WorldWideScience

Sample records for polarization switching induced

  1. Nonvolatile data storage using mechanical force-induced polarization switching in ferroelectric polymer

    International Nuclear Information System (INIS)

    Chen, Xin; Tang, Xin; Chen, Xiang-Zhong; Chen, Yu-Lei; Shen, Qun-Dong; Guo, Xu; Ge, Hai-Xiong

    2015-01-01

    Ferroelectric polymers offer the promise of low-cost and flexible electronic products. They are attractive for information storage due to their spontaneous polarization which is usually switched by electric field. Here, we demonstrate that electrical signals can be readily written on ultra-thin ferroelectric polymer films by strain gradient-induced polarization switching (flexoelectric effect). A force with magnitude as small as 64nN is enough to induce highly localized (40 nm feature size) change in the polarization states. The methodology is capable of realizing nonvolatile memory devices with miniaturized cell size and storage density of tens to hundreds Gbit per square inch

  2. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    Energy Technology Data Exchange (ETDEWEB)

    Seyedhosseini, E., E-mail: Seyedhosseini@ua.pt; Ivanov, M. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Bdikin, I. [TEMA and Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Vasileva, D. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Kudryavtsev, A. [Moscow State Institute of Radioengineering, Electronics and Automation, 119454 Moscow (Russian Federation); Rodriguez, B. J. [Conway Institute of Biomolecular and Biomedical Research and School of Physics, University College Dublin, Dublin (Ireland); Kholkin, A. L. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-08-21

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  3. Micromagnetic investigation of the dynamics of magnetization switching induced by a spin polarized current

    Science.gov (United States)

    Lee, Kyung-Jin; Dieny, Bernard

    2006-03-01

    Using micromagnetic modeling, we tested a prediction of single-domain spin-torque theory which switching current density depends only weakly on magnetic cell size. The switching time and current density are strongly affected by the cell size for low spin polarization. Larger samples with a small length-to-width ratio and small spin polarization can exhibit a nonmonotonous dependence of switching time on current. Excitation of incoherent spin waves caused by the circular Oersted field due to the current is responsible for this nonmonotonous dependence. However, the magnetic dynamics recovers a single-domain-like behavior when the spin polarization is high and/or the cell size is small.

  4. Switching of a spin-spiral-induced polarization in multiferroic MnWO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Tim; Meier, Dennis; Fiebig, Manfred [HISKP, Universitaet Bonn (Germany); Becker-Bohaty, Petra; Bohaty, Ladislav [Institut fuer Kristallographie, Universitaet zu Koeln (Germany)

    2010-07-01

    Coexisting ferroic orders become interesting when there is an interaction between them. Especially applying an electric field and thus changing the magnetic order is highly desirable for possible applications. In spite of the declared interest in multiferroics to switch a magnetization by an electric field nothing is known about the dynamics of the actual switching process. The coupling of ferroelectric and magnetic order is intrinsically strong in spin-spiral multiferroics, where ferroelectricity emerges as a consequence of complex magnetic long-range order. Here we observe the manipulation of magnetically-induced ferroelectric domains in MnWO{sub 4} by optical second harmonic generation (SHG). Application of an electric field allows to transform the sample to an electric as well as magnetic single-domain state. Moreover we obtained images of the domain structures during the transition revealing the growth of the domains. When cooled in zero-field, the domains have a bubble-like topology. Interestingly, after recovery from a single domain state the shape changes to a stripe structure and the domain size is significantly increased. Effects of the shape and duration of the electric-field poling pulses are investigated. Furthermore, in contrast to typical ionic ferroelectrics the spontaneous polarization can be switched without fatigue - no defects or pinning effects constrain the movement of domain walls.

  5. All-fiber polarization switch

    Science.gov (United States)

    Knape, Harald; Margulis, Walter

    2007-03-01

    We report an all-fiber polarization switch made out of silica-based microstructured fiber suitable for Q-switching all-fiber lasers. Nanosecond high-voltage pulses are used to heat and expand an internal electrode to cause λ/2-polarization rotation in less than 10 ns for 1.5 μm light. The 10 cm long component has an experimentally measured optical insertion loss of 0.2 dB and a 0-10 kHz repetition frequency capacity and has been durability tested for more than 109 pulses.

  6. Efficient high-pulse-energy eye-safe laser generated by an intracavity Nd:YLF/KTP optical parametric oscillator: role of thermally induced polarization switching

    International Nuclear Information System (INIS)

    Huang, Y J; Tang, C Y; Huang, Y P; Cho, C Y; Su, K W; Chen, Y F

    2012-01-01

    A high-pulse-energy eye-safe laser at 1552 nm is effectually generated by an intracavity Nd:YLF/KTP optical parametric oscillator (OPO) with the help of the thermally induced polarization switching. The polarization characteristics of the c-cut Nd:YLF laser at 1053 nm in the continuous-wave (CW) and Q-switched operation are comprehensively investigated. We experimentally verify the thermally induced birefringence can lead to a polarization switching between the mutually orthogonal components of the fundamental pulses. Consequently, an efficient intracavity nonlinear frequency conversion can be achieved in an optically isotropic laser crystal without any additional polarization control. With this finding, the pulse energy and peak power of the compact Nd:YLF/KTP eye-safe laser under an incident pump power of 12.7 W and a pulse repetition rate of 5 kHz are up to 306 μJ and 4 kW, respectively

  7. Stochastic multistep polarization switching in ferroelectrics

    Science.gov (United States)

    Genenko, Y. A.; Khachaturyan, R.; Schultheiß, J.; Ossipov, A.; Daniels, J. E.; Koruza, J.

    2018-04-01

    Consecutive stochastic 90° polarization switching events, clearly resolved in recent experiments, are described by a nucleation and growth multistep model. It extends the classical Kolmogorov-Avrami-Ishibashi approach and includes possible consecutive 90°- and parallel 180° switching events. The model predicts the results of simultaneous time-resolved macroscopic measurements of polarization and strain, performed on a tetragonal Pb (Zr ,Ti ) O3 ceramic in a wide range of electric fields over a time domain of seven orders of magnitude. It allows the determination of the fractions of individual switching processes, their characteristic switching times, activation fields, and respective Avrami indices.

  8. Magnetization switching of a metallic nanomagnet via current-induced surface spin-polarization of an underlying topological insulator

    International Nuclear Information System (INIS)

    Roy, Urmimala; Dey, Rik; Pramanik, Tanmoy; Ghosh, Bahniman; Register, Leonard F.; Banerjee, Sanjay K.

    2015-01-01

    We consider a thermally stable, metallic nanoscale ferromagnet (FM) subject to spin-polarized current injection and exchange coupling from the spin-helically locked surface states of a topological insulator (TI) to evaluate possible non-volatile memory applications. We consider parallel transport in the TI and the metallic FM, and focus on the efficiency of magnetization switching as a function of transport between the TI and the FM. Transport is modeled as diffusive in the TI beneath the FM, consistent with the mobility in the TI at room temperature, and in the FM, which essentially serves as a constant potential region albeit spin-dependent except in the low conductivity, diffusive limit. Thus, it can be captured by drift-diffusion simulation, which allows for ready interpretation of the results. We calculate switching time and energy consumed per write operation using self-consistent transport, spin-transfer-torque (STT), and magnetization dynamics calculations. Calculated switching energies and times compare favorably to conventional spin-torque memory schemes for substantial interlayer conductivity. Nevertheless, we find that shunting of current from the TI to a metallic nanomagnet can substantially limit efficiency. Exacerbating the problem, STT from the TI effectively increases the TI resistivity. We show that for optimum performance, the sheet resistivity of the FM layer should be comparable to or larger than that of the TI surface layer. Thus, the effective conductivity of the FM layer becomes a critical design consideration for TI-based non-volatile memory

  9. Quantum switching of polarization in mesoscopic ferroelectrics

    International Nuclear Information System (INIS)

    Sa de Melo, C.A.

    1996-01-01

    A single domain of a uniaxial ferroelectric grain may be thought of as a classical permanent memory. At the mesoscopic level this system may experience considerable quantum fluctuations due to tunneling between two possible memory states, thus destroying the classical permanent memory effect. To study these quantum effects the concrete example of a mesoscopic uniaxial ferroelectric grain is discussed, where the orientation of the electric polarization determines two possible memory states. The possibility of quantum switching of the polarization in mesoscopic uniaxial ferroelectric grains is thus proposed. To determine the degree of memory loss, the tunneling rate between the two polarization states is calculated at zero temperature both in the absence and in the presence of an external static electric field. In addition, a discussion of crossover temperature between thermally activated behavior and quantum tunneling behavior is presented. And finally, environmental effects (phonons, defects, and surfaces) are also considered. copyright 1996 The American Physical Society

  10. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......%. Furthermore, the presence of low-pass filters in time-domain-induced polarization instruments affects the early times of the acquired decays (typically up to 100 ms) and has to be modeled in the forward response to avoid significant loss of resolution. The developed forward code has been implemented in a 1D...

  11. PPARγ ligands switched high fat diet-induced macrophage M2b polarization toward M2a thereby improving intestinal Candida elimination

    DEFF Research Database (Denmark)

    Lefèvre, Lise; Galès, Amandine; Olagnier, David

    2010-01-01

    of Candida albicans through the activation of alternative M2 macrophage polarization. Here, we evaluated the impact of high fat diet (HFD)-induced obesity and the effect of rosiglitazone (PPARγ ligand) or WY14643 (PPARα ligand) both on the phenotypic M1/M2 polarization of peritoneal and cecal tissue...

  12. Polarization switching kinetics in ultrathin ferroelectric barium titanate film

    Energy Technology Data Exchange (ETDEWEB)

    Gaynutdinov, R., E-mail: rgaynutdinov@gmail.com [Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation); Minnekaev, M., E-mail: m.minnekaev@gmail.com [NRNU Moscow Engineering Physics Institute, Moscow 115409 (Russian Federation); Mitko, S., E-mail: sergey_m@ntmdt.ru [NT-MDT Co., Moscow 124482 (Russian Federation); Tolstikhina, A., E-mail: alla@ns.crys.ras.ru [Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation); Zenkevich, A., E-mail: avzenkevich@mephi.ru [NRNU Moscow Engineering Physics Institute, Moscow 115409 (Russian Federation); NRC Kurchatov Institute, Moscow 123182 (Russian Federation); Ducharme, S., E-mail: sducharme@unl.edu [Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, NE 68588-0299 (United States); Fridkin, V., E-mail: fridkin@ns.crys.ras.ru [Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation)

    2013-09-01

    The investigation of polarization switching kinetics in an ultrathin barium titanate film reveals true threshold switching at a large coercive electric field, evidence that switching is of intrinsic thermodynamic nature, rather than of extrinsic nature initiated by thermal nucleation, which has no true threshold field. The switching speed of a 7 nm thick epitaxial film exhibits a critical slowing as the threshold is approached from above, a key characteristic of intrinsic switching. In contrast, a bulk crystal exhibits nucleation-initiated switching, which has no threshold, and proceeds even at fields well below the nominal coercive field, which was determined independently from the polarization-electric field hysteresis loop. Previously, this phenomenon was only reported for ultrathin ferroelectric polymer Langmuir–Blodgett films. Since both the thermodynamic coercive field and the intrinsic switching kinetics are derived from the mean field theory of ferroelectricity, we expect that these phenomena will be found in other ferroelectric films at the nanoscale.

  13. Polarization induced doped transistor

    Science.gov (United States)

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  14. Polarization dependent switching of asymmetric nanorings with a circular field

    Directory of Open Access Journals (Sweden)

    Nihar R. Pradhan

    2016-01-01

    Full Text Available We experimentally investigated the switching from onion to vortex states in asymmetric cobalt nanorings by an applied circular field. An in-plane field is applied along the symmetric or asymmetric axis of the ring to establish domain walls (DWs with symmetric or asymmetric polarization. A circular field is then applied to switch from the onion state to the vortex state, moving the DWs in the process. The asymmetry of the ring leads to different switching fields depending on the location of the DWs and direction of applied field. For polarization along the asymmetric axis, the field required to move the DWs to the narrow side of the ring is smaller than the field required to move the DWs to the larger side of the ring. For polarization along the symmetric axis, establishing one DW in the narrow side and one on the wide side, the field required to switch to the vortex state is an intermediate value.

  15. Nanoscale mechanical switching of ferroelectric polarization via flexoelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yijia; Hong, Zijian; Britson, Jason; Chen, Long-Qing [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-01-12

    Flexoelectric coefficient is a fourth-rank tensor arising from the coupling between strain gradient and electric polarization and thus exists in all crystals. It is generally ignored for macroscopic crystals due to its small magnitude. However, at the nanoscale, flexoelectric contributions may become significant and can potentially be utilized for device applications. Using the phase-field method, we study the mechanical switching of electric polarization in ferroelectric thin films by a strain gradient created via an atomic force microscope tip. Our simulation results show good agreement with existing experimental observations. We examine the competition between the piezoelectric and flexoelectric effects and provide an understanding of the role of flexoelectricity in the polarization switching. Also, by changing the pressure and film thickness, we reveal that the flexoelectric field at the film bottom can be used as a criterion to determine whether domain switching may happen under a mechanical force.

  16. Nanoscale mechanical switching of ferroelectric polarization via flexoelectricity

    International Nuclear Information System (INIS)

    Gu, Yijia; Hong, Zijian; Britson, Jason; Chen, Long-Qing

    2015-01-01

    Flexoelectric coefficient is a fourth-rank tensor arising from the coupling between strain gradient and electric polarization and thus exists in all crystals. It is generally ignored for macroscopic crystals due to its small magnitude. However, at the nanoscale, flexoelectric contributions may become significant and can potentially be utilized for device applications. Using the phase-field method, we study the mechanical switching of electric polarization in ferroelectric thin films by a strain gradient created via an atomic force microscope tip. Our simulation results show good agreement with existing experimental observations. We examine the competition between the piezoelectric and flexoelectric effects and provide an understanding of the role of flexoelectricity in the polarization switching. Also, by changing the pressure and film thickness, we reveal that the flexoelectric field at the film bottom can be used as a criterion to determine whether domain switching may happen under a mechanical force

  17. Nanoscale mechanical switching of ferroelectric polarization via flexoelectricity

    Science.gov (United States)

    Gu, Yijia; Hong, Zijian; Britson, Jason; Chen, Long-Qing

    2015-01-01

    Flexoelectric coefficient is a fourth-rank tensor arising from the coupling between strain gradient and electric polarization and thus exists in all crystals. It is generally ignored for macroscopic crystals due to its small magnitude. However, at the nanoscale, flexoelectric contributions may become significant and can potentially be utilized for device applications. Using the phase-field method, we study the mechanical switching of electric polarization in ferroelectric thin films by a strain gradient created via an atomic force microscope tip. Our simulation results show good agreement with existing experimental observations. We examine the competition between the piezoelectric and flexoelectric effects and provide an understanding of the role of flexoelectricity in the polarization switching. Also, by changing the pressure and film thickness, we reveal that the flexoelectric field at the film bottom can be used as a criterion to determine whether domain switching may happen under a mechanical force.

  18. Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor

    Science.gov (United States)

    Choi, Seokhwan; Choi, Hyoung Joon; Ok, Jong Mok; Lee, Yeonghoon; Jang, Won-Jun; Lee, Alex Taekyung; Kuk, Young; Lee, SungBin; Heinrich, Andreas J.; Cheong, Sang-Wook; Bang, Yunkyu; Johnston, Steven; Kim, Jun Sung; Lee, Jhinhwan

    2017-12-01

    We explore a new mechanism for switching magnetism and superconductivity in a magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single-crystal Sr2VO3FeAs shows that a spin-polarized tunneling current can switch the Fe-layer magnetism into a nontrivial C4 (2 ×2 ) order, which cannot be achieved by thermal excitation with an unpolarized current. Our tunneling spectroscopy study shows that the induced C4 (2 ×2 ) order has characteristics of plaquette antiferromagnetic order in the Fe layer and strongly suppresses superconductivity. Also, thermal agitation beyond the bulk Fe spin ordering temperature erases the C4 state. These results suggest a new possibility of switching local superconductivity by changing the symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-based superconductors.

  19. Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor.

    Science.gov (United States)

    Choi, Seokhwan; Choi, Hyoung Joon; Ok, Jong Mok; Lee, Yeonghoon; Jang, Won-Jun; Lee, Alex Taekyung; Kuk, Young; Lee, SungBin; Heinrich, Andreas J; Cheong, Sang-Wook; Bang, Yunkyu; Johnston, Steven; Kim, Jun Sung; Lee, Jhinhwan

    2017-12-01

    We explore a new mechanism for switching magnetism and superconductivity in a magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single-crystal Sr_{2}VO_{3}FeAs shows that a spin-polarized tunneling current can switch the Fe-layer magnetism into a nontrivial C_{4} (2×2) order, which cannot be achieved by thermal excitation with an unpolarized current. Our tunneling spectroscopy study shows that the induced C_{4} (2×2) order has characteristics of plaquette antiferromagnetic order in the Fe layer and strongly suppresses superconductivity. Also, thermal agitation beyond the bulk Fe spin ordering temperature erases the C_{4} state. These results suggest a new possibility of switching local superconductivity by changing the symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-based superconductors.

  20. Linearly polarized intracavity passive Q-switched Yb-doped ...

    Indian Academy of Sciences (India)

    2014-02-14

    Feb 14, 2014 ... Q-switched fibre lasers with high peak power have attracted a lot of attention due to many applications in the fields of industrial processing and medical treatments. For special applications of nonlinear frequency shifting like frequency doubling and optical paramet- ric oscillation, linearly polarized ...

  1. Switching of charged inverse micelles in non-polar liquids.

    Science.gov (United States)

    Prasad, Manoj; Beunis, Filip; Neyts, Kristiaan; Strubbe, Filip

    2015-11-15

    The electrodynamics of micellar ions in nonpolar liquids are well understood for the case that a voltage is applied or switched off. In this work, the electrodynamics of charged inverse micelles (CIMs) are studied when the applied voltage is switched to the opposite polarity, which is relevant for applications such as electrophoretic displays and liquid toner printing. Transient current measurements are used to characterize the switching of CIMs formed in a solution of surfactant polyisobutylene succinimide in n-dodecane. For reverse voltages with amplitude below 10V the measurements are in good agreement with a drift and diffusion model, confirming the established understanding of CIMs in nonpolar liquids. When the charge content is high, the reversal current shows a characteristic peak which is explained on the basis of dynamic space-charge effects. However, for reverse voltages larger than 10V, the transient currents are influenced by electrohydrodynamic flow in the liquid causing the CIMs to switch faster than predicted by the model. The occurrence of electrohydrodynamic flow is verified by optical tracking of tracer particles. Also, when the polarizing voltage is applied for longer times, an additional current peak emerges which is due to the accumulation of newly generated charges at the electrodes. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Fluctuation-induced switching and the switching path distribution.

    Science.gov (United States)

    Dykman, Mark

    2009-03-01

    Fluctuation-induced switching is at the root of diverse phenomena currently studied in Josephson junctions, nano-mechanical systems, nano-magnets, and optically trapped atoms. In a fluctuation leading to switching the system must overcome an effective barrier, making switching events rare, for low fluctuation intensity. We will provide an overview of the methods of finding the switching barrier for systems away from thermal equilibrium. Generic features of the barrier, such as scaling with the system parameters, will be discussed. We will also discuss the motion of the system in switching and the ways of controlling it. Two major classes of systems will be considered: dynamical systems, where fluctuations are induced by noise, and birth-death systems. Even though the motion during switching is random, the paths followed in switching form a narrow tube in phase space of the system centered at the most probable path. The paths distribution is generally Gaussian and has specific features, which have been seen in the experiment [1]. Finding the most probable path itself can be reduced to solving a problem of Hamiltonian dynamics of an auxiliary noise-free system. The solution also gives the switching barrier. The barrier can be found explicitly close to parameter values where the number of stable states of the system changes and the dynamics is controlled by a slow variable. The scaling of the barrier height depends on the type of the corresponding bifurcation. We show that, both for birth-death and for Gaussian noise driven systems, the presence of even weak non-Gaussian noise can strongly modify the switching rate. The effect is described in a simple explicit form [2,3]. Weak deviations of the noise statistics from Gaussian can be sensitively detected using balanced dynamical bridge, where this deviation makes the populations of coexisting stable states different from each other; a realization of such a bridge will be discussed. We will also discuss the sharp

  3. Proinflammatory-Activated Glioma Cells Induce a Switch in Microglial Polarization and Activation Status, From a Predominant M2b Phenotype to a Mixture of M1 and M2a/B Polarized Cells

    Directory of Open Access Journals (Sweden)

    Lucia Lisi

    2014-04-01

    Full Text Available Malignant gliomas are primary brain tumors characterized by morphological and genetic complexities, as well as diffuse infiltration into normal brain parenchyma. Within gliomas, microglia/macrophages represent the largest tumor-infiltrating cell population, contributing by at least one-third to the total tumor mass. Bi-directional interactions between glioma cells and microglia may therefore play an important role on tumor growth and biology. In the present study, we have characterized the influence of glioma-soluble factors on microglial function, comparing the effects of media harvested under basal conditions with those of media obtained after inducing a pro-inflammatory activation state in glioma cells. We found that microglial cells undergo a different pattern of activation depending on the stimulus; in the presence of activated glioma-derived factors, i.e. a condition mimicking the late stage of pathology, microglia presents as a mixture of polarization phenotypes (M1 and M2a/b, with up-regulation of iNOS (inducible nitric oxide synthase, ARG (arginase and IL (interleukine-10. At variance, microglia exposed to basal glioma-derived factors, i.e. a condition resembling the early stage of pathology, shows a more specific pattern of activation, with increased M2b polarization status and up-regulation of IL-10 only. As far as viability and cell proliferation are concerned, both LI-CM [LPS (lipopolysaccharide—IFNγ (interferon γ conditioned media] and C-CM (control-conditioned media induce similar effects on microglial morphology. Finally, in human glioma tissue obtained from surgical resection of patients with IV grade glioblastoma, we detected a significant amount of CD68 positive cells, which is a marker of macrophage/microglial phagocytic activity, suggesting that in vitro findings presented here might have a relevance in the human pathology as well.

  4. Resistance switching induced by electric fields in manganite thin films

    International Nuclear Information System (INIS)

    Villafuerte, M; Juarez, G; Duhalde, S; Golmar, F; Degreef, C L; Heluani, S P

    2007-01-01

    In this work, we investigate the polarity-dependent Electric Pulses Induced Resistive (EPIR) switching phenomenon in thin films driven by electric pulses. Thin films of 0.5 Ca 0.5 MnO 3 (manganite) were deposited by PLD on Si substrate. The transport properties at the interface between the film and metallic electrode are characterized in order to study the resistance switching. Sample thermal treatment and electrical field history are important to be considered for get reproducible EPIR effect. Carriers trapping at the interfaces are considered as a possible explanation of our results

  5. Polarization switching and patterning in self-assembled peptide tubular structures

    Science.gov (United States)

    Bdikin, Igor; Bystrov, Vladimir; Delgadillo, Ivonne; Gracio, José; Kopyl, Svitlana; Wojtas, Maciej; Mishina, Elena; Sigov, Alexander; Kholkin, Andrei L.

    2012-04-01

    Self-assembled peptide nanotubes are unique nanoscale objects that have great potential for a multitude of applications, including biosensors, nanotemplates, tissue engineering, biosurfactants, etc. The discovery of strong piezoactivity and polar properties in aromatic dipeptides [A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, ACS Nano 4, 610 (2010)] opened up a new perspective for their use as biocompatible nanoactuators, nanomotors, and molecular machines. Another, as yet unexplored functional property is the ability to switch polarization and create artificial polarization patterns useful in various electronic and optical applications. In this work, we demonstrate that diphenylalanine peptide nanotubes are indeed electrically switchable if annealed at a temperature of about 150 °C. The new orthorhombic antipolar structure that appears after annealing allows for the existence of a radial polarization component, which is directly probed by piezoresponse force microscopy (PFM) measurements. Observation of the relatively stable polarization patterns and hysteresis loops via PFM testifies to the local reorientation of molecular dipoles in the radial direction. The experimental results are complemented with rigorous molecular calculations and create a solid background of electric-field induced deformation of aromatic rings and corresponding polarization switching in this emergent material.

  6. Electric polarization switching in an atomically thin binary rock salt structure

    Science.gov (United States)

    Martinez-Castro, Jose; Piantek, Marten; Schubert, Sonja; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.

    2018-01-01

    Inducing and controlling electric dipoles is hindered in the ultrathin limit by the finite screening length of surface charges at metal-insulator junctions1-3, although this effect can be circumvented by specially designed interfaces4. Heterostructures of insulating materials hold great promise, as confirmed by perovskite oxide superlattices with compositional substitution to artificially break the structural inversion symmetry5-8. Bringing this concept to the ultrathin limit would substantially broaden the range of materials and functionalities that could be exploited in novel nanoscale device designs. Here, we report that non-zero electric polarization can be induced and reversed in a hysteretic manner in bilayers made of ultrathin insulators whose electric polarization cannot be switched individually. In particular, we explore the interface between ionic rock salt alkali halides such as NaCl or KBr and polar insulating Cu2N terminating bulk copper. The strong compositional asymmetry between the polar Cu2N and the vacuum gap breaks inversion symmetry in the alkali halide layer, inducing out-of-plane dipoles that are stabilized in one orientation (self-poling). The dipole orientation can be reversed by a critical electric field, producing sharp switching of the tunnel current passing through the junction.

  7. Polarization-Independent High-Speed Switching in a Standard Non-Linear Optical Loop Mirror

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Galili, Michael; Oxenløwe, Leif Katsuo

    2008-01-01

    We introduce a scheme which allows polarization-independent switching in a standard NOLM. Experimental verification is performed by switching 10 Gbit/s data with 0.2 dB polarization-dependence and by error-free demultiplexing of polarization-scrambled 320 Gbit/s OTDM data....

  8. Complementary resistive switching in BaTiO{sub 3}/NiO bilayer with opposite switching polarities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Institut d’Electronique de Micro-électronique et de Nanotechnologie (IEMN), CNRS, Université des Sciences et Technologies de Lille, avenue Poincaré, BP 60069, 59652, Villeneuve d’Ascq cedex (France); Wei, Xianhua, E-mail: weixianhua@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Lei, Yao [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronics Science and Technology of China, Chengdu 610054 (China); Yuan, Xincai [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Zeng, Huizhong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronics Science and Technology of China, Chengdu 610054 (China)

    2016-12-15

    Graphical abstract: Au/BaTiO{sub 3}/NiO/Pt bilayer device shows complementary resistive switching (CRS) without electroforming which is mainly ascribed to anti-serial stack of two RRAM cells with bipolar behaviors. - Highlights: • Complementary resistive switching (CRS) has been investigated in Au/BaTiO{sub 3}/NiO/Pt by stacking the two elements with different switching types. • The realization of complementary resistive switching (CRS) is mainly ascribed to the anti-serial stack of two RRAM cells with bipolar behaviors. • Complementary resistive switching (CRS) in bilayer is effective to solve the sneak current problem briefly and economically. - Abstract: Resistive switching behaviors have been investigated in the Au/BaTiO{sub 3}/NiO/Pt structure by stacking the two elements with different switching types. The conducting atomic force microscope measurements on BaTiO{sub 3} thin films and NiO thin films suggest that with the same active resistive switching region, the switching polarities in the two semiconductors are opposite to each other. It is in agreement with the bipolar hysteresis I–V curves with opposite switching polarities for single-layer devices. The bilayer devices show complementary resistive switching (CRS) without electroforming and unipolar resistive switching (URS) after electroforming. The coexistence of CRS and URS is mainly ascribed to the co-effect of electric field and Joule heating mechanisms, indicating that changeable of resistance in this device is dominated by the redistribution of oxygen vacancies in BaTiO{sub 3} and the formation, disruption, restoration of conducting filaments in NiO. CRS in bilayer with opposite switching polarities is effective to solve the sneak current without the introduction of any selector elements or an additional metal electrode.

  9. Bending-Induced Giant Polarization in Ferroelectric MEMS Diaphragm

    KAUST Repository

    Wang, Zhihong

    2016-09-09

    The polarization induced by the strain gradient, i.e. the flexoelectric effect, has been observed in a micromachined Pb(Zr0.52Ti0.48)O3 (PZT) diaphragms. Applying air pressure to bend a flat diaphragm which initially does not exhibit any electromechanical coupling can induce a resonance peak in its impedance spectrum. This result supposes that bending, thus the strain gradient in the diaphragm causes polarization in PZT film. We also investigated the switching behaviors of the polarization in response to an external electric field in a bent diaphragm and further quantified the polarization induced by the strain gradient. The effective flexoelectric coefficient of the PZT film has been calculated as large as 2.0 × 10−4 C/m. A giant flexoelectric polarization of the order of 1 μC/cm2 was characterized which is of the same order of magnitude as the normal remnant ferroelectric polarization of PZT film. The suggested explanation for the giant polarization is the large strain gradient in the diaphragm and the strain gradient induced reorientation of the polar nanodomains.

  10. Asymmetric bistable reflection and polarization switching in a magnetic nonlinear multilayer structure

    DEFF Research Database (Denmark)

    Tuz, Vladimir R.; Novitsky, Denis V.; Prosvirnin, Sergey L.

    2014-01-01

    , while light reflected from the other side has its polarization unchanged. Using the nonlinear transfer matrix calculations in the frequency domain, it is demonstrated that defect resonances in the nonlinear reflection spectra undergo bending, resulting in polarization bistability of reflected light....... This bistability is shown to result in abrupt switching between linear polarization of the output reflected light when the input intensity is varied. This switching is confirmed in finite-difference time-domain simulations, and its hysteresis character is established....

  11. Ferroelectric Polarization Switching Dynamics and Domain Growth of Triglycine Sulfate and Imidazolium Perchlorate

    KAUST Repository

    Ma, He

    2016-04-10

    The weak bond energy and large anisotropic domain wall energy induce many special characteristics of the domain nucleation, growth, and polarization switch in triglycine sulfate (TGS) and imidazolium perchlorate (IM), two typical molecular ferroelectrics. Their domain nucleation and polarization switch are rather slower than those of conventional oxide ferroelectrics, which may be due to the weaker bond energy of hydrogen bond or van der Waals bond than that of ionic bond. These chemical bonds dominate the elastic energy, with the latter being an important component of domain wall energy and playing an important role in domain nucleation and domain growth. The ratio of anisotropic domain wall energy to Gibbs free energy is large in TGS and IM, which allows a favorable domain shape and a special domain evolution under a certain electric field. Therefore, this study not only sheds light on the physical nature but also indicates the application direction for molecular ferroelectrics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  12. Switching the response of metasurfaces in polarization standing waves

    OpenAIRE

    Fang, X.; MacDonald, K.F.; Zheludev, N.I.

    2015-01-01

    We demonstrate experimentally that standing waves of polarization, as opposed to intensity, can be engaged to coherently control light-matter interactions in planar photonic nanostructures, presenting unique opportunities for all-optical data processing and polarization-dependent molecular spectroscopy. Such waves, formed by counter-propagating (linear or circular) orthogonally polarized beams can, for example, uniquely detect polarization conversion, planar chirality and related asymmetric t...

  13. Performance of a plasma opening switch in positive polarity on Gamble I using flashboard plasma sources

    International Nuclear Information System (INIS)

    Renk, T.J.

    1995-01-01

    The successful development of the Plasma Opening Switch (POS) for inductive storage applications has been largely confined to negative polarity operation. Some models of POS behavior suggest that this is because in a positive polarity coaxial configuration, the weaker magnetic field at the cathode position retards the switch opening process. This article describes experiments in which both conductor radii in the POS region were significantly reduced. Anode- and cathode-side current monitors indicate that voltages greater than open-circuit are generated at the POS position, but there is a significant amount of electron flow out of the POS, depending upon load impedance. Flow impedance analysis indicates that a relatively small gap appears in the POS plasma after switch opening. Switch performance is also compared between flashboard and carbon gun plasma sources, with the latter operated both in positive and negative polarity

  14. Evaluation of polarization mode dispersion in a telecommunication wavelength selective switch using quantum interferometry.

    Science.gov (United States)

    Fraine, A; Minaeva, O; Simon, D S; Egorov, R; Sergienko, A V

    2012-01-30

    A polarization mode dispersion (PMD) measurement of a commercial telecommunication wavelength selective switch (WSS) using a quantum interferometric technique with polarization-entangled states is presented. Polarization-entangled photons with a broad spectral width covering the telecom band are produced using a chirped periodically poled nonlinear crystal. The first demonstration of a quantum metrology application using an industrial commercial device shows a promising future for practical high-resolution quantum interference.

