of a light-emitting diode with surface plasmon coupling (Conference Presentation)

    Science.gov (United States)

    Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.

  19. Carrier Modulation Layer-Enhanced Organic Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Jwo-Huei Jou

    2015-07-01

    Full Text Available Organic light-emitting diode (OLED-based display products have already emerged in the market and their efficiencies and lifetimes are sound at the comparatively low required luminance. To realize OLED for lighting application sooner, higher light quality and better power efficiency at elevated luminance are still demanded. This review reveals the advantages of incorporating a nano-scale carrier modulation layer (CML, also known as a spacer, carrier-regulating layer, or interlayer, among other terms, to tune the chromaticity and color temperature as well as to markedly improve the device efficiency and color rendering index (CRI for numerous OLED devices. The functions of the CML can be enhanced as multiple layers and blend structures are employed. At proper thickness, the employment of CML enables the device to balance the distribution of carriers in the two emissive zones and achieve high device efficiencies and long operational lifetime while maintaining very high CRI. Moreover, we have also reviewed the effect of using CML on the most significant characteristics of OLEDs, namely: efficiency, luminance, life-time, CRI, SRI, chromaticity, and the color temperature, and see how the thickness tuning and selection of proper CML are crucial to effectively control the OLED device performance.

  20. Optical polarization modulation by competing atomic coherence effects in a degenerate four-level Yb atomic system

    International Nuclear Information System (INIS)

    Park, Sung Jong; Park, Chang Yong; Yoon, Tai Hyun

    2005-01-01

    A scheme of optical polarization modulation of a linearly polarized infrared probe field is studied in a degenerate four-level Yb atomic system. We have observed an anomalous transmission spectra of two circular polarization components of the probe field exhibiting an enhanced two-photon absorption and a three-photon gain with comparable magnitude, leading to the lossless transmission and enhanced circular dichroism. We carried out a proof-of-principle experiment of fast optical polarization modulation in such a system by modulating the polarization state of the coupling field. The observed enhanced two-photon absorption and three-photon gain of the probe field are due to the result of competing atomic coherence effects

  1. Interface inductive currents and carrier injection in hybrid perovskite single crystals

    Science.gov (United States)

    Kovalenko, Alexander; Pospisil, Jan; Krajcovic, Jozef; Weiter, Martin; Guerrero, Antonio; Garcia-Belmonte, Germà

    2017-10-01

    Interfaces between the absorbing perovskite and transporting layers are gaining attention as the key locus that governs solar cell operation and long term performance. The interplay of ionic and electronic processes, along with the asymmetrical architecture of any solar cell, makes the interpretation of electrical measurements always inconclusive. A strategy to progress in relating electric responses, operating mechanisms, and device architecture relies upon simplifying the probing structure. Macroscopic CH3NH3PbBr3 single crystals with symmetrical contacts are tested by means of long-time current transient and impedance spectroscopy. It is observed that interfaces govern carrier injection to (and extraction from) perovskite layers through an inductive (negative capacitance) mechanism with a response time in the range of ˜ 1 - 100 s under dark conditions and inert atmosphere. Current transient exhibits a slow recovering after the occurrence of an undershoot, signaling a complex carrier dynamics which involves changes in surface state occupancy.

  2. Field Effect Optoelectronic Modulation of Quantum-Confined Carriers in Black Phosphorus.

    Science.gov (United States)

    Whitney, William S; Sherrott, Michelle C; Jariwala, Deep; Lin, Wei-Hsiang; Bechtel, Hans A; Rossman, George R; Atwater, Harry A

    2017-01-11

    We report measurements of the infrared optical response of thin black phosphorus under field-effect modulation. We interpret the observed spectral changes as a combination of an ambipolar Burstein-Moss (BM) shift of the absorption edge due to band-filling under gate control, and a quantum confined Franz-Keldysh (QCFK) effect, phenomena that have been proposed theoretically to occur for black phosphorus under an applied electric field. Distinct optical responses are observed depending on the flake thickness and starting carrier concentration. Transmission extinction modulation amplitudes of more than two percent are observed, suggesting the potential for use of black phosphorus as an active material in mid-infrared optoelectronic modulator applications.

  3. Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG

    International Nuclear Information System (INIS)

    Merkel, K.D.; Krishna Mohan, R.; Cole, Z.; Chang, T.; Olson, A.; Babbitt, W.R.

    2004-01-01

    An optical device is described and demonstrated that uses a spatial-spectral holographic material to perform coherent signal processing operations on analog, high-bandwidth optical signals with large time-bandwidth-products. Signal processing is performed as the material records the coherent spectral interference (or cross-power spectrum) of modulated optical signals as a spatial-spectral population grating between electronic transition states. Multiple exposures of processing pulse sequences are integrated with increasing grating strength. The device, coined as the Spatial-Spectral Coherent Holographic Integrating Processor (or S 2 -CHIP), is described as currently envisioned for a broadband, mid-to-high pulse repetition frequency range-Doppler radar signal processing system. Experiments were performed in Tm:YAG (0.1 at% at 5 K) to demonstrate time delay variation, integration dynamics, and effects of coding as applied to a radar range processor. These demonstrations used baseband modulation with a 1 gigabit per second (GPBS) bit rate and code length of 512 bits (512 ns), where delays up to 1.0 μs were resolved with greater than a 40 dB peak to RMS sidelobe ratio after 800 processing shots. Multi-GHz processing was demonstrated using a bit rate of 2.5 GBPS (baseband modulation) and code length of 2048 bits (819.2 ns). Processing of double-sideband modulated signals on a radio frequency (RF) carrier was demonstrated, where 512 bit, 1.0 GBPS codes were modulated on a 1.75 GHz carrier and then modulated on the optical carrier

  4. Intrinsically stable phase-modulated polarization encoding system for quantum key distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaobao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Liao Changjun [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)], E-mail: chliao@scnu.edu.cn; Mi Jinglong; Wang Jindong; Liu Songhao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2008-12-22

    We demonstrate experimentally an intrinsically stable polarization coding and decoding system composed of optical-fiber Sagnac interferometers with integrated phase modulators for quantum key distribution. An interference visibility of 98.35% can be kept longtime during the experiment without any efforts of active compensation for coding all four desired polarization states.

  5. Single-Carrier Modulation for Neutral-Point-Clamped Inverters in Three-Phase Transformerless Photovoltaic Systems

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Cavalcanti, Marcelo C.; Farias, Alexandre M.

    2013-01-01

    Modulation strategy is one of the most important issues for three-level neutral-point-clamped inverters in three-phase transformerless photovoltaic systems. A challenge for modulation is how to keep the common-mode voltages constant to reduce the leakage currents. A single-carrier modulation...... strategy is proposed. It has a very simple structure, and the common-mode voltages can be kept constant with no need of complex space-vector modulation or multicarrier pulsewidth modulation. Experimental results verify the theoretical analysis and the effectiveness of the presented method....

  6. All-Optical envelope detection and fiber transmission of wireless signals by external injection of a DFB laser

    DEFF Research Database (Denmark)

    Prince, Kamau; Tafur Monroy, Idelfonso

    2008-01-01

    We outline a novel method for all-optical envelope detection of wireless signals by exploiting cross-gain modulation effects in a distributed feedback laser operating with optical injection. We successfully demonstrate envelope detection of a 20-GHz carrier amplitude-shift-keying modulated signal...

  7. Spin injection and detection in lanthanum- and niobium-doped SrTiO3 using the Hanle technique

    KAUST Repository

    Han, Wei

    2013-07-08

    There has been much interest in the injection and detection of spin-polarized carriers in semiconductors for the purposes of developing novel spintronic devices. Here we report the electrical injection and detection of spin-polarized carriers into Nb-doped strontium titanate single crystals and La-doped strontium titanate epitaxial thin films using MgO tunnel barriers and the three-terminal Hanle technique. Spin lifetimes of up to ∼100 ps are measured at room temperature and vary little as the temperature is decreased to low temperatures. However, the mobility of the strontium titanate has a strong temperature dependence. This behaviour and the carrier doping dependence of the spin lifetime suggest that the spin lifetime is limited by spin-dependent scattering at the MgO/strontium titanate interfaces, perhaps related to the formation of doping induced Ti 3+. Our results reveal a severe limitation of the three-terminal Hanle technique for measuring spin lifetimes within the interior of the subject material. © 2013 Macmillan Publishers Limited. All rights reserved.

  8. Wafer defect detection by a polarization-insensitive external differential interference contrast module.

    Science.gov (United States)

    Nativ, Amit; Feldman, Haim; Shaked, Natan T

    2018-05-01

    We present a system that is based on a new external, polarization-insensitive differential interference contrast (DIC) module specifically adapted for detecting defects in semiconductor wafers. We obtained defect signal enhancement relative to the surrounding wafer pattern when compared with bright-field imaging. The new DIC module proposed is based on a shearing interferometer that connects externally at the output port of an optical microscope and enables imaging thin samples, such as wafer defects. This module does not require polarization optics (such as Wollaston or Nomarski prisms) and is insensitive to polarization, unlike traditional DIC techniques. In addition, it provides full control of the DIC shear and orientation, which allows obtaining a differential phase image directly on the camera (with no further digital processing) while enhancing defect detection capabilities, even if the size of the defect is smaller than the resolution limit. Our technique has the potential of future integration into semiconductor production lines.

  9. Manipulation of charge carrier injection into organic field-effect transistors by self-assembled monolayers of alkanethiols

    NARCIS (Netherlands)

    Asadi, Kamal; Gholamrezaie, Fatemeh; Smits, Edsger C. P.; Blom, Paul W. M.; de Boer, Bert

    2007-01-01

    Charge carrier injection into two semiconducting polymers is investigated in field-effect transistors using gold source and drain electrodes that are modified by self-assembled monolayers of alkanethiols and perfluorinated alkanethiols. The presence of an interfacial dipole associated with the

  10. Spectrotemporal modulation sensitivity for hearing-impaired listeners: dependence on carrier center frequency and the relationship to speech intelligibility.

    Science.gov (United States)

    Mehraei, Golbarg; Gallun, Frederick J; Leek, Marjorie R; Bernstein, Joshua G W

    2014-07-01

    Poor speech understanding in noise by hearing-impaired (HI) listeners is only partly explained by elevated audiometric thresholds. Suprathreshold-processing impairments such as reduced temporal or spectral resolution or temporal fine-structure (TFS) processing ability might also contribute. Although speech contains dynamic combinations of temporal and spectral modulation and TFS content, these capabilities are often treated separately. Modulation-depth detection thresholds for spectrotemporal modulation (STM) applied to octave-band noise were measured for normal-hearing and HI listeners as a function of temporal modulation rate (4-32 Hz), spectral ripple density [0.5-4 cycles/octave (c/o)] and carrier center frequency (500-4000 Hz). STM sensitivity was worse than normal for HI listeners only for a low-frequency carrier (1000 Hz) at low temporal modulation rates (4-12 Hz) and a spectral ripple density of 2 c/o, and for a high-frequency carrier (4000 Hz) at a high spectral ripple density (4 c/o). STM sensitivity for the 4-Hz, 4-c/o condition for a 4000-Hz carrier and for the 4-Hz, 2-c/o condition for a 1000-Hz carrier were correlated with speech-recognition performance in noise after partialling out the audiogram-based speech-intelligibility index. Poor speech-reception and STM-detection performance for HI listeners may be related to a combination of reduced frequency selectivity and a TFS-processing deficit limiting the ability to track spectral-peak movements.

  11. Investigation of spin-polarized transport in GaAs nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, B D; Day, T E; Goodnick, S M [Department of Electrical Engineering and Center for Solid State Electronics Research Arizona State University, Tempe, AZ 85287-5706 (United States)], E-mail: brian.tierney@asu.edu

    2008-03-15

    A spin field effect transistor (spin-FET) has been fabricated that employs nanomagnets as components of quantum point contact (QPC) structures to inject spin-polarized carriers into the high-mobility two-dimensional electron gas (2DEG) of a GaAs quantum well and to detect them. A centrally-placed non-magnetic Rashba gate controls both the density of electrons in the 2DEG and the electronic spin precession. Initial results are presented for comparable device structures modeled with an ensemble Monte Carlo (EMC) method. In the EMC the temporal and spatial evolution of the ensemble carrier spin polarization is governed by a spin density matrix formalism that incorporates the Dresselhaus and Rashba contributions to the D'yakanov-Perel spin-flip scattering mechanism, the predominant spin scattering mechanism in AlGaAs/GaAs heterostructures from 77-300K.

  12. Dynamic nuclear polarization using frequency modulation at 3.34 T.

    Science.gov (United States)

    Hovav, Y; Feintuch, A; Vega, S; Goldfarb, D

    2014-01-01

    During dynamic nuclear polarization (DNP) experiments polarization is transferred from unpaired electrons to their neighboring nuclear spins, resulting in dramatic enhancement of the NMR signals. While in most cases this is achieved by continuous wave (cw) irradiation applied to samples in fixed external magnetic fields, here we show that DNP enhancement of static samples can improve by modulating the microwave (MW) frequency at a constant field of 3.34 T. The efficiency of triangular shaped modulation is explored by monitoring the (1)H signal enhancement in frozen solutions containing different TEMPOL radical concentrations at different temperatures. The optimal modulation parameters are examined experimentally and under the most favorable conditions a threefold enhancement is obtained with respect to constant frequency DNP in samples with low radical concentrations. The results are interpreted using numerical simulations on small spin systems. In particular, it is shown experimentally and explained theoretically that: (i) The optimal modulation frequency is higher than the electron spin-lattice relaxation rate. (ii) The optimal modulation amplitude must be smaller than the nuclear Larmor frequency and the EPR line-width, as expected. (iii) The MW frequencies corresponding to the enhancement maxima and minima are shifted away from one another when using frequency modulation, relative to the constant frequency experiments. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Spin polarized electron tunneling and magnetoresistance in molecular junctions.

    Science.gov (United States)

    Szulczewski, Greg

    2012-01-01

    This chapter reviews tunneling of spin-polarized electrons through molecules positioned between ferromagnetic electrodes, which gives rise to tunneling magnetoresistance. Such measurements yield important insight into the factors governing spin-polarized electron injection into organic semiconductors, thereby offering the possibility to manipulate the quantum-mechanical spin degrees of freedom for charge carriers in optical/electrical devices. In the first section of the chapter a brief description of the Jullière model of spin-dependent electron tunneling is reviewed. Next, a brief description of device fabrication and characterization is presented. The bulk of the review highlights experimental studies on spin-polarized electron tunneling and magnetoresistance in molecular junctions. In addition, some experiments describing spin-polarized scanning tunneling microscopy/spectroscopy on single molecules are mentioned. Finally, some general conclusions and prospectus on the impact of spin-polarized tunneling in molecular junctions are offered.

  14. Visualizing Carrier Transport in Metal Halide Perovskite Nanoplates via Electric Field Modulated Photoluminescence Imaging.

    Science.gov (United States)

    Hu, Xuelu; Wang, Xiao; Fan, Peng; Li, Yunyun; Zhang, Xuehong; Liu, Qingbo; Zheng, Weihao; Xu, Gengzhao; Wang, Xiaoxia; Zhu, Xiaoli; Pan, Anlian

    2018-05-09

    Metal halide perovskite nanostructures have recently been the focus of intense research due to their exceptional optoelectronic properties and potential applications in integrated photonics devices. Charge transport in perovskite nanostructure is a crucial process that defines efficiency of optoelectronic devices but still requires a deep understanding. Herein, we report the study of the charge transport, particularly the drift of minority carrier in both all-inorganic CsPbBr 3 and organic-inorganic hybrid CH 3 NH 3 PbBr 3 perovskite nanoplates by electric field modulated photoluminescence (PL) imaging. Bias voltage dependent elongated PL emission patterns were observed due to the carrier drift at external electric fields. By fitting the drift length as a function of electric field, we obtained the carrier mobility of about 28 cm 2 V -1 S -1 in the CsPbBr 3 perovskite nanoplate. The result is consistent with the spatially resolved PL dynamics measurement, confirming the feasibility of the method. Furthermore, the electric field modulated PL imaging is successfully applied to the study of temperature-dependent carrier mobility in CsPbBr 3 nanoplates. This work not only offers insights for the mobile carrier in metal halide perovskite nanostructures, which is essential for optimizing device design and performance prediction, but also provides a novel and simple method to investigate charge transport in many other optoelectronic materials.

  15. Method for measuring retardation of infrared wave-plate by modulated-polarized visible light

    Science.gov (United States)

    Zhang, Ying; Song, Feijun

    2012-11-01

    A new method for precisely measuring the optical phase retardation of wave-plates in the infrared spectral region is presented by using modulated-polarized visible light. An electro-optic modulator is used to accurately determine the zero point by the frequency-doubled signal of the Modulated-polarized light. A Babinet-Soleil compensator is employed to make the phase delay compensation. Based on this method, an instrument is set up to measure the retardations of the infrared wave-plates with visible region laser. Measurement results with high accuracy and sound repetition are obtained by simple calculation. Its measurement precision is less than and repetitive precision is within 0.3%.

  16. Spatiotemporal polarization modulation microscopy with a microretarder array

    Science.gov (United States)

    Ding, Changqin; Ulcickas, James R. W.; Simpson, Garth J.

    2018-02-01

    A patterned microretarder array positioned in the rear conjugate plane of a microscope enables rapid polarizationdependent nonlinear optical microscopy. The pattern introduced to the array results in periodic modulation of the polarization-state of the incident light as a function of position within the field of view with no moving parts or active control. Introduction of a single stationary optical element and a fixed polarizer into the beam of a nonlinear optical microscope enabled nonlinear optical tensor recovery, which informs on local structure and orientation. Excellent agreement was observed between the measured and predicted second harmonic generation (SHG) of z-cut quartz, selected as a test system with well-established nonlinear optical properties. Subsequent studies of spatially varying samples further support the general applicability of this relatively simple strategy for detailed polarization analysis in both conventional and nonlinear optical imaging of structurally diverse samples.

  17. Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod

    Science.gov (United States)

    Cheng, Mu-Tian; Liu, Shao-Ding; Wang, Qu-Quan

    2008-04-01

    We theoretically investigated the dynamics of exciton populations [ρyy(t ) and ρxx(t )] on two orthogonal polarization eigenstates (∣x⟩ and ∣y⟩) and the polarization ratio P(t )=[ρyy(t )-ρxx(t )]/[ρyy(t )+ρxx(t )] of an anisotropic InGaAs quantum dot modulated by the surface plasmon of an Au nanorod (NR). In the resonance of longitudinal surface plasmon of AuNR, the polarization ratio P(t ) increases from 0.22 to 0.99 during the excitation due to the efficient enhancement of Rabi frequency of the transition between the ∣y⟩ and vacuum states, and decreases from 0.02 to -0.92 after the excitation pulse due to the enhancement of decay rate of the ∣y⟩ state. This offers an approach to modulate the dynamic polarization ratio of radiative emissions.

  18. Integrin-linked kinase interactions with ELMO2 modulate cell polarity.

    Science.gov (United States)

    Ho, Ernest; Irvine, Tames; Vilk, Gregory J A; Lajoie, Gilles; Ravichandran, Kodi S; D'Souza, Sudhir J A; Dagnino, Lina

    2009-07-01

    Cell polarization is a key prerequisite for directed migration during development, tissue regeneration, and metastasis. Integrin-linked kinase (ILK) is a scaffold protein essential for cell polarization, but very little is known about the precise mechanisms whereby ILK modulates polarization in normal epithelia. Elucidating these mechanisms is essential to understand tissue morphogenesis, transformation, and repair. Here we identify a novel ILK protein complex that includes Engulfment and Cell Motility 2 (ELMO2). We also demonstrate the presence of RhoG in ILK-ELMO2 complexes, and the localization of this multiprotein species specifically to the leading lamellipodia of polarized cells. Significantly, the ability of RhoG to bind ELMO is crucial for ILK induction of cell polarization, and the joint expression of ILK and ELMO2 synergistically promotes the induction of front-rear polarity and haptotactic migration. This places RhoG-ELMO2-ILK complexes in a key position for the development of cell polarity and forward movement. Although ILK is a component of many diverse multiprotein species that may contribute to cell polarization, expression of dominant-negative ELMO2 mutants is sufficient to abolish the ability of ILK to promote cell polarization. Thus, its interaction with ELMO2 and RhoG is essential for the ability of ILK to induce front-rear cell polarity.

  19. Reconfigurable digital receiver for 8PSK subcarrier multiplexed and 16QAM single carrier phase‐modulated radio over fiber links

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Yu, Xianbin

    2011-01-01

    A reconfigurable digital receiver based on the k‐means algorithm is proposed for phase‐modulated subcarrier multiplexed (SCM) and quadrature amplitude‐modulated single carrier, phase‐modulated radio‐over‐fiber links. We report successful demodulation after 40 km single mode fiber transmission wit...... with three 50 Mbaud 8PSK SCM signals and a 312.5 Mbaud 16QAM single carrier. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:1015–1018, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.25905...

  20. Design and Performance Analysis of 2D OCDMA System with Polarization States

    Science.gov (United States)

    Bharti, Manisha; Sharma, Ajay K.; Kumar, Manoj

    2016-12-01

    This paper focuses on increasing the number of subscribers in optical code-division multiple access (OCDMA) system by using one of the features of light signal that it can be propagated in two polarization states. The performance of two-dimensional (2D) OCDMA system based on wavelength-time coding scheme by adding polarization state is investigated at varying data rates from 1 GHz to 6 GHz and for various modulation formats. It is reported that with increase in data rate of system, the performance of the system deteriorates due to polarization mode dispersion. Non-return to-zero (RZ), return to-zero (RZ), carrier suppressed return-to-zero (CSRZ) and differential phase shift keying (DPSK) modulation formats are simulated for a single user system with polarization. Investigations reveal that differential phase shift keying (DPSK) modulation format suits best to the proposed system and exhibit the potential to improve the flexibility of system for more number of users. The investigations are reported in terms of Q-factor, BER, received optical power (ROP) and eye diagrams.

  1. Homological properties of modules with finite weak injective and weak flat dimensions

    OpenAIRE

    Zhao, Tiwei

    2017-01-01

    In this paper, we define a class of relative derived functors in terms of left or right weak flat resolutions to compute the weak flat dimension of modules. Moreover, we investigate two classes of modules larger than that of weak injective and weak flat modules, study the existence of covers and preenvelopes, and give some applications.

  2. Laser interferometric method for determining the carrier diffusion length in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Manukhov, V. V. [Saint Petersburg State University (Russian Federation); Fedortsov, A. B.; Ivanov, A. S., E-mail: ivaleks58@gmail.com [Saint Petersburg Mining University (Russian Federation)

    2015-09-15

    A new laser interferometric method for measuring the carrier diffusion length in semiconductors is proposed. The method is based on the interference–absorption interaction of two laser radiations in a semiconductor. Injected radiation generates additional carriers in a semiconductor, which causes a change in the material’s optical constants and modulation of the probing radiation passed through the sample. When changing the distance between carrier generation and probing points, a decrease in the carrier concentration, which depends on the diffusion length, is recorded. The diffusion length is determined by comparing the experimental and theoretical dependences of the probe signal on the divergence of the injector and probe beams. The method is successfully tested on semiconductor samples with different thicknesses and surface states and can be used in scientific research and the electronics industry.

  3. Assessing associations between the AURKA-HMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers.

    Directory of Open Access Journals (Sweden)

    Ignacio Blanco

    Full Text Available While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR = 1.10, 95% confidence interval (CI 1.04-1.15, p = 1.9 x 10(-4 (false discovery rate (FDR-adjusted p = 0.043. Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95% CI 1.03-1.16, p = 0.005 (FDR-adjusted p = 0.045. Assessment of pairwise interactions provided suggestions (FDR-adjusted pinteraction values > 0.05 for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients' survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers.

  4. Low-complexity Joint Sub-carrier Phase Noise Compensation for Digital Multi-carrier Systems

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Barletta, Luca; Zibar, Darko

    2017-01-01

    Joint sub-carrier phase noise processing is proposed which recovers the SNR penalty related to decreased sub-carrier baudrate w.r.t. single carrier systems. The method enables digital sub-banding to be safely employed for nonlinear mitigation for modulation formats of up to 256-QAM.......Joint sub-carrier phase noise processing is proposed which recovers the SNR penalty related to decreased sub-carrier baudrate w.r.t. single carrier systems. The method enables digital sub-banding to be safely employed for nonlinear mitigation for modulation formats of up to 256-QAM....

  5. Modulated phase matching and high-order harmonic enhancement mediated by the carrier-envelope phase

    International Nuclear Information System (INIS)

    Faccio, Daniele; Serrat, Carles; Cela, Jose M.; Farres, Albert; Di Trapani, Paolo; Biegert, Jens

    2010-01-01

    The process of high-order harmonic generation in gases is numerically investigated in the presence of a few-cycle pulsed-Bessel-beam pump, featuring a periodic modulation in the peak intensity due to large carrier-envelope-phase mismatch. A two-decade enhancement in the conversion efficiency is observed and interpreted as the consequence of a mechanism known as a nonlinearly induced modulation in the phase mismatch.

  6. TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback

    International Nuclear Information System (INIS)

    Heil, T.; Uchida, A.; Davis, P.; Aida, T.

    2003-01-01

    We present a comprehensive experimental characterization of the dynamics of semiconductor lasers subject to polarization-rotated optical feedback. We find oscillatory instabilities appearing for large feedback levels and disappearing at large injection currents, which we classify in contrast to the well-known conventional optical-feedback-induced dynamics. In addition, we compare our experiments to theoretical results of a single-mode model assuming incoherence of the optical feedback, and we identify differences concerning the average power of the laser. Hence, we develop an alternative model accounting for both polarizations, where the emission of the dominant TE mode is injected with delay into the TM mode of the laser. Numerical simulations using this model show good qualitative agreement with our experimental results, correctly reproducing the parameter dependences of the dynamics. Finally, we discuss the application of polarization-rotated-feedback induced instabilities in chaotic carrier communication systems

  7. Dual-gate operation and carrier transport in SiGe p-n junction nanowires

    Science.gov (United States)

    Delker, C. J.; Yoo, J. Y.; Bussmann, E.; Swartzentruber, B. S.; Harris, C. T.

    2017-11-01

    We investigate carrier transport in silicon-germanium nanowires with an axial p-n junction doping profile by fabricating these wires into transistors that feature separate top gates over each doping segment. By independently biasing each gate, carrier concentrations in the n- and p-side of the wire can be modulated. For these devices, which were fabricated with nickel source-drain electrical contacts, holes are the dominant charge carrier, with more favorable hole injection occurring on the p-side contact. Channel current exhibits greater sensitivity to the n-side gate, and in the reverse biased source-drain configuration, current is limited by the nickel/n-side Schottky contact.

  8. Surface/Interface Carrier-Transport Modulation for Constructing Photon-Alternative Ultraviolet Detectors Based on Self-Bending-Assembled ZnO Nanowires.

    Science.gov (United States)

    Guo, Zhen; Zhou, Lianqun; Tang, Yuguo; Li, Lin; Zhang, Zhiqi; Yang, Hongbo; Ma, Hanbin; Nathan, Arokia; Zhao, Dongxu

    2017-09-13

    Surface/interface charge-carrier generation, diffusion, and recombination/transport modulation are especially important in the construction of photodetectors with high efficiency in the field of nanoscience. In the paper, a kind of ultraviolet (UV) detector is designed based on ZnO nanostructures considering photon-trapping, surface plasmonic resonance (SPR), piezophototronic effects, interface carrier-trapping/transport control, and collection. Through carefully optimized surface/interface carrier-transport modulation, a designed device with detectivity as high as 1.69 × 10 16 /1.71 × 10 16 cm·Hz 1/2 /W irradiating with 380 nm photons under ultralow bias of 0.2 V is realized by alternating nanoparticle/nanowire active layers, respectively, and the designed UV photodetectors show fast and slow recovery processes of 0.27 and 4.52 ms, respectively, which well-satisfy practical needs. Further, it is observed that UV photodetection could be performed within an alternative response by varying correlated key parameters, through efficient surface/interface carrier-transport modulation, spectrally resolved photoresponse of the detector revealing controlled detection in the UV region based on the ZnO nanomaterial, photodetection allowed or limited by varying the active layers, irradiation distance from one of the electrodes, standing states, or electric field. The detailed carrier generation, diffusion, and recombination/transport processes are well illustrated to explain charge-carrier dynamics contributing to the photoresponse behavior.

  9. Tunneling Spectroscopy Study of Spin-Polarized Quasiparticle Injection Effects in Cuparate/Manganite Heterostructures

    Science.gov (United States)

    Wei, J. Y. T.; Yeh, N. C.; Vasquez, R. P.

    1998-01-01

    Scanning tunneling spectroscopy was performed at 4.2K on epitaxial thin-film heterostructures comprising YBa2Cu3O7 and La0.7Ca0.3MnO3, to study the microscopic effects of spin-polarized quasiparticle injection from the half-metallic ferromagnetic manganite on the high-Tc cuprate superconductor.

  10. Efficient and Robust Detection of GFSK Signals under Dispersive Channel, Modulation Index, and Carrier Frequency Offset Conditions

    Directory of Open Access Journals (Sweden)

    Stephan Weiss

    2005-09-01

    Full Text Available Gaussian frequency shift keying is the modulation scheme specified for Bluetooth. Signal adversities typical in Bluetooth networks include AWGN, multipath propagation, carrier frequency, and modulation index offsets. In our effort to realise a robust but efficient Bluetooth receiver, we adopt a high-performance matched-filter-based detector, which is near optimal in AWGN, but requires a prohibitively costly filter bank for processing of K bits worth of the received signal. However, through filtering over a single bit period and performing phase propagation of intermediate results over successive single-bit stages, we eliminate redundancy involved in providing the matched filter outputs and reduce its complexity by up to 90% (for K=9. The constant modulus signal characteristic and the potential for carrier frequency offsets make the constant modulus algorithm (CMA suitable for channel equalisation, and we demonstrate its effectiveness in this paper. We also introduce a stochastic gradient-based algorithm for carrier frequency offset correction, and show that the relative rotation between successive intermediate filter outputs enables us to detect and correct offsets in modulation index.

  11. A novel amplitude modulated triangular carrier gain linearization technique for SPWM inverter

    Directory of Open Access Journals (Sweden)

    Ramkumar Subburam

    2009-01-01

    Full Text Available This paper presents a new method to extend the linearity of the sinusoidal pulse width modulation (SPWM to full range of the pulse dropping region. The proposed amplitude modulated triangular carrier PWM method (AMTCPWM increases the dynamic range of the SPWM control and eliminates the need of nonlinear modulation in the pulse dropping region to reach the square wave boundary. The novel method combines the spectral quality of SPWM with the efficient single-mode linear control. A simple analytical characterization of the exact method is presented and its effectiveness is demonstrated using simulation for the basic single-phase H-bridge inverter circuit. The hardware results of the designed prototype inverter are presented to validate the betterment of the novel scheme. .

  12. A Fast pH-Switchable and Self-Healing Supramolecular Hydrogel Carrier for Guided, Local Catheter Injection in the Infarcted Myocardium

    OpenAIRE

    Bastings, Maartje M. C.; Koudstaal, Stefan; Kieltyka, Roxanne E.; Nakano, Yoko; Pape, A. C. H.; Feyen, Dries A. M.; van Slochteren, Frebus J.; Doevendans, Pieter A.; Sluijter, Joost P. G.; Meijer, E. W.; Chamuleau, Steven A. J.; Dankers, Patricia Y. W.

    2014-01-01

    Minimally invasive intervention strategies after myocardial infarction use state-of-the-art catheter systems that are able to combine mapping of the infarcted area with precise, local injection of drugs. To this end, catheter delivery of drugs that are not immediately pumped out of the heart is still challenging, and requires a carrier matrix that in the solution state can be injected through a long catheter, and instantaneously gelates at the site of injection. To address this unmet need, a ...

  13. Boost Up Carrier Mobility for Ferroelectric Organic Transistor Memory via Buffering Interfacial Polarization Fluctuation

    Science.gov (United States)

    Sun, Huabin; Wang, Qijing; Li, Yun; Lin, Yen-Fu; Wang, Yu; Yin, Yao; Xu, Yong; Liu, Chuan; Tsukagoshi, Kazuhito; Pan, Lijia; Wang, Xizhang; Hu, Zheng; Shi, Yi

    2014-11-01

    Ferroelectric organic field-effect transistors (Fe-OFETs) have been attractive for a variety of non-volatile memory device applications. One of the critical issues of Fe-OFETs is the improvement of carrier mobility in semiconducting channels. In this article, we propose a novel interfacial buffering method that inserts an ultrathin poly(methyl methacrylate) (PMMA) between ferroelectric polymer and organic semiconductor layers. A high field-effect mobility (μFET) up to 4.6 cm2 V-1 s-1 is obtained. Subsequently, the programming process in our Fe-OFETs is mainly dominated by the switching between two ferroelectric polarizations rather than by the mobility-determined charge accumulation at the channel. Thus, the ``reading'' and ``programming'' speeds are significantly improved. Investigations show that the polarization fluctuation at semiconductor/insulator interfaces, which affect the charge transport in conducting channels, can be suppressed effectively using our method.

  14. X-Parameter Based Modelling of Polar Modulated Power Amplifiers

    DEFF Research Database (Denmark)

    Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel

    2013-01-01

    X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...... PA for simulations. The simulated error vector magnitude (EVM) and adjacent channel power ratio (ACPR) were compared with the measured data to validate the model. The maximum differences between the simulated and measured EVM and ACPR are less than 2% point and 3 dB, respectively....

  15. Study on a low complexity adaptive modulation algorithm in OFDM-ROF system with sub-carrier grouping technology

    Science.gov (United States)

    Liu, Chong-xin; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Tian, Qing-hua; Tian, Feng; Wang, Yong-jun; Rao, Lan; Mao, Yaya; Li, Deng-ao

    2018-01-01

    During the last decade, the orthogonal frequency division multiplexing radio-over-fiber (OFDM-ROF) system with adaptive modulation technology is of great interest due to its capability of raising the spectral efficiency dramatically, reducing the effects of fiber link or wireless channel, and improving the communication quality. In this study, according to theoretical analysis of nonlinear distortion and frequency selective fading on the transmitted signal, a low-complexity adaptive modulation algorithm is proposed in combination with sub-carrier grouping technology. This algorithm achieves the optimal performance of the system by calculating the average combined signal-to-noise ratio of each group and dynamically adjusting the origination modulation format according to the preset threshold and user's requirements. At the same time, this algorithm takes the sub-carrier group as the smallest unit in the initial bit allocation and the subsequent bit adjustment. So, the algorithm complexity is only 1 /M (M is the number of sub-carriers in each group) of Fischer algorithm, which is much smaller than many classic adaptive modulation algorithms, such as Hughes-Hartogs algorithm, Chow algorithm, and is in line with the development direction of green and high speed communication. Simulation results show that the performance of OFDM-ROF system with the improved algorithm is much better than those without adaptive modulation, and the BER of the former achieves 10e1 to 10e2 times lower than the latter when SNR values gets larger. We can obtain that this low complexity adaptive modulation algorithm is extremely useful for the OFDM-ROF system.

  16. Dynamic nuclear polarization by frequency modulation of a tunable gyrotron of 260GHz.

    Science.gov (United States)

    Yoon, Dongyoung; Soundararajan, Murari; Cuanillon, Philippe; Braunmueller, Falk; Alberti, Stefano; Ansermet, Jean-Philippe

    2016-01-01

    An increase in Dynamic Nuclear Polarization (DNP) signal intensity is obtained with a tunable gyrotron producing frequency modulation around 260GHz at power levels less than 1W. The sweep rate of frequency modulation can reach 14kHz, and its amplitude is fixed at 50MHz. In water/glycerol glassy ice doped with 40mM TEMPOL, the relative increase in the DNP enhancement was obtained as a function of frequency-sweep rate for several temperatures. A 68 % increase was obtained at 15K, thus giving a DNP enhancement of about 80. By employing λ/4 and λ/8 polarizer mirrors, we transformed the polarization of the microwave beam from linear to circular, and achieved an increase in the enhancement by a factor of about 66% for a given power. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The nature of carrier localisation in polar and nonpolar InGaN/GaN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, P., E-mail: philip.dawson@manchester.ac.uk [School of Physics and Astronomy, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Schulz, S. [Photonics Theory Group, Tyndall National Institute, Dyke Parade, Cork (Ireland); Oliver, R. A.; Kappers, M. J.; Humphreys, C. J. [Department of Material Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2016-05-14

    In this paper, we compare and contrast the experimental data and the theoretical predictions of the low temperature optical properties of polar and nonpolar InGaN/GaN quantum well structures. In both types of structure, the optical properties at low temperatures are governed by the effects of carrier localisation. In polar structures, the effect of the in-built electric field leads to electrons being mainly localised at well width fluctuations, whereas holes are localised at regions within the quantum wells, where the random In distribution leads to local minima in potential energy. This leads to a system of independently localised electrons and holes. In nonpolar quantum wells, the nature of the hole localisation is essentially the same as the polar case but the electrons are now coulombically bound to the holes forming localised excitons. These localisation mechanisms are compatible with the large photoluminescence linewidths of the polar and nonpolar quantum wells as well as the different time scales and form of the radiative recombination decay curves.

  18. Probing exotic phases of interacting two-dimensional carriers using one-dimensional density modulation

    Science.gov (United States)

    Mueed, M. A.

    In this Thesis, we present low-temperature magnetotransport studies of two-dimensional (2D) electron and hole systems confined to GaAs quantum wells and subjected to a one-dimensional, periodic density modulation. The modulation is achieved through the piezo-electric effect in GaAs as we fabricate a periodic, strain-inducing superlattice on the sample surface. Under varying perpendicular magnetic field, whenever the carriers' cyclotron orbit becomes commensurate with the modulation period, the magnetoresistance exhibits a minimum value. The resulting oscillations, known as the commensurability oscillations, directly measure the carriers' Fermi wave vector. Imposing a density modulation thus allows us to study the Fermi contour properties of 2D electrons and holes near zero field, and composite fermions (CFs) near the half filling of the lowest Landau level, i.e., filling factor nu=1/2. The application of a parallel magnetic field (B||) also features extensively in the Thesis. First, we use commensurability oscillations to capture the B||-induced deformation and the eventual splitting of the Fermi contour of 2D electrons. We also deduce the scattering time anisotropy of hole-flux CFs whose Fermi contour is rendered anisotropic by B||. Moreover, we study the anisotropic (warped) Fermi contour of 2D holes and hole-flux CFs in wide quantum well samples at B||=0. The results provide evidence that CFs inherit Fermi contour properties from their zero-field counterparts. We further investigate the fate of CFs near the bilayer quantum Hall states at nu=1 and 1/2 induced by a large B||. We observe that the commensurability features of CFs near nu=1 are consistent with half the total carrier density, implying that CFs prefer to stay in separate layers and show a two-component behavior. In contrast, close to nu=1/2, CFs appear single-layer-like (single-component) as their commensurability features correspond to the total density. This finding sheds light on the different

  19. Thermal analysis of a prototype cryogenic polarization modulator for use in a space-borne CMB polarization experiment

    Science.gov (United States)

    Iida, T.; Sakurai, Y.; Matsumura, T.; Sugai, H.; Imada, H.; Kataza, H.; Ohsaki, H.; Hazumi, M.; Katayama, N.; Yamamoto, R.; Utsunomiya, S.; Terao, Y.

    2017-12-01

    We report a thermal analysis of a polarization modulator unit (PMU) for use in a space-borne cosmic microwave background (CMB) project. A measurement of the CMB polarization allows us to probe the physics of early universe, and that is the best method to test the cosmic inflation experimentally. One of the key instruments for this science is to use a halfwave plate (HWP) based polarization modulator. The HWP is required to rotate continuously at about 1 Hz below 10 K to minimize its own thermal emission to a detector system. The rotating HWP system at the cryogenic environment can be realized by using a superconducting magnetic bearing (SMB) without significant heat dissipation by mechanical friction. While the SMB achieves the smooth rotation due to the contactless bearing, an estimation of a levitating HWP temperature becomes a challenge. We manufactured a one-eighth scale prototype model of PMU and built a thermal model. We verified our thermal model with the experimental data. We forecasted the projected thermal performance of PMU for a full-scale model based on the thermal model. From this analysis, we discuss the design requirement toward constructing the full-scale model for use in a space environment such as a future CMB satellite mission, LiteBIRD.

  20. A Comparison of Phase-Shift Self- Oscillating and Carrier-based PWM Modulation for Embedded Audio Amplifiers

    OpenAIRE

    Huffenus , Alexandre; Pillonnet , Gaël; Abouchi , Nacer; Goutti , Frédéric

    2010-01-01

    International audience; This paper compares two modulation schemes for Class-D amplifiers: Phase-Shift Self-Oscillating (PSSO) and Carrier-Based Pulse Width Modulation (PWM). Theoretical analysis (modulation, frequency of oscillation, bandwidth…), design procedure, and IC silicon evaluation will be shown for mono and stereo operation (on the same silicon die) on both structures. The design of both architectures will use as many identical building blocks as possible, to provide a fair, "all el...

  1. Numerical analysis of fundamental characteristics of superconducting magnetic bearings for a polarization modulator

    International Nuclear Information System (INIS)

    Terachi, Yusuke; Terao, Yutaka; Ohsaki, Hiroyuki; Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Utsunomiya, Shin; Kataza, Hirokazu; Yamamoto, Ryo

    2017-01-01

    We have carried out numerical analysis of mechanical properties of a superconducting magnetic bearing (SMB). A contactless bearing operating at below 10 K with low rotational energy loss is an attractive feature to be used as a rotational mechanism of a polarization modulator for a cosmic microwave background experiment. In such application, a rotor diameter of about 400 mm forces us to employ a segmented magnet. As a result, there is inevitable spatial gap between the segments. In order to understand the path towards the design optimizations, 2D and 3D FEM analyses were carried out to examine fundamental characteristics of the SMBs for a polarization modulator. Two axial flux type SMBs were dealt with in the analysis: (a) the SMB with axially magnetized permanent magnets (PMs), and (b) the SMB with radially magnetized PMs and steel components for magnetic flux paths. Magnetic flux lines and density distributions, electromagnetic force characteristics, spring constants, etc. were compared among some variations of the SMBs. From the numerical analysis results, it is discussed what type, configuration and design of SMBs are more suitable for a polarization modulator. (paper)

  2. Effective information rates of single-carrier and multi-carrier modulation schemes for bandwidth constrained IM/DD systems

    KAUST Repository

    Mazahir, Sana

    2017-07-31

    Information-theoretic and signal processing aspects of some modulation schemes designed for intensity modulation/direct detection (IM/DD) optical wireless communication (OWC) systems are studied. Due to the constraints of IM/DD signals (non-negative real and baseband signals), the construction of these signals along with their time and frequency characteristics differ from their RF counterparts. This necessitates a careful study of such schemes under practical constraints. Three schemes are studied in this paper, namely, single carrier pulse amplitude modulation (SC-PAM), asymmetrically clipped optical OFDM (ACO-OFDM), and DC biased optical OFDM (DCO-OFDM). Our aim is to carry out a comparative study of these schemes in the presence of identical constraints on bandwidth and average optical power. The study reveals that the clipping operation required in ACO-OFDM significantly reduces its information rate, and as a result, it is outperformed by SC-PAM. Such a limitation does not apply to DCO-OFDM which has a higher information rate, even though part of the available optical power is expended in the non-information-bearing DC bias.

  3. Effects of polarization of polar semiconductor on electrical properties of poly(vinylidene fluoride-trifluoroethylene)/ZnO heterostructures

    International Nuclear Information System (INIS)

    Yamada, Hiroaki; Yoshimura, Takeshi; Fujimura, Norifumi

    2015-01-01

    The electrical properties of heterostructures composed of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) and ZnO with different crystallographic polarities, i.e., O- and Zn-polar ZnO, were investigated. Distinct differences in the capacitance-voltage and polarization-voltage characteristics between the P(VDF-TrFE)/O- and Zn-polar ZnO were obtained in the depletion regions of ZnO. The band configurations were determined by X-ray photoelectron spectroscopy (XPS) using a synchrotron radiation beam to analyze the differences in the electrical properties of the P(VDF-TrFE)/O- and Zn-polar ZnO. The XPS spectra indicated that the valence band maximum of P(VDF-TrFE) is 2.9 and 2.7 eV higher than Zn- and O-polar ZnO, respectively. Thus, both structures have staggered band configurations with large valence band offsets, and the spontaneous polarization of ZnO is less effective on the band lineup. The electrical properties of the P(VDF-TrFE)/ZnO heterostructures are modulated through carrier generation because of the polarization-mediated interface charges and the staggered band alignments of the P(VDF-TrFE)/ZnO with a large valence band offset

  4. Polarized light modulates light-dependent magnetic compass orientation in birds

    Science.gov (United States)

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-01-01

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm “plus” maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth’s magnetic field. PMID:26811473

  5. Do not resonate with actions: sentence polarity modulates cortico-spinal excitability during action-related sentence reading.

    Directory of Open Access Journals (Sweden)

    Marco Tullio Liuzza

    Full Text Available BACKGROUND: Theories of embodied language suggest that the motor system is differentially called into action when processing motor-related versus abstract content words or sentences. It has been recently shown that processing negative polarity action-related sentences modulates neural activity of premotor and motor cortices. METHODS AND FINDINGS: We sought to determine whether reading negative polarity sentences brought about differential modulation of cortico-spinal motor excitability depending on processing hand-action related or abstract sentences. Facilitatory paired-pulses Transcranial Magnetic Stimulation (pp-TMS was applied to the primary motor representation of the right-hand and the recorded amplitude of induced motor-evoked potentials (MEP was used to index M1 activity during passive reading of either hand-action related or abstract content sentences presented in both negative and affirmative polarity. Results showed that the cortico-spinal excitability was affected by sentence polarity only in the hand-action related condition. Indeed, in keeping with previous TMS studies, reading positive polarity, hand action-related sentences suppressed cortico-spinal reactivity. This effect was absent when reading hand action-related negative polarity sentences. Moreover, no modulation of cortico-spinal reactivity was associated with either negative or positive polarity abstract sentences. CONCLUSIONS: Our results indicate that grammatical cues prompting motor negation reduce the cortico-spinal suppression associated with affirmative action sentences reading and thus suggest that motor simulative processes underlying the embodiment may involve even syntactic features of language.