  15. Multi-polar resistance switching and memory effect in copper phthalocyanine junctions

    International Nuclear Information System (INIS)

    Qiao Shi-Zhu; Kang Shi-Shou; Li Qiang; Zhong Hai; Kang Yun; Yu Shu-Yun; Han Guang-Bing; Yan Shi-Shen; Mei Liang-Mo; Qin Yu-Feng

    2014-01-01

    Copper phthalocyanine junctions, fabricated by magnetron sputtering and evaporating methods, show multi-polar (unipolar and bipolar) resistance switching and the memory effect. The multi-polar resistance switching has not been observed simultaneously in one organic material before. With both electrodes being cobalt, the unipolar resistance switching is universal. The high resistance state is switched to the low resistance state when the bias reaches the set voltage. Generally, the set voltage increases with the thickness of copper phthalocyanine and decreases with increasing dwell time of bias. Moreover, the low resistance state could be switched to the high resistance state by absorbing the phonon energy. The stability of the low resistance state could be tuned by different electrodes. In Au/copper phthalocyanine/Co system, the low resistance state is far more stable, and the bipolar resistance switching is found. Temperature dependence of electrical transport measurements demonstrates that there are no obvious differences in the electrical transport mechanism before and after the resistance switching. They fit quite well with Mott variable range hopping theory. The effect of Al 2 O 3 on the resistance switching is excluded by control experiments. The holes trapping and detrapping in copper phthalocyanine layer are responsible for the resistance switching, and the interfacial effect between electrodes and copper phthalocyanine layer affects the memory effect. (interdisciplinary physics and related areas of science and technology)

  16. Bistable polarization switching in a continuous wave ruby laser

    Science.gov (United States)

    Lawandy, N. M.; Afzal, R. Sohrab

    1988-01-01

    Bistability in the output power, polarization state, and mode volume of an argon-ion laser pumped single mode ruby laser at 6943 A has been observed. The laser operates in a radially confined mode which exhibits hysteresis and bistability only when the pump polarization is parallel to the c-axis.

  17. Pressure-induced switching in ferroelectrics: Phase-field modeling, electrochemistry, flexoelectric effect, and bulk vacancy dynamics

    Science.gov (United States)

    Cao, Ye; Morozovska, Anna; Kalinin, Sergei V.

    2017-11-01

    Pressure-induced polarization switching in ferroelectric thin films has emerged as a powerful method for domain patterning, allowing us to create predefined domain patterns on free surfaces and under thin conductive top electrodes. However, the mechanisms for pressure-induced polarization switching in ferroelectrics remain highly controversial, with flexoelectricity, polarization rotation and suppression, and bulk and surface electrochemical processes all being potentially relevant. Here we classify possible pressure-induced switching mechanisms, perform elementary estimates, and study in depth using phase-field modeling. We show that magnitudes of these effects are remarkably close and give rise to complex switching diagrams as a function of pressure and film thickness with nontrivial topology or switchable and nonswitchable regions.

  18. Induced polarization response of microbial induced sulfideprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Ntarlagiannis, Dimitrios; Williams, Kenneth Hurst; Slater, Lee; Hubbard, Susan

    2004-06-04

    A laboratory scale experiment was conducted to examine the use of induced polarization and electrical conductivity to monitor microbial induced sulfide precipitation under anaerobic conditions in sand filled columns. Three columns were fabricated; one for electrical measurements, one for geochemical sampling and a third non-inoculated column was used as a control. A continual upward flow of nutrients and metals in solution was established in each column. Desulfovibrio vulgaris microbes were injected into the middle of the geochemical and electrical columns. Iron and zinc sulfides precipitated along a microbial action front as a result of sulfate reduction due by Desulfovibrio vulgaris. The precipitation front initially developed near the microbial injection location, and subsequently migrated towards the nutrient inlet, as a result of chemotaxis by Desulfovibrio vulgaris. Sampling during and subsequent to the experiment revealed spatiotemporal changes in the biogeochemical measurements associated with microbial sulfate reduction. Conductivity measurements were insensitive to all biogeochemical changes occurred within the column. Changes in the IP response (of up to 14 mrad)were observed to coincide in place and in time with the active microbe respiration/sulfide precipitation front as determined from geochemical sampling. The IP response is correlated with the lactate concentration gradient, an indirect measurement of microbial metabolism, suggesting the potential of IP as a method for monitoring microbial respiration/activity. Post experimental destructive sample analysis and SEM imaging verified the geochemical results and supported our hypothesis that microbe induced sulfide precipitation is directly detectable using electrical methods. Although the processes not fully understood, the IP response appears to be sensitive to this anaerobic microbial precipitation, suggesting a possible novel application for the IP method.

  19. Linearly polarized intracavity passive Q-switched Yb-doped ...

    Indian Academy of Sciences (India)

    2014-02-14

    Feb 14, 2014 ... ratio of active core area to inner cladding area, the pump light absorption is improved and smaller fibre length becomes possible. There are reports on the passive Q-switching in. Yb-doped LMA fibre lasers by using Cr4+:YAG crystal as a saturable absorber. Huang et al have reported maximum average ...

  20. Operation of a fast polarization-switching source at the Photon Factory

    Science.gov (United States)

    Tsuchiya, Kimichika; Shioya, Tatsuro; Aoto, Tomohiro; Harada, Kentaro; Obina, Takashi; Sakamaki, Masako; Amemiya, Kenta

    2013-03-01

    We have been developing a fast polarization-switching source for the vacuum ultraviolet and soft X-ray region at the B15-16 straight section of the 2.5-GeV Photon Factory (PF) storage ring. The source consists of two tandem APPLE-II-type elliptically polarizing undulators (EPUs), namely, U#16-1 and U#16-2, and a fast kicker system. The target frequency of polarization switching is 10 Hz. As the first step, we installed U#16-1 and five identical bump kickers in the PF ring in March 2008. Then, we constructed U#16-2 and installed it in August 2010. The orbit switching operation at 10 Hz, for user experiments, started in January 2012. We describe the details of the operation status of two EPUs and the fast local bump system in this report.

  1. Modeling of nonlinear responses for reciprocal transducers involving polarization switching

    DEFF Research Database (Denmark)

    Willatzen, Morten; Wang, Linxiang

    2007-01-01

    Nonlinearities and hysteresis effects in a reciprocal PZT transducer are examined by use of a dynamical mathematical model on the basis of phase-transition theory. In particular, we consider the perovskite piezoelectric ceramic in which the polarization process in the material can be modeled...... by Landau theory for the first-order phase transformation, in which each polarization state is associated with a minimum of the Landau free-energy function. Nonlinear constitutive laws are obtained by using thermodynamical equilibrium conditions, and hysteretic behavior of the material can be modeled...

  2. Linearly polarized intracavity passive Q-switched Yb-doped ...

    Indian Academy of Sciences (India)

    2014-02-14

    YAG crystal as a saturable absorber. An average output power of 9.4 W with pulse duration of 64 ns and pulse repetition rate of 57.4 kHz with a slope efficiency of 52% was achieved. Measured polarization extinction ratio (PER) ...

  3. Instability in time-delayed switched systems induced by fast and random switching

    Science.gov (United States)

    Guo, Yao; Lin, Wei; Chen, Yuming; Wu, Jianhong

    2017-07-01

    In this paper, we consider a switched system comprising finitely or infinitely many subsystems described by linear time-delayed differential equations and a rule that orchestrates the system switching randomly among these subsystems, where the switching times are also randomly chosen. We first construct a counterintuitive example where even though all the time-delayed subsystems are exponentially stable, the behaviors of the randomly switched system change from stable dynamics to unstable dynamics with a decrease of the dwell time. Then by using the theories of stochastic processes and delay differential equations, we present a general result on when this fast and random switching induced instability should occur and we extend this to the case of nonlinear time-delayed switched systems as well.

  4. All-optical 2-bit header recognition and packet switching using polarization bistable VCSELs.

    Science.gov (United States)

    Hayashi, Daisuke; Nakao, Kazuya; Katayama, Takeo; Kawaguchi, Hitoshi

    2015-04-06

    We propose and evaluate an all-optical 2-bit header recognition and packet switching method using two 1.55-µm polarization bistable vertical-cavity surface-emitting lasers (VCSELs) and three optical switches. Polarization bistable VCSELs acted as flip-flop devices by using AND-gate operations of the header and set pulses, together with the reset pulses. Optical packets including 40-Gb/s non-return-to-zero pseudo-random bit-sequence payloads were successfully sent to one of four ports according to the state of two bits in the headers with a 4-bit 500-Mb/s return-to-zero format. The input pulse powers were 17.2 to 31.8 dB lower than the VCSEL output power. We also examined an extension of this method to multi-bit header recognition and packet switching.

  5. Polarization control of high transmission/reflection switching by all-dielectric metasurfaces

    Science.gov (United States)

    Shibanuma, Toshihiko; Maier, Stefan A.; Albella, Pablo

    2018-02-01

    Metasurfaces built of high refractive dielectric nanostructures could play a key role in controlling the electromagnetic wave propagation, due to their low energy losses and their ability to excite not only electric but also magnetic resonances. In this study, we theoretically and experimentally demonstrate that an array of high-index dielectric nanodimers can perform as tuneable metasurfaces that can be switched from a high transmitter to a high reflector, by just changing the linear polarization of excitation. The incident polarization alters the hybridization mode of the excited electric and magnetic dipoles in the dimer, and this leads to either spectral overlap or separation of the two dipoles. The hybridization of the electric and magnetic modes modifies the effective permittivity and permeability of the tuneable dielectric metasurface, exhibiting the high transmission and reflection that can be easily switched by simply changing the linear polarization.

  6. Nanoscale switch for vortex polarization mediated by Bloch core formation in magnetic hybrid systems

    Science.gov (United States)

    Wohlhüter, Phillip; Bryan, Matthew Thomas; Warnicke, Peter; Gliga, Sebastian; Stevenson, Stephanie Elizabeth; Heldt, Georg; Saharan, Lalita; Suszka, Anna Kinga; Moutafis, Christoforos; Chopdekar, Rajesh Vilas; Raabe, Jörg; Thomson, Thomas; Hrkac, Gino; Heyderman, Laura Jane

    2015-01-01

    Vortices are fundamental magnetic topological structures characterized by a curling magnetization around a highly stable nanometric core. The control of the polarization of this core and its gyration is key to the utilization of vortices in technological applications. So far polarization control has been achieved in single-material structures using magnetic fields, spin-polarized currents or spin waves. Here we demonstrate local control of the vortex core orientation in hybrid structures where the vortex in an in-plane Permalloy film coexists with out-of-plane maze domains in a Co/Pd multilayer. The vortex core reverses its polarization on crossing a maze domain boundary. This reversal is mediated by a pair of magnetic singularities, known as Bloch points, and leads to the transient formation of a three-dimensional magnetization structure: a Bloch core. The interaction between vortex and domain wall thus acts as a nanoscale switch for the vortex core polarization. PMID:26238042

  7. An experiment of spectral induced polarization

    Directory of Open Access Journals (Sweden)

    L. Sambuelli

    1994-06-01

    Full Text Available A Spectral Induced Polarization (SIP survey was carried out in a mining test site in Sardinia (Italy. Measurements were developed along a profile by using an axial dipole-dipole array with 10 AB positions and 6 MN positions for cach AB. The amplitude and phase spectra of the apparent resistivity were acquired in the 0.25-4096 Hz frequeney range. The results obtained through the processing and inversion step seem to confirm that, with respect to the classical TD/FD Induced Polarization, SIP allows better discrimination of some important characteristics of mineral deposits such as mineral content and grain size.

  8. Effects of Transverse Magnetic Anisotropy on Current-Induced Spin Switching

    OpenAIRE

    Misiorny, Maciej; Barnaś, Józef

    2013-01-01

    Spin-polarized transport through bistable magnetic adatoms or single-molecule magnets (SMMs), which exhibit both uniaxial and transverse magnetic anisotropy, is considered theoretically. The main focus is on the impact of transverse anisotropy on transport characteristics and the adatom's/SMM's spin. In particular, we analyze the role of quantum tunneling of magnetization (QTM) in the mechanism of the current-induced spin switching, and show that the QTM phenomenon becomes revealed as resonan...

  9. Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes

    DEFF Research Database (Denmark)

    Schuhmann, K.; Almeida, R.; Baumert, M.

    2012-01-01

    Topdown shotgun lipidomics relies on direct infusion of total lipid extracts into a high-resolution tandem mass spectrometer and implies that individual lipids are recognized by their accurately determined m/z. Lipid ionization efficiency and detection specificity strongly depend on the acquisition...... polarity, and therefore it is beneficial to analyze lipid mixtures in both positive and negative modes. Hybrid LTQ Orbitrap mass spectrometers are widely applied in topdown lipidomics; however, rapid polarity switching was previously unfeasible because of the severe and immediate degradation of mass...

  10. Magnetic Switching of a Single Molecular Magnet due to Spin-Polarized Current

    OpenAIRE

    Misiorny, Maciej; Barnas, Józef

    2006-01-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic electrodes is investigated theoretically. Magnetic moments of the electrodes are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through a barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system as well as the spin relaxation times of the SMM are calculated f...

  11. Reversible strain-induced magnetization switching in FeGa nanomagnets: Pathway to a rewritable, non-volatile, non-toggle, extremely low energy straintronic memory.

    Science.gov (United States)

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-12-14

    We report reversible strain-induced magnetization switching between two stable/metastable states in ~300 nm sized FeGa nanomagnets delineated on a piezoelectric PMN-PT substrate. Voltage of one polarity applied across the substrate generates compressive strain in a nanomagnet and switches its magnetization to one state, while voltage of the opposite polarity generates tensile strain and switches the magnetization back to the original state. The two states can encode the two binary bits, and, using the right voltage polarity, one can write either bit deterministically. This portends an ultra-energy-efficient non-volatile "non-toggle" memory.

  12. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Hurtado, A. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Institute of Photonics, Physics Department, University of Strathclyde, Wolfson Centre, 106 Rottenrow East, Glasgow G4 0NW, Scotland (United Kingdom); Korpijarvi, V.-M.; Guina, M. [Optoelectronics Research Centre (ORC), Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2015-01-12

    We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in future optical systems.

  13. Light-Induced Switching of Tunable Single-Molecule Junctions

    KAUST Repository

    Sendler, Torsten

    2015-04-16

    A major goal of molecular electronics is the development and implementation of devices such as single-molecular switches. Here, measurements are presented that show the controlled in situ switching of diarylethene molecules from their nonconductive to conductive state in contact to gold nanoelectrodes via controlled light irradiation. Both the conductance and the quantum yield for switching of these molecules are within a range making the molecules suitable for actual devices. The conductance of the molecular junctions in the opened and closed states is characterized and the molecular level E 0, which dominates the current transport in the closed state, and its level broadening Γ are identified. The obtained results show a clear light-induced ring forming isomerization of the single-molecule junctions. Electron withdrawing side-groups lead to a reduction of conductance, but do not influence the efficiency of the switching mechanism. Quantum chemical calculations of the light-induced switching processes correlate these observations with the fundamentally different low-lying electronic states of the opened and closed forms and their comparably small modification by electron-withdrawing substituents. This full characterization of a molecular switch operated in a molecular junction is an important step toward the development of real molecular electronics devices.

  14. Magnetic switching of a single molecular magnet due to spin-polarized current

    Science.gov (United States)

    Misiorny, Maciej; Barnaś, Józef

    2007-04-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic leads (electrodes) is investigated theoretically. Magnetic moments of the leads are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through the barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system, as well as the spin relaxation times of the SMM, are calculated from the Fermi golden rule. It is shown that spin of the SMM can be reversed by applying a certain voltage between the two magnetic electrodes. Moreover, the switching may be visible in the corresponding current-voltage characteristics.

  15. The influence of preferred orientation and poling temperature on the polarization switching current in PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Mi; Zhang, Weikang; Zhang, Zebin; Zhang, Ping [Tianjin University, School of Electrical and Information Engineering, Tianjin (China); Lan, Kuibo [Tianjin University, School of Microelectronics, Tianjin (China)

    2017-07-15

    In this paper, Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films with different preferred orientation were prepared on platinized silicon substrates by a modified sol-gel method. Our results indicate that the polarization switching current in PZT thin films is dependent on preferred orientation and poling temperature. In our measurements, (111)-oriented PZT has a larger polarization switching current than randomly oriented PZT, and with the increase of the degree of (111) preferred orientation and the poling temperature, the polarization switching current gradually increase. Considering the contact of PZT thin film with electrodes, the space-charged limited conduction (SCLC) combined with domain switching mechanism may be responsible for such phenomena. By analyzing the conduction data, we found the interface-limited Schottky emission (ES) and bulk-limited Poole-Frenkel hopping (PF) are not suitable for our samples. (orig.)

  16. Research on disk amplifiers as polarizer of electro-optical switch

    International Nuclear Information System (INIS)

    Zheng Kuixing; Cai Bangwei; Feng Bin; Zheng Jiangang; Dong Yun; Peng Zhitao; Lu Jingping; Jing Feng; Wei Xiaofeng

    2002-01-01

    It benefits to decrease the engineering cost and to debase the technical crisis by the polarizer composed of amplifier Nd 3+ : glass slabs located with the Brewster angle in large scale multi-passes laser facility. The relationships of the isolation efficiency with the numbers of slab, the growth of the amplifier and the switch efficiency of Pockels cell are calculated theoretically. The experimental results indicated that the output energy ratio of this Pockels cell-amplifier isolation system is 1 : 8 while Pockels cell is on and off

  17. Research on disk amplifiers as polarizer of electro-optical switch

    CERN Document Server

    Zheng Kui Xing; Feng Bin; Zheng Jian; Dong Yun; Peng Zhi Tao; Lu Jing Ping; Jing Feng; Wei Xiao Feng

    2002-01-01

    It benefits to decrease the engineering cost and to debase the technical crisis by the polarizer composed of amplifier Nd sup 3 sup + : glass slabs located with the Brewster angle in large scale multi-passes laser facility. The relationships of the isolation efficiency with the numbers of slab, the growth of the amplifier and the switch efficiency of Pockels cell are calculated theoretically. The experimental results indicated that the output energy ratio of this Pockels cell-amplifier isolation system is 1 : 8 while Pockels cell is on and off

  18. Polarization encoded all-optical quaternary successor with the help of SOA assisted Sagnac switch

    Science.gov (United States)

    Chattopadhyay, Tanay; Roy, Jitendra Nath

    2011-06-01

    The application of multi-valued (non-binary) signals can provide a considerable relief in transmission, storage and processing of large amount of information in digital signal processing. Optical multi-valued logical operation is an interesting challenge for future optical signal processing where we can expect much innovation. A novel all-optical quaternary successor (QSUC) circuit with the help of semiconductor optical amplifier (SOA)-assisted Sagnac switch is proposed and described. This circuit exploits the polarization properties of light. Different logical states are represented by different polarization state of light. Simulation result confirming described method is given in this paper. Proposed all-optical successor circuit can take an important and significant role in designing of all-optical quaternary universal inverter and modulo arithmetic unit (addition and multiplication).

  19. Polarization enhancement and ferroelectric switching enabled by interacting magnetic structures in DyMnO3 thin films

    KAUST Repository

    Lu, Chengliang

    2013-12-02

    The mutual controls of ferroelectricity and magnetism are stepping towards practical applications proposed for quite a few promising devices in which multiferroic thin films are involved. Although ferroelectricity stemming from specific spiral spin ordering has been reported in highly distorted bulk perovskite manganites, the existence of magnetically induced ferroelectricity in the corresponding thin films remains an unresolved issue, which unfortunately halts this step. In this work, we report magnetically induced electric polarization and its remarkable response to magnetic field (an enhancement of ?800% upon a field of 2 Tesla at 2 K) in DyMnO3 thin films grown on Nb-SrTiO3 substrates. Accompanying with the large polarization enhancement, the ferroelectric coercivity corresponding to the magnetic chirality switching field is significantly increased. A picture based on coupled multicomponent magnetic structures is proposed to understand these features. Moreover, different magnetic anisotropy related to strain-suppressed GdFeO 3-type distortion and Jahn-Teller effect is identified in the films.

  20. Dynamically Switching the Polarization State of Light Based on the Phase Transition of Vanadium Dioxide

    Science.gov (United States)

    Jia, Zhi-Yong; Shu, Fang-Zhou; Gao, Ya-Jun; Cheng, Feng; Peng, Ru-Wen; Fan, Ren-Hao; Liu, Yongmin; Wang, Mu

    2018-03-01

    There have been great endeavors devoted to manipulating the polarization state of light by plasmonic nanostructures in recent decades. However, the topic of active polarizers has attracted much less attention. We present a composite plasmonic nanostructure consisting of vanadium dioxide that can dynamically modulate the polarization state of the reflected light through a thermally induced phase transition of vanadium dioxide. We design a system consisting of anisotropic plasmonic nanostructures with vanadium dioxide that exhibits distinct reflections subjected to different linearly polarized incidence at room temperature and in the heated state. Under a particular linearly polarized incidence, the polarization state of the reflected light changes at room temperature, and reverts to its original polarization state above the phase-transition temperature. The composite structure can also be used to realize a dynamically switchable infrared image, wherein a pattern can be visualized at room temperature while it disappears above the phase-transition temperature. The composite structure could be potentially used for versatile optical modulators, molecular detection, and polarimetric imaging.

  1. Electrocoagulation with polarity switch for fast oil removal from oil in water emulsions.

    Science.gov (United States)

    Gobbi, Lorena C A; Nascimento, Izabela L; Muniz, Eduardo P; Rocha, Sandra M S; Porto, Paulo S S

    2018-05-01

    An electrocoagulation technique using a 3.5 L reactor, with aluminum electrodes in a monopolar arrangement with polarity switch at each 10 s was used to separate oil from synthetic oily water similar in oil concentration to produced water from offshore platforms. Up to 98% of oil removal was achieved after 20 min of processing. Processing time dependence of the oil removal and pH was measured and successfully adjusted to exponential models, indicating a pseudo first order behavior. Statistical analysis was used to prove that electrical conductivity and total solids depend significantly on the concentration of electrolyte (NaCl) in the medium. Oil removal depends mostly on the distance between the electrodes but is proportional to electrolyte concentration when initial pH is 8. Electrocoagulation with polarity switch maximizes the lifetime of the electrodes. The process reduced oil concentration to a value below that stipulated by law, proving it can be an efficient technology to minimize the offshore drilling impact in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Giant quadratic electro-optical effect during polarization switching in ultrathin ferroelectric polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L. M., E-mail: lev39blinov@gmail.com; Lazarev, V. V.; Palto, S. P.; Yudin, S. G. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2012-04-15

    The low-frequency quadratic electro-optical effect with a maximum electro-optical coefficient of g = 8 Multiplication-Sign 10{sup -19} m{sup 2}/V{sup 2} (i.e., four orders of magnitude greater than the standard high-frequency value) has been studied in thin films of ferroelectric polymer PVDF(70%)-TrFE(30%). The observed effect is related to the process of spontaneous polarization switching, during which the electron oscillators of C-F and C-H dipole groups rotate to become parallel to the applied field. As a result, the ellipsoid of the refractive index exhibits narrowing in the direction perpendicular to the field. The field dependence of the electro-optical coefficient g correlates with that of the apparent dielectric permittivity, which can be introduced under the condition of ferroelectric polarization switching. The observed electro-optical effect strongly decreases when the frequency increases up to several hundred hertz. The temperature dependence of the effect exhibits clearly pronounced hysteresis in the region of the ferroelectric phase transition.

  3. Energetic ion emission in a positive polarity nanosecond plasma opening switch

    International Nuclear Information System (INIS)

    Sarfaty, M.; Krasik, Ya.E.; Weingarten, A.; Fruchtman, A.; Maron, Y.

    1996-01-01

    The emission was studied of energetic ions from the plasma in a coaxial Plasma Opening Switch (POS) powered by a 300 kV, 15 kA, 90 ns positive polarity pulse. Fluxes lasting 2 - 3 ns of ions flowing radially onto the cathode were observed at all axial locations of the switch plasma within 5 ns of the beginning of the upstream POS current. It is suggested that the termination of this ion flux is due to the formation of a cathode plasma, which is consistent with our spectroscopic measurements. Later in the pulse, longer duration (100 ns) ion fluxes were observed radially, first appearing in the generator side of the switch plasma. Fluxes 30 - 40 ns long of ions flowing axially towards the POS load at velocities (2±1) x 10 8 cm/s were also observed. The dependences of the start time of the axial ion flow, of the ion velocities, and of the ion flux on the POS operation parameters were studied. (author). 6 figs., 5 refs

  4. Stochastic switching induced adaptation in a starved Escherichia coli population.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Shimizu

    Full Text Available Population adaptation can be determined by stochastic switching in living cells. To examine how stochastic switching contributes to the fate decision for a population under severe stress, we constructed an Escherichia coli strain crucially dependent on the expression of a rewired gene. The gene essential for tryptophan biosynthesis, trpC, was removed from the native regulatory unit, the Trp operon, and placed under the extraneous control of the lactose utilisation network. Bistability of the network provided the cells two discrete phenotypes: the induced and suppressed level of trpC. The two phenotypes permitted the cells to grow or not, respectively, under conditions of tryptophan depletion. We found that stochastic switching between the two states allowed the initially suppressed cells to form a new population with induced trpC in response to tryptophan starvation. However, the frequency of the transition from suppressed to induced state dropped off dramatically in the starved population, in comparison to that in the nourished population. This reduced switching rate was compensated by increasing the initial population size, which probably provided the cell population more chances to wait for the rarely appearing fit cells from the unfit cells. Taken together, adaptation of a starved bacterial population because of stochasticity in the gene rewired from the ancient regulon was experimentally confirmed, and the nutritional status and the population size played a great role in stochastic adaptation.

  5. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    Science.gov (United States)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  6. Room-Temperature Magnetic Switching of the Electric Polarization in Ferroelectric Nanopillars.

    Science.gov (United States)

    Poddar, Shashi; de Sa, Pedro; Cai, Ronggang; Delannay, Laurent; Nysten, Bernard; Piraux, Luc; Jonas, Alain M

    2018-01-23

    Magnetoelectric layers with a strong coupling between ferroelectricity and ferromagnetism offer attractive opportunities for the design of new device architectures such as dual-channel memory and multiresponsive sensors and actuators. However, materials in which a magnetic field can switch an electric polarization are extremely rare, work most often only at very low temperatures, and/or comprise complex materials difficult to integrate. Here, we show that magnetostriction and flexoelectricity can be harnessed to strongly couple electric polarization and magnetism in a regularly nanopatterned magnetic metal/ferroelectric polymer layer, to the point that full reversal of the electric polarization can occur at room temperature by the sole application of a magnetic field. Experiments supported by finite element simulations demonstrate that magnetostriction produces large strain gradients at the base of the ferroelectric nanopillars in the magnetoelectric hybrid layer, translating by flexoelectricity into equivalent electric fields larger than the coercive field of the ferroelectric polymer. Our study shows that flexoelectricity can be advantageously used to create a very strong magnetoelectric coupling in a nanopatterned hybrid layer.

  7. Current-induced switching in transport through anisotropic magnetic molecules

    Science.gov (United States)

    Bode, Niels; Arrachea, Liliana; Lozano, Gustavo S.; Nunner, Tamara S.; von Oppen, Felix

    2012-03-01

    Anisotropic single-molecule magnets may be thought of as molecular switches, with possible applications to molecular spintronics. In this paper, we consider current-induced switching in single-molecule junctions containing an anisotropic magnetic molecule. We assume that the carriers interact with the magnetic molecule through the exchange interaction and focus on the regime of high currents in which the molecular spin dynamics is slow compared to the time which the electrons spend on the molecule. In this limit, the molecular spin obeys a nonequilibrium Langevin equation which takes the form of a generalized Landau-Lifshitz-Gilbert equation and which we derive microscopically by means of a nonequilibrium Born-Oppenheimer approximation. We exploit this Langevin equation to identify the relevant switching mechanisms and to derive the current-induced switching rates. As a by-product, we also derive S-matrix expressions for the various torques entering into the Landau-Lifshitz-Gilbert equation which generalize previous expressions in the literature to nonequilibrium situations.

  8. Characterization of Carbonates by Spectral Induced Polarization

    Science.gov (United States)

    Hupfer, Sarah; Halisch, Matthias; Weller, Andreas

    2017-04-01

    This study investigates the complex electrical conductivity of carbonate samples by Spectral Induced Polarization (SIP). The analysis is conducted in combination with petrophysical, mineralogical and geochemical measurements. SIP is a useful tool to obtain more detailed information about rock properties and receive a more qualitative pore space characterization. Rock parameters like permeability, pore-size and -surface area can be predicted. Up to this point, sandstones or sandy materials were investigated in detail by laboratory SIP-measurements. Several robust empirical relationships were found that connect IP-signals and petrophysical parameters (surface area, surface conductivity and cation exchange capacity). Different types of carbonates were analyzed with laboratory SIP-measurements. Rock properties like grain density, porosity, permeability and surface area were determined by petrophysical measurements. Geochemistry and mineralogy were used to differentiate the carbonate types. First results of the SIP-measurements showed polarization effects for all different types. Four different phase behavior were observed in the phase spectra. A constant phase angle, a constant slope, a combination of both and a maximum type could be identified. Each phase behavior can be assigned to the specific carbonate type used, but the constant phase occurs at two carbonate types. Further experiments were conducted to get more insight the phase behavior and get explanations. 1. Approach: An expected phase peak frequency for each sample was calculated to check if this frequency is within the measured spectrum of 2 mHz to 100 Hz. 2. Approach: Significantly reducing of the fluid conductivity to increase phase signal for a better interpretation. 3. Approach: The cation-exchange-capacity (CEC) was regarded as a factor as well. A dependence between imaginary part of conductivity and CEC was detected. 4. Approach: Imaging procedures (scanning electron microscope, x-ray computed

  9. The Ultrathin Limit and Dead-layer Effects in Local Polarization Switching of BiFeO3

    Energy Technology Data Exchange (ETDEWEB)

    Maksymovych, Petro [ORNL; Huijben, Mark [University of Twente, Netherlands; Pan, Minghu [ORNL; Jesse, Stephen [ORNL; Balke, Nina [ORNL; Chang, Hye Jung [ORNL; Borisevich, Albina Y [ORNL; Baddorf, Arthur P [ORNL; Rijnders, Guus [MESA+ University of Twente, Enschede, Netherlands; Blank, Dave H. A. [University of Twente, Netherlands; Ramesh, R. [University of California, Berkeley; Kalinin, Sergei V [ORNL

    2012-01-01

    Using piezoresponse force microscopy in ultra-high vacuum, polarization switching has been detected and quantified in epitaxial BiFeO3 films from 200 down to ~ 4 unit cells. Local remnant piezoresponse was used to infer the applied electric field inside the ferroelectric volume, and account for the elusive effect of dead-layers in ultrathin films. The dead-layer manifested itself in the slower than anticipated decrease of the switching bias with film thickness, yielding apparent Kay-Dunn scaling of the switching field, while the statistical analysis of hysteresis loops revealed lateral variation of the dead-layer with sub-10 nm resolution.

  10. Automated polarization control for the precise alignment of laser-induced self-organized nanostructures

    Science.gov (United States)

    Hermens, Ulrike; Pothen, Mario; Winands, Kai; Arntz, Kristian; Klocke, Fritz

    2018-02-01

    Laser-induced periodic surface structures (LIPSS) found in particular applications in the fields of surface functionalization have been investigated since many years. The direction of these ripple structures with a periodicity in the nanoscale can be manipulated by changing the laser polarization. For industrial use, it is useful to manipulate the direction of these structures automatically and to obtain smooth changes of their orientation without any visible inhomogeneity. However, currently no system solution exists that is able to control the polarization direction completely automated in one software solution so far. In this paper, a system solution is presented that includes a liquid crystal polarizer to control the polarization direction. It is synchronized with a scanner, a dynamic beam expander and a five axis-system. It provides fast switching times and small step sizes. First results of fabricated structures are also presented. In a systematic study, the conjunction of LIPSS with different orientation in two parallel line scans has been investigated.

  11. Polarization-selective vortex-core switching by tailored orthogonal Gaussian-pulse currents

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Young-Sang; Lee, Ki-Suk; Jung, Hyunsung; Choi, Youn-Seok; Yoo, Myoung-Woo; Han, Dong-Soo; Im, Mi-Young; Fischer, Peter; Kim, Sang-Koog

    2011-05-01

    We experimentally demonstrate low-power-consumption vortex-core switching in magnetic nanodisks using tailored rotating magnetic fields produced with orthogonal and unipolar Gaussian-pulse currents. The optimal width of the orthogonal pulses and their time delay are found, from analytical and micromagnetic numerical calculations, to be determined only by the angular eigenfrequency ωD for a given vortex-state disk of polarization p, such that σ=1/ωD and Δt=π/2p/ωD. The estimated optimal pulse parameters are in good agreement with the experimental results. Finally, this work lays a foundation for energy-efficient information recording in vortex-core cross-point architecture.

  12. A Density-Dependent Switch Drives Stochastic Clustering and Polarization of Signaling Molecules

    Science.gov (United States)

    Jilkine, Alexandra; Angenent, Sigurd B.; Wu, Lani F.; Altschuler, Steven J.