  6. A physico-genetic module for the polarisation of auxin efflux carriers PIN-FORMED (PIN)

    Science.gov (United States)

    Hernández-Hernández, Valeria; Barrio, Rafael A.; Benítez, Mariana; Nakayama, Naomi; Romero-Arias, José Roberto; Villarreal, Carlos

    2018-05-01

    Intracellular polarisation of auxin efflux carriers is crucial for understanding how auxin gradients form in plants. The polarisation dynamics of auxin efflux carriers PIN-FORMED (PIN) depends on both biomechanical forces as well as chemical, molecular and genetic factors. Biomechanical forces have shown to affect the localisation of PIN transporters to the plasma membrane. We propose a physico-genetic module of PIN polarisation that integrates biomechanical, molecular, and cellular processes as well as their non-linear interactions. The module was implemented as a discrete Boolean model and then approximated to a continuous dynamic system, in order to explore the relative contribution of the factors mediating PIN polarisation at the scale of single cell. Our models recovered qualitative behaviours that have been experimentally observed and enable us to predict that, in the context of PIN polarisation, the effects of the mechanical forces can predominate over the activity of molecular factors such as the GTPase ROP6 and the ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN RIC1.

  7. Tunable Injection Barrier in Organic Resistive Switches Based on Phase-Separated Ferroelectric-Semiconductor Blends

    NARCIS (Netherlands)

    Asadi, Kamal; de Boer, Tom G.; Blom, Paul W. M.; de Leeuw, Dago M.

    2009-01-01

    Organic non-volatile resistive bistable diodes based on phase-separated blends of ferroelectric and semiconducting polymers are fabricated. The polarization field of the ferroelectric modulates the injection barrier at the semiconductor-electrode contact and, hence, the resistance of the comprising

  8. Tunable injection barrier in organic resistive switches based on phase-separated ferroelectric-semiconductor blends

    NARCIS (Netherlands)

    Asadi, K.; Boer, T.G. de; Blom, P.W.M.; Leeuw, D.M. de

    2009-01-01

    Organic non-volatile resistive bistable diodes based on phase-separated blends of ferroelectric and semiconducting polymers are fabricated. The polarization field of the ferroelectric modulates the injection barrier at the semiconductor-electrode contact and, hence, the resistance of the comprising

  9. Pulsed modulator power supply for the g-2 muon storage ring injection kicker

    NARCIS (Netherlands)

    Mi, J.; Lee, Y. Y.; Morse, W. M.; Pai, C. I.; Pappas, G. C.; Sanders, R.; Semertzidis, Y. K.; Warburton, D.; Zapasek, R.; Jungmann, K.; Roberts, L.

    1999-01-01

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the g-2 storage ring that has been built at Brookhaven National Laboratory. Three modulators built into coaxial structures consisting of a series circuit of an energy storage

  10. Gravistimulation changes expression of genes encoding putative carrier proteins of auxin polar transport in etiolated pea epicotyls

    Science.gov (United States)

    Hoshino, T.; Hitotsubashi, R.; Miyamoto, K.; Tanimoto, E.; Ueda, J.

    STS-95 space experiment has showed that auxin polar transport in etiolated epicotyls of pea (Pisum sativum L. cv. Alaska) seedlings is controlled by gravistimulation. In Arabidopsis thaliana auxin polar transport has considered to be regulated by efflux and influx carrier proteins in plasma membranes, AtPIN1 and AtAUX1, respectively. In order to know how gravistimuli control auxin polar transport in etiolated pea epicotyls at molecular levels, strenuous efforts have been made, resulting in successful isolation of full-length cDNAs of a putative auxin efflux and influx carriers, PsPIN2 and PsAUX1, respectively. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 (accession no. AY222857, Chawla and DeMason, 2003) and AtPINs, and also among PsAUX1, AtAUX1 and their related genes. Phylogenetic analyses based on the deduced amino acid sequences revealed that PsPIN2 belonged to a subclade including AtPIN3, AtPIN4 relating to lateral transport of auxin, while PsPIN1 belonged to the same clade as AtPIN1 relating to auxin polar transport. In the present study, we examined the effects of gravistimuli on the expression of PsPINs and PsAUX1 in etiolated pea seedlings by northern blot analysis. Expression of PsPIN1, PsPIN2 and PsAUX1 in hook region of 3.5-d-old etiolated pea seedlings grown under simulated microgravity conditions on a 3-D clinostat increased as compared with that of the seedlings grown under 1 g conditions. On the other hand, that of PsPIN1 and PsAUX1 in the 1st internode region under simulated microgravity conditions on a 3-D clinostat also increased, while that of PsPIN2 was affected little. These results suggest that expression of PsPIN1, PsPIN2 and PsAUX1 regulating polar/lateral transport of auxin is substantially under the control of gravity. A possible role of PsPINs and PsAUX1 of auxin polar transport in etiolated pea seedlings will also be discussed.

  11. Research on a Micro-Nano Si/SiGe/Si Double Heterojunction Electro-Optic Modulation Structure

    Directory of Open Access Journals (Sweden)

    Song Feng

    2018-01-01

    Full Text Available The electro-optic modulator is a very important device in silicon photonics, which is responsible for the conversion of optical signals and electrical signals. For the electro-optic modulator, the carrier density of waveguide region is one of the key parameters. The traditional method of increasing carrier density is to increase the external modulation voltage, but this way will increase the modulation loss and also is not conducive to photonics integration. This paper presents a micro-nano Si/SiGe/Si double heterojunction electro-optic modulation structure. Based on the band theory of single heterojunction, the barrier heights are quantitatively calculated, and the carrier concentrations of heterojunction barrier are analyzed. The band and carrier injection characteristics of the double heterostructure structure are simulated, respectively, and the correctness of the theoretical analysis is demonstrated. The micro-nano Si/SiGe/Si double heterojunction electro-optic modulation is designed and tested, and comparison of testing results between the micro-nano Si/SiGe/Si double heterojunction micro-ring electro-optic modulation and the micro-nano Silicon-On-Insulator (SOI micro-ring electro-optic modulation, Free Spectrum Range, 3 dB Bandwidth, Q value, extinction ratio, and other parameters of the micro-nano Si/SiGe/Si double heterojunction micro-ring electro-optic modulation are better than others, and the modulation voltage and the modulation loss are lower.

  12. Simulation Performance of Multiple-Input Multiple-Output Systems Employing Single-Carrier Modulation and Orthogonal Frequency Division Multiplexing

    National Research Council Canada - National Science Library

    Saglam, Halil D

    2004-01-01

    ...) systems utilizing Alamouti-based space-time block coding (STBC) technique. The MIMO communication systems using STBC technique employing both single-carrier modulation and orthogonal frequency division multiplexing (OFDM...

  13. Snapshot polarization-sensitive plug-in optical module for a Fourier-domain optical coherence tomography system

    Science.gov (United States)

    Marques, Manuel J.; Rivet, Sylvain; Bradu, Adrian; Podoleanu, Adrian

    2018-02-01

    In this communication, we present a proof-of-concept polarization-sensitive Optical Coherence Tomography (PS-OCT) which can be used to characterize the retardance and the axis orientation of a linear birefringent sample. This module configuration is an improvement from our previous work1, 2 since it encodes the two polarization channels on the optical path difference, effectively carrying out the polarization measurements simultaneously (snapshot measurement), whilst retaining all the advantages (namely the insensitivity to environmental parameters when using SM fibers) of these two previous configurations. Further progress consists in employing Master Slave OCT technology,3 which is used to automatically compensate for the dispersion mismatch introduced by the elements in the module. This is essential given the encoding of the polarization states on two different optical path lengths, each of them having dissimilar dispersive properties. By utilizing this method instead of the commonly used re-linearization and numerical dispersion compensation methods an improvement in terms of the calculation time required can be achieved.

  14. A novel injection-locked amplitude-modulated magnetron at 1497 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Michael [Muons Inc., Batavia, IL (United States); Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-12-15

    Thomas Jefferson National Accelerator Facility (JLab) uses low efficiency klystrons in the CEBAF machine. In the older portion they operate at 30% efficiency with a tube mean time between failure (MTBF) of five to six years. A highly efficient source (>55-60%) must provide a high degree of backwards compatibility, both in size and voltage requirements, to replace the klystron presently used at JLab, while providing energy savings. Muons, Inc. is developing a highly reliable, highly efficient RF source based upon a novel injection-locked amplitude modulated (AM) magnetron with a lower total cost of ownership, >80% efficiency, and MTBF of six to seven years. The design of the RF source is based upon a single injection-locked magnetron system at 8 kW capable of operating up to 13 kW, using the magnetron magnetic field to achieve the AM required for backwards compatibility to compensate for microphonics and beam loads. A novel injection-locked 1497 MHz 8 kW AM magnetron with a trim magnetic coil was designed and its operation numerically simulated during the Phase I project. The low-level RF system to control the trim field and magnetron anode voltage was designed and modeled for operation at the modulation frequencies of the microphonics. A plan for constructing a prototype magnetron and control system was developed.

  15. A Study of Residual Amplitude Modulation Suppression in Injection Locked Quantum Cascade Lasers Based on a Simplified Rate Equation Model

    International Nuclear Information System (INIS)

    Webb, J F; Yong, K S C; Haldar, M K

    2015-01-01

    Using results that come out of a simplified rate equation model, the suppression of residual amplitude modulation in injection locked quantum cascade lasers with the master laser modulated by its drive current is investigated. Quasi-static and dynamic expressions for intensity modulation are used. The suppression peaks at a specific value of the injection ratio for a given detuning and linewidth enhancement factor. The intensity modulation suppression remains constant over a range of frequencies. The effects of injection ratio, detuning, coupling efficiency and linewidth enhancement factor are considered. (paper)

  16. Significant relaxation of residual negative carrier in polar Alq3 film directly detected by high-sensitivity photoemission

    Science.gov (United States)

    Kinjo, Hiroumi; Lim, Hyunsoo; Sato, Tomoya; Noguchi, Yutaka; Nakayama, Yasuo; Ishii, Hisao

    2016-02-01

    Tris(8-hydroxyquinoline)aluminum (Alq3) has been widely applied as a good electron-injecting layer (EIL) in organic light-emitting diodes. High-sensitivity photoemission measurement revealed a clear photoemission by visible light, although its ionization energy is 5.7 eV. This unusual photoemission is ascribed to Alq3 anions captured by positive polarization charges. The observed electron detachment energy of the anion was about 1 eV larger than the electron affinity reported by inverse photoemission. This difference suggests that the injected electron in the Alq3 layer is energetically relaxed, leading to the reduction in injection barrier. This nature is one of the reasons why Alq3 worked well as the EIL.

  17. Comparative studies of efficiency droop in polar and non-polar InGaN quantum wells

    International Nuclear Information System (INIS)

    Davies, M. J.; Dawson, P.; Hammersley, S.; Zhu, T.; Kappers, M. J.; Humphreys, C. J.; Oliver, R. A.

    2016-01-01

    We report on a comparative study of efficiency droop in polar and non-polar InGaN quantum well structures at T = 10 K. To ensure that the experiments were carried out with identical carrier densities for any particular excitation power density, we used laser pulses of duration ∼100 fs at a repetition rate of 400 kHz. For both types of structures, efficiency droop was observed to occur for carrier densities of above 7 × 10 11  cm −2  pulse −1 per quantum well; also both structures exhibited similar spectral broadening in the droop regime. These results show that efficiency droop is intrinsic in InGaN quantum wells, whether polar or non-polar, and is a function, specifically, of carrier density.

  18. Bisphosphonate-adsorbed ceramic nanoparticles increase bone formation in an injectable carrier for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Tegan L Cheng

    2015-10-01

    Full Text Available Sucrose acetate isobutyrate (SAIB is a sugar-based carrier. We have previously applied SAIB as a minimally invasive system for the co-delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2 and found synergy when co-delivering zoledronic acid (ZA and hydroxyapatite (HA nanoparticles. Alternative bioceramics were investigated in a murine SAIB/rhBMP-2 injection model. Neither beta-tricalcium phosphate (TCP nor Bioglass (BG 45S5 had a significant effect on bone volume (BV alone or in combination with the ZA. 14C-labelled ZA binding assays showed particle size and ceramic composition affected binding with nano-HA > micro-HA > TCP > BG. Micro-HA and nano-HA increased BV in a rat model of rhBMP-2/SAIB injection (+278% and +337%, and BV was further increased with ZA–adsorbed micro-HA and nano-HA (+530% and +889%. These data support the use of ZA–adsorbed nanoparticle-sized HA as an optimal additive for the SAIB/rhBMP-2 injectable system for bone tissue engineering.

  19. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier

    Science.gov (United States)

    Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P. H.

    1998-01-01

    Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

  20. Circular polarization memory in single Quantum Dots

    International Nuclear Information System (INIS)

    Khatsevich, S.; Poem, E.; Benny, Y.; Marderfeld, I.; Gershoni, D.; Badolato, A.; Petroff, P. M.

    2010-01-01

    Under quasi-resonant circularly polarized optical excitation, charged quantum dots may emit polarized light. We measured various transitions with either positive, negative or no circular-polarization memory. We explain these observations and quantitatively calculate the polarization spectrum. Our model use the full configuration-interaction method, including the electron-hole exchange interaction, for calculating the quantum dot's confined many-carrier states, along with one assumption regarding the spin relaxation of photoexcited carriers: Electrons maintain their initial spin polarization, while holes do not.

  1. Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking.

    Science.gov (United States)

    Wei, Fang; Lu, Bin; Wang, Jian; Xu, Dan; Pan, Zhengqing; Chen, Dijun; Cai, Haiwen; Qu, Ronghui

    2015-02-23

    A precision and broadband laser frequency swept technique is experimentally demonstrated. Using synchronous current compensation, a slave diode laser is dynamically injection-locked to a specific high-order modulation-sideband of a narrow-linewidth master laser modulated by an electro-optic modulator (EOM), whose driven radio frequency (RF) signal can be agilely, precisely controlled by a frequency synthesizer, and the high-order modulation-sideband enables multiplied sweep range and tuning rate. By using 5th order sideband injection-locking, the original tuning range of 3 GHz and tuning rate of 0.5 THz/s is multiplied by 5 times to 15 GHz and 2.5 THz/s respectively. The slave laser has a 3 dB-linewidth of 2.5 kHz which is the same to the master laser. The settling time response of a 10 MHz frequency switching is 2.5 µs. By using higher-order modulation-sideband and optimized experiment parameters, an extended sweep range and rate could be expected.

  2. Comparative studies of efficiency droop in polar and non-polar InGaN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Davies, M. J.; Dawson, P.; Hammersley, S. [School of Physics and Astronomy, Photon Science Institute, University of Manchester, M13 9PL Manchester (United Kingdom); Zhu, T.; Kappers, M. J.; Humphreys, C. J.; Oliver, R. A. [Department of Material Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2016-06-20

    We report on a comparative study of efficiency droop in polar and non-polar InGaN quantum well structures at T = 10 K. To ensure that the experiments were carried out with identical carrier densities for any particular excitation power density, we used laser pulses of duration ∼100 fs at a repetition rate of 400 kHz. For both types of structures, efficiency droop was observed to occur for carrier densities of above 7 × 10{sup 11 }cm{sup −2 }pulse{sup −1} per quantum well; also both structures exhibited similar spectral broadening in the droop regime. These results show that efficiency droop is intrinsic in InGaN quantum wells, whether polar or non-polar, and is a function, specifically, of carrier density.

  3. Ultracompact electro-optic phase modulator based on III-V-on-silicon microdisk resonator.

    Science.gov (United States)

    Lloret, J; Kumar, R; Sales, S; Ramos, F; Morthier, G; Mechet, P; Spuesens, T; Van Thourhout, D; Olivier, N; Fédéli, J-M; Capmany, J

    2012-06-15

    A novel ultracompact electro-optic phase modulator based on a single 9 μm-diameter III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic waveguide is presented. Modulation is enabled by effective index modification through carrier injection. Proof-of-concept implementation involving binary phase shift keying modulation format is assembled. A power imbalance of ∼0.6  dB between both symbols and a modulation rate up to 1.8 Gbps are demonstrated without using any special driving technique.

  4. Competition of circularly polarized laser modes in the modulation instability of hot magnetoplasma

    International Nuclear Information System (INIS)

    Sepehri Javan, N.

    2013-01-01

    The present study is aimed to investigate the problem of modulation instability of an intense laser beam in the hot magnetized plasma. The propagation of intense circularly polarized laser beam along the external magnetic field is considered using a relativistic fluid model. The nonlinear equation describing the interaction of laser pulse with magnetized hot plasma is derived in the quasi-neutral approximation, which is valid for hot plasma. Nonlinear dispersion equation for hot plasma is obtained. For left- and right-hand polarizations, the growth rate of instability is achieved and the effect of temperature, external magnetic field, and kind of polarization on the growth rate is considered. It is observed that for the right-hand polarization, increase of magnetic field leads to the increasing of growth rate. Also for the left-hand polarization, increase of magnetic field inversely causes decrease of the growth rate.

  5. Voltage Controlled Hot Carrier Injection Enables Ohmic Contacts Using Au Island Metal Films on Ge.

    Science.gov (United States)

    Ganti, Srinivas; King, Peter J; Arac, Erhan; Dawson, Karl; Heikkilä, Mikko J; Quilter, John H; Murdoch, Billy; Cumpson, Peter; O'Neill, Anthony

    2017-08-23

    We introduce a new approach to creating low-resistance metal-semiconductor ohmic contacts, illustrated using high conductivity Au island metal films (IMFs) on Ge, with hot carrier injection initiated at low applied voltage. The same metallization process simultaneously allows ohmic contact to n-Ge and p-Ge, because hot carriers circumvent the Schottky barrier formed at metal/n-Ge interfaces. A 2.5× improvement in contact resistivity is reported over previous techniques to achieve ohmic contact to both n- and p- semiconductor. Ohmic contacts at 4.2 K confirm nonequilibrium current transport. Self-assembled Au IMFs are strongly orientated to Ge by annealing near the Au/Ge eutectic temperature. Au IMF nanostructures form, provided the Au layer is below a critical thickness. We anticipate that optimized IMF contacts may have applicability to many material systems. Optimizing this new paradigm for metal-semiconductor contacts offers the prospect of improved nanoelectronic systems and the study of voltage controlled hot holes and electrons.

  6. Optical-wireless-optical full link for polarization multiplexing quadrature amplitude/phase modulation signal transmission.

    Science.gov (United States)

    Li, Xinying; Yu, Jianjun; Chi, Nan; Zhang, Junwen

    2013-11-15

    We propose and experimentally demonstrate an optical wireless integration system at the Q-band, in which up to 40 Gb/s polarization multiplexing multilevel quadrature amplitude/phase modulation (PM-QAM) signal can be first transmitted over 20 km single-mode fiber-28 (SMF-28), then delivered over a 2 m 2 × 2 multiple-input multiple-output wireless link, and finally transmitted over another 20 km SMF-28. The PM-QAM modulated wireless millimeter-wave (mm-wave) signal at 40 GHz is generated based on the remote heterodyning technique, and demodulated by the radio-frequency transparent photonic technique based on homodyne coherent detection and baseband digital signal processing. The classic constant modulus algorithm equalization is used at the receiver to realize polarization demultiplexing of the PM-QAM signal. For the first time, to the best of our knowledge, we realize the conversion of the PM-QAM modulated wireless mm-wave signal to the optical signal as well as 20 km fiber transmission of the converted optical signal.

  7. Subcutaneous administration of carrier erythrocytes: slow release of entrapped agent

    International Nuclear Information System (INIS)

    DeLoach, J.R.; Corrier, D.E.

    1988-01-01

    Carrier erythrocytes administered subcutaneously in mice release encapsulated molecules at the injection site and through cells that escape the injection site. One day postinjection, the efflux of encapsulated [ 14 C]sucrose, [ 3 H]inulin, and 51 Cr-hemoglobin from the injection site was 45, 55, and 65%, respectively. Intact carrier erythrocytes escaped the injection site and entered the blood circulation carrying with them the encapsulated molecules. Most of the encapsulated [ 3 H]inulin that reached whole blood circulated within erythrocytes. Small but measurable numbers of encapsulated molecules were trapped within lymph nodes. Subcutaneous injection of carrier erythrocytes may allow for limited extravascular tissue targeting of drugs

  8. Dual-polarization wavelength conversion of 16-QAM signals in a single silicon waveguide with a lateral p-i-n diode [Invited

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Gajda, Andrzej; Liebig, Erik

    2018-01-01

    with an optical signal-to-noise ratio penalty below 0.7 dB. High-quality converted signals are generated thanks to the low polarization dependence (≤0.5 dB) and the high conversion efficiency (CE) achievable. The strong Kerr nonlinearity in silicon and the decrease of detrimental free-carrier absorption due......A polarization-diversity loop with a silicon waveguide with a lateral p-i-n diode as a nonlinear medium is used to realize polarization insensitive four-wave mixing. Wavelength conversion of seven dual-polarization 16-quadrature amplitude modulation (QAM) signals at 16 GBd is demonstrated...

  9. Study of axial injection of polarized protons into the grenoble cyclotron; Contribution a l'etude de l'injection axiale pour protons polarises sur le cyclotron de Grenoble

    Energy Technology Data Exchange (ETDEWEB)

    Pabot, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    By injecting ions axially into a cyclotron, it is possible to accelerate particles (polarized particles, heavy ions, etc...) obtainable only with difficulty when an internal ion source is used. In this work, after justifying the choice of an axial injection device equipped with a 'pseudo-cylindrical' deflector for the Grenoble cyclotron, we study theoretically the principle of such a detector, the choice of its parameters, and the effect of this choice on the conditions of acceleration of the beam by the cyclotron. From the experimental point of view, this report describes two operations which made it possible to check that the chosen injection device operated satisfactorily, qualitatively initially (electron model), then quantitatively (proton model). In conclusion, we believe that the Grenoble cyclotron thus equipped will be able to provide a relatively dense beam of polarized protons. (author) [French] L'injection axiale d'ions dans un cyclotron permet d'accelerer des particules (particules polarisees, ions lourds... ) difficiles a obtenir avec une source interne d'ions. Dans ce travail, apres avoir justifie le choix d'un dispositif d'injection axiale equipe d'un deflecteur 'pseudo-cylindrique' pour le cyclotron de Grenoble, nous avons etudie, du point de vue theorique, le principe d'un tel deflecteur, le choix de ses parametres, et l'incidence de ce choix sur les conditions d'acceleration du faisceau par le cyclotron. Du point de vue experimental, ce rapport decrit deux manipulations qui ont permis de verifier le bon fonctionnement du dispositif d'injection retenu, qualitativement d'abord (modele a electrons), quantitativement ensuite (maquette a protons). En conclusion, nous estimons que le cyclotron de Grenoble ainsi equipe, peut fournir un faisceau relativement intense de protons polarises. (auteur)

  10. Highly efficient low color temperature organic LED using blend carrier modulation layer

    Science.gov (United States)

    Hsieh, Yao-Ching; Chen, Szu-Hao; Shen, Shih-Ming; Wang, Ching-Chiun; Chen, Chien-Chih; Jou, Jwo-Huei

    2012-10-01

    Color temperature (CT) of light has great effect on human physiology and psychology, and low CT light, minimizing melatonin suppression and decreasing the risk of breast, colorectal, and prostate cancer. We demonstrates the incorporation of a blend carrier modulation interlayer (CML) between emissive layers to improve the device performance of low CT organic light emitting diodes, which exhibits an external quantum efficiency of 22.7% and 36 lm W-1 (54 cd A-1) with 1880 K at 100 cd m-2, or 20.8% and 29 lm W-1 (50 cd A-1) with 1940 K at 1000 cd m-2. The result shows a CT much lower than that of incandescent bulbs, which is 2500 K with 15 lmW-1 efficiency, and even as low as that of candles, which is 2000 K with 0.1 lmW-1. The high efficiency of the proposed device may be attributed to its CML, which helps effectively distribute the entering carriers into the available recombination zones.

  11. Basis for calculating cross sections for nuclear magnetic resonance spin-modulated polarized neutron scattering.

    Science.gov (United States)

    Kotlarchyk, Michael; Thurston, George M

    2016-12-28

    In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.

  12. Pengaruh Prosentase Etanol terhadap Torsi dan Emisi Motor Indirect Injection dengan Memodifikasi Engine Control Module

    Directory of Open Access Journals (Sweden)

    Hadi Rahmad

    2016-10-01

    Full Text Available This research present the torque and exhaust emission level from four stroke indirect injection fuel system engine. An engine fueled by ethanol gasoline blend. The original Engine Controle Module injected lean mixture into Combustion Chamber. Lean Mixture decreased Torque drastically. Therefore, the Engine Controle Module was modified to produce stoichiometric mixture. Injector was controlled by digital pulse of Fuel Controller. Ethanol was added into gasoline 0% - 100% at 1500 rpm-5000 rpm. The result demonstrate that increasing ethanol concentration into gasoline fuel system, decreasing Torque, and CO, HC, CO2 emission. By increasing ethanol concentration also increase CO2 emission to 34.6%.

  13. Integrated unaligned resonant modulator tuning

    Energy Technology Data Exchange (ETDEWEB)

    Zortman, William A.; Lentine, Anthony L.

    2017-10-03

    Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, from the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.

  14. In-flight performance of the polarization modulator in the CLASP rocket experiment

    Science.gov (United States)

    Ishikawa, Shin-nosuke; Shimizu, Toshifumi; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Giono, Gabriel; Beabout, Dyana L.; Beabout, Brent L.; Nakayama, Satoshi; Tajima, Takao

    2016-07-01

    We developed a polarization modulation unit (PMU), a motor system to rotate a waveplate continuously. In polarization measurements, the continuous rotating waveplate is an important element as well as a polarization analyzer to record the incident polarization in a time series of camera exposures. The control logic of PMU was originally developed for the next Japanese solar observation satellite SOLAR-C by the SOLAR-C working group. We applied this PMU for the Chromospheric Lyman-alpha SpectroPolarimeter (CLASP). CLASP is a sounding rocket experiment to observe the linear polarization of the Lyman-alpha emission (121.6 nm vacuum ultraviolet) from the upper chromosphere and transition region of the Sun with a high polarization sensitivity of 0.1 % for the first time and investigate their vector magnetic field by the Hanle effect. The driver circuit was developed to optimize the rotation for the CLASP waveplate (12.5 rotations per minute). Rotation non- uniformity of the waveplate causes error in the polarization degree (i.e. scale error) and crosstalk between Stokes components. We confirmed that PMU has superior rotation uniformity in the ground test and the scale error and crosstalk of Stokes Q and U are less than 0.01 %. After PMU was attached to the CLASP instrument, we performed vibration tests and confirmed all PMU functions performance including rotation uniformity did not change. CLASP was successfully launched on September 3, 2015, and PMU functioned well as designed. PMU achieved a good rotation uniformity, and the high precision polarization measurement of CLASP was successfully achieved.

  15. The selective digital integrator: A new device for modulated polarization spectroscopy

    Science.gov (United States)

    Vrancic, Aljosa

    1998-12-01

    A new device, a selective digital integrator (SDI), for the acquisition of modulated polarization spectroscopy (MPS) signals is described. Special attention is given to the accurate measurement of very small (AC component of interest 50 kHz) signals at or below noise levels. Various data acquisition methods and problems associated with the collection of modulated signals are discussed. The SDI solves most of these problems and has the following advantages: it provides the average-time resolved profile of a modulated signal; it eliminates errors if the modulation is not sinusoidal; it enables separate measurements of the various phases of the signal modulation cycle; it permits simultaneous measurement of absorption, circular dichroism (CD) and linear dichroism (LD) spectra; it facilitates 3-D absorbance measurements; it has a wide gain-switching-free dynamic range (10 orders of magnitude or more); it offers a constant S/N ratio mode of operation; it eliminates the need for photomultiplier voltage feedback, and it has faster scanning speeds. The time-resolution, selectivity, wide dynamic range, and low-overhead on-the-fly data processing are useful for other modulated spectroscopy (MS) and non-MS experiments such as pulse height distribution and time-resolved pulse counting measurements. The advantages of the MPS-SDI method are tested on the first Rydberg electronic transitions of (+)-3- methylcyclopentanone. The experimental results validate the predicted SDI capabilities. However, they also point to two difficulties that had not been noted previously: the presence of LD in a gaseous sample and a pressure- dependence of the relative peak heights of the CD spectrum. Models for these anomalies are proposed. The presence of the oscillatory LD (but not an LD background) is explained with a sample cell model based on the observed polarization-dependent time-resolved profiles of transmitted light intensity. To obtain expressions for these intensities, a theoretical

  16. Wiener's Loop Filter for PLL-Based Carrier Recovery of OQPSK and MSK-Type Modulations

    Directory of Open Access Journals (Sweden)

    Arnaldo Spalvieri

    2008-01-01

    Full Text Available This letter considers carrier recovery for offset quadrature phase shift keying (OQPSK and minimum shift keying-type (MSK-type modulations based on phase-lock loop (PLL. The concern of the letter is the optimization of the loop filter of the PLL. The optimization is worked out in the light of Wiener's theory taking into account the phase noise affecting the incoming carrier, the additive white Gaussian noise that is present on the channel, and the self-noise produced by the phase detector. Delay in the loop, which may affect the numerical implementation of the PLL, is also considered. Closed-form expressions for the loop filter and for the mean-square error are given for the case where the phase noise is characterized as a first-order process.

  17. Pulse-Shape Analysis of PDM-QPSK Modulation Formats for 100 and 200 Gb/s DWDM transmissions

    OpenAIRE

    Macho Ortiz, Andrés; Rodriguez Horche, Paloma

    2013-01-01

    Advanced optical modulation format polarization-division multiplexed quadrature phase shift keying (PDM-QPSK) has become a key ingredient in the design of 100 and 200-Gb/s dense wavelength-division multiplexed (DWDM) networks. The performance of this format varies according to the shape of the pulses employed by the optical carrier: non-return to zero (NRZ), return to zero (RZ) or carrier-suppressed return to zero (CSRZ). In this paper we analyze the tolerance of PDM-QPSK to linear and nonlin...

  18. The color of polarization in cuprate superconductors

    International Nuclear Information System (INIS)

    Hoff, H.A.; Osofsky, M.S.; Lechter, W.L.; Pande, C.S.

    1991-01-01

    A technique for the identification of individual anisotropic grains in a heterogeneous and opaque material involves the observation of grain color in reflected light through crossed polarizers (color of polarization). Such colors are generally characteristic of particular phases. When grains of many members of the class of hole carrier cuprate superconductors are so viewed at room temperature with a 'daylight' source, a characteristic color of polarization is observed. This color was studied in many of these cuprate superconductors and a strong correlation was found between color and the existence of superconductivity. Two members were also examined of the electron cuprate superconductors and it was found that they possess the same color of polarization as the hole carrier cuprate superconductors so far examined. The commonality of the characteristic color regardless of charge carrier indicates that the presence of this color is independent of carrier type. The correlation of this color with the existence of superconductivity in the cuprate superconductors suggests that the origin of the color relates to the origin of superconductivity. Photometric techniques are also discussed

  19. Amplitude modulation detection with concurrent frequency modulation.

    Science.gov (United States)

    Nagaraj, Naveen K

    2016-09-01

    Human speech consists of concomitant temporal modulations in amplitude and frequency that are crucial for speech perception. In this study, amplitude modulation (AM) detection thresholds were measured for 550 and 5000 Hz carriers with and without concurrent frequency modulation (FM), at AM rates crucial for speech perception. Results indicate that adding 40 Hz FM interferes with AM detection, more so for 5000 Hz carrier and for frequency deviations exceeding the critical bandwidth of the carrier frequency. These findings suggest that future cochlear implant processors, encoding speech fine-structures may consider limiting the FM to narrow bandwidth and to low frequencies.

  20. Phase-ambiguity resolution for QPSK modulation systems. Part 2: A method to resolve offset QPSK

    Science.gov (United States)

    Nguyen, Tien Manh

    1989-01-01

    Part 2 presents a new method to resolve the phase-ambiguity for Offset QPSK modulation systems. When an Offset Quaternary Phase-Shift-Keyed (OQPSK) communications link is utilized, the phase ambiguity of the reference carrier must be resolved. At the transmitter, two different unique words are separately modulated onto the quadrature carriers. At the receiver, the recovered carrier may have one of four possible phases, 0, 90, 180, or 270 degrees, referenced to the nominally correct phase. The IF portion of the channel may cause a phase-sense reversal, i.e., a reversal in the direction of phase rotation for a specified bit pattern. Hence, eight possible phase relationships (the so-called eight ambiguous phase conditions) between input and output of the demodulator must be resolved. Using the In-phase (I)/Quadrature (Q) channel reversal correcting property of an OQPSK Costas loop with integrated symbol synchronization, four ambiguous phase conditions are eliminated. Thus, only four possible ambiguous phase conditions remain. The errors caused by the remaining ambiguous phase conditions can be corrected by monitoring and detecting the polarity of the two unique words. The correction of the unique word polarities results in the complete phase-ambiguity resolution for the OQPSK system.

  1. Interferometric polarization control

    International Nuclear Information System (INIS)

    Chuss, David T.; Wollack, Edward J.; Moseley, S. Harvey; Novak, Giles

    2006-01-01

    We develop the Jones and Mueller matrices for structures that allow control of the path length difference between two linear orthogonal polarizations and consider the effect of placing multiple devices in series. Specifically, we find that full polarization modulation (measurement of Stokes Q, U, and V) can be achieved by placing two such modulators in series if the relative angles of the beam-splitting grids with respect to the analyzer orientation are appropriately chosen. Such a device has several potential advantages over a spinning wave plate modulator for measuring astronomical polarization in the far infrared through millimeter: (i) The use of small, linear motions eliminates the need for cryogenic rotational bearings; (ii) the phase flexibility allows measurement of circular as well as linear polarization; and (iii) this architecture allows for both multiwavelength and broadband modulation. We also present initial laboratory results

  2. Optical self-injection mode-locking of semiconductor optical amplifier fiber ring with electro-absorption modulation—fundamentals and applications

    International Nuclear Information System (INIS)

    Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    The optical self-injection mode-locking of a semiconductor optical amplifier incorporated fiber ring laser (SOAFL) with spectrally sliced multi-channel carriers is demonstrated for applications. The synthesizer-free SOAFL pulse-train is delivered by optical injection mode-locking with a 10 GHz self-pulsed electro-absorption modulator (EAM). Such a coupled optical and electronic resonator architecture facilitates a self-feedback oscillation with a higher Q-factor and lower phase/intensity noises when compared with conventional approaches. The theoretical model of such an injection-mode-locking SOAFL is derived to improve the self-pulsating performance of the optical return-to-zero (RZ) carrier, thus providing optimized pulsewidth, pulse extinction ratio, effective Q-factor, frequency variation and timing jitter of 11.4 ps, 9.1 dB, 4 × 10 5 , −1 bi-directional WDM transmission network with down-stream RZ binary phase-shift keying (RZ-BPSK) and up-stream re-modulated RZ on–off-keying (RZ-OOK) formats. Under BPSK/OOK bi-directional data transmission, the self-pulsed harmonic mode-locking SOAFL simultaneously provides four to six WDM channels for down-stream RZ-BPSK and up-stream RZ-OOK formats with receiving sensitivities of −17 and −15.2 dBm at a bit error rate of 10 −9 , respectively. (paper)

  3. Digital growth of thick N-polar InGaN films on relaxed InGaN pseudosubstrates

    Science.gov (United States)

    Lund, Cory; Hestroffer, Karine; Hatui, Nirupam; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia

    2017-11-01

    Smooth relaxed N-polar InGaN films were grown by metal-organic CVD (MOCVD) on N-polar InGaN pseudosubstrates (PSs) using a novel digital approach consisting of a constant In precursor flow with the pulsed injection of H2 carrier gas. InGaN layers grown on PSs exhibited an In composition of about 50% higher than those of the layers grown on N-polar GaN templates, assuming the in-plane lattice constant of the relaxed PSs, corresponding to In0.11Ga0.89N. Additionally, the luminescence recorded from InGaN layers grown on PSs at 490 nm was twice as intense as that obtained from the layers deposited on coloaded GaN-on-sapphire templates, which emitted at 430 nm.

  4. Polarization modulation based on the hybrid waveguide of graphene sandwiched structure

    Science.gov (United States)

    Yang, Junbo; Chen, Dingbo; Zhang, Jingjing; Zhang, Zhaojian; Huang, Jie

    2017-09-01

    Polarization beam splitter (PBS) plays an important role to realize beam control and modulation. A novel hybrid structure of graphene sandwiched waveguide is proposed to fulfill polarization manipulation and selection based on the refractive index engineering techniques. The fundamental mode of TM cannot be supported in this case. However, both TE and TM mode are excited and transmitting in the hybrid waveguide if the design parameters, including the waveguide width and the waveguide height, are changed. The incident wavelength largely affects the effective index, which results in supporting/not supporting the TM mode. The proposed design exhibits high extinction ratio, compact in size, flexible to control, compatible with CMOS process, and easy to be integrated with other optoelectronic devices, allowing it to be used in optical communication and optical information processing.

  5. Outgassing studies of lower hybrid antenna module during CW high RF power injection

    International Nuclear Information System (INIS)

    Goniche, M.; Brossaud, J.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G.; Seki, M.; Obara, K.; Maebara, S.; Ikeda, Y.; Imai, T.; Nagashima, T.

    1994-01-01

    Outgassing, induced by very long RF waves injection (up to 6000s) at high power density, is studied with a module, able to be used for a lower hybrid frequency antenna. A large outgassing data base is provided by 75 shots cumulating 27 hours of RF injection. Outgassing rate is documented after different thermal pre-treatments, and in various conditions of cooling, RF power level. Relevant parameters are identified and values of outgassing rates are given in order to design pumping system for a large antenna. (author) 4 refs.; 7 figs.; 1 tab

  6. Inert carriers for column extraction chromatography

    International Nuclear Information System (INIS)

    Katykhin, G.S.

    1978-01-01

    Inert carriers used in column extraction chromatography are reviewed. Such carriers are devided into two large groups: hydrophilic carriers which possess high surface energy and are well wetted only with strongly polar liquids (kieselguhrs, silica gels, glasses, cellulose, Al 2 O 3 ) and water-repellent carriers which possess low surface energy and are well wetted with various organic solvents (polyethylene, polytetrafluorethylene polytrifluorochlorethylene). Properties of various carriers are presented: structure, chemical and radiation stability, adsorption properties, extracting agent capacity. The effect of structure and sizes of particles on the efficiency of chromatography columns is considered. Ways of immovable phase deposition on the carrier and the latter's regeneration. Peculiarities of column packing for preparative and continuous chromatography are discussed

  7. Direct detection of the optical field beyond single polarization mode.

    Science.gov (United States)

    Che, Di; Sun, Chuanbowen; Shieh, William

    2018-02-05

    Direct detection is traditionally regarded as a detection method that recovers only the optical intensity. Compared with coherent detection, it owns a natural advantage-the simplicity-but lacks a crucial capability of field recovery that enables not only the multi-dimensional modulation, but also the digital compensation of the fiber impairments linear with the optical field. Full-field detection is crucial to increase the capacity-distance product of optical transmission systems. A variety of methods have been investigated to directly detect the optical field of the single polarization mode, which normally sends a carrier traveling with the signal for self-coherent detection. The crux, however, is that any optical transmission medium supports at least two propagating modes (e.g. single mode fiber supports two polarization modes), and until now there is no direct detection that can recover the complete set of optical fields beyond one polarization, due to the well-known carrier fading issue after mode demultiplexing induced by the random mode coupling. To avoid the fading, direct detection receivers should recover the signal in an intensity space isomorphic to the optical field without loss of any degrees of freedom, and a bridge should be built between the field and its isomorphic space for the multi-mode field recovery. Based on this thinking, we propose, for the first time, the direct detection of dual polarization modes by a novel receiver concept, the Stokes-space field receiver (SSFR) and its extension, the generalized SSFR for multiple spatial modes. The idea is verified by a dual-polarization field recovery of a polarization-multiplexed complex signal over an 80-km single mode fiber transmission. SSFR can be applied to a much wider range of fields beyond optical communications such as coherent sensing and imaging, where simple field recovery without an extra local laser is desired for enhanced system performance.

  8. Thin-film VO2 submillimeter-wave modulators and polarizers

    International Nuclear Information System (INIS)

    Fan, J.C.C.; Fetterman, H.R.; Bachner, F.J.; Zavracky, P.M.; Parker, C.D.

    1977-01-01

    Submillimeter-wave modulators and switchable polarizers have been fabricated from VO 2 thin films deposited on sapphire substrates. By passing electric current pulses through elements made from these films, the films can be thermally cycled through the insulator-to-metal transition that occurs in VO 2 at about 65 degreeC. In the insulating state, the films are found to have negligible effect on the transmission at submillimeter wavelengths, while above the phase transition the transmission is strongly reduced by the free-electron effects characteristic of a metal. Other possible applications of such switchable VO 2 elements include variable bandpass filters and diffraction grating beam-steering devices

  9. Steady state minority carrier lifetime and defect level occupation in thin film CdTe solar cells

    International Nuclear Information System (INIS)

    Cheng, Zimeng; Delahoy, Alan E.; Su, Zhaoqian; Chin, Ken K.

    2014-01-01

    A model consisting of Shockley Read Hall (SRH) recombination under steady state conditions of constant photon injection is proposed in this work to study the steady state minority carrier lifetime in CdS/CdTe thin film solar cells. The SRH recombination rate versus optical injection level is analytically approximated in the junction and neutral regions. In the neutral region, it is found that the recombination rate through certain defect levels has one constant value under lower optical injection conditions and another constant value under higher optical injection conditions with the transition occurring at a critical optical injection level. By simultaneously solving the equations of charge neutrality, charge conservation and SRH recombination in the neutral region, it is found that the compensation of doping and the reduction of minority carrier lifetime by donors in the p-type semiconductor can each be remedied by optical injection. It is also demonstrated that this optical-dependent SRH recombination is significant in large bandgap thin films. The measured minority carrier diffusion length in a CdS/CdTe solar cells, as determined from the steady-state photo-generated carrier collection efficiency, shows the predicted transition of minority carrier lifetime versus optical injection level. A numerical fitting of the indirectly-measured minority carrier lifetime by assuming the minority carrier mobility gives a non-intuitive picture of the p–n junction with a low free hole concentration but a narrow depletion region width. - Highlights: • Minority carrier lifetimes under different optical injections are solved. • Simplifications of Shockley–Read–Hall recombination equation are discussed. • The compensation of donor can be remedied with optical injection. • The recombination efficiency of donor can be remedied with optical injection. • The minority carrier lifetime transition under illumination was experimentally observed

  10. The use of charge extraction by linearly increasing voltage in polar organic light-emitting diodes

    Science.gov (United States)

    Züfle, Simon; Altazin, Stéphane; Hofmann, Alexander; Jäger, Lars; Neukom, Martin T.; Schmidt, Tobias D.; Brütting, Wolfgang; Ruhstaller, Beat

    2017-05-01

    We demonstrate the application of the CELIV (charge carrier extraction by linearly increasing voltage) technique to bilayer organic light-emitting devices (OLEDs) in order to selectively determine the hole mobility in N,N0-bis(1-naphthyl)-N,N0-diphenyl-1,10-biphenyl-4,40-diamine (α-NPD). In the CELIV technique, mobile charges in the active layer are extracted by applying a negative voltage ramp, leading to a peak superimposed to the measured displacement current whose temporal position is related to the charge carrier mobility. In fully operating devices, however, bipolar carrier transport and recombination complicate the analysis of CELIV transients as well as the assignment of the extracted mobility value to one charge carrier species. This has motivated a new approach of fabricating dedicated metal-insulator-semiconductor (MIS) devices, where the extraction current contains signatures of only one charge carrier type. In this work, we show that the MIS-CELIV concept can be employed in bilayer polar OLEDs as well, which are easy to fabricate using most common electron transport layers (ETLs), like Tris-(8-hydroxyquinoline)aluminum (Alq3). Due to the macroscopic polarization of the ETL, holes are already injected into the hole transport layer below the built-in voltage and accumulate at the internal interface with the ETL. This way, by a standard CELIV experiment only holes will be extracted, allowing us to determine their mobility. The approach can be established as a powerful way of selectively measuring charge mobilities in new materials in a standard device configuration.

  11. Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with a coupled-cavity-injection-grating design

    DEFF Research Database (Denmark)

    Bach, L.; Kaiser, W.; Reithmaier, J.P.

    2003-01-01

    Using a new multi-section laser concept based on a coupled-cavity-injection-grating design, the material related intrinsic 3 dB modulation bandwidth can be enhanced up to 37 GHz for a 1.5 mm long device.......Using a new multi-section laser concept based on a coupled-cavity-injection-grating design, the material related intrinsic 3 dB modulation bandwidth can be enhanced up to 37 GHz for a 1.5 mm long device....

  12. Assessing Associations between the AURKA-HMMR-TPX2-TUBG1 Functional Module and Breast Cancer Risk in BRCA1/2 Mutation Carriers

    DEFF Research Database (Denmark)

    Blanco, Ignacio; Kuchenbaecker, Karoline; Cuadras, Daniel

    2015-01-01

    While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between ...

  13. Spin-controlled ultrafast vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Höpfner, Henning; Lindemann, Markus; Gerhardt, Nils C.; Hofmann, Martin R.

    2014-05-01

    Spin-controlled semiconductor lasers are highly attractive spintronic devices providing characteristics superior to their conventional purely charge-based counterparts. In particular, spin-controlled vertical-cavity surface emitting lasers (spin-VCSELs) promise to offer lower thresholds, enhanced emission intensity, spin amplification, full polarization control, chirp control and ultrafast dynamics. Most important, the ability to control and modulate the polarization state of the laser emission with extraordinarily high frequencies is very attractive for many applications like broadband optical communication and ultrafast optical switches. We present a novel concept for ultrafast spin-VCSELs which has the potential to overcome the conventional speed limitation for directly modulated lasers by the relaxation oscillation frequency and to reach modulation frequencies significantly above 100 GHz. The concept is based on the coupled spin-photon dynamics in birefringent micro-cavity lasers. By injecting spin-polarized carriers in the VCSEL, oscillations of the coupled spin-photon system can by induced which lead to oscillations of the polarization state of the laser emission. These oscillations are decoupled from conventional relaxation oscillations of the carrier-photon system and can be much faster than these. Utilizing these polarization oscillations is thus a very promising approach to develop ultrafast spin-VCSELs for high speed optical data communication in the near future. Different aspects of the spin and polarization dynamics, its connection to birefringence and bistability in the cavity, controlled switching of the oscillations, and the limitations of this novel approach will be analysed theoretically and experimentally for spin-polarized VCSELs at room temperature.

  14. Numerical investigation into the injection-locking phenomena of gain switched lasers for optical frequency comb generation

    International Nuclear Information System (INIS)

    Ó Dúill, Sean P.; Anandarajah, Prince M.; Zhou, Rui; Barry, Liam P.

    2015-01-01

    We present detailed numerical simulations of the laser dynamics that describe optical frequency comb formation by injection-locking a gain-switched laser. The typical rate equations for semiconductor lasers including stochastic carrier recombination and spontaneous emission suffice to show the injection-locking behavior of gain switched lasers, and we show how the optical frequency comb evolves starting from the free-running state, right through the final injection-locked state. Unlike the locking of continuous wave lasers, we show that the locking range for gain switched lasers is considerably greater because injection locking can be achieved by injecting at frequencies close to one of the comb lines. The quality of the comb lines is formally assessed by calculating the frequency modulation (FM)-noise spectral density and we show that under injection-locking conditions the FM-noise spectral density of the comb lines tend to that of the maser laser

  15. Numerical investigation into the injection-locking phenomena of gain switched lasers for optical frequency comb generation

    Energy Technology Data Exchange (ETDEWEB)

    Ó Dúill, Sean P., E-mail: sean.oduill@dcu.ie; Anandarajah, Prince M.; Zhou, Rui; Barry, Liam P. [The RINCE Institute, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2015-05-25

    We present detailed numerical simulations of the laser dynamics that describe optical frequency comb formation by injection-locking a gain-switched laser. The typical rate equations for semiconductor lasers including stochastic carrier recombination and spontaneous emission suffice to show the injection-locking behavior of gain switched lasers, and we show how the optical frequency comb evolves starting from the free-running state, right through the final injection-locked state. Unlike the locking of continuous wave lasers, we show that the locking range for gain switched lasers is considerably greater because injection locking can be achieved by injecting at frequencies close to one of the comb lines. The quality of the comb lines is formally assessed by calculating the frequency modulation (FM)-noise spectral density and we show that under injection-locking conditions the FM-noise spectral density of the comb lines tend to that of the maser laser.

  16. Attractor hopping between polarization dynamical states in a vertical-cavity surface-emitting laser subject to parallel optical injection

    Science.gov (United States)

    Denis-le Coarer, Florian; Quirce, Ana; Valle, Angel; Pesquera, Luis; Rodríguez, Miguel A.; Panajotov, Krassimir; Sciamanna, Marc

    2018-03-01

    We present experimental and theoretical results of noise-induced attractor hopping between dynamical states found in a single transverse mode vertical-cavity surface-emitting laser (VCSEL) subject to parallel optical injection. These transitions involve dynamical states with different polarizations of the light emitted by the VCSEL. We report an experimental map identifying, in the injected power-frequency detuning plane, regions where attractor hopping between two, or even three, different states occur. The transition between these behaviors is characterized by using residence time distributions. We find multistability regions that are characterized by heavy-tailed residence time distributions. These distributions are characterized by a -1.83 ±0.17 power law. Between these regions we find coherence enhancement of noise-induced attractor hopping in which transitions between states occur regularly. Simulation results show that frequency detuning variations and spontaneous emission noise play a role in causing switching between attractors. We also find attractor hopping between chaotic states with different polarization properties. In this case, simulation results show that spontaneous emission noise inherent to the VCSEL is enough to induce this hopping.

  17. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    International Nuclear Information System (INIS)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-01-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function. (paper)

  18. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    Science.gov (United States)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-02-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.

  19. Providing specialist clinical skills in soft tissue and intra-articular injection through a postgraduate masters module.

    Science.gov (United States)

    Stevenson, Kay; Waterfield, Jackie

    2005-01-01

    Current philosophy and policy changes in the National Health Service are encouraging healthcare practitioners to extend their clinical skills to create a more patient-centred approach thus allowing patients to be seen in a timely and more appropriate manner. This often requires further development of the practitioners' skills and knowledge. One approach to achieve this is through collaboration between employers and educational providers to ensure that educational experience is not only evidence based but also responsive to the needs of the current and future workforce. A postgraduate module was developed to raise critical and evaluative skills, as well as the technical skills of practitioners using injections in the management of joint and soft tissue pathology, while developing a professional responsibility towards injection practice. The module emphasized learning though experience by contextualizing the theoretical aspects of the module and by its student centred assessments. Further strengths of this module are that it has utilized academic and clinical expertise and knowledge to enable clinicians to gain additional skills and the multidisciplinary approach engendered good working practice Overall the module was evaluated positively by both tutors and students and not only met its aims but also addressed the current professional and policy issues around continuing professional development. Copyright (c) 2005 John Wiley & Sons, Ltd.

  20. Assessing Associations between the AURKA-HMMR-TPX2-TUBG1 Functional Module and Breast Cancer Risk in BRCA1/2 Mutation Carriers

    NARCIS (Netherlands)

    Blanco, Ignacio; Kuchenbaecker, Karoline; Cuadras, Daniel; Wang, Xianshu; Barrowdale, Daniel; Ruiz de Garibay, Gorka; Librado, Pablo; Sanchez-Gracia, Alejandro; Rozas, Julio; Bonifaci, Nuria; McGuffog, Lesley; Pankratz, Vernon S.; Islam, Abul; Mateo, Francesca; Berenguer, Antoni; Petit, Anna; Catala, Isabel; Brunet, Joan; Feliubadalo, Lidia; Tornero, Eva; Benitez, Javier; Osorio, Ana; Cajal, Teresa Ramon Y.; Nevanlinna, Heli; Aittomaki, Kristiina; Arun, Banu K.; Toland, Amanda E.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; Greene, Mark H.; Mai, Phuong L.; Nussbaum, Robert L.; Andrulis, Irene L.; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Barkardottir, Rosa B.; Jakubowska, Anna; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Claes, Kathleen; Van Maerken, Tom; Diez, Orland; Hansen, Thomas V.; Jonson, Lars; Gerdes, Anne-Marie; Ejlertsen, Bent; de la Hoya, Miguel; Caldes, Trinidad; Dunning, Alison M.; Oliver, Clare; Fineberg, Elena; Cook, Margaret; Peock, Susan; McCann, Emma; Murray, Alex; Jacobs, Chris; Pichert, Gabriella; Lalloo, Fiona; Chu, Carol; Dorkins, Huw; Paterson, Joan; Ong, Kai-Ren; Teixeira, Manuel R.; Teixeira, M.R.; Hogervorst, Frans B. L.; van der Hout, Annemarie H.; Seynaeve, Caroline; van der Luijt, Rob B.; Ligtenberg, Marjolijn J. L.; Devilee, Peter; Wijnen, Juul T.; Rookus, Matti A.; Meijers-Heijboer, Hanne E. J.; Blok, Marinus J.; van den Ouweland, Ans M. W.; Aalfs, Cora M.; Rodriguez, Gustavo C.; Phillips, Kelly-Anne A.; Piedmonte, Marion; Nerenstone, Stacy R.; Bae-Jump, Victoria L.; O'Malley, David M.; Ratner, Elena S.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hansjoerg J.; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Jensen, Uffe Birk; Thomassen, Mads; Kruse, Torben A.; Foretova, Lenka; Peterlongo, Paolo; Bernard, Loris; Peissel, Bernard; Scuvera, Giulietta; Manoukian, Siranoush; Radice, Paolo; Ottini, Laura; Montagna, Marco; Agata, Simona; Maugard, Christine; Simard, Jacques; Soucy, Penny; Berger, Andreas; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Geschwantler-Kaulich, Daphne; Tea, Muy-Kheng; Pfeiler, Georg; John, Esther M.; Miron, Alex; Neuhausen, Susan L.; Terry, Mary Beth; Chung, Wendy K.; Daly, Mary B.; Goldgar, David E.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elisabeth J.; Fostira, Florentia; Konstantopoulou, Irene; Garber, Judy; Godwin, Andrew K.; Olah, Edith; Narod, Steven A.; Rennert, Gad; Paluch, Shani Shimon; Laitman, Yael; Friedman, Eitan; Liljegren, Annelie; Rantala, Johanna; Stenmark-Askmalm, Marie; Loman, Niklas; Imyanitov, Evgeny N.; Hamann, Ute; Spurdle, Amanda B.; Healey, Sue; Weitzel, Jeffrey N.; Herzog, Josef; Margileth, David; Gorrini, Chiara; Esteller, Manel; Gomez, Antonio; Sayols, Sergi; Vidal, Enrique; Heyn, Holger; Stoppa-Lyonnet, Dominique; Leone, Melanie; Barjhoux, Laure; Fassy-Colcombet, Marion; de Pauw, Antoine; Lasset, Christine; Ferrer, Sandra Fert; Castera, Laurent; Berthet, Pascaline; Cornelis, Francois; Bignon, Yves-Jean; Damiola, Francesca; Mazoyer, Sylvie; Sinilnikova, Olga M.; Maxwell, Christopher A.; Vijai, Joseph; Robson, Mark; Kauff, Noah; Corines, Marina J.; Villano, Danylko; Cunningham, Julie; Lee, Adam; Lindor, Noralane; Lazaro, Conxi; Easton, Douglas F.; Offit, Kenneth; Chenevix-Trench, Georgia; Couch, Fergus J.; Antoniou, Antonis C.; Angel Pujana, Miguel

    2015-01-01

    While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the

  1. Polarization digital holographic microscopy using low-cost liquid crystal polarization rotators

    Science.gov (United States)

    Dovhaliuk, Rostyslav Yu

    2018-02-01

    Polarization imaging methods are actively used to study anisotropic objects. A number of methods and systems, such as imaging polarimeters, were proposed to measure the state of polarization of light that passed through the object. Digital holographic and interferometric approaches can be used to quantitatively measure both amplitude and phase of a wavefront. Using polarization modulation optics, the measurement capabilities of such interference-based systems can be extended to measure polarization-dependent parameters, such as phase retardation. Different kinds of polarization rotators can be used to alternate the polarization of a reference beam. Liquid crystals are used in a rapidly increasing number of different optoelectronic devices. Twisted nematic liquid crystals are widely used as amplitude modulators in electronic displays and light valves or shutter glass. Such devices are of particular interest for polarization imaging, as they can be used as polarization rotators, and due to large-scale manufacturing have relatively low cost. A simple Mach-Zehnder polarized holographic setup that uses modified shutter glass as a polarization rotator is demonstrated. The suggested approach is experimentally validated by measuring retardation of quarter-wave film.

  2. A 130 GHz Electro-Optic Ring Modulator with Double-Layer Graphene

    Directory of Open Access Journals (Sweden)

    Lei Wu

    2017-02-01

    Full Text Available The optical absorption coefficient of graphene will change after injecting carriers. Based on this principle, a high-speed double-layer graphene electro-optic modulator with a ring resonator structure was designed in this paper. From the numerical simulations, we designed a modulator. Its optical bandwidth is larger than 130 GHz, the switching energy is 0.358 fJ per bit, and the driven voltage is less than 1.2 V. At the same time, the footprint of the proposed modulator is less than 10 microns squared, which makes the process compatible with the Complementary Metal Oxide Semiconductors (CMOS process. This will provide the possibility for the on-chip integration of the photoelectric device.

  3. New Modeling and Simulation Platform for Communications Systems:(I Double Sideband Suppressed Carrier AM Modulator DSB-SC

    Directory of Open Access Journals (Sweden)

    H. A. Ahmed

    2012-08-01

    Full Text Available The main goal of this paper is to introduce a new platform for the implementation and simulation of communication systems. SCILAB/SCICOS is an open source software for conducting communication system related experiments, aiming to provide an experimentation platform for research on communication theories. Double Sideband Suppressed Carrier (DSB-SC Modulator is modeled and simulated using this platform.

  4. Manipulation and control of the interfacial polarization in organic light-emitting diodes by dipolar doping

    Directory of Open Access Journals (Sweden)

    Lars Jäger

    2016-09-01

    Full Text Available Most of the commonly used electron transporting materials in organic light-emitting diodes exhibit interfacial polarization resulting from partially aligned permanent dipole moments of the molecules. This property modifies the internal electric field distribution of the device and therefore enables an earlier flat band condition for the hole transporting side, leading to improved charge carrier injection. Recently, this phenomenon was studied with regard to different materials and degradation effects, however, so far the influence of dilution has not been investigated. In this paper we focus on dipolar doping of the hole transporting material 4,4-bis[N-(1-naphthyl-N-phenylamino]-biphenyl (NPB with the polar electron transporting material tris-(8-hydroxyquinolate aluminum (Alq3. Impedance spectroscopy reveals that changes of the hole injection voltage do not scale in a simple linear fashion with the effective thickness of the doped layer. In fact, the measured interfacial polarization reaches a maximum value for a 1:1 blend. Taking the permanent dipole moment of Alq3 into account, an increasing degree of dipole alignment is found for decreasing Alq3 concentration. This observation can be explained by the competition between dipole-dipole interactions leading to dimerization and the driving force for vertical orientation of Alq3 dipoles at the surface of the NPB layer.

  5. Manipulation and control of the interfacial polarization in organic light-emitting diodes by dipolar doping

    Science.gov (United States)

    Jäger, Lars; Schmidt, Tobias D.; Brütting, Wolfgang

    2016-09-01

    Most of the commonly used electron transporting materials in organic light-emitting diodes exhibit interfacial polarization resulting from partially aligned permanent dipole moments of the molecules. This property modifies the internal electric field distribution of the device and therefore enables an earlier flat band condition for the hole transporting side, leading to improved charge carrier injection. Recently, this phenomenon was studied with regard to different materials and degradation effects, however, so far the influence of dilution has not been investigated. In this paper we focus on dipolar doping of the hole transporting material 4,4-bis[N-(1-naphthyl)-N-phenylamino]-biphenyl (NPB) with the polar electron transporting material tris-(8-hydroxyquinolate) aluminum (Alq3). Impedance spectroscopy reveals that changes of the hole injection voltage do not scale in a simple linear fashion with the effective thickness of the doped layer. In fact, the measured interfacial polarization reaches a maximum value for a 1:1 blend. Taking the permanent dipole moment of Alq3 into account, an increasing degree of dipole alignment is found for decreasing Alq3 concentration. This observation can be explained by the competition between dipole-dipole interactions leading to dimerization and the driving force for vertical orientation of Alq3 dipoles at the surface of the NPB layer.

  6. The tempo-spatially modulated polarization atmosphere Michelson interferometer.

    Science.gov (United States)

    Zhang, ChunMin; Zhu, HuaChun; Zhao, Baochang

    2011-05-09

    A space-based tempo-spatially modulated polarization atmosphere Michelson interferometer (TSMPAMI) is described. It uses the relative movement between the TSMPAMI and the measured target to change optical path difference. The acquisition method of interferogram is presented. The atmospheric temperatures and horizontal winds can be derived from the optical observations. The measurement errors of the winds and temperatures are discussed through simulations. In the presence of small-scale structures of the atmospheric fields, the errors are found to be significantly influenced by the mismatch of the scenes observed by the adjacent CCD sub-areas aligned along the orbiter's track during successive measurements due to the orbital velocity and the exposure time. For most realistic conditions of the orbit and atmosphere, however, the instrument is proven suitable for measuring the atmospheric parameters. © 2011 Optical Society of America

  7. A photovoltaic module

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a photovoltaic module comprising a carrier substrate, said carrier substrate carrying a purely printed structure comprising printed positive and negative module terminals, a plurality of printed photovoltaic cell units each comprising one or more printed...... photovoltaic cells, wherein the plurality of printed photovoltaic cell units are electrically connected in series between the positive and the negative module terminals such that any two neighbouring photovoltaic cell units are electrically connected by a printed interconnecting electrical conductor....... The carrier substrate comprises a foil and the total thickness of the photovoltaic module is below 500 [mu]m. Moreover, the nominal voltage level between the positive and the negative terminals is at least 5 kV DC....

  8. Circular polarization in a non-magnetic resonant tunneling device

    Directory of Open Access Journals (Sweden)

    Airey Robert

    2011-01-01

    Full Text Available Abstract We have investigated the polarization-resolved photoluminescence (PL in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW PL presents strong circular polarization (values up to -70% at 19 T. The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects.

  9. Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light.

    Science.gov (United States)

    Ishida, Naoki; Nakamura, Takaaki; Tanaka, Touta; Mishima, Shota; Kano, Hiroki; Kuroiwa, Ryota; Sekiguchi, Yuhei; Kosaka, Hideo

    2018-05-15

    We demonstrate universal non-adiabatic non-abelian holonomic single quantum gates over a geometric electron spin with phase-modulated polarized light and 93% average fidelity. This allows purely geometric rotation around an arbitrary axis by any angle defined by light polarization and phase using a degenerate three-level Λ-type system in a negatively charged nitrogen-vacancy center in diamond. Since the control light is completely resonant to the ancillary excited state, the demonstrated holonomic gate not only is fast with low power, but also is precise without the dynamical phase being subject to control error and environmental noise. It thus allows pulse shaping for further fidelity.

  10. Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission.

    Science.gov (United States)

    Cheng, Min-Chi; Chi, Yu-Chieh; Li, Yi-Cheng; Tsai, Cheng-Ting; Lin, Gong-Ru

    2014-06-30

    By up-shifting the relaxation oscillation peak and suppressing its relative intensity noise in a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) under intense injection-locking, the directly modulated transmission of optical 16 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data-stream is demonstrated. The total bit rate of up to 20 Gbit/s within 5-GHz bandwidth is achieved by using the OFDM subcarrier pre-leveling technique. With increasing the injection-locking power from -12 to -3 dBm, the effective reduction on threshold current of the WRC-FPLD significantly shifts its relaxation oscillation frequency from 5 to 7.5 GHz. This concurrently induces an up-shift of the peak relative intensity noise (RIN) of the WRC-FPLD, and effectively suppresses the background RIN level to -104 dBc/Hz within the OFDM band between 3 and 6 GHz. The enhanced signal-to-noise ratio from 16 to 20 dB leads to a significant reduction of bit-error-rate (BER) of the back-to-back transmitted 16-QAM-OFDM data from 1.3 × 10(-3) to 5 × 10(-5), which slightly degrades to 1.1 × 10(-4) after 25-km single-mode fiber (SMF) transmission. However, the enlarged injection-locking power from -12 to -3 dBm inevitably declines the modulation throughput and increases its negative throughput slope from -0.8 to -1.9 dBm/GHz. After pre-leveling the peak amplitude of the OFDM subcarriers to compensate the throughput degradation of the directly modulated WRC-FPLD, the BER under 25-km SMF transmission can be further improved to 3 × 10(-5) under a receiving power of -3 dBm.

  11. Radiotracer injections through microfilters

    International Nuclear Information System (INIS)

    Huber, H.; Maschek, G.; Pichler, R.; Giesen, I.; Hatzl-Griesenhofer, M.; Maschek, W.

    2002-01-01

    Full text: Problems with the injection of radiotracers ( 99m Tc-HAMS, 99m Tc-DPD) to infants when administered through polar-filter-protected venous pathways caused us to get a closer look of what happens to a tracer in such a system. We simulated injections of the tracers mainly used at our institution in an in-vitro array and measured full and empty tracer syringes, filters (0.2 μm micropores) and the post-filter receptacle of the radioactivity. We calculated the percentage of filter-trapped activity and of activity in the receptacle. For several tracers we repeated this process with a neutral filter of the same pore size to get a comparison between the behavior in polarized and electrically inert filters. In general injection of a soluble radiotracer through a polar filter system means a dose loss in the filter of about 10 %, up to the tracer molecule size of IgG-antibodies. Suspended tracers, which consist of comparatively large particles, like RES- or pulmonary perfusion markers, are blocked by the filter, as can be foreseen with a particle size of >> 0.2 μm. DMSA and DPD (a biphosphonate), although both being soluble and rather small molecules, were blocked by the polar filter to a high extent, and by the neutral filter to a much lower, almost neglectable degree. The conclusions are: if possible avoid any use of a filter in your tracer injection pathway. Never use a filter with bone scan or DMSA applications. When doing uptake calculations you have to add the filter counts to the empty syringe value in the formula. If you cannot avoid to inject the radiotracer through a filter you have to replace the filter afterwards and treat the used filter as radioactive waste. The polarity of the filter material might severely affect retention of radiotracer in the filter. (author)

  12. Modulation of mouse macrophage polarization in vitro using IL-4 delivery by osmotic pumps.

    Science.gov (United States)

    Pajarinen, Jukka; Tamaki, Yasunobu; Antonios, Joseph K; Lin, Tzu-Hua; Sato, Taishi; Yao, Zhenyu; Takagi, Michiaki; Konttinen, Yrjö T; Goodman, Stuart B

    2015-04-01

    Modulation of macrophage polarization is emerging as promising means to mitigate wear particle-induced inflammation and periprosthetic osteolysis. As a model for continuous local drug delivery, we used miniature osmotic pumps to deliver IL-4 in order to modulate macrophage polarization in vitro from nonactivated M0 and inflammatory M1 phenotypes towards a tissue regenerative M2 phenotype. Pumps delivered IL-4 into vials containing mouse bone marrow macrophage (mBMM) media. This conditioned media (CM) was collected at seven day intervals up to four weeks (week 1 to week 4 samples). IL-4 concentration in the CM was determined by ELISA and its biological activity was assayed by exposing M0 and M1 mBMMs to week 1 or week 4 CM. The IL-4 concentration in the CM approximated the mathematically calculated amount, and its biological activity was well retained, as both M0 and M1 macrophages exposed to either the week 1 or week 4 CM assumed M2-like phenotype as determined by qRT-PCR, ELISA, and immunocytochemistry. The results show that IL-4 can be delivered using osmotic pumps and that IL-4 delivered can modulate macrophage phenotype. Results build a foundation for in vivo studies using our previously validated animal models and provide possible strategies to locally mitigate wear particle-induced macrophage activation and periprosthetic osteolysis. © 2014 Wiley Periodicals, Inc.

  13. Charge exchange injection for Nuclotron and Nuclotron booster

    International Nuclear Information System (INIS)

    Dinev, D.; Mikhajlov, V.

    2000-01-01

    The acceleration of polarized beams is between the major items in the JINR LHE's heavy ion superconducting synchrotron Nuclotron research programme. One effective way to increase the intensities of polarized deuteron beams is the application of the charge exchange injection into the Nuclotron. The paper represents the results of a new analytical description of the heavy ion stripping injection based on the Boltzmann kinetic equation. Expressions for the ion density evolution in the transverse phase plane for the emittance growth due to the elastic scattering and to energy losses in the stripping foil and for the number of successfully stored particles have been derived. These results have been applied to the stripping injection of polarized deuterons into the Nuclotron as well as to the stripping injection of heavy ions into the now under consideration Nuclotron rapid cycling booster. It has been shown that an estimated 40-fold intensity gain could be achieved for the stripping injection of polarized D - into the Nuclotron and that an effective stripping injection of light and medium ions into the booster could be realized

  14. Solute carrier transporters: Pharmacogenomics research ...

    African Journals Online (AJOL)

    Aghogho

    2010-12-27

    Dec 27, 2010 ... This paper reviews the solute carrier transporters and highlights the fact that there is much to be learnt from .... transporters, drug targets, effect or proteins and meta- ... basolateral or apical plasma membrane of polarized cells,.

  15. Adhesion strength between thermoplastics and its polyurethane coating made by using the technology combination of injection molding and reaction injection molding

    Science.gov (United States)

    Bloß, P.; Böhme, A.; Müller, J.; Krajewsky, P.; Michaelis, J.

    2014-05-01

    A complete equipment for injection molding (IM) of a thermoplastic (TP) carrier and reaction injection molding (RIM) of polyurethane (PUR) coatings including IM and RIM machines, a color module for PUR, and a robot was built up. A modularly composed sliding split mold was constructed and manufactured allowing different parts including thicker (2 mm thickness) soft touch and thin (0.4 mm) lacquer PUR coatings. As TP PC/ABS and PA6 GF15 compounds were used, and aromatic and aliphatic PUR systems as well. From the parts made by IM+RIM, test specimens for peel force measurements were cut. These investigations were performed prior and after ageing under climatic conditions @ 50 % RH and temperature changes between -30 °C and 90 °C. By varying IM processing parameters, we have found that mold and TP temperatures are particularly important for the adhesion strength between TP and PUR. The waiting time between the end of TP cooling and PUR injection has a minor influence on its mean value. However, to short waiting times may result in inhomogeneous adhesion. It was surprising that surface defects of the TP carrier leads also to inhomogeneous adhesion. We have observed that ageing may cause an increase and decrease of adhesions strength depending on the TP+PUR system used. We have found that the results are valid only for the actual TP and PUR combination. A generalization seems to be inappropriate, hence, the actual combination should be investigated to prevent unwanted surprises when the coated TP part is in its application.

  16. Substitute Energy Carriers from Refinement of Coal using HTR-Module

    International Nuclear Information System (INIS)

    Barnert, Heiko; Kugeler, Kurt; Will, Michael

    2014-01-01

    There is a revival of coal refinement in the world: a recent press article in Germany titled “The Renaissance of Coal Refinement”. It reports about a large number of conventional plans and plants for coal refinement in many countries in the world, and in particular in China. Nuclear energy can be of assistance, in particular the High Temperature Reactor-Module, because it offers all needed process energies. The status of the research, development, and demonstration, RDD, of technology is summarized, in particular of the former programs in Germany: The primary energy carriers were hard coal and lignite. The envisaged products were: Substitute Natural Gas, SNG, for the gas market, Hydrogen, H2, for a future H2-market, e.g. for airplane traffic, Liquid Fuels, as Substitute Gasoline, or as Energy Alcohol, e.g. Methanol CH3OH, in mixture with higher alcohols, for the car traffic and for home heating. (author)

  17. Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid

    Science.gov (United States)

    Korenev, V. L.; Akimov, I. A.; Zaitsev, S. V.; Sapega, V. F.; Langer, L.; Yakovlev, D. R.; Danilov, Yu. A.; Bayer, M.

    2012-07-01

    Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.

  18. Modulating the Surface State of SiC to Control Carrier Transport in Graphene/SiC.

    Science.gov (United States)

    Jia, Yuping; Sun, Xiaojuan; Shi, Zhiming; Jiang, Ke; Liu, Henan; Ben, Jianwei; Li, Dabing

    2018-05-28

    Silicon carbide (SiC) with epitaxial graphene (EG/SiC) shows a great potential in the applications of electronic and photoelectric devices. The performance of devices is primarily dependent on the interfacial heterojunction between graphene and SiC. Here, the band structure of the EG/SiC heterojunction is experimentally investigated by Kelvin probe force microscopy. The dependence of the barrier height at the EG/SiC heterojunction to the initial surface state of SiC is revealed. Both the barrier height and band bending tendency of the heterojunction can be modulated by controlling the surface state of SiC, leading to the tuned carrier transport behavior at the EG/SiC interface. The barrier height at the EG/SiC(000-1) interface is almost ten times that of the EG/SiC(0001) interface. As a result, the amount of carrier transport at the EG/SiC(000-1) interface is about ten times that of the EG/SiC(0001) interface. These results offer insights into the carrier transport behavior at the EG/SiC heterojunction by controlling the initial surface state of SiC, and this strategy can be extended in all devices with graphene as the top layer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Influence of the electric polarization on carrier transport and recombinaton dynamics in ZnO-based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Matthias

    2010-08-16

    The present thesis deals with the influence of the electric polarization on properties of free carriers in ZnO-based semiconductor heterostructures. Thereby especially transport properties of free carriers as well as their recombination dynamics are studied. The thesis treats four main topics. The first main topic lies on the phsical properties of the applied materials, here the connection of the band gap and the lattice constant of thin Mg{sub x}Zn{sub 1-x}O films and their magnesium content is described. Furthermore the morphology of such films is discussed. Different substrates and deposition conditions are thereby detailedly considered. The second main topic treats the properties of undoped and phosphorus doped thin ZnO and Mg{sub x}Zn{sub 1-x}O films. The structural, transport, and luminescence properties are here compared and conclusions drawn on the growth conditions. In the third main topic quantum effects on ZnO/Mg{sub x}Zn{sub 1-x}O interfaces are treated. Hereby especially the influence of the electric polarization is considered. The presence of a two-dimensional electron gas is proved, and the necessary conditions for the generation of the so-called confined Stark effect are explained. Especially the growth-relevant parameters are considered. The fourth main topic represent coupling phenomena in ZnO/BaTiO{sub 3} heterostructures. Thereby first the experimentally observed properties of different heterostructures are shown, which were grown on different substrates. Here structural and transport properties hold the spotlight. A model for the description of the formation of space-charge zones in such heterostructures is introduced and applied for the description of the experimental results. The usefulness of the ferroelectric properties of the material BaTiO{sub 3} in combination with semiconducting ZnO were studied. For this ferroelectric field effect transistors were fabricated under application of both materials. The principle suitedness of the

  20. Improvements in numerical modelling of highly injected crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Altermatt, P.P. [University of New South Wales, Centre for Photovoltaic Engineering, 2052 Sydney (Australia); Sinton, R.A. [Sinton Consulting, 1132 Green Circle, 80303 Boulder, CO (United States); Heiser, G. [University of NSW, School of Computer Science and Engineering, 2052 Sydney (Australia)

    2001-01-01

    We numerically model crystalline silicon concentrator cells with the inclusion of band gap narrowing (BGN) caused by injected free carriers. In previous studies, the revised room-temperature value of the intrinsic carrier density, n{sub i}=1.00x10{sup 10}cm{sup -3}, was inconsistent with the other material parameters of highly injected silicon. In this paper, we show that high-injection experiments can be described consistently with the revised value of n{sub i} if free-carrier induced BGN is included, and that such BGN is an important effect in silicon concentrator cells. The new model presented here significantly improves the ability to model highly injected silicon cells with a high level of precision.

  1. Proposal of a broadband, polarization-insensitive and high-efficiency hot-carrier schottky photodetector integrated with a plasmonic silicon ridge waveguide

    International Nuclear Information System (INIS)

    Yang, Liu; Kou, Pengfei; Shen, Jianqi; Lee, El Hang; He, Sailing

    2015-01-01

    We propose a broadband, polarization-insensitive and high-efficiency plasmonic Schottky diode for detection of sub-bandgap photons in the optical communication wavelength range through internal photoemission (IPE). The distinctive features of this design are that it has a gold film covering both the top and the sidewalls of a dielectric silicon ridge waveguide with the Schottky contact formed at the gold–silicon interface and the sidewall coverage of gold can be easily tuned by an insulating layer. An extensive physical model on IPE of hot carriers is presented in detail and is applied to calculate and examine the performance of this detector. In comparison with a diode having only the top gold contact, the polarization sensitivity of the responsivity is greatly minimized in our photodetector with gold film covering both the top and the sidewall. Much higher responsivities for both polarizations are also achieved over a broad wavelength range of 1.2–1.6 μm. Moreover, the Schottky contact is only 4 μm long, leading to a very small dark current. Our design is very promising for practical applications in high-density silicon photonic integration. (paper)

  2. Interfacial charge-induced polarization switching in Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} bi-layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Jin; Park, Min Hyuk; Jeon, Woojin; Kim, Han Joon; Moon, Taehwan; Lee, Young Hwan; Kim, Keum Do; Hyun, Seung Dam; Hwang, Cheol Seong, E-mail: cheolsh@snu.ac.kr [Department of Materials Science & Engineering and Inter-University Semiconductor Research Center, College of Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2015-12-14

    Detailed polarization switching behavior of an Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} (AO/PZT) structure is examined by comparing the phenomenological thermodynamic model to the experimental polarization–voltage (P-V) results. Amorphous AO films with various thicknesses (2–10 nm) were deposited on the polycrystalline 150-nm-thick PZT film. The thermodynamic calculation showed that the transition from the ferroelectric-like state to the paraelectric-like state with increasing AO thickness occurs at ∼3 nm thickness. This paraelectric-like state should have exhibited a negative capacitance effect without permanent polarization switching if no other adverse effects are involved. However, experiments showed typical ferroelectric-like hysteresis loops where the coercive voltage increased with the increasing AO thickness, which could be explained by the carrier injection through the thin AO layer and trapping of the carriers at the AO/PZT interface. The fitting of the experimental P-V loops using the thermodynamic model considering the depolarization energy effect showed that trapped charge density was ∼±0.1 Cm{sup −2} and critical electric field at the Pt electrode/AO interface, at which the carrier transport occurs, was ∼±10 MV/cm irrespective of the AO thickness. Energy band model at each electrostatic state along the P-V loop was provided to elucidate correlation between macroscopic polarization and internal charge state of the stacked films.

  3. Low pressure injection sequence sensitivity study of the M1 module of MEDICI

    International Nuclear Information System (INIS)

    Corradini, M.L.; Moses, G.A.; Norkus, J.K.; Welzbacker, R.T.

    1985-01-01

    In order to assess the consequences of a PWR containment failure and the ensuing radiological source term following a severe reactor accident, it is necessary to understand the ex-vessel behavior of the molten core. The M1 module of MEDICI models the dynamic fuel-coolant mixing, energetic interaction, and ejection of fuel and coolant from the reactor cavity following such an accident. A sensitivity study of the low pressure injection sequence was performed utilizing a Box-Behnken statistical design to treat five sets of input variables considered to be significant in the mixing and steam explosion processes. The low pressure injection sequence was studied in which the molten corium is modeled as a pour stream entering the cavity without entraining or sweeping out fuel or coolant

  4. Pump-probe spectroscopy of spin-injection dynamics in double quantum wells of diluted magnetic semiconductor

    International Nuclear Information System (INIS)

    Nishibayashi, K.; Aoshima, I.; Souma, I.; Murayama, A.; Oka, Y.

    2006-01-01

    Dynamics of spin injection has been investigated in a double quantum well (DQW) composed of a diluted magnetic semiconductor by the pump-probe transient absorption spectroscopy in magnetic field. The DQW consists of a non-magnetic well (NMW) of CdTe and a magnetic well (MW) of Cd 0.92 Mn 0.08 Te. The MW shows a transient absorption saturation in the exciton band for more than 200 ps after the optical pumping, while the exciton photoluminescence does not arise from the MW. In the NMW, the circular polarization degree of the transient absorption saturation shows an increase with increasing time. The results are interpreted by the individual tunneling of spin-polarized electrons and holes from the MW to the NMW with different tunneling times. Depolarization processes of the carrier spins in the MW and the NMW are also discussed

  5. Cyclodextrin-based nanosponges as drug carriers

    Directory of Open Access Journals (Sweden)

    Francesco Trotta

    2012-11-01

    Full Text Available Cyclodextrin-based nanosponges, which are proposed as a new nanosized delivery system, are innovative cross-linked cyclodextrin polymers nanostructured within a three-dimensional network. This type of cyclodextrin polymer can form porous insoluble nanoparticles with a crystalline or amorphous structure and spherical shape or swelling properties. The polarity and dimension of the polymer mesh can be easily tuned by varying the type of cross-linker and degree of cross-linking. Nanosponge functionalisation for site-specific targeting can be achieved by conjugating various ligands on their surface. They are a safe and biodegradable material with negligible toxicity on cell cultures and are well-tolerated after injection in mice. Cyclodextrin-based nanosponges can form complexes with different types of lipophilic or hydrophilic molecules. The release of the entrapped molecules can be varied by modifying the structure to achieve prolonged release kinetics or a faster release. The nanosponges could be used to improve the aqueous solubility of poorly water-soluble molecules, protect degradable substances, obtain sustained delivery systems or design innovative drug carriers for nanomedicine.

  6. Injection of Spin-Polarized Electrons into a AlGaN/GaN Device from an Electrochemical Cell: Evidence for an Extremely Long Spin Lifetime.

    Science.gov (United States)

    Kumar, Anup; Capua, Eyal; Fontanesi, Claudio; Carmieli, Raanan; Naaman, Ron

    2018-04-24

    Spin-polarized electrons are injected from an electrochemical cell through a chiral self-assembled organic monolayer into a AlGaN/GaN device in which a shallow two-dimensional electron gas (2DEG) layer is formed. The injection is monitored by a microwave signal that indicates a coherent spin lifetime that exceeds 10 ms at room temperature. The signal was found to be magnetic field independent; however, it depends on the current of the injected electrons, on the length of the chiral molecules, and on the existence of 2DEG.

  7. 2D Semiconductors for Valley-Polarized LEDs and Photodetectors

    Science.gov (United States)

    Yu, Ting

    The recently discovered two-dimensional (2D) semiconductors, such as transitional-metal-dichalcogenide monolayers, have aroused great interest due to the underlying quantum physics and the appealing optoelectronic applications like atomically thin light-emitting diodes (LEDs) and photodetectors. On the one hand, valley-polarized electroluminescence and photocurrent from such monolayers have not caused enough attention but highly demanded as building blocks for the new generation valleytronic applications. On the other hand, most reports on these devices are based on the mechanically exfoliated small samples. Considering real applications, a strategy which could offer mass-product and high compatibility to the current planar processes is greatly demanded. Large-area samples prepared by chemical vapour deposition (CVD) are perfect candidates towards such a goal. Here, we report electrically tunable valley-polarized electroluminescence and the selective spin-valley-coupled photocurrent in optoelectronic devices based on monolayer WS2 and MoS2 grown by CVD, exhibiting large electroluminescence and photocurrent dichroisms of 81% and 60%, respectively. The controllable valley polarization and emission components of the electroluminescence have been realized by varying electrical injection of carriers. For the observed helicity-dependent photocurrent, the circular photogalvanic effect at resonant excitations has been found to take the dominant responsibility.

  8. MiR-146a modulates macrophage polarization by inhibiting Notch1 pathway in RAW264.7 macrophages.

    Science.gov (United States)

    Huang, Cheng; Liu, Xue-Jiao; QunZhou; Xie, Juan; Ma, Tao-Tao; Meng, Xiao-Ming; Li, Jun

    2016-03-01

    Macrophages are heterogeneous and plastic cells which are able to undergo dynamic transition between M1 and M2 polarized phenotypes in response to the microenvironment signals. However, the underlying molecular mechanisms of macrophage polarization are still obscure. In the current study, it was revealed that miR-146a might play a pivotal role in macrophage polarization. As our results indicated, miR-146a was highly expressed in M2 macrophages rather than M1 macrophages. Over-expression of miR-146a resulted in significantly decreased production of pro-inflammatory cytokines including iNOS and TNF-α in M1 macrophages, while increased production of M2 marker genes such as Arg1 and CD206 in M2 macrophages. In contrast, knockdown of miR-146a promoted M1 macrophage polarization but diminished M2 macrophage polarization. Mechanistically, it was revealed that miR-146a modulated macrophage polarization by targeting Notch1. Of note, PPARγ was responsible as another target for miR-146a-mediated macrophage polarization. Taken together, it was suggested that miR-146a might serve as a molecular regulator in macrophage polarization and is a potential therapeutic target for inflammatory diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Research and development of photovoltaic power system. Study of carrier dynamics in a-Si from optical and optoelectronic properties; Taiyoko hatsuden system no kenky kaihatsu. Amorphous silicon no koden tokusei to sono carrier dynamics no kogakuteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Hamakawa, K [Osaka University, Osaka (Japan). Faculty of Engineering Science

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on research on an optical study of optoelectronic properties of amorphous silicon and its carrier dynamics. Studies have been performed on elucidation of the optoelectronic conversion mechanism in an a-Si film p-i-n junction system and the relationship of the mechanism with the optoelectronic properties. In the studies, optically induced defect level distribution was evaluated by using the modulated optical current spectroscopy, and confirmation was made on model forecast and qualitative agreement, such as large increase in neutral defect levels in association with beam irradiation. In research on elucidation of a film forming mechanism for a-Si based alloys, and material property control, a high-sensitivity reflective infrared spectroscopy was used to observe mechanisms such as treatments and processes given in device fabrication. In research on optical and optoelectronic properties of an s-Si alloy thin film by using the modulated spectroscopy, a new evaluation technology dealing with amorphous semiconductors was developed. The technology separately evaluates carrier migration factors of electrons and holes by combining polarization angle dependence of electro-absorption signals with hole migration measurements. 4 figs.

  10. Tunable microwave photonic filter free from baseband and carrier suppression effect not requiring single sideband modulation using a Mach-Zenhder configuration.

    Science.gov (United States)

    Mora, José; Ortigosa-Blanch, Arturo; Pastor, Daniel; Capmany, José

    2006-08-21

    We present a full theoretical and experimental analysis of a novel all-optical microwave photonic filter combining a mode-locked fiber laser and a Mach-Zenhder structure in cascade to a 2x1 electro-optic modulator. The filter is free from the carrier suppression effect and thus it does not require single sideband modulation. Positive and negative coefficients are obtained inherently in the system and the tunability is achieved by controlling the optical path difference of the Mach-Zenhder structure.

  11. GUI Application for ATCA-based LLRF Carrier Board Management

    CERN Document Server

    Wychowaniak, Jan; Predki, Pawel; Napieralski, Andrzej

    2011-01-01

    The Advanced Telecommunications Computing Architecture (ATCA) standard describes an efficient and powerful platform, implementation of which was adopted to be used as a base for control systems in high energy physics. The ATCA platform is considered to be applied for the X-ray Free Electron Laser (X-FEL), being built at Deutsches Electronen- Synchrotron (DESY) in Hamburg, Germany. The Low Level Radio Frequency (LLRF) control system is composed of a few ATCA Carrier Boards. Carrier Board hosts Intelligent Platform Management Controller (IPMC), which is developed in compliance with the PICMG specifications. IPMC is responsible for management and monitoring of sub-modules installed on Carrier Boards and pluggable Advanced Mezzanine Card (AMC) modules. The ATCA Shelf Manager is the main control unit of a single ATCA crate, responsible for all power and fan modules and Carrier Boards installed in ATCA shelf. The device provides a system administrator with a set of control and diagnostic capabilities regarding the ...

  12. Carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool

    International Nuclear Information System (INIS)

    Cai, Yu; Sha, Shuang

    2016-01-01

    This paper proposes a new carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool used in a cylindrical borehole environment during oil-based mud drilling processes. The new tool is an orthogonal frequency division multiplexing access-based contactless multi-measurand detection tool. The tool can measure formation resistivity in different azimuthal angles and elevational depths. It can measure many more measurands simultaneously in a specified bandwidth than the legacy frequency division multiplexing multi-measurand tool without a channel-select filter while avoiding inter-carrier interference. The paper also shows that formation resistivity is not sensitive to frequency in certain frequency bands. The average resistivity collected from N subcarriers can increase the measurement of the signal-to-noise ratio (SNR) by N times given no amplitude clipping in the current-injection electrode. If the clipping limit is taken into account, with the phase rotation of each single carrier, the amplitude peak-to-average ratio can be reduced by 3 times, and the SNR can achieve a 9/ N times gain over the single-carrier system. The carrier-interleaving technique is also introduced to counter the carrier frequency offset (CFO) effect, where the CFO will cause inter-pad interference. A qualitative analysis and simulations demonstrate that block-interleaving performs better than tone-interleaving when coping with a large CFO. The theoretical analysis also suggests that increasing the subcarrier number can increase the measurement speed or enhance elevational resolution without sacrificing receiver performance. The complex orthogonal multi-pad multi-carrier resistivity logging tool, in which all subcarriers are complex signals, can provide a larger available subcarrier pool than other types of transceivers. (paper)

  13. Photonic microwave carrier recovery using period-one nonlinear dynamics of semiconductor lasers for OFDM-RoF coherent detection.

    Science.gov (United States)

    Hung, Yu-Han; Yan, Jhih-Heng; Feng, Kai-Ming; Hwang, Sheng-Kwang

    2017-06-15

    This study investigates an all-optical scheme based on period-one (P1) nonlinear dynamics of semiconductor lasers, which regenerates the microwave carrier of an orthogonal frequency division multiplexing radio-over-fiber (OFDM-RoF) signal and uses it as a microwave local oscillator for coherent detection. Through the injection locking established between the OFDM-RoF signal and the P1 dynamics, frequency synchronization with highly preserved phase quality is inherently achieved between the recovered microwave carrier and the microwave carrier of the OFDM-RoF signal. A bit-error ratio down to 1.9×10-9 is achieved accordingly using the proposed scheme for coherent detection of a 32-GHz OFDM-RoF signal carrying 4  Gb/s 16-quadrature amplitude modulation data. No electronic microwave generators or electronic phase-locked loops are thus required. The proposed system can be operated up to at least 100 GHz and can be self-adapted to certain changes in the operating microwave frequency.