    2011-01-01

    Positive feedback plays a key role in the ability of signaling molecules to form highly localized clusters in the membrane or cytosol of cells. Such clustering can occur in the absence of localizing mechanisms such as pre-existing spatial cues, diffusional barriers, or molecular cross-linking. What prevents positive feedback from amplifying inevitable biological noise when an un-clustered “off” state is desired? And, what limits the spread of clusters when an “on” state is desired? Here, we show that a minimal positive feedback circuit provides the general principle for both suppressing and amplifying noise: below a critical density of signaling molecules, clustering switches off; above this threshold, highly localized clusters are recurrently generated. Clustering occurs only in the stochastic regime, suggesting that finite sizes of molecular populations cannot be ignored in signal transduction networks. The emergence of a dominant cluster for finite numbers of molecules is partly a phenomenon of random sampling, analogous to the fixation or loss of neutral mutations in finite populations. We refer to our model as the “neutral drift polarity model.” Regulating the density of signaling molecules provides a simple mechanism for a positive feedback circuit to robustly switch between clustered and un-clustered states. The intrinsic ability of positive feedback both to create and suppress clustering is a general mechanism that could operate within diverse biological networks to create dynamic spatial organization. PMID:22102805

  13. A density-dependent switch drives stochastic clustering and polarization of signaling molecules.

    Directory of Open Access Journals (Sweden)

    Alexandra Jilkine

    2011-11-01

    Full Text Available Positive feedback plays a key role in the ability of signaling molecules to form highly localized clusters in the membrane or cytosol of cells. Such clustering can occur in the absence of localizing mechanisms such as pre-existing spatial cues, diffusional barriers, or molecular cross-linking. What prevents positive feedback from amplifying inevitable biological noise when an un-clustered "off" state is desired? And, what limits the spread of clusters when an "on" state is desired? Here, we show that a minimal positive feedback circuit provides the general principle for both suppressing and amplifying noise: below a critical density of signaling molecules, clustering switches off; above this threshold, highly localized clusters are recurrently generated. Clustering occurs only in the stochastic regime, suggesting that finite sizes of molecular populations cannot be ignored in signal transduction networks. The emergence of a dominant cluster for finite numbers of molecules is partly a phenomenon of random sampling, analogous to the fixation or loss of neutral mutations in finite populations. We refer to our model as the "neutral drift polarity model." Regulating the density of signaling molecules provides a simple mechanism for a positive feedback circuit to robustly switch between clustered and un-clustered states. The intrinsic ability of positive feedback both to create and suppress clustering is a general mechanism that could operate within diverse biological networks to create dynamic spatial organization.

  14. Ultrathin limit and dead-layer effects in local polarization switching of BiFeO3

    NARCIS (Netherlands)

    Maksymovych, P.; Huijben, Mark; Pan, M.; Jesse, S.; Balke, N.; Chu, Y.H.; Chang, H.J.; Borisevich, A.Y.; Baddorf, A.P.; Rijnders, Augustinus J.H.M.; Blank, David H.A.; Ramesh, R.; Kalinin, S.V.

    2012-01-01

    Using piezoresponse force microscopy in an ultrahigh vacuum, polarization switching has been detected and quantified in epitaxial BiFeO3 films from 200 to about 4 unit cells thick. Local remnant piezoresponse was utilized to probe both ferroelectric properties and effects of imperfect electrical

  15. Radially polarized and passively Q-switched Yb-doped fiber laser based on intracavity birefringent mode discrimination

    Science.gov (United States)

    Sun, Xuehuan; Wu, Yongxiao; Chen, Sanbin; Li, Jianlang

    2018-05-01

    In this paper, we demonstrated a passive Q-switched ytterbium-doped fiber laser with radially polarized beam emission by using a c-cut YVO4 birefringent crystal as the intracavity polarization discriminator, and a Cr4+:YAG crystal as the saturable absorber and output coupler. The maximum averaged laser power reached 3.89 W with a high slope efficiency of 66.5%. The laser pulse had a peak power of 161 W, 160 ns duration, and 151 kHz repetition rate at the absorbed pump power of 6.48 W. Such a radially polarized pulse would facilitate numerous applications.

  16. Spin-transfer induced ultrafast precessional switching enhanced by interface anisotropy in a ferromagnetic nanopillar

    International Nuclear Information System (INIS)

    Daniel, M.; Sabareesan, P.

    2009-07-01

    Spin-transfer induced ultrafast precessional switching of magnetization in the Co/Cu/Co nanopillar device is studied. Micromagnetic calculations show that, precessional magnetization switching occurs above a threshold current. The presence of interface uniaxial anisotropy in the Co-thin film free layer, influences heavily the current and energy required to initiate the switching in the device, and the speed of the precessional switching. The threshold current and the precessional switching time are significantly reduced by this effect. (author)

  17. Induced polarization survey for iron ore study

    Science.gov (United States)

    Saad, Rosli; Nordiana, M. M.; Azwin, I. N.; Ahmad, A. R.

    2013-05-01

    The purpose of the survey is to assess the potential of iron ore mining using electrical techniques, 2-D resistivity and Induce Polarization (IP) methods. There are two types of iron ore which are high-grade ore (massive hematite rock) and low-grade ore, magnetite (25-30% Fe). The dominant economic iron mineral in low-grade ore is magnetite. Two (2) survey lines were carried out at each lot of land. For lot 1 and 2, the survey lines is almost west-east, while for lot 3, the survey lines is about south-north. The survey used pole-dipole array with ABEM SAS4000 system. The result suggests the area dominated with alluvium which has chargeability rate of <3 msec which suspected as potential iron ore. The amount of alluvium to be excavated for each lot is about 7,525,435 m3, 8,454,390 m3 and 8,601,004 m3 respectively.

  18. Nuclear reactivity control using laser induced polarization

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1990-01-01

    This patent describes a control element for reactivity control of a fission source provides an atomic density of 3 He in a control volume which is effective to control criticality as the 3 He is spin-polarized. Spin-polarization of the 3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the 3 He for spin-polarizing the 3 He. An alkali-metal vapor may be included with the 3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with 3 He to spin-polarize the 3 He atoms

  19. Polarization-resolved laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Zhao, Youbo; Singha, Sima; Liu, Yaoming; Gordon, Robert J

    2009-02-15

    It is shown that plasma polarization measurements can be used to enhance the sensitivity of laser-induced breakdown spectroscopy (LIBS). The polarization of the plasma emission is used to suppress the continuum with only slight attenuation of the discrete atomic and ionic spectra. The method is demonstrated for LIBS detection of copper and carbon samples ablated by pairs of femtosecond laser pulses.

  20. Perfect switching of the spin polarization in a ferromagnetic gapless graphene/superconducting gapped graphene junction

    International Nuclear Information System (INIS)

    Soodchomshom, Bumned; Tang, I-Ming; Hoonsawat, Rassmidara

    2010-01-01

    With the fabrication of gapped graphene, interest in the tunneling spectroscopy in graphene-based FG/SG junctions in which one side consists of a gapless ferro-magnetic graphene (FG) and the other side, of a gapped superconducting graphene (SG) has arisen. The carriers in the gapless (gapped) graphene are 2D relativistic particles having an energy spectrum given by E=√(h 2 v F 2 k 2 +(mv F 2 ) 2 ) (where mv F 2 is the gap and v F is the Fermi velocity). The spin currents in this FG/SG junction are obtained within the framework of the extended Blonder-Tinkham-Klapwijk (BTK) formalism. The effects of the superconducting energy gap in SG, of the gap mv F 2 which opened in the superconducting graphene, of the exchange field in FG, of the spin-dependent specular Andreev reflection, of the effective Fermi energy (E FF ) of FG and of the bias voltage across the junction (V) are simulated. It is seen that by adjusting E FF or V, the spin polarization (defined as SP(%) = 100% x (G ↑ - G ↓ )/(G ↑ + G ↓ )) can be switched from a pure spin up (SP = +100%) state to pure spin down (SP = -100%) state.

  1. Dependence of polar effect on parameters of coaxial plasma-erosive switches

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Ivanov, I.B.; Krasik, Ya.E.; Ryzhakin, N.N.; Sinebryukhov, A.A.; Tolmacheva, V.G.

    1988-01-01

    The results of experimental investigations and numerical simulation of the polar effect in a coaxial plasma-erosive switch (PES) established in a circuit of a strong-current nanosecond accelerator are presented. PES characteristics (energy losses, impedance, rate of its increase, etc.) are investigated depending on mutual direction of accelerator current and plasma flow as well as on the cathode radius in the PES region. It is experimentally shown that the magnetic fields near the cathode determined by this electrode radius influences mainly on PES characteristics. Mutual direction of accelerator current and plasma flow is the second significance factor influencing on PES characteristics. The optimal mode of PES operation is realized when providing the less with respect to the positive electrode, cathode radius and coinciding in direction accelerator current and plasma flow. Numerical simulation of dynamic processes in coaxial PES for different ratios of cathode and anode radii and mutual directions of accelerator current and plasma flow gives qualitative agreement with the experimental results

  2. Enhanced bipolar resistive switching behavior in polar Cr-doped barium titanate thin films without electro-forming process

    Directory of Open Access Journals (Sweden)

    Atul Thakre

    2017-12-01

    Full Text Available An enhanced, repeatable and robust resistive switching phenomenon was observed in Cr substituted BaTiO3 polar ferroelectric thin films; fabricated and deposited by the sol-gel approach and spin coating technique, respectively. An enhanced bistable bipolar resistive switching (BRS phenomenon without electro-forming process, low switching voltage (∼ 2 V and moderate retention characteristics of 104 s along with a high Roff/Ron resistance ratio ∼103 was achieved. The current conduction analysis showed that the space charge limited conduction (SCLC and Schottky emission conduction dominate in the high voltage range, while thermally active charge carriers (ohmic in the lower voltage range. The impedance spectroscopy study indicates the formation of current conducting path and rupturing of oxygen vacancies during SET and RESET process.

  3. Enhanced bipolar resistive switching behavior in polar Cr-doped barium titanate thin films without electro-forming process

    Science.gov (United States)

    Thakre, Atul; Kumar, Ashok

    2017-12-01

    An enhanced, repeatable and robust resistive switching phenomenon was observed in Cr substituted BaTiO3 polar ferroelectric thin films; fabricated and deposited by the sol-gel approach and spin coating technique, respectively. An enhanced bistable bipolar resistive switching (BRS) phenomenon without electro-forming process, low switching voltage (˜ 2 V) and moderate retention characteristics of 104 s along with a high Roff/Ron resistance ratio ˜103 was achieved. The current conduction analysis showed that the space charge limited conduction (SCLC) and Schottky emission conduction dominate in the high voltage range, while thermally active charge carriers (ohmic) in the lower voltage range. The impedance spectroscopy study indicates the formation of current conducting path and rupturing of oxygen vacancies during SET and RESET process.

  4. Effects of Transverse Magnetic Anisotropy on Current-Induced Spin Switching

    Science.gov (United States)

    Misiorny, Maciej; Barnaś, Józef

    2013-07-01

    Spin-polarized transport through bistable magnetic adatoms or single-molecule magnets (SMMs), which exhibit both uniaxial and transverse magnetic anisotropy, is considered theoretically. The main focus is on the impact of transverse anisotropy on transport characteristics and the adatom’s or SMM’s spin. In particular, we analyze the role of quantum tunneling of magnetization (QTM) in the mechanism of the current-induced spin switching, and show that the QTM phenomenon becomes revealed as resonant peaks in the average values of the molecule’s spin and in the charge current. These features appear at some resonant fields and are observable when at least one of the electrodes is ferromagnetic.

  5. Mathematical solutions of rate equations of a laser-diode end-pumped passively Q-switched and mode locked Nd-laser with Cr4+:YAG polarized saturable absorber

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2012-01-01

    The intracavity frequency-doubling (IFD) of a simultaneous passively Q-switched mode-locked diode-pumped Nd 3 + - laser is studied with a polarized isotropic Cr 4 +: YAG saturable absorber. A general recurrence formula for the mode-locked pulses under the Q-switched envelope at fundamental wavelength has been reconstructed in order to analyze the temporal shape behavior of a single Q-switched envelope with mode-locking pulse trains. This formula has been derived taking into account the impact of the IFD and polarized Cr 4 +: YAG saturable absorber.The presented mathematical model describes the self-induced anisotropy appeared in the polarized Cr 4 +: YAG in the nonlinear stage of the giant pulse formation. For the anisotropic Nd 3 +: YVO 4 active medium, the generated polarized waves are assumed to be fixed through the lasing cycle. Besides, the maximum absorber initial transmission and the minimum mirror reflectivity values have been determined from the second threshold criterion. The calculated numerical results demonstrate the impact of the variation of the input laser parameters (rotational angle of the polarized crystal, absorber initial transmission and the output mirror reflectivity) on the characteristics of the output laser pulse (SH peak power, pulse width, pulse duration and shift pulse position of central mode). The calculated numerical results in this work is in good qualitative and quantitative agreement with the available experimental data reported in the references. (author)

  6. The effect of current-induced spin switching in the presence of quantum tunneling of magnetization

    Science.gov (United States)

    Misiorny, Maciej; Barnaś, Józef

    2013-03-01

    Knowledge of transport properties of individual large-spin (S > 1 / 2) atoms/molecules exhibiting magnetic anisotropy is of key importance from the point of view of information processing technologies. The ultimate aim is to incorporate such objects as functional elements of spintronic devices, with the objective of employing spin-polarized currents to control the magnetic state of the system. In particular, for an atom/molecule with the predominant `easy-axis' uniaxial magnetic anisotropy this allows for switching the system's spin between two metastable states. However, the uniaxial component of magnetic anisotropy, underlying the magnetic bistability, is frequently accompanied by the transverse one, whose presence manifests, e.g., as quantum tunneling of magnetization (QTM). Here, we show that not only does QTM induce an effective energy barrier for the spin switching, but also its effect on the transport reveals as an additional signal in transport characteristics. Furthermore, we propose how to experimentally investigate QTM by means of the STM inelastic transport spectroscopy. also at Adam Mickiewicz University

  7. A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces.

    Science.gov (United States)

    Yu, Liping; Zunger, Alex

    2014-10-13

    The discovery of conductivity and magnetism at the polar-nonpolar interfaces of insulating nonmagnetic oxides such as LaAlO3 and SrTiO3 has raised prospects for attaining interfacial functionalities absent in the component materials. Yet, the microscopic origin of such emergent phenomena remains unclear, posing obstacles to design of improved functionalities. Here we present first principles calculations of electronic and defect properties of LaAlO3/SrTiO3 interfaces and reveal a unifying mechanism for the origins of both conductivity and magnetism. We demonstrate that the polar discontinuity across the interface triggers thermodynamically the spontaneous formation of certain defects that in turn cancel the polar field induced by the polar discontinuity. The ionization of the spontaneously formed surface oxygen vacancy defects leads to interface conductivity, whereas the unionized Ti-on-Al antisite defects lead to interface magnetism. The proposed mechanism suggests practical design principles for inducing and controlling both conductivity and magnetism at general polar-nonpolar interfaces.

  8. Defect-Induced Hedgehog Polarization States in Multiferroics

    Science.gov (United States)

    Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R.; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G.; Chen, Long-Qing; Pan, Xiaoqing

    2018-03-01

    Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO3 . An array of charged NSNRs are produced in BiFeO3 thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.

  9. Slew Rate Induced Distortion in Switched-Resistor Integrators

    NARCIS (Netherlands)

    Jiraseree-Amornkun, A.; Jiraseree-amornkun, A.; Worapishet, A.; Klumperink, Eric A.M.; Nauta, Bram; Surakampontorn, W.

    2006-01-01

    Abstract—OPAMP-RC integrators built with linear resistors and capacitors can achieve very high linearity. By means of a switched resistor, tuning of the RC time-constant is possible via the duty-cycle of the clock controlling the switched resistor. This paper analyzes the effect of OPAMP slew rate

  10. Induced Surge Characteristics on a Control Cable in a Gas-Insulated Substation due to Switching Operation

    Science.gov (United States)

    Ametani, Akihiro; Goto, Takahiro; Nagaoka, Naoto; Omura, Hiroshi

    This paper has investigated the basic characteristics of switching surges in a gas-insulated substation and induced surges to a control cable based on EMTP simulations. It has been found that a switching surge voltage on the core conductor of a gas-insulated bus (GIB) tends to increase and the oscillating frequency becomes lower as the number of spacers increases. The maximum switching overvoltages become greater at the nodes nearby an operating disconnector (DS)/circuit breaker (CB) and become smaller at the source side. An induced surge to a control cable tends to increase as the parallel length of the GIB and the control cable increases. However, in the case of an open-circuited GIB, there exists a length which gives the highest voltage. A transient current becomes very large if a voltage transformer (VT) or a spacer is installed right next to an operating CB or DS, although this current does not affect the induced and VT transferred surge to the control cable. Also it is observed that a ramp wave voltage causes polarity reversing of a transient voltage on the GIB tank and the control cable.

  11. Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching

    Science.gov (United States)

    Basu, Rajratan

    2017-07-01

    A small quantity of monolayer graphene flakes is doped in a nematic liquid crystal (LC), and the effective polar anchoring strength coefficient between the LC and the alignment substrate is found to increase by an order of magnitude. The hexagonal pattern of graphene can interact with the LC's benzene rings via π -π electron stacking, enabling the LC to anchor to the graphene surface homogeneously (i.e., planar anchoring). When the LC cell is filled with the graphene-doped LC, some graphene flakes are preferentially attached to the alignment layer and modify the substrate's anchoring property. These spontaneously deposited graphene flakes promote planar anchoring at the substrate and the polar anchoring energy at alignment layer is enhanced significantly. The enhanced anchoring energy is found to impact favorably on the electro-optic response of the LC. Additional studies reveal that the nematic electro-optic switching is significantly faster in the LC-graphene hybrid than that of the pure LC.

  12. Polar Lipids of Burkholderia pseudomallei Induce Different Host Immune Responses

    Science.gov (United States)

    Gonzalez-Juarrero, Mercedes; Mima, Naoko; Trunck, Lily A.; Schweizer, Herbert P.; Bowen, Richard A.; Dascher, Kyle; Mwangi, Waithaka; Eckstein, Torsten M.

    2013-01-01

    Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs) and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor) molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster. PMID:24260378

  13. Polar lipids of Burkholderia pseudomallei induce different host immune responses.

    Directory of Open Access Journals (Sweden)

    Mercedes Gonzalez-Juarrero

    Full Text Available Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4(+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4(+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster.

  14. Polarization Switching and Light-Enhanced Piezoelectricity in Lead Halide Perovskites.

    Science.gov (United States)

    Coll, Mariona; Gomez, Andrés; Mas-Marza, Elena; Almora, Osbel; Garcia-Belmonte, Germà; Campoy-Quiles, Mariano; Bisquert, Juan

    2015-04-16

    We investigate the ferroelectric properties of photovoltaic methylammonium lead halide CH3NH3PbI3 perovskite using piezoelectric force microscopy (PFM) and macroscopic polarization methods. The electric polarization is clearly observed by amplitude and phase hysteresis loops. However, the polarization loop decreases as the frequency is lowered, persisting for a short time only, in the one second regime, indicating that CH3NH3PbI3 does not exhibit permanent polarization at room temperature. This result is confirmed by macroscopic polarization measurement based on a standard capacitive method. We have observed a strong increase of piezoelectric response under illumination, consistent with the previously reported giant photoinduced dielectric constant at low frequencies. We speculate that an intrinsic charge transfer photoinduced dipole in the perovskite cage may lie at the origin of this effect.

  15. Polarization-induced noise in resonator fiber optic gyro.

    Science.gov (United States)

    Ma, Huilian; Chen, Zhen; Yang, Zhihuai; Yu, Xuhui; Jin, Zhonghe

    2012-10-01

    An optical fiber ring resonator (OFRR) is the key rotation-sensing element in the resonator fiber optic gyro (R-FOG). In comparing between different OFRR types, a simulation model that can apply to all cases is set up. Both the polarization crosstalk and polarization-dependent loss in the coupler are fully investigated for the first time to our knowledge. Three different splicing schemes, including a single 0°, a single 90°, and twin 90° polarization axis rotated spices, are compared. Two general configurations of the OFRR are considered. One is a reflector OFRR, the other is a transmitter OFRR. This leads to six different OFRR types. The output stability of the R-FOG with six OFRR types is fully investigated theoretically and experimentally. Additional Kerr noise due to the polarization fluctuation is discovered. The OFRR with twin 90° polarization axis rotated splices is of lower additional Kerr noise and hence has better temperature stability. As the coupler is polarization dependent, we notice that in a reflector OFRR, the straight-through component of the output lightwave, which can be isolated by a transmitter configuration, would produce large polarization fluctuation-induced noise. The experimental results show that the bias stability of the transmitter OFRR is 8 times improved over that of the reflector OFRR, which is in accord with the theoretical analysis. By the analysis and experiments above, it is reasonable to make a conclusion that an R-FOG based on a transmitter OFRR with twin 90° polarization axis rotated splices is of better temperature stability and smaller additional Kerr effect noise.

  16. Electric field induced strain, switching and energy storage behaviour of lead free Barium Zirconium Titanate ceramic

    Science.gov (United States)

    Badapanda, T.; Chaterjee, S.; Mishra, Anupam; Ranjan, Rajeev; Anwar, S.

    2017-09-01

    There is a huge demand of lead-free high performance ceramics with large strain, low hysteresis loss and high-energy storage ability at room temperature. In this context, we investigated the large electric field induced strain, switching behaviour and energy storage properties of BaZr0.05Ti0.95O3 ceramic (BZT) prepared by high energy ball milling technique, reportedly exhibiting a triple point transition near the room temperature. The X-ray diffraction of the BZT ceramic confirms orthorhombic symmetry with space group Amm2 at room temperature. The room temperature dielectric study reveals that there is a negligible variation of dielectric constant and dielectric loss with frequency. The polarization behaviour at various applied electric fields was studied and the energy storage densities were obtained from the integral area of P-E loops. Electric field induced strain behaviour has been studied with due emphasis on the electrostrictive response at room temperature. The ferroelectric and electromechanical properties derived from the P-E and S-E loops suggest that the present ceramic encompass the properties of actuation and energy storage simultaneously.

  17. Design of frequency-encoded data-based optical master-slave-JK flip-flop using polarization switch

    Science.gov (United States)

    Mandal, Sumana; Mandal, Dhoumendra; Mandal, Mrinal Kanti; Garai, Sisir Kumar

    2017-06-01

    An optical data processing and communication system provides enormous potential bandwidth and a very high processing speed, and it can fulfill the demands of the present generation. For an optical computing system, several data processing units that work in the optical domain are essential. Memory elements are undoubtedly essential to storing any information. Optical flip-flops can store one bit of optical information. From these flip-flop registers, counters can be developed. Here, the authors proposed an optical master-slave (MS)-JK flip-flop with the help of two-input and three-input optical NAND gates. Optical NAND gates have been developed using semiconductor optical amplifiers (SOAs). The nonlinear polarization switching property of an SOA has been exploited here, and it acts as a polarization switch in the proposed scheme. A frequency encoding technique is adopted for representing data. A specific frequency of an optical signal represents a binary data bit. This technique of data representation is helpful because frequency is the fundamental property of a signal, and it remains unaltered during reflection, refraction, absorption, etc. throughout the data propagation. The simulated results enhance the admissibility of the scheme.

  18. Ab initio theory for current-induced molecular switching: Melamine on Cu(001)

    KAUST Repository

    Ohto, Tatsuhiko

    2013-05-28

    Melamine on Cu(001) is mechanically unstable under the current of a scanning tunneling microscope tip and can switch among configurations. However, these are not equally accessible, and the switching critical current depends on the bias polarity. In order to explain such rich phenomenology, we have developed a scheme to evaluate the evolution of the reaction paths and activation barriers as a function of bias, which is rooted in the nonequilibrium Green\\'s function method implemented within density functional theory. This, combined with the calculation of the inelastic electron tunneling spectroscopy signal, allows us to identify the vibrational modes promoting the observed molecular conformational changes. Finally, once our ab initio results are used within a resonance model, we are able to explain the details of the switching behavior, such as its dependence on the bias polarity, and the noninteger power relation between the reaction rate constants and both the bias voltage and the electric current. © 2013 American Physical Society.

  19. Electric-field-induced magnetization switching in CoFeB/MgO magnetic tunnel junctions

    Science.gov (United States)

    Kanai, Shun; Matsukura, Fumihiro; Ohno, Hideo

    2017-08-01

    The electric-field effect on magnetic anisotropy provides a low-energy scheme for magnetization switching in magnetic tunnel junctions. We review our recent works on the electric-field-induced magnetization switching in CoFeB/MgO-based magnetic tunnel junctions. We show that the switching with a higher speed and a lower energy than the spin-transfer switching can be realized using the electric-field effect. The increase of the electric-field modulation ratio is expected to result in a marked reduction of the switching energy as well as in the improvement of the switching reliability for magnetic tunnel junctions with a high thermal stability factor. Further study is necessary to improve the modulation ratio.

  20. Spin-orbit torque induced magnetization switching in Co/Pt multilayers

    Science.gov (United States)

    Jinnai, Butsurin; Zhang, Chaoliang; Kurenkov, Aleksandr; Bersweiler, Mathias; Sato, Hideo; Fukami, Shunsuke; Ohno, Hideo

    2017-09-01

    Spin-orbit torque (SOT)-induced magnetization switching in Co/Pt multilayer structures with a Pt buffer layer is studied aiming to realize SOT-magnetic random access memory (MRAM) devices with high thermal stability. Current-induced magnetization switching and effective fields are measured using Hall-bar devices. The switching efficiency, defined as a ratio of the areal anisotropy energy density to switching current density, increases with increasing the number of Co/Pt stacks. This trend is in accordance with the stacking number dependence of effective fields per unit current density. The effective spin-Hall angle of the Pt buffer layer for the sample with multiple Co/Pt stacks is significantly larger than that of Pt previously reported, suggesting a generation of SOT in Co/Pt multilayers. These results indicate that Co/Pt multilayers are promising for SOT-MRAM devices possessing high thermal stability and small switching current.

  1. Data Transparent and Polarization Insensitive All-Optical Switch based on Fibers with Enhanced Nonlinearity

    Directory of Open Access Journals (Sweden)

    M. Komanec

    2014-09-01

    Full Text Available We have developed a data transparent optical packet switch prototype employing wavelength conversion based on four-wave mixing. The switch is composed of an electro-optical control unit and an all-optical switching segment. To achieve higher switching efficiencies, Ge-doped silica suspended-core and chalcogenide arsenicselenide single-mode fibers were experimentally evaluated and compared to conventional highly-nonlinear fiber. Improved connectorization technology has been developed for Ge-doped suspended-core fiber, where we achieved connection losses of 0.9 dB. For the arsenic-selenide fiber we present a novel solid joint technology, with connection losses of only 0.25 dB, which is the lowest value presented up-to-date. Conversion efficiency of -13.7 dB was obtained for the highly-nonlinear fiber, which is in perfect correlation with previously published results and thus verifies the functionality of the prototype. Conversion efficiency of -16.1 dB was obtained with arsenic-selenide fiber length reduced to five meters within simulations, based on measurement results with a 26 m long component. Employment of such a short arsenic-selenide fiber segment allows significant broadening of the wavelength conversion spectral range due to possible neglection of dispersion.

  2. High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues.

    Science.gov (United States)

    Yang, Jingwei; Wang, Li; Wu, Xianyou; Cheng, Tingqing; Jiang, Haihe

    2014-06-30

    An electro-optically Q-switched high-energy Er:YAG laser with two polarizers is proposed. By using two Al(2)O(3) polarizing plates and a LiNbO(3) crystal with Brewster angle, the polarization efficiency is significantly improved. As a result, 226 mJ pulse energy with 62 ns pulse width is achieved at the repetition rate of 3 Hz, the corresponding peak power is 3.6 MW. To our knowledge, such a high peak power has not been reported in literature. With our designed laser, in-vitro teeth were irradiated under Q-switched and free-running modes. Results of a laser ablation experiment on hard dental tissue with the high-peak-power laser demonstrates that the Q-switched Er:YAG laser has higher ablation precision and less thermal damage than the free-running Er:YAG laser.

  3. Advances in spectral inversion of time-domain induced polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    The extraction of spectral information in the inversion process of time-domain (TD) induced polarization (IP) data is changing the use of the TDIP method. Data interpretation is evolving from a qualitative description of the subsurface, able only to discriminate the presence of contrasts in charg......The extraction of spectral information in the inversion process of time-domain (TD) induced polarization (IP) data is changing the use of the TDIP method. Data interpretation is evolving from a qualitative description of the subsurface, able only to discriminate the presence of contrasts...... in chargeability parameters, towards a quantitative analysis of the investigated media, which allows for detailed soil- and rock-type characterization. In this work a review of the recent advances in spectral inversion of TDIP data is presented, in terms of: supported IP parameterizations; modelling of transmitter...

  4. Void formation induced electrical switching in phase-change nanowires.

    Science.gov (United States)

    Meister, Stefan; Schoen, David T; Topinka, Mark A; Minor, Andrew M; Cui, Yi

    2008-12-01

    Solid-state structural transformation coupled with an electronic property change is an important mechanism for nonvolatile information storage technologies, such as phase-change memories. Here we exploit phase-change GeTe single-nanowire devices combined with ex situ and in situ transmission electron microscopy to correlate directly nanoscale structural transformations with electrical switching and discover surprising results. Instead of crystalline-amorphous transformation, the dominant switching mechanism during multiple cycling appears to be the opening and closing of voids in the nanowires due to material migration, which offers a new mechanism for memory. During switching, composition change and the formation of banded structural defects are observed in addition to the expected crystal-amorphous transformation. Our method and results are important to phase-change memories specifically, but also to any device whose operation relies on a small scale structural transformation.

  5. Voltage switching technique for detecting nuclear spin polarization in a quantum dot

    International Nuclear Information System (INIS)

    Takahashi, Ryo; Kono, Kimitoshi; Tarucha, Seigo; Ono, Keiji

    2010-01-01

    We have introduced a source-drain voltage switching technique for studying nuclear spins in a vertical double quantum dot. Switching the source-drain voltage between the spin-blockade state and the zero-bias Coulomb blockade state can tune the energy difference between the spin singlet and triplet, and effectively turn on/off the hyperfine interaction. Since the change in the nuclear spin state affects the source-drain current, nuclear spin properties can only be detected by transport measurement. Using this technique, we have succeeded in measuring the timescale of nuclear spin depolarization. Furthermore, combining this technique and an RF ac magnetic field, we successfully detected continuous-wave NMR signals of 75 As, 69 Ga, and 71 Ga, which are contained in a quantum dot. (author)

  6. Modeling of movement-induced and flow-induced fluid forces in fast switching valves

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Schmidt, Lasse

    2015-01-01

    Fast switching fluid power valves set strict requirements on performance, size and energy efficiency and simulation models are therefore needed to obtain good designs of such components. The valve moving member is subject to fluid forces depending on the valve flow rate and movement of the valve...... member itself. These fluid forces may be accurately simulated using Computational Fluid Dynamics (CFD) analysis, but such models suffer from being computationally expensive and is not suited for optimization routines. In this paper, a computationally inexpensive method for modeling the fluid forces...... is proposed, which includes both the flow-induced fluid forces and the movement-induced fluid forces resulting from movement of the valve moving member. The movement-induced fluid force model is based on a known solution to the linearized Navier-Stokes equations. A method for accurately simulating the flow...

  7. Fast helicity switching of x-ray circular polarization at beamline P09 at PETRA III

    International Nuclear Information System (INIS)

    Strempfer, J.; Mardegan, J. R. L.; Francoual, S.; Veiga, L. S. I.; Spitzbart, T.; Zink, H.; Bouchenoire, L.

    2016-01-01

    At the resonant scattering and diffraction beamline P09 at PETRA III/DESY, polarization manipulation in the X-ray energy range 3-13 keV is possible using wave-plates. Recently, fast flipping of circular polarization helicity using the Raspberry Pi controlled FPGA (PiLC) device developed at DESY and dedicated piezo-electric flippers has been commissioned. Functionality of the PiLC for XMCD and first XMCD measurements at the Fe K-and Dy-L 3 absorption edges are presented.

  8. Fast helicity switching of x-ray circular polarization at beamline P09 at PETRA III

    Energy Technology Data Exchange (ETDEWEB)

    Strempfer, J., E-mail: Joerg.Strempfer@desy.de; Mardegan, J. R. L.; Francoual, S.; Veiga, L. S. I.; Spitzbart, T.; Zink, H. [Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22603 Hamburg (Germany); Bouchenoire, L. [XMaS, ESRF, 6 rue Jules Horowitz, BP220, Grenoble 38043 (France); Department of Physics, University of Liverpool, Liverpool, L69 7ZE (United Kingdom)

    2016-07-27

    At the resonant scattering and diffraction beamline P09 at PETRA III/DESY, polarization manipulation in the X-ray energy range 3-13 keV is possible using wave-plates. Recently, fast flipping of circular polarization helicity using the Raspberry Pi controlled FPGA (PiLC) device developed at DESY and dedicated piezo-electric flippers has been commissioned. Functionality of the PiLC for XMCD and first XMCD measurements at the Fe K-and Dy-L{sub 3} absorption edges are presented.

  9. Theory of magnetic-field-induced polarization flop in spin-spiral multiferroics

    Science.gov (United States)

    Mochizuki, Masahito

    2015-12-01

    The magnetic-field-induced 90∘ flop of ferroelectric polarization P in a spin-spiral multiferroic material TbMnO3 is theoretically studied based on a microscopic spin model. I find that the direction of the P flop or the choice of +Pa or -Pa after the flop is governed by magnetic torques produced by the applied magnetic field H acting on the Mn spins and thus is selected in a deterministic way, in contradistinction to the naively anticipated probabilistic flop. This mechanism resolves a puzzle of the previously reported memory effect in the P direction depending on the history of the magnetic-field sweep, and enables controlled switching of multiferroic domains by externally applied magnetic fields. My Monte-Carlo analysis also uncovers that the magnetic structure in the P ∥a phase under H ∥b is not a previously anticipated simple a b -plane spin cycloid but a conical spin structure.

  10. Building Better Electrodes for Electrical Resistivity and Induced Polarization Data

    Science.gov (United States)

    Adkins, P. L.; La Brecque, D. J.