  14. PMD compensation in multilevel coded-modulation schemes with coherent detection using BLAST algorithm and iterative polarization cancellation.

    Science.gov (United States)

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2008-09-15

    We present two PMD compensation schemes suitable for use in multilevel (M>or=2) block-coded modulation schemes with coherent detection. The first scheme is based on a BLAST-type polarization-interference cancellation scheme, and the second scheme is based on iterative polarization cancellation. Both schemes use the LDPC codes as channel codes. The proposed PMD compensations schemes are evaluated by employing coded-OFDM and coherent detection. When used in combination with girth-10 LDPC codes those schemes outperform polarization-time coding based OFDM by 1 dB at BER of 10(-9), and provide two times higher spectral efficiency. The proposed schemes perform comparable and are able to compensate even 1200 ps of differential group delay with negligible penalty.

  15. TH1 and TH2 cell polarization increases with aging and is modulated by zinc supplementation

    OpenAIRE

    2008-01-01

    TH1 and TH2 cell polarization increases with aging and is modulated by zinc supplementation correspondence: Corresponding author. Tel.: +49 241 8080208; fax: +49 241 8082613. (Rink, Lothar) (Rink, Lothar) Institute of Immunology, University Hospital, RWTH Aachen University - Aachen--> - GERMANY (Uciechowski, Peter) Institute of Immunology, University Hospital, RWTH Aachen University - Aachen--> - GERMAN...

  16. Module theory, extending modules and generalizations

    CERN Document Server

    Tercan, Adnan

    2016-01-01

    The main focus of this monograph is to offer a comprehensive presentation of known and new results on various generalizations of CS-modules and CS-rings. Extending (or CS) modules are generalizations of injective (and also semisimple or uniform) modules. While the theory of CS-modules is well documented in monographs and textbooks, results on generalized forms of the CS property as well as dual notions are far less present in the literature. With their work the authors provide a solid background to module theory, accessible to anyone familiar with basic abstract algebra. The focus of the book is on direct sums of CS-modules and classes of modules related to CS-modules, such as relative (injective) ejective modules, (quasi) continuous modules, and lifting modules. In particular, matrix CS-rings are studied and clear proofs of fundamental decomposition results on CS-modules over commutative domains are given, thus complementing existing monographs in this area. Open problems round out the work and establish the...

  17. An injection modelocked Ti-sapphire laser for synchronous photoinjection

    International Nuclear Information System (INIS)

    Hovater, C.; Poelker, M.

    1997-01-01

    The CEBAF 4 GeV accelerator has recently begun delivering spin-polarized electrons for nuclear physics experiments. Spin-polarized electrons are emitted from a GaAs photocathode that is illuminated with pulsed laser light from a diode laser system synchronized to the injector chopping frequency (499 MHz). The present diode laser system is compact, reliable and relatively maintenance-free; however, output power is limited to less than 500 mW. In an effort to obtain higher average power and thereby prolong the effective operating lifetime of the source, they have constructed an injection modelocked Ti-sapphire laser with picosecond pulsewidths and gigahertz repetition rates. Modelocked operation is obtained through gain modulation within the Ti-sapphire crystal as a result of injection seeding with a gain-switched diode laser. Unlike conventional modelocked lasers, the pulse repetition rate of this laser can be discretely varied by setting the seed laser repetition rate equal to multiples of the Ti-sapphire laser cavity fundamental frequency. They observe pulse repetition rates from 223 MHz (fundamental) to 1,560 MHz (seventh harmonic) with average output power of 700 mW for all repetition rates. Pulsewidths ranged from 21 to 39 ps (FWHM) under various pump laser conditions

  18. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport.

    Science.gov (United States)

    Naramoto, Satoshi

    2017-12-01

    Directional cell-to-cell transport of functional molecules, called polar transport, enables plants to sense and respond to developmental and environmental signals. Transporters that localize to plasma membranes (PMs) in a polar manner are key components of these systems. PIN-FORMED (PIN) auxin efflux carriers, which are the most studied polar-localized PM proteins, are implicated in the polar transport of auxin that in turn regulates plant development and tropic growth. In this review, the regulatory mechanisms underlying polar localization of PINs, control of auxin efflux activity, and PIN abundance at PMs are considered. Up to date information on polar-localized nutrient transporters that regulate directional nutrient movement from soil into the root vasculature is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation.

    Science.gov (United States)

    Gellie, Pierre; Barbieri, Stefano; Lampin, Jean-François; Filloux, Pascal; Manquest, Christophe; Sirtori, Carlo; Sagnes, Isabelle; Khanna, Suraj P; Linfield, Edmund H; Davies, A Giles; Beere, Harvey; Ritchie, David

    2010-09-27

    We demonstrate that the cavity resonance frequency - the round-trip frequency - of Terahertz quantum cascade lasers can be injection-locked by direct modulation of the bias current using an RF source. Metal-metal and single-plasmon waveguide devices with roundtrip frequencies up to 35GHz have been studied, and show locking ranges above 200MHz. Inside this locking range the laser round-trip frequency is phase-locked, with a phase noise determined by the RF-synthesizer. We find a square-root dependence of the locking range with RF-power in agreement with classical injection-locking theory. These results are discussed in the context of mode-locking operation.

  20. Broadband photonic single sideband frequency up-converter based on the cross polarization modulation effect in a semiconductor optical amplifier for radio-over-fiber systems.

    Science.gov (United States)

    Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In

    2014-01-13

    A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).

  1. Electrical transport through Pb(Zr,Ti)O3 p-n and p-p heterostructures modulated by bound charges at a ferroelectric surface: Ferroelectric p-n diode

    Science.gov (United States)

    Watanabe, Yukio

    1999-05-01

    Current through (Pb,La)(Zr,Ti)O3 ferroelectrics on perovskite semiconductors is found to exhibit diode characteristics of which polarity is universally determined by the carrier conduction-type semiconductors. A persisting highly reproducible resistance modulation by a dc voltage, which has a short retention, is observed and is ascribed to a band bending of the ferroelectric by the formation of charged traps. This interpretation is consistent with a large relaxation current observed at a low voltage. On the other hand, a reproducible resistance modulation by a pulse voltage, which has a long retention, is observed in metal/(Pb,La)(Zr,Ti)O3/SrTiO3:Nb but not in metal/(Pb,La)(Zr,Ti)O3/(La,Sr)2CuO4 and is attributed to a possible band bending due to the spontaneous polarization (P) switching. The observed current voltage (IV) characteristics, the polarity dependence, the relaxation, and the modulation are explicable, if we assume a p-n or a p-p junction at the ferroelectric semiconductor interface (p: hole conduction type, n: electron conduction type). The analysis suggests that an intrinsically inhomogeneous P (∇P) near the ferroelectric/metal interface is likely very weak or existing in a very thin layer, when a reaction of the metal with the ferroelectric is eliminated. Additionally, the various aspects of transport through ferroelectrics are explained as a transport in the carrier depleted region.

  2. A novel research approach on the dynamic properties of photogenerated charge carriers at Ag{sub 2}S quantum-dots-sensitized TiO{sub 2} films by a frequency-modulated surface photovoltage technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Zhang, Wei [Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036 (China); Xie, Tengfeng; Wang, Dejun [College of Chemistry, Jilin University, Changchun 130012 (China); Song, Xi-Ming, E-mail: songlab@lnu.edu.cn [Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036 (China)

    2013-09-01

    Graphical abstract: The changed SPV with chopping frequencies indicate the separation speeds of photogenerated charge carriers in different films. - Highlights: • Ag{sub 2}S-sensitized TiO{sub 2} films show good photoelectric responses in visible-light region. • Frequency-modulated SPV give dynamic information and evidence of Ag{sub 2}S QDSSCs’ performance. • Frequency-modulated SPV can supply complementary information in the study of Ag{sub 2}S ODSSCs. - Abstract: Ag{sub 2}S quantum-dots-sensitized TiO{sub 2} films with different amount of Ag{sub 2}S were fabricated by a successive ionic layer adsorption and reaction (SILAR) method. The separation and transport of photogenerated charge carriers at different spectral regions were studied by the frequency-modulated surface photovoltage technology. Some novel dynamic information of photogenerated charge carriers in a wide spectral range is found. The results indicate that the rate and direction of separation (diffusion) for photogenerated charge carriers are closely related to the performance of quantum-dots-sensitized solar cells (QDSSCs) based on the Ag{sub 2}S/TiO{sub 2} nano-structure.

  3. FIRST POLARIZED PROTON COLLISIONS AT RHIC

    International Nuclear Information System (INIS)

    ROSER, T.; AHRENS, L.; ALESSI, J.; BAI, M.; BEEBE-WANG, J.; BRENNAN, J.M.; BROWN, K.A.; BUNCE, G.; CAMERON, P.; COURANT, E.D.; DREES, A.; FISCHER, W.; FLILLER, R. III; GLENN, W.; HUANG, H.; LUCCIO, A.U.; MACKAY, W.W.; MAKDISI, Y.; MONTAG, C.; PILAT, F.; PTITSYN, V.; SATOGATA, T.

    2002-01-01

    We successfully injected polarized protons in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. Each snake consists of four helical superconducting dipoles which rotate the polarization by 180 o about a horizontal axis. This is the first time that polarized protons have been accelerated to 100 GeV

  4. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-17

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  5. Ultrafast carrier dynamics in bimetallic nanostructure-enhanced methylammonium lead bromide perovskites.

    Science.gov (United States)

    Zarick, Holly F; Boulesbaa, Abdelaziz; Puretzky, Alexander A; Talbert, Eric M; DeBra, Zachary R; Soetan, Naiya; Geohegan, David B; Bardhan, Rizia

    2017-01-26

    In this work, we examine the impact of hybrid bimetallic Au/Ag core/shell nanostructures on the carrier dynamics of methylammonium lead tribromide (MAPbBr 3 ) mesoporous perovskite solar cells (PSCs). Plasmon-enhanced PSCs incorporated with Au/Ag nanostructures demonstrated improved light harvesting and increased power conversion efficiency by 26% relative to reference devices. Two complementary spectral techniques, transient absorption spectroscopy (TAS) and time-resolved photoluminescence (trPL), were employed to gain a mechanistic understanding of plasmonic enhancement processes. TAS revealed a decrease in the photobleach formation time, which suggests that the nanostructures improve hot carrier thermalization to an equilibrium distribution, relieving hot phonon bottleneck in MAPbBr 3 perovskites. TAS also showed a decrease in carrier decay lifetimes, indicating that nanostructures enhance photoinduced carrier generation and promote efficient electron injection into TiO 2 prior to bulk recombination. Furthermore, nanostructure-incorporated perovskite films demonstrated quenching in steady-state PL and decreases in trPL carrier lifetimes, providing further evidence of improved carrier injection in plasmon-enhanced mesoporous PSCs.

  6. Study on polarized optical flow algorithm for imaging bionic polarization navigation micro sensor

    Science.gov (United States)

    Guan, Le; Liu, Sheng; Li, Shi-qi; Lin, Wei; Zhai, Li-yuan; Chu, Jin-kui

    2018-05-01

    At present, both the point source and the imaging polarization navigation devices only can output the angle information, which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly. Optical flow is an image-based method for calculating the velocity of pixel point movement in an image. However, for ordinary optical flow, the difference in pixel value as well as the calculation accuracy can be reduced in weak light. Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection. In this paper, combining the polarization imaging technique with the traditional optical flow algorithm, a polarization optical flow algorithm is proposed, and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors. This research lays the foundation for day and night all-weather polarization navigation applications in future.

  7. Key scattering mechanisms limiting the lateral transport in a modulation-doped polar heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Tien, Nguyen Thanh, E-mail: nttien@ctu.edu.vn; Thao, Pham Thi Bich [College of Natural Sciences, Can Tho University, 3-2 Road, Can Tho City (Viet Nam); Thao, Dinh Nhu [Center for Theoretical and Computational Physics, College of Education, Hue University, 34 Le Loi Street, Hue City (Viet Nam); Quang, Doan Nhat [Institute of Physics, Vietnamese Academy of Science and Technology, 10 Dao Tan Street, Hanoi (Viet Nam)

    2016-06-07

    We present a study of the lateral transport of a two-dimensional electron gas (2DEG) in a modulation-doped polar heterojunction (HJ). In contrast to previous studies, we assume that the Coulomb correlation among ionized impurities and among charged dislocations in the HJ is so strong that the 2DEG low-temperature mobility is not limited by impurity and dislocation scattering. The mobility, however, is specified by alloy disorder scattering and combined roughness scattering, which is the total effect induced by both the potential barrier and polarization roughness. The obtained results show that the alloy disorder and combined roughness scattering strongly depend on the alloy content and on the near-interface electron distribution. Our theory is capable of explaining the bell-shaped dependence of the lateral mobility on alloy content observed in AlGaN/GaN and on 2DEG density observed in AlN/GaN, which have not previously been explained.

  8. Quantitative profiling of polar metabolites in herbal medicine injections for multivariate statistical evaluation based on independence principal component analysis.

    Directory of Open Access Journals (Sweden)

    Miaomiao Jiang

    Full Text Available Botanical primary metabolites extensively exist in herbal medicine injections (HMIs, but often were ignored to control. With the limitation of bias towards hydrophilic substances, the primary metabolites with strong polarity, such as saccharides, amino acids and organic acids, are usually difficult to detect by the routinely applied reversed-phase chromatographic fingerprint technology. In this study, a proton nuclear magnetic resonance (1H NMR profiling method was developed for efficient identification and quantification of small polar molecules, mostly primary metabolites in HMIs. A commonly used medicine, Danhong injection (DHI, was employed as a model. With the developed method, 23 primary metabolites together with 7 polyphenolic acids were simultaneously identified, of which 13 metabolites with fully separated proton signals were quantified and employed for further multivariate quality control assay. The quantitative 1H NMR method was validated with good linearity, precision, repeatability, stability and accuracy. Based on independence principal component analysis (IPCA, the contents of 13 metabolites were characterized and dimensionally reduced into the first two independence principal components (IPCs. IPC1 and IPC2 were then used to calculate the upper control limits (with 99% confidence ellipsoids of χ2 and Hotelling T2 control charts. Through the constructed upper control limits, the proposed method was successfully applied to 36 batches of DHI to examine the out-of control sample with the perturbed levels of succinate, malonate, glucose, fructose, salvianic acid and protocatechuic aldehyde. The integrated strategy has provided a reliable approach to identify and quantify multiple polar metabolites of DHI in one fingerprinting spectrum, and it has also assisted in the establishment of IPCA models for the multivariate statistical evaluation of HMIs.

  9. Tailoring the spin polarization in Ge/SiGe multiple quantum wells

    International Nuclear Information System (INIS)

    Giorgioni, Anna; Pezzoli, Fabio; Gatti, Eleonora; Grilli, Emanuele; Guzzi, Mario; Bottegoni, Federico; Cecchi, Stefano; Ciccacci, Franco; Isella, Giovanni; Trivedi, Dhara; Song, Yang; Li, Pengki; Dery, Hanan

    2013-01-01

    We performed spin-resolved photoluminescence measurements on Ge/SiGe multiple quantum wells with different well thickness and using different exciting power densities. The polarization of the direct emission strongly depends on the relative weight of electrons photoexcited from the light and the heavy hole subbands. The study of the polarization as a function of the exciting power highlights the role of the carrier-carrier interactions in determining spin depolarization

  10. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    Science.gov (United States)

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-08

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.

  11. Fast polarizers installation for ECRH and ECE in TCV

    NARCIS (Netherlands)

    Silva, M.; Goodman, T.P.; Felici, F.; Porte, L.

    2011-01-01

    We report on the installation of fast polarizers for ECRH injection and ECE diagnostics, in the TCV tokamak. The main goal is to change the polarization during a plasma shot and react to changing conditions such as: plasma current and position, ECRH injection angles as well as ECE oblique

  12. Suppression of high-frequency perturbations in pulse-width modulation

    DEFF Research Database (Denmark)

    2008-01-01

    A method suppresses high-frequency perturbations in a pulse-width modulated signal. The pulse-width modulation may superpose a carrier signal onto an input signal having a predetermined modulation frequency. The carrier signals may be phase-shifted. The resulting modulated signals may...

  13. Carrier injection and recombination processes in perovskite CH3NH3PbI3 solar cells studied by electroluminescence spectroscopy

    Science.gov (United States)

    Handa, Taketo; Okano, Makoto; Tex, David M.; Shimazaki, Ai; Aharen, Tomoko; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2016-02-01

    Organic-inorganic hybrid perovskite materials, CH3NH3PbX3 (X = I and Br), are considered as promising candidates for emerging thin-film photovoltaics. For practical implementation, the degradation mechanism and the carrier dynamics during operation have to be clarified. We investigated the degradation mechanism and the carrier injection and recombination processes in perovskite CH3NH3PbI3 solar cells using photoluminescence (PL) and electroluminescence (EL) imaging spectroscopies. By applying forward bias-voltage, an inhomogeneous distribution of the EL intensity was clearly observed from the CH3NH3PbI3 solar cells. By comparing the PL- and EL-images, we revealed that the spatial inhomogeneity of the EL intensity is a result of the inhomogeneous luminescence efficiency in the perovskite layer. An application of bias-voltage for several tens of minutes in air caused a decrease in the EL intensity and the conversion efficiency of the perovskite solar cells. The degradation mechanism of perovskite solar cells under bias-voltage in air is discussed.

  14. Complementary analyses on the local polarity in lateral polarity-inverted GaN heterostructure on sapphire (0001) substrate

    International Nuclear Information System (INIS)

    Katayama, Ryuji; Kuge, Yoshihiro; Onabe, Kentaro; Matsushita, Tomonori; Kondo, Takashi

    2006-01-01

    The fabrication of the lateral polarity-inverted GaN heterostructure on sapphire (0001) using a radio-frequency-plasma-enhanced molecular beam epitaxy is demonstrated. Its microscopic properties such as surface potentials, piezoelectric polarizations, and residual carrier densities were investigated by Kelvin force microscopy and micro-Raman scattering. The inversion from Ga polarity to N polarity in a specific domain and its higher crystal perfection had been unambiguously confirmed by these complementary analyses. The results were also fairly consistent with that of KOH etching, which suggests the applicability of these processes to the fabrication of photonic nanostructures

  15. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    Science.gov (United States)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  16. FM-AM Conversion Induced by Polarization Mode Dispersion in Fiber Systems

    International Nuclear Information System (INIS)

    Xiao-Dong, Huang; Sheng-Zhi, Zhao; Jian-Jun, Wang; Ming-Zhong, Li; Dang-Peng, Xu; Hong-Huan, Lin; Rui, Zhang; Ying, Deng; Xiao-Min, Zhang

    2010-01-01

    The conversion of the frequency modulated pulse induced from frequency modulation (FM) to amplitude modulation (AM) by the polarization mode dispersion (PMD) is theoretically and experimentally investigated. When there is no polarizer at the output end of a fiber system, the amplitude modulation depth is stable by 8%. Random amplitude modulation is observed when a polarizer is placed at the output end of the fiber system. The observed minimum and maximum modulation depths in our experiment are 5% and 80%, respectively. Simulation results show that the amplitude modulation is stable by 4% induced mainly by group velocity dispersion (GVD) when there is no polarizer, and the amplitude modulation depth displays the random variation character induced by the GVD and PMD. Lastly, a new fiber system scheme is proposed and little amplitude modulation is observed at the top of the output pulse

  17. Activation of PPARγ by a Natural Flavonoid Modulator, Apigenin Ameliorates Obesity-Related Inflammation Via Regulation of Macrophage Polarization

    Directory of Open Access Journals (Sweden)

    Xiujing Feng

    2016-07-01

    Full Text Available PPARγ has emerged as a master regulator of macrophage polarization and is the molecular target of the thiazolidinedione drugs. Here we show that apigenin binds and activates PPARγ by acting as a modulator. Activation of PPARγ by apigenin blocks p65 translocation into nuclei through inhibition of p65/PPARγ complex translocation into nuclei, thereby decreasing NF-κB activation and favoringM2 macrophage polarization. In HFD and ob/ob mice, apigenin significantly reverses M1 macrophage into M2 and reduces the infiltration of inflammatory cells in liver and adipose tissues, as well as decreases the levels of pro-inflammatory cytokines, thereby alleviating inflammation. Strikingly, apigenin reduces liver and muscular steatosis, decreases the levels of ALT, AST, TC and TG, improving glucose resistance obviously. Unlike rosiglitazone, apigenin does not cause significant weight gain, osteoporosis et al. Our findings identify apigenin as a modulator of PPARγ and a potential lead compound for treatment of metabolic disorders.

  18. Simultaneous 10 Gbps data and polarization-based pulse-per-second clock transmission using a single VCSEL for high-speed optical fibre access networks

    Science.gov (United States)

    Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-01-01

    Access networks based on vertical cavity surface emitting laser (VCSEL) transmitters offer alternative solution in delivering different high bandwidth, cost effective services to the customer premises. Clock and reference frequency distribution is critical for applications such as Coordinated Universal Time (UTC), GPS, banking and big data science projects. Simultaneous distribution of both data and timing signals over shared infrastructure is thus desirable. In this paper, we propose and experimentally demonstrate a novel, cost-effective technique for multi-signal modulation on a single VCSEL transmitter. Two signal types, an intensity modulated 10 Gbps data signal and a polarization-based pulse per second (PPS) clock signal are directly modulated onto a single VCSEL carrier at 1310 nm. Spectral efficiency is maximized by exploiting inherent orthogonal polarization switching of the VCSEL with changing bias in transmission of the PPS signal. A 10 Gbps VCSEL transmission with PPS over 11 km of G.652 fibre introduced a transmission penalty of 0.52 dB. The contribution of PPS to this penalty was found to be 0.08 dB.

  19. An Estimation Method for number of carrier frequency

    Directory of Open Access Journals (Sweden)

    Xiong Peng

    2015-01-01

    Full Text Available This paper proposes a method that utilizes AR model power spectrum estimation based on Burg algorithm to estimate the number of carrier frequency in single pulse. In the modern electronic and information warfare, the pulse signal form of radar is complex and changeable, among which single pulse with multi-carrier frequencies is the most typical one, such as the frequency shift keying (FSK signal, the frequency shift keying with linear frequency (FSK-LFM hybrid modulation signal and the frequency shift keying with bi-phase shift keying (FSK-BPSK hybrid modulation signal. In view of this kind of single pulse which has multi-carrier frequencies, this paper adopts a method which transforms the complex signal into AR model, then takes power spectrum based on Burg algorithm to show the effect. Experimental results show that the estimation method still can determine the number of carrier frequencies accurately even when the signal noise ratio (SNR is very low.

  20. Inhomogeneous nuclear spin polarization induced by helicity-modulated optical excitation of fluorine-bound electron spins in ZnSe

    Science.gov (United States)

    Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.

    2015-12-01

    Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.

  1. Multi-shot type pellet injection device

    International Nuclear Information System (INIS)

    Onozuka, Masaki; Uchikawa, Takashi; Kuribayashi, Shitomi.

    1988-01-01

    Purpose: To inject pellets at high speed without melting or sublimating not-injected pellets even at a long pellet injection interval. Constitution: In the conventional multi-shot pellet injection device, the pellet injection interval is set depending on the plasma retention time. However, as the pellet injection interval is increased, not-injected pellets are melted or sublimated due to the introduced heat of acceleration gases supplied from an acceleration gas introduction pipe to give an effect on the dimensional shape of the pellets. In view of the above, a plurality of pellet forming and injection portions each comprising a carrier, an injection pipe and a holder are disposed independently of each other and pellets are formed and injected independently to thereby prevent the thermal effects of the acceleration gases. (Kamimura, M.)

  2. Multi-shot type pellet injection device

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masaki; Uchikawa, Takashi; Kuribayashi, Shitomi.

    1988-07-27

    Purpose: To inject pellets at high speed without melting or sublimating not-injected pellets even at a long pellet injection interval. Constitution: In the conventional multi-shot pellet injection device, the pellet injection interval is set depending on the plasma retention time. However, as the pellet injection interval is increased, not-injected pellets are melted or sublimated due to the introduced heat of acceleration gases supplied from an acceleration gas introduction pipe to give an effect on the dimensional shape of the pellets. In view of the above, a plurality of pellet forming and injection portions each comprising a carrier, an injection pipe and a holder are disposed independently of each other and pellets are formed and injected independently to thereby prevent the thermal effects of the acceleration gases. (Kamimura, M.).

  3. Flattened optical frequency-locked multi-carrier generation by cascading one DML and one phase modulator driven by different RF frequency clocks

    International Nuclear Information System (INIS)

    Li, Xinying; Yu, Jianjun; Zhang, Junwen; Chi, Nan

    2013-01-01

    We propose a novel scheme for flattened optical frequency-locked multi-carrier generation based on one directly modulated laser (DML) and one phase modulator (PM) in cascade driven by different sinusoidal radio-frequency (RF) clocks. We experimentally demonstrate that when the clock frequencies for the cascaded DML and the PM are respectively 12.5 GHz and 25 GHz, over 24 optical subcarriers can be generated with 12.5-GHz frequency spacing and amplitude fluctuation less than 3 dB. Furthermore, the number of generated optical subcarriers can be further increased when we increase the driving power for the DML. (letter)

  4. ACCELERATION OF POLARIZED PROTONS AT RHIC

    International Nuclear Information System (INIS)

    HUANG, H.

    2002-01-01

    Relativistic Heavy Ion Collider (RHIC) ended its second year of operation in January 2002 with five weeks of polarized proton collisions. Polarized protons were successfully injected in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. This is the first time that polarized protons have been accelerated to 100 GeV. The machine performance and accomplishments during the polarized proton run will be reviewed. The plans for the next polarized proton run will be outlined

  5. In-band 16-QAM and multi-carrier SCM modulation to label DPSK payload signals for IP packet routing.

    Science.gov (United States)

    Tafur Monroy, Idelfonso; Vegas Olmos, Juan; Garcia Larrode, Maria; Koonen, Ton; Díaz Jiménez, Cristina

    2006-02-06

    We present an experimental demonstration of the feasibility of in-band subcarrier multiplexing (SCM) for labeling of differential phase shift keying (DPSK) payload signals. We show that by proper selection of the value of the subcarrier frequency the effect of the superimposed SCM label on the performance of the DPSK signal is minimized. Furthermore, we show experimentally the advantages of using alternative modulation formats such as 16-QAM and multi-carrier SCM for optical labeling of a 10 Gb/s DPSK payload signal.

  6. Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment

    Science.gov (United States)

    Hasan, Al Shaimaa; Luo, Lan; Yan, Chen; Zhang, Tian-Xia; Urata, Yoshishige; Goto, Shinji; Mangoura, Safwat A.; Abdel-Raheem, Mahmoud H.; Zhang, Shouhua; Li, Tao-Sheng

    2016-01-01

    Cardiosphere-derived cells (CDCs), one of the promising stem cell sources for myocardial repair, have been tested in clinical trials and resulted in beneficial effects; however, the relevant mechanisms are not fully understood. In this study, we examined the hypothesis that CDCs favor heart repair by switching the macrophages from a pro-inflammatory phenotype (M1) into a regulatory anti-inflammatory phenotype (M2). Macrophages from mice were cultured with CDCs-conditioned medium or with fibroblasts-conditioned medium as a control. Immunostaining showed that CDCs-conditioned medium significantly enhanced the expression of CD206 (a marker for M2 macrophages), but decreased the expression of CD86 (a marker for M1 macrophages) 3 days after culture. For animal studies, we used an acute myocardial infarction model of mice. We injected CDCs, fibroblasts, or saline only into the border zone of infarction. Then we collected the heart tissues for histological analysis 5 and 14 days after treatment. Compared with control animals, CDCs treatment significantly decreased M1 macrophages and neutrophils but increased M2 macrophages in the infarcted heart. Furthermore, CDCs-treated mice had reduced infarct size and fewer apoptotic cells compared to the controls. Our data suggest that CDCs facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment, which may provide a new insight into the mechanisms of stem cell-based myocardial repair. PMID:27764217

  7. Spectrally efficient polarization multiplexed direct-detection OFDM system without frequency gap.

    Science.gov (United States)

    Wei, Chia-Chien; Zeng, Wei-Siang; Lin, Chun-Ting

    2016-01-25

    We experimentally demonstrate a spectrally efficient direct-detection orthogonal frequency-division multiplexing (DD-OFDM) system. In addition to polarization-division multiplexing, removing the frequency gap further improves the spectral efficiency of the OFDM system. The frequency gap between a reference carrier and OFDM subcarriers avoids subcarrier-to-subcarrier beating interference (SSBI) in traditional DD-OFDM systems. Without dynamic polarization control, the resulting interference after square-law direct detection in the proposed gap-less system is polarization-dependent and composed of linear inter-carrier interference (ICI) and nonlinear SSBI. Thus, this work proposes an iterative multiple-input multiple-output detection scheme to remove the mixed polarization-dependent interference. Compared to the previous scheme, which only removes ICI, the proposed scheme can further eliminate SSBI to achieve the improvement of ∼ 7 dB in signal-to-noise ratio. Without the need for polarization control, we successfully utilize 7-GHz bandwidth to transmit a 39.5-Gbps polarization multiplexed OFDM signal over 100 km.

  8. METHOD AND MODULE FOR OPTICAL SUBCARRIER LABELLING

    DEFF Research Database (Denmark)

    2004-01-01

    The present invention relates to optical labelling in WDM networks, in that it provides a method and a module to be used in subcarrier label generation and switching in network edge nodes and core switch nodes. The methods and modules are typically employed in Optical Subcarrier Multiplexing (OSCM......) transmitters. The payload and the label are encoded independently on optical carrier and subcarrier signals respectively, using electro-optical modulators. The invention applies single or double sideband carrier-suppressed modulation to generate subcarrier signals for encoding of the label. Thereby the payload...... encoded carrier signal and the label encoded subcarrier signal can be coupled directly without prior filtering....

  9. Joint Carrier-Phase Synchronization and LDPC Decoding

    Science.gov (United States)

    Simon, Marvin; Valles, Esteban

    2009-01-01

    A method has been proposed to increase the degree of synchronization of a radio receiver with the phase of a suppressed carrier signal modulated with a binary- phase-shift-keying (BPSK) or quaternary- phase-shift-keying (QPSK) signal representing a low-density parity-check (LDPC) code. This method is an extended version of the method described in Using LDPC Code Constraints to Aid Recovery of Symbol Timing (NPO-43112), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 54. Both methods and the receiver architectures in which they would be implemented belong to a class of timing- recovery methods and corresponding receiver architectures characterized as pilotless in that they do not require transmission and reception of pilot signals. The proposed method calls for the use of what is known in the art as soft decision feedback to remove the modulation from a replica of the incoming signal prior to feeding this replica to a phase-locked loop (PLL) or other carrier-tracking stage in the receiver. Soft decision feedback refers to suitably processed versions of intermediate results of iterative computations involved in the LDPC decoding process. Unlike a related prior method in which hard decision feedback (the final sequence of decoded symbols) is used to remove the modulation, the proposed method does not require estimation of the decoder error probability. In a basic digital implementation of the proposed method, the incoming signal (having carrier phase theta theta (sub c) plus noise would first be converted to inphase (I) and quadrature (Q) baseband signals by mixing it with I and Q signals at the carrier frequency [wc/(2 pi)] generated by a local oscillator. The resulting demodulated signals would be processed through one-symbol-period integrate and- dump filters, the outputs of which would be sampled and held, then multiplied by a soft-decision version of the baseband modulated signal. The resulting I and Q products consist of terms proportional to the cosine

  10. Circularly polarized near-field optical mapping of spin-resolved quantum Hall chiral edge states.

    Science.gov (United States)

    Mamyouda, Syuhei; Ito, Hironori; Shibata, Yusuke; Kashiwaya, Satoshi; Yamaguchi, Masumi; Akazaki, Tatsushi; Tamura, Hiroyuki; Ootuka, Youiti; Nomura, Shintaro

    2015-04-08

    We have successfully developed a circularly polarized near-field scanning optical microscope (NSOM) that enables us to irradiate circularly polarized light with spatial resolution below the diffraction limit. As a demonstration, we perform real-space mapping of the quantum Hall chiral edge states near the edge of a Hall-bar structure by injecting spin polarized electrons optically at low temperature. The obtained real-space mappings show that spin-polarized electrons are injected optically to the two-dimensional electron layer. Our general method to locally inject spins using a circularly polarized NSOM should be broadly applicable to characterize a variety of nanomaterials and nanostructures.

  11. Integrated hot-melt extrusion - injection molding continuous tablet manufacturing platform: Effects of critical process parameters and formulation attributes on product robustness and dimensional stability.

    Science.gov (United States)

    Desai, Parind M; Hogan, Rachael C; Brancazio, David; Puri, Vibha; Jensen, Keith D; Chun, Jung-Hoon; Myerson, Allan S; Trout, Bernhardt L

    2017-10-05

    This study provides a framework for robust tablet development using an integrated hot-melt extrusion-injection molding (IM) continuous manufacturing platform. Griseofulvin, maltodextrin, xylitol and lactose were employed as drug, carrier, plasticizer and reinforcing agent respectively. A pre-blended drug-excipient mixture was fed from a loss-in-weight feeder to a twin-screw extruder. The extrudate was subsequently injected directly into the integrated IM unit and molded into tablets. Tablets were stored in different storage conditions up to 20 weeks to monitor physical stability and were evaluated by polarized light microscopy, DSC, SEM, XRD and dissolution analysis. Optimized injection pressure provided robust tablet formulations. Tablets manufactured at low and high injection pressures exhibited the flaws of sink marks and flashing respectively. Higher solidification temperature during IM process reduced the thermal induced residual stress and prevented chipping and cracking issues. Polarized light microscopy revealed a homogeneous dispersion of crystalline griseofulvin in an amorphous matrix. DSC underpinned the effect of high tablet residual moisture on maltodextrin-xylitol phase separation that resulted in dimensional instability. Tablets with low residual moisture demonstrated long term dimensional stability. This study serves as a model for IM tablet formulations for mechanistic understanding of critical process parameters and formulation attributes required for optimal product performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. InGaAsP Mach-Zehnder interferometer optical modulator monolithically integrated with InGaAs driver MOSFET on a III-V CMOS photonics platform.

    Science.gov (United States)

    Park, Jin-Kown; Takagi, Shinichi; Takenaka, Mitsuru

    2018-02-19

    We demonstrated the monolithic integration of a carrier-injection InGaAsP Mach-Zehnder interferometer (MZI) optical modulator and InGaAs metal-oxide-semiconductor field-effect transistor (MOSFET) on a III-V-on-insulator (III-V-OI) wafer. A low-resistivity lateral PIN junction was formed along an InGaAsP rib waveguide by Zn diffusion and Ni-InGaAsP alloy, enabling direct driving of the InGaAsP optical modulator by the InGaAs MOSFET. A π phase shift of the InGaAsP optical modulator was obtained through the injection of a drain current from the InGaAs MOSFET with a gate voltage of approximately 1 V. This proof-of-concept demonstration of the monolithic integration of the InGaAsP optical modulator and InGaAs driver MOSFET will enable us to develop high-performance and low-power electronic-photonic integrated circuits on a III-V CMOS photonics platform.

  13. Spin current and electrical polarization in GaN double-barrier structures

    OpenAIRE

    Litvinov, V. I.

    2007-01-01

    Tunnel spin polarization in a piezoelectric AlGaN/GaN double barrier structure is calculated. It is shown that the piezoelectric field and the spontaneous electrical polarization increase an efficiency of the tunnel spin injection. The relation between the electrical polarization and the spin orientation allows engineering a zero magnetic field spin injection manipulating the lattice-mismatch strain with an Al-content in the barriers.

  14. Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes

    Science.gov (United States)

    Monavarian, M.; Rashidi, A.; Aragon, A. A.; Oh, S. H.; Rishinaramangalam, A. K.; DenBaars, S. P.; Feezell, D.

    2018-01-01

    High-speed InGaN/GaN blue light-emitting diodes (LEDs) are needed for future gigabit-per-second visible-light communication systems. Large LED modulation bandwidths are typically achieved at high current densities, with reports close to 1 GHz bandwidth at current densities ranging from 5 to 10 kA/cm2. However, the internal quantum efficiency (IQE) of InGaN/GaN LEDs is quite low at high current densities due to the well-known efficiency droop phenomenon. Here, we show experimentally that nonpolar and semipolar orientations of GaN enable higher modulation bandwidths at low current densities where the IQE is expected to be higher and power dissipation is lower. We experimentally compare the modulation bandwidth vs. current density for LEDs on nonpolar (10 1 ¯ 0 ), semipolar (20 2 ¯ 1 ¯) , and polar (" separators="|0001 ) orientations. In agreement with wavefunction overlap considerations, the experimental results indicate a higher modulation bandwidth for the nonpolar and semipolar LEDs, especially at relatively low current densities. At 500 A/cm2, the nonpolar LED has a 3 dB bandwidth of ˜1 GHz, while the semipolar and polar LEDs exhibit bandwidths of 260 MHz and 75 MHz, respectively. A lower carrier density for a given current density is extracted from the RF measurements for the nonpolar and semipolar LEDs, consistent with the higher wavefunction overlaps in these orientations. At large current densities, the bandwidth of the polar LED approaches that of the nonpolar and semipolar LEDs due to coulomb screening of the polarization field. The results support using nonpolar and semipolar orientations to achieve high-speed LEDs at low current densities.

  15. Asymmetric Carrier Random PWM

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Lungeanu, Florin; Rasmussen, Peter Omand

    2010-01-01

    index. The flat motor current spectrum generates an acoustical noise close to the white noise, which may improve the acoustical performance of the drive. The new carrier wave is easy to implement digitally, without employing any external circuits. The modulation method can be used in open, as well...

  16. Replenishing data descriptors in a DMA injection FIFO buffer

    Science.gov (United States)

    Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Cernohous, Bob R [Rochester, MN; Heidelberger, Philip [Cortlandt Manor, NY; Kumar, Sameer [White Plains, NY; Parker, Jeffrey J [Rochester, MN

    2011-10-11

    Methods, apparatus, and products are disclosed for replenishing data descriptors in a Direct Memory Access (`DMA`) injection first-in-first-out (`FIFO`) buffer that include: determining, by a messaging module on an origin compute node, whether a number of data descriptors in a DMA injection FIFO buffer exceeds a predetermined threshold, each data descriptor specifying an application message for transmission to a target compute node; queuing, by the messaging module, a plurality of new data descriptors in a pending descriptor queue if the number of the data descriptors in the DMA injection FIFO buffer exceeds the predetermined threshold; establishing, by the messaging module, interrupt criteria that specify when to replenish the injection FIFO buffer with the plurality of new data descriptors in the pending descriptor queue; and injecting, by the messaging module, the plurality of new data descriptors into the injection FIFO buffer in dependence upon the interrupt criteria.

  17. Mechanism of carrier-induced ferromagnetism in diluted magnetic semiconductors

    International Nuclear Information System (INIS)

    Takahashi, M.; Furukawa, N.; Kubo, K.

    2004-01-01

    Using the spin-polarized band obtained by applying the dynamical coherent potential approximation to a simple model, we have calculated the magnetization of Ga x Mn 1-x As as a function of the temperature for various values of carrier density. The result is consistent with the experimental observation, supporting the view previously proposed by us that the ferromagnetism is induced by the carriers in the bandtail through double-exchange-like mechanism

  18. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  19. Optimization of incident EC wave polarization in real-time polarization scan experiments on LHD

    International Nuclear Information System (INIS)

    Tsujimura, Toru I.; Mizuno, Yoshinori; Makino, Ryohei

    2016-01-01

    Real-time polarization scan experiments were performed on the Large Helical Device (LHD) to search an optimal incident wave polarization for electron cyclotron resonance heating. The obtained optimal polarization state to maximize the power absorption to the LHD plasma is compared with the ray-tracing code that includes mode content analyses, which indicates that the calculated results are generally in good agreement with the experimental results. The analyses show that optimal coupling to plasma waves requires a fine adjustment for an incident wave polarization even for perpendicular injection due to the finite density profile and the magnetic shear at the peripheral region. (author)

  20. Real-time photonic sampling with improved signal-to-noise and distortion ratio using polarization-dependent modulators

    Science.gov (United States)

    Liang, Dong; Zhang, Zhiyao; Liu, Yong; Li, Xiaojun; Jiang, Wei; Tan, Qinggui

    2018-04-01

    A real-time photonic sampling structure with effective nonlinearity suppression and excellent signal-to-noise ratio (SNR) performance is proposed. The key points of this scheme are the polarization-dependent modulators (P-DMZMs) and the sagnac loop structure. Thanks to the polarization sensitive characteristic of P-DMZMs, the differences between transfer functions of the fundamental signal and the distortion become visible. Meanwhile, the selection of specific biases in P-DMZMs is helpful to achieve a preferable linearized performance with a low noise level for real-time photonic sampling. Compared with the quadrature-biased scheme, the proposed scheme is capable of valid nonlinearity suppression and is able to provide a better SNR performance even in a large frequency range. The proposed scheme is proved to be effective and easily implemented for real time photonic applications.

  1. Self-consistent electronic structure of spin-polarized dilute magnetic semiconductor quantum wells

    International Nuclear Information System (INIS)

    Hong, S. P.; Yi, K. S.; Quinn, J. J.

    2000-01-01

    The electronic properties of spin-symmetry-broken dilute magnetic semiconductor quantum wells are investigated self-consistently at zero temperature. The spin-split subband structure and carrier concentration of modulation-doped quantum wells are examined in the presence of a strong magnetic field. The effects of exchange and correlations of electrons are included in a local-spin-density-functional approximation. We demonstrate that exchange correlation of electrons decreases the spin-split subband energy but enhances the carrier density in a spin-polarized quantum well. We also observe that as the magnetic field increases, the concentration of spin-down (majority) electrons increases but that of spin-up (minority) electrons decreases. The effect of orbital quantization on the in-plane motion of electrons is also examined and shows a sawtoothlike variation in subband electron concentrations as the magnetic-field intensity increases. The latter variation is attributed to the presence of ionized donors acting as the electron reservoir, which is partially responsible for the formation of the integer quantum Hall plateaus. (c) 2000 The American Physical Society

  2. A graphene solution to conductivity mismatch: spin injection from ferromagnetic metal/graphene tunnel contacts into silicon

    Science.gov (United States)

    van't Erve, Olaf

    2014-03-01

    New paradigms for spin-based devices, such as spin-FETs and reconfigurable logic, have been proposed and modeled. These devices rely on electron spin being injected, transported, manipulated and detected in a semiconductor channel. This work is the first demonstration on how a single layer of graphene can be used as a low resistance tunnel barrier solution for electrical spin injection into Silicon at room temperature. We will show that a FM metal / monolayer graphene contact serves as a spin-polarized tunnel barrier which successfully circumvents the classic metal / semiconductor conductivity mismatch issue for electrical spin injection. We demonstrate electrical injection and detection of spin accumulation in Si above room temperature, and show that the corresponding spin lifetimes correlate with the Si carrier concentration, confirming that the spin accumulation measured occurs in the Si and not in interface trap states. An ideal tunnel barrier should exhibit several key material characteristics: a uniform and planar habit with well-controlled thickness, minimal defect / trapped charge density, a low resistance-area product for minimal power consumption, and compatibility with both the FM metal and semiconductor, insuring minimal diffusion to/from the surrounding materials at temperatures required for device processing. Graphene, offers all of the above, while preserving spin injection properties, making it a compelling solution to the conductivity mismatch for spin injection into Si. Although Graphene is very conductive in plane, it exhibits poor conductivity perpendicular to the plane. Its sp2 bonding results in a highly uniform, defect free layer, which is chemically inert, thermally robust, and essentially impervious to diffusion. The use of a single monolayer of graphene at the Si interface provides a much lower RA product than any film of an oxide thick enough to prevent pinholes (1 nm). Our results identify a new route to low resistance-area product spin-polarized

  3. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    Science.gov (United States)

    Pitel, I.J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage. 19 figs.

  4. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    Science.gov (United States)

    Pitel, Ira J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage.

  5. Comparison of glare in YAG-damaged intraocular lenses: injection-molded versus lathe-cut.

    Science.gov (United States)

    Bath, P E; Dang, Y; Martin, W H

    1986-11-01

    A comparative analysis of YAG laser intraocular lens (IOL) damage was undertaken on injection-molded and lathe-cut IOLs. Damage sites were evaluated with polarized light. A consistent positive polarization was observed in the damage sites of lathe-cut IOLs. A consistent negative polarization was observed in the damage sites of injection-molded IOLs. The presence of positive polarization in IOL damage sites may be correlated with increased potential for glare. Results and clinical implications are discussed.

  6. Terahertz study of ultrafast carrier dynamics in InGa/GaN multiple quantum wells

    DEFF Research Database (Denmark)

    Porte, Henrik; Turchinovich, Dmitry; Cooke, David

    2009-01-01

    Ultrafast carrier dynamics in InGaN/GaN multiple quantum wells is measured by time-resolved terahertz spectroscopy. The built-in piezoelectric field is initially screened by photoexcited, polarized carriers, and is gradullay restored as the carriers recombine. We observe a nonexponential decay...... of the carrier density. Time-integrated photoluminescence spectra have shown a complete screening of the built-in piezoelectric field at high excitation fluences. We also observe that the terahertz conductivity spectra differs from simple Drude conductivity, describing the response of free carriers, and are well...

  7. Wide-band analog frequency modulation of optic signals using indirect techniques

    Science.gov (United States)

    Fitzmartin, D. J.; Balboni, E. J.; Gels, R. G.

    1991-01-01

    The wideband frequency modulation (FM) of an optical carrier by a radio frequency (RF) or microwave signal can be accomplished independent of laser type when indirect modulation is employed. Indirect modulators exploit the integral relation of phase to frequency so that phase modulators can be used to impress frequency modulation on an optical carrier. The use of integrated optics phase modulators, which are highly linear, enables the generation of optical wideband FM signals with very low intermodulation distortion. This modulator can be used as part of an optical wideband FM link for RF and microwave signals. Experimental results from the test of an indirect frequency modulator for an optical carrier are discussed.

  8. Effects Of Spontaneous And Piezoelectric Polarization On The Electronic Properties Of AlGaN/GaN Heterostructures

    International Nuclear Information System (INIS)

    Demir, M.

    2010-01-01

    Nitride containing semiconductors and their alloys are used to produce hetero structures where materials with different energy gaps are grown on top of each other so that quantum wells capable of holding free electrons in two dimensions are formed. The carriers in the wells are free to move along the hetero interface but their motion in the direction of growth is restricted. While the density of electron gas depends on the doping concentration and the dimensions of the hetero structure among others, another important parameter that determines the electron density is the spontaneous polarization in the material and piezoelectric polarization near the hetero interface. Polarization is so effective that in some cases it is possible to get electron concentrations as high as 10 1 2-10 1 3 cm - 2 even in the absence of any intentional doping. In this study the electronic properties of an AlGaN/GaN structure is investigated by solving the Poisson/Schroedinger equation self-consistently in the modulation doped hetero structure. The effect of spacer, doping concentration, dimensions of the structure and temperature and especially the spontaneous and piezoelectric polarizations on the electronic properties are investigated.

  9. Spin injection and inverse Edelstein effect in the surface states of topological Kondo insulator SmB6

    Science.gov (United States)

    Song, Qi; Mi, Jian; Zhao, Dan; Su, Tang; Yuan, Wei; Xing, Wenyu; Chen, Yangyang; Wang, Tianyu; Wu, Tao; Chen, Xian Hui; Xie, X. C.; Zhang, Chi; Shi, Jing; Han, Wei

    2016-01-01

    There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observe the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Furthermore, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6. PMID:27834378

  10. Testing physical models for dipolar asymmetry with CMB polarization

    Science.gov (United States)

    Contreras, D.; Zibin, J. P.; Scott, D.; Banday, A. J.; Górski, K. M.

    2017-12-01

    The cosmic microwave background (CMB) temperature anisotropies exhibit a large-scale dipolar power asymmetry. To determine whether this is due to a real, physical modulation or is simply a large statistical fluctuation requires the measurement of new modes. Here we forecast how well CMB polarization data from Planck and future experiments will be able to confirm or constrain physical models for modulation. Fitting several such models to the Planck temperature data allows us to provide predictions for polarization asymmetry. While for some models and parameters Planck polarization will decrease error bars on the modulation amplitude by only a small percentage, we show, importantly, that cosmic-variance-limited (and in some cases even Planck) polarization data can decrease the errors by considerably better than the expectation of √{2 } based on simple ℓ-space arguments. We project that if the primordial fluctuations are truly modulated (with parameters as indicated by Planck temperature data) then Planck will be able to make a 2 σ detection of the modulation model with 20%-75% probability, increasing to 45%-99% when cosmic-variance-limited polarization is considered. We stress that these results are quite model dependent. Cosmic variance in temperature is important: combining statistically isotropic polarization with temperature data will spuriously increase the significance of the temperature signal with 30% probability for Planck.

  11. A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-VLLC integration

    International Nuclear Information System (INIS)

    Tsai, Wen-Shing; Lu, Hai-Han; Li, Chung-Yi; Chen, Bo-Rui; Lin, Hung-Hsien; Lin, Dai-Hua

    2016-01-01

    A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-visible laser light communication (VLLC) integration is proposed and experimentally demonstrated. To be the first one of its kind in employing light injection and optoelectronic feedback techniques in a fiber-VLLC integration lightwave transmission system, the light is successfully directly modulated with Community Access Television (CATV), 16-QAM, and 16-QAM-OFDM signals. Over a 40 km SMF and a 10 m free-space VLLC transport, good performances of carrier-to-noise ratio (CNR)/composite second-order (CSO)/composite triple-beat (CTB)/bit error rate (BER) are achieved for CATV/16-QAM/16-QAM-OFDM signals transmission. Such a hybrid lightwave transmission system would be very useful since it can provide broadband integrated services including CATV, Internet, and telecommunication services over both distribute fiber and in-building networks. (letter)

  12. Hybrid wireless-over-fiber transmission system based on multiple injection-locked FP LDs.

    Science.gov (United States)

    Li, Chung-Yi; Lu, Hai-Han; Chu, Chien-An; Ying, Cheng-Ling; Lu, Ting-Chien; Peng, Peng-Chun

    2015-07-27

    A hybrid wireless-over-fiber (WoF) transmission system based on multiple injection-locked Fabry-Perot laser diodes (FP LDs) is proposed and experimentally demonstrated. Unlike the traditional hybrid WoF transmission systems that require multiple distributed feedback (DFB) LDs to support different kinds of services, the proposed system employs multiple injection-locked FP LDs to provide different kinds of applications. Such a hybrid WoF transmission system delivers downstream intensity-modulated 20-GHz microwave (MW)/60-GHz millimeter-wave (MMW)/550-MHz cable television (CATV) signals and upstream phase-remodulated 20-GHz MW signal. Excellent bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed over a 40-km single-mode fiber (SMF) and a 4-m radio frequency (RF) wireless transport. Such a hybrid WoF transmission system has practical applications for fiber-wireless convergence to provide broadband integrated services, including telecommunication, data communication, and CATV services.

  13. Carrier introduction to moire pattern for automatic fringe-order distinguishing

    International Nuclear Information System (INIS)

    Fang, J.; Laermann, K.H.

    1992-01-01

    This paper presents an automatic procedure of pseudo-colour encoding of moire fringe orders. A carrier consisting of parallel fringes is introduced before the specimen deforms. The carrier pattern is captured by a camera and then stored in computer as a standard image. The space of the carrier fringes is distored by the strains on the specimen as it is loaded. On a certain condition, the orders of the frequency-modulated carrier still vary monotonically so that they can be easyly distinguished. Both the standard fringe-carrier and the frequency-modulated fringe pattern are transformed into two digital images, of which every fringe is encoded by one of the pseudo-colour codes corresponding to the monotonical fringe orders. At each pixel, the difference between the colour sequences of two images is calculated to obtain the fringe order of pure deformation. The moire pattern of the in-plane displacement is restored as a pseudo-colour image by whose colour-change the variation of the fringe orders is displayed. (orig.)

  14. Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment.

    Directory of Open Access Journals (Sweden)

    Al Shaimaa Hasan

    Full Text Available Cardiosphere-derived cells (CDCs, one of the promising stem cell sources for myocardial repair, have been tested in clinical trials and resulted in beneficial effects; however, the relevant mechanisms are not fully understood. In this study, we examined the hypothesis that CDCs favor heart repair by switching the macrophages from a pro-inflammatory phenotype (M1 into a regulatory anti-inflammatory phenotype (M2. Macrophages from mice were cultured with CDCs-conditioned medium or with fibroblasts-conditioned medium as a control. Immunostaining showed that CDCs-conditioned medium significantly enhanced the expression of CD206 (a marker for M2 macrophages, but decreased the expression of CD86 (a marker for M1 macrophages 3 days after culture. For animal studies, we used an acute myocardial infarction model of mice. We injected CDCs, fibroblasts, or saline only into the border zone of infarction. Then we collected the heart tissues for histological analysis 5 and 14 days after treatment. Compared with control animals, CDCs treatment significantly decreased M1 macrophages and neutrophils but increased M2 macrophages in the infarcted heart. Furthermore, CDCs-treated mice had reduced infarct size and fewer apoptotic cells compared to the controls. Our data suggest that CDCs facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment, which may provide a new insight into the mechanisms of stem cell-based myocardial repair.

  15. Measurement of carrier lifetime and linewidth enhancement factor for 1.5- mu m ridge-waveguide laser amplifier

    DEFF Research Database (Denmark)

    Storkfelt, Niels; Mikkelsen, B.; Olesen, D. S.

    1991-01-01

    Semiconductor optical amplifiers are used for investigation of the effective carrier lifetime and the linewidth enhancement factor. Contrary to semiconductor lasers, semiconductor optical amplifiers allow measurement at high levels of injected carrier density. The carrier lifetime and the linewid...

  16. Curcumin Modulates Macrophage Polarization Through the Inhibition of the Toll-Like Receptor 4 Expression and its Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Yaoyao Zhou

    2015-05-01

    Full Text Available Background: Curcumin, the active ingredient in curcuma rhizomes, has a wide range of therapeutic effects. However, its atheroprotective activity in human acute monocytic leukemia THP-1 cells remains unclear. We investigated the activity and molecular mechanism of action of curcumin in polarized macrophages. Methods: Phorbol myristate acetate (PMA-treated THP-1 cells were differentiated to macrophages, which were further polarized to M1 cells by lipopolysaccharide (LPS; 1 µg/ml and interferon (IFN-γ (20 ng/ml and treated with varying curcumin concentrations. [3H]thymidine (3H-TdR incorporation assays were utilized to measure curcumin-induced growth inhibition. The expression of tumor necrosis factor-a (TNF-a, interleukin (IL-6, and IL-12B (p40 were measured by quantitative real-time polymerase chain reaction (PCR and enzyme-linked immunosorbent assay (ELISA. Macrophage polarization and its mechanism were evaluated by flow cytometry and western blot. Additionally, toll-like receptor 4 (TLR4 small interfering RNA and mitogen-activated protein kinase (MAPK inhibitors were used to further confirm the molecular mechanism of curcumin on macrophage polarization. Results: Curcumin dose-dependently inhibited M1 macrophage polarization and the production of TNF-a, IL-6, and IL-12B (p40. It also decreased TLR4 expression, which regulates M1 macrophage polarization. Furthermore, curcumin significantly inhibited the phosphorylation of ERK, JNK, p38, and nuclear factor (NF-γB. In contrast, SiTLR4 in combination with p-JNK, p-ERK, and p-p38 inhibition reduced the effect of curcumin on polarization. Conclusions: Curcumin can modulate macrophage polarization through TLR4-mediated signaling pathway inhibition, indicating that its effect on macrophage polarization is related to its anti-inflammatory and atheroprotective effects. Our data suggest that curcumin could be used as a therapeutic agent in atherosclerosis.

  17. Improvement of carrier injection symmetry and quantum efficiency in InGaN light-emitting diodes with Mg delta-doped barriers

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F.; Can, N.; Hafiz, S.; Monavarian, M.; Das, S.; Avrutin, V.; Özgür, Ü., E-mail: uozgur@vcu.edu; Morkoç, H. [Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2015-05-04

    The effect of δ-doping of In{sub 0.06}Ga{sub 0.94}N barriers with Mg on the quantum efficiency of blue light-emitting-diodes (LEDs) with active regions composed of 6 (hex) 3-nm In{sub 0.15}Ga{sub 0.85}N is investigated. Compared to the reference sample, δ-doping of the first barrier on the n-side of the LED structure improves the peak external quantum efficiency (EQE) by 20%, owing to the increased hole concentration in the wells adjacent to the n-side, as confirmed by numerical simulations of carrier distributions across the active region. Doping the second barrier, in addition to the first one, did not further enhance the EQE, which likely indicates compensation of improved hole injection by degradation of the active region quality due to Mg doping. Both LEDs with Mg δ-doped barriers effectively suppress the drop of efficiency at high injection when compared to the reference sample, and the onset of EQE peak roll-off shifts from ∼80 A/cm{sup 2} in the reference LED to ∼120 A/cm{sup 2} in the LEDs with Mg δ-doped barriers.

  18. Improvement of carrier injection symmetry and quantum efficiency in InGaN light-emitting diodes with Mg delta-doped barriers

    International Nuclear Information System (INIS)

    Zhang, F.; Can, N.; Hafiz, S.; Monavarian, M.; Das, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-01-01

    The effect of δ-doping of In 0.06 Ga 0.94 N barriers with Mg on the quantum efficiency of blue light-emitting-diodes (LEDs) with active regions composed of 6 (hex) 3-nm In 0.15 Ga 0.85 N is investigated. Compared to the reference sample, δ-doping of the first barrier on the n-side of the LED structure improves the peak external quantum efficiency (EQE) by 20%, owing to the increased hole concentration in the wells adjacent to the n-side, as confirmed by numerical simulations of carrier distributions across the active region. Doping the second barrier, in addition to the first one, did not further enhance the EQE, which likely indicates compensation of improved hole injection by degradation of the active region quality due to Mg doping. Both LEDs with Mg δ-doped barriers effectively suppress the drop of efficiency at high injection when compared to the reference sample, and the onset of EQE peak roll-off shifts from ∼80 A/cm 2 in the reference LED to ∼120 A/cm 2 in the LEDs with Mg δ-doped barriers

  19. Improvement of carrier injection symmetry and quantum efficiency in InGaN light-emitting diodes with Mg delta-doped barriers

    Science.gov (United States)

    Zhang, F.; Can, N.; Hafiz, S.; Monavarian, M.; Das, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-05-01

    The effect of δ-doping of In0.06Ga0.94N barriers with Mg on the quantum efficiency of blue light-emitting-diodes (LEDs) with active regions composed of 6 (hex) 3-nm In0.15Ga0.85N is investigated. Compared to the reference sample, δ-doping of the first barrier on the n-side of the LED structure improves the peak external quantum efficiency (EQE) by 20%, owing to the increased hole concentration in the wells adjacent to the n-side, as confirmed by numerical simulations of carrier distributions across the active region. Doping the second barrier, in addition to the first one, did not further enhance the EQE, which likely indicates compensation of improved hole injection by degradation of the active region quality due to Mg doping. Both LEDs with Mg δ-doped barriers effectively suppress the drop of efficiency at high injection when compared to the reference sample, and the onset of EQE peak roll-off shifts from ˜80 A/cm2 in the reference LED to ˜120 A/cm2 in the LEDs with Mg δ-doped barriers.

  20. Strong carrier localization in stacking faults in semipolar (11-22) GaN

    Science.gov (United States)

    Okur, Serdal; Monavarian, Morteza; Das, Saikat; Izyumskaya, Natalia; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2015-03-01

    The effects of stacking faults (SFs) on optical processes in epitaxially grown semipolar (1122) GaN on m-sapphire substrate have been investigated in detail using steady-state photoluminescence (PL) and time- and polarization-resolved PL. We demonstrate that the carrier recombination dynamics are substantially influenced due to strong carrier localization in the stacking faults. In addition to nonradiative recombination, carrier trapping/detrapping and carrier transfer between the stacking faults and donors are also found to be among the mechanisms affecting the recombination dynamics at different temperatures. PL decay times of both I1-type BSF and 3.31 eV SF (E-type BSF or prismatic stacking fault) do not show temperature dependence up to 80 K while 3.31 eV SF exhibits longer PL decay times (~3 ns) at low temperatures as compared to I1-type BSF (~1 ns), indicative of lower efficiency for radiative recombination. After 80 K, PL decay times decreased by power of ~-1 and ~-2 for 3.31 eV SF and I1-type BSF, respectively. It is obtained from radiative decay times with respect to temperature that the carrier localization becomes higher in I1-type BSF compared to 3.31 eV SF increasing the temperature. I1-type BSF also shows higher PL intensity, which is attributed to larger density, and therefore, larger contribution to recombination dynamics as compared to other type of stacking faults. Polarization-resolved PL measurements also revealed that the degree of polarization for the I1-type BSF (0.30) was twice that for the 3.31 eV SF.

  1. Effects of Carrier Frequency Offset, Timing Offset, and Channel Spread Factor on the Performance of Hexagonal Multicarrier Modulation Systems

    Directory of Open Access Journals (Sweden)

    Kui Xu

    2009-01-01

    Full Text Available Hexagonal multicarrier modulation (HMM system is the technique of choice to overcome the impact of time-frequency dispersive transmission channel. This paper examines the effects of insufficient synchronization (carrier frequency offset, timing offset on the amplitude and phase of the demodulated symbol by using a projection receiver in hexagonal multicarrier modulation systems. Furthermore, effects of CFO, TO, and channel spread factor on the performance of signal-to-interference-plus-noise ratio (SINR in hexagonal multicarrier modulation systems are further discussed. The exact SINR expression versus insufficient synchronization and channel spread factor is derived. Theoretical analysis shows that similar degradation on symbol amplitude and phase caused by insufficient synchronization is incurred as in traditional cyclic prefix orthogonal frequency-division multiplexing (CP-OFDM transmission. Our theoretical analysis is confirmed by numerical simulations in a doubly dispersive (DD channel with exponential delay power profile and U-shape Doppler power spectrum, showing that HMM systems outperform traditional CP-OFDM systems with respect to SINR against ISI/ICI caused by insufficient synchronization and doubly dispersive channel.

  2. Frequency-Diversity Reception for Phase Modulation

    Science.gov (United States)

    Brockman, M. H.

    1984-01-01

    Signal-to-noise ratio improved. System receives phase modulation transmitted simultaneously on different carrier frequencies. Used for carriers received through different antennas or through same antenna.

  3. Reduction of coating induced polarization aberrations by controlling the polarization state variation

    International Nuclear Information System (INIS)

    Li, Yanghui; Shen, Weidong; Zheng, Zhenrong; Zhang, Yueguang; Liu, Xu; Hao, Xiang

    2011-01-01

    The mechanism of coating induced polarization state variation is analysed by the Jones matrix. Pauli spin matrices are used to establish the relationship between coating induced polarization state variation and polarization aberrations. To reduce coating induced polarization aberrations, we propose that δ = 0 and T s = T p at arbitrary incident angle should be appended as two additional optimization goals of optical coating design when the requirements of transmittance are met. Two typical anti-reflection (AR) coatings are designed and the polarization state variation induced by them is simulated. The MTF (modulation transfer function) calculated by polarization ray tracing is applied to evaluate the polarization aberrations of the practical lithography objective system with the two AR coatings. All the obtained results show that the coating induced polarization aberrations can be reduced by optimizing the angle dependent properties of the optical coating without additional optical elements

  4. Subcarrier intensity modulation for MIMO visible light communications

    Science.gov (United States)

    Celik, Yasin; Akan, Aydin

    2018-04-01

    In this paper, subcarrier intensity modulation (SIM) is investigated for multiple-input multiple-output (MIMO) visible light communication (VLC) systems. A new modulation scheme called DC-aid SIM (DCA-SIM) is proposed for the spatial modulation (SM) transmission plan. Then, DCA-SIM is extended for multiple subcarrier case which is called DC-aid Multiple Subcarrier Modulation (DCA-MSM). Bit error rate (BER) performances of the considered system are analyzed for different MIMO schemes. The power efficiencies of DCA-SIM and DCA-MSM are shown in correlated MIMO VLC channels. The upper bound BER performances of the proposed models are obtained analytically for PSK and QAM modulation types in order to validate the simulation results. Additionally, the effect of power imbalance method on the performance of SIM is studied and remarkable power gains are obtained compared to the non-power imbalanced cases. In this work, Pulse amplitude modulation (PAM) and MSM-Index are used as benchmarks for single carrier and multiple carrier cases, respectively. And the results show that the proposed schemes outperform PAM and MSM-Index for considered single carrier and multiple carrier communication scenarios.

  5. Polarimetric Imaging using Two Photoelastic Modulators

    Science.gov (United States)

    Wang, Yu; Cunningham, Thomas; Diner, David; Davis, Edgar; Sun, Chao; Hancock, Bruce; Gutt, Gary; Zan, Jason; Raouf, Nasrat

    2009-01-01

    A method of polarimetric imaging, now undergoing development, involves the use of two photoelastic modulators in series, driven at equal amplitude but at different frequencies. The net effect on a beam of light is to cause (1) the direction of its polarization to rotate at the average of two excitation frequencies and (2) the amplitude of its polarization to be modulated at the beat frequency (the difference between the two excitation frequencies). The resulting modulated optical light beam is made to pass through a polarizing filter and is detected at the beat frequency, which can be chosen to equal the frame rate of an electronic camera or the rate of sampling the outputs of photodetectors in an array. The method was conceived to satisfy a need to perform highly accurate polarimetric imaging, without cross-talk between polarization channels, at frame rates of the order of tens of hertz. The use of electro-optical modulators is necessitated by a need to obtain accuracy greater than that attainable by use of static polarizing filters over separate fixed detectors. For imaging, photoelastic modulators are preferable to such other electrio-optical modulators as Kerr cells and Pockels cells in that photoelastic modulators operate at lower voltages, have greater angular acceptances, and are easier to use. Prior to the conception of the present method, polarimetric imaging at frame rates of tens of hertz using photoelastic modulators was not possible because the resonance frequencies of photoelastic modulators usually lie in the range from about 20 to about 100 kHz.

  6. Tuning of Human Modulation Filters Is Carrier-Frequency Dependent

    Science.gov (United States)

    Simpson, Andrew J. R.; Reiss, Joshua D.; McAlpine, David

    2013-01-01

    Recent studies employing speech stimuli to investigate ‘cocktail-party’ listening have focused on entrainment of cortical activity to modulations at syllabic (5 Hz) and phonemic (20 Hz) rates. The data suggest that cortical modulation filters (CMFs) are dependent on the sound-frequency channel in which modulations are conveyed, potentially underpinning a strategy for separating speech from background noise. Here, we characterize modulation filters in human listeners using a novel behavioral method. Within an ‘inverted’ adaptive forced-choice increment detection task, listening level was varied whilst contrast was held constant for ramped increments with effective modulation rates between 0.5 and 33 Hz. Our data suggest that modulation filters are tonotopically organized (i.e., vary along the primary, frequency-organized, dimension). This suggests that the human auditory system is optimized to track rapid (phonemic) modulations at high sound-frequencies and slow (prosodic/syllabic) modulations at low frequencies. PMID:24009759

  7. Efficient spin-current injection in single-molecule magnet junctions

    Directory of Open Access Journals (Sweden)

    Haiqing Xie

    2018-01-01

    Full Text Available We study theoretically spin transport through a single-molecule magnet (SMM in the sequential and cotunneling regimes, where the SMM is weakly coupled to one ferromagnetic and one normal-metallic leads. By a master-equation approach, it is found that the spin polarization injected from the ferromagnetic lead is amplified and highly polarized spin-current can be generated, due to the exchange coupling between the transport electron and the anisotropic spin of the SMM. Moreover, the spin-current polarization can be tuned by the gate or bias voltage, and thus an efficient spin injection device based on the SMM is proposed in molecular spintronics.

  8. Efficient spin-current injection in single-molecule magnet junctions

    Science.gov (United States)

    Xie, Haiqing; Xu, Fuming; Jiao, Hujun; Wang, Qiang; Liang, J.-Q.

    2018-01-01

    We study theoretically spin transport through a single-molecule magnet (SMM) in the sequential and cotunneling regimes, where the SMM is weakly coupled to one ferromagnetic and one normal-metallic leads. By a master-equation approach, it is found that the spin polarization injected from the ferromagnetic lead is amplified and highly polarized spin-current can be generated, due to the exchange coupling between the transport electron and the anisotropic spin of the SMM. Moreover, the spin-current polarization can be tuned by the gate or bias voltage, and thus an efficient spin injection device based on the SMM is proposed in molecular spintronics.

  9. Polarization modulational instability in a birefringent optical fiber ...

    Indian Academy of Sciences (India)

    effects on PMI gain spectra of a linearly polarized intense pump wave which experiences periodic nonlinear polarization rotation in a birefringent optical fiber in both the anomalous and normal dispersion regimes. The paper is arranged as follows: In Ü2, we briefly discuss the basic equation. In Ü3, using Floquet theorem ...

  10. Great circle solution to polarization-based quantum communication (QC) in optical fiber

    Science.gov (United States)

    Nordholt, Jane Elizabeth; Peterson, Charles Glen; Newell, Raymond Thorson; Hughes, Richard John

    2016-03-15

    Birefringence in optical fibers is compensated by applying polarization modulation at a receiver. Polarization modulation is applied so that a transmitted optical signal has states of polarization (SOPs) that are equally spaced on the Poincare sphere. Fiber birefringence encountered in propagation between a transmitter and a receiver rotates the great circle on the Poincare sphere that represents the polarization bases used for modulation. By adjusting received polarizations, polarization components of the received optical signal can be directed to corresponding detectors for decoding, regardless of the magnitude and orientation of the fiber birefringence. A transmitter can be configured to transmit in conjugate polarization bases whose SOPs can be represented as equidistant points on a great circle so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors.

  11. Optically controlled seeding of Raman forward scattering and injection of electrons in a self-modulated laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Chen, W.-T.; Chien, T.-Y.; Lee, C.-H.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2004-01-01

    Optical seeding of plasma waves and the injection of electrons are key issues in self-modulated laser-wakefield accelerators. By implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. The dependence of the Raman intensity on prepulse timing indicates that the seeding of Raman forward scattering is dominated by the ionization-induced wakefield, and the dependence of the divergence and number of accelerated electrons further reveals that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the main pulse

  12. Polarization study of non-resonant X-ray magnetic scattering from spin-density-wave modulation in chromium

    International Nuclear Information System (INIS)

    Ohsumi, Hiroyuki; Takata, Masaki

    2007-01-01

    We present a polarization study of non-resonant X-ray magnetic scattering in pure chromium. Satellite reflections are observed at +/-Q and +/-2Q, where Q is the modulation wave vector of an itinerant spin-density-wave. The first and second harmonics are confirmed to have magnetic and charge origin, respectively, by means of polarimetry without using an analyzer crystal. This alternative technique eliminates intolerable intensity loss at an analyzer by utilizing the sample crystal also as an analyzer crystal

  13. Ultra-thin, single-layer polarization rotator

    Directory of Open Access Journals (Sweden)

    T. V. Son

    2016-08-01

    Full Text Available We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 103 when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  14. Explanation of low efficiency droop in semipolar $(20\\bar 2\\bar 1)$ InGaN/GaN LEDs through evaluation of carrier recombination coefficients

    OpenAIRE

    Monavarian, Morteza; Rashidi, Arman; Aragon, Andrew A.; Oh, Sang H.; Nami, Mohsen; DenBaars, Steve P.; Feezell, Daniel F.

    2017-01-01

    We report the carrier dynamics and recombination coefficients in single-quantum-well semipolar $(20\\bar 2\\bar 1)$ InGaN/GaN light-emitting diodes emitting at 440 nm with 93% peak internal quantum efficiency. The differential carrier lifetime is analyzed for various injection current densities from 5 $A/cm^2$ to 10 $kA/cm^2$, and the corresponding carrier densities are obtained. The coupling of internal quantum efficiency and differential carrier lifetime vs injected carrier density ($n$) enab...

  15. Elastin-derived peptides promote abdominal aortic aneurysm formation by modulating M1/M2 macrophage polarization1

    Science.gov (United States)

    Dale, Matthew A; Xiong, Wanfen; Carson, Jeffrey S; Suh, Melissa K; Karpisek, Andrew D.; Meisinger, Trevor M.; Casale, George P.; Baxter, B. Timothy

    2016-01-01

    Abdominal aortic aneurysm (AAA) is a dynamic vascular disease characterized by inflammatory cell invasion and extracellular matrix (ECM) degradation. Damage to elastin in the ECM results in release of elastin-derived peptides (EDPs), which are chemotactic for inflammatory cells such as monocytes. Their effect on macrophage polarization is less well known. Pro-inflammatory M1 macrophages initially are recruited to sites of injury but, if their effects are prolonged, they can lead to chronic inflammation that prevents normal tissue repair. Conversely, anti-inflammatory M2 macrophages reduce inflammation and aid in wound healing. Thus, a proper M1/M2 ratio is vital for tissue homeostasis. AAA tissue reveals a high M1/M2 ratio where pro-inflammatory cells and their associated markers dominate. In the present study, in vitro treatment of bone marrow-derived macrophages with EDPs induced M1 macrophage polarization. By using C57Bl/6 mice, antibody-mediated neutralization of EDPs reduced aortic dilation, matrix metalloproteinase activity, and pro-inflammatory cytokine expression at early and late time points after aneurysm induction. Furthermore, direct manipulation of the M1/M2 balance altered aortic dilation. Injection of M2 polarized macrophages reduced aortic dilation after aneurysm induction. EDPs promoted a pro-inflammatory environment in aortic tissue by inducing M1 polarization and neutralization of EDPs attenuated aortic dilation. The M1/M2 imbalance is vital to aneurysm formation. PMID:27183603

  16. Space Experiment Module (SEM)

    Science.gov (United States)

    Brodell, Charles L.

    1999-01-01

    The Space Experiment Module (SEM) Program is an education initiative sponsored by the National Aeronautics and Space Administration (NASA) Shuttle Small Payloads Project. The program provides nationwide educational access to space for Kindergarten through University level students. The SEM program focuses on the science of zero-gravity and microgravity. Within the program, NASA provides small containers or "modules" for students to fly experiments on the Space Shuttle. The experiments are created, designed, built, and implemented by students with teacher and/or mentor guidance. Student experiment modules are flown in a "carrier" which resides in the cargo bay of the Space Shuttle. The carrier supplies power to, and the means to control and collect data from each experiment.

  17. Dominant role of many-body effects on the carrier distribution function of quantum dot lasers

    Science.gov (United States)

    Peyvast, Negin; Zhou, Kejia; Hogg, Richard A.; Childs, David T. D.

    2016-03-01

    The effects of free-carrier-induced shift and broadening on the carrier distribution function are studied considering different extreme cases for carrier statistics (Fermi-Dirac and random carrier distributions) as well as quantum dot (QD) ensemble inhomogeneity and state separation using a Monte Carlo model. Using this model, we show that the dominant factor determining the carrier distribution function is the free carrier effects and not the choice of carrier statistics. By using empirical values of the free-carrier-induced shift and broadening, good agreement is obtained with experimental data of QD materials obtained under electrical injection for both extreme cases of carrier statistics.

  18. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method

    Science.gov (United States)

    Wada, Takao; Ueda, Noriaki

    2013-01-01

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature. PMID:23674843

  19. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method

    Science.gov (United States)

    Wada, Takao; Ueda, Noriaki

    2013-04-01

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature.

  20. Negative circular polarization as a universal property of quantum dots

    International Nuclear Information System (INIS)

    Taylor, Matthew W.; Spencer, Peter; Murray, Ray

    2015-01-01

    This paper shows that negative circular polarization, a spin flip of polarized carriers resulting in emission of opposite helicity, can be observed in undoped, n-doped, and p-doped InAs/GaAs quantum dots. These results contradict the usual interpretation of the effect. We show using power dependent and time resolved spectroscopy that the generation of negative circular polarization correlates with excited state emission. Furthermore, a longer spin lifetime of negatively polarized excitons is observed where emission is largely ground state in character

  1. Polarization recovery through scattering media.

    Science.gov (United States)

    de Aguiar, Hilton B; Gigan, Sylvain; Brasselet, Sophie

    2017-09-01

    The control and use of light polarization in optical sciences and engineering are widespread. Despite remarkable developments in polarization-resolved imaging for life sciences, their transposition to strongly scattering media is currently not possible, because of the inherent depolarization effects arising from multiple scattering. We show an unprecedented phenomenon that opens new possibilities for polarization-resolved microscopy in strongly scattering media: polarization recovery via broadband wavefront shaping. We demonstrate focusing and recovery of the original injected polarization state without using any polarizing optics at the detection. To enable molecular-level structural imaging, an arbitrary rotation of the input polarization does not degrade the quality of the focus. We further exploit the robustness of polarization recovery for structural imaging of biological tissues through scattering media. We retrieve molecular-level organization information of collagen fibers by polarization-resolved second harmonic generation, a topic of wide interest for diagnosis in biomedical optics. Ultimately, the observation of this new phenomenon paves the way for extending current polarization-based methods to strongly scattering environments.

  2. Optimization of the charge-carrier injection in organic light-emitting diodes; Optimierung der Ladungstraegerinjektion in organische Leuchtdioden

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Ralf

    2009-07-01

    Nowadays based on resource shortage and climate warming there is a big interest in the use of power-saving lighting sources. Therefore the research on white organic light emitting devices (OLEDs) has gained importance during the last years. To obtain high power efficiencies in OLEDs it is necessary to provide low driving voltages. That can be realised by the use of doped transport layers, in which donors and acceptors are coevaporated with organic transport materials. In this thesis I discuss novel p-type and n-type doping materials for small organic molecules which decrease the ohmic loss in organic transport layers used in OLEDs. This reduction of the resistance is caused by an increase of the intrinsic charge carrier density and therefore an increase of the conductivity. First single layer devices are used to analyse the properties of potential doping materials by varying the doping concentration. The tested p-doping materials are commercially available metal oxides (MoO{sub 3} and Re{sub 2}O{sub 7}) and metal-organic complexes. Both metal oxides show a strong conductivity improvement of up to 7 orders of magnitude. The investigated n-doping materials are alkali salts, metal-organic and organic complexes. Among the alkali salts Cs{sub 2}CO{sub 3} is the best material in test with a conductivity enhancement of up to 7 orders of magnitude. For this material class I focused on the question whether the metal cation or the organic anion causes the doping effect. Using similar Caesium salts differently strong doping effects were obtained. Therefore I came to the conclusion that beside the metal cation also the anion plays a role for the doping effect. Secondly I performed a series of multilayer devices for two doping materials (Re{sub 2}O{sub 7} as acceptor and Cs{sub 2}CO{sub 3} as donor) to separate the transport and injection enhancement. The results show that a doped transport layer improves the hole or electron injection into an undoped material by several orders

  3. Stand-alone polarization-modulation infrared reflection absorption spectroscopy instrument optimized for the study of catalytic processes at elevated pressures

    Science.gov (United States)

    Kestell, John D.; Mudiyanselage, Kumudu; Ye, Xinyi; Nam, Chang-Yong; Stacchiola, Dario; Sadowski, Jerzy; Boscoboinik, J. Anibal

    2017-10-01

    This paper describes the design and construction of a compact, "user-friendly" polarization-modulation infrared reflection absorption spectroscopy (PM-IRRAS) instrument at the Center for Functional Nanomaterials (CFN) of Brookhaven National Laboratory, which allows studying surfaces at pressures ranging from ultra-high vacuum to 100 Torr. Surface infrared spectroscopy is ideally suited for studying these processes as the vibrational frequencies of the IR chromophores are sensitive to the nature of the bonding environment on the surface. Relying on the surface selection rules, by modulating the polarization of incident light, it is possible to separate the contributions from the isotropic gas or solution phase, from the surface bound species. A spectral frequency range between 1000 cm-1 and 4000 cm-1 can be acquired. While typical spectra with a good signal to noise ratio can be obtained at elevated pressures of gases in ˜2 min at 4 cm-1 resolution, we have also acquired higher resolution spectra at 0.25 cm-1 with longer acquisition times. By way of verification, CO uptake on a heavily oxidized Ru(0001) sample was studied. As part of this test study, the presence of CO adsorbed on Ru bridge sites was confirmed, in agreement with previous ambient pressure X ray photoelectron spectroscopy studies. In terms of instrument performance, it was also determined that the gas phase contribution from CO could be completely removed even up to pressures close to 100 Torr. A second test study demonstrated the use of the technique for studying morphological properties of a spin coated polymer on a conductive surface. Note that this is a novel application of this technique. In this experiment, the polarization of incident light was modulated manually (vs. through a photoelastic modulator). It was demonstrated, in good agreement with the literature, that the polymer chains preferentially lie parallel with the surface. This PM-IRRAS system is small, modular, and easily

  4. Spin exchange in polarized deuterium

    International Nuclear Information System (INIS)

    Przewoski, B. von; Meyer, H.O.; Balewski, J.; Doskow, J.; Ibald, R.; Pollock, R.E.; Rinckel, T.; Wellinghausen, A.; Whitaker, T.J.; Daehnick, W.W.; Haeberli, W.; Schwartz, B.; Wise, T.; Lorentz, B.; Rathmann, F.; Pancella, P.V.; Saha, Swapan K.; Thoerngren-Engblom, P.

    2003-01-01

    We have measured the vector and tensor polarization of an atomic deuterium target as a function of the target density. The polarized deuterium was produced in an atomic beam source and injected into a storage cell. For this experiment, the atomic beam source was operated without rf transitions, in order to avoid complications from the unknown efficiency of these transitions. In this mode, the atomic beam is vector and tensor polarized and both polarizations can be measured simultaneously. We used a 1.2-cm-diam and 27-cm-long storage cell, which yielded an average target density between 3 and 9x10 11 at/cm 3 . We find that the tensor polarization decreases with increasing target density while the vector polarization remains constant. The data are in quantitative agreement with the calculated effect of spin exchange between deuterium atoms at low field

  5. Graphene Dirac point tuned by ferroelectric polarization field

    Science.gov (United States)

    Wang, Xudong; Chen, Yan; Wu, Guangjian; Wang, Jianlu; Tian, Bobo; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Kang, Tingting; Tang, Minghua; Xiao, Yongguang; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2018-04-01

    Graphene has received numerous attention for future nanoelectronics and optoelectronics. The Dirac point is a key parameter of graphene that provides information about its carrier properties. There are lots of methods to tune the Dirac point of graphene, such as chemical doping, impurities, defects, and disorder. In this study, we report a different approach to tune the Dirac point of graphene using a ferroelectric polarization field. The Dirac point can be adjusted to near the ferroelectric coercive voltage regardless its original position. We have ensured this phenomenon by temperature-dependent experiments, and analyzed its mechanism with the theory of impurity correlation in graphene. Additionally, with the modulation of ferroelectric polymer, the current on/off ratio and mobility of graphene transistor both have been improved. This work provides an effective method to tune the Dirac point of graphene, which can be readily used to configure functional devices such as p-n junctions and inverters.

  6. Vibrational characteristics of a superconducting magnetic bearing employed for a prototype polarization modulator

    Science.gov (United States)

    Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Katayama, Nobuhiko; Ohsaki, Hiroyuki; Terao, Yutaka; Terachi, Yusuke; Kataza, Hirokazu; Utsunomiya, Shin; Yamamoto, Ryo

    2017-07-01

    We present the vibrational characteristics of a levitating rotor in a superconducting magnetic bearing (SMB) system operating at below 10 K. We develop a polarization modulator that requires a continuously rotating optical element, called half-wave plate (HWP), for a cosmic microwave background polarization experiment. The HWP has to operate at the temperature below 10 K, and thus an SMB provides a smooth rotation of the HWP at the cryogenic temperature of about 10 K with minimal heat dissipation. In order to understand the potential interference to the cosmological observations due to the vibration of the HWP, it is essential to characterize the vibrational properties of the levitating rotor of the SMB. We constructed a prototype model that consists of an SMB with an array of high temperature superconductors, YBCO, and a permanent magnet ring, NdFeB. The rotor position is monitored by a laser displacement gauge, and a cryogenic Hall sensor via the magnetic field. In this presentation, we present the measurement results of the vibration characteristics using our prototype SMB system. We characterize the vibrational properties as the spring constant and the damping, and discuss the projected performance of this technology toward the use in future space missions.

  7. Vibrational characteristics of a superconducting magnetic bearing employed for a prototype polarization modulator

    International Nuclear Information System (INIS)

    Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Katayama, Nobuhiko; Utsunomiya, Shin; Ohsaki, Hiroyuki; Terao, Yutaka; Terachi, Yusuke; Kataza, Hirokazu; Yamamoto, Ryo

    2017-01-01

    We present the vibrational characteristics of a levitating rotor in a superconducting magnetic bearing (SMB) system operating at below 10 K. We develop a polarization modulator that requires a continuously rotating optical element, called half-wave plate (HWP), for a cosmic microwave background polarization experiment. The HWP has to operate at the temperature below 10 K, and thus an SMB provides a smooth rotation of the HWP at the cryogenic temperature of about 10 K with minimal heat dissipation. In order to understand the potential interference to the cosmological observations due to the vibration of the HWP, it is essential to characterize the vibrational properties of the levitating rotor of the SMB. We constructed a prototype model that consists of an SMB with an array of high temperature superconductors, YBCO, and a permanent magnet ring, NdFeB. The rotor position is monitored by a laser displacement gauge, and a cryogenic Hall sensor via the magnetic field. In this presentation, we present the measurement results of the vibration characteristics using our prototype SMB system. We characterize the vibrational properties as the spring constant and the damping, and discuss the projected performance of this technology toward the use in future space missions. (paper)

  8. Tracking Ultrafast Carrier Dynamics in Single Semiconductor Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Taylor A.J.

    2013-03-01

    Full Text Available An understanding of non-equilibrium carrier dynamics in silicon (Si nanowires (NWs and NW heterostructures is very important due to their many nanophotonic and nanoelectronics applications. Here, we describe the first measurements of ultrafast carrier dynamics and diffusion in single heterostructured Si nanowires, obtained using ultrafast optical microscopy. By isolating individual nanowires, we avoid complications resulting from the broad size and alignment distribution in nanowire ensembles, allowing us to directly probe ultrafast carrier dynamics in these quasi-one-dimensional systems. Spatially-resolved pump-probe spectroscopy demonstrates the influence of surface-mediated mechanisms on carrier dynamics in a single NW, while polarization-resolved femtosecond pump-probe spectroscopy reveals a clear anisotropy in carrier lifetimes measured parallel and perpendicular to the NW axis, due to density-dependent Auger recombination. Furthermore, separating the pump and probe spots along the NW axis enabled us to track space and time dependent carrier diffusion in radial and axial NW heterostructures. These results enable us to reveal the influence of radial and axial interfaces on carrier dynamics and charge transport in these quasi-one-dimensional nanosystems, which can then be used to tailor carrier relaxation in a single nanowire heterostructure for a given application.

  9. Synchronized conductivity modulation to realize broadband lossless magnetic-free non-reciprocity.

    Science.gov (United States)

    Dinc, Tolga; Tymchenko, Mykhailo; Nagulu, Aravind; Sounas, Dimitrios; Alu, Andrea; Krishnaswamy, Harish

    2017-10-06

    Recent research has explored the spatiotemporal modulation of permittivity to break Lorentz reciprocity in a manner compatible with integrated-circuit fabrication. However, permittivity modulation is inherently weak and accompanied by loss due to carrier injection, particularly at higher frequencies, resulting in large insertion loss, size, and/or narrow operation bandwidths. Here, we show that the presence of absorption in an integrated electronic circuit may be counter-intuitively used to our advantage to realize a new generation of magnet-free non-reciprocal components. We exploit the fact that conductivity in semiconductors provides a modulation index several orders of magnitude larger than permittivity. While directly associated with loss in static systems, we show that properly synchronized conductivity modulation enables loss-free, compact and extremely broadband non-reciprocity. We apply these concepts to obtain a wide range of responses, from isolation to gyration and circulation, and verify our findings by realizing a millimeter-wave (25 GHz) circulator fully integrated in complementary metal-oxide-semiconductor technology.Optical non-reciprocity achieved through refractive index modulation can have its challenges and limitations. Here, Dinc et al. introduce the concept of non-reciprocity based on synchronized spatio-temporal modulation of conductivity to achieve different types of non-reciprocal functionality.

  10. Electroluminescence from porous silicon due to electron injection from solution

    NARCIS (Netherlands)

    Kooij, Ernst S.; Despo, R.W.; Kelly, J.J.

    1995-01-01

    We report on the electroluminescence from p‐type porous silicon due to minority carrier injection from an electrolyte solution. The MV+• radical cation formed in the reduction of divalent methylviologen is able to inject electrons into the conduction band of crystalline and porous silicon. The

  11. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter.

    Science.gov (United States)

    Fandiño, Javier S; Muñoz, Pascual

    2013-11-01

    A photonic system capable of estimating the unknown frequency of a CW microwave tone is presented. The core of the system is a complementary optical filter monolithically integrated in InP, consisting of a ring-assisted Mach-Zehnder interferometer with a second-order elliptic response. By simultaneously measuring the different optical powers produced by a double-sideband suppressed-carrier modulation at the outputs of the photonic integrated circuit, an amplitude comparison function that depends on the input tone frequency is obtained. Using this technique, a frequency measurement range of 10 GHz (5-15 GHz) with a root mean square value of frequency error lower than 200 MHz is experimentally demonstrated. Moreover, simulations showing the impact of a residual optical carrier on system performance are also provided.

  12. Performance Analysis of Polarization Modulated DirectDetection Optical CDMA Systems over Turbulent FSO LinksModeled by the Gamma-Gamma Distribution

    Directory of Open Access Journals (Sweden)

    Fan Bai

    2015-01-01

    Full Text Available This paper proposes a theoretical study to characterize the transmission of optical code division multiple access (CDMA systems deploying polarization shift keying (PolSK over a free space optical (FSO link under the impact of atmospheric turbulence. In our analysis, a novel transceiver architecture for atmospheric OCDMA FSO systems based on polarization modulation with direct detection is proposed and discussed. A detailed analytical model for PolSK-OCDMA systems over a turbulent FSO link is provided. Further, we derive a closed-form bit error ratio (BER and outage probability expressions, taking into account the multiple-access interference (MAI, optical noise and the atmospheric turbulence effect on the FSO link modeled by the Gamma-Gamma distribution. Finally, the results of this study show the most significant parameters that degrade the transmission performance of the PolSK-OCDMA signal over FSO links and indicate that the proposed approach offers improved bit error ratio (BER performances compared to the on-off-keying (OOK modulation scheme in the presence of turbulence.