    2007-12-01

    In the third year of a project to understand and mitigate the systematic noise in resistivity and induced polarization measurements, we put a significant effort into understanding and developing better electrodes. The simple metal electrodes commonly used for both transmitting and receiving of electrical geophysical data are likely the Achilles" heal of the resistivity method. Even stainless steel, a commonly used electrode material because of its durability, showed only average results in laboratory tests for electrode noise. Better results have been found with non-polarizing metal-metal salt electrodes, which are widely used as surface electrodes and in IP surveys. But although they produce small measurement errors, they are not durable enough for in-situ borehole resistivity surveys, and often contain compounds that are toxic to the environment. They are also very seldom used as transmitters. In laboratory studies, we are exploring other materials and configurations for low-noise compound electrodes that will be nontoxic, inexpensive, and durable and can be used as both transmitters and receivers. Testing of the electrical noise levels of electrodes is an arduous task involving repeated measurements under varying conditions at field scales. Thus it is important to find methods of sorting out likely candidates from the mass of possible electrode configurations and construction methods. Testing of electrode impedance versus current density appears to provide simple criteria for predicting the suitability of electrodes. The best electrodes show relatively low overall contact impedance, relatively small changes in impedance with increased current density, and relatively small changes in impedance with time. Furthermore it can be shown that resistivity and induced polarization performance of electrodes is strongly correlated, so that methods of finding electrodes with low impedance and good direct current performance usually provide better quality induced

  11. Effect of resistance feedback on spin torque-induced switching of nanomagnets

    International Nuclear Information System (INIS)

    Garzon, Samir; Webb, Richard A.; Covington, Mark; Kaka, Shehzaad; Crawford, Thomas M.

    2009-01-01

    In large magnetoresistance devices spin torque-induced changes in resistance can produce GHz current and voltage oscillations which can affect magnetization reversal. In addition, capacitive shunting in large resistance devices can further reduce the current, adversely affecting spin torque switching. Here, we simultaneously solve the Landau-Lifshitz-Gilbert equation with spin torque and the transmission line telegrapher's equations to study the effects of resistance feedback and capacitance on magnetization reversal of both spin valves and magnetic tunnel junctions. While for spin valves parallel (P) to anti-parallel (AP) switching is adversely affected by the resistance feedback due to saturation of the spin torque, in low resistance magnetic tunnel junctions P-AP switching is enhanced. We study the effect of resistance feedback on the switching time of magnetic tunnel junctions, and show that magnetization switching is only affected by capacitive shunting in the pF range.

  12. An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane.

    Science.gov (United States)

    Kinkema, Mark; Geijskes, R Jason; Shand, Kylie; Coleman, Heather D; De Lucca, Paulo C; Palupe, Anthony; Harrison, Mark D; Jepson, Ian; Dale, James L; Sainz, Manuel B

    2014-03-01

    Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology.

  13. Spectral induced polarization for monitoring electrokinetic remediation processes

    Science.gov (United States)

    Masi, Matteo; Losito, Gabriella

    2015-12-01

    Electrokinetic remediation is an emerging technology for extracting heavy metals from contaminated soils and sediments. This method uses a direct or alternating electric field to induce the transport of contaminants toward the electrodes. The electric field also produces pH variations, sorption/desorption and precipitation/dissolution of species in the porous medium during remediation. Since heavy metal mobility is pH-dependent, the accurate control of pH inside the material is required in order to enhance the removal efficiency. The common approach for monitoring the remediation process both in laboratory and in the field is the chemical analysis of samples collected from discrete locations. The purpose of this study is the evaluation of Spectral Induced Polarization as an alternative method for monitoring geochemical changes in the contaminated mass during remediation. The advantage of this technique applied to field-scale is to offer higher resolution mapping of the remediation site and lower cost compared to the conventional sampling procedure. We carried out laboratory-scale electrokinetic remediation experiments on fine-grained marine sediments contaminated by heavy metal and we made Spectral Induced Polarization measurements before and after each treatment. Measurements were done in the frequency range 10- 3-103 Hz. By the deconvolution of the spectra using the Debye Decomposition method we obtained the mean relaxation time and total chargeability. The main finding of this work is that a linear relationship exists between the local total chargeability and pH, with good agreement. The observed behaviour of chargeability is interpreted as a direct consequence of the alteration of the zeta potential of the sediment particles due to pH changes. Such relationship has a significant value for the interpretation of induced polarization data, allowing the use of this technique for monitoring electrokinetic remediation at field-scale.

  14. Thermally induced pure and spin polarized currents in a zigzag silicene nanoribbon based FM/normal/AFM junction

    Science.gov (United States)

    Ghanbari, Atousa; Esmaeilzadeh, Mahdi; Pournaghavi, Nezhat

    2018-01-01

    We study thermally induced spin resolved current in a zigzag silicene nanoribbon when the left and right leads are respectively affected by ferromagnetic (FM) and anti-ferromagnetic (AFM) exchange fields (FM/normal/AFM junction). We show that pure spin current is generated due to the leads temperature difference and the junction can work as a spin Seebeck diode. The pure spin current can be easily controlled by a perpendicular electric field and the junction, in this case, can work as a spin current switch. In addition, we study the effect of a single vacancy and show that the vacancy can slightly destroy the pure spin current property which leads to induce a weak spin polarized current. In the presence of both vacancy and electric field, current with high and tunable spin polarization can be achieved.

  15. Threshold Switching Induced by Controllable Fragmentation in Silver Nanowire Networks.

    Science.gov (United States)

    Wan, Tao; Pan, Ying; Du, Haiwei; Qu, Bo; Yi, Jiabao; Chu, Dewei

    2018-01-24

    Silver nanowire (Ag NW) networks have been widely studied because of a great potential in various electronic devices. However, nanowires usually undergo a fragmentation process at elevated temperatures due to the Rayleigh instability that is a result of reduction of surface/interface energy. In this case, the nanowires become completely insulating due to the formation of randomly distributed Ag particles with a large distance and further applications are hindered. Herein, we demonstrate a novel concept based on the combination of ultraviolet/ozone irradiation and a low-temperature annealing process to effectively utilize and control the fragmentation behavior to realize the resistive switching performances. In contrast to the conventional fragmentation, the designed Ag/AgO x interface facilitates a unique morphology of short nanorod-like segments or chains of tiny Ag nanoparticles with a very small spacing distance, providing conduction paths for achieving the tunneling process between the isolated fragments under the electric field. On the basis of this specific morphology, the Ag NW network has a tunable resistance and shows volatile threshold switching characteristics with a high selectivity, which is the ON/OFF current ratio in selector devices. Our concept exploits a new function of Ag NW network, i.e., resistive switching, which can be developed by designing a controllable fragmentation.

  16. Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator integrating in-line polarizers.

    Science.gov (United States)

    Ma, Huilian; Yu, Xuhui; Jin, Zhonghe

    2012-08-15

    A method to decrease the polarization-fluctuation induced drift in a resonator fiber optic gyro (R-FOG) is demonstrated by inserting two in-line polarizers in a polarization-maintaining fiber resonator with twin 90° polarization-axis rotated splices. The in-line polarizers attenuate the unwanted resonance by introducing high loss for the unwanted eigenstates of polarization in the resonator. Compared to the resonator without in-line polarizers, the polarization-fluctuation induced drift is reduced by 6×10(3) times. The desired resonance in the resonator can keep excellent stability in a wide temperature range; thus the temperature-dependent polarization-fluctuation drift in the R-FOG is sufficiently suppressed. A typical bias stability of 4.7°/h over 6500 s with an integration time of 10 s has been carried out. To the best of our knowledge, the long-term bias stability and high temperature stability are the best ever demonstrated in an R-FOG.

  17. Induced polarization and electromagnetic field surveys of sedimentary uranium deposits

    International Nuclear Information System (INIS)

    Campbell, D.L.; Smith, B.D.

    1985-01-01

    Induced polarization (IP) and electromagnetic (EM) geophysical surveys were made over three areas of sedimentary uranium deposits in the western United States. The EM techniques were sometimes useful for investigating general structural settings, but not for finding uranium deposits per se. IP techniques were useful to help pinpoint zones of disseminated pyrite associated with the uranium deposits. In one case no clear differences were seen between the IP signatures of oxidized and reduced ground. Spectral (multi-frequency) IP showed no particular advantages over conventional IP for exploration applications. A sediment mineralization factor is introduced comparable to the ''metal factor'' used to detect porphyry copper mineralization. (author)

  18. Polarization-induced interference within electromagnetically induced transparency for atoms of double-V linkage

    Science.gov (United States)

    Sun, Yuan; Liu, Chang; Chen, Ping-Xing; Liu, Liang

    2018-02-01

    People have been paying attention to the role of atoms' complex internal level structures in the research of electromagnetically induced transparency (EIT) for a long time, where the various degenerate Zeeman levels usually generate complex linkage patterns for the atomic transitions. It turns out, with special choices of the atomic states and the atomic transitions' linkage structure, clear signatures of quantum interference induced by the probe and coupling light's polarizations can emerge from a typical EIT phenomena. We propose to study a four-state system with double-V linkage pattern for the transitions and analyze the polarization-induced interference under the EIT condition. We show that such interference arises naturally under mild conditions on the optical field and atom manipulation techniques. Moreover, we construct a variation form of double-M linkage pattern where the polarization-induced interference enables polarization-dependent cross modulation between incident weak lights that can be effective even at the few-photon level. The theme is to gain more insight into the essential question: how can we build a nontrivial optical medium where incident lights experience polarization-dependent nonlinear optical interactions, valid for a wide range of incidence intensities down to the few-photon level?

  19. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials.

    Science.gov (United States)

    Zalden, Peter; Shu, Michael J; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W; Wong, H-S Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M

    2016-08-05

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag_{4}In_{3}Sb_{67}Te_{26}. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales-faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.

  20. Spectral induced polarization survey applied to gold mine exploration

    Science.gov (United States)

    Park, Samgyu; Son, Jeong-Sul; Shin, Seung-Wook; Cho, Seong-Jun; Kim, Changryol

    2017-04-01

    The induced polarization (IP) method has been used for the exploration of metallic ore deposits with sulfide minerals such as sphalerite, pyrite, galena, and so on. This method makes use of the capacitive action of the subsurface to locate zones where conductive minerals are disseminated within the host rock. But the IP method has problems with EM coupling and high-power currents that make it difficult to obtain high-quality data in field sites. To address these problems, we have developed an inversion algorithm and field survey techniques using the spectral induced polarization (SIP) method. In this study, we examined the applicability of SIP survey to determine the boundaries of subsurface mineralization and hydrothermal alteration associated with epithermal Au-Ag deposits. A SIP survey was carried out over a wide tuff area, including an area where the silicified zone had been identified from the results of geological and borehole investigations. The survey lines were installed across the silicified zone, and dipole-dipole configurations were used, with electrode spacing of 20m. The transmitter and receiver cables were isolated, and current and potential electrodes were used in stainless steel and non-polarized electrodes, respectively. The data on each survey line were obtained from three frequencies, 0.125 Hz, 1 Hz, and 8Hz. From the survey results, we could image the 2D electrical resistivity and phase difference distributions for each survey line. The boundaries of the silicified zone by hydrothermal alteration were defined by a high resistivity of 500 ohm-m, and the Au-Ag bearing quartz veins by mineralization of the epithermal deposits were defined by a high phase difference of 60 mrad.

  1. Low-cost fabrication and polar-dependent switching uniformity of memory devices using alumina interfacial layer and Ag nanoparticle monolayer

    Directory of Open Access Journals (Sweden)

    Peng Xia

    2017-11-01

    Full Text Available A facile and low-cost process was developed for fabricating write-once-read-many-times (WORM Cu/Ag NPs/Alumina/Al memory devices, where the alumina passivation layer formed naturally in air at room temperature, whereas the Ag nanoparticle monolayer was in situ prepared through thermal annealing of a 4.5 nm Ag film in air at 150°C. The devices exhibit irreversible transition from initial high resistance (OFF state to low resistance (ON state, with ON/OFF ratio of 107, indicating the introduction of Ag nanoparticle monolayer greatly improves ON/OFF ratio by four orders of magnitude. The uniformity of threshold voltages exhibits a polar-dependent behavior, and a narrow range of threshold voltages of 0.40 V among individual devices was achieved upon the forward voltage. The memory device can be regarded as two switching units connected in series. The uniform alumina interfacial layer and the non-uniform distribution of local electric fields originated from Ag nanoparticles might be responsible for excellent switching uniformity. Since silver ions in active layer can act as fast ion conductor, a plausible mechanism relating to the formation of filaments sequentially among the two switching units connected in series is suggested for the polar-dependent switching behavior. Furthermore, we demonstrate both alumina layer and Ag NPs monolayer play essential roles in improving switching parameters based on comparative experiments.

  2. Low-cost fabrication and polar-dependent switching uniformity of memory devices using alumina interfacial layer and Ag nanoparticle monolayer

    Science.gov (United States)

    Xia, Peng; Li, Luman; Wang, Pengfei; Gan, Ying; Xu, Wei

    2017-11-01

    A facile and low-cost process was developed for fabricating write-once-read-many-times (WORM) Cu/Ag NPs/Alumina/Al memory devices, where the alumina passivation layer formed naturally in air at room temperature, whereas the Ag nanoparticle monolayer was in situ prepared through thermal annealing of a 4.5 nm Ag film in air at 150°C. The devices exhibit irreversible transition from initial high resistance (OFF) state to low resistance (ON) state, with ON/OFF ratio of 107, indicating the introduction of Ag nanoparticle monolayer greatly improves ON/OFF ratio by four orders of magnitude. The uniformity of threshold voltages exhibits a polar-dependent behavior, and a narrow range of threshold voltages of 0.40 V among individual devices was achieved upon the forward voltage. The memory device can be regarded as two switching units connected in series. The uniform alumina interfacial layer and the non-uniform distribution of local electric fields originated from Ag nanoparticles might be responsible for excellent switching uniformity. Since silver ions in active layer can act as fast ion conductor, a plausible mechanism relating to the formation of filaments sequentially among the two switching units connected in series is suggested for the polar-dependent switching behavior. Furthermore, we demonstrate both alumina layer and Ag NPs monolayer play essential roles in improving switching parameters based on comparative experiments.

  3. Induced polarization of clay-sand mixtures: experiments and modeling

    International Nuclear Information System (INIS)

    Okay, G.; Leroy, P.; Tournassat, C.; Ghorbani, A.; Jougnot, D.; Cosenza, P.; Camerlynck, C.; Cabrera, J.; Florsch, N.; Revil, A.

    2012-01-01

    Document available in extended abstract form only. Frequency-domain induced polarization (IP) measurements consist of imposing an alternative sinusoidal electrical current (AC) at a given frequency and measuring the resulting electrical potential difference between two other non-polarizing electrodes. The magnitude of the conductivity and the phase lag between the current and the difference of potential can be expressed into a complex conductivity with the in-phase representing electro-migration and a quadrature conductivity representing the reversible storage of electrical charges (capacitive effect) of the porous material. Induced polarization has become an increasingly popular geophysical method for hydrogeological and environmental applications. These applications include for instance the characterization of clay materials used as permeability barriers in landfills or to contain various types of contaminants including radioactive wastes. The goal of our study is to get a better understanding of the influence of the clay content, clay mineralogy, and pore water salinity upon complex conductivity measurements of saturated clay-sand mixtures in the frequency range ∼1 mHz-12 kHz. The complex conductivity of saturated unconsolidated sand-clay mixtures was experimentally investigated using two types of clay minerals, kaolinite and smectite in the frequency range 1.4 mHz - 12 kHz. Four different types of samples were used, two containing mainly kaolinite (80% of the mass, the remaining containing 15% of smectite and 5% of illite/muscovite; 95% of kaolinite and 5% of illite/muscovite), and the two others containing mainly Na-smectite or Na-Ca-smectite (95% of the mass; bentonite). The experiments were performed with various clay contents (1, 5, 20, and 100% in volume of the sand-clay mixture) and salinities (distilled water, 0.1 g/L, 1 g/L, and 10 g/L NaCl solution). In total, 44 saturated clay or clay-sand mixtures were prepared. Induced polarization measurements

  4. FDTD modelling of induced polarization phenomena in transient electromagnetics

    Science.gov (United States)

    Commer, Michael; Petrov, Peter V.; Newman, Gregory A.

    2017-04-01

    The finite-difference time-domain scheme is augmented in order to treat the modelling of transient electromagnetic signals containing induced polarization effects from 3-D distributions of polarizable media. Compared to the non-dispersive problem, the discrete dispersive Maxwell system contains costly convolution operators. Key components to our solution for highly digitized model meshes are Debye decomposition and composite memory variables. We revert to the popular Cole-Cole model of dispersion to describe the frequency-dependent behaviour of electrical conductivity. Its inversely Laplace-transformed Debye decomposition results in a series of time convolutions between electric field and exponential decay functions, with the latter reflecting each Debye constituents' individual relaxation time. These function types in the discrete-time convolution allow for their substitution by memory variables, annihilating the otherwise prohibitive computing demands. Numerical examples demonstrate the efficiency and practicality of our algorithm.

  5. Polarization-independent electromagnetically induced transparency-like metasurface

    Science.gov (United States)

    Jia, Xiuli; Wang, Xiaoou

    2018-01-01

    A classical electromagnetically induced transparency-like (EIT-like) metasurface is numerically simulated. This metasurface is composed of two identical and orthogonal double-end semitoroidals (DESTs) metal resonators. Under the excitation of the normal incidence waves, each of the two DESTs structure exhibits electromagnetic dipole responses at different frequencies, which leads to the polarization-independent EIT-like effect. The features of the EIT-like effect are qualitatively analyzed based on the surface current and magnetic field distribution. In addition, the large index is extracted to verify the slow-light property within the transmission window. The EIT-like metasurface structure with the above-mentioned characteristics may have potential applications in some areas, such as sensing, slow light, and filtering devices.

  6. Snapshot Mueller matrix polarimetry by wavelength polarization coding and application to the study of switching dynamics in a ferroelectric liquid crystal cell.

    Directory of Open Access Journals (Sweden)

    Le Jeune B.

    2010-06-01

    Full Text Available This paper describes a snapshot Mueller matrix polarimeter by wavelength polarization coding. This device is aimed at encoding polarization states in the spectral domain through use of a broadband source and high-order retarders. This allows one to measure a full Mueller matrix from a single spectrum whose acquisition time only depends on the detection system aperture. The theoretical fundamentals of this technique are developed prior to validation by experiments. The setup calibration is described as well as optimization and stabilization procedures. Then, it is used to study, by time-resolved Mueller matrix polarimetry, the switching dynamics in a ferroelectric liquid crystal cell.

  7. Activation barrier scaling and crossover for noise-induced switching in micromechanical parametric oscillators.

    Science.gov (United States)

    Chan, H B; Stambaugh, C

    2007-08-10

    We explore fluctuation-induced switching in parametrically driven micromechanical torsional oscillators. The oscillators possess one, two, or three stable attractors depending on the modulation frequency. Noise induces transitions between the coexisting attractors. Near the bifurcation points, the activation barriers are found to have a power law dependence on frequency detuning with critical exponents that are in agreement with predicted universal scaling relationships. At large detuning, we observe a crossover to a different power law dependence with an exponent that is device specific.

  8. In-plane magnetic field dependence of electric field-induced magnetization switching

    Science.gov (United States)

    Kanai, S.; Nakatani, Y.; Yamanouchi, M.; Ikeda, S.; Matsukura, F.; Ohno, H.

    2013-08-01

    Electric field-induced magnetization switching through magnetization precession is investigated as a function of in-plane component of external magnetic field for a CoFeB/MgO-based magnetic tunnel junction with perpendicular easy axis. The switching probability is an oscillatory function of the duration of voltage pulses and its magnitude and period depend on the magnitude of in-plane magnetic field. Experimental results are compared with simulated ones by using Landau-Lifshitz-Gilbert-Langevin equation, and possible factors determining the probability are discussed.

  9. Sirolimus: a switch option for mycophenolate mofetil-induced leukopenia in renal transplant recipients.

    Science.gov (United States)

    Shin, B C; Chung, J H; Kim, H L

    2013-10-01

    Mycophenolate mofetil (MMF) is a potent immunosuppressive agent used to prevent acute and chronic rejection in kidney transplantation or for rescue therapy. One side effect of MMF is bone marrow toxicity, including leukopenia, which may necessitate drug withdrawal. We report 2 patients who underwent kidney transplantation and developed leukopenia while receiving MMF and safely switched to sirolimus. A 35-year-old woman underwent deceased donor kidney transplantation. She received basiliximab, tacrolimus, MMF, and a corticosteroid. On postoperative day (POD) 75, her white blood cell (WBC) count was 1800/μL. A 44-year-old women underwent deceased donor kidney transplantation and received basiliximab, tacrolimus, MMF, valganciclovir, and a corticosteroid. On POD 88, her WBC count was 1320/μL. MMF was switched to sirolimus, resulting in recovery of WBC count without rejection. Switch from MMF to sirolimus is safe and favorable in MMF-induced leukopenia in renal transplant recipient. Copyright © 2013. Published by Elsevier Inc.

  10. Switching Induced by Poisson Radio-Frequency Pulses in Nonlinear Micromechanical Oscillators

    Science.gov (United States)

    Zou, Jie; Buvaev, Sanal; Chan, H. B.

    2010-03-01

    We study switching induced by Poisson radio-frequency (RF) pulses in nonlinear micromechanical oscillators. Under sufficiently large periodic excitation, nonlinear micromechanical oscillators possess multiple oscillation states with different amplitudes. The presence of noise enables the system to switch between these states. We find that in the vicinity of the bifurcation point the activation barrier, which is given by the logarithm of the switching rate, has a logarithmic dependence on the mean rate of Poisson RF pulses. Moreover, the measured dependence of the activation barrier on the distance to the saddle-node bifurcation η is consistent with predicted universal scaling relationships. While for white Gaussian noise the activation barrier shows a clean 3/2 power-law dependence on η, for modulated Poisson pulses the power-law has a different power of 1/2 with an additional logarithmic factor. Our measured critical exponents are in accordance with theoretical predictions.

  11. Enhancement of molecular NMR signal induced by polarization transfer from laser-polarized 129Xe

    International Nuclear Information System (INIS)

    Sun Xianping

    2001-01-01

    There is a large non-equilibrium nuclear polarization and a longer relaxation time in the laser-polarized 129 Xe produced by means of optical pumping and spin exchange. The characteristics of the laser-polarized 129 Xe permit the transfer of the polarization to enhance the atomic nuclear spin in liquid, solid and surface of solid molecules. Therefore, the sensitivity in nuclear magnetic resonance measurements for the molecules is enhanced and applications in the investigations of materials and surface sciences are expanded. The progress in the investigations of materials and surface sciences are expanded. The progress in the investigations of the polarization transfer between laser-polarized 129 Xe and the atomic nuclei in the molecules, the relative physics and the measurement of some parameters are introduced

  12. DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks.

    Science.gov (United States)

    Tse, Margaret J; Chu, Brian K; Roy, Mahua; Read, Elizabeth L

    2015-10-20

    Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Coupled Reversible and Irreversible Bistable Switches Underlying TGFβ-induced Epithelial to Mesenchymal Transition

    Science.gov (United States)

    Tian, Xiao-Jun; Zhang, Hang; Xing, Jianhua

    2013-01-01

    Epithelial to mesenchymal transition (EMT) plays an important role in embryonic development, tissue regeneration, and cancer metastasis. Whereas several feedback loops have been shown to regulate EMT, it remains elusive how they coordinately modulate EMT response to TGF-β treatment. We construct a mathematical model for the core regulatory network controlling TGF-β-induced EMT. Through deterministic analyses and stochastic simulations, we show that EMT is a sequential two-step program in which an epithelial cell first is converted to partial EMT then to the mesenchymal state, depending on the strength and duration of TGF-β stimulation. Mechanistically the system is governed by coupled reversible and irreversible bistable switches. The SNAIL1/miR-34 double-negative feedback loop is responsible for the reversible switch and regulates the initiation of EMT, whereas the ZEB/miR-200 feedback loop is accountable for the irreversible switch and controls the establishment of the mesenchymal state. Furthermore, an autocrine TGF-β/miR-200 feedback loop makes the second switch irreversible, modulating the maintenance of EMT. Such coupled bistable switches are robust to parameter variation and molecular noise. We provide a mechanistic explanation on multiple experimental observations. The model makes several explicit predictions on hysteretic dynamic behaviors, system response to pulsed stimulation, and various perturbations, which can be straightforwardly tested. PMID:23972859

  14. Current induced magnetization switching in Co/Cu/Ni-Fe nanopillar with orange peel coupling

    Energy Technology Data Exchange (ETDEWEB)

    Aravinthan, D.; Daniel, M. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli - 620 024 (India); Sabareesan, P. [Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur - 613 401 (India)

    2015-07-15

    The impact of orange peel coupling on spin current induced magnetization switching in a Co/Cu/Ni-Fe nanopillar device is investigated by solving the switching dynamics of magnetization of the free layer governed by the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. The value of the critical current required to initiate the magnetization switching is calculated analytically by solving the LLGS equation and verified the same through numerical analysis. Results of numerical simulation of the LLGS equation using Runge-Kutta fourth order procedure shows that the presence of orange peel coupling between the spacer and the ferromagnetic layers reduces the switching time of the nanopillar device from 67 ps to 48 ps for an applied current density of 4 × 10{sup 12}Am{sup −2}. Also, the presence of orange peel coupling reduces the critical current required to initiate switching, and in this case, from 1.65 × 10{sup 12}Am{sup −2} to 1.39 × 10{sup 12}Am{sup −2}.

  15. Spectral induced polarization (SIP) response of mine tailings

    Science.gov (United States)

    Placencia-Gómez, Edmundo; Parviainen, Annika; Slater, Lee; Leveinen, Jussi

    2015-02-01

    Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri Au-Cu mine, SW Finland. The primary objectives were, (1) to determine possible correlations between SIP parameters and textural properties associated with oxidative-weathering mechanisms, mineralogical composition and metallic content, and (2) to evaluate the effects of the pore water chemistry on SIP parameters associated with redox-inactive and redox-active electrolytes varying in molar concentration, conductivity and pH. The Haveri tailings exhibit well defined relaxation spectra between 100 and 10,000 Hz. The relaxation magnitudes are governed by the in-situ oxidative-weathering conditions on sulphide mineral surfaces contained in the tailings, and decrease with the oxidation degree. The oxidation-driven textural variation in the tailings results in changes to the frequency peak of the phase angle, the imaginary conductivity and chargeability, when plotted versus the pore water conductivity. In contrast, the real and the formation electrical conductivity components show a single linear dependence on the pore water conductivity. The increase of the pore water conductivity (dominated by the increase of ions concentration in solution) along with a transition to acidic conditions shifts the polarization peak towards higher frequencies. These findings show the unique sensitivity of the SIP method to potentially discriminate AMD discharges from reactive oxidation zones in tailings, suggesting a significant advantage for monitoring threatened aquifers.

  16. Ascorbic acid promotes a TGFβ1-induced myofibroblast phenotype switch.

    Science.gov (United States)

    Piersma, Bram; Wouters, Olaf Y; de Rond, Saskia; Boersema, Miriam; Gjaltema, Rutger A F; Bank, Ruud A

    2017-09-01

    l-Ascorbic acid (AA), generally known as vitamin C, is a crucial cofactor for a variety of enzymes, including prolyl-3-hydroxylase (P3H), prolyl-4-hydroxylase (P4H), and lysyl hydroxylase (LH)-mediated collagen maturation. Here, we investigated whether AA has additional functions in the regulation of the myofibroblast phenotype, besides its function in collagen biosynthesis. We found that AA positively influences TGF β 1-induced expression of COL1A1 , ACTA2 , and COL4A1 Moreover, we demonstrated that AA promotes α SMA stress fiber formation as well as the synthesis and deposition of collagens type I and IV Additionally, AA amplified the contractile phenotype of the myofibroblasts, as seen by increased contraction of a 3D collagen lattice. Moreover, AA increased the expression of several TGF β 1-induced genes, including DDR1 and CCN2 Finally, we demonstrated that the mechanism of AA action seems independent of Smad2/3 signaling. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. The Formation of Self-Organized Domain Structures at Non-Polar Cuts of Lithium Niobate as a Result of Local Switching by an SPM Tip

    Directory of Open Access Journals (Sweden)

    Anton Turygin

    2017-09-01

    Full Text Available We have studied experimentally the interaction of isolated needle-like domains created in an array via local switching using a biased scanning probe microscope (SPM tip and visualized via piezoelectric force microscopy (PFM at the non-polar cuts of MgO-doped lithium niobate (MgOLN crystals. It has been found that the domain interaction leads to the intermittent quasiperiodic and chaotic behavior of the domain length in the array in a manner similar to that of polar cuts, but with greater spacing between the points of bias application and voltage amplitudes. It has also been found that the polarization reversal at the non-polar cuts and domain interaction significantly depend on humidity. The spatial distribution of the surface potential measured by Kelvin probe force microscopy in the vicinity of the charged domain walls revealed the decrease of the domain length as a result of the partial backswitching after pulse termination. The phase diagram of switching behavior as a function of tip voltage and spacing between the points of bias application has been plotted. The obtained results provide new insight into the problem of the domain interaction during forward growth and can provide a basis for useful application in nanodomain engineering and development of non-linear optical frequency converters, data storage, and computing devices.

  18. Photochromic switching of the DNA helicity induced by azobenzene derivatives

    Science.gov (United States)

    Deiana, Marco; Pokladek, Ziemowit; Olesiak-Banska, Joanna; Młynarz, Piotr; Samoc, Marek; Matczyszyn, Katarzyna

    2016-06-01

    The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex.

  19. Photochromic switching of the DNA helicity induced by azobenzene derivatives.

    Science.gov (United States)

    Deiana, Marco; Pokladek, Ziemowit; Olesiak-Banska, Joanna; Młynarz, Piotr; Samoc, Marek; Matczyszyn, Katarzyna

    2016-06-24

    The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex.

  20. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Chen, Honglei [Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yue, Jiang [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Li, Ying, E-mail: lyying0@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  1. Switch telomerase to ALT mechanism by inducing telomeric DNA damages and dysfunction of ATRX and DAXX.

    Science.gov (United States)

    Hu, Yang; Shi, Guang; Zhang, Laichen; Li, Feng; Jiang, Yuanling; Jiang, Shuai; Ma, Wenbin; Zhao, Yong; Songyang, Zhou; Huang, Junjiu

    2016-08-31

    Activation of telomerase or alternative lengthening of telomeres (ALT) is necessary for tumours to escape from dysfunctional telomere-mediated senescence. Anti-telomerase drugs might be effective in suppressing tumour growth in approximately 85-90% of telomerase-positive cancer cells. However, there are still chances for these cells to bypass drug treatment after switching to the ALT mechanism to maintain their telomere integrity. But the mechanism underlying this switch is unknown. In this study, we used telomerase-positive cancer cells (HTC75) to discover the mechanism of the telomerase-ALT switch by inducing telomere-specific DNA damage, alpha-thalassemia X-linked syndrome protein (ATRX) knockdown and deletion of death associated protein (DAXX). Surprisingly, two important ALT hallmarks in the ALT-like HTC75 cells were observed after treatments: ALT-associated promyelocytic leukaemia bodies (APBs) and extrachromosomal circular DNA of telomeric repeats. Moreover, knocking out hTERT by utilizing the CRISPR/Cas9 technique led to telomere elongation in a telomerase-independent manner in ALT-like HTC75 cells. In summary, this is the first report to show that inducing telomeric DNA damage, disrupting the ATRX/DAXX complex and inhibiting telomerase activity in telomerase-positive cancer cells lead to the ALT switch.

  2. Chemically induced dynamic electron polarization: examples of S-T/sub +1/ polarization

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Nelson, D.J.; Mottley, C.

    1977-01-01

    The observation of excess emission in the CIDEP-pulse radiolysis study of several radicals is ascribed to S-T/sub +-1/ polarization. Observations of this S-T/sub +-1/ polarization in H. radical reactions provide examples of hyperfine effect while the study of micellar systems and viscous solutions illustrates the effect of restricting radical diffusion

  3. Versatile lipid profiling by liquid chromatography–high resolution mass spectrometry using all ion fragmentation and polarity switching. Preliminary application for serum samples phenotyping related to canine mammary cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gallart-Ayala, H., E-mail: laberca@oniris-nantes.fr [LUNAM, Ecole Nationale Vétérinaire, Agroalimentaire et de l’Alimentation Nantes Atlantique (Oniris), USC 1329 INRA Laboratoire d’Etude des résidus et Contaminants dans les Aliments (LABERCA), Site de la Chantrerie – CS50707, 44307 Nantes cedex 3 (France); Courant, F.; Severe, S.; Antignac, J.-P. [LUNAM, Ecole Nationale Vétérinaire, Agroalimentaire et de l’Alimentation Nantes Atlantique (Oniris), USC 1329 INRA Laboratoire d’Etude des résidus et Contaminants dans les Aliments (LABERCA), Site de la Chantrerie – CS50707, 44307 Nantes cedex 3 (France); Morio, F.; Abadie, J. [LUNAM, Ecole Nationale Vétérinaire, Agroalimentaire et de l’Alimentation Nantes Atlantique (Oniris), Cancers Animaux, Modèles pour la Recherche en Oncologie Comparée (AMaROC), Site de la Chantrerie–CS50707, 44307 Nantes cedex 3 (France); Le Bizec, B. [LUNAM, Ecole Nationale Vétérinaire, Agroalimentaire et de l’Alimentation Nantes Atlantique (Oniris), USC 1329 INRA Laboratoire d’Etude des résidus et Contaminants dans les Aliments (LABERCA), Site de la Chantrerie – CS50707, 44307 Nantes cedex 3 (France)

    2013-09-24

    Graphical abstract: -- Highlights: •Lipidomics, high resolution mass spectrometry, polarity switching, serum, canine mammary cancer. -- Abstract: Lipids represent an extended class of substances characterized by such high variety and complexity that makes their unified analyses by liquid chromatography coupled to either high resolution or tandem mass spectrometry (LC–HRMS or LC–MS/MS) a real challenge. In the present study, a new versatile methodology associating ultra high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC–HRMS/MS) have been developed for a comprehensive analysis of lipids. The use of polarity switching and “all ion fragmentation” (AIF) have been two action levels particularly exploited to finally permit the detection and identification of a multi-class and multi-analyte extended range of lipids in a single run. For identification purposes, both higher energy collision dissociation (HCD) and in-source CID (collision induced dissociation) fragmentation were evaluated in order to obtain information about the precursor and product ions in the same spectra. This approach provides both class-specific and lipid-specific fragments, enhancing lipid identification. Finally, the developed method was applied for differential phenotyping of serum samples collected from pet dogs developing spontaneous malignant mammary tumors and health controls. A biological signature associated with the presence of cancer was then successfully revealed from this lipidome analysis, which required to be further investigated and confirmed at larger scale.