  13. Charge carrier dynamics in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Strothkaemper, Christian

    2013-06-24

    This work investigates the charge carrier dynamics in three different technological approaches within the class of thin film solar cells: radial heterojunctions, the dye solar cell, and microcrystalline CuInSe{sub 2}, focusing on charge transport and separation at the electrode, and the relaxation of photogenerated charge carriers due to recombination and energy dissipation to the phonon system. This work relies mostly on optical-pump terahertz-probe (OPTP) spectroscopy, followed by transient absorption (TA) and two-photon photoemission (2PPE). The charge separation in ZnO-electrode/In{sub 2}S{sub 3}-absorber core/shell nanorods, which represent a model system of a radial heterojunction, is analyzed by OPTP. It is concluded, that the dynamics in the absorber are determined by multiple trapping, which leads to a dispersive charge transport to the electrode that lasts over hundreds of picoseconds. The high trap density on the order of 10{sup 19}/cm{sup 3} is detrimental for the injection yield, which exhibits a decrease with increasing shell thickness. The heterogeneous electron transfer from a series of model dyes into ZnO proceeds on a time-scale of 200 fs. However, the photoconductivity builds up just on a 2-10 ps timescale, and 2PPE reveals that injected electrons are meanwhile localized spatially and energetically at the interface. It is concluded that the injection proceeds through adsorbate induced interface states. This is an important result because the back reaction from long lived interface states can be expected to be much faster than from bulk states. While the charge transport in stoichiometric CuInSe{sub 2} thin films is indicative of free charge carriers, CuInSe{sub 2} with a solar cell grade composition (Cu-poor) exhibits signs of carrier localization. This detrimental effect is attributed to a high density of charged defects and a high degree of compensation, which together create a spatially fluctuating potential that inhibits charge transport. On

  14. The effects of interfacial recombination and injection barrier on the electrical characteristics of perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Lin Xing Shi

    2018-02-01

    Full Text Available Charge carrier recombination in the perovskite solar cells (PSCs has a deep influence on the electrical performance, such as open circuit voltage, short circuit current, fill factor and ultimately power conversion efficiency. The impacts of injection barrier, recombination channels, doping properties of carrier transport layers and light intensity on the performance of PSCs are theoretically investigated by drift-diffusion model in this work. The results indicate that due to the injection barrier at the interfaces of perovskite and carrier transport layer, the accumulated carriers modify the electric field distribution throughout the PSCs. Thus, a zero electric field is generated at a specific applied voltage, with greatly increases the interfacial recombination, resulting in a local kink of current density-voltage (J-V curve. This work provides an effective strategy to improve the efficiency of PSCs by pertinently reducing both the injection barrier and interfacial recombination.

  15. Modulation of cosmic microwave background polarization with a warm rapidly rotating half-wave plate on the Atacama B-Mode Search instrument.

    Science.gov (United States)

    Kusaka, A; Essinger-Hileman, T; Appel, J W; Gallardo, P; Irwin, K D; Jarosik, N; Nolta, M R; Page, L A; Parker, L P; Raghunathan, S; Sievers, J L; Simon, S M; Staggs, S T; Visnjic, K

    2014-02-01

    We evaluate the modulation of cosmic microwave background polarization using a rapidly rotating, half-wave plate (HWP) on the Atacama B-Mode Search. After demodulating the time-ordered-data (TOD), we find a significant reduction of atmospheric fluctuations. The demodulated TOD is stable on time scales of 500-1000 s, corresponding to frequencies of 1-2 mHz. This facilitates recovery of cosmological information at large angular scales, which are typically available only from balloon-borne or satellite experiments. This technique also achieves a sensitive measurement of celestial polarization without differencing the TOD of paired detectors sensitive to two orthogonal linear polarizations. This is the first demonstration of the ability to remove atmospheric contamination at these levels from a ground-based platform using a rapidly rotating HWP.

  16. Optical detection of ballistic electrons injected by a scanning-tunneling microscope

    NARCIS (Netherlands)

    Kemerink, M.; Sauthoff, K.; Koenraad, P.M.; Gerritsen, J.W.; Kempen, van H.; Wolter, J.H.

    2001-01-01

    We demonstrate a spectroscopic technique which is based on ballistic injection of minority carriers from the tip of a scanning-tunneling microscope into a semiconductor heterostructure. By analyzing the resulting electroluminescence spectrum as a function of tip-sample bias, both the injection

  17. Generation of high-intensity sub-30 as pulses by inhomogeneous polarization gating technology in bowtie-shaped nanostructure

    Science.gov (United States)

    Feng, Liqiang; Feng, A. Yuanzi

    2018-04-01

    The generation of high-order harmonics and single attosecond pulses (SAPs) from He atom driven by the inhomogeneous polarization gating technology in a bowtie-shaped nanostructure is theoretically investigated. The results show that by the proper addition of bowtie-shaped nanostructure along the driven laser polarization direction, the harmonic emission becomes sensitive to the position of the laser field, and the harmonics emitted at the maximum orders that generate SAPs occur only at one side of the region inside the nanostructure. As a result, not only the harmonic cutoff can be extended, but also the modulations of the harmonics can be decreased, showing a carrier envelope phase independent harmonic cutoff with a bandwidth of 310 eV. Further, with the proper introduction of an ultraviolet pulse, the harmonic yield can be enhanced by 2 orders of magnitude. Finally, by the Fourier transformation of the selected harmonics, some SAPs with a full width at half maximum of sub-30 as can be obtained.

  18. Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks.

    Science.gov (United States)

    Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M

    2010-02-01

    In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.

  19. One-carrier free space charge motion under applied voltage

    International Nuclear Information System (INIS)

    Camargo, P.C.; Ferreira, G.F.L.

    1976-01-01

    The system of partial differential equations describing the one-carrier free space-charge motion under a given applied voltage is transformed into a system of two ordinary differential equations. The method is applied to find the external current injection [pt

  20. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport

    NARCIS (Netherlands)

    Huang, F.; Kemel Zago, M.; Abas, L.; van Marion, A.; Galván-Ampudia, C.S.; Offringa, R.

    2010-01-01

    Polar cell-to-cell transport of auxin by plasma membrane-localized PIN-FORMED (PIN) auxin efflux carriers generates auxin gradients that provide positional information for various plant developmental processes. The apical-basal polar localization of the PIN proteins that determines the direction of

  1. Measuring fluorescence polarization with a dichrometer.

    Science.gov (United States)

    Sutherland, John C

    2017-09-01

    A method for obtaining fluorescence polarization data from an instrument designed to measure circular and linear dichroism is compared with a previously reported approach. The new method places a polarizer between the sample and a detector mounted perpendicular to the direction of the incident beam and results in determination of the fluorescence polarization ratio, whereas the previous method does not use a polarizer and yields the fluorescence anisotropy. A similar analysis with the detector located axially with the excitation beam demonstrates that there is no frequency modulated signal due to fluorescence polarization in the absence of a polarizer. Copyright © 2017. Published by Elsevier Inc.

  2. Modeling and visualization of carrier motion in organic films by optical second harmonic generation and Maxwell-displacement current

    Science.gov (United States)

    Iwamoto, Mitsumasa; Manaka, Takaaki; Taguchi, Dai

    2015-09-01

    The probing and modeling of carrier motions in materials as well as in electronic devices is a fundamental research subject in science and electronics. According to the Maxwell electromagnetic field theory, carriers are a source of electric field. Therefore, by probing the dielectric polarization caused by the electric field arising from moving carriers and dipoles, we can find a way to visualize the carrier motions in materials and in devices. The techniques used here are an electrical Maxwell-displacement current (MDC) measurement and a novel optical method based on the electric field induced optical second harmonic generation (EFISHG) measurement. The MDC measurement probes changes of induced charge on electrodes, while the EFISHG probes nonlinear polarization induced in organic active layers due to the coupling of electron clouds of molecules and electro-magnetic waves of an incident laser beam in the presence of a DC field caused by electrons and holes. Both measurements allow us to probe dynamical carrier motions in solids through the detection of dielectric polarization phenomena originated from dipolar motions and electron transport. In this topical review, on the basis of Maxwell’s electro-magnetism theory of 1873, which stems from Faraday’s idea, the concept for probing electron and hole transport in solids by using the EFISHG is discussed in comparison with the conventional time of flight (TOF) measurement. We then visualize carrier transit in organic devices, i.e. organic field effect transistors, organic light emitting diodes, organic solar cells, and others. We also show that visualizing an EFISHG microscopic image is a novel way for characterizing anisotropic carrier transport in organic thin films. We also discuss the concept of the detection of rotational dipolar motions in monolayers by means of the MDC measurement, which is capable of probing the change of dielectric spontaneous polarization formed by dipoles in organic monolayers. Finally we

  3. A response regulator interfaces between the Frz chemosensory system and the MglA/MglB GTPase/GAP module to regulate polarity in Myxococcus xanthus.

    Directory of Open Access Journals (Sweden)

    Daniela Keilberg

    2012-09-01

    Full Text Available How cells establish and dynamically change polarity are general questions in cell biology. Cells of the rod-shaped bacterium Myxococcus xanthus move on surfaces with defined leading and lagging cell poles. Occasionally, cells undergo reversals, which correspond to an inversion of the leading-lagging pole polarity axis. Reversals are induced by the Frz chemosensory system and depend on relocalization of motility proteins between the poles. The Ras-like GTPase MglA localizes to and defines the leading cell pole in the GTP-bound form. MglB, the cognate MglA GTPase activating protein, localizes to and defines the lagging pole. During reversals, MglA-GTP and MglB switch poles and, therefore, dynamically localized motility proteins switch poles. We identified the RomR response regulator, which localizes in a bipolar asymmetric pattern with a large cluster at the lagging pole, as important for motility and reversals. We show that RomR interacts directly with MglA and MglB in vitro. Furthermore, RomR, MglA, and MglB affect the localization of each other in all pair-wise directions, suggesting that RomR stimulates motility by promoting correct localization of MglA and MglB in MglA/RomR and MglB/RomR complexes at opposite poles. Moreover, localization analyses suggest that the two RomR complexes mutually exclude each other from their respective poles. We further show that RomR interfaces with FrzZ, the output response regulator of the Frz chemosensory system, to regulate reversals. Thus, RomR serves at the functional interface to connect a classic bacterial signalling module (Frz to a classic eukaryotic polarity module (MglA/MglB. This modular design is paralleled by the phylogenetic distribution of the proteins, suggesting an evolutionary scheme in which RomR was incorporated into the MglA/MglB module to regulate cell polarity followed by the addition of the Frz system to dynamically regulate cell polarity.

  4. An enhancement of spin polarization by multiphoton pumping in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-08-15

    Highlights: {yields} Multiphoton pumping and spin generation in semiconductors. {yields} Optical selection rules for inter-band transitions. {yields} Calculations of spin polarization using band-energy model and the second order perturbation theory. {yields} Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  5. An enhancement of spin polarization by multiphoton pumping in semiconductors

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    Highlights: → Multiphoton pumping and spin generation in semiconductors. → Optical selection rules for inter-band transitions. → Calculations of spin polarization using band-energy model and the second order perturbation theory. → Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  6. Universal diffusion-limited injection and the hook effect in organic thin-film transistors

    Science.gov (United States)

    Liu, Chuan; Huseynova, Gunel; Xu, Yong; Long, Dang Xuan; Park, Won-Tae; Liu, Xuying; Minari, Takeo; Noh, Yong-Young

    2016-01-01

    The general form of interfacial contact resistance was derived for organic thin-film transistors (OTFTs) covering various injection mechanisms. Devices with a broad range of materials for contacts, semiconductors, and dielectrics were investigated and the charge injections in staggered OTFTs was found to universally follow the proposed form in the diffusion-limited case, which is signified by the mobility-dependent injection at the metal-semiconductor interfaces. Hence, real ohmic contact can hardly ever be achieved in OTFTs with low carrier concentrations and mobility, and the injection mechanisms include thermionic emission, diffusion, and surface recombination. The non-ohmic injection in OTFTs is manifested by the generally observed hook shape of the output conductance as a function of the drain field. The combined theoretical and experimental results show that interfacial contact resistance generally decreases with carrier mobility, and the injection current is probably determined by the surface recombination rate, which can be promoted by bulk-doping, contact modifications with charge injection layers and dopant layers, and dielectric engineering with high-k dielectric materials. PMID:27440253

  7. Spatial Terahertz Modulator

    Science.gov (United States)

    Xie, Zhenwei; Wang, Xinke; Ye, Jiasheng; Feng, Shengfei; Sun, Wenfeng; Akalin, Tahsin; Zhang, Yan

    2013-11-01

    Terahertz (THz) technology is a developing and promising candidate for biological imaging, security inspection and communications, due to the low photon energy, the high transparency and the broad band properties of the THz radiation. However, a major encountered bottleneck is lack of efficient devices to manipulate the THz wave, especially to modulate the THz wave front. A wave front modulator should allow the optical or electrical control of the spatial transmission (or reflection) of an input THz wave and hence the ability to encode the information in a wave front. Here we propose a spatial THz modulator (STM) to dynamically control the THz wave front with photo-generated carriers. A computer generated THz hologram is projected onto a silicon wafer by a conventional spatial light modulator (SLM). The corresponding photo-generated carrier spatial distribution will be induced, which forms an amplitude hologram to modulate the wave front of the input THz beam. Some special intensity patterns and vortex beams are generated by using this method. This all-optical controllable STM is structure free, high resolution and broadband. It is expected to be widely used in future THz imaging and communication systems.

  8. The impact of the Fermi-Dirac distribution on charge injection at metal/organic interfaces.

    Science.gov (United States)

    Wang, Z B; Helander, M G; Greiner, M T; Lu, Z H

    2010-05-07

    The Fermi level has historically been assumed to be the only energy-level from which carriers are injected at metal/semiconductor interfaces. In traditional semiconductor device physics, this approximation is reasonable as the thermal distribution of delocalized states in the semiconductor tends to dominate device characteristics. However, in the case of organic semiconductors the weak intermolecular interactions results in highly localized electronic states, such that the thermal distribution of carriers in the metal may also influence device characteristics. In this work we demonstrate that the Fermi-Dirac distribution of carriers in the metal has a much more significant impact on charge injection at metal/organic interfaces than has previously been assumed. An injection model which includes the effect of the Fermi-Dirac electron distribution was proposed. This model has been tested against experimental data and was found to provide a better physical description of charge injection. This finding indicates that the thermal distribution of electronic states in the metal should, in general, be considered in the study of metal/organic interfaces.

  9. A novel five-level optimized carrier multilevel PWM quad-inverter six-phase AC drive

    DEFF Research Database (Denmark)

    Sanjeevikumar, P.; Blaabjerg, F.; Wheeler, Pat

    2016-01-01

    A novel single carrier pulse-width modulation (PWM) for a new quad-inverter configuration for multilevel six-phase asymmetrical open-winding ac converter is proposed in this article. Modularity of the circuit consist of four standard two-level voltage source inverters (VSIs) with slight modificat......A novel single carrier pulse-width modulation (PWM) for a new quad-inverter configuration for multilevel six-phase asymmetrical open-winding ac converter is proposed in this article. Modularity of the circuit consist of four standard two-level voltage source inverters (VSIs) with slight...... modifications, i.e. one additional bi-direction switch (MOSFET/IGBT) in each phase and a link to neutral with two capacitors to generate increased output levels. Furthermore, original optimal single carrier zero-shifted five-level modulation (SCZSFM) algorithm is developed for each VSI to behave as equivalent...

  10. Polarized wiggler for NSLS x-ray ring design considerations

    International Nuclear Information System (INIS)

    Friedman, A.; Krinsky, S.; Blum, E.

    1992-03-01

    We examine the properties of an elliptically polarized wiggler that will generate circularly polarized photons with energy spectrum of 3--12 KeV. The vertical wiggler magnetic field is produced by permanent magnets while the horizontal wiggler field is generated by electric coils capable of AC excitation. The radiation parameters of the wiggler are presented, including photon flux, circular and linear polarization and spectrum. These parameters are compared to the synchrotron radiation from a bending magnet. Numerical values are calculated for radiation from the wiggler and bending magnet for the NSLS X-ray ring parameters. A conceptual design for such a wiggler is discussed and several different alternatives are analyzed. We consider AC excitation of the wiggler to produce the time modulation of the elliptic polarization, and also to produce time modulated linearly polarized radiation

  11. Terahertz radiation from accelerating charge carriers in graphene under ultrafast photoexcitation

    Science.gov (United States)

    Rustagi, Avinash; Stanton, C. J.

    2016-11-01

    We study the generation of terahertz (THz) radiation from the acceleration of ultrafast photoexcited charge carriers in graphene in the presence of a dc electric field. Our model is based on calculating the transient current density from the time-dependent distribution function which is determined using the Boltzmann transport equation (BTE) within a relaxation time approximation. We include the time-dependent generation of carriers by the pump pulse by solving for the carrier generation rate using the optical Bloch equations in the rotating wave approximation (RWA). The linearly polarized pump pulse generates an anisotropic distribution of photoexcited carriers in the kx-ky plane. The collision integral in the Boltzmann equation includes a term that leads to the thermalization of carriers via carrier-carrier scattering to an effective temperature above the lattice temperature, as well as a cooling term, which leads to energy relaxation via inelastic carrier-phonon scattering. The radiated signal is proportional to the time derivative of the transient current density. In spite of the fact that the magnitude of the velocity is the same for all the carriers in graphene, there is still emitted radiation from the photoexcited charge carriers with frequency components in the THz range due to a change in the direction of velocity of the photoexcited carriers in the external electric field as well as cooling of the photoexcited carriers on a subpicosecond time scale.

  12. On the use of polarization modulation in combined interferometry and polarimetry. Corrigendum. 1998 Plasma Phys. Control. Fusion, v. 40 p. 153-161

    International Nuclear Information System (INIS)

    Segre, S.E.

    1998-01-01

    Errors in the main text, the appendix and two curves are corrected in this corrigendum to the paper entitled ''On the use of polarization modulation in combined interferometry and polarimetry'', written by S.E. Segre and published in 1998 Plasma Phys. Control. Fusion, v. 40 p. 153-161

  13. Enhanced Photocatalytic Activity of TiO2 Nanoparticles Supported on Electrically Polarized Hydroxyapatite.

    Science.gov (United States)

    Zhang, Xuefei; Yates, Matthew Z

    2018-05-23

    Fast recombination of photogenerated charge carriers in titanium dioxide (TiO 2 ) remains a challenging issue, limiting the photocatalytic activity. This study demonstrates increased photocatalytic performance of TiO 2 nanoparticles supported on electrically polarized hydroxyapatite (HA) films. Dense and thermally stable yttrium and fluorine co-doped HA films with giant internal polarization were synthesized as photocatalyst supports. TiO 2 nanoparticles deposited on the support were then used to catalyze the photochemical reduction of aqueous silver ions to produce silver nanoparticles. It was found that significantly more silver nanoparticles were produced on polarized HA supports than on depolarized HA supports. In addition, the photodegradation of methyl orange with TiO 2 nanoparticles on polarized HA supports was found to be much faster than with TiO 2 nanoparticles on depolarized HA supports. It is proposed that separation of photogenerated electrons and holes in TiO nanoparticles is promoted by the internal polarization of the HA support, and consequently, the recombination of charge carriers is mitigated. The results imply that materials with large internal polarization can be used in strategies for enhancing quantum efficiency of photocatalysts.

  14. Histidine-lysine peptides as carriers of nucleic acids.

    Science.gov (United States)

    Leng, Qixin; Goldgeier, Lisa; Zhu, Jingsong; Cambell, Patricia; Ambulos, Nicholas; Mixson, A James

    2007-03-01

    With their biodegradability and diversity of permutations, peptides have significant potential as carriers of nucleic acids. This review will focus on the sequence and branching patterns of peptide carriers composed primarily of histidines and lysines. While lysines within peptides are important for binding to the negatively charged phosphates, histidines are critical for endosomal lysis enabling nucleic acids to reach the cytosol. Histidine-lysine (HK) polymers by either covalent or ionic bonds with liposomes augment transfection compared to liposome carriers alone. More recently, we have examined peptides as sole carriers of nucleic acids because of their intrinsic advantages compared to the bipartite HK/liposome carriers. With a protocol change and addition of a histidine-rich tail, HK peptides as sole carriers were more effective than liposomes alone in several cell lines. While four-branched polymers with a primary repeating sequence pattern of -HHK- were more effective as carriers of plasmids, eight-branched polymers with a sequence pattern of -HHHK- were more effective as carriers of siRNA. Compared to polyethylenimine, HK carriers of siRNA and plasmids had reduced toxicity. When injected intravenously, HK polymers in complex with plasmids encoding antiangiogenic proteins significantly decreased tumor growth. Furthermore, modification of HK polymers with polyethylene glycol and vascular-specific ligands increased specificity of the polyplex to the tumor by more than 40-fold. Together with further development and insight on the structure of HK polyplexes, HK peptides may prove to be useful as carriers of different forms of nucleic acids both in vitro and in vivo.

  15. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms

    Directory of Open Access Journals (Sweden)

    Katherine A. Sharp

    2016-03-01

    Full Text Available Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing and the posterior abdomen (P-abd. We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.

  16. Scalable modulation technology and the tradeoff of reach, spectral efficiency, and complexity

    Science.gov (United States)

    Bosco, Gabriella; Pilori, Dario; Poggiolini, Pierluigi; Carena, Andrea; Guiomar, Fernando

    2017-01-01

    Bandwidth and capacity demand in metro, regional, and long-haul networks is increasing at several tens of percent per year, driven by video streaming, cloud computing, social media and mobile applications. To sustain this traffic growth, an upgrade of the widely deployed 100-Gbit/s long-haul optical systems, based on polarization multiplexed quadrature phase-shift keying (PM-QPSK) modulation format associated with coherent detection and digital signal processing (DSP), is mandatory. In fact, optical transport techniques enabling a per-channel bit rate beyond 100 Gbit/s have recently been the object of intensive R and D activities, aimed at both improving the spectral efficiency and lowering the cost per bit in fiber transmission systems. In this invited contribution, we review the different available options to scale the per-channel bit-rate to 400 Gbit/s and beyond, i.e. symbol-rate increase, use of higher-order quadrature amplitude modulation (QAM) modulation formats and use of super-channels with DSP-enabled spectral shaping and advanced multiplexing technologies. In this analysis, trade-offs of system reach, spectral efficiency and transceiver complexity are addressed. Besides scalability, next generation optical networks will require a high degree of flexibility in the transponders, which should be able to dynamically adapt the transmission rate and bandwidth occupancy to the light path characteristics. In order to increase the flexibility of these transponders (often referred to as "flexponders"), several advanced modulation techniques have recently been proposed, among which sub-carrier multiplexing, hybrid formats (over time, frequency and polarization), and constellation shaping. We review these techniques, highlighting their limits and potential in terms of performance, complexity and flexibility.

  17. VME online system of the Bonn polarized nucleon targets and polarization measurements on NH3

    International Nuclear Information System (INIS)

    Thiel, W.

    1991-02-01

    The measurement of spin observables is the main purpose of the PHOENICS detector at the Bonn Electron Accelerator ELSA. Therefore a new frosen spin target was built allowing any spin orientation by means of two perpendicular holding fields and the use of a polarizing field up to 7 Tesla. With a vertical dilution refrigerator the polarization can be frozen at a temperature of 70 mK. This thesis describe a VME based control and monitor system for the various parts of this target. It mainly consists of a VIP processor together with different kinds of I/O and interface boards. Caused by its modular structure in hard- and software it can be easyly set up to control and monitor different hardware environments. A menu and command oriented user interface running on an ATARI computer allows a comfortable operation. Secondly the new NMR system is described in detail. It is based on the Liferpool module allowing a dispersion user interface running on an ATARI computer allows a comfortable operation. Secondly the new NMR system is described in detail. It is based on the Liverpool module allowing a dispersion free detection and a simple adjustment to different magnetic fields. A similar VME system takes care of all the necessary task for the polarization measurements. Fast optodecoupled analog I/O modules a e used as an interface to the NMR hardware. Finally the first measurements with this target are presented. Using NH 3 as target material and a polarizing field of 3.5 Tesla a proton polarization of +94% and -100% could be achieved. By lowering the magnetic field to 0.35 Tesla a superradiance effect was observed. (orig.)

  18. Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Ikeda, Masao, E-mail: mikeda2013@sinano.ac.cn; Liu, Jianping; Zhang, Shuming [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Zhou, Kun; Yang, Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Institute of Semiconductors (CAS), Beijing 100083 (China); Liu, Zongshun [Institute of Semiconductors (CAS), Beijing 100083 (China)

    2015-07-21

    Injection current dependences of electroluminescence transition energy in blue InGaN/GaN multiple quantum wells light emitting diodes (LEDs) with different quantum barrier thicknesses under pulsed current conditions have been analyzed taking into account the related effects including deformation caused by lattice strain, quantum confined Stark effects due to polarization field partly screened by carriers, band gap renormalization, Stokes-like shift due to compositional fluctuations which are supposed to be random alloy fluctuations in the sub-nanometer scale, band filling effect (Burstein-Moss shift), and quantum levels in finite triangular wells. The bandgap renormalization and band filling effect occurring at high concentrations oppose one another, however, the renormalization effect dominates in the concentration range studied, since the band filling effect arising from the filling in the tail states in the valence band of quantum wells is much smaller than the case in the bulk materials. In order to correlate the carrier densities with current densities, the nonradiative recombination rates were deduced experimentally by curve-fitting to the external quantum efficiencies. The transition energies in LEDs both with 15 nm quantum barriers and 5 nm quantum barriers, calculated using full strengths of theoretical macroscopic polarization given by Barnardini and Fiorentini [Phys. Status Solidi B 216, 391 (1999)] are in excellent accordance with experimental results. The LED with 5 nm barriers has been shown to exhibit a higher transition energy and a smaller blue shift than those of LED with 15 nm barriers, which is mainly caused by the smaller internal polarization field in the quantum wells.

  19. Reduced multiplication modules

    Indian Academy of Sciences (India)

    if M is a von Neumann regular module (VNM); i.e., every principal submodule of M is a summand submodule. Also if M is an injective R-module, then M is a VNM. Keywords. Multiplication module; reduced module; minimal prime submodule;. Zariski topology; extremally disconnected. 1. Introduction. In this paper all rings are ...

  20. The polarization modulation and fabrication method of two dimensional silica photonic crystals based on UV nanoimprint lithography and hot imprint.

    Science.gov (United States)

    Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin

    2016-10-04

    Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way.

  1. Immunological Risk of Injectable Drug Delivery Systems

    NARCIS (Netherlands)

    Jiskoot, W.; van Schie, R.M.F.; Carstens, M.G.; Schellekens, H.

    2009-01-01

    Injectable drug delivery systems (DDS) such as particulate carriers and water-soluble polymers are being used and developed for a wide variety of therapeutic applications. However, a number of immunological risks with serious clinical implications are associated with administration of DDS. These

  2. Coherent Detection of Wavelength Division Multiplexed Phase-Modulated Radio-over-Fibre Signals

    DEFF Research Database (Denmark)

    Zibar, Darko; Yu, Xianbin; Peucheret, Christophe

    2008-01-01

    A WDM phase-modulated Radio-over-Fibre link using digital coherent detection is experimentally demonstrated. 3 times 50 Mb/s WDM transmission of a BPSK modulated 5 GHz RF carrier is achieved over 25 km.......A WDM phase-modulated Radio-over-Fibre link using digital coherent detection is experimentally demonstrated. 3 times 50 Mb/s WDM transmission of a BPSK modulated 5 GHz RF carrier is achieved over 25 km....

  3. Scattering and depolarization of polarized neutrons in ferrofluids

    International Nuclear Information System (INIS)

    Balasoiu, M.; Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Y.V.

    1999-01-01

    On the SPN - 1 polarized neutron spectrometer at IBR -2 high - flux pulsed rector there were carried out preliminary measurements on transmission and polarization of a neutron beam passing through a magnetic colloidal system of Fe 3 O 4 particles in transformer oil and dodecane carriers. It was found that in the ferrofluids with magnetite particles exist, dependent on the particle volume concentration and the magnitude of the external magnetic field, effects of depolarization and nuclear - magnetic small angle scattering. (author)

  4. A novel x-ray circularly polarized ranging method

    International Nuclear Information System (INIS)

    Song Shi-Bin; Xu Lu-Ping; Zhang Hua; Shen Yang-He; Gao Na

    2015-01-01

    Range measurement has found multiple applications in deep space missions. With more and further deep space exploration activities happening now and in the future, the requirement for range measurement has risen. In view of the future ranging requirement, a novel x-ray polarized ranging method based on the circular polarization modulation is proposed, termed as x-ray circularly polarized ranging (XCPolR). XCPolR utilizes the circular polarization modulation to process x-ray signals and the ranging information is conveyed by the circular polarization states. As the circular polarization states present good stability in space propagation and x-ray detectors have light weight and low power consumption, XCPolR shows great potential in the long-distance range measurement and provides an option for future deep space ranging. In this paper, we present a detailed illustration of XCPolR. Firstly, the structure of the polarized ranging system is described and the signal models in the ranging process are established mathematically. Then, the main factors that affect the ranging accuracy, including the Doppler effect, the differential demodulation, and the correlation error, are analyzed theoretically. Finally, numerical simulation is carried out to evaluate the performance of XCPolR. (paper)

  5. Intensity Modulated Proton and Photon Therapy for Early Prostate Cancer With or Without Transperineal Injection of a Polyethylen Glycol Spacer: A Treatment Planning Comparison Study

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Damien C., E-mail: damien.weber@unige.ch [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Zilli, Thomas [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Vallee, Jean Paul [Department of Diagnostic Radiology, Geneva University Hospital, Geneva (Switzerland); Rouzaud, Michel; Miralbell, Raymond [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Cozzi, Luca [Oncology Institute of Southern Switzerland, Medical Physics Unit, Bellinzona (Switzerland)

    2012-11-01

    Purpose: Rectal toxicity is a serious adverse effect in early-stage prostate cancer patients treated with curative radiation therapy (RT). Injecting a spacer between Denonvilliers' fascia increases the distance between the prostate and the anterior rectal wall and may thus decrease the rectal radiation-induced toxicity. We assessed the dosimetric impact of this spacer with advanced delivery RT techniques, including intensity modulated RT (IMRT), volumetric modulated arc therapy (VMAT), and intensity modulated proton beam RT (IMPT). Methods and Materials: Eight prostate cancer patients were simulated for RT with or without spacer. Plans were computed for IMRT, VMAT, and IMPT using the Eclipse treatment planning system using both computed tomography spacer+ and spacer- data sets. Prostate {+-} seminal vesicle planning target volume [PTV] and organs at risk (OARs) dose-volume histograms were calculated. The results were analyzed using dose and volume metrics for comparative planning. Results: Regardless of the radiation technique, spacer injection decreased significantly the rectal dose in the 60- to 70-Gy range. Mean V{sub 70Gy} and V{sub 60Gy} with IMRT, VMAT, and IMPT planning were 5.3 {+-} 3.3%/13.9 {+-} 10.0%, 3.9 {+-} 3.2%/9.7 {+-} 5.7%, and 5.0 {+-} 3.5%/9.5 {+-} 4.7% after spacer injection. Before spacer administration, the corresponding values were 9.8 {+-} 5.4% (P=.012)/24.8 {+-} 7.8% (P=.012), 10.1 {+-} 3.0% (P=.002)/17.9 {+-} 3.9% (P=.003), and 9.7 {+-} 2.6% (P=.003)/14.7% {+-} 2.7% (P=.003). Importantly, spacer injection usually improved the PTV coverage for IMRT. With this technique, mean V{sub 70.2Gy} (P=.07) and V{sub 74.1Gy} (P=0.03) were 100 {+-} 0% to 99.8 {+-} 0.2% and 99.1 {+-} 1.2% to 95.8 {+-} 4.6% with and without Spacer, respectively. As a result of spacer injection, bladder doses were usually higher but not significantly so. Only IMPT managed to decrease the rectal dose after spacer injection for all dose levels, generally with no

  6. Cross polarization with phase and amplitude modulation of radio frequency fields in NMR-experiments with sample rotation at magic angle

    International Nuclear Information System (INIS)

    Dvinskij, S.V.; Chizhik, V.I.

    2006-01-01

    One analyzes cross polarization of nuclei within a rotating system of coordinates as applied to the NMR-experiments with a specimen rotation under the magic angle. One worded a concept of simultaneous phase and amplitude modulation according to which the Hamiltonian form of the restored dipole interaction persisted if inversion of difference of radiofrequency field amplitudes occurred simultaneously with phase inversion. One presents a theoretical substantiation in terms of the average Hamiltonian theory. The concept is demonstrated both experimentally and by means of numerical analysis for a number of special cases. Phase periodic inversion in cross polarized experiments is shown to result into practically important advantage of suppression of interactions of chemical shift and influence of effects of coarse adjustment of radiofrequency field parameters [ru

  7. Fiber-FSO/wireless convergent systems based on dual-polarization and one optical sideband transmission schemes

    Science.gov (United States)

    Huang, Xu-Hong; Lu, Hai-Han; Li, Chung-Yi; Wang, Yun-Chieh; Chang, Jen-Chieh; Jheng, Yu-Bo; Tsai, Wen-Shing

    2018-06-01

    A bidirectional fiber-free-space optical (FSO)/wireless convergent system that uses dual-polarization and one optical sideband transmission schemes for hybrid vestigial sideband (VSB)–four-level pulse amplitude modulation (PAM4)/millimeter-wave signal transmission is proposed and demonstrated. Using a dual-polarization scheme, one optical sideband that is modulated by a 56 Gb s‑1 VSB–PAM4 signal (x-polarization) and another optical sideband that is modulated by a 10 Gbps data stream (y-polarization) are separated and polarized orthogonally. One optical sideband modulated by a 10 Gbps data stream (y-polarization) is delivered to efficaciously suppress the dispersion-induced limitation due to a span of 40 km single-mode fiber (SMF) and the distortion due to the beating among multiple sidebands. The proposed bidirectional fiber-FSO/wireless convergent system is a prominent one for providing broadband integrated services, such as the Internet, telecommunication, and 5G mobile networks.

  8. Negative polarity of phenyl-C61 butyric acid methyl ester adjacent to donor macromolecule domains

    International Nuclear Information System (INIS)

    Alley, Olivia J.; Dawidczyk, Thomas J.; Hardigree, Josué F. Martínez; Katz, Howard E.; Wu, Meng-Yin; Johns, Gary L.; Markovic, Nina; Arnold, Michael S.

    2015-01-01

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (V oc ) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the V oc , which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C 61 butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased V oc , but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions

  9. AGS polarized H- source

    International Nuclear Information System (INIS)

    Kponou, A.; Alessi, J.G.; Sluyters, T.

    1985-01-01

    The AGS polarized H - source is now operational. During a month-long experimental physics run in July 1984, pulses equivalent to 15 μA x 300 μs (approx. 3 x 10 10 protons) were injected into the RFQ preaccelerator. Beam polarization, measured at 200 MeV, was approx. 75%. After the run, a program to increase the H - yield of the source was begun and significant progress has been made. The H - current is now frequently 20 to 30 μA. A description of the source and some details of our operating experience are given. We also briefly describe the improvement program

  10. Femtosecond time-resolved hot carrier energy distributions of photoexcited semiconductor quantum dots

    International Nuclear Information System (INIS)

    Chuang, Chi-Hung; Burda, Clemens; Chen, Xiaobo

    2013-01-01

    Using femtosecond transient absorption spectroscopy, we investigated hot carrier distributions in semiconductor cadmium selenide quantum dots. The relaxation processes represent the behavior of an ensemble of QDs. This concept is applied for analysis with the Fermi-Dirac distribution and relaxation processes among different electron-hole pair states. By extracting the experimental hot carrier distribution and fitting with the Fermi-Dirac function, we resolved the rapid thermalization processes, such as carrier-carrier and carrier-phonon interactions was resolved within one picosecond upon photoexcitation. The analysis, using the Fermi-Dirac distribution modulated by the density of states, provides a general route to understanding the carrier cooling and heat dissipation processes in quantum dot-based systems. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Two-photon spin-polarization spectroscopy in silicon-doped GaAs.

    Science.gov (United States)

    Miah, M Idrish

    2009-05-14

    We generate spin-polarized electrons in bulk GaAs using circularly polarized two-photon pumping with excess photon energy (DeltaE) and detect them by probing the spin-dependent transmission of the sample. The spin polarization of conduction band electrons is measured and is found to be strongly dependent on DeltaE. The initial polarization, pumped with DeltaE=100 meV, at liquid helium temperature is estimated to be approximately 49.5%, which is very close to the theoretical value (50%) permitted by the optical selection rules governing transitions from heavy-hole and light-hole states to conduction band states in a bulk sample. However, the polarization pumped with larger DeltaE decreases rapidly because of the exciting carriers from the split-off band.

  12. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging.

    Science.gov (United States)

    Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui

    2018-01-01

    We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  13. Electrical Initialization of Electron and Nuclear Spins in a Single Quantum Dot at Zero Magnetic Field.

    Science.gov (United States)

    Cadiz, Fabian; Djeffal, Abdelhak; Lagarde, Delphine; Balocchi, Andrea; Tao, Bingshan; Xu, Bo; Liang, Shiheng; Stoffel, Mathieu; Devaux, Xavier; Jaffres, Henri; George, Jean-Marie; Hehn, Michel; Mangin, Stephane; Carrere, Helene; Marie, Xavier; Amand, Thierry; Han, Xiufeng; Wang, Zhanguo; Urbaszek, Bernhard; Lu, Yuan; Renucci, Pierre

    2018-04-11

    The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X + ) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.

  14. miRNA let-7b modulates macrophage polarization and enhances tumor-associated macrophages to promote angiogenesis and mobility in prostate cancer.

    Science.gov (United States)

    Wang, Zhigang; Xu, Lu; Hu, Yinying; Huang, Yanqin; Zhang, Yujuan; Zheng, Xiufen; Wang, Shanshan; Wang, Yifan; Yu, Yanrong; Zhang, Meng; Yuan, Keng; Min, Weiping

    2016-05-09

    Macrophage polarization is a highly plastic physiological process that responds to a variety of environmental factors by changing macrophage phenotype and function. Tumor-associated macrophages (TAMs) are generally recognized as promoting tumor progression. As universal regulators, microRNAs (miRNAs) are functionally involved in numerous critical cellular processes including macrophage polarization. Let-7b, a miRNA, has differential expression patterns in inflamed tissues compared with healthy controls. However, whether and how miRNA let-7b regulates macrophage phenotype and function is unclear. In this report, we find that up-regulation of let-7b is characteristic of prostatic TAMs, and down-regulation of let-7b in TAMs leads to changes in expression profiles of inflammatory cytokines, such as IL-12, IL-23, IL-10 and TNF-α. As a result, TAMs treated with let-7b inhibitors reduce angiogenesis and prostate carcinoma (PCa) cell mobility. Let-7b may play a vital role in regulating macrophage polarization, thus modulating the prognosis of prostate cancer.

  15. Thermal activation of carriers from semiconductor quantum wells

    International Nuclear Information System (INIS)

    Johnston, M.B.; Herz, L.M.; Dao, L.V.; Gal, M.; Tan, H.H.; Jagadish, C.

    1999-01-01

    Full text: We have conducted a systematic investigation of the thermal excitation of carriers in confined states of quantum wells. Carriers may be injected into a sample containing a quantum well electrically or optically, once there they rapidly thermalise and are captured by the confined state of the quantum well. Typically electrons and holes recombine radiatively from their respective quantum well states. As a quantum well sample is heated from low temperatures (∼10K), phonon interactions increase which leads to carriers being excited from the well region into the higher energy, barrier region of the sample. Since carrier recombination from barrier regions is via non-radiative processes, there is strong temperature dependence of photoluminescence from the quantum well region. We measured quantum well photoluminescence as a function of excitation intensity and wavelength over the temperature range from 8K to 300K. In high quality InGaAs quantum wells we found unexpected intensity dependence of the spectrally integrated temperature dependent photoluminescence. We believe that this is evidence for by the existence of saturable states at the interfaces of the quantum wells

  16. Screening of spontaneous polarization in lead titanate crystals

    International Nuclear Information System (INIS)

    Gavrilyachenko, V.G.; Semenchev, A.F.; Fesenko, E.G.

    1996-01-01

    Results of experimental investigations into electric conductivity of lead titanate crystals with different domain structure including single-domain are reported. The data obtained give grounds to believe that spontaneous titanate polarization is realized by the surface level and charge volumetric of free carriers and ionized impurity

  17. Fast polarizers installation for ECRH and ECE in TCV

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Miguel, E-mail: miguel.silva@epfl.ch [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association EURATOM-Confederation Suisse, CH-1015 Lausanne (Switzerland); Goodman, Timothy; Felici, Federico; Porte, Laurie [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association EURATOM-Confederation Suisse, CH-1015 Lausanne (Switzerland)

    2011-10-15

    We report on the installation of fast polarizers for ECRH injection and ECE diagnostics, in the TCV tokamak. The main goal is to change the polarization during a plasma shot and react to changing conditions such as: plasma current and position, ECRH injection angles as well as ECE oblique observation angle and correlation ECE frequency. This will allow tracking of plasma variations, find optimum parameters to maximize ECRH absorption and improve the quality and consistency of ECE measurements. The polarization is varied using two fast polarizers, from General Atomics, positioned either in the evacuated transmission line for ECRH, or in a similar non-evacuated line near a real-time moveable directional antenna for ECE. A programmable driver is used to control a servo-motor and allows three operation modes during a plasma shot: fixed angle position, pre-programmed reference waveform and following of a real-time reference waveform. Preliminary tests of the motor controller achieved an 8 Hz bandwidth for a {+-}4{sup o} amplitude motion and a 2.2 Hz bandwidth for a {+-}4{sup o} amplitude motion. The fast polarizers are presently in the ECE system and the control hardware is being installed.

  18. Large-signal modulation characteristics of a GaN-based micro-LED for Gbps visible-light communication

    Science.gov (United States)

    Tian, Pengfei; Wu, Zhengyuan; Liu, Xiaoyan; Fang, Zhilai; Zhang, Shuailong; Zhou, Xiaolin; Liu, Kefu; Liu, Ming-Gang; Chen, Shu-Jhih; Lee, Chia-Yu; Cong, Chunxiao; Hu, Laigui; Qiu, Zhi-Jun; Zheng, Lirong; Liu, Ran

    2018-04-01

    The large-signal modulation characteristics of a GaN-based micro-LED have been studied for Gbps visible-light communication. With an increasing signal modulation depth the modulation bandwidth decreases, which matches up with the increase in the sum of the signal rise time and fall time. By simulating the band diagram and the carrier recombination rate of the micro-LED under large-signal modulation, carrier recombination and the carrier sweep-out effect are analyzed and found to be the dominant mechanisms behind the variation of modulation bandwidth. These results give further insight into improving the modulation bandwidth for high-speed visible-light communication.

  19. Effects of low charge carrier wave function overlap on internal quantum efficiency in GaInN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Netzel, Carsten; Hoffmann, Veit; Wernicke, Tim; Knauer, Arne; Weyers, Markus [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Kneissl, Michael [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2010-07-15

    To determine relevant processes affecting the internal quantum efficiency in GaInN quantum well structures, we have studied the temperature and excitation power dependent photoluminescence intensity for quantum wells with different well widths on (0001) c-plane GaN and for quantum wells on nonpolar (11-20) a-plane GaN. In thick polar quantum wells, the quantum confined Stark effect (QCSE) causes a stronger intensity decrease with increasing temperature as long as the radiative recombination dominates. At higher temperatures, when the nonradiative recombination becomes more important, thick polar quantum wells feature a lower relative intensity decrease than thinner polar or nonpolar quantum wells. Excitation power dependent photoluminescence points to a transition from a recombination of excitons to a bimolecular recombination of uncorrelated charge carriers for thick polar quantum wells in the same temperature range. This transition might contribute to the limitation of nonradiative recombination by a reduced diffusivity of charge carriers. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Optical Injection Locking of Vertical Cavity Surface-Emitting Lasers: Digital and Analog Applications

    Science.gov (United States)

    Parekh, Devang

    With the rise of mobile (cellphones, tablets, notebooks, etc.) and broadband wireline communications (Fiber to the Home), there are increasing demands being placed on transmitters for moving data from device to device and around the world. Digital and analog fiber-optic communications have been the key technology to meet this challenge, ushering in ubiquitous Internet and cable TV over the past 20 years. At the physical layer, high-volume low-cost manufacturing of semiconductor optoelectronic devices has played an integral role in allowing for deployment of high-speed communication links. In particular, vertical cavity surface emitting lasers (VCSEL) have revolutionized short reach communications and are poised to enter more markets due to their low cost, small size, and performance. However, VCSELs have disadvantages such as limited modulation performance and large frequency chirp which limits fiber transmission speed and distance, key parameters for many fiber-optic communication systems. Optical injection locking is one method to overcome these limitations without re-engineering the VCSEL at the device level. By locking the frequency and phase of the VCSEL by the direct injection of light from another laser oscillator, improved device performance is achieved in a post-fabrication method. In this dissertation, optical injection locking of VCSELs is investigated from an applications perspective. Optical injection locking of VCSELs can be used as a pathway to reduce complexity, cost, and size of both digital and analog fiber-optic communications. On the digital front, reduction of frequency chirp via bit pattern inversion for large-signal modulation is experimentally demonstrated showing up to 10 times reduction in frequency chirp and over 90 times increase in fiber transmission distance. Based on these results, a new reflection-based interferometric model for optical injection locking was established to explain this phenomenon. On the analog side, the resonance

  1. Nanodiamond-based injectable hydrogel for sustained growth factor release: Preparation, characterization and in vitro analysis.

    Science.gov (United States)

    Pacelli, Settimio; Acosta, Francisca; Chakravarti, Aparna R; Samanta, Saheli G; Whitlow, Jonathan; Modaresi, Saman; Ahmed, Rafeeq P H; Rajasingh, Johnson; Paul, Arghya

    2017-08-01

    Nanodiamonds (NDs) represent an emerging class of carbon nanomaterials that possess favorable physical and chemical properties to be used as multifunctional carriers for a variety of bioactive molecules. Here we report the synthesis and characterization of a new injectable ND-based nanocomposite hydrogel which facilitates a controlled release of therapeutic molecules for regenerative applications. In particular, we have formulated a thermosensitive hydrogel using gelatin, chitosan and NDs that provides a sustained release of exogenous human vascular endothelial growth factor (VEGF) for wound healing applications. Addition of NDs improved the mechanical properties of the injectable hydrogels without affecting its thermosensitive gelation properties. Biocompatibility of the generated hydrogel was verified by in vitro assessment of apoptotic gene expressions and anti-inflammatory interleukin productions. NDs were complexed with VEGF and the inclusion of this complex in the hydrogel network enabled the sustained release of the angiogenic growth factor. These results suggest for the first time that NDs can be used to formulate a biocompatible, thermosensitive and multifunctional hydrogel platform that can function both as a filling agent to modulate hydrogel properties, as well as a delivery platform for the controlled release of bioactive molecules and growth factors. One of the major drawbacks associated with the use of conventional hydrogels as carriers of growth factors is their inability to control the release kinetics of the loaded molecules. In fact, in most cases, a burst release is inevitable leading to diminished therapeutic effects and unsuccessful therapies. As a potential solution to this issue, we hereby propose a strategy of incorporating ND complexes within an injectable hydrogel matrix. The functional groups on the surface of the NDs can establish interactions with the model growth factor VEGF and promote a prolonged release from the polymer network

  2. Linear combination of auditory steady-state responses evoked by co-modulated tones

    DEFF Research Database (Denmark)

    Guérit, François; Marozeau, Jeremy; Epp, Bastian

    2017-01-01

    Up to medium intensities and in the 80–100-Hz region, the auditory steady-state response (ASSR) to a multi-tone carrier is commonly considered to be a linear sum of the dipoles from each tone specific ASSR generator. Here, this hypothesis was investigated when a unique modulation frequency is used...... for all carrier components. Listeners were presented with a co-modulated dual-frequency carrier (1 and 4 kHz), from which the modulator starting phase Ui of the 1-kHz component was systematically varied. The results support the hypothesis of a linear superposition of the dipoles originating from different...

  3. Spin polarization of {sup 87}Rb atoms with ultranarrow linewidth diode laser: Numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z. G. [College of OptoElectronic Science and Engineering, National University of Defense Technology, Changsha, 410073 (China); Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha, 410073 (China); College of Science, National University of Defense Technology, Changsha, 410073 (China); Jiang, Q. Y.; Zhan, X.; Chen, Y. D.; Luo, H., E-mail: luohui.luo@163.com [College of OptoElectronic Science and Engineering, National University of Defense Technology, Changsha, 410073 (China); Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha, 410073 (China)

    2016-08-15

    In order to polarize {sup 87}Rb vapor effectively with ultranarrow linewidth diode laser, we studied the polarization as a function of some parameters including buffer gas pressure and laser power. Moreover, we also discussed the methods which split or modulate the diode laser frequency so as to pump the two ground hyperfine levels efficiently. We obtained some useful results through numerical simulation. If the buffer gas pressure is so high that the hyperfine structure is unresolved, the polarization is insensitive to laser frequency at peak absorption point so frequency splitting and frequency modulation methods do not show improvement. At low pressure and laser power large enough, where the hyperfine structure is clearly resolved, frequency splitting and frequency modulation methods can increase polarization effectively. For laser diodes, frequency modulation is easily realized with current modulation, so this method is attractive since it does not add any other components in the pumping laser system.

  4. Injection Molding Parameters Calculations by Using Visual Basic (VB) Programming

    Science.gov (United States)

    Tony, B. Jain A. R.; Karthikeyen, S.; Alex, B. Jeslin A. R.; Hasan, Z. Jahid Ali

    2018-03-01

    Now a day’s manufacturing industry plays a vital role in production sectors. To fabricate a component lot of design calculation has to be done. There is a chance of human errors occurs during design calculations. The aim of this project is to create a special module using visual basic (VB) programming to calculate injection molding parameters to avoid human errors. To create an injection mold for a spur gear component the following parameters have to be calculated such as Cooling Capacity, Cooling Channel Diameter, and Cooling Channel Length, Runner Length and Runner Diameter, Gate Diameter and Gate Pressure. To calculate the above injection molding parameters a separate module has been created using Visual Basic (VB) Programming to reduce the human errors. The outcome of the module dimensions is the injection molding components such as mold cavity and core design, ejector plate design.

  5. Non-local electrical spin injection and detection in germanium at room temperature

    Science.gov (United States)

    Rortais, F.; Vergnaud, C.; Marty, A.; Vila, L.; Attané, J.-P.; Widiez, J.; Zucchetti, C.; Bottegoni, F.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2017-10-01

    Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a "source" and a well separated "drain." The next generation electronics may operate on the spin of carriers in addition to their charge and germanium appears as the best hosting material to develop such a platform for its compatibility with mainstream silicon technology and the predicted long electron spin lifetime at room temperature. In this letter, we demonstrate injection of pure spin currents (i.e., with no associated transport of electric charges) in germanium, combined with non-local spin detection at 10 K and room temperature. For this purpose, we used a lateral spin valve with epitaxially grown magnetic tunnel junctions as spin injector and spin detector. The non-local magnetoresistance signal is clearly visible and reaches ≈15 mΩ at room temperature. The electron spin lifetime and diffusion length are 500 ps and 1 μm, respectively, the spin injection efficiency being as high as 27%. This result paves the way for the realization of full germanium spintronic devices at room temperature.

  6. Imaging differential polarization microscope with electronic readout

    International Nuclear Information System (INIS)

    Mickols, W.; Tinoco, I.; Katz, J.E.; Maestre, M.F.; Bustamante, C.

    1985-01-01

    A differential polarization microscope forms two images: one of the transmitted intensity and the other due to the change in intensity between images formed when different polarizations of light are used. The interpretation of these images for linear dichroism and circular dichroism are described. The design constraints on the data acquisition systems and the polarization modulation are described. The advantage of imaging several biological systems which contain optically anisotropic structures are described

  7. Carrier phase synchronization system for improved amplitude modulation and television broadcast reception

    Science.gov (United States)

    Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN

    2009-09-08

    Systems and methods are described for carrier phase synchronization for improved AM and TV broadcast reception. A method includes synchronizing the phase of a carrier frequency of a broadcast signal with the phase of a remote reference frequency. An apparatus includes a receiver to detect the phase of a reference signal; a phase comparator coupled to the reference signal-phase receiver; a voltage controlled oscillator coupled to the phase comparator; and a phase-controlled radio frequency output coupled to the voltage controlled oscillator.

  8. Injection-locked single-mode VCSEL for orthogonal multiplexing and amplitude noise suppression

    DEFF Research Database (Denmark)

    Chipouline, Arkadi; Lyubopytov, Vladimir S.; Malekizandi, Mohammadreza

    2017-01-01

    It has been shown earlier, that the injection locked semiconductor lasers enable effective amplitude noise suppression [1] and makes possible an extra level of signal multiplexing-orthogonal modulation [2], where DPSK and ASK NRZ channels propagate at the same wavelength [3]. In our work we use...... an injection-locked 1550 nm VCSEL as a slave laser providing separation of amplitude and phase modulations, carrying independent information flows. To validate the possibility of phase modulation extraction by an injection-locked VCSEL, an experimental setup shown in Fig. 1 has been built....

  9. Spin-polarized current generated by magneto-electrical gating

    International Nuclear Information System (INIS)

    Ma Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Ghee

    2012-01-01

    We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The I–V characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa. - Highlights: ► The spin polarized transport through a single electron tunneling transistor is systematically studied. ► The study is based on Keldysh non-equilibrium Green's function and equation of motion method. ► A fully spin polarized current is observed. ► We propose to reverse current polarization by the means of gate voltage modulation. ► This device can be used as a bi-polarization current generator.

  10. Modified hybrid subcarrier/amplitude/ phase/polarization LDPC-coded modulation for 400 Gb/s optical transmission and beyond.

    Science.gov (United States)

    Batshon, Hussam G; Djordjevic, Ivan; Xu, Lei; Wang, Ting

    2010-06-21

    In this paper, we present a modified coded hybrid subcarrier/ amplitude/phase/polarization (H-SAPP) modulation scheme as a technique capable of achieving beyond 400 Gb/s single-channel transmission over optical channels. The modified H-SAPP scheme profits from the available resources in addition to geometry to increase the bandwidth efficiency of the transmission system, and so increases the aggregate rate of the system. In this report we present the modified H-SAPP scheme and focus on an example that allows 11 bits/Symbol that can achieve 440 Gb/s transmission using components of 50 Giga Symbol/s (GS/s).

  11. Injection and Scattering of Polarized Spins at Nanoscale Polymer Interfaces

    National Research Council Canada - National Science Library

    Epstein, Arthur J

    2004-01-01

    We made excellent progress several directions. We demonstrated that V[TCNE]̃2 is a room temperature fully spin polarized magnetic semiconductor of interest for spintronic applications, including spin valves...

  12. Negative polarity of phenyl-C{sub 61} butyric acid methyl ester adjacent to donor macromolecule domains

    Energy Technology Data Exchange (ETDEWEB)

    Alley, Olivia J.; Dawidczyk, Thomas J.; Hardigree, Josué F. Martínez; Katz, Howard E., E-mail: hekatz@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218 (United States); Wu, Meng-Yin [Department of Electrical and Computer Engineering, University of Wisconsin, 415 Engineering Drive, Madison, Wisconsin 53706 (United States); Johns, Gary L.; Markovic, Nina [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States); Arnold, Michael S. [Department of Materials Science and Engineering, University of Wisconsin, 248 MS and E Building, 1509 University Avenue, Madison, Wisconsin 53706 (United States)

    2015-01-19

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (V{sub oc}) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the V{sub oc}, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C{sub 61} butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased V{sub oc}, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions.

  13. Electric field and substrate–induced modulation of spin-polarized transport in graphene nanoribbons on A3B5 semiconductors

    International Nuclear Information System (INIS)

    Ilyasov, Victor V.; Nguyen, Chuong V.; Ershov, Igor V.; Hieu, Nguyen N.

    2015-01-01

    In this work, we present the density functional theory calculations of the effect of an oriented electric field on the electronic structure and spin-polarized transport in a one dimensional (1D) zigzag graphene nanoribbon (ZGNR) channel placed on a wide bandgap semiconductor of the A3B5 type. Our calculations show that carrier mobility in the 1D semiconductor channel of the ZGNR/A3B5(0001) type is in the range from 1.7×10 4 to 30.5×10 4 cm 2 /Vs and can be controlled by an electric field. In particular, at the critical value of the positive potential, even though hole mobility in an one-dimensional 8-ZGNR/h-BN semiconductor channel for spin down electron subsystems is equal to zero, hole mobility can be increased to 4.1×10 5 cm 2 /Vs for spin up electron subsystems. We found that band gap and carrier mobility in a 1D semiconductor channel of the ZGNR/A3B5(0001) type depend strongly on an external electric field. With these extraordinary properties, ZGNR/A3B5(0001) can become a promising materials for application in nanospintronic devices

  14. Light-emitting diodes based on solution-processed nontoxic quantum dots: oxides as carrier-transport layers and introducing molybdenum oxide nanoparticles as a hole-inject layer.

    Science.gov (United States)

    Bhaumik, Saikat; Pal, Amlan J

    2014-07-23

    We report fabrication and characterization of solution-processed quantum dot light-emitting diodes (QDLEDs) based on a layer of nontoxic and Earth-abundant zinc-diffused silver indium disulfide (AIZS) nanoparticles as an emitting material. In the QDLEDs fabricated on indium tin oxide (ITO)-coated glass substrates, we use layers of oxides, such as graphene oxide (GO) and zinc oxide (ZnO) nanoparticles as a hole- and electron-transport layer, respectively. In addition, we introduce a layer of MoO3 nanoparticles as a hole-inject one. We report a comparison of the characteristics of different device architectures. We show that an inverted device architecture, ITO/ZnO/AIZS/GO/MoO3/Al, yields a higher electroluminescence (EL) emission, compared to direct ones, for three reasons: (1) the GO/MoO3 layers introduce barriers for electrons to reach the Al electrode, and, similarly, the ZnO layers acts as a barrier for holes to travel to the ITO electrode; (2) the introduction of a layer of MoO3 nanoparticles as a hole-inject layer reduces the barrier height for holes and thereby balances charge injection in the inverted structure; and (3) the wide-bandgap zinc oxide next to the ITO electrode does not absorb the EL emission during its exit from the device. In the QDLEDs with oxides as carrier inject and transport layers, the EL spectrum resembles the photoluminescence emission of the emitting material (AIZS), implying that excitons are formed in the quaternary nanocrystals and decay radiatively.

  15. Modulating emission intensity of GaN-based green light emitting diodes on c-plane sapphire

    International Nuclear Information System (INIS)

    Du, Chunhua; Ma, Ziguang; Zhou, Junming; Lu, Taiping; Jiang, Yang; Jia, Haiqiang; Liu, Wuming; Chen, Hong

    2014-01-01

    The asymmetric dual-wavelength (green/blue) coupled InGaN/GaN multiple quantum wells were proposed to modulate the green emission intensity. Electroluminescent measurements demonstrate the conspicuous increment of the green light intensity by decreasing the coupled barrier thickness. This was partly attributed to capture of more carriers when holes tunnel across the thinner barrier from the blue quantum wells, as a hole reservoir, to the green quantum wells. While lower effective barrier height of the blue quantum wells benefits improved hole transportation from p-GaN to the active region. Efficiency droop of the green quantum wells was partially alleviated due to the enhanced injection efficiency of holes

  16. MAP-Motivated Carrier Synchronization of GMSK Based on the Laurent AMP Representation

    Science.gov (United States)

    Simon, M. K.

    1998-01-01

    Using the MAP estimation approach to carrier synchronization of digital modulations containing ISI together with a two pulse stream AMP representation of GMSK, it is possible to obtain an optimum closed loop configuration in the same manner as has been previously proposed for other conventional modulations with ISI.

  17. Structural basis for phosphopantetheinyl carrier domain interactions in the terminal module of nonribosomal peptide synthetases

    Science.gov (United States)

    Liu, Ye; Zheng, Tengfei; Bruner, Steven D.

    2011-01-01

    Summary Phosphopantetheine-modified carrier domains play a central role in the template-directed, biosynthesis of several classes of primary and secondary metabolites. Fatty acids, polyketides and nonribosomal peptides are constructed on multidomain enzyme assemblies using phosphopantetheinyl thioester-linked carrier domains to traffic and activate building blocks. The carrier domain is a dynamic component of the process, shuttling pathway intermediates to sequential enzyme active sites. Here we report an approach to structurally fix carrier domain/enzyme constructs suitable for X-ray crystallographic analysis. The structure of a two-domain construct of E. coli EntF was determined with a conjugated phosphopantetheinyl-based inhibitor. The didomain structure is locked in an active orientation relevant to the chemistry of nonribosomal peptide biosynthesis. This structure provides details into the interaction of phosphopantetheine arm with the carrier domain and the active site of the thioesterase domain. PMID:22118682

  18. Synergetic effects of radiation stress and hot-carrier stress on the current gain of npn bipolar junction transistors

    International Nuclear Information System (INIS)

    Witczak, S.C.; Kosier, S.L.; Schrimpf, R.D.; Galloway, K.F.

    1994-01-01

    The combined effects of ionizing radiation and hot-carrier stress on the current gain of npn bipolar junction transistors were investigated. The analysis was carried out experimentally by examining the consequences of interchanging the order in which the two stress types were applied to identical transistors which were stressed to various levels of damage. The results indicate that the hot-carrier response of the transistor is improved by radiation damage, whereas hot-carrier damage has little effect on subsequent radiation stress. Characterization of the temporal progression of hot-carrier effects revealed that hot-carrier stress acts initially to reduce excess base current and improve current gain in irradiated transistors. PISCES simulations show that the magnitude of the peak electric-field within the emitter-base depletion region is reduced significantly by net positive oxide charges induced by radiation. The interaction of the two stress types is explained in a qualitative model based on the probability of hot-carrier injection determined by radiation damage and on the neutralization and compensation of radiation-induced positive oxide charges by injected electrons. The result imply that a bound on damage due to the combined stress types is achieved when hot-carrier stress precedes any irradiation

  19. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Science.gov (United States)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3 NH3 PbBr3 ) and all-inorganic (CsPbBr3 ) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3 .

  20. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3NH3PbBr3) and all-inorganic (CsPbBr3) leadhalide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-tohead Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3.

  1. The Injection System of the INFN-SuperB Factory Project: Preliminary Design

    Energy Technology Data Exchange (ETDEWEB)

    Boni, Roberto; /INFN, Rome; Guiducci, Susanna; /INFN, Rome; Preger, Miro; /INFN, Rome; Raimondi, Pantaleo; /INFN, Rome; Chance, Antoine; /Saclay; Dadoun, Olivier; /Orsay, LAL; Poirier, Freddy; /Orsay, LAL; Variola, Alessandro; /Orsay, LAL; Seeman, John; /SLAC

    2012-07-05

    The ultra high luminosity B-factory (SuperB) project of INFN requires a high performance and reliable injection system, providing electrons at 4 GeV and positrons at 7 GeV, to fulfil the very tight requirements of the collider. Due to the short beam lifetime, continuous injection of electron and positron bunches in both LER and HER rings is necessary to maintain an high average luminosity. Polarized electrons are required for experiments and must be delivered by the injection system, due to the beam lifetime shorter than the ring polarization build-up: they will be produced by means of a SLAC-SLC polarized gun. The emittance and the energy spread of the e{sup -}/e{sup +} beams are reduced in a 1 GeV Damping Ring (DR) before injection in the main rings. Two schemes for positron production are under study, one with e{sup -}/e{sup +} conversion at low energy (< 1 Gev) and one with conversion at 6 GeV and a recirculation line to bring the positrons back to the DR. Acceleration through the Linac is provided by a 2856 MHz RF system made of travelling wave (TW), room temperature accelerating structures.

  2. Polarized differential-phase laser scanning microscope

    International Nuclear Information System (INIS)

    Chou Chien; Lyu, C.-W.; Peng, L.-C.

    2001-01-01

    A polarized differential-phase laser scanning microscope, which combines a polarized optical heterodyne Mach-Zehnder interferometer and a differential amplifier to scan the topographic image of a surface, is proposed. In the experiment the differential amplifier, which acts as a PM-AM converter, in the experiment, converting phase modulation (PM) into amplitude modulation (AM). Then a novel, to our knowledge, phase demodulator was proposed and implemented for the differential-phase laser scanning microscope. An optical grating (1800 lp/mm) was imaged. The lateral and the depth resolutions of the imaging system were 0.5 μm and 1 nm, respectively. The detection accuracy, which was limited by the reflectivity variation of the test surface, is discussed

  3. Photonic Implementation of 4-QAM/QPSK Electrical Modulation at Millimeter-Wave Frequency

    DEFF Research Database (Denmark)

    Yu, Xianbin; Jensen, Jesper Bevensee; Tafur Monroy, Idelfonso

    2008-01-01

    We propose a photonic method for generating millimeter-wave 4-QAM/QPSK modulated signals. The method is based on optical phase modulation by multilevel electrical signals and optical carrier-suppression. Simulation results are presented for 2.5 Gsymbol/s 4-QAM and QPSK signals at a 36 GHz carrier...

  4. Electroabsorption optical modulator

    Energy Technology Data Exchange (ETDEWEB)

    Skogen, Erik J.

    2017-11-21

    An electroabsorption modulator incorporates waveguiding regions along the length of the modulator that include quantum wells where at least two of the regions have quantum wells with different bandgaps. In one embodiment of the invention, the regions are arranged such that the quantum wells have bandgaps with decreasing bandgap energy along the length of the modulator from the modulator's input to its output. The bandgap energy of the quantum wells may be decreased in discrete steps or continuously. Advantageously, such an arrangement better distributes the optical absorption as well as the carrier density along the length of the modulator. Further advantageously, the modulator may handle increased optical power as compared with prior art modulators of similar dimensions, which allows for improved link gain when the optical modulator is used in an analog optical communication link.

  5. Primordial Inflation Polarization Explorer: Status and Plans

    Science.gov (United States)

    Kogut, Alan

    2009-01-01

    The Primordial Inflation Polarization Explorer is a balloon-borne instrument to measure the polarization of the cosmic microwave background in order to detect the characteristic signature of gravity waves created during an inflationary epoch in the early universe. PIPER combines cold /I.G K\\ optics, 5120 bolometric detectors, and rapid polarization modulation using VPM grids to achieve both high sensitivity and excellent control of systematic errors. I will discuss the current status and plans for the PIPER instrument.

  6. Measuring high-frequency responses of an electro-optic phase modulator based on dispersion induced phase modulation to intensity modulation conversion

    Science.gov (United States)

    Zhang, Shangjian; Wang, Heng; Wang, Yani; Zou, Xinhai; Zhang, Yali; Liu, Shuang; Liu, Yong

    2014-11-01

    We investigate the phase modulation to intensity modulation conversion in dispersive fibers for measuring frequency responses of electro-optic phase modulators, and demonstrate two typical measurements with cascade path and fold-back path. The measured results achieve an uncertainty of less than 2.8% within 20 GHz. Our measurements show stable and repeatable results because the optical carrier and its phase-modulated sidebands are affected by the same fiber impairments. The proposed method requires only dispersive fibers and works without any small-signal assumption, which is applicable for swept frequency measurement at different driving levels and operating wavelengths.

  7. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline.

    Science.gov (United States)

    Ro, J Y; Capra, N F

    2001-05-01

    Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.

  8. Ultrafast Carrier Relaxation in InN Nanowires Grown by Reactive Vapor Transport

    Directory of Open Access Journals (Sweden)

    Zervos Matthew

    2008-01-01

    Full Text Available Abstract We have studied femtosecond carrier dynamics in InN nanowires grown by reactive vapor transport. Transient differential absorption measurements have been employed to investigate the relaxation dynamics of photogenerated carriers near and above the optical absorption edge of InN NWs where an interplay of state filling, photoinduced absorption, and band-gap renormalization have been observed. The interface between states filled by free carriers intrinsic to the InN NWs and empty states has been determined to be at 1.35 eV using CW optical transmission measurements. Transient absorption measurements determined the absorption edge at higher energy due to the additional injected photogenerated carriers following femtosecond pulse excitation. The non-degenerate white light pump-probe measurements revealed that relaxation of the photogenerated carriers occurs on a single picosecond timescale which appears to be carrier density dependent. This fast relaxation is attributed to the capture of the photogenerated carriers by defect/surface related states. Furthermore, intensity dependent measurements revealed fast energy transfer from the hot photogenerated carriers to the lattice with the onset of increased temperature occurring at approximately 2 ps after pulse excitation.

  9. Ultrabroadband polarization splitter based on three-core photonic crystal fiber with a modulation core.

    Science.gov (United States)

    Zhao, Tongtong; Lou, Shuqin; Wang, Xin; Zhou, Min; Lian, Zhenggang

    2016-08-10

    We design an ultrabroadband polarization splitter based on three-core photonic crystal fiber (PCF). A modulation core and two fluorine-doped cores are introduced to achieve an ultrawide bandwidth. The properties of three-core PCF are modeled by using the full-vector finite element method along with the full-vector beam propagation method. Numerical results demonstrate that an ultrabroadband splitter with 320 nm bandwidth with an extinction ratio as low as -20  dB can be achieved by using 52.8 mm long three-core PCF. This splitter also has high compatibility with standard single-mode fibers as the input and output ports due to low splicing loss of 0.02 dB. All the air holes in the proposed structure are circular holes and arranged in a triangular lattice that makes it easy to fabricate.

  10. Statistical Model and Performance Analysis of a Novel Multilevel Polarization Modulation in Local “Twisted” Fibers

    Directory of Open Access Journals (Sweden)

    Pierluigi Perrone

    2017-01-01

    Full Text Available Transmission demand continues to grow and higher capacity optical communication systems are required to economically meet this ever-increasing need for communication services. This article expands and deepens the study of a novel optical communication system for high-capacity Local Area Networks (LANs, based on twisted optical fibers. The complete statistical behavior of this system is shown, designed for more efficient use of the fiber single-channel capacity by adopting an unconventional multilevel polarization modulation (called “bands of polarization”. Starting from simulative results, a possible reference mathematical model is proposed. Finally, the system performance is analyzed in the presence of shot-noise (coherent detection or thermal noise (direct detection.

  11. A recovery principle provides insight into auxin pattern control in the Arabidopsis root

    Science.gov (United States)

    Moore, Simon; Liu, Junli; Zhang, Xiaoxian; Lindsey, Keith

    2017-01-01

    Regulated auxin patterning provides a key mechanism for controlling root growth and development. We have developed a data-driven mechanistic model using realistic root geometry and formulated a principle to theoretically investigate quantitative auxin pattern recovery following auxin transport perturbation. This principle reveals that auxin patterning is potentially controlled by multiple combinations of interlinked levels and localisation of influx and efflux carriers. We demonstrate that (1) when efflux carriers maintain polarity but change levels, maintaining the same auxin pattern requires non-uniform and polar distribution of influx carriers; (2) the emergence of the same auxin pattern, from different levels of influx carriers with the same nonpolar localisation, requires simultaneous modulation of efflux carrier level and polarity; and (3) multiple patterns of influx and efflux carriers for maintaining an auxin pattern do not have spatially proportional correlation. This reveals that auxin pattern formation requires coordination between influx and efflux carriers. We further show that the model makes various predictions that can be experimentally validated. PMID:28220889

  12. Global-Scale Consequences of Magnetic-Helicity Injection and Condensation on the Sun

    Science.gov (United States)

    Mackay, Duncan H.; DeVore, C. Richard; Antiochos, Spiro K.

    2013-01-01

    In the recent paper of Antiochos, a new concept for the injection of magnetic helicity into the solar corona by small-scale convective motions and its condensation onto polarity inversion lines (PILs) has been developed. We investigate this concept through global simulations of the Sun's photospheric and coronal magnetic fields and compare the results with the hemispheric pattern of solar filaments. Assuming that the vorticity of the cells is predominately counter-clockwise/clockwise in the northern/southern hemisphere, the convective motions inject negative/positive helicity into each hemisphere. The simulations show that: (i) On a north-south orientated PIL, both differential rotation and convective motions inject the same sign of helicity which matches that required to reproduce the hemispheric pattern of filaments. (ii) On a high latitude east-west orientated polar crown or sub-polar crown PIL, the vorticity of the cells has to be approximately 2-3 times greater than the local differential rotation gradient in order to overcome the incorrect sign of helicity injection from differential rotation. (iii) In the declining phase of the cycle, as a bipole interacts with the polar field, in some cases helicity condensation can reverse the effect of differential rotation along the East-West lead arm, but not in all cases. The results show that this newly developed concept of magnetic helicity injection and condensation is a viable method to explain the hemispheric pattern of filaments in conjunction with the mechanisms used in Yeates et al. (2008). Future observational studies should focus on determining the vorticity component within convective motions to determine, both its magnitude and latitudinal variation relative to the differential rotation gradient on the Sun.

  13. Spin injection in self-assembled quantum dots coupled with a diluted magnetic quantum well

    International Nuclear Information System (INIS)

    Murayama, A.; Asahina, T.; Souma, I.; Koyama, T.; Hyomi, K.; Nishibayashi, K.; Oka, Y.

    2007-01-01

    Spin injection is studied in self-assembled quantum dots (QDs) of CdSe coupled with a diluted magnetic semiconductor quantum well (DMS-QW) of Zn 1- x - y Cd x Mn y Se, by means of time-resolved circularly polarized photoluminescence (PL). Excitonic PL from the CdSe QDs shows σ - -circular polarization in magnetic fields, mainly due to negative g-values of individual dots, when the energy difference of excitons between the QDs and DMS-QW is large as 300 meV. However, when such energy difference is comparable with LO-phonon energy in the QD, we observe an additional PL peak with the long lifetime as 3.5 ns and σ + -polarization in magnetic fields. It can be attributed to a type-II transition between the down-spin electron injected from the DMS-QW into the QDs, via LO-phonon-assisted resonant tunneling, and the down-spin heavy hole in the DMS-QW. In addition, the electron spin-injection is also evidenced by σ + -polarized PL with the fast rise-time of 20 ps in the QDs

  14. Low-frequency current drive and helicity injection

    International Nuclear Information System (INIS)

    Chan, V.S.; Miller, R.L.; Ohkawa, T.

    1990-01-01

    For ω much-lt Ω i , where Ω i is the ion cyclotron frequency, circularly polarized waves can drive current far exceeding the current resulting from linearly polarized waves. Further, the efficiency can be independent of plasma density. In some cases, this circular polarization may be interpreted in terms of helicity injection. For tokamak applications, where the wavenumber in the toroidal direction is a real quantity, wave helicity is injected only with finite E z waves, where z is the direction of the static magnetic field. The Alfven waves are possible current drive candidates but, in the cylindrical model considered, the compressional wave is weakly damped because E z =0, while the shear Alfven wave is totally absorbed at the surface because of finite E z . A mixture of the two modes is shown to drive an oscillatory surface current even though the efficiency is high and independent of density. A more promising current drive candidate is a fast wave that propagates to the plasma interior and is damped by the minority cyclotron resonance. Near the minority mode conversion region, the fast wave is left-handed circularly polarized and it has a small but finite E z component at high electron temperatures. The current drive efficiency, although not as high as that of the Alfven wave, is still good and independent of density, making it attractive for fusion reactors

  15. Multiple carrier transport in N-face indium nitride

    International Nuclear Information System (INIS)

    Koblmueller, Gregor; Gallinat, Chad S.; Speck, James S.; Umana-Membreno, Gilberto A.; Nener, Brett D.; Parish, Giacinta; Fehlberg, Tamara B.

    2008-01-01

    We present temperature (20-300 K) dependent multi-carrier measurements of electron species in N-face indium nitride. N-face InN samples were grown to different thicknesses (500-2000 nm) via plasma-assisted molecular beam epitaxy on C-face SiC substrates. Surface and bulk electron transport properties were extracted using a quantitative mobility spectrum analysis. Mobility of both bulk and surface electron species increase with film thickness. The temperature dependence of the mobility of both species differs to that of In-polar samples studied previously, while the mobility of surface electrons is more than twice that of In-polar samples with only a slight corresponding reduction in sheet concentration. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Electrical system using phase-shifted carrier signals and related operating methods

    Science.gov (United States)

    Welchko, Brian A; Campbell, Jeremy B

    2012-09-18

    An automotive drive system and methods for making the same are provided. The system includes a three-phase motor and an inverter module. The three-phase motor includes a first set of windings each having a first magnetic polarity; and a second set of windings each having a second magnetic polarity that is opposite the first magnetic polarity. The first set of windings being electrically isolated from the second set of windings. The inverter module includes a first set of phase legs and a second set of phase legs. Each one of the first set of phase legs is coupled to a corresponding phase of the first set of windings, and each one of the second set of phase legs is coupled to a corresponding phase of the second set of windings.

  17. Encapsulation of interleukin-2 in murine erythrocytes and subsequent deposition in mice receiving a subcutaneous injection

    International Nuclear Information System (INIS)

    DeLoach, J.R.; Andrews, K.; Sheffield, C.L.

    1988-01-01

    Radiolabeled recombinant human interleukin-2 (IL-2) was successfully encapsulated in both mouse and sheep erythrocytes. Of the added IL-2, 70% was recovered bound to or encapsulated within the carrier cells. Erythrocytes containing IL-2 were stable in vitro and most of the IL-2 remained associated with the cells following a 16-h incubation at 37 degrees C. When carrier erythrocytes containing IL-2 were injected subcutaneously into mice, intact [ 35 S]IL-2 was detectable in a number of tissues 3 days after injection

  18. Nanostructured lipid carriers system: recent advances in drug delivery.

    Science.gov (United States)

    Iqbal, Md Asif; Md, Shadab; Sahni, Jasjeet Kaur; Baboota, Sanjula; Dang, Shweta; Ali, Javed

    2012-12-01

    Nanostructured lipid carrier (NLC) is second generation smarter drug carrier system having solid matrix at room temperature. This carrier system is made up of physiological, biodegradable and biocompatible lipid materials and surfactants and is accepted by regulatory authorities for application in different drug delivery systems. The availability of many products in the market in short span of time reveals the success story of this delivery system. Since the introduction of the first product, around 30 NLC preparations are commercially available. NLC exhibit superior advantages over other colloidal carriers viz., nanoemulsions, polymeric nanoparticles, liposomes, SLN etc. and thus, have been explored to more extent in pharmaceutical technology. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes NLC versatile delivery system for various routes of administration. The present review gives insights on the definitions and characterization of NLC as colloidal carriers including the production techniques and suitable formulations. This review paper also highlights the importance of NLC in pharmaceutical applications for the various routes of drug delivery viz., topical, oral, pulmonary, ocular and parenteral administration and its future perspective as a pharmaceutical carrier.

  19. A survey of synchrotron radiation devices producing circular or variable polarization

    International Nuclear Information System (INIS)

    Kim, K.J.

    1990-01-01

    This paper reviews the properties and operating principles of the new types of synchrotron radiation devices that produce circular polarization, or polarization that can be modulated in arbitrary fashion

  20. Improved Electron Yield and Spin-Polarization from III-V Photocathodes Via Bias Enhanced Carrier Drift

    International Nuclear Information System (INIS)

    Mulhollan, Gregory A.; Bierman, John; Brachmann, Axel; Clendenin, James E.; Garwin, Edward; Kirby, Robert; Luh, Dah-An

    2005-01-01

    Spin-polarized electrons are commonly used in high energy physics. Future work will benefit from greater polarization. Polarizations approaching 90% have been achieved at the expense of yield. The primary paths to higher polarization are material design and electron transport. Our work addresses the latter. Photoexcited electrons may be preferentially emitted or suppressed by an electric field applied across the active region. We are tuning this forward bias for maximum polarization and yield, together with other parameters, e.g., doping profile. Preliminary measurements have been carried out on bulk and thin film GaAs. As expected, the yield change far from the bandgap is quite large for bulk material. The bias is applied to the bottom (non-activated) side of the cathode so that the accelerating potential as measured with respect to the ground potential chamber walls is unchanged for different front-to-back cathode bias values. The size of the bias to cause an appreciable effect is rather small reflecting the low drift kinetic energy in the zero bias case

  1. Phase-Modulated Optical Communication Systems

    CERN Document Server

    Ho, Keang-Po

    2005-01-01

    Fiber-optic communication systems have revolutionized our telecommunication infrastructures – currently, almost all telephone land-line, cellular, and internet communications must travel via some form of optical fibers. In these transmission systems, neither the phase nor frequency of the optical signal carries information – only the intensity of the signal is used. To transmit more information in a single optical carrier, the phase of the optical carrier must be explored. As a result, there is renewed interest in phase-modulated optical communications, mainly in direct-detection DPSK signals for long-haul optical communication systems. When optical amplifiers are used to maintain certain signal level among the fiber link, the system is limited by amplifier noises and fiber nonlinearities. Phase-Modulated Optical Communication Systems surveys this newly popular area, covering the following topics: The transmitter and receiver for phase-modulated coherent lightwave systems Method for performance analysis o...

  2. Analysis of small-signal intensity modulation of semiconductor ...

    Indian Academy of Sciences (India)

    Computer simulation of the model is applied to 1.55-µm ... Semiconductor laser; small-signal modulation; modulation response; gain suppression. ... originates from intraband relaxation processes of charge carriers that extend for times as ...

  3. Direct Observation of Ultrafast Hole Injection from Lead Halide Perovskite by Differential Transient Transmission Spectroscopy.

    Science.gov (United States)

    Ishioka, Kunie; Barker, Bobby G; Yanagida, Masatoshi; Shirai, Yasuhiro; Miyano, Kenjiro

    2017-08-17

    Efficient charge separation at the interfaces of the perovskite with the carrier transport layers is crucial for perovskite solar cells to achieve high power conversion efficiency. We present a systematic experimental study on the hole injection dynamics from MAPbI 3 perovskite to three typical hole transport materials (HTMs). We extract the carrier dynamics directly related to the hole injection by employing a pump light with short absorption depth and comparing the transient transmission signals excited on the two sides of the sample. The differential transmission signals reveal the hole injections to PTAA and PEDOT:PSS to be complete within 1 and 2 ps, respectively, and that to NiO x to exhibit an additional slow process on a 40 ps time scale. The obtained injection dynamics are discussed in comparison with the device performance of the solar cells containing the same MAPbI 3 /HTM interfaces.

  4. Polarization simulations in the RHIC run 15 lattice

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    RHIC polarized proton Run 15 uses a new acceleration ramp optics, compared to RHIC Run 13 and earlier runs, in relation with electron-lens beam-beam compensation developments. The new optics induces different strengths in the depolarizing snake resonance sequence, from injection to top energy. As a consequence, polarization transport along the new ramp has been investigated, based on spin tracking simulations. Sample results are reported and discussed.

  5. Impact of charge carrier injection on single-chain photophysics of conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Felix J.; Vogelsang, Jan, E-mail: jan.vogelsang@physik.uni-regensburg.de; Lupton, John M. [Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg (Germany)

    2016-06-27

    Charges in conjugated polymer materials have a strong impact on the photophysics and their interaction with the primary excited state species has to be taken into account in understanding device properties. Here, we employ single-molecule spectroscopy to unravel the influence of charges on several photoluminescence (PL) observables. The charges are injected either stochastically by a photochemical process or deterministically in a hole-injection sandwich device configuration. We find that upon charge injection, besides a blue-shift of the PL emission and a shortening of the PL lifetime due to quenching and blocking of the lowest-energy chromophores, the non-classical photon arrival time distribution of the multichromophoric chain is modified towards a more classical distribution. Surprisingly, the fidelity of photon antibunching deteriorates upon charging, whereas one would actually expect the opposite: the number of chromophores to be reduced. A qualitative model is presented to explain the observed PL changes. The results are of interest to developing a microscopic understanding of the intrinsic charge-exciton quenching interaction in devices.

  6. Development of integrated control system for smart factory in the injection molding process

    Science.gov (United States)

    Chung, M. J.; Kim, C. Y.

    2018-03-01

    In this study, we proposed integrated control system for automation of injection molding process required for construction of smart factory. The injection molding process consists of heating, tool close, injection, cooling, tool open, and take-out. Take-out robot controller, image processing module, and process data acquisition interface module are developed and assembled to integrated control system. By adoption of integrated control system, the injection molding process can be simplified and the cost for construction of smart factory can be inexpensive.

  7. Kerfless epitaxial silicon wafers with 7 ms carrier lifetimes and a wide lift-off process window

    Science.gov (United States)

    Gemmel, Catherin; Hensen, Jan; David, Lasse; Kajari-Schröder, Sarah; Brendel, Rolf

    2018-04-01

    Silicon wafers contribute significantly to the photovoltaic module cost. Kerfless silicon wafers that grow epitaxially on porous silicon (PSI) and are subsequently detached from the growth substrate are a promising lower cost drop-in replacement for standard Czochralski (Cz) wafers. However, a wide technological processing window appears to be a challenge for this process. This holds in particularly for the etching current density of the separation layer that leads to lift-off failures if it is too large or too low. Here we present kerfless PSI wafers of high electronic quality that we fabricate on weakly reorganized porous Si with etch current densities varying in a wide process window from 110 to 150 mA/cm2. We are able to detach all 17 out of 17 epitaxial wafers. All wafers exhibit charge carrier lifetimes in the range of 1.9 to 4.3 ms at an injection level of 1015 cm-3 without additional high-temperature treatment. We find even higher lifetimes in the range of 4.6 to 7.0 ms after applying phosphorous gettering. These results indicate that a weak reorganization of the porous layer can be beneficial for a large lift-off process window while still allowing for high carrier lifetimes.

  8. Dependence of N-polar GaN rod morphology on growth parameters during selective area growth by MOVPE

    Science.gov (United States)

    Li, Shunfeng; Wang, Xue; Mohajerani, Matin Sadat; Fündling, Sönke; Erenburg, Milena; Wei, Jiandong; Wehmann, Hergo-Heinrich; Waag, Andreas; Mandl, Martin; Bergbauer, Werner; Strassburg, Martin

    2013-02-01

    Selective area growth of GaN rods by metalorganic vapor phase epitaxy has attracted great interest due to its novel applications in optoelectronic and photonics. In this work, we will present the dependence of GaN rod morphology on various growth parameters i.e. growth temperature, H2/N2 carrier gas concentration, V/III ratio, total carrier gas flow and reactor pressure. It is found that higher growth temperature helps to increase the aspect ratio of the rods, but reduces the height homogeneity. Furthermore, H2/N2 carrier gas concentration is found to be a critical factor to obtain vertical rod growth. Pure nitrogen carrier gas leads to irregular growth of GaN structure, while an increase of hydrogen carrier gas results in vertical GaN rod growth. Higher hydrogen carrier gas concentration also reduces the diameter and enhances the aspect of the GaN rods. Besides, increase of V/III ratio causes reduction of the aspect ratio of N-polar GaN rods, which could be explained by the relatively lower growth rate on (000-1) N-polar top surface when supplying more ammonia. In addition, an increase of the total carrier gas flow leads to a decrease in the diameter and the average volume of GaN rods. These phenomena are tentatively explained by the change of partial pressure of the source materials and boundary layer thickness in the reactor. Finally, it is shown that the average volume of the N-polar GaN rods keeps a similar value for a reactor pressure PR of 66 and 125 mbar, while an incomplete filling of the pattern opening is observed with PR of 250 mbar. Room temperature photoluminescence spectrum of the rods is also briefly discussed.

  9. Nonlinear and anisotropic polarization rotation in two-dimensional Dirac materials

    Science.gov (United States)

    Singh, Ashutosh; Ghosh, Saikat; Agarwal, Amit

    2018-05-01

    We predict nonlinear optical polarization rotation in two-dimensional massless Dirac systems including graphene and 8-P m m n borophene. When illuminated, a continuous-wave optical field leads to a nonlinear steady state of photoexcited carriers in the medium. The photoexcited population inversion and the interband coherence give rise to a finite transverse optical conductivity σx y(ω ) . This in turn leads to definitive signatures in associated Kerr and Faraday polarization rotation, which are measurable in a realistic experimental scenario.

  10. Polarized wiggler for NSLS X-ray ring

    International Nuclear Information System (INIS)

    Friedman, A.; Zhang, X.; Krinsky, S.; Blum, E.B.

    1993-01-01

    We examine the properties of an elliptically polarized wiggler that will generate circularly polarized photons with energy spectrum of 3--12 KeV. The vertical wiggler magnetic field is produced by permanent magnets while the horizontal wiggler field is generated by electric coils capable of AC excitation. The radiation parameters of the wiggler is discussed. We consider AC excitation of the wiggler to produce the time modulation of the elliptic polarization. The power is dissipated in the vacuum chamber due to the eddy current

  11. Enhancement of carrier mobility in all-inkjet-printed organic thin-film transistors using a blend of poly(3-hexylthiophene) and carbon nanoparticles

    International Nuclear Information System (INIS)

    Lin, Chih-Ting; Hsu, Chun-Hao; Chen, Iu-Ren; Lee, Chang-Hung; Wu, Wen-Jung

    2011-01-01

    To enhance the carrier mobility of all-inkjet-printed organic thin film transistors, we fabricated devices that incorporated poly(3-hexylthiophene) (P3HT) and carbon nanoparticles (CNPs). The fabricated devices had an on/off ratio of 10 4 , which is one order less than that of pristine organic thin-film transistors (OTFTs). The maximum carrier mobility as high as 0.053 cm 2 /V-s was achieved for a CNP/P3HT weight-weight ratio of 7/100. This degree of mobility is 10 times greater than average mobility of pristine P3HT-OTFTs. X-ray diffraction and scanning electron microscopy images reveal that the carrier mobility was enhanced by reducing the injection barrier and enhancing the carrier injection. This work demonstrates the feasibility of all-inkjet-printed OTFT technology.

  12. Density Functional Theory Calculations of Activation Energies for Carrier Capture by Defects in Semiconductors

    Science.gov (United States)

    Modine, N. A.; Wright, A. F.; Lee, S. R.

    The rate of defect-induced carrier recombination is determined by both defect levels and carrier capture cross-sections. Density functional theory (DFT) has been widely and successfully used to predict defect levels, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry developed the theory of carrier-capture by multiphonon emission in the 1970s and showed that carrier-capture cross-sections differ between defects primarily due to differences in their carrier capture activation energies. We present an approach to using DFT to calculate carrier capture activation energies that does not depend on an assumed configuration coordinate and that fully accounts for anharmonic effects, which can substantially modify carrier activation energies. We demonstrate our approach for intrinisic defects in GaAs and GaN and discuss how our results depend on the choice of exchange-correlation functional and the treatment of spin polarization. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  13. Pulse width modulation inverter with battery charger

    Science.gov (United States)

    Slicker, James M.

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  14. Optical properties of polarization-dependent geometrical phase elements with partially polarized light

    International Nuclear Information System (INIS)

    Gorodetski, Y.; Biener, G.; Niv, A.; Kleiner, V.; Hasman, E.