  4. Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90 degrees polarization-axis rotated splices.

    Science.gov (United States)

    Wang, Xijing; He, Zuyuan; Hotate, Kazuo

    2010-01-18

    A method to suppress polarization-fluctuation induced drift in resonator fiber optic gyro (R-FOG) is demonstrated by a polarization-maintaining fiber (PMF) resonator with twin 90 degrees polarization-axis rotated splices. By setting the length difference of the fiber segments between two 90 degrees polarization-axis rotated splicing points to a half of the beat-length of the fiber, a single eigen-state of polarization (ESOP) is excited with incident lightwave linearly polarized along the polarization-axis of the fiber. Compared to the previously reported resonator employing single 90 degrees polarization-axis rotated splice [1], in which two ESOPs are excited, our new scheme avoids the effect from the unwanted ESOP and thus suppresses the polarization-fluctuation induced drift in R-FOG output significantly.

  5. Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization

    Science.gov (United States)

    Wang, Shuo; Zhang, Chao; Li, Jiawei; Niyazi, Sidikejiang; Zheng, Long; Xu, Ming; Rong, Ruiming; Yang, Cheng; Zhu, Tongyu

    2017-01-01

    Erythropoietin (EPO) is a well-known hormone that is clinically used for the treatment of anemia. Very recently, an increasing body of evidence showed that EPO could still regulate bioactivities of macrophages. However, the details about the immunomodulatory effect of EPO on macrophages are not fully delineated, particularly in the setting of renal damages. Therefore, in the present study, we determined whether EPO could exert an impact on the dynamics of macrophages in a well-established model of rhabdomyolysis-induced acute kidney injury and explored the potential mechanisms. EPO was found to ameliorate kidney injuries by reducing macrophages recruitment and promoting phenotype switch toward M2 macrophages in vivo. It was also confirmed that EPO could directly suppress pro-inflammatory responses of M1 macrophages and promote M2 marker expression in vitro. Data indicated the possible involvement of Jak2/STAT3/STAT6 pathway in the augmentation of EPO on M2 polarization. These results improved the understanding of the immunoregulatory capacity of EPO on macrophages, which might optimize the therapeutic modalities of EPO. PMID:28383559

  6. Polarization force-induced changes in the dust sheath formation

    Energy Technology Data Exchange (ETDEWEB)

    Mayout, Saliha; Bentabet, Karima; Tribeche, Mouloud [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Physics, University of Bab-Ezzouar, USTHB, BP 32, El Alia, Algiers 16111 (Algeria)

    2015-09-15

    The modifications arising in the dusty plasma sheath structure due to the presence of polarization forces acting on the dust grains are investigated. The corresponding appropriate Bohm criterion for sheath formation is obtained. It is found that the critical Mach number, beyond which the dusty plasma electrostatic sheath sets in, decreases whenever the polarization effects become important. In addition, when the polarization force dominates over the electrical one, the dust plasma sheath cannot set in. This happens whenever the dust grain size exceeds a critical threshold. Moreover, the sheath electrostatic potential-gradient becomes abruptly steep, and the sheath thickness becomes broader as the polarization force effects strengthen.

  7. Starvation induces FoxO-dependent mitotic-to-endocycle switch pausing during Drosophila oogenesis.

    Science.gov (United States)

    Jouandin, Patrick; Ghiglione, Christian; Noselli, Stéphane

    2014-08-01

    When exposed to nutrient challenge, organisms have to adapt their physiology in order to balance reproduction with adult fitness. In mammals, ovarian follicles enter a massive growth phase during which they become highly dependent on gonadotrophic factors and nutrients. Somatic tissues play a crucial role in integrating these signals, controlling ovarian follicle atresia and eventually leading to the selection of a single follicle for ovulation. We used Drosophila follicles as a model to study the effect of starvation on follicle maturation. Upon starvation, Drosophila vitellogenic follicles adopt an 'atresia-like' behavior, in which some slow down their development whereas others enter degeneration. The mitotic-to-endocycle (M/E) transition is a critical step during Drosophila oogenesis, allowing the entry of egg chambers into vitellogenesis. Here, we describe a specific and transient phase during M/E switching that is paused upon starvation. The Insulin pathway induces the pausing of the M/E switch, blocking the entry of egg chambers into vitellogenesis. Pausing of the M/E switch involves a previously unknown crosstalk between FoxO, Cut and Notch that ensures full reversion of the process and rapid resumption of oogenesis upon refeeding. Our work reveals a novel genetic mechanism controlling the extent of the M/E switch upon starvation, thus integrating metabolic cues with development, growth and reproduction. © 2014. Published by The Company of Biologists Ltd.

  8. Noise contributions in an inducible genetic switch: a whole-cell simulation study.

    Directory of Open Access Journals (Sweden)

    Elijah Roberts

    2011-03-01

    Full Text Available Stochastic expression of genes produces heterogeneity in clonal populations of bacteria under identical conditions. We analyze and compare the behavior of the inducible lac genetic switch using well-stirred and spatially resolved simulations for Escherichia coli cells modeled under fast and slow-growth conditions. Our new kinetic model describing the switching of the lac operon from one phenotype to the other incorporates parameters obtained from recently published in vivo single-molecule fluorescence experiments along with in vitro rate constants. For the well-stirred system, investigation of the intrinsic noise in the circuit as a function of the inducer concentration and in the presence/absence of the feedback mechanism reveals that the noise peaks near the switching threshold. Applying maximum likelihood estimation, we show that the analytic two-state model of gene expression can be used to extract stochastic rates from the simulation data. The simulations also provide mRNA-protein probability landscapes, which demonstrate that switching is the result of crossing both mRNA and protein thresholds. Using cryoelectron tomography of an E. coli cell and data from proteomics studies, we construct spatial in vivo models of cells and quantify the noise contributions and effects on repressor rebinding due to cell structure and crowding in the cytoplasm. Compared to systems without spatial heterogeneity, the model for the fast-growth cells predicts a slight decrease in the overall noise and an increase in the repressors rebinding rate due to anomalous subdiffusion. The tomograms for E. coli grown under slow-growth conditions identify the positions of the ribosomes and the condensed nucleoid. The smaller slow-growth cells have increased mRNA localization and a larger internal inducer concentration, leading to a significant decrease in the lifetime of the repressor-operator complex and an increase in the frequency of transcriptional bursts.

  9. Influence of substrate cleaning on laser-induced damage threshold of polarizers

    International Nuclear Information System (INIS)

    Ye Xiaowen; Wang Xiaodong; Cheng Xinbin; Ma Bin; Ding Tao; Shen Zhenxiang; Wang Zhanshan

    2012-01-01

    Influence of cleaning process on laser-induced damage threshold of polarizers was studied. Nomarski microscope was used to inspect the cleaned substrate surface, scanning electron microscope combining with focus ion beam technologies was used to characterize the damage morphologies of polarizers. The initiators that trigger laser damage were correlated with cleaning process. Proper cleaning process resulted in fewer residual particles and nodules in the prepared polarizer, which increased the laser induced damage threshold (LIDT) for S-polarization. Moreover, the absorption peak of substrates became lower and sharper when surface contaminations were removed, which improved the LIDT of P-polarization. In conclusion, cleaning is an effective way to increase LIDTs of polarizers. (authors)

  10. Current-induced spin polarization in a spin-polarized two-dimensional electron gas with spin-orbit coupling

    International Nuclear Information System (INIS)

    Wang, C.M.; Pang, M.Q.; Liu, S.Y.; Lei, X.L.

    2010-01-01

    The current-induced spin polarization (CISP) is investigated in a combined Rashba-Dresselhaus spin-orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin-orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba-Dresselhaus models.

  11. Apparent resistivity and spectral induced polarization in the submarine environment

    Directory of Open Access Journals (Sweden)

    HERCULES DE SOUZA

    2001-09-01

    Full Text Available Relatively few investigations have employed electrical methods in the submarine environment, which may be promising for mineral deposits or threatened by environmental problems. We have measured the electric field using both disk and bar electrodes in the sea water at three different levels: sea surface, seven meters deep, and sea bottom at a depth of ten meters, employing a 2 m spacing dipole-dipole array with 7 array spacings of investigation, and 13 values of frequencies at steps of (2N hertz, N = -2, -1, 0, 1, 2,.....10. The measurement allowed the analysis of the electric field as a function of frequency and spacing, and of the spectral induced polarization. Modelling and interpretation of the apparent resistivity yielded a good fit with previous drilling data. Analysis of the spectrum of the complex apparent resistivity and the comparison with equivalent circuits, provided information about the grain size, the mineral composition and the major induced polarization phenomenon occurring below the sea. Therefore the result of the present research show the feasibility of measuring the variation of seawater resistivity in situ, as well as the resistivity of sea bottom sediments.Relativamente poucas investigações têm empregado métodos elétricos no ambiente submarino, o qual pode ser promissor para depósitos minerais ou ameaçado por problemas ambientais. Nós medimos o campo elétrico usando eletrodos em forma de disco e de barra na água do mar, em três níveis distintos: superfície, sete metros de profundidade, e fundo do mar a dez metros de profundidade, empregando um dispositivo dipolo-dipolo com 2m de afastamento, 7 níveis de investigação e 13 valores de freqüência a intervalos de (2N hertz, N = -2, -1, 0, 1, 2, ... 10. A medida permitiu a análise do campo elétrico como uma função de freqüência e afastamento, e da polarização induzida espectral. A modelagem e a interpretação da resistividade aparente se ajustaram bem

  12. Three-dimensional induced polarization data inversion for complex resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Commer, M.; Newman, G.A.; Williams, K.H.; Hubbard, S.S.

    2011-03-15

    The conductive and capacitive material properties of the subsurface can be quantified through the frequency-dependent complex resistivity. However, the routine three-dimensional (3D) interpretation of voluminous induced polarization (IP) data sets still poses a challenge due to large computational demands and solution nonuniqueness. We have developed a flexible methodology for 3D (spectral) IP data inversion. Our inversion algorithm is adapted from a frequency-domain electromagnetic (EM) inversion method primarily developed for large-scale hydrocarbon and geothermal energy exploration purposes. The method has proven to be efficient by implementing the nonlinear conjugate gradient method with hierarchical parallelism and by using an optimal finite-difference forward modeling mesh design scheme. The method allows for a large range of survey scales, providing a tool for both exploration and environmental applications. We experimented with an image focusing technique to improve the poor depth resolution of surface data sets with small survey spreads. The algorithm's underlying forward modeling operator properly accounts for EM coupling effects; thus, traditionally used EM coupling correction procedures are not needed. The methodology was applied to both synthetic and field data. We tested the benefit of directly inverting EM coupling contaminated data using a synthetic large-scale exploration data set. Afterward, we further tested the monitoring capability of our method by inverting time-lapse data from an environmental remediation experiment near Rifle, Colorado. Similar trends observed in both our solution and another 2D inversion were in accordance with previous findings about the IP effects due to subsurface microbial activity.

  13. Application of Laser Induced Breakdown Spectroscopy under Polar Conditions

    Science.gov (United States)

    Clausen, J. L.; Hark, R.; Bol'shakov, A.; Plumer, J.

    2015-12-01

    Over the past decade our research team has evaluated the use of commercial-off-the-shelf laser-induced breakdown spectroscopy (LIBS) for chemical analysis of snow and ice samples under polar conditions. One avenue of research explored LIBS suitability as a detector of paleo-climate proxy indicators (Ca, K, Mg, and Na) in ice as it relates to atmospheric circulation. LIBS results revealed detection of peaks for C and N, consistent with the presence of organic material, as well as major ions (Ca, K, Mg, and Na) and trace metals (Al, Cu, Fe, Mn, Ti). The detection of Ca, K, Mg, and Na confirmed that LIBS has sufficient sensitivity to be used as a tool for characterization of paleo-climate proxy indicators in ice-core samples. Techniques were developed for direct analysis of ice as well as indirect measurements of ice via melting and filtering. Pitfalls and issues of direct ice analysis using several cooling techniques to maintain ice integrity will be discussed. In addition, a new technique, laser ablation molecular isotopic spectroscopy (LAMIS) was applied to detection of hydrogen and oxygen isotopes in ice as isotopic analysis of ice is the main tool in paleoclimatology and glaciology studies. Our results demonstrated that spectra of hydroxyl isotopologues 16OH, 18OH, and 16OD can be recorded with a compact spectrograph to determine hydrogen and oxygen isotopes simultaneously. Quantitative isotopic calibration for ice analysis can be accomplished using multivariate chemometric regression as previously realized for water vapor. Analysis with LIBS and LAMIS required no special sample preparation and was about ten times faster than analysis using ICP-MS. Combination of the two techniques in one portable instrument for in-field analysis appears possible and would eliminate the logistical and cost issues associated with ice core management.

  14. Preferential macrophage recruitment and polarization in LPS-induced animal model for COPD: noninvasive tracking using MRI.

    Directory of Open Access Journals (Sweden)

    Achraf Al Faraj

    Full Text Available Noninvasive imaging of macrophages activity has raised increasing interest for diagnosis of chronic obstructive respiratory diseases (COPD, which make them attractive vehicles to deliver contrast agents for diagnostic or drugs for therapeutic purposes. This study was designed to monitor and evaluate the migration of differently polarized M1 and M2 iron labeled macrophage subsets to the lung of a LPS-induced COPD animal model and to assess their polarization state once they have reached the inflammatory sites in the lung after intravenous injection. Ex vivo polarized bone marrow derived M1 or M2 macrophages were first efficiently and safely labeled with amine-modified PEGylated dextran-coated SPIO nanoparticles and without altering their polarization profile. Their biodistribution in abdominal organs and their homing to the site of inflammation in the lung was tracked for the first time using a free-breathing non-invasive MR imaging protocol on a 4.7T magnet after their intravenous administration. This imaging protocol was optimized to allow both detection of iron labeled macrophages and visualization of inflammation in the lung. M1 and M2 macrophages were successfully detected in the lung starting from 2 hours post injection with no variation in their migration profile. Quantification of cytokines release, analysis of surface membrane expression using flow cytometry and immunohistochemistry investigations confirmed the successful recruitment of injected iron labeled macrophages in the lung of COPD mice and revealed that even with a continuum switch in the polarization profile of M1 and M2 macrophages during the time course of inflammation a balanced number of macrophage subsets predominate.

  15. Inducing elliptically polarized high-order harmonics from aligned molecules with linearly polarized femtosecond pulses

    DEFF Research Database (Denmark)

    Etches, Adam; Madsen, Christian Bruun; Madsen, Lars Bojer

    2010-01-01

    A recent paper reported elliptically polarized high-order harmonics from aligned N2 using a linearly polarized driving field [X. Zhou et al., Phys. Rev. Lett. 102, 073902 (2009)]. This observation cannot be explained in the standard treatment of the Lewenstein model and has been ascribed to many...... of additional contributions, which can be interpreted as quantum orbits in which the active electron is ionized at one atomic center within the molecule and recombines at another. The associated exchange harmonics are responsible for the nonvanishing ellipticity and result from a correlation between...... the ionization site and the recombination site in high-order harmonic generation....

  16. Polarity-Free Resistive Switching Characteristics of CuxO Films for Non-volatile Memory Applications

    International Nuclear Information System (INIS)

    Hang-Bing, Lv; Peng, Zhou; Xiu-Feng, Fu; Ming, Yin; Ya-Li, Song; Li, Tang; Ting-Ao, Tang; Yin-Yin, Lin

    2008-01-01

    Resistive switching characteristics of Cu x O films grown by plasma oxidation process at room temperature are investigated. Both bipolar and unipolar stable resistive switching behaviours are observed and confirmed by repeated current–voltage measurements. It is found that the RESET current is dependent on SET compliance current. The mechanism behind this new phenomenon can be understood in terms of conductive filaments formation/rupture with the contribution of Joule heating

  17. Induced Polarization Surveying for Acid Rock Screening in Highway Design

    Science.gov (United States)

    Butler, K. E.; Al, T.; Bishop, T.

    2004-05-01

    Highway and pipeline construction agencies have become increasingly vigilant in their efforts to avoid cutting through sulphide-bearing bedrock that has potential to produce acid rock drainage. Blasting and fragmentation of such rock increases the surface area available for sulphide oxidation and hence increases the risk of acid rock drainage unless the rock contains enough natural buffering capacity to neutralize the pH. In December, 2001, the New Brunswick Department of Transportation (NBOT) sponsored a field trial of geophysical surveying in order to assess its suitability as a screening tool for locating near-surface sulphides along proposed highway alignments. The goal was to develop a protocol that would allow existing programs of drilling and geochemical testing to be targeted more effectively, and provide design engineers with the information needed to reduce rock cuts where necessary and dispose of blasted material in a responsible fashion. Induced polarization (IP) was chosen as the primary geophysical method given its ability to detect low-grade disseminated mineralization. The survey was conducted in dipole-dipole mode using an exploration-style time domain IP system, dipoles 8 to 25 m in length, and six potential dipoles for each current dipole location (i.e. n = 1 - 6). Supplementary information was provided by resistivity and VLF-EM surveys sensitive to lateral changes in electrical conductivity, and by magnetic field surveying chosen for its sensitivity to the magnetic susceptibility of pyrrhotite. Geological and geochemical analyses of samples taken from several IP anomalies located along 4.3 line-km of proposed highway confirmed the effectiveness of the screening technique. IP pseudosections from a region of metamorphosed shales and volcaniclastic rocks identified discrete, well-defined mineralized zones. Stronger, overlapping, and more laterally extensive IP anomalies were observed over a section of graphitic and sulphide-bearing metasedimentary

  18. Polarization-induced pn diodes in wide-band-gap nanowires with ultraviolet electroluminescence.

    Science.gov (United States)

    Carnevale, Santino D; Kent, Thomas F; Phillips, Patrick J; Mills, Michael J; Rajan, Siddharth; Myers, Roberto C

    2012-02-08

    Almost all electronic devices utilize a pn junction formed by random doping of donor and acceptor impurity atoms. We developed a fundamentally new type of pn junction not formed by impurity-doping, but rather by grading the composition of a semiconductor nanowire resulting in alternating p and n conducting regions due to polarization charge. By linearly grading AlGaN nanowires from 0% to 100% and back to 0% Al, we show the formation of a polarization-induced pn junction even in the absence of any impurity doping. Since electrons and holes are injected from AlN barriers into quantum disk active regions, graded nanowires allow deep ultraviolet LEDs across the AlGaN band-gap range with electroluminescence observed from 3.4 to 5 eV. Polarization-induced p-type conductivity in nanowires is shown to be possible even without supplemental acceptor doping, demonstrating the advantage of polarization engineering in nanowires compared with planar films and providing a strategy for improving conductivity in wide-band-gap semiconductors. As polarization charge is uniform within each unit cell, polarization-induced conductivity without impurity doping provides a solution to the problem of conductivity uniformity in nanowires and nanoelectronics and opens a new field of polarization engineering in nanostructures that may be applied to other polar semiconductors. © 2012 American Chemical Society

  19. Spironolactone attenuates bleomycin-induced pulmonary injury partially via modulating mononuclear phagocyte phenotype switching in circulating and alveolar compartments.

    Directory of Open Access Journals (Sweden)

    Wen-Jie Ji

    Full Text Available BACKGROUND: Recent experimental studies provide evidence indicating that manipulation of the mononuclear phagocyte phenotype could be a feasible approach to alter the severity and persistence of pulmonary injury and fibrosis. Mineralocorticoid receptor (MR has been reported as a target to regulate macrophage polarization. The present work was designed to investigate the therapeutic potential of MR antagonism in bleomycin-induced acute lung injury and fibrosis. METHODOLOGY/PRINCIPAL FINDINGS: We first demonstrated the expression of MR in magnetic bead-purified Ly6G-/CD11b+ circulating monocytes and in alveolar macrophages harvested in bronchoalveolar lavage fluid (BALF from C57BL/6 mice. Then, a pharmacological intervention study using spironolactone (20 mg/kg/day by oral gavage revealed that MR antagonism led to decreased inflammatory cell infiltration, cytokine production (downregulated monocyte chemoattractant protein-1, transforming growth factor β1, and interleukin-1β at mRNA and protein levels and collagen deposition (decreased lung total hydroxyproline content and collagen positive area by Masson' trichrome staining in bleomycin treated (2.5 mg/kg, via oropharyngeal instillation male C57BL/6 mice. Moreover, serial flow cytometry analysis in blood, BALF and enzymatically digested lung tissue, revealed that spironolactone could partially inhibit bleomycin-induced circulating Ly6C(hi monocyte expansion, and reduce alternative activation (F4/80+CD11c+CD206+ of mononuclear phagocyte in alveoli, whereas the phenotype of interstitial macrophage (F4/80+CD11c- remained unaffected by spironolactone during investigation. CONCLUSIONS/SIGNIFICANCE: The present work provides the experimental evidence that spironolactone could attenuate bleomycin-induced acute pulmonary injury and fibrosis, partially via inhibition of MR-mediated circulating monocyte and alveolar macrophage phenotype switching.

  20. Temperature induced Spin Switching in SmFeO3 Single Crystal

    Science.gov (United States)

    Cao, Shixun; Zhao, Huazhi; Kang, Baojuan; Zhang, Jincang; Ren, Wei

    2014-08-01

    The prospect of controlling the magnetization (M) of a material is of great importance from the viewpoints of fundamental physics and future applications of emerging spintronics. A class of rare-earth orthoferrites RFeO3 (R is rare-earth element) materials exhibit striking physical properties of spin switching and magnetization reversal induced by temperature and/or applied magnetic field. Furthermore, due to the novel magnetic, magneto-optic and multiferroic properties etc., RFeO3 materials are attracting more and more interests in recent years. We have prepared and investigated a prototype of RFeO3 materials, namely SmFeO3 single-crystal. And we report magnetic measurements upon both field cooling (FC) and zero-field cooling (ZFC) of the sample, as a function of temperature and applied magnetic field. The central findings of this study include that the magnetization of single-crystal SmFeO3 can be switched by temperature, and tuning the magnitude of applied magnetic field allows us to realize such spin switching even at room temperature.

  1. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets.

    Science.gov (United States)

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng

    2016-07-18

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure-structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.

  2. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure

    International Nuclear Information System (INIS)

    Peter, A. John; Lee, Chang Woo

    2012-01-01

    Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration

  3. π--induced single charge exchange on polarized 3He

    International Nuclear Information System (INIS)

    Zhao, Q.; Burleson, S.; Blanchard, T.

    1995-01-01

    Asymmetries, A y , for the (π - ,π 0 ) reaction on polarized 3 He were measured using the pion beam of the P3W channel at LAMPF. The π 0 were detected with the new Neutral Meson Spectrometer (NMS) in coincidence with recoiling tritons. The recoil detector consisted of scintillation-counter telescopes and a wire chamber that provided energy-loss and direction information, respectively. The polarized gaseous 3 He target developed at TRIUMF was modified and run with the use of two diode lasers. Polarizations were typically 50%. The A y taken at T π = 200 MeV between 60 and 105 degrees were found to be strongly angle-dependent. The results will be compared with the theoretical predictions

  4. Current-Induced Switching of a Single-Molecule Magnet with Arbitrary Oriented Easy Axis

    OpenAIRE

    Misiorny, Maciej; Barnas, Józef

    2007-01-01

    The main objective of this work is to investigate theoretically how tilting of an easy axis of a single-molecule magnet (SMM) from the orientation collinear with magnetic moments of the leads affects the switching process induced by current flowing through the system. To do this we consider a model system that consists of a SMM embedded in the nonmagnetic barrier of a magnetic tunnel junction. The anisotropy axis of the SMM forms an arbitrary angle with magnetic moments of the leads (the latt...

  5. Dual-wavelength passively Q-switched ytterbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber and intracavity polarization

    Science.gov (United States)

    Al-Hayali, S. K. M.; Al-Janabi, A. H.

    2018-03-01

    We have experimentally demonstrated the operation of a dual-wavelength passively Q-switched ytterbium-doped fiber laser by using a saturable absorber (SA) based on Fe3O4 nanoparticles in a magnetic fluid. The SA was fabricated by depositing magnetic fluid at the end of an optical fiber ferrule. By performing adjustments to the pump power and polarization controller state in the cavity, a stable dual-wavelength lasing operation was generated without intracavity spectral filters or modulation elements. The Q-switched laser output was achieved at a pump threshold of 80 mW with a maximum output pulse energy of 38.8 nJ, a repetition rate of 73.4 kHz and a minimum pulse width of 3.4 µs. To the best of the authors’ knowledge, this is the first demonstration of a dual-wavelength passively Q-switched fiber laser using Fe3O4 nanoparticles as the SA in the 1.0 µm operation region.

  6. FM-AM Conversion Induced by Polarization Mode Dispersion in Fiber Systems

    International Nuclear Information System (INIS)

    Xiao-Dong, Huang; Sheng-Zhi, Zhao; Jian-Jun, Wang; Ming-Zhong, Li; Dang-Peng, Xu; Hong-Huan, Lin; Rui, Zhang; Ying, Deng; Xiao-Min, Zhang

    2010-01-01

    The conversion of the frequency modulated pulse induced from frequency modulation (FM) to amplitude modulation (AM) by the polarization mode dispersion (PMD) is theoretically and experimentally investigated. When there is no polarizer at the output end of a fiber system, the amplitude modulation depth is stable by 8%. Random amplitude modulation is observed when a polarizer is placed at the output end of the fiber system. The observed minimum and maximum modulation depths in our experiment are 5% and 80%, respectively. Simulation results show that the amplitude modulation is stable by 4% induced mainly by group velocity dispersion (GVD) when there is no polarizer, and the amplitude modulation depth displays the random variation character induced by the GVD and PMD. Lastly, a new fiber system scheme is proposed and little amplitude modulation is observed at the top of the output pulse

  7. Light-induced spin polarizations in quantum rings

    NARCIS (Netherlands)

    Joibari, F.K.; Blanter, Y.M.; Bauer, G.E.W.

    2014-01-01

    Nonresonant circularly polarized electromagnetic radiation can exert torques on magnetizations by the inverse Faraday effect (IFE). Here, we discuss the enhancement of IFE by spin-orbit interactions. We illustrate the principle by studying a simple generic model system, i.e., the

  8. Spin-Polarized Semiconductor Induced by Magnetic Impurities in Graphene

    OpenAIRE

    Daghofer, Maria; Zheng, Nan; Moreo, Adriana

    2010-01-01

    Magnetic impurities adsorbed on graphene are coupled magnetically via the itinerant electrons. This interaction opens a gap in the band structure of graphene. The result strongly depends on how the magnetic impurities are distributed. While random doping produces a semiconductor, if all or most impurities are located in the same sublattice, the spin degeneracy is removed and a spin-polarized semiconductor arises.

  9. Polarization-induced sigma-holes and hydrogen bonding

    Czech Academy of Sciences Publication Activity Database

    Hennemann, M.; Murray, J. S.; Politzer, P.; Riley, Kevin Eugene; Clark, T.

    2012-01-01

    Roč. 18, č. 6 (2012), s. 2461-2469 ISSN 1610-2940 Institutional research plan: CEZ:AV0Z40550506 Keywords : hydrogen bond * sigma-hole * polarization * field effect * ab initio calculation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.984, year: 2012

  10. A nanoparticle catalyst for heterogeneous phase para-hydrogen-induced polarization in water.

    Science.gov (United States)

    Glöggler, Stefan; Grunfeld, Alexander M; Ertas, Yavuz N; McCormick, Jeffrey; Wagner, Shawn; Schleker, P Philipp M; Bouchard, Louis-S

    2015-02-16

    Para-hydrogen-induced polarization (PHIP) is a technique capable of producing spin polarization at a magnitude far greater than state-of-the-art magnets. A significant application of PHIP is to generate contrast agents for biomedical imaging. Clinically viable and effective contrast agents not only require high levels of polarization but heterogeneous catalysts that can be used in water to eliminate the toxicity impact. Herein, we demonstrate the use of Pt nanoparticles capped with glutathione to induce heterogeneous PHIP in water. The ligand-inhibited surface diffusion on the nanoparticles resulted in a (1) H polarization of P=0.25% for hydroxyethyl propionate, a known contrast agent for magnetic resonance angiography. Transferring the (1) H polarization to a (13) C nucleus using a para-hydrogen polarizer yielded a polarization of 0.013%. The nuclear-spin polarizations achieved in these experiments are the first reported to date involving heterogeneous reactions in water. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enhancing current-induced torques by abutting additional spin polarizer layer to nonmagnetic metal layer

    Science.gov (United States)

    Go, Gyungchoon; Lee, Kyung-Jin; Kim, Young Keun

    2017-04-01

    Recently, the switching of a perpendicularly magnetized ferromagnet (FM) by injecting an in-plane current into an attached non-magnet (NM) has become of emerging technological interest. This magnetization switching is attributed to the spin-orbit torque (SOT) originating from the strong spin-orbit coupling of the NM layer. However, the switching efficiency of the NM/FM structure itself may be insufficient for practical use, as for example, in spin transfer torque (STT)-based magnetic random access memory (MRAM) devices. Here we investigate spin torque in an NM/FM structure with an additional spin polarizer (SP) layer abutted to the NM layer. In addition to the SOT contribution, a spin-polarized current from the SP layer creates an extra spin chemical potential difference at the NM/FM interface and gives rise to a STT on the FM layer. We show that, using typical parameters including device width, thickness, spin diffusion length, and the spin Hall angle, the spin torque from the SP layer can be much larger than that from the spin Hall effect (SHE) of the NM.

  12. Voltage-induced switching of an antiferromagnetically ordered topological Dirac semimetal

    Science.gov (United States)

    Kim, Youngseok; Kang, Kisung; Schleife, André; Gilbert, Matthew J.

    2018-04-01

    An antiferromagnetic semimetal has been recently identified as a new member of topological semimetals that may host three-dimensional symmetry-protected Dirac fermions. A reorientation of the Néel vector may break the underlying symmetry and open a gap in the quasiparticle spectrum, inducing the (semi)metal-insulator transition. Here, we predict that such a transition may be controlled by manipulating the chemical potential location of the material. We perform both analytical and numerical analysis on the thermodynamic potential of the model Hamiltonian and find that the gapped spectrum is preferred when the chemical potential is located at the Dirac point. As the chemical potential deviates from the Dirac point, the system shows a possible transition from the gapped to the gapless phase and switches the corresponding Néel vector configuration. We perform density functional theory calculations to verify our analysis using a realistic material and discuss a two terminal transport measurement as a possible route to identify the voltage-induced switching of the Néel vector.

  13. Co nanoparticles induced resistive switching and magnetism for the electrochemically deposited polypyrrole composite films.

    Science.gov (United States)

    Xu, Zedong; Gao, Min; Yu, Lina; Lu, Liying; Xu, Xiaoguang; Jiang, Yong

    2014-10-22

    The resistive switching behavior of Co-nanoparticle-dispersed polypyrrole (PPy) composite films is studied. A novel design method for resistive random access memory (ReRAM) is proposed. The conducting polymer films with metal nanocrystal (NC)-dispersed carbon chains induce the spontaneous oxidization of the conducting polymer at the surface. The resistive switching behavior is achieved by an electric field controlling the oxygen ion mobility between the metal electrode and the conducting polymer film to realize the mutual transition between intrinsic conduction (low resistive state) and oxidized layer conduction (high resistive state). Furthermore, the formation process of intrinsic conductive paths can be effectively controlled in the conducting polymer ReRAM using metal NCs in films because the inner metal NCs induce electric field lines converging around them and the intensity of the electric field at the tip of NCs can greatly exceed that of the other region. Metal NCs can also bring new characteristics for ReRAM, such as magnetism by dispersing magnetic metal NCs in polymer, to obtain multifunctional electronic devices or meet some special purpose in future applications. Our works will enrich the application fields of the electromagnetic PPy composite films and present a novel material for ReRAM devices.

  14. Polarization of the induced THz emission of donors in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kovalevsky, K. A., E-mail: atan4@yandex.ru; Zhukavin, R. Kh.; Tsyplenkov, V. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Pavlov, S. G.; Hübers, H.-W. [Humboldt University of Berlin (Germany); Abrosimov, N. V.; Shastin, V. N. [Leibniz Institute for Crystal Growth (Germany)

    2016-12-15

    The polarization of the terahertz (4.9–6.4 THz) stimulated emission of Group-V (Sb, P, As, Bi) donors in single-crystal silicon under pumping (photoionization) by a CO{sub 2} laser (photon energy 117 meV), depending on the uniaxial compressive deformation of the crystal along the [100] axis, is experimentally investigated. The influence of the field direction of the pump wave on its efficiency is discussed.

  15. Passive polarization agile antenna based on the electromagnetically induced transparency-like effect

    International Nuclear Information System (INIS)

    Zhu, Lei; Meng, Fan-Yi; Wu, Qun; Chen, Wan; Fu, Jia-Hui; Dong, Liang

    2014-01-01

    We propose a design method for a passive polarization agile antenna based on the electromagnetically induced transparency-like (EIT-like) effect. Benefiting from strong dispersion properties governed by EIT-like effects, the proposed structure can endow electromagnetic waves transmitted through it with quite different polarization states at very close frequencies. The experimental measurement was conducted to demonstrate agile polarization controls by placing a designed EIT-like waveplate in front of a standard microwave horn antenna. Results show that the polarization state of radiated waves by the horn antenna with a waveplate can be easily transformed among linear, circular and elliptical polarizations through fine-tuning the operating frequency, which is extremely important for certain special applications, e.g. electronic countermeasures. Our scheme could also be utilized at higher operating frequencies by the simply scaling principle. (paper)

  16. Passive polarization agile antenna based on the electromagnetically induced transparency-like effect

    Science.gov (United States)

    Zhu, Lei; Meng, Fan-Yi; Wu, Qun; Dong, Liang; Chen, Wan; Fu, Jia-Hui

    2014-10-01

    We propose a design method for a passive polarization agile antenna based on the electromagnetically induced transparency-like (EIT-like) effect. Benefiting from strong dispersion properties governed by EIT-like effects, the proposed structure can endow electromagnetic waves transmitted through it with quite different polarization states at very close frequencies. The experimental measurement was conducted to demonstrate agile polarization controls by placing a designed EIT-like waveplate in front of a standard microwave horn antenna. Results show that the polarization state of radiated waves by the horn antenna with a waveplate can be easily transformed among linear, circular and elliptical polarizations through fine-tuning the operating frequency, which is extremely important for certain special applications, e.g. electronic countermeasures. Our scheme could also be utilized at higher operating frequencies by the simply scaling principle.

  17. Polarization state of an inhomogenously refracted compressional-wave induced at interface between two anisotropic rocks.

    Science.gov (United States)

    Fa, Lin; Li, Wenya; Zhao, Jie; Han, Yonglan; Liang, Meng; Ding, Pengfei; Zhao, Meishan

    2017-01-01

    This paper is concerned with the polarization states of an inhomogenously refracted P-wave induced from the interface of two anisotropic rocks. Two realistic physical models have been studied: Model-1 is an interface between anisotropic shale and Taylor sandstone; Model-2 is an interface between anisotropic shale and oil shale. For each model, an analytical expression of the polarization states was derived and its elliptical-polarization trajectory was examined. It is shown that an anomalous incident-angle leads not only to a sudden elliptical-polarization directional variation but also to an abrupt change in size and shape of its elliptical-polarization trajectory. The calculated results and analyses provide a theoretical base for the understandings of an anomalous incident-angle recently reported in the literature [e.g., Fa, Fa, Zhang, Ding, Gong, Li, Li, Tang, and Zhao (2015). Sci. Rep. 5, 12700].

  18. Tailoring polarization of electromagnetically induced transparency based on non-centrosymmetric metasurfaces

    Science.gov (United States)

    Li, Hai-ming; Xue, Feng

    2017-09-01

    In this manuscript, tailoring polarization of analogy of electromagnetically induced transparency (EIT-like) based on non-centrosymmetric metasurfaces has been numerically and experimentally demonstrated. The EIT-like metamaterial is composed of a rectangle ring and two cut wires. The rectangle ring and the cut wire are chosen as the bright mode and the quasi-dark mode, respectively. Under the incident electromagnetic wave excitation, a polarization insensitive EIT-like transmission window can be observed at specific polarization angles. Within the transmission window, the phase steeply changes, which leads to the large group index. Tailoring polarization of EIT-like metamaterial with large group index at specific polarization angles may have potential application in slow light devices.

  19. Nanomechanics of flexoelectric switching

    Science.gov (United States)

    Očenášek, J.; Lu, H.; Bark, C. W.; Eom, C. B.; Alcalá, J.; Catalan, G.; Gruverman, A.

    2015-07-01

    We examine the phenomenon of flexoelectric switching of polarization in ultrathin films of barium titanate induced by a tip of an atomic force microscope (AFM). The spatial distribution of the tip-induced flexoelectricity is computationally modeled both for perpendicular mechanical load (point measurements) and for sliding load (scanning measurements), and compared with experiments. We find that (i) perpendicular load does not lead to stable ferroelectric switching in contrast to the load applied in the sliding contact load regime, due to nontrivial differences between the strain distributions in both regimes: ferroelectric switching for the perpendicular load mode is impaired by a strain gradient inversion layer immediately underneath the AFM tip; while for the sliding load regime, domain inversion is unimpaired within a greater material volume subjected to larger values of the mechanically induced electric field that includes the region behind the sliding tip; (ii) beyond a relatively small value of an applied force, increasing mechanical pressure does not increase the flexoelectric field inside the film, but results instead in a growing volume of the region subjected to such field that aids domain nucleation processes; and (iii) the flexoelectric coefficients of the films are of the order of few nC/m, which is much smaller than for bulk BaTi O3 ceramics, indicating that there is a "flexoelectric size effect" that mirrors the ferroelectric one.

  20. Stable polarization short pulse passively Q-switched monolithic microchip laser with [110] cut Cr4+:YAG

    International Nuclear Information System (INIS)

    Wang, Y; Gong, M; Yan, P; Huang, L; Li, D

    2009-01-01

    A monolithic Nd:YAG microchip laser with [110] cut Cr 4+ :YAG is presented. The output beam is linearly polarized with polarization ratio higher than 100:1. The polarization direction is stable, independent of pump power, crystal temperature, LD temperature. In single longitudinal mode operation, stable 259 ps pulses at 2.5 kHz with 82 kW peak power and diffraction limited beam mode are output. With a simple and compact one-pass Nd:YVO 4 amplifier, 144 kW peak power is achieved. Single longitudinal and fundamental transverse mode is kept after passing through the amplifier stage. The microchip laser can be operated in two longitudinal modes with two sets of output pulses by increasing the pump power

  1. Prospects of hydrocarbon deposits exploration using the method of induced polarization during geomagnetic-variation profiling

    Directory of Open Access Journals (Sweden)

    К. М. Ермохин

    2017-10-01

    Full Text Available Traditionally it is believed that the effect of induced polarization is an interfering factor for the measurement of electromagnetic fields and their interpretation during conducting works using magnetotelluric sounding and geomag-netic-variation profiling methods. A new method is proposed for isolating the effects of induced polarization during geomagnetic-variation profiling aimed at searching for hydrocarbon deposits on the basis of phase measurements during the conduct of geomagnetic-variation profiling. The phenomenon of induced polarization is proposed to be used as a special exploration mark for deep-lying hydrocarbon deposits. The traditional method of induced polarization uses artificial field sources, the powers of which are principally insufficient to reach depths of 3-5 km, which leads to the need to search for alternative - natural sources in the form of telluric and magnetotelluric fields. The proposed method makes it possible to detect and interpret the effects of induced polarization from deep-seated oil and gas reservoirs directly, without relying on indirect signs.

  2. Studies of current-perpendicular-to-plane magnetoresistance (CPP-MR) and current-induced magnetization switching (CIMS)

    Science.gov (United States)

    Kurt, Huseyin

    2005-08-01

    We present two CPP-MR studies of spin-valves based upon ferromagnetic/nonmagnetic/ferromagnetic (F/N/F) trilayers. We measure the spin-diffusion lengths of N = Pd, Pt, and Au at 4.2K, and both the specific resistances (sample area A times resistance R) and spin-memory-loss of N/Cu interfaces. Pd, Pt and Au are of special device interest because they give perpendicular anisotropy when sandwiching very thin Co layers. Comparing our spin-memory-loss data at Pd/Cu and Pt/Cu interfaces with older data for Nb/Cu and W/Cu gives insight into the importance of spin-orbit coupling in producing such loss. We reproduce and extend prior studies by Eid of 'magnetic activity' at the interface of Co and N-metals (or combinations of N-metals), when the other side of the N-metal contacts a superconductor (S). Our data suggest that magnetic activity may require strong spin-flipping at the N/S interface. We present five studies of a new phenomenon, CIMS, in F1/N/F2 trilayers, with F1 a thick 'polarizing' layer and F2 a thin 'switching' layer. In all prior studies of CIMS, positive current caused the magnetization of F2 to switch from parallel (P) to anti-parallel (AP) to that of F1- 'normal' switching. By judicious addition of impurities to F-metals, we are able to controllably produce both 'normal' and 'inverse' switching- where positive current switches the magnetization of F2 from AP to P to that of F1. In the samples studied, whether the switching is normal or inverse is set by the 'net polarization' produced by F1 and is independent of the properties of F2. As scattering in the bulk of F1 and F2 is essential to producing our results, these results cannot be described by ballistic models, which allow scattering only at interfaces. Most CIMS experiments use Cu as the N-layer due to its low resistivity and long spin-diffusion length. We show that Ag and Au have low enough resistivities and long enough spin-diffusion lengths to be useful alternatives to Cu for some devices. While

  3. Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids

    Energy Technology Data Exchange (ETDEWEB)

    Morgen, Michael Mark [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1997-05-01

    We develop a polarization-sensitive femtosecond pump probe technique, Raman induced polarization spectroscopy (RIPS), to study coherent rotation in molecular fluids. By observing the collisional dephasing of the coherently prepared rotational states, we are able to extract information concerning the effects of molecular interactions on the rotational motion. The technique is quite sensitive because of the zero background detection method, and is also versatile due to its nonresonant nature.

  4. Polarization resolved conoscopic patterns in nematic cells: effects induced by the incident light ellipticity

    Science.gov (United States)

    Buinyi, Igor O.; Soskin, Marat S.; Vovk, Roman G.

    2008-05-01

    Topological structure of the polarization resolved conoscopic patterns, calculated theoretically and measured experimentally for nematic liquid crystal (NLC) cells, is described in terms of polarization singularities, saddle points and bifurcation lines. The parametric dynamics of the topological network, induced by the variation of the incident light ellipticity, is analyzed for the nematic cells with uniform and non-uniform director configuration. Different stages of similar dynamics are observed for homeotropically oriented NLC cell. Non-uniform director configuration within the cell results in broken central symmentry in the arrangement of the topological network. Main features of the experimentally obtained polarization resolved conoscopic patterns are the same to the theoretically predicted ones.

  5. In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films

    International Nuclear Information System (INIS)

    Mueller, M.; Gonzalez-Garcia, Y.; Pakula, C.; Zaporojtchenko, V.; Strunskus, T.; Faupel, F.; Herges, R.; Zargarani, D.; Magnussen, O.M.

    2011-01-01

    Thin films in the range 40-80 nm of a blend of PMMA with an azobenzene derivative have been studied directly during UV and blue light irradiation by atomic force microscopy (AFM), revealing highly reversible changes in the surface roughness and the film adhesion. UV light induces an ∼80% increase in surface roughness, whereas illumination by blue light completely reverses these changes. Based on the observed surface topography and transition kinetics a reversible mass flow mechanisms is suggested, where the polarity changes upon switching trigger a wetting-dewetting transition in a surface segregation layer of the chromophore. Similar AFM measurements of the pull-off force indicate a decrease upon UV and an increase after blue light illumination with a complex kinetic behavior: a rapid initial change, attributed to the change in the cis isomer fraction of the azobenzene derivative, and a more gradual change, indicative of slow structural reorganization.

  6. The polarity protein Par1b/EMK/MARK2 regulates T cell receptor-induced microtubule-organizing center polarization.

    Science.gov (United States)

    Lin, Joseph; Hou, Kirk K; Piwnica-Worms, Helen; Shaw, Andrey S

    2009-07-15

    Engagement of a T cell to an APC induces the formation of an immunological synapse as well as reorientation of the microtubule-organizing center (MTOC) toward the APC. How signals emanating from the TCR induce MTOC polarization is not known. One group of proteins known to play a critical role in asymmetric cell division and cell polarization is the partitioning defective (Par) family of proteins. In this study we found that Par1b, a member of the Par family of proteins, was inducibly phosphorylated following TCR stimulation. This phosphorylation resulted in 14-3-3 protein binding and caused the relocalization of Par1b from the membrane into the cytoplasm. Because a dominant-negative form of Par1b blocked TCR-induced MTOC polarization, our data suggest that Par1b functions in the establishment of T cell polarity following engagement to an APC.

  7. Developmental excitatory-to-inhibitory GABA-polarity switch is disrupted in 22q11.2 deletion syndrome: a potential target for clinical therapeutics.

    Science.gov (United States)

    Amin, Hayder; Marinaro, Federica; De Pietri Tonelli, Davide; Berdondini, Luca

    2017-11-16

    Individuals with 22q11.2 microdeletion syndrome (22q11.2 DS) show cognitive and behavioral dysfunctions, developmental delays in childhood and risk of developing schizophrenia and autism. Despite extensive previous studies in adult animal models, a possible embryonic root of this syndrome has not been determined. Here, in neurons from a 22q11.2 DS mouse model (Lgdel +/- ), we found embryonic-premature alterations in the neuronal chloride cotransporters indicated by dysregulated NKCC1 and KCC2 protein expression levels. We demonstrate with large-scale spiking activity recordings a concurrent deregulation of the spontaneous network activity and homeostatic network plasticity. Additionally, Lgdel +/- networks at early development show abnormal neuritogenesis and void of synchronized spontaneous activity. Furthermore, parallel experiments on Dgcr8 +/- mouse cultures reveal a significant, yet not exclusive contribution of the dgcr8 gene to our phenotypes of Lgdel +/- networks. Finally, we show that application of bumetanide, an inhibitor of NKCC1, significantly decreases the hyper-excitable action of GABA A receptor signaling and restores network homeostatic plasticity in Lgdel +/- networks. Overall, by exploiting an on-a-chip 22q11.2 DS model, our results suggest a delayed GABA-switch in Lgdel +/- neurons, which may contribute to a delayed embryonic development. Prospectively, acting on the GABA-polarity switch offers a potential target for 22q11.2 DS therapeutic intervention.

  8. Fast switching of alkali atom dispensers using laser-induced heating

    International Nuclear Information System (INIS)

    Griffin, P.F.; Weatherill, K.J.; Adams, C.S.

    2005-01-01

    We show that by using an intense laser source to locally heat an alkali atom dispenser, one can generate a high flux of atoms followed by fast recovery (<100 ms) of the background pressure when the laser is extinguished. For repeated heating pulses a switch-on time for the atomic flux of 200 ms is readily attainable. This technique is suited to ultracold atom experiments using simple ultrahigh vacuum (UHV) chambers. Laser-induced heating provides a fast repetition of the experimental cycle, which, combined with low atom loss due to background gas collisions, is particularly useful for experiments involving far-off resonance optical traps, where sufficient laser power (0.5-4 W) is readily available

  9. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange

    DEFF Research Database (Denmark)

    Liu, Yi; Dentin, Renaud; Chen, Danica

    2008-01-01

    During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory...... expression through the dephosphorylation and nuclear shuttling of forkhead box O1 (FOXO1). Here we show that a fasting-inducible switch, consisting of the histone acetyltransferase p300 and the nutrient-sensing deacetylase sirtuin 1 (SIRT1), maintains energy balance in mice through the sequential induction...... of CRTC2 and FOXO1. After glucagon induction, CRTC2 stimulated gluconeogenic gene expression by an association with p300, which we show here is also activated by dephosphorylation at Ser 89 during fasting. In turn, p300 increased hepatic CRTC2 activity by acetylating it at Lys 628, a site that also...

  10. Novel magnetic wire fabrication process by way of nanoimprint lithography for current induced magnetization switching

    Directory of Open Access Journals (Sweden)

    Tsukasa Asari

    2017-05-01

    Full Text Available Nanoimprint lithography (NIL is an effective method to fabricate nanowire because it does not need expensive systems and this process is easier than conventional processes. In this letter, we report the Current Induced Magnetization Switching (CIMS in perpendicularly magnetized Tb-Co alloy nanowire fabricated by NIL. The CIMS in Tb-Co alloy wire was observed by using current pulse under in-plane external magnetic field (HL. We successfully observed the CIMS in Tb-Co wire fabricated by NIL. Additionally, we found that the critical current density (Jc for the CIMS in the Tb-Co wire fabricated by NIL is 4 times smaller than that fabricated by conventional lift-off process under HL = 200Oe. These results indicate that the NIL is effective method for the CIMS.

  11. Novel magnetic wire fabrication process by way of nanoimprint lithography for current induced magnetization switching

    Science.gov (United States)

    Asari, Tsukasa; Shibata, Ryosuke; Awano, Hiroyuki

    2017-05-01

    Nanoimprint lithography (NIL) is an effective method to fabricate nanowire because it does not need expensive systems and this process is easier than conventional processes. In this letter, we report the Current Induced Magnetization Switching (CIMS) in perpendicularly magnetized Tb-Co alloy nanowire fabricated by NIL. The CIMS in Tb-Co alloy wire was observed by using current pulse under in-plane external magnetic field (HL). We successfully observed the CIMS in Tb-Co wire fabricated by NIL. Additionally, we found that the critical current density (Jc) for the CIMS in the Tb-Co wire fabricated by NIL is 4 times smaller than that fabricated by conventional lift-off process under HL = 200Oe. These results indicate that the NIL is effective method for the CIMS.

  12. Induced spin polarization effect in graphene by ferromagnetic nanocontact

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sumit; Saha, Shyamal K., E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-03-07

    Chemically synthesized graphene contains large number of defects which act as localized spin moments at the defect sites. Cobalt nanosheets of variable thickness are grown on graphene surface to investigate spin/magnetotransport through graphene sheets containing large number of localized spins. Negative magnetoresistance (MR) is observed over the entire temperature range (5–300 K) for thin cobalt sheets, while a cross-over from negative to positive MR with increasing temperature is noticed for thicker cobalt sheets. The observed MR results are explained on the basis of recently reported spin polarization effect in graphene due to the presence of ferromagnetic atoms on the surface considering a spin valve like Co/graphene/Co nanostructures.

  13. Induction of Heme Oxygenase-1 with Hemin Reduces Obesity-Induced Adipose Tissue Inflammation via Adipose Macrophage Phenotype Switching

    Directory of Open Access Journals (Sweden)

    Thai Hien Tu

    2014-01-01

    Full Text Available Adipose macrophages with the anti-inflammatory M2 phenotype protect against obesity-induced inflammation and insulin resistance. Heme oxygenase-1 (HO-1, which elicits antioxidant and anti-inflammatory activity, modulates macrophage phenotypes and thus is implicated in various inflammatory diseases. Here, we demonstrate that the HO-1 inducer, hemin, protects against obesity-induced adipose inflammation by inducing macrophages to switch to the M2 phenotype. HO-1 induction by hemin reduced the production of proinflammatory cytokines (TNF-α and IL-6 from cocultured adipocytes and macrophages by inhibiting the activation of inflammatory signaling molecules (JNK and NF-κB in both cell types. Hemin enhanced transcript levels of M2 macrophage marker genes (IL-4, Mrc1, and Clec10a in the cocultures, while reducing transcripts of M1 macrophage markers (CD274 and TNF-α. The protective effects of hemin on adipose inflammation and macrophage phenotype switching were confirmed in mice fed a high-fat diet, and these were associated with PPARγ upregulation and STAT6 activation. These findings suggest that induction of HO-1 with hemin protects against obesity-induced adipose inflammation through M2 macrophage phenotype switching, which is induced by the PPARγ and STAT6 pathway. HO-1 inducers such as hemin may be useful for preventing obesity-induced adipose inflammation.

  14. Strain-gradient-induced polarization in SrTiO3 single crystals.

    Science.gov (United States)

    Zubko, P; Catalan, G; Buckley, A; Welche, P R L; Scott, J F

    2007-10-19

    Piezoelectricity is inherent only in noncentrosymmetric materials, but a piezoelectric response can also be obtained in centrosymmetric crystals if subjected to inhomogeneous deformation. This phenomenon, known as flexoelectricity, can significantly affect the functional properties of insulators, particularly thin films of high permittivity materials. We have measured strain-gradient-induced polarization in single crystals of paraelectric SrTiO3 as a function of temperature and orientation down to and below the 105 K phase transition. Estimates were obtained for all the components of the flexoelectric tensor, and calculations based on these indicate that local polarization around defects in SrTiO3 may exceed the largest ferroelectric polarizations. A sign reversal of the flexoelectric response detected below the phase transition suggests that the ferroelastic domain walls of SrTiO3 may be polar.

  15. Strain-Gradient-Induced Polarization in SrTiO3 Single Crystals

    Science.gov (United States)

    Zubko, P.; Catalan, G.; Buckley, A.; Welche, P. R. L.; Scott, J. F.

    2007-10-01

    Piezoelectricity is inherent only in noncentrosymmetric materials, but a piezoelectric response can also be obtained in centrosymmetric crystals if subjected to inhomogeneous deformation. This phenomenon, known as flexoelectricity, can significantly affect the functional properties of insulators, particularly thin films of high permittivity materials. We have measured strain-gradient-induced polarization in single crystals of paraelectric SrTiO3 as a function of temperature and orientation down to and below the 105 K phase transition. Estimates were obtained for all the components of the flexoelectric tensor, and calculations based on these indicate that local polarization around defects in SrTiO3 may exceed the largest ferroelectric polarizations. A sign reversal of the flexoelectric response detected below the phase transition suggests that the ferroelastic domain walls of SrTiO3 may be polar.

  16. Donepezil Regulates 1-Methyl-4-phenylpyridinium-Induced Microglial Polarization in Parkinson's Disease.

    Science.gov (United States)

    Chen, Teng; Hou, Ruihua; Xu, Shujun; Wu, Chengyuan

    2015-10-21

    1-Methyl-4-phenylpyridinium (MPP+) induces microglial activation and degeneration of dopaminergic (DAergic) neurons. Donepezil is a well-known acetylcholinesterase inhibitor used clinically to treat cognitive dysfunction in Alzheimer's disease (AD). In the present study, we tested the hypothesis that MPP+ promotes microglial M1 polarization and suppresses M2 polarization and that this can be restored by donepezil. Results indicate that MPP+ treatment in microglial BV2 cells promotes microglial polarization toward the M1 state. However, pretreatment with donepezil inhibited MPP+-induced M1 polarization in microglia by suppressing the release of interleukin (IL)-6, IL-1β, or tumor necrosis factor (TNF)-α. Importantly, we found that MPP+ inhibited microglial M2 polarization by suppressing expression of Arg-1, Fizz1, and Ym1, which was also rescued by pretreatment with donepezil. In addition, IL-4-mediated induction of anti-inflammatory marker genes IL-10, IL-13, and transforming growth factor-β2 (TGF-β2) were significantly attenuated by MPP+ in BV2 cells, which was restored by pretreatment with donepezil in a concentration-dependent manner. Mechanistically, we found that the addition of MPP+ reduced the intensity of phosphorylated signal transducer and activator of transcription 6 (STAT6) but not total STAT6 in IL-4-stimulated BV2 cells. Importantly, pretreatment of microglial BV2 cells with donepezil 3 h prior to administration of MPP+ rescued the reduction of STAT6 phosphorylation induced by MPP+.

  17. Effective pairing interaction induced by polarization effects in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Donati, P [Dipartimento di Fisica, Universita degli Studi di Milano, via Celoria 16, 20133 Milan (Italy); Gori, G [Dipartimento di Fisica, Universita degli Studi di Milano, via Celoria 16, 20133 Milan (Italy); Barranco, F [Departamento de Fisica Aplicada III, Universidad de Sevilla, Escuela Superior de Ingenieros, Camino de los Descubrimientos s/n, 41092 Sevilla (Spain); Broglia, R A [Dipartimento di Fisica, Universita degli Studi di Milano, via Celoria 16, 20133 Milan (Italy); Vigezzi, E [INFN, Sezione di Milano, via Celoria 16, 20133 Milan (Italy)

    2005-05-01

    The effective pairing interaction induced by the exchange of phonons between pairs of nucleons moving in time-reversal states close to the Fermi energy in deformed nuclei modifies in a sizeable manner the superfluid properties of these systems, accounting for about half of the pairing gap.

  18. Spin-polarized semiconductor induced by magnetic impurities in graphene

    Science.gov (United States)

    Daghofer, Maria

    2011-03-01

    Magnetic impurities adsorbed on graphene sheets are coupled antiferromangetically via the itinerant electrons in the graphene. We study this interaction and its impact on the electrons' spectral density by use of unbiased Monte-Carlo simulations. The antiferromagnetic order breaks the symmetry between the sublattices, and a gap for the itinerant electrons opens. Our simulations show that the itinerant states below and above the gap are not dispersionless states trapped by the impurities, but are instead mobile states with a large dispersion. We compare various scenarios for the impurity distribution and find that random doping produces a standard semiconductor. If, on the other hand, all or most of the impurities are localized in the same sublattice, the spin degeneracy is lifted and the conduction band becomes spin-polarized. We also discuss the properties of edge states at edges or magnetic domain boundaries. M.~Daghofer, N.~Zheng, A.~Moreo; Phys.~Rev.~B 82, 121405(R) (2010) Supported by the DFG under the Emmy-Noether Program, and the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. DOE.

  19. Investigation of the electronic transport in polarization-induced nanowires using conductive atomic force microscopy (AFM)

    Science.gov (United States)

    Selcu, Camelia; Carnevale, Santino C.; Kent, Thomas F.; Akyol, Fatih; Phillips, Patrick J.; Mills, Michael J.; Rajan, Siddharth; Pelz, Jonathan P.; Myers, Roberto C.

    2013-03-01

    In the search to improve short wavelength light emitting diodes (LED's), where the dislocations limit their performance and hole doping (Mg) is a fundamental challenge, the III-Nitride polarization-induced nanowire LED provides a promising system to address these problems. The new type of pn diode, polarization-induced nanowire LED (PINLED), was developed by linearly grading AlGaN composition of the nanowires (from GaN to AlN and back to GaN) from 0% to 100% and back to 0% Al (Carnevale et al, Nano Lett., 12, 915 (2012)). In III-Nitrides (Ga,Al/N), the effects of polarization are commonly observed at the surfaces and interfaces. Thus, in the case of the polarization-induced nanowire LEDs, taking advantage of the bound polarization charge, due to the grading of the AlGaN, the pn diodes are formed. The polarity of the nanowires determines the carrier type in each graded region, and therefore the diode orientation (n/p vs p/n). We used conductive AFM to investigate polarity of the PINLED's as well as hole conductivity in PINLED's made of AlGaN with and without acceptor doping. The results reveal that most of the wires are n-top/p-bottom (N-face), but some are p-top/n-bottom (Ga-face). Also, we found that the current density is 3 orders of magnitude larger in the case of the doped nanowires than the nanowires with no impurity doping.

  20. Dynamical heating of the polar summer mesopause induced by solar proton events

    Science.gov (United States)

    Becker, Erich; von Savigny, Christian

    A solar proton event (SPE) causes enhanced ionization of water vapor and nitrogen in the lower mesosphere, leading to production of odd hydrogen and odd nitrogen and hence a temporary depletion of ozone. Therefore, the main direct effect on the large circulation in the summer mesosophere/lower thermosphere (MLT) is a diabatic cooling perturbation centered around the pole in the lower mesosphere. Satellite observations made with the MLS/Aura showed a maximum increase of ¿ 10 K in zonally averaged temperatures around the southern polar summer mesopause during the SPE in January 2005 (v. Savigny et al., 2007, GRL). We propose a mechanism that explains this warming as a dynamical consequence of the cooling below (Becker and v. Savigny, 2009, JGR). We employ the Kuehlungsborn Mechanistic general Circulation Model (KMCM), which is a spectral model with high spatial resolution and a sophisticated parameterization of turbulence, giving rise to explicit simulation of gravity-wave effects in the MLT (Becker, 2009, JAS). An SPE is mimicked in the following way: We start with a control simulation for permanent Jan-uary conditions, extract an arbitrary snapshot, and integrate the model with an additional lower mesospheric cooling. This cooling is switched off after 5 days and the model is integrated for another 10 days. The resulting 15 day time series constitutes an SPE-related perturbation simulation when compared to the corresponding 15-day time series of the control simulation. To improve the statistics, the procedure is repeated six times and composite time series are con-structed. The model response in the SPE case reproduces the warming around the mesopause, which can be explained as follows. The diabatic cooling in the lower summer mesosphere induces an anomalous eastward zonal wind component. As a result, eastward propagating gravity waves are Doppler-shifted to smaller intrinsic frequencies and hence are subject to turbulent damping at lower altitudes. Hence, the

  1. Self-Induced Light Polarization Rotation in Azobenzene-Containing Polymers

    DEFF Research Database (Denmark)

    Nikolova, L.; Nedelchev, L.; Todorov, T.

    2000-01-01

    We report here a light-induced phenomenon--a self-induced rotation of the azimuth of elliptically polarized light passing through photobirefringent azopolymers. The experiments are carried out with films of amorphous and liquid-crystalline polymers. It has been shown that the induced rotation angle...... depends on the ellipticity of the input light. A theoretical analysis of the phenomenon has been done and it has been shown that light induces chiral structure in the polymer films. (C) 2000 American Institute of Physics. [S0003-6951(00)02731-5]....

  2. Redox induced switching dynamics of a three colour electrochromic metallopolymer film

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Qiang; McNally, Andrea; Keyes, Tia E.; Forster, Robert J. [National Centre for Sensor Research, Biomedical Diagnostics Institute, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland)

    2008-10-15

    Thin films of a novel Ru-phenolate based metallopolymer, [Ru(terpy)(box)PVP{sub 20}]PF{sub 6}, in which one in every twenty of the 4-vinyl pyridine monomer units is labelled with the ruthenium complex have been formed on glassy carbon electrodes, terpy is 2,2':6',2''-terpyridine, box is 2-(2-hydroxyphenyl)benzoxazole, and PVP is poly(4-vinylpyridine). Cyclic voltammetry and Raman spectroscopy reveal that the Ru{sup 2+/3+} couple is electrochemically reversible but that the phenolate ligand based oxidation is irreversible. These redox processes are associated with reversible colour changes from wine red (reduced) to red orange (mixed composition) then to light green (oxidized) in the visible region and an irreversible change in the near-IR region, respectively. Scanning electron microscopy reveals that repeated switching in LiClO{sub 4} aqueous solution does not induce any significant structural change within the deposit films. Cyclic voltammetry has been used to determine the electrochromic switching rate under semi-infinite linear diffusion conditions. In aqueous LiClO{sub 4}, the homogeneous charge transport diffusion coefficient, D{sub CT}, decreases from 3.6 {+-} 0.3 x 10{sup -13} to 2.7 {+-} 0.2 x 10{sup -13} cm{sup 2} s{sup -1} as the LiClO{sub 4} concentration increases from 0.1 to 1.0 M. This weak dependence of D{sub CT} on electrolyte concentration suggests that counterion availability is not rate-determining and that the overall rate of charge transport through the metallopolymer film is limited by the rate of segmental polymer chain motion necessary to bring adjacent centres sufficiently close to allow electron transfer to occur. Also the impact of changing the identity of the charge compensating anion of the redox electrochromic switching rate has been investigated. Finally, the electronic conductivity has been determined using interdigitated array electrodes (IDAs). (author)

  3. Redox induced switching dynamics of a three colour electrochromic metallopolymer film

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Qiang; McNally, Andrea; Keyes, Tia E. [National Centre for Sensor Research, Biomedical Diagnostics Institute, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Forster, Robert J. [National Centre for Sensor Research, Biomedical Diagnostics Institute, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland)], E-mail: robert.forster@dcu.ie

    2008-10-15

    Thin films of a novel Ru-phenolate based metallopolymer, [Ru(terpy)(box)PVP{sub 20}]PF{sub 6}, in which one in every twenty of the 4-vinyl pyridine monomer units is labelled with the ruthenium complex have been formed on glassy carbon electrodes, terpy is 2,2':6',2''-terpyridine, box is 2-(2-hydroxyphenyl)benzoxazole, and PVP is poly(4-vinylpyridine). Cyclic voltammetry and Raman spectroscopy reveal that the Ru{sup 2+/3+} couple is electrochemically reversible but that the phenolate ligand based oxidation is irreversible. These redox processes are associated with reversible colour changes from wine red (reduced) to red orange (mixed composition) then to light green (oxidized) in the visible region and an irreversible change in the near-IR region, respectively. Scanning electron microscopy reveals that repeated switching in LiClO{sub 4} aqueous solution does not induce any significant structural change within the deposit films. Cyclic voltammetry has been used to determine the electrochromic switching rate under semi-infinite linear diffusion conditions. In aqueous LiClO{sub 4}, the homogeneous charge transport diffusion coefficient, D{sub CT}, decreases from 3.6 {+-} 0.3 x 10{sup -13} to 2.7 {+-} 0.2 x 10{sup -13} cm{sup 2} s{sup -1} as the LiClO{sub 4} concentration increases from 0.1 to 1.0 M. This weak dependence of D{sub CT} on electrolyte concentration suggests that counterion availability is not rate-determining and that the overall rate of charge transport through the metallopolymer film is limited by the rate of segmental polymer chain motion necessary to bring adjacent centres sufficiently close to allow electron transfer to occur. Also the impact of changing the identity of the charge compensating anion of the redox electrochromic switching rate has been investigated. Finally, the electronic conductivity has been determined using interdigitated array electrodes (IDAs)

  4. Perceptual space induced by cochlear implant all-polar stimulation mode

    DEFF Research Database (Denmark)

    Marozeau, Jeremy; Mckay, Colette M.