    2005-01-01

    Full Text:The behavior of geometrical phase elements illuminated with partially polarized monochromatic beams is being theoretically as well as experimentally investigated. The element discussed in this paper is composed of wave plates with retardation and space-variant orientation angle. We found that a beam emerging from such an element comprises two polarization orders of right and left-handed circularly polarized states with conjugate geometrical phase modification. This phase equals twice the orientation angle of the space-variant wave plate comprising the element. Apart from the two polarization orders, the emerging beam coherence polarization matrix comprises a matrix termed as the vectorial interference matrix. This matrix contains the information concerning the correlation between the two orthogonal circularly polarized portions of the incident beam. In this paper we measure this correlation by a simple interference experiment. Furthermore, we found that the equivalent mutual intensity of the emerging beam is being modulated according to the geometrical phase induced by the element. Other interesting phenomena along propagation will be discussed theoretically and experimentally demonstrated. We demonstrate experimentally our analysis by using a spherical geometrical phase element, which is realized by use of space-variant sub wavelength grating and illuminated with a CO 2 laser radiation of 10.6μm wavelength

  15. Improved performance of quantum dot light emitting diode by modulating electron injection with yttrium-doped ZnO nanoparticles

    Science.gov (United States)

    Li, Jingling; Guo, Qiling; Jin, Hu; Wang, Kelai; Xu, Dehua; Xu, Yongjun; Xu, Gang; Xu, Xueqing

    2017-10-01

    In a typical light emitting diode (QD-LED), with ZnO nanoparticles (NPs) serving as the electron transport layer (ETL) material, excessive electron injection driven by the matching conduction band maximum (CBM) between the QD and this oxide layer usually causes charge imbalance and degrades the device performance. To address this issue, the electronic structure of ZnO NPs is modified by the yttrium (Y) doping method. We demonstrate that the CBM of ZnO NPs has a strong dependence on the Y-doping concentration, which can be tuned from 3.55 to 2.77 eV as the Y doping content increases from 0% to 9.6%. This CBM variation generates an enlarged barrier between the cathode and this ZnO ETL benefits from the modulation of electron injection. By optimizing electron injection with the use of a low Y-doped (2%) ZnO to achieve charge balance in the QD-LED, device performance is significantly improved with maximum luminance, peak current efficiency, and maximal external quantum efficiency increase from 4918 cd/m2, 11.3 cd/A, and 4.5% to 11,171 cd/m2, 18.3 cd/A, and 7.3%, respectively. This facile strategy based on the ETL modification enriches the methodology of promoting QD-LED performance.

  16. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    Science.gov (United States)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  17. Minority-carrier lifetime in InP as a function of light bias

    Science.gov (United States)

    Yater, Jane A.; Weinberg, I.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    Minority-carrier lifetime in InP is studied as a function of doping level and laser intensity using time-resolved photoluminescence. A continuous wave diode laser illuminates bulk InP and acts as a light bias, injecting a steady-state concentration of carriers. A 200 ps laser pulse produces a small transient signal on top of the steady-state luminescence, allowing lifetime to be measured directly as a function of incident intensity. For p-InP, lifetime increases with light bias up to a maximum value. Bulk recombination centers are presumably filled to saturation, allowing minority carriers to live longer. The saturation bias scales with dopant concentration for a particular dopant species. As light bias is increased for n-InP, minority-carrier lifetime increases slightly but then decreases, suggesting radiative recombination as a dominant decay mechanism.

  18. Injection locking of optomechanical oscillators via acoustic waves.

    Science.gov (United States)

    Huang, Ke; Hossein-Zadeh, Mani

    2018-04-02

    Injection locking is an effective technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators. As such, exploring new mechanisms for injection locking of emerging oscillators is important for their usage in various systems. Here, we present the first demonstration of injection locking of a radiation pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can be easily implemented on various platforms to lock different types of OMOs independent of their size and structure. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance, matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity, and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology, and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.

  19. Polarization coupling of vector Bessel–Gaussian beams

    International Nuclear Information System (INIS)

    Takeuchi, Ryushi; Kozawa, Yuichi; Sato, Shunichi

    2013-01-01

    We report polarization coupling of radial and azimuthal electric field components of a vector light beam as predicted by the fact that the vector Helmholtz equation is expressed as coupled differential equations in cylindrical coordinates. To clearly observe the polarization variation of a beam as it propagates, higher order transverse modes of a vector Bessel–Gaussian beam were generated by a gain distribution modulation technique, which created a narrow ring-shaped gain region in a Nd:YVO 4 crystal. The polarization coupling was confirmed by the observation that the major polarization component of a vector Bessel–Gaussian beam alternates between radial and azimuthal components along with the propagation. (paper)

  20. Research on Continuous Injection Direct Rolling Process for PMMA Optical Plate

    Directory of Open Access Journals (Sweden)

    HaiXiong Wang

    2014-06-01

    Full Text Available Continuous injection direct rolling (CIDR combined intermittent injection and rolling process is a new technology for molding optical polymer plates with microstructured patterns; research on forming PMMA optical plates is an aspect of it in this paper. The equipment of CIDR process consists of plastic injection module, precision rolling module, and automatic coiling module. Based on the establishing mathematical CIDR models, numerical analysis was used to explode the distribution of velocity, temperature, and pressure in injection-rolling zone. The simulation results show that it is feasible to control the temperature, velocity, and injection-rolling force, so it can form polymer plate under certain process condition. CIDR experiment equipment has been designed and produced. PMMA optical plate was obtained by CIDR experiments, longitudinal thickness difference is 0.005 mm/200 mm, horizontal thickness difference is 0.02/200 mm, transmittance is 86.3%, Haze is 0.61%, and the difference is little compared with optical glasses. So it can be confirmed that CIDR process is practical to produce PMMA optical plates.

  1. [Study on the movement of the carrier recombination region in organic light-emitting diodes (OLEDs) based on DPVBi/Alq3].

    Science.gov (United States)

    Yan, Guang; Zhao, Su-ling; Xu, Zheng; Zhang, Fu-jun; Kong, Chao; Liu, Xiao-dong; Gong, Wei; Gao, Li-yan

    2011-07-01

    Series of organic light emitting devices with basic structure of ITO/PCBM: PVK(x Wt%, approximately 40 nm)/DPVBi(30 nm)/Alq3 (30 nm)/Al were fabricated in order to investigate the carrier recombination region movement in these devices. The carrier injection-dependent, the carrier transport-dependent and the voltage-dependent carrier recombination region movements were investigated respectively by modifying cathode with lithium fluoride, by changing the doping concentration of PCBM and by changing the voltage on the devices. The physical mechanism behind the voltage-dependent carrier recombination region movement was discussed.

  2. Carrier-based modulation schemes for various three-level matrix converters

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, P.C.; Rong, R.C.

    2008-01-01

    different performance merits. To avoid confusion and hence fasten the converter applications in the industry, it would surely be better for modulation schemes to be developed from a common set of modulation principles that unfortunately has not yet been thoroughly defined. Contributing to that area...... a limited set of switching vectors because of its lower semiconductor count. Through simulation and experimental testing, all the evaluated matrix converters are shown to produce satisfactory sinusoidal input and output quantities using the same set of generic modulation principles, which can conveniently...

  3. Finding buried metallic pipes using a non-destructive approach based on 3D time-domain induced polarization data

    Science.gov (United States)

    Shao, Zhenlu; Revil, André; Mao, Deqiang; Wang, Deming

    2018-04-01

    The location of buried utility pipes is often unknown. We use the time-domain induced polarization method to non-intrusively localize metallic pipes. A new approach, based on injecting a primary electrical current between a pair of electrodes and measuring the time-lapse voltage response on a set of potential electrodes after shutting down this primary current is used. The secondary voltage is measured on all the electrodes with respect to a single electrode used as a reference for the electrical potential, in a way similar to a self-potential time lapse survey. This secondary voltage is due to the formation of a secondary current density in the ground associated with the polarization of the metallic pipes. An algorithm is designed to localize the metallic object using the secondary voltage distribution by performing a tomography of the secondary source current density associated with the polarization of the pipes. This algorithm is first benchmarked on a synthetic case. Then, two laboratory sandbox experiments are performed with buried metallic pipes located in a sandbox filled with some clean sand. In Experiment #1, we use a horizontal copper pipe while in Experiment #2 we use an inclined stainless steel pipe. The result shows that the method is effective in localizing these two pipes. At the opposite, electrical resistivity tomography is not effective in localizing the pipes because they may appear resistive at low frequencies. This is due to the polarization of the metallic pipes which blocks the charge carriers at its external boundaries.

  4. Carrier and polarization dynamics in monolayer MoS2: temperature and power dependence

    Science.gov (United States)

    Urbaszek, Bernhard; Lagarde, D.; Bouet, L.; Amand, T.; Marie, X.; Zhu, C. R.; Liu, B. L.; Tan, P. H.

    2014-03-01

    In monolayer (ML) MoS2 optical transitions across the direct bandgap are governed by chiral selection rules, allowing optical k-valley initialization. Here we present the first time resolved photoluminescence (PL) polarization measurements in MoS2 MLs, providing vital information on the electron valley dynamics. Using quasi-resonant excitation of the A-exciton transitions, we can infer that the PL decays within τ ~= 4ps. The PL polarization of Pc ~ 60 % remains nearly constant in time for experiments from 4K - 300K, a necessary condition for the success of future Valley Hall experiments. τ does not vary significantly over this temperature range. This is surprising when considering the decrease of Pc in continuous wave experiments when going from 4K to 300K reported in the literature. By tuning the laser following the shift of the A-exciton resonance with temperature we are able to recover at 300K ~ 80 % of the polarization observed at 4K. For pulsed laser excitation, we observe a decrease of Pc with increasing laser power at all temperatures.

  5. Transparent thin film polarizing and optical control systems

    Directory of Open Access Journals (Sweden)

    Nelson V. Tabiryan

    2011-06-01

    Full Text Available We show that a diffractive waveplate can be combined with a phase retardation film for fully converting light of arbitrary polarization state into a polarized light. Incorporating a photonic bandgap layer into a system of such polarizers that unify different polarization states in the input light into a single polarization state at its output, rather than absorbing or reflecting half of it, we developed and demonstrated a polarization-independent optical controller capable of switching between transmittive and reflective states. The transition between those states is smoothly controlled with low-voltage and low-power sources. Using versatile fabrication methods, this “universally polarizing optical controller” can be integrated into a thin package compatible with a variety of display, spatial light modulation, optical communication, imaging and other photonics systems.

  6. Controlling the efficiency of spin injection into graphene by carrier drift

    NARCIS (Netherlands)

    Jozsa, C.; Popinciuc, M.; Tombros, N.; Jonkman, H. T.; van Wees, B. J.

    Electrical spin injection from ferromagnetic metals into graphene is hindered by the impedance mismatch between the two materials. This problem can be reduced by the introduction of a thin tunnel barrier at the interface. We present room-temperature nonlocal spin valve measurements in

  7. Modulation detection as a function of carrier frequency and level

    NARCIS (Netherlands)

    Fassel, R.; Kohlrausch, A.G.

    1995-01-01

    This paper describes recent experiments investigating temporal processing in the auditory system. Subjects had to discriminate sinusoidal signals with a flat temporal envelope from those with a sinusoidal amplitude modulation. The modulation depth at threshold was measured for a wide range of

  8. A joint recovery scheme for carrier frequency offset and carrier phase noise using extended Kalman filter

    Science.gov (United States)

    Li, Linqian; Feng, Yiqiao; Zhang, Wenbo; Cui, Nan; Xu, Hengying; Tang, Xianfeng; Xi, Lixia; Zhang, Xiaoguang

    2017-07-01

    A joint carrier recovery scheme for polarization division multiplexing (PDM) coherent optical transmission system is proposed and demonstrated, in which the extended Kalman filter (EKF) is exploited to estimate and equalize the carrier frequency offset (CFO) and carrier phase noise (CPN) simultaneously. The proposed method is implemented and verified in the PDM-QPSK system and the PDM-16QAM system with the comparisons to conventional improved Mth-power (IMP) algorithm for CFO estimation, blind phase search (BPS) algorithm or Viterbi-Viterbi (V-V) algorithm for CPN recovery. It is demonstrated that the proposed scheme shows high CFO estimation accuracy, with absolute mean estimation error below 1.5 MHz. Meanwhile, the proposed method has the CFO tolerance of [±3 GHz] for PDM-QPSK system and [±0.9 GHz] for PDM-16QAM system. Compare with IMP/BPS and IMP/V-V, the proposed scheme can enhance the linewidth symbol duration product from 3 × 10-4 (IMP/BPS) and 2 × 10-4 (IMP/V-V) to 1 × 10-3 for PDM-QPSK, and from 1 × 10-4 (IMP/BPS) to 3 × 10-4 for PDM-16QAM, respectively, at the 1 dB optical signal-to-noise ratio (OSNR) penalty. The proposed Kalman filter also shows a fast convergence with only 100 symbols and much lower computational complexity.

  9. A laboratory feasibility study on a new electrokinetic nutrient injection pattern and bioremediation of phenanthrene in a clayey soil

    International Nuclear Information System (INIS)

    Xu Wei; Wang Cuiping; Liu Haibin; Zhang Zhiyuan; Sun Hongwen

    2010-01-01

    Electrokinetic (EK) injection has recently been proposed to supply nutrients and electron acceptors in bioremediation of low permeable soils. However, effective pH control and uniform injection of inorganic ions have yet to be developed. The present study investigated a new EK injection pattern, which combined electrolyte circulation and electrode polarity reversal on a clayey soil. Soil pH could be controlled ranging from 7.0 to 7.6 by circulating the mixed electrolyte at a suitable rate (800 mL/h in this study) without any buffer. Ammonium and nitrate ions were distributed more uniformly in soil by electrode polarity reversal. The developed electrokinetic injection technology was applied primarily in bioremediation of phenanthrene contaminated soil. Over 80% of the initial 200 mg/kg phenanthrene in soil could be removed in 20 d, and greater phenanthrene removal was achieved using electrode polarity reversal. Hence, the present study provides a promising electrokinetic injection technology for bioremediation of contaminated soils.

  10. Injection control development of the JT-60U electron cyclotron heating system

    Energy Technology Data Exchange (ETDEWEB)

    Hiranai, Shinichi; Shinozaki, Shin-ichi; Yokokura, Kenji; Moriyama, Shinichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sato, Fumiaki [Nippon Advanced Technology Co., Ltd., Tokai, Ibaraki (Japan); Suzuki, Yasuo [Atomic Energy General Service Co., Ltd., Tokai, Ibaraki (Japan); Ikeda, Yoshitaka [Japan Atomic Energy Research Inst., Kashiwa, Chiba (Japan)

    2003-03-01

    The JT-60U electron cyclotron heating (ECH) System injects a millimeteric wave at 110 GHz into the JT-60 Plasma, and heats the plasma or drives a current locally to enhance the confinement performance of the JT-60 plasma. The system consists of four sets of high power gyrotrons, high voltage power supplies and transmission lines, and two antennas that launch electron cyclotron (EC) beams toward the plasma. The key features of the injection control system are streering of the direction of the EC beam by driving the movable mirror in the antenna, and capability to set any combination of polarization angle and ellipticity by rotating the two grooved mirrors in the polarizers. This report represents the design, fabrication and improvements of the injection control system. (author)

  11. Hγ Line Spectrum of Intermediate Polars

    Directory of Open Access Journals (Sweden)

    Yonggi Kim

    1998-06-01

    Full Text Available Kim & Beuermann (1995, 1996 have developed a model for the propagation of X-rays from the accreting white dwarf through the infalling material and the re-emission of the energy deposited by photo-absorption in the optical (and UV spectral range. By using this model, we calculate the profiles of the Hγ emission-line spectrum of intermediate polars. Photoabsorption of X-rays by the infalling material is the dominant process in forming the observed energy-dependent rotational modulation of the X-ray flux. X-ray and optical modulations are sensitive to model parameters in different ways. In principle, these dependencies allow us to obtain improved insight into the accretion geometry of the intermediate polars. We present results of our calculations and compare them with the Hβ line spectrum (Kim & Beuermann 1996.

  12. Injection locking of optomechanical oscillators via acoustic waves

    Science.gov (United States)

    Huang, Ke; Hossein-Zadeh, Mani

    2018-04-01

    Injection locking is a powerful technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators using similar or other types of oscillators. Here, we present the first demonstration of injection locking of a radiation-pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can easily be implemented on various platforms. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.

  13. Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites

    Science.gov (United States)

    Liu, X. C.; Han, J. H.; Zhao, H. F.; Yan, H. C.; Shi, Y.; Jin, M. X.; Liu, C. L.; Ding, D. J.

    2018-05-01

    Excited-state charge-carrier dynamics governs the performance of organometal trihalide perovskites (OTPs) and is strongly influenced by the crystal structure. Characterizing the excited-state charge-carrier dynamics in OTPs under high pressure is imperative for providing crucial insights into structure-property relations. Here, we conduct in situ high-pressure femtosecond transient absorption spectroscopy experiments to study the excited-state carrier dynamics of CH3NH3PbBr3 (MAPbBr3) under hydrostatic pressure. The results indicate that compression is an effective approach to modulate the carrier dynamics of MAPbBr3. Across each pressure-induced phase, carrier relaxation, phonon scattering, and Auger recombination present different pressure-dependent properties under compression. Responsiveness is attributed to the pressure-induced variation in the lattice structure, which also changes the electronic band structure. Specifically, simultaneous prolongation of carrier relaxation and Auger recombination is achieved in the ambient phase, which is very valuable for excess energy harvesting. Our discussion provides clues for optimizing the photovoltaic performance of OTPs.

  14. Ionization detector, electrode configuration and single polarity charge detection method

    Science.gov (United States)

    He, Z.

    1998-07-07

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge. 10 figs.

  15. New pediatric vision screener employing polarization-modulated, retinal-birefringence-scanning-based strabismus detection and bull's eye focus detection with an improved target system: opto-mechanical design and operation

    Science.gov (United States)

    Irsch, Kristina; Gramatikov, Boris I.; Wu, Yi-Kai; Guyton, David L.

    2014-06-01

    Amblyopia ("lazy eye") is a major public health problem, caused by misalignment of the eyes (strabismus) or defocus. If detected early in childhood, there is an excellent response to therapy, yet most children are detected too late to be treated effectively. Commercially available vision screening devices that test for amblyopia's primary causes can detect strabismus only indirectly and inaccurately via assessment of the positions of external light reflections from the cornea, but they cannot detect the anatomical feature of the eyes where fixation actually occurs (the fovea). Our laboratory has been developing technology to detect true foveal fixation, by exploiting the birefringence of the uniquely arranged Henle fibers delineating the fovea using retinal birefringence scanning (RBS), and we recently described a polarization-modulated approach to RBS that enables entirely direct and reliable detection of true foveal fixation, with greatly enhanced signal-to-noise ratio and essentially independent of corneal birefringence (a confounding variable with all polarization-sensitive ophthalmic technology). Here, we describe the design and operation of a new pediatric vision screener that employs polarization-modulated, RBS-based strabismus detection and bull's eye focus detection with an improved target system, and demonstrate the feasibility of this new approach.

  16. New pediatric vision screener employing polarization-modulated, retinal-birefringence-scanning-based strabismus detection and bull's eye focus detection with an improved target system: opto-mechanical design and operation.

    Science.gov (United States)

    Irsch, Kristina; Gramatikov, Boris I; Wu, Yi-Kai; Guyton, David L

    2014-06-01

    Amblyopia ("lazy eye") is a major public health problem, caused by misalignment of the eyes (strabismus) or defocus. If detected early in childhood, there is an excellent response to therapy, yet most children are detected too late to be treated effectively. Commercially available vision screening devices that test for amblyopia's primary causes can detect strabismus only indirectly and inaccurately via assessment of the positions of external light reflections from the cornea, but they cannot detect the anatomical feature of the eyes where fixation actually occurs (the fovea). Our laboratory has been developing technology to detect true foveal fixation, by exploiting the birefringence of the uniquely arranged Henle fibers delineating the fovea using retinal birefringence scanning (RBS), and we recently described a polarization-modulated approach to RBS that enables entirely direct and reliable detection of true foveal fixation, with greatly enhanced signal-to-noise ratio and essentially independent of corneal birefringence (a confounding variable with all polarization-sensitive ophthalmic technology). Here, we describe the design and operation of a new pediatric vision screener that employs polarization-modulated, RBS-based strabismus detection and bull's eye focus detection with an improved target system, and demonstrate the feasibility of this new approach.

  17. Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices

    International Nuclear Information System (INIS)

    Kioupakis, Emmanouil; Yan, Qimin; Steiauf, Daniel; Van de Walle, Chris G

    2013-01-01

    Nitride light-emitting diodes are a promising solution for efficient solid-state lighting, but their performance at high power is affected by the efficiency-droop problem. Previous experimental and theoretical work has identified Auger recombination, a three-particle nonradiative carrier recombination mechanism, as the likely cause of the droop. In this work, we use first-principles calculations to elucidate the dependence of the radiative and Auger recombination rates on temperature, carrier density and quantum-well confinement. Our calculated data for the temperature dependence of the recombination coefficients are in good agreement with experiment and provide further validation on the role of Auger recombination in the efficiency reduction. Polarization fields and phase-space filling negatively impact device efficiency because they increase the operating carrier density at a given current density and increase the fraction of carriers lost to Auger recombination. (paper)

  18. Electrically Injected UV-Visible Nanowire Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, George T.; Li, Changyi; Li, Qiming; Liu, Sheng; Wright, Jeremy Benjamin; Brener, Igal; Luk, Ting -Shan; Chow, Weng W.; Leung, Benjamin; Figiel, Jeffrey J.; Koleske, Daniel D.; Lu, Tzu-Ming

    2015-09-01

    There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasers emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.

  19. Minority Carrier Lifetime Studies of Narrow Bandgap Antimonide Superlattices

    Science.gov (United States)

    Hoglund, Linda; Ting, David Z.; Khoshakhlagh, Arezou; Soibel, Alexander; Hill, Cory J.; Fisher, Anita; Keo, Sam; Gunapala, Sarath D.

    2014-01-01

    In this study optical modulation response and photoluminescence spectroscopy were used to study mid-wave Ga-free InAs/InAsSb superlattices. The minority carrier lifetimes in the different samples varied from 480 ns to 4700 ns, partly due to different background doping concentrations. It was shown that the photoluminescence intensity can be used as a fast non-destructive tool to predict the material quality. It was also demonstrated that it is crucial to use a low excitation power in the photoluminescence measurements in order to get a good correlation between the photoluminescence intensity and the minority carrier lifetime.

  20. Nonlinear Magnetic Phenomena in Highly Polarized Target Materials

    CERN Document Server

    Kiselev, Yu F

    2007-01-01

    The report introduces and surveys nonlinear magnetic phenomena which have been observed at high nuclear polarizations in polarized targets of the SMC and of the COMPASS collaborations at CERN. Some of these phenomena, namely the frequency modulation eect and the distortion of the NMR line shape, promote the development of the polarized target technique. Others, as the spin-spin cross-relaxation between spin subsystems can be used for the development of quantum statistical physics. New findings bear on an electromagnetic noise and the spectrally resolved radiation from LiD with negatively polarized nuclei detected by low temperature bolometers. These nonlinear phenomena need to be taken into account for achieving the ultimate polarizations.

  1. V123 Beam Synchronous Encoder Module

    International Nuclear Information System (INIS)

    Kerner, T.; Conkling, C. R.; Oerter, B.

    1999-01-01

    The V123 Synchronous Encoder Module transmits events to distributed trigger modules and embedded decoders around the RHIC rings where they are used to provide beam instrumentation triggers [1,2,3]. The RHIC beam synchronous event link hardware is mainly comprised of three VMEbus board designs, the central input modules (V201), and encoder modules (V123), and the distributed trigger modules (V124). Two beam synchronous links, one for each ring, are distributed via fiberoptic and fanned out via twisted wire pair cables. The V123 synchronizes with the RF system clock derived from the beam bucket frequency and a revolution fiducial pulse. The RF system clock is used to create the beam synchronous event link carrier and events are synchronized with the rotation fiducial. A low jitter RF clock is later recovered from this carrier by phase lock loops in the trigger modules. Prioritized hardware and software triggers fill up to 15 beam event code transmission slots per revolution while tracking the ramping RF acceleration frequency and storage frequency. The revolution fiducial event is always the first event transmitted which is used to synchronize the firing of the abort kicker and to locate the first bucket for decoders distributed about the ring

  2. High luminosity polarized proton collisions at RHIC

    International Nuclear Information System (INIS)

    Roser, T.

    2001-01-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) provides the unique opportunity to collide polarized proton beams at a center-of-mass energy of up to 500 GeV and luminosities of up to 2 x 10 32 cm -2 s -1 . Such high luminosity and high energy polarized proton collisions will open up the possibility of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. After successful operation of RHIC with gold beams polarized protons from the AGS have been successfully injected into RHIC and accelerated using a full Siberian snakes built from four superconducting helical dipoles. A new high energy proton polarimeter was also successfully commissioned. Operation with two snakes per RHIC ring is planned for next year

  3. Modulator-free quadrature amplitude modulation signal synthesis

    Science.gov (United States)

    Liu, Zhixin; Kakande, Joseph; Kelly, Brian; O'Carroll, John; Phelan, Richard; Richardson, David J.; Slavík, Radan

    2014-12-01

    The ability to generate high-speed on-off-keyed telecommunication signals by directly modulating a semiconductor laser’s drive current was one of the most exciting prospective applications of the nascent field of laser technology throughout the 1960s. Three decades of progress led to the commercialization of 2.5 Gbit s-1-per-channel submarine fibre optic systems that drove the growth of the internet as a global phenomenon. However, the detrimental frequency chirp associated with direct modulation forced industry to use external electro-optic modulators to deliver the next generation of on-off-keyed 10 Gbit s-1 systems and is absolutely prohibitive for today’s (>)100 Gbit s-1 coherent systems, which use complex modulation formats (for example, quadrature amplitude modulation). Here we use optical injection locking of directly modulated semiconductor lasers to generate complex modulation format signals showing distinct advantages over current and other currently researched solutions.

  4. Multilevel Modulation formats for Optical Communication

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee

    2008-01-01

    This thesis studies the use of multilevel modulation formats for optical communication systems. Multilevel modulation is an attractive method of increasing the spectral efficiency of optical communication systems. Various modulation formats employing phase modulation, amplitude modulation...... or a combination of the two have been studied. The use of polarization multiplexing (PolMux) to double the bit rate has also been investigated. The impact of transmission impairments such as chromatic dispersion, self phase modulation and cross phase modulation has been investigated. The feasibility of multilevel...... modulation for network oriented scenarios has been demonstrated....

  5. The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, C.J., E-mail: colin.humphreys@msm.cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Griffiths, J.T., E-mail: jg641@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Tang, F., E-mail: ft274@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Oehler, F., E-mail: fabrice.oehler@lpn.cnrs.fr [CNRS/C2N, Paris Sud University, Route de Nozay, 91460 Marcoussis (France); Findlay, S.D., E-mail: scott.findlay@monash.edu [School of Physics and Astronomy, Monash University, Victoria 3800 (Australia); Zheng, C., E-mail: changlin.zheng@monash.edu [Monash Centre for Electron Microscopy, Monash University, Victoria 3800 (Australia); Etheridge, J., E-mail: joanne.etheridge@mcem.monash.edu [Department of Materials Science and Engineering, Monash University, Victoria 3800 (Australia); Martin, T.L., E-mail: tomas.martin@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Bagot, P.A.J., E-mail: paul.bagot@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Moody, M.P., E-mail: michael.moody@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Sutherland, D., E-mail: danny.sutherland@manchester.ac.uk [School of Physics and Astronomy, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Dawson, P., E-mail: philip.dawson@manchester.ac.uk [School of Physics and Astronomy, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Schulz, S., E-mail: stefan.schulz@tyndall.ie [Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork (Ireland); and others

    2017-05-15

    Highlights: • We have studied the atomic structure of polar and non-polar InGaN quantum wells. • The non-polar (11-20) InGaN quantum wells contain indium-rich clusters, unlike the polar (0001) quantum wells. • The electrons and holes in the quantum wells are localised by different mechanisms. - Abstract: We have used high resolution transmission electron microscopy (HRTEM), aberration-corrected quantitative scanning transmission electron microscopy (Q-STEM), atom probe tomography (APT) and X-ray diffraction (XRD) to study the atomic structure of (0001) polar and (11-20) non-polar InGaN quantum wells (QWs). This paper provides an overview of the results. Polar (0001) InGaN in QWs is a random alloy, with In replacing Ga randomly. The InGaN QWs have atomic height interface steps, resulting in QW width fluctuations. The electrons are localised at the top QW interface by the built-in electric field and the well-width fluctuations, with a localisation energy of typically 20 meV. The holes are localised near the bottom QW interface, by indium fluctuations in the random alloy, with a localisation energy of typically 60 meV. On the other hand, the non-polar (11-20) InGaN QWs contain nanometre-scale indium-rich clusters which we suggest localise the carriers and produce longer wavelength (lower energy) emission than from random alloy non-polar InGaN QWs of the same average composition. The reason for the indium-rich clusters in non-polar (11-20) InGaN QWs is not yet clear, but may be connected to the lower QW growth temperature for the (11-20) InGaN QWs compared to the (0001) polar InGaN QWs.

  6. Reverse polarity optical-OFDM (RPO-OFDM): dimming compatible OFDM for gigabit VLC links.

    Science.gov (United States)

    Elgala, Hany; Little, Thomas D C

    2013-10-07

    Visible light communications (VLC) technology permits the exploitation of light-emitting diode (LED) luminaries for simultaneous illumination and broadband wireless communication. Optical orthogonal frequency-division multiplexing (O-OFDM) is a promising modulation technique for VLC systems, in which the real-valued O-OFDM baseband signal is used to modulate the instantaneous power of the optical carrier to achieve gigabit data rates. However, a major design challenge that limits the commercialization of VLC is how to incorporate the industry-preferred pulse-width modulation (PWM) light dimming technique while maintaining a broadband and reliable communication link. In this work, a novel signal format, reverse polarity O-OFDM (RPO-OFDM), is proposed to combine the fast O-OFDM communication signal with the relatively slow PWM dimming signal, where both signals contribute to the effective LED brightness. The advantages of using RPO-OFDM include, (1) the data rate is not limited by the frequency of the PWM signal, (2) the LED dynamic range is fully utilized to minimize the nonlinear distortion of the O-OFDM communication signal, and (3) the bit-error performance is sustained over a large fraction of the luminaire dimming range. In addition, RPO-OFDM offers a practical approach to utilize off-the-shelf LED drivers. We show results of numerical simulations to study the trade-offs between the PWM duty cycle, average electrical O-OFDM signal power, radiated optical flux as well as human perceived light.

  7. Electrical injection schemes for nanolasers

    DEFF Research Database (Denmark)

    Lupi, Alexandra; Chung, Il-Sug; Yvind, Kresten

    2013-01-01

    The performance of injection schemes among recently demonstrated electrically pumped photonic crystal nanolasers has been investigated numerically. The computation has been carried out at room temperature using a commercial semiconductor simulation software. For the simulations two electrical...... of 3 InGaAsP QWs on an InP substrate has been chosen for the modeling. In the simulations the main focus is on the electrical and optical properties of the nanolasers i.e. electrical resistance, threshold voltage, threshold current and wallplug efficiency. In the current flow evaluation the lowest...... threshold current has been achieved with the lateral electrical injection through the BH; while the lowest resistance has been obtained from the current post structure even though this model shows a higher current threshold because of the lack of carrier confinement. Final scope of the simulations...

  8. Modulated diesel fuel injection strategy for efficient-clean utilization of low-grade biogas

    International Nuclear Information System (INIS)

    Wang, Xiaole; Qian, Yong; Zhou, Qiyan; Lu, Xingcai

    2016-01-01

    Highlights: • Influences of direct injection strategy on biogas RCCI mode are researched. • Excessive early pilot injection timing leads to the retard of combustion. • Overall indicated thermal efficiency of low-grade biogas can be higher than 40%. • Pilot injection timing has strong influence on particle size distribution. • Composition of biogas has a great influence on the gas emissions. - Abstract: Recently, as a kind of renewable fuel, low-grade biogas has been researched to apply in internal combustion engine. In this paper, an experimental study was conducted to study the influence of injection strategies on the efficient utilization of low-grade biogas in Reactivity Controlled Compression Ignition (RCCI) mode with port fuel injection of biogas and in-cylinder direct injection of diesel based on a modified electronic controlled high-pressure directly injected compression ignition engine. Considered the high proportion of inert gas in biogas, a four-components simulated gas (H_2:CO:CH_4:N_2 = 5:40:5:50 vol%) has been selected as test fuels to simulate biogas. The effects of several injection control parameters such as pilot injection timing, main injection timing, common rail pressure and pilot injection ratio on the combustion and emissions are analyzed in detail. The research demonstrates that the main injection timing can effectively control the combustion phase and excessive early pilot injection timing leads to retard of combustion. CO emissions are relatively high due to homogenous charge of biogas. NOx and smoke emissions can be effectively controlled. In RCCI mode, the indicated thermal efficiency of biogas/diesel can reach 40%.

  9. New materials research for high spin polarized current

    International Nuclear Information System (INIS)

    Tezuka, Nobuki

    2012-01-01

    The author reports here a thorough investigation of structural and magnetic properties of Co 2 FeAl 0.5 Si 0.5 Heusler alloy films, and the tunnel magnetoresistance effect for junctions with Co 2 FeAl 0.5 Si 0.5 electrodes, spin injection into GaAs semiconductor from Co 2 FeAl 0.5 Si 0.5 , and spin filtering phenomena for junctions with CoFe 2 O 4 ferrite barrier. It was observed that tunnel magnetoresistance ratio up to 832%(386%) at 9 K (room temperature), which corresponds to the tunnel spin polarization of 0.90 (0.81) for the junctions using Co 2 FeAl 0.5 Si 0.5 Heusler electrodes by optimizing the fabrication condition. It was also found that the tunnel magnetoresistance ratio are almost the same between the junctions with Co 2 FeAl 0.5 Si 0.5 Heusler electrodes on Cr buffered (1 0 0) and (1 1 0) MgO substrates, which indicates that tunnel spin polarization of Co 2 FeAl 0.5 Si 0.5 for these two direction are almost the same. The next part of this paper is a spin filtering effect using a Co ferrite. The spin filtering effect was observed through a thin Co-ferrite barrier. The inverse type tunnel magnetoresistance ratio of −124% measured at 10 K was obtained. The inverse type magnetoresistance suggests the negative spin polarization of Co-ferrite barrier. The magnetoresistance ratio of −124% corresponds to the spin polarization of −0.77 by the Co-ferrite barrier. The last part is devoted to the spin injection from Co 2 FeAl 0.5 Si 0.5 into GaAs. The spin injection signal was clearly obtained by three terminal Hanle measurement. The spin relaxation time was estimated to be 380 ps measured at 5 K.

  10. Temporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cues

    Science.gov (United States)

    Fraser, Matthew; McKay, Colette M.

    2012-01-01

    Temporal modulation transfer functions (TMTFs) were measured for six users of cochlear implants, using different carrier rates and levels. Unlike most previous studies investigating modulation detection, the experimental design limited potential effects of overall loudness cues. Psychometric functions (percent correct discrimination of modulated from unmodulated stimuli versus modulation depth) were obtained. For each modulation depth, each modulated stimulus was loudness balanced to the unmodulated reference stimulus, and level jitter was applied in the discrimination task. The loudness-balance data showed that the modulated stimuli were louder than the unmodulated reference stimuli with the same average current, thus confirming the need to limit loudness cues when measuring modulation detection. TMTFs measured in this way had a low-pass characteristic, with a cut-off frequency (at comfortably loud levels) similar to that for normal-hearing listeners. A reduction in level caused degradation in modulation detection efficiency and a lower-cut-off frequency (i.e. poorer temporal resolution). An increase in carrier rate also led to a degradation in modulation detection efficiency, but only at lower levels or higher modulation frequencies. When detection thresholds were expressed as a proportion of dynamic range, there was no effect of carrier rate for the lowest modulation frequency (50 Hz) at either level. PMID:22146425

  11. Field Trials of the Multi-Source Approach for Resistivity and Induced Polarization Data Acquisition

    Science.gov (United States)

    LaBrecque, D. J.; Morelli, G.; Fischanger, F.; Lamoureux, P.; Brigham, R.

    2013-12-01

    Implementing systems of distributed receivers and transmitters for resistivity and induced polarization data is an almost inevitable result of the availability of wireless data communication modules and GPS modules offering precise timing and instrument locations. Such systems have a number of advantages; for example, they can be deployed around obstacles such as rivers, canyons, or mountains which would be difficult with traditional 'hard-wired' systems. However, deploying a system of identical, small, battery powered, transceivers, each capable of injecting a known current and measuring the induced potential has an additional and less obvious advantage in that multiple units can inject current simultaneously. The original purpose for using multiple simultaneous current sources (multi-source) was to increase signal levels. In traditional systems, to double the received signal you inject twice the current which requires you to apply twice the voltage and thus four times the power. Alternatively, one approach to increasing signal levels for large-scale surveys collected using small, battery powered transceivers is it to allow multiple units to transmit in parallel. In theory, using four 400 watt transmitters on separate, parallel dipoles yields roughly the same signal as a single 6400 watt transmitter. Furthermore, implementing the multi-source approach creates the opportunity to apply more complex current flow patterns than simple, parallel dipoles. For a perfect, noise-free system, multi-sources adds no new information to a data set that contains a comprehensive set of data collected using single sources. However, for realistic, noisy systems, it appears that multi-source data can substantially impact survey results. In preliminary model studies, the multi-source data produced such startling improvements in subsurface images that even the authors questioned their veracity. Between December of 2012 and July of 2013, we completed multi-source surveys at five sites

  12. Spin-polarized electron tunneling across a Si delta-doped GaMnAs/n-GaAs interface

    DEFF Research Database (Denmark)

    Andresen, S.E.; Sørensen, B.S.; Lindelof, P.E.

    2003-01-01

    Spin-polarized electron coupling across a Si delta-doped GaMnAs/n-GaAs interface was investigated. The injection of spin-polarized electrons was detected as circular polarized emission from a GaInAs/GaAs quantum well light emitting diode. The angular momentum selection rules were simplified...

  13. Magneto-optic and electro-optic modulators

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Ma, C.H.; Price, T.R.; Staats, P.A.; Vander Sluis, K.L.

    1982-01-01

    An important aspect of the Faraday rotation diagnostic for tokamak plasma measurements has been the development of suitable polarization modulators for submillimeter wavelengths. The problems are to obtain high optical transmission and fast modulation frequencies. At ORNL we have developed both a magneto-optic and an electro-optic submillimeter-wave modulators. These devices have been operated at modulation frequencies of approximately 100 kHz and both have high transmission

  14. Dewetting based fabrication of fibrous micro-scaffolds as potential injectable cell carriers.

    Science.gov (United States)

    Song, Hokyung; Yin, Liya; Chilian, William M; Zhang Newby, Bi-Min

    2015-03-01

    Although regenerative medicine utilizing tissue scaffolds has made enormous strides in recent years, many constraints still hamper their effectiveness. A limitation of many scaffolds is that they form surface patches, which are not particularly effective for some types of "wounds" that are deep within tissues, e.g., stroke and myocardial infarction. In this study, we reported the generation of fibrous micro-scaffolds feasible for delivering cells by injection into the tissue parenchyma. The micro-scaffolds (widthsdewetting of poly(lactic-co-glycolic acid) thin films containing parallel strips, and cells were seeded to form cell/polymer micro-constructs during or post the micro-scaffold fabrication process. Five types of cells including rat induced vascular progenitor cells were assessed for the formation of the micro-constructs. Critical factors in forming fibrous micro-scaffolds via dewetting of polymer thin films were found to be properties of polymers and supporting substrates, temperature, and proteins in the culture medium. Also, the ability of cells to attach to the micro-scaffolds was essential in forming cell/polymer micro-constructs. Both in vitro and in vivo assessments of injecting these micro-scaffolding constructs showed, as compared to free cells, enhanced cell retention at the injected site, which could lead to improved tissue engineering and regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The first acceleration test of polarized protons in KEK PS

    International Nuclear Information System (INIS)

    Hiramatsu, Shigenori; Sato, Hikaru; Toyama, Takeshi

    1984-03-01

    The outline of the polarized proton acceleration project at KEK and the results of the first acceleration test are described. Depolarization in the 500 MeV booster synchrotron was investigated as the first step of this program. The beam polarization was measured in the 20 MeV beam transport line from the linac to the booster and in the main ring at the injection energy. About 40 % of the linac beam polarization was kept in the main ring. This acceleration test encouraged us to proceed with this program. (author)

  16. Optimization of the performance of rf transitions for the TUNL atomic beam polarized ion source

    International Nuclear Information System (INIS)

    Crosson, E.R.; Clegg, T.B.; Karwowski, H.J.; Lemieux, S.K.

    1991-01-01

    We have utilized the spin-dependence of the cross section for electron impact ionization of H 0 and D 0 atoms in the ionizer of our atomic beam polarized ion source to study the performance of the rf transitions which provide the nuclear polarization of the atomic beam. Switching the rf transitions on and off modulates the output polarized current. This modulation is observed using a lock-in amplifier and provides a fast and reliable method for optimization of transition unit parameters. (orig.)

  17. Determination of charge carrier mobility in doped low density polyethylene using DC transients

    DEFF Research Database (Denmark)

    Khalil, M.Salah; Henk, Peter O; Henriksen, Mogens

    1989-01-01

    Charge carrier mobility was determined for plain and doped low-density polyethylene (LDPE) using DC transient currents. Barium titanate was used as a strongly polar dopant and titanium dioxide as a semiconductor dopant. The values of the mobility obtained were on the order of 10-10 cm2 v-1 s-1...

  18. Synthesis, radiosynthesis and biological evaluation of 1, 4-dihydroquinoline derivatives as new carriers for specific brain delivery

    International Nuclear Information System (INIS)

    Foucout, L.; Bohn, P.; Dupas, G.; Marsais, F.; Levacher, V.; Gourand, F.; Dhilly, M.; Barre, L.; Bohn, P.; Costentin, J.; Abbas, A.

    2009-01-01

    In spite of numerous reports dealing with the use of 1, 4-dihydro-pyridines as carriers to deliver biological active compounds to the brain, this chemical delivery system (CDS) suffers from poor stability of the 1, 4-dihydropyridine derivatives towards oxidation and hydration reactions seriously limiting further investigations in vivo. In an attempt to overcome these limitations, we report herein the first biological evaluation of more stable annellated NADH models in the quinoline series as relevant neuro-active drug-carrier candidates. The radiolabeled 1, 4-dihydroquinoline [ 11 C]1a was prepared to be subsequently peripherally injected in rats. The injected animals were sacrificed and brains were collected. The radioactivity measured in rat brain indicated a rapid penetration of the carrier [ 11 C]1a into the CNS. HPLC analysis of brain homogenates showed that oxidation of [ 11 C]1a into the corresponding quinolinium salt [ 11 C]4a was completed in less than 5 min. An in vivo evaluation in mice is also reported to illustrate the potential of such 1, 4-dihydroquinoline derivatives to transport a neuro-active drug in the CNS. For this purpose, g-aminobutyric acid (GABA), well known to poorly cross the brain blood barrier (BBB) was connected to this 1, 4-dihydroquinoline-type carrier. After i.p. injection of 1, 4-dihydroquinoline-GABA derivative 1b in mice, a significant alteration of locomotor activity (LMA) was observed presumably resulting from an enhancement of central GABAergic activity. These encouraging results give strong evidence for the capacity of carrier-GABA derivative 1b to cross the BBB and exert a pharmacological effect on the CNS. This study paves the way for further progress in designing new redox chemical delivery systems. (authors)

  19. Synthesis, radiosynthesis and biological evaluation of 1, 4-dihydroquinoline derivatives as new carriers for specific brain delivery

    Energy Technology Data Exchange (ETDEWEB)

    Foucout, L.; Bohn, P.; Dupas, G.; Marsais, F.; Levacher, V. [Laboratoire de Chimie Organique Fine et Heterocyclique, UMR 6014, IRCOF, CNRS, Universite et INSA de Rouen, B.P. 08 F-76131, Mont- Saint-Aignan Cedex (France); Gourand, F.; Dhilly, M.; Barre, L. [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, CEA/DSV/I2BM/CI-NAPS UMR6232, Universite de Caen Basse Normandie, Caen (France); Bohn, P.; Costentin, J. [Laboratoire de Neuropharmacologie Experimentale associe au CNRS, FRE-2735, Faculte de Medecine et de pharmacie, Universite de Rouen, F-76000 (France); Abbas, A. [Inserm-EPHE-Universite de Caen Basse-Normandie, Unite U923, GIP Cyceron, CHU Cote de Nacre, Caen (France)

    2009-07-01

    In spite of numerous reports dealing with the use of 1, 4-dihydro-pyridines as carriers to deliver biological active compounds to the brain, this chemical delivery system (CDS) suffers from poor stability of the 1, 4-dihydropyridine derivatives towards oxidation and hydration reactions seriously limiting further investigations in vivo. In an attempt to overcome these limitations, we report herein the first biological evaluation of more stable annellated NADH models in the quinoline series as relevant neuro-active drug-carrier candidates. The radiolabeled 1, 4-dihydroquinoline [{sup 11}C]1a was prepared to be subsequently peripherally injected in rats. The injected animals were sacrificed and brains were collected. The radioactivity measured in rat brain indicated a rapid penetration of the carrier [{sup 11}C]1a into the CNS. HPLC analysis of brain homogenates showed that oxidation of [{sup 11}C]1a into the corresponding quinolinium salt [{sup 11}C]4a was completed in less than 5 min. An in vivo evaluation in mice is also reported to illustrate the potential of such 1, 4-dihydroquinoline derivatives to transport a neuro-active drug in the CNS. For this purpose, g-aminobutyric acid (GABA), well known to poorly cross the brain blood barrier (BBB) was connected to this 1, 4-dihydroquinoline-type carrier. After i.p. injection of 1, 4-dihydroquinoline-GABA derivative 1b in mice, a significant alteration of locomotor activity (LMA) was observed presumably resulting from an enhancement of central GABAergic activity. These encouraging results give strong evidence for the capacity of carrier-GABA derivative 1b to cross the BBB and exert a pharmacological effect on the CNS. This study paves the way for further progress in designing new redox chemical delivery systems. (authors)

  20. Filtered Carrier Phase Estimator for High-Order QAM Optical Systems

    DEFF Research Database (Denmark)

    Rozental, Valery; Kong, Deming; Corcoran, Bill

    2018-01-01

    We investigate, using Monte Carlo simulations, the performance characteristics and limits of a low-complexity filtered carrier phase estimator (F-CPE) in terms of cycle slip occurrences and SNR penalties. In this work, the F-CPE algorithm has been extended to include modulation formats whose oute...