    2015-01-01

    It has often been argued that a main limitation of the cochlear implant is the spread of current induced by each electrode, which activates an inappropriately large range of sensory neurons. In order to reduce this spread, a new stimulation mode, the all-polar mode, was tested with 5 participants...

  5. Perceptual Spaces Induced by Cochlear Implant All-Polar Stimulation Mode

    DEFF Research Database (Denmark)

    Marozeau, Jeremy; McKay, Colette M

    2016-01-01

    It has been argued that a main limitation of the cochlear implant is the spread of current induced by each electrode, which activates an inappropriately large range of sensory neurons. To reduce this spread, an alternative stimulation mode, the all-polar mode, was tested with five participants...

  6. Polarization-dependent single-beam laser-induced grating-like effects on titanium films

    International Nuclear Information System (INIS)

    Camacho-Lopez, Santiago; Evans, Rodger; Escobar-Alarcon, Luis; Camacho-Lopez, Miguel A.; Camacho-Lopez, Marco A.

    2008-01-01

    In this paper we present results on polarization-dependent laser-induced effects on titanium (Ti) thin films. We irradiated the titanium films, in ambient air, using a nanosecond Nd:YAG laser (532 nm, 9 ns pulse duration, 10 Hz). Using a series of pulses of fluence well below the ablation threshold, it was possible to form grating-like structures, whose grooves run parallel to the linear polarization of the incident beam. No grating-like structures were obtained when circularly polarized light was used. Our results revealed the remarkable formation of tiny (100 nm and even smaller diameter) craters, which self-arrange quasi-periodically along the ridges (never on the valleys) of the grating-like structure. Optical and scanning electron microscopy were used to study the laser-induced changes on the surface of the titanium films. Micro-Raman spectroscopy was used to analyze the irradiated areas on the titanium films. The Raman analysis demonstrated that the grooves in the grating-like structure, build up from the laser-induced oxidation of titanium. This is the first time, to the best of our knowledge, that periodic surface structures are reported to be induced below the ablation threshold regime, with the grooves made of crystalline metal oxide, in this case TiO 2 in the well-known Rutile phase. The laser irradiated areas on the film acquired selective (upon recording polarization) holographic reflectance

  7. Mapping the Eskelund landfill using time-domain spectral induced polarization data

    DEFF Research Database (Denmark)

    Legaz, Aurélie; Fiandaca, Gianluca; Pedersen, Jesper Bjergsted

    2011-01-01

    Between November 2009 and July 2010, researchers from the HydroGeophysics Group, Aarhus University, carried out a survey in the former municipal landfill, Eskelund (Denmark). Induced polarization measurements (IP) and electrical resistivity tomography (ERT) were used to define the spatial...

  8. Lithological characterization of a contaminated site using Direct current resistivity and time domain Induced Polarization

    DEFF Research Database (Denmark)

    Maurya, Pradip Kumar; Fiandaca, Gianluca; Auken, Esben

    study a large contaminated site in Denmark was investigated using direct current resistivity and time domain induced polarization (DCIP). For this purpose 14 profiles were collected alongside a stream in order to investigate the contamination and delineate the lithological units. 2D inversion using...

  9. Spectral Induced Polarization Signatures of Ethanol in Sand-Clay Medium

    Science.gov (United States)

    The spectral Induced Polarization (SIP) method has previously been investigated as a tool for detecting physicochemical changes occurring as result of clay-organic interactions in porous media. We performed SIP measurements with a dynamic signal analyzer (NI-4551) on laboratory ...

  10. High‐frequency induced polarization measurements of hydrocarbon‐bearing rocks

    DEFF Research Database (Denmark)

    Burtman, Vladimir; Endo, Masashi; Zhdanov, Michael S.

    2011-01-01

    We have investigated induced polarization (IP) effects in hydrocarbon‐bearing artificial rocks at frequencies greater than 100 Hz. We have examined the instrumental and electrode phase responses of Zonge International's complex resistivity (CR) system, and optimized the performance of the Zonge s......, and suggest the necessity to account for IP effects in the interpretations of electromagnetic data, particularly in induction logging data....

  11. Polarization-dependent single-beam laser-induced grating-like effects on titanium films

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Lopez, Santiago [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860 (Mexico)], E-mail: camachol@cicese.mx; Evans, Rodger [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860 (Mexico); Escobar-Alarcon, Luis [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico DF 11801 (Mexico); Camacho-Lopez, Miguel A. [Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n, esq. Jesus Carranza, Toluca, Estado de Mexico 50120 (Mexico); Camacho-Lopez, Marco A. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Tollocan s/n, esq. Paseo Colon, Toluca, Estado de Mexico, 50110 (Mexico)

    2008-12-30

    In this paper we present results on polarization-dependent laser-induced effects on titanium (Ti) thin films. We irradiated the titanium films, in ambient air, using a nanosecond Nd:YAG laser (532 nm, 9 ns pulse duration, 10 Hz). Using a series of pulses of fluence well below the ablation threshold, it was possible to form grating-like structures, whose grooves run parallel to the linear polarization of the incident beam. No grating-like structures were obtained when circularly polarized light was used. Our results revealed the remarkable formation of tiny (100 nm and even smaller diameter) craters, which self-arrange quasi-periodically along the ridges (never on the valleys) of the grating-like structure. Optical and scanning electron microscopy were used to study the laser-induced changes on the surface of the titanium films. Micro-Raman spectroscopy was used to analyze the irradiated areas on the titanium films. The Raman analysis demonstrated that the grooves in the grating-like structure, build up from the laser-induced oxidation of titanium. This is the first time, to the best of our knowledge, that periodic surface structures are reported to be induced below the ablation threshold regime, with the grooves made of crystalline metal oxide, in this case TiO{sub 2} in the well-known Rutile phase. The laser irradiated areas on the film acquired selective (upon recording polarization) holographic reflectance.

  12. Asymmetry in ternary fission induced by polarized neutrons and fission mechanism

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Gennenvajn, F.; Dzhessinger, P.; Mutterer, M.; Petrov, G.A.

    2003-01-01

    The results of measuring the P-odd, P-even (right-left) and T-odd asymmetries of the charged particles emission in the double and ternary fission, induced by the polarized neutrons, are considered. It is shown, what kind of information on the mechanism of the ternary nuclear fission may be obtained from the theoretical analysis of these data [ru

  13. Obesity-induces Organ and Tissue Specific Tight Junction Restructuring and Barrier Deregulation by Claudin Switching.

    Science.gov (United States)

    Ahmad, Rizwan; Rah, Bilal; Bastola, Dhundy; Dhawan, Punita; Singh, Amar B

    2017-07-11

    Obesity increases susceptibility to multiple organ disorders, however, underlying mechanisms remain unclear. The subclinical inflammation assisted by obesity-induced gut permeability may underlie obesity-associated co-morbidities. Despite eminent clinical significance of the obesity led gut barrier abnormalities, its precise molecular regulation remains unclear. It is also unknown whether barrier deregulations, similar to the gut, characterize other vital organs in obese individuals. The claudin family of proteins is integral to the tight junction (TJ), the apical cell-cell adhesion and a key regulator of the epithelial barrier. Using comprehensive physiological and biochemical analysis of intestinal and renal tissues from high-fat diet fed mice, critical for maintaining metabolic homeostasis, this study demonstrates that profound TJ-restructuring by organ and tissue-specific claudin switching characterize obese organs. Protein expression and cellular distribution were examined. In-silico analysis further highlighted potential association of select claudins, modulated by the obesity, with signaling and metabolic pathways of pathological significance. In vitro studies using Leptin or DCA-treatment suggested causal significance of obesity-induced changes in tissue microenvironment in regulating barrier deregulations in tissue-specific manner. Overall, current findings advances our understanding of the molecular undertakings of obesity associated changes that help predispose to specific diseases and also identifies novel windows of preventive and/or therapeutic interventions.

  14. Photo-Induced Multiple-State Memory Behaviour in Non-Volatile Bipolar Resistive-Switching Devices.

    Science.gov (United States)

    Zhang, Xuejiao; Xu, Zhiwei; Sun, Bai; Liu, Jianjun; Cao, Yanyan; Qiao, Haixia; Huang, Yong; Pang, Xiaofeng

    2018-04-01

    The recent discovery of non-volatile resistive-switching memory is a promising phenomenon for the semiconductor industry and electronic device technology. In our work, CaWO4 nanoparticles were synthesised through a one-step hydrothermal reaction. A resistive-switching memory device with Ag/CaWO4/fluorine-doped tin oxide structure was prepared. This device presents photo-induced multiple-state memory behaviour at room temperature. This study is valuable for exploring multi-functional materials and their applications in photo-controlled multiple-state non-volatile memories.

  15. Nanoscale x-ray magnetic circular dichroism probing of electric-field-induced magnetic switching in multiferroic nanostructures

    Science.gov (United States)

    Zhao, T.; Scholl, A.; Zavaliche, F.; Zheng, H.; Barry, M.; Doran, A.; Lee, K.; Cruz, M. P.; Ramesh, R.

    2007-03-01

    The magnetic structure as well as its response to an external electric field were studied in ferrimagnetic CoFe2O4 nanopillars embedded in an epitaxial ferroelectric BiFeO3 film using photoemission electron microscopy and x-ray magnetic circular dichroism. Magnetic switching was observed in both Co and Fe magnetic sublattices after application of an electric field. About 50% of the CoFe2O4 nanopillars were measured to switch their magnetization with the electric field, implying an elastic-mediated electric-field-induced magnetic anisotropy change.

  16. Electromagnetic near-field coupling induced polarization conversion and asymmetric transmission in plasmonic metasurfaces

    Science.gov (United States)

    Peng, Yu-Xiang; Wang, Kai-Jun; He, Meng-Dong; Luo, Jian-Hua; Zhang, Xin-Min; Li, Jian-Bo; Tan, Shi-Hua; Liu, Jian-Qiang; Hu, Wei-Da; Chen, Xiaoshuang

    2018-04-01

    In this paper, we demonstrate the effect of polarization conversion in a plasmonic metasurface structure, in which each unit cell consists of a metal bar and four metal split-ring resonators (SRRs). Such effect is attributed to the fact that the dark plasmon mode of SRRs (bar), which radiates cross-polarized component, is induced by the bright plasmon mode of bar (SRRs) due to the electromagnetic near-field coupling between bar and SRRs. We find that there are two ways to achieve a large cross-polarized component in our proposed metasurface structure. The first way is realized when the dark plasmon mode of bar (SRRs) is in resonance, while at this time the bright plasmon mode of SRRs (bar) is not at resonant state. The second way is realized when the bright plasmon mode of SRRs (bar) is resonantly excited, while the dark plasmon mode of bar (SRRs) is at nonresonant state. It is also found that the linearly polarized light can be rotated by 56.50 after propagation through the metasurface structure. Furthermore, our proposed metasurface structure exhibits an asymmetric transmission for circularly polarized light. Our findings take a further step in developing integrated metasurface-based photonics devices for polarization manipulation and modulation.

  17. G-quadruplex induced chirality of methylazacalix[6]pyridine via unprecedented binding stoichiometry: en route to multiplex controlled molecular switch

    Science.gov (United States)

    Guan, Ai-Jiao; Shen, Meng-Jie; Xiang, Jun-Feng; Zhang, En-Xuan; Li, Qian; Sun, Hong-Xia; Wang, Li-Xia; Xu, Guang-Zhi; Tang, Ya-Lin; Xu, Li-Jin; Gong, Han-Yuan

    2015-05-01

    Nucleic acid based molecular device is a developing research field which attracts great interests in material for building machinelike nanodevices. G-quadruplex, as a new type of DNA secondary structures, can be harnessed to construct molecular device owing to its rich structural polymorphism. Herein, we developed a switching system based on G-quadruplexes and methylazacalix[6]pyridine (MACP6). The induced circular dichroism (CD) signal of MACP6 was used to monitor the switch controlled by temperature or pH value. Furthermore, the CD titration, Job-plot, variable temperature CD and 1H-NMR experiments not only confirmed the binding mode between MACP6 and G-quadruplex, but also explained the difference switching effect of MACP6 and various G-quadruplexes. The established strategy has the potential to be used as the chiral probe for specific G-quadruplex recognition.

  18. Inverse-magnetostriction-induced switching current reduction of STT-MTJs and its application for low-voltage MRAM

    Science.gov (United States)

    Takamura, Yota; Shuto, Yusuke; Yamamoto, Shu'uichiro; Funakubo, Hiroshi; Kurosawa, Minoru Kuribayashi; Nakagawa, Shigeki; Sugahara, Satoshi

    2017-02-01

    A new spin-transfer torque (STT) magnetic tunnel junction (MTJ) using an inverse magnetostriction (IMS) material for the free layer is proposed for low-voltage MRAMs. The MTJ is surrounded by a piezoelectric gate structure so that a pressure for introducing the IMS effect can efficiently be applied to the free layer without any high-yield-strength support structure. During STT-induced magnetization switching, the energy barrier height for the switching can be lowered by the IMS effect, and thus a critical current density (JC) for the magnetization switching can dramatically be reduced. Energy performance of a low-voltage STT-MRAM cell using the proposed MTJ and a FinFET is also demonstrated.

  19. Electric-field-induced magnetization switching in CoFeB/MgO magnetic tunnel junctions with high junction resistance

    Science.gov (United States)

    Kanai, S.; Matsukura, F.; Ohno, H.

    2016-05-01

    We show the electric-field induced magnetization switching for CoFeB/MgO magnetic tunnel junctions with thick MgO barrier layer of 2.8 nm, whose resistance-area product is 176 kΩ μm2, and achieve the small switching energy of 6.3 fJ/bit. The increase of the junction resistance is expected to suppress the energy consumption due to the Joule heating during the switching; however, the energy is still dominated by the Joule energy rather than the charging energy. This is because the junction resistance decreases more rapidly for junctions with thicker MgO as bias voltage increases.

  20. COLLISION-INDUCED MAGNETIC RECONNECTION AND A UNIFIED INTERPRETATION OF POLARIZATION PROPERTIES OF GRBs AND BLAZARS

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Wei; Zhang, Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States); Zhang, Haocheng; Li, Hui, E-mail: deng@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: hli@lanl.gov, E-mail: hz193909@ohio.edu [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-04-10

    The jet composition and energy dissipation mechanism of gamma-ray bursts (GRBs) and blazars are fundamental questions that remain not fully understood. One plausible model is to interpret the γ-ray emission of GRBs and optical emission of blazars as synchrotron radiation of electrons accelerated from the collision-induced magnetic dissipation regions in Poynting-flux-dominated jets. The polarization observation is an important and independent information to test this model. Based on our recent 3D relativistic MHD simulations of collision-induced magnetic dissipation of magnetically dominated blobs, here we perform calculations of the polarization properties of the emission in the dissipation region and apply the results to model the polarization observational data of GRB prompt emission and blazar optical emission. We show that the same numerical model with different input parameters can reproduce well the observational data of both GRBs and blazars, especially the 90° polarization angle (PA) change in GRB 100826A and the 180° PA swing in blazar 3C279. This supports a unified model for GRB and blazar jets, suggesting that collision-induced magnetic reconnection is a common physical mechanism to power the relativistic jet emission from events with very different black hole masses.

  1. Free microparticles—An inducing mechanism of pre-firing in high pressure gas switches for fast linear transformer drivers

    Science.gov (United States)

    Li, Xiaoang; Pei, Zhehao; Wu, Zhicheng; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen

    2018-03-01

    Microparticle initiated pre-firing of high pressure gas switches for fast linear transformer drivers (FLTDs) is experimentally and theoretically verified. First, a dual-electrode gas switch equipped with poly-methyl methacrylate baffles is used to capture and collect the microparticles. By analyzing the electrode surfaces and the collecting baffles by a laser scanning confocal microscope, microparticles ranging in size from tens of micrometers to over 100 μm are observed under the typical working conditions of FLTDs. The charging and movement of free microparticles in switch cavity are studied, and the strong DC electric field drives the microparticles to bounce off the electrode. Three different modes of free microparticle motion appear to be responsible for switch pre-firing. (i) Microparticles adhere to the electrode surface and act as a fixed protrusion which distorts the local electric field and initiates the breakdown in the gap. (ii) One particle escapes toward the opposite electrode and causes a near-electrode microdischarge, inducing the breakdown of the residual gap. (iii) Multiple moving microparticles are occasionally in cascade, leading to pre-firing. Finally, as experimental verification, repetitive discharges at ±90 kV are conducted in a three-electrode field-distortion gas switch, with two 8 mm gaps and pressurized with nitrogen. An ultrasonic probe is employed to monitor the bounce signals. In pre-firing incidents, the bounce is detected shortly before the collapse of the voltage waveform, which demonstrates that free microparticles contribute significantly to the mechanism that induces pre-firing in FLTD gas switches.

  2. Induced polarization for characterizing and monitoring soil stabilization processes

    Science.gov (United States)

    Saneiyan, S.; Ntarlagiannis, D.; Werkema, D. D., Jr.

    2017-12-01

    Soil stabilization is critical in addressing engineering problems related to building foundation support, road construction and soil erosion among others. To increase soil strength, the stiffness of the soil is enhanced through injection/precipitation of a chemical agents or minerals. Methods such as cement injection and microbial induced carbonate precipitation (MICP) are commonly applied. Verification of a successful soil stabilization project is often challenging as treatment areas are spatially extensive and invasive sampling is expensive, time consuming and limited to sporadic points at discrete times. The geophysical method, complex conductivity (CC), is sensitive to mineral surface properties, hence a promising method to monitor soil stabilization projects. Previous laboratory work has established the sensitivity of CC on MICP processes. We performed a MICP soil stabilization projects and collected CC data for the duration of the treatment (15 days). Subsurface images show small, but very clear changes, in the area of MICP treatment; the changes observed fully agree with the bio-geochemical monitoring, and previous laboratory experiments. Our results strongly suggest that CC is sensitive to field MICP treatments. Finally, our results show that good quality data alone are not adequate for the correct interpretation of field CC data, at least when the signals are low. Informed data processing routines and the inverse modeling parameters are required to produce optimal results.

  3. Proton-induced knockout reactions with polarized and unpolarized beams

    Science.gov (United States)

    Wakasa, T.; Ogata, K.; Noro, T.

    2017-09-01

    Proton-induced knockout reactions provide a direct means of studying the single particle or cluster structures of target nuclei. In addition, these knockout reactions are expected to play a unique role in investigations of the effects of the nuclear medium on nucleon-nucleon interactions as well as the properties of nucleons and mesons. However, due to the nature of hadron probes, these reactions can suffer significant disturbances from the nuclear surroundings and the quantitative theoretical treatment of such processes can also be challenging. In this article, we review the experimental and theoretical progress in this field, particularly focusing on the use of these reactions as a spectroscopic tool and as a way to examine the medium modification of nucleon-nucleon interactions. With regard to the former aspect, the review presents a semi-quantitative evaluation of these reactions based on existing experimental data. In terms of the latter point, we introduce a significant body of evidence that suggests, although does not conclusively prove, the existence of medium effects. In addition, this paper also provides information and comments on other related subjects.

  4. Silane-Induced N-Polarity in Wires Probed by a Synchrotron Nanobeam.

    Science.gov (United States)

    Salomon, Damien; Messanvi, Agnes; Eymery, Joël; Martínez-Criado, Gema

    2017-02-08

    Noncentrosymmetric one-dimensional structures are key driving forces behind advanced nanodevices. Owing to the critical role of silane injection in creating nanosized architectures, it has become a challenge to investigate the induced local lattice polarity in single GaN wires. Thus, if axial and radial structures are well-grown by a silane-mediated approach, an ideal model to study their polar orientations is formed. By combining synchrotron X-ray fluorescence and X-ray excited optical luminescence, we show here experimental evidence of the role of silane to promote the N-polarity, light emission, and elemental incorporation within single wires. In addition, our experiment demonstrates the ability to spatially examine carrier diffusion phenomena without electrical contacts, opening new avenues for further studies with simultaneous optical and elemental sensitivity at the nanoscale.

  5. Surface polar states and pyroelectricity in ferroelastics induced by flexo-roto field

    Science.gov (United States)

    Morozovska, A. N.; Eliseev, E. A.; Kalinin, S. V.; Qing Chen, Long; Gopalan, Venkatraman

    2012-04-01

    Theoretical analysis based on the Landau-Ginzburg-Devonshire theory is used to show that the joint action of flexoelectric effect and rotostriction leads to a large spontaneous in-plane polarization (˜1-5 μC/cm2) and pyroelectric coefficient (˜10-3 C/m2K) in the vicinity of surfaces of otherwise non-ferroelectric ferroelastics, such as SrTiO3, with static octahedral rotations. The origin of the improper polarization and pyroelectricity is an electric field we name flexo-roto field whose strength is proportional to the convolution of the flexoelectric and rotostriction tensors with octahedral tilts and their gradients. Flexo-roto field should exist at surfaces and interfaces in all structures with static octahedral rotations, and thus, it can induce surface polar states and pyroelectricity in a large class of otherwise nonpolar materials.

  6. Versatile lipid profiling by liquid chromatography-high resolution mass spectrometry using all ion fragmentation and polarity switching. Preliminary application for serum samples phenotyping related to canine mammary cancer.

    Science.gov (United States)

    Gallart-Ayala, H; Courant, F; Severe, S; Antignac, J-P; Morio, F; Abadie, J; Le Bizec, B

    2013-09-24

    Lipids represent an extended class of substances characterized by such high variety and complexity that makes their unified analyses by liquid chromatography coupled to either high resolution or tandem mass spectrometry (LC-HRMS or LC-MS/MS) a real challenge. In the present study, a new versatile methodology associating ultra high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-HRMS/MS) have been developed for a comprehensive analysis of lipids. The use of polarity switching and "all ion fragmentation" (AIF) have been two action levels particularly exploited to finally permit the detection and identification of a multi-class and multi-analyte extended range of lipids in a single run. For identification purposes, both higher energy collision dissociation (HCD) and in-source CID (collision induced dissociation) fragmentation were evaluated in order to obtain information about the precursor and product ions in the same spectra. This approach provides both class-specific and lipid-specific fragments, enhancing lipid identification. Finally, the developed method was applied for differential phenotyping of serum samples collected from pet dogs developing spontaneous malignant mammary tumors and health controls. A biological signature associated with the presence of cancer was then successfully revealed from this lipidome analysis, which required to be further investigated and confirmed at larger scale. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Vibration Mitigation without Dissipative Devices: First Large-Scale Testing of a State Switched Inducer

    Directory of Open Access Journals (Sweden)

    Daniel Tirelli

    2014-01-01

    Full Text Available A new passive device for mitigating cable vibrations is proposed and its efficiency is assessed on 45-meter long taut cables through a series of free and forced vibration tests. It consists of a unilateral spring attached perpendicularly to the cable near the anchorage. Because of its ability to change the cable dynamic behaviour through intermittent activation, the device has been called state switched inducer (SSI. The cable behaviour is shown to be deeply modified by the SSI: the forced vibration response is anharmonicc and substantially reduced in amplitude whereas the free vibration decay is largely sped up through a beating phenomenon. The vibration mitigation effect is mainly due to the activation and coupling of various vibration modes, as evidenced in the response spectra of the equipped cable. This first large-scale experimental campaign shows that the SSI outperforms classical passive devices, thus paving the way to a new kind of low-cost vibration mitigation systems which do not rely on dissipation.

  8. Mismatched single stranded antisense oligonucleotides can induce efficient dystrophin splice switching

    Directory of Open Access Journals (Sweden)

    Kole Ryszard

    2011-10-01

    Full Text Available Abstract Background Antisense oligomer induced exon skipping aims to reduce the severity of Duchenne muscular dystrophy by redirecting splicing during pre-RNA processing such that the causative mutation is by-passed and a shorter but partially functional Becker muscular dystrophy-like dystrophin isoform is produced. Normal exons are generally targeted to restore the dystrophin reading frame however, an appreciable subset of dystrophin mutations are intra-exonic and therefore have the potential to compromise oligomer efficiency, necessitating personalised oligomer design for some patients. Although antisense oligomers are easily personalised, it remains unclear whether all patient polymorphisms within antisense oligomer target sequences will require the costly process of producing and validating patient specific compounds. Methods Here we report preclinical testing of a panel of splice switching antisense oligomers, designed to excise exon 25 from the dystrophin transcript, in normal and dystrophic patient cells. These patient cells harbour a single base insertion in exon 25 that lies within the target sequence of an oligomer shown to be effective at removing exon 25. Results It was anticipated that such a mutation would compromise oligomer binding and efficiency. However, we show that, despite the mismatch an oligomer, designed and optimised to excise exon 25 from the normal dystrophin mRNA, removes the mutated exon 25 more efficiently than the mutation-specific oligomer. Conclusion This raises the possibility that mismatched AOs could still be therapeutically applicable in some cases, negating the necessity to produce patient-specific compounds.

  9. Photo-induced charge state switching of the nitrogen-vacancy center in diamond

    Science.gov (United States)

    Hacquebard, Luke; Kuret, Loutfi; Childress, Lilian

    As a strong candidate for quantum computation and metrology applications, the nitrogen-vacancy (NV) defect center in diamond has gained much interest in the solid-state community. The NV center can exist in two different charge states (NV0 and NV-) which have very different optical and spin properties, where typically only the negatively charged state is desired since it provides the triplet ground state used for many experimental applications. Since most experiments involving NV centers use lasers for readout or manipulation it is important to understand the photo-induced charge state ionization and recombination processes at different wavelengths and powers. We developed a charge state readout and initialization method using a 594 nm laser with optimized duration and power, which was used to investigate the ionization and recombination processes from other laser sources. We report charge state switching data from a single NV center when illuminating with 594 nm CW, 532 nm CW, 532 nm pulsed and 766 nm pulsed lasers. We also explore the spin dependence of ionization through the use of applied microwaves. Funding from NSERC, FRQNT, CFI.

  10. Digital to analog resistive switching transition induced by graphene buffer layer in strontium titanate based devices.

    Science.gov (United States)

    Wan, Tao; Qu, Bo; Du, Haiwei; Lin, Xi; Lin, Qianru; Wang, Da-Wei; Cazorla, Claudio; Li, Sean; Liu, Sidong; Chu, Dewei

    2018-02-15

    Resistive switching behaviour can be classified into digital and analog switching based on its abrupt and gradual resistance change characteristics. Realizing the transition from digital to analog switching in the same device is essential for understanding and controlling the performance of the devices with various switching mechanisms. Here, we investigate the resistive switching in a device made with strontium titanate (SrTiO 3 ) nanoparticles using X-ray diffractometry, scanning electron microscopy, Raman spectroscopy, and direct electrical measurements. It is found that the well-known rupture/formation of Ag filaments is responsible for the digital switching in the device with Ag as the top electrode. To modulate the switching performance, we insert a reduced graphene oxide layer between SrTiO 3 and the bottom FTO electrode owing to its good barrier property for the diffusion of Ag ions and high out-of-plane resistance. In this case, resistive switching is changed from digital to analog as determined by the modulation of interfacial resistance under applied voltage. Based on that controllable resistance, potentiation and depression behaviours are implemented as well. This study opens up new ways for the design of multifunctional devices which are promising for memory and neuromorphic computing applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The Fly Sensitizing Pigment Enhances UV Spectral Sensitivity While Preventing Polarization-Induced Artifacts

    Directory of Open Access Journals (Sweden)

    Marko Ilić

    2018-02-01

    Full Text Available Microvillar photoreceptors are intrinsically capable of detecting the orientation of e-vector of linearly polarized light. They provide most invertebrates with an additional sensory channel to detect important features of their visual environment. However, polarization sensitivity (PS of photoreceptors may lead to the detection of polarization-induced false colors and intensity contrasts. Most insect photoreceptors are thus adapted to have minimal PS. Flies have twisted rhabdomeres with microvilli rotated along the length of the ommatidia to reduce PS. The additional UV-absorbing sensitizing pigment on their opsin minimizes PS in the ultraviolet. We recorded voltage from Drosophila photoreceptors R1–6 to measure the spectral dependence of PS and found that PS in the UV is invariably negligible but can be substantial above 400 nm. Using modeling, we demonstrate that in R1–6 without the sensitizing pigment, PS in the UV (PSUV would exceed PS in the visible part of the spectrum (PSVIS by a factor PSUV/PSVIS = 1.2–1.8, as lower absorption of Rh1 rhodopsin reduces self-screening. We use polarimetric imaging of objects relevant to fly polarization vision to show that their degree of polarization outdoors is highest in the short-wavelength part of the spectrum. Thus, under natural illumination, the sensitizing pigment in R1–6 renders even those cells with high PS in the visible part unsuitable for proper polarization vision. We assume that fly ventral polarization vision can be mediated by R7 alone, with R1–6 serving as an unpolarized reference channel.

  12. Electric field induced spin polarization oscillation in nonmagnetic benzene/Cu(100) interface: First principles calculations

    Science.gov (United States)

    Yuan, X. B.; Cai, L. L.; Tian, Y. L.; Hu, G. C.; Ren, J. F.

    2018-01-01

    First-principles calculation are presented to study the influences of external electric fields on the spin polarization properties of benzene/Cu(100) system which do not contain any magnetic atom. Our simulations show that an obvious spontaneous spin polarization oscillation occurred in the benzene molecule when the electric fields are applied. The density of states (DOS), spin density distributions, charge transfer properties are also obtained. It is found that the p-d orbital coupling between the benzene molecule and the electrode leads to spin non-degeneration of the DOS near the fermi energy, so the transferred charges from the Cu atoms to the molecule will fill these spin non-degenerate coupled orbitals, and then the benzene molecule becomes spin polarized. The strength of the p-d orbital coupling as well as the transferred charges oscillated with the external electric fields, which induce spin polarization oscillation. The results are favorable for the understanding of spin polarization properties in organic/nonmagnetic metal structures.

  13. Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization

    Science.gov (United States)

    Maurya, PK; Balbarini, N.; Møller, I.; Rønde, V.; Christiansen, AV; Bjerg, PL; Auken, E.; Fiandaca, G.

    2018-01-01

    At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In the present study, we have developed a new approach for characterizing contaminated sites through time-domain spectral induced polarization. The new approach is based on: 1) spectral inversion of the induced polarization data through a re-parameterization of the Cole-Cole model, which disentangles the electrolytic bulk conductivity from the surface conductivity for delineating the contamination plume; 2) estimation of hydraulic permeability directly from the inverted parameters using a laboratory-derived empirical equation without any calibration; 3) the use of the geophysical imaging results for supporting the geological modeling and planning of drilling campaigns.

  14. Layered and Laterally Constrained 2D Inversion of Time Domain Induced Polarization Data

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Ramm, James; Auken, Esben

    transform of a complex resistivity forward response and the inversion extracts the spectral information of the time domain measures in terms of the Cole-Cole parameters. The developed forward code and inversion algorithm use the full time decay of the induced polarization response, together with an accurate...... algorithm retrieves consistent values for both the Cole-Cole parameters and the layer thicknesses and is a promising tool for identifying formation boundaries, e.g. in for discriminating sand and clay layers or pollution fans, due to the chargeability of these layers.......In a sedimentary environment, quasi-layered models often represent the actual geology more accurately than smooth minimum-structure models. We have developed a new layered and laterally constrained inversion algorithm for time domain induced polarization data. The algorithm is based on the time...

  15. Measurement of the Induced Proton Polarization Pn in the 12C(e, e', p) reaction

    International Nuclear Information System (INIS)

    Woo, R.J.; Barkhuff, David; Bertozzi, William; Jian-ping Chen; Dan Dale; G. Dodson; K.A. Dow; Marty Epstein; Manouchehr Farkhondeh; Mike Finn; Shalev Gilad; Mark K. Jones; Kyungseon Joo; James Kelly; Stanley Kowalski; Bob Lourie; Richard Madey; Dimitri Margaziotis; Pete Markowitz; Justin McIntyre; Christoph Mertz; Brian Milbrath; Joseph Mitchell; Charles F. Perdrisat; Vina Punjabi; Paul Rutt; Adam Sarty; D. Tieger; C. Tschalaer; William Turchinetz; Paul E. Ulmer; S.P. Van Verst; C. Vellidis; Glen Warren; Lawrence Weinstein

    1998-01-01

    The first measurements of the induced proton polarization Pn for the 12C(e,e',p) reaction are reported. The experiment was performed at quasifree kinematics for energy and momentum transfer (w,q) = (294 MeV, 765 MeV/c) and sampled a missing momentum range of 0-250 MeV/c. The induced polarization arises from final-state interactions and for these kinematics is dominated by the real part of the spin-orbit optical potential. The distorted-wave impulse approximation provides good agreement with data for the 1 p3/2 shell. The data for the continuum suggest that both the 1s1/2 shell and underlying l > 1 configurations contribute

  16. Unusual salt-induced color modulation through aggregation-induced emission switching of a bis-cationic phenylenedivinylene-based π hydrogelator.

    Science.gov (United States)

    Bhattacharya, Santanu; Samanta, Suman K

    2012-12-21

    The synthesis, hydrogelation, and aggregation-induced emission switching of the phenylenedivinylene bis-N-octyl pyridinium salt is described. Hydrogelation occurs as a consequence of π-stacking, van der Waals, and electrostatic interactions that lead to a high gel melting temperature and significant mechanical properties at a very low weight percentage of the gelator. A morphology transition from fiber-to-coil-to-tube was observed depending on the concentration of the gelator. Variation in the added salt type, salt concentrations, or temperature profoundly influenced the order of aggregation of the gelator molecules in aqueous solution. Formation of a novel chromophore assembly in this way leads to an aggregation-induced switch of the emission colors. The emission color switches from sky blue to white to orange depending upon the extent of aggregation through mere addition of external inorganic salts. Remarkably, the salt effect on the assembly of such cationic phenylenedivinylenes in water follow the behavior predicted from the well-known Hofmeister effects. Mechanistic insights for these aggregation processes were obtained through the counterion exchange studies. The aggregation-induced emission switching that leads to a room-temperature white-light emission from a single chromophore in a single solvent (water) is highly promising for optoelectronic applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Inhibition of cyclophosphamide-induced oxidative stress in rat brain by polar and non-polar extracts of Annatto (Bixa orellana) seeds.

    Science.gov (United States)

    Oboh, Ganiyu; Akomolafe, Toyin L; Adefegha, Stephen A; Adetuyi, Abayomi O

    2011-03-01

    Annatto (Bixa orellana) seeds are widely distributed throughout the Tropics and have been used to provide both colour and flavour to food. This study sought to assess the ability of dietary inclusion of polar (water) and non-polar (chloroform) extracts of Annatto (B. orellana) seeds on cyclophosphamide-induced oxidative stress in rat brain. The total phenol content and antioxidant activities of polar (water) and non-polar (chloroform) extracts of Annatto seeds were determined in vitro and in vivo. The results of the study showed that intraperitoneal administration of cyclophosphamide (75 mg/kg of body weight) caused a significant increase (PAnnatto seed extracts (0.1% and 0.2%) caused dose-dependent significant decrease (P<0.05) in the MDA content of the brain. Likewise, the extracts also caused dose-dependent inhibition of the elevated serum glutamate oxaloacetate transaminase (SGOT), glutamate pyruvate transaminase (SGPT), alkaline phosphatase and total bilirubin. However, the non-polar extract had significantly higher inhibitory effects on the elevated MDA production in brain and serum liver function markers. This higher protective effect of the non-polar extract could be attributed to its higher antioxidant properties as typified by its significantly higher (P<0.05) reducing power, free-radical scavenging and Fe (II) chelating ability. Therefore, dietary inclusion of Annato seed extracts as food colourant could prevent oxidative stress occasioned by cyclophosphamide administration, but the non-polar extract is a better protectant. Copyright © 2010 Elsevier GmbH. All rights reserved.

  18. Epoxyeicosatrienoic acids regulate macrophage polarization and prevent LPS-induced cardiac dysfunction.

    Science.gov (United States)

    Dai, Meiyan; Wu, Lujin; He, Zuowen; Zhang, Shasha; Chen, Chen; Xu, Xizhen; Wang, Peihua; Gruzdev, Artiom; Zeldin, Darryl C; Wang, Dao Wen

    2015-09-01

    Macrophages, owning tremendous phenotypic plasticity and diverse functions, were becoming the target cells in various inflammatory, metabolic and immune diseases. Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acid to form epoxyeicosatrienoic acids (EETs), which possess various beneficial effects on cardiovascular system. In the present study, we evaluated the effects of EETs treatment on macrophage polarization and recombinant adeno-associated virus (rAAV)-mediated CYP2J2 expression on lipopolysaccharide (LPS)-induced cardiac dysfunction, and sought to investigate the underlying mechanisms. In vitro studies showed that EETs (1µmol/L) significantly inhibited LPS-induced M1 macrophage polarization and diminished the proinflammatory cytokines at transcriptional and post-transcriptional level; meanwhile it preserved M2 macrophage related molecules expression and upregulated anti-inflammatory cytokine IL-10. Furthermore, EETs down-regulated NF-κB activation and up-regulated peroxisome proliferator-activated receptors (PPARα/γ) and heme oxygenase 1 (HO-1) expression, which play important roles in regulating M1 and M2 polarization. In addition, LPS treatment in mice induced cardiac dysfunction, heart tissue damage and infiltration of M1 macrophages, as well as the increase of inflammatory cytokines in serum and heart tissue, but rAAV-mediated CYP2J2 expression increased EETs generation in heart and significantly attenuated the LPS-induced harmful effects, which mechanisms were similar as the in vitro study. Taken together, the results indicate that CYP2J2/EETs regulates macrophage polarization by attenuating NF-κB signaling pathway via PPARα/γ and HO-1 activation and its potential use in treatment of inflammatory diseases. © 2015 Wiley Periodicals, Inc.

  19. Neuropeptide Y induces potent migration of human immature dendritic cells and promotes a Th2 polarization.

    Science.gov (United States)

    Buttari, Brigitta; Profumo, Elisabetta; Domenici, Giacomo; Tagliani, Angela; Ippoliti, Flora; Bonini, Sergio; Businaro, Rita; Elenkov, Ilia; Riganò, Rachele

    2014-07-01

    Neuropeptide Y (NPY), a major autonomic nervous system and stress mediator, is emerging as an important regulator of inflammation, implicated in autoimmunity, asthma, atherosclerosis, and cancer. Yet the role of NPY in regulating phenotype and functions of dendritic cells (DCs), the professional antigen-presenting cells, remains undefined. Here we investigated whether NPY could induce DCs to migrate, mature, and polarize naive T lymphocytes. We found that NPY induced a dose-dependent migration of human monocyte-derived immature DCs through the engagement of NPY Y1 receptor and the activation of ERK and p38 mitogen-activated protein kinases. NPY promoted DC adhesion to endothelial cells and transendothelial migration. It failed to induce phenotypic DC maturation, whereas it conferred a T helper 2 (Th2) polarizing profile to DCs through the up-regulation of interleukin (IL)-6 and IL-10 production. Thus, during an immune/inflammatory response NPY may exert proinflammatory effects through the recruitment of immature DCs, but it may exert antiinflammatory effects by promoting a Th2 polarization. Locally, at inflammatory sites, cell recruitment could be amplified in conditions of intense acute, chronic, or cold stress. Thus, altered or amplified signaling through the NPY-NPY-Y1 receptor-DC axis may have implications for the development of inflammatory conditions.-Buttari, B., Profumo, E., Domenici, G., Tagliani, A., Ippoliti, F., Bonini, S., Businaro, R., Elenkov, I., Riganò, R. Neuropeptide Y induces potent migration of human immature dendritic cells and promotes a Th2 polarization. © FASEB.

  20. Minocycline-induced hyperpigmentation: comparison of 3 Q-switched lasers to reverse its effects

    Directory of Open Access Journals (Sweden)

    Nisar MS

    2013-05-01

    Full Text Available Mahrukh S Nisar,1 Karthik Iyer,1 Robert T Brodell,2 Jenifer R Lloyd,3 Thuzar M Shin,3 Asad Ahmad4 1Northeast Ohio Medical University, Rootstown, OH, USA; 2Division of Dermatology, University of Mississippi Medical Center, Jackson, MS, USA; 3Case Western Reserve University School of Medicine, Cleveland, OH, USA; 4Northside Medical Center, Youngstown, OH, USA Abstract: Minocycline is a tetracycline derivative antibiotic commonly prescribed for acne, rosacea, and other inflammatory skin disorders. Minocycline turns black when oxidized, leading to discoloration of the skin, nails, bulbar conjunctiva, oral mucosa, teeth, bones, and thyroid gland. Hyperpigmentation has been reported after long-term minocycline therapy with at least 100 mg/day. Three types of minocycline-induced cutaneous hyperpigmentation can result. Type I is the most common, and is associated with blue-black discoloration in areas of previous inflammation and scarring. Type II most commonly affects the legs and is characterized by blue-gray pigmentation of previously normal skin. Type III is the least common and is characterized by diffuse muddy-brown discoloration predominantly on sun exposed skin. Minocycline-induced hyperpigmentation may be cosmetically disfiguring and prompt identification is essential. Without treatment, symptoms may take several months, to years to resolve, after discontinuation of the drug. However, the pigmentation may never completely disappear. In fact, there have been few reports of complete resolution associated with any therapeutic intervention. We report a case of a patient on long-term minocycline therapy utilized as an anti-inflammatory agent to control symptoms of rheumatoid arthritis, which led to minocycline-induced hyperpigmentation of the face. To remove the blue-gray cutaneous deposits, 3 Q-switched lasers (Neodymium: yttrium aluminum garnet (Nd:YAG 1064 nm, Alexandrite 755 nm, and Ruby 694 nm were used in test areas. The Alexandrite 755 nm

  1. A rate-equation model for polarized laser-induced fluorescence to measure electric field in glow discharge He plasmas

    International Nuclear Information System (INIS)

    Takiyama, K.; Watanabe, M.; Oda, T.

    1998-01-01

    Possibility of applying polarized laser-induced fluorescence (LIF) spectroscopy for measuring the electric field in a plasma with a large collisional depolarization has been investigated. A rate equation model including the depolarization process was employed to analyze the time evolution of LIF polarization components. The polarized LIF pulse shapes observed in the sheath of a He glow discharge plasma were successfully reproduced, and the electric field distribution was obtained with high accuracy. (author)

  2. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam.

    Science.gov (United States)

    Guo, Lina; Chen, Yahong; Liu, Xianlong; Liu, Lin; Cai, Yangjian

    2016-06-27

    Partially coherent radially polarized (PCRP) beam was introduced and generated in recent years. In this paper, we investigate the statistical properties of a PCRP beam embedded with a vortex phase (i.e., PCRP vortex beam). We derive the analytical formula for the cross-spectral density matrix of a PCRP vortex beam propagating through a paraxial ABCD optical system and analyze the statistical properties of a PCRP vortex beam focused by a thin lens. It is found that the statistical properties of a PCRP vortex beam on propagation are much different from those of a PCRP beam. The vortex phase induces not only the rotation of the beam spot, but also the changes of the beam shape, the degree of polarization and the state of polarization. We also find that the vortex phase plays a role of resisting the coherence-induced degradation of the intensity distribution and the coherence-induced depolarization. Furthermore, we report experimental generation of a PCRP vortex beam for the first time. Our results will be useful for trapping and rotating particles, free-space optical communications and detection of phase object.

  3. Constraining foreground spectrum with the projection-induced polarization for the cosmological global 21-cm experiments

    Science.gov (United States)

    Nhan, Bang D.; Bradley, Richard F.; Burns, Professor O.

    2018-01-01

    Detecting the cosmological global (sky-averaged) 21-cm spectrum as a function of observed frequency will provide a powerful tool to study the thermal history of intergalactic medium (IGM) in the high-redshift Universe (~ 400 million years after the Big Bang). The biggest challenge in conventional ground-based total-power global 21-cm experiments is the removal of the Galactic and extragalactic synchrotron foreground (~ 1e4-1e5 K) to uncover the weak cosmological signal (~ 10-100 mK). The foreground is further corrupted by the frequency-dependent instrumental systematics. We have developed a new polarimetry-based observational approach that aims to measure the foreground emission by modulating it as a function of time through its circumpolar motion. Due to geometry, the projection of the anisotropic foreground sources onto the dual-polarized antenna induces a net foreground polarization, which is distinct from the much weaker intrinsic polarization of synchrotron sources. Instead of pointing the radio antenna at the zenith as in the conventional experiments, we point the antenna at the North Celestial Pole (NCP) and measure the projection-induced polarization modulated by the foreground's circumpolar diurnal periodicity. This temporal signature allows us to separate the dynamic foreground spectrum from the static cosmological background. In this presentation, we describe the design, construction, and initial results from the "Cosmic Twilight Polarimeter'' (CTP) as a proof-of-concept implementation of this technique. The instrument consists of a dual-polarized broadband antenna (60-120 MHz) with a two-stage thermally stabilized front-end electronics, tilted toward the NCP. The instrument is currently being evaluated at a site near Charlottesville, VA. Ultimately, the instrument will be relocated to an RFI-quiet site closer to the Geographic North Pole (GNP) to mitigate sky obstruction due to the horizon at a lower latitude.

  4. A Fasting Inducible Switch Modulates Gluconeogenesis Via Activator-Coactivator Exchange

    Science.gov (United States)

    Liu, Yi; Dentin, Renaud; Chen, Danica; Hedrick, Susan; Ravnskjaer, Kim; Schenk, Simon; Milne, Jill; Meyers, David J.; Cole, Phil; Yates, John; Olefsky, Jerrold; Guarente, Leonard; Montminy, Marc

    2008-01-01

    During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory fuel for glucose-dependent tissues 1–4. Glucagon stimulates the gluconeogenic program by triggering the dephosphorylation and nuclear translocation of the CREB regulated transcription coactivator 2 (CRTC2; also known as TORC2), while parallel decreases in insulin signaling augment gluconeogenic gene expression through the de-phosphorylation and nuclear shuttling of Forkhead Box O1 (FOXO1) 5–7. Here we show that a fasting-inducible switch, consisting of the histone acetyl-transferase (HAT) P300 and the nutrient-sensing deacetylase Sirtuin 1 (SIRT1), maintains energy balance through the sequential induction of CRTC2 and FOXO1. Following glucagon induction, CRTC2 stimulated gluconeogenic gene expression through an association with P300, which we show here is also activated by de-phosphorylation at Ser89 during fasting. In turn, P300 increased hepatic CRTC2 activity by acetylating it at Lys628, a site that also targets CRTC2 for degradation following its ubiquitination by the E3 ligase Constitutive Photomorphogenic Protein (COP1) 8. Glucagon effects were attenuated during late fasting, when CRTC2 was down-regulated due to SIRT1-mediated deacetylation and when FOXO1 supported expression of the gluconeogenic program. Disrupting SIRT1 activity, by liver-specific knockout of the SIRT1 gene or by administration of SIRT1 antagonist, increased CRTC2 activity and glucose output, while exposure to SIRT1 agonists reduced them. In view of the reciprocal activation of FOXO1 and its coactivator peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC-1α) by SIRT1 activators 9–12, our results illustrate how the exchange of two gluconeogenic regulators during

  5. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange.

    Science.gov (United States)

    Liu, Yi; Dentin, Renaud; Chen, Danica; Hedrick, Susan; Ravnskjaer, Kim; Schenk, Simon; Milne, Jill; Meyers, David J; Cole, Phil; Yates, John; Olefsky, Jerrold; Guarente, Leonard; Montminy, Marc

    2008-11-13

    During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory fuel for glucose-dependent tissues. Glucagon stimulates the gluconeogenic program by triggering the dephosphorylation and nuclear translocation of the CREB regulated transcription coactivator 2 (CRTC2; also known as TORC2), while parallel decreases in insulin signalling augment gluconeogenic gene expression through the dephosphorylation and nuclear shuttling of forkhead box O1 (FOXO1). Here we show that a fasting-inducible switch, consisting of the histone acetyltransferase p300 and the nutrient-sensing deacetylase sirtuin 1 (SIRT1), maintains energy balance in mice through the sequential induction of CRTC2 and FOXO1. After glucagon induction, CRTC2 stimulated gluconeogenic gene expression by an association with p300, which we show here is also activated by dephosphorylation at Ser 89 during fasting. In turn, p300 increased hepatic CRTC2 activity by acetylating it at Lys 628, a site that also targets CRTC2 for degradation after its ubiquitination by the E3 ligase constitutive photomorphogenic protein (COP1). Glucagon effects were attenuated during late fasting, when CRTC2 was downregulated owing to SIRT1-mediated deacetylation and when FOXO1 supported expression of the gluconeogenic program. Disrupting SIRT1 activity, by liver-specific knockout of the Sirt1 gene or by administration of a SIRT1 antagonist, increased CRTC2 activity and glucose output, whereas exposure to SIRT1 agonists reduced them. In view of the reciprocal activation of FOXO1 and its coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha, encoded by Ppargc1a) by SIRT1 activators, our results illustrate how the exchange of two gluconeogenic regulators during fasting

  6. Phosphorylation-induced Conformational Ensemble Switching in an Intrinsically Disordered Cancer/Testis Antigen.

    Science.gov (United States)

    He, Yanan; Chen, Yihong; Mooney, Steven M; Rajagopalan, Krithika; Bhargava, Ajay; Sacho, Elizabeth; Weninger, Keith; Bryan, Philip N; Kulkarni, Prakash; Orban, John

    2015-10-09

    Prostate-associated gene 4 (PAGE4) is an intrinsically disordered cancer/testis antigen that is up-regulated in the fetal and diseased human prostate. Knocking down PAGE4 expression results in cell death, whereas its overexpression leads to a growth advantage of prostate cancer cells (Zeng, Y., He, Y., Yang, F., Mooney, S. M., Getzenberg, R. H., Orban, J., and Kulkarni, P. (2011) The cancer/testis antigen prostate-associated gene 4 (PAGE4) is a highly intrinsically disordered protein. J. Biol. Chem. 286, 13985-13994). Phosphorylation of PAGE4 at Thr-51 is critical for potentiating c-Jun transactivation, an important factor in controlling cell growth, apoptosis, and stress response. Using NMR spectroscopy, we show that the PAGE4 polypeptide chain has local and long-range conformational preferences that are perturbed by site-specific phosphorylation at Thr-51. The population of transient turn-like structures increases upon phosphorylation in an ∼20-residue acidic region centered on Thr-51. This central region therefore becomes more compact and more negatively charged, with increasing intramolecular contacts to basic sequence motifs near the N and C termini. Although flexibility is decreased in the central region of phospho-PAGE4, the polypeptide chain remains highly dynamic overall. PAGE4 utilizes a transient helical structure adjacent to the central acidic region to bind c-Jun with low affinity in vitro. The binding interaction is attenuated by phosphorylation at Thr-51, most likely because of masking the effects of the more compact phosphorylated state. Therefore, phosphorylation of PAGE4 leads to conformational shifts in the dynamic ensemble, with large functional consequences. The changes in the structural ensemble induced by posttranslational modifications are similar conceptually to the conformational switching events seen in some marginally stable ("metamorphic") folded proteins in response to mutation or environmental triggers. © 2015 by The American

  7. Optical switching property of a light-induced pinhole in antimony thin film

    Science.gov (United States)

    Fukaya, Toshio; Tominaga, Junji; Nakano, Takashi; Atoda, Nobufumi

    1999-11-01

    Optical near-field recording, called a super-resolution near-field structure, records and retrieves small marks beyond the diffraction limit. A thin layer of an antimony (Sb) film, added to the usual phase-change optical disk, is the key material of this technique. Nonlinear optical properties of an Sb film, especially optical switching, were studied in the stationary state using a nanosecond pulse laser. Clear switching was observed under microscopic measurement.

  8. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    Science.gov (United States)

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Metallicity at interphase boundaries due to polar catastrophe induced by charge density discontinuity

    KAUST Repository

    Albar, Arwa

    2018-02-09

    The electronic properties of interphase boundaries are of basic importance for most materials, particularly when those properties deviate strongly from the bulk behavior. We introduce a mechanism that can result in metallicity at stoichiometric interphase boundaries between semiconductors based on the idea of polar catastrophe, which is usually considered only in the context of heterostructures. To this end, we perform ab initio calculations within density functional theory to investigate the electronic states at stoichiometric SnO/SnO2 (110) interphase boundaries. In this system, one would not expect polar catastrophe to have a role according to state-of-the-art theory because the interface lacks formal charge discontinuity. However, we observe the formation of a hole gas between the semiconductors SnO and SnO2. To explain these findings, we provide a generalized theory based on the idea that the charge density discontinuity between SnO and SnO2, a consequence of lattice mismatch, drives a polar catastrophe scenario. As a result, SnO/SnO2 (110) interphase boundaries can develop metallicity depending on the grain size. The concept of metallicity due to polar catastrophe induced by charge density discontinuity is of general validity and applies to many interphase boundaries with lattice mismatch.

  10. The effect of disseminated ironsands on the spectral induced polarization response of New Zealand sands

    Science.gov (United States)

    Ingham, Malcolm

    2018-01-01

    The effect of naturally occurring ironsand on the spectral induced polarization response of shallow aquifer sands has been investigated. Laboratory measurements on mixtures of a low polarization silica sand with different proportions of ironsand characterize the main effect of an increasing proportion of ironsand as a lowering of the frequency at which the high frequency SIP phase starts to rise significantly. This ultimately obscures any low frequency polarization which might be related to the hydraulic properties of the sample. The measurements can be successfully modelled using the Maxwell-Clausius-Mossotti relationship and this has also been used to predict the expected SIP response of naturally occurring sands with different concentrations of ironsand. Modelling of these calculated responses using a Cole-Cole model suggests that the low frequency polarization time constant can be well resolved up to mass concentrations of ironsand of between 5 and 10%. The implications of this for the ability of SIP measurements to accurately map permeability variations in shallow aquifers are discussed.

  11. Mapping geological structures in bedrock via large-scale direct current resistivity and time-domain induced polarization tomography

    DEFF Research Database (Denmark)

    Rossi, Matteo; Olsson, Per-Ivar; Johansson, Sara

    2017-01-01

    An investigation of geological conditions is always a key point for planning infrastructure constructions. Bedrock surface and rock quality must be estimated carefully in the designing process of infrastructures. A large direct-current resistivity and time-domain induced-polarization survey has......, there are northwest-trending Permian dolerite dykes that are less deformed. Four 2D direct-current resistivity and time-domain induced-polarization profiles of about 1-km length have been carefully pre-processed to retrieve time-domain induced polarization responses and inverted to obtain the direct......-current resistivity distribution of the subsoil and the phase of the complex conductivity using a constant-phase angle model. The joint interpretation of electrical resistivity and induced-polarization models leads to a better understanding of complex three-dimensional subsoil geometries. The results have been...

  12. A Double-Switch Cell Fusion-Inducible Transgene Expression System for Neural Stem Cell-Based Antiglioma Gene Therapy

    Directory of Open Access Journals (Sweden)

    Yumei Luo

    2015-01-01

    Full Text Available Recent progress in neural stem cell- (NSC- based tumor-targeted gene therapy showed that NSC vectors expressing an artificially engineered viral fusogenic protein, VSV-G H162R, could cause tumor cell death specifically under acidic tumor microenvironment by syncytia formation; however, the killing efficiency still had much room to improve. In the view that coexpression of another antitumoral gene with VSV-G can augment the bystander effect, a synthetic regulatory system that triggers transgene expression in a cell fusion-inducible manner has been proposed. Here we have developed a double-switch cell fusion-inducible transgene expression system (DoFIT to drive transgene expression upon VSV-G-mediated NSC-glioma cell fusion. In this binary system, transgene expression is coregulated by a glioma-specific promoter and targeting sequences of a microRNA (miR that is highly expressed in NSCs but lowly expressed in glioma cells. Thus, transgene expression is “switched off” by the miR in NSC vectors, but after cell fusion with glioma cells, the miR is diluted and loses its suppressive effect. Meanwhile, in the syncytia, transgene expression is “switched on” by the glioma-specific promoter. Our in vitro and in vivo experimental data show that DoFIT successfully abolishes luciferase reporter gene expression in NSC vectors but activates it specifically after VSV-G-mediated NSC-glioma cell fusion.

  13. Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance.

    Science.gov (United States)

    Wang, Mengxing; Cai, Wenlong; Cao, Kaihua; Zhou, Jiaqi; Wrona, Jerzy; Peng, Shouzhong; Yang, Huaiwen; Wei, Jiaqi; Kang, Wang; Zhang, Youguang; Langer, Jürgen; Ocker, Berthold; Fert, Albert; Zhao, Weisheng

    2018-02-14

    Perpendicular magnetic tunnel junctions based on MgO/CoFeB structures are of particular interest for magnetic random-access memories because of their excellent thermal stability, scaling potential, and power dissipation. However, the major challenge of current-induced switching in the nanopillars with both a large tunnel magnetoresistance ratio and a low junction resistance is still to be met. Here, we report spin transfer torque switching in nano-scale perpendicular magnetic tunnel junctions with a magnetoresistance ratio up to 249% and a resistance area product as low as 7.0 Ω µm 2 , which consists of atom-thick W layers and double MgO/CoFeB interfaces. The efficient resonant tunnelling transmission induced by the atom-thick W layers could contribute to the larger magnetoresistance ratio than conventional structures with Ta layers, in addition to the robustness of W layers against high-temperature diffusion during annealing. The critical switching current density could be lower than 3.0 MA cm -2 for devices with a 45-nm radius.

  14. The "polarizing inducer" in hydra: A reexamination of its properties and its origin.

    Science.gov (United States)

    Müller, Werner A; Spindler, Klaus-Dieter

    1971-12-01

    In order to prove the gradient hypothesis an attempt was made to isolate and accumulate the "polarizing inducer" present in homogenates of hydra and assumed to be a neurosecretory product. By means of gel chromatography two fractions were obtained which brought about the development of supernumary apical structures (tentacles and hypostomes) thus exhibiting the symptoms attributed to this polarizing agent: a low molecular fraction with only modest effectiveness and a main fraction with strong animalizing ability. Increasing the concentration affected only the quantity but not the qualitative properties of the structures produced, a result inconsistent with the postulate of the gradient hypothesis. By analysing the chemical and biological nature of the main agent and by applying pure isolated toxins compelling evidence is given that the inducer in question is nothing but a component of the nematocyst toxins. This component, being heat-stable and trypsin-sensitive, elicites its animalizing effect in unspecific means by disturbing the normal pattern of morphallactic events. A side effect with interest in respect of graded tissue properties could be recorded: by the influence of the relevant toxin, growing together of regenerating animals occurs whereby predominantly apical primordia fuse with apical primordia, thus forming stable parabioses. This observation may indicate the significance of surface bound, contact establishing components in polar differentiation.

  15. 2D Resistivity and Induced Polarization Measurement for Manganese Ore Exploration

    Science.gov (United States)

    Srigutomo, Wahyu; Trimadona; Pratomo, Prihandhanu M.

    2016-08-01

    2D Resistivity and Induced Polarization (IP) survey was conducted to delineate the presence of minerals containing manganese in form of manganese ore. The resistivity method concerns with resistivity (ohm.m) of rocks which indicates the electrical properties in terms of ability to resist the flow of electrical current. The presence of manganese in rocks generally lowers the resistivity. The Induced Polarization (IP) method deals with chargeability (in msec) which indicates the strength of polarization effects experienced by ions in the vicinity of metallic grains in rock. The presence of manganese in rocks increases the chargeability of the rock when measured using IP method. The low resistivity zones (resistivity zones may have been influenced by the presence of clay or weathered soil. In this case, the high chargeability zones will help in confirming the prospective zones caused by manganese ore. The thicknesses of the manganese ore layer vary from about 5 to 20 m based on the cross-sections. Based on the results, we estimated the geometry of the associated manganese prospective zones for resistivity (10 msec).

  16. Spin-orbit torque induced magnetization switching in nano-scale Ta/CoFeB/MgO

    Science.gov (United States)

    Zhang, C.; Fukami, S.; Sato, H.; Matsukura, F.; Ohno, H.

    2015-07-01

    We study the device size dependence of spin-orbit torque induced magnetization switching in a Ta/CoFeB/MgO structure with perpendicular easy axis. The miniaturization of the device from micrometer-sized wire to 80-nm dot results in the increase of the threshold current density Jth by one order, whereas Jth increases only slightly with further reducing the device size down to 30 nm. No significant increase in Jth is seen, as the current pulse width decreases from 100 ms down to 3 ns. We reveal that the switching in devices at reduced size is reasonably well explained by the macrospin model, in which the effects of both the Slonczewski-like torque and field-like torque are included.

  17. Reduced Fluorescent Protein Switching Fatigue by Binding-Induced Emissive State Stabilization

    Directory of Open Access Journals (Sweden)

    Thijs Roebroek

    2017-09-01

    Full Text Available Reversibly switchable fluorescent proteins (RSFPs enable advanced fluorescence imaging, though the performance of this imaging crucially depends on the properties of the labels. We report on the use of an existing small binding peptide, named Enhancer, to modulate the spectroscopic properties of the recently developed rsGreen series of RSFPs. Fusion constructs of Enhancer with rsGreen1 and rsGreenF revealed an increased molecular brightness and pH stability, although expression in living E. coli or HeLa cells resulted in a decrease of the overall emission. Surprisingly, Enhancer binding also increased off-switching speed and resistance to switching fatigue. Further investigation suggested that the RSFPs can interconvert between fast- and slow-switching emissive states, with the overall protein population gradually converting to the slow-switching state through irradiation. The Enhancer modulates the spectroscopic properties of both states, but also preferentially stabilizes the fast-switching state, supporting the increased fatigue resistance. This work demonstrates how the photo-physical properties of RSFPs can be influenced by their binding to other small proteins, which opens up new horizons for applications that may require such modulation. Furthermore, we provide new insights into the photoswitching kinetics that should be of general consideration when developing new RSFPs with improved or different photochromic properties.

  18. Sex-inducing effect of a hydrophilic fraction on reproductive switching in the planarian Dugesia ryukyuensis (Seriata, Tricladida

    Directory of Open Access Journals (Sweden)

    Hoshi Motonori

    2011-10-01

    Full Text Available Abstract Background The mechanisms underlying the switching from an asexual to a sexual mode of reproduction, and vice versa, remain unknown in metazoans. In planarians, asexual worms acquire cryptic sexuality when fed with sexual worms, indicating that sexual worms contain a sex-inducing substance. Although such a chemical compound will provide clues about the mechanisms underlying the switching, information on the sex-inducing substance is poor. In order to identify this substance, we have established an assay system for sexual induction in asexual worms of Dugesia ryukyuensis by feeding them with sexual worms. Here, we carried out an isolation study on the sex-inducing substance using this assay system. Results After centrifugation of sexual worms homogenised in saline solution, we found that not only did the precipitate have a sex-inducing effect on the asexual worms, which has been shown previously, but the cytosolic fraction did as well. We confirmed that the sex-inducing activity in the cytosolic fraction was recovered in a hydrophilic fraction separated on an octadecylsilane (ODS column. We showed that the sex-inducing substance in the hydrophilic fraction is papain-resistant and a putative low-molecular-weight compound of less than 500. We also suggest the presence of an enhancer of sexual induction with a molecular weight (MW of more than 5 K in the hydrophilic fraction. Conclusion Our experiments showed the existence of a sex-inducing substance and an enhancer of sex-induction in a hydrophilic fraction, and a putative hydrophobic sex-inducing substance in the precipitate. Sexual induction in the asexual worms might be triggered by additive or synergistic effects of these chemical compounds.

  19. Vector magnetometry based on electromagnetically induced transparency in linearly polarized light

    International Nuclear Information System (INIS)

    Yudin, V. I.; Taichenachev, A. V.; Dudin, Y. O.; Velichansky, V. L.; Zibrov, A. S.; Zibrov, S. A.

    2010-01-01

    We develop a generalized principle of electromagnetically induced transparency (EIT) vector magnetometry based on high-contrast EIT resonances and the symmetry of atom-light interaction in the linearly polarized bichromatic fields. Operation of such vector magnetometer on the D 1 line of 87 Rb has been demonstrated. The proposed compass-magnetometer has an increased immunity to shifts produced by quadratic Zeeman and ac-Stark effects, as well as by atom-buffer gas and atom-atom collisions. In our proof-of-principle experiment the detected angular sensitivity to magnetic field orientation is 10 -3 deg/Hz 1/2 , which is limited by laser intensity fluctuations, light polarization quality, and magnitude of the magnetic field.

  20. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun

    2013-06-01

    The Rashba effect in quasi two-dimensional materials, such as noble metal surfaces and semiconductor heterostructures, has been investigated extensively, while interest in real two-dimensional systems has just emerged with the discovery of graphene. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te). In contrast to the non-polar systems with X = Y, in the polar systems with X ≠ Y the Rashba splitting at the Γ-point for the uppermost valence band is caused by the broken mirror symmetry. An enhancement of the splitting can be achieved by increasing the spin-orbit coupling and/or the potential gradient. © Copyright EPLA, 2013.

  1. Four-wave mixing using polarization grating induced thermal grating in liquids exhibiting circular dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, J.A.; Tong, W.G. [San Diego State Univ., CA (United States). Dept. of Chemistry; Chandler, D.W.; Rahn, L.A. [Sandia National Lab., Livermore, CA (United States). Combustion Research Facility

    1995-04-01

    A novel four-wave mixing technique for the detection of circular dichroism in optically active liquid samples is demonstrated. When two cross-polarized laser beams are crossed at a small angle in a circular dichroic liquid a weak thermal grating is produced with a phase depending on the sign of the circular dichroism. The authors show that the polarization of one of the beams can be modified to allow coherent interference with an intensity-grating induced thermal grating. A probe beam scattering from the composite grating results in a signal that reveals the sign and magnitude of the circular dichroism. The use of this technique to optimize the signal-to-noise ratio in the presence of scattered light and laser intensity noise is discussed.

  2. ANALYSIS OF SEEING-INDUCED POLARIZATION CROSS-TALK AND MODULATION SCHEME PERFORMANCE

    International Nuclear Information System (INIS)

    Casini, R.; De Wijn, A. G.; Judge, P. G.

    2012-01-01

    We analyze the generation of polarization cross-talk in Stokes polarimeters by atmospheric seeing, and its effects on the noise statistics of spectropolarimetric measurements for both single-beam and dual-beam instruments. We investigate the time evolution of seeing-induced correlations between different states of one modulation cycle and compare the response to these correlations of two popular polarization modulation schemes in a dual-beam system. Extension of the formalism to encompass an arbitrary number of modulation cycles enables us to compare our results with earlier work. Even though we discuss examples pertinent to solar physics, the general treatment of the subject and its fundamental results might be useful to a wider community.

  3. Inducing asymmetrical switch costs in bilingual language comprehension by language practice.

    Science.gov (United States)

    Declerck, Mathieu; Grainger, Jonathan

    2017-07-01

    The most widely discussed observation in the language control literature is the larger cost found when switching into the first than the second language (i.e., asymmetrical switch costs), which has been determined as a marker of persisting, reactive inhibition. While this is a common effect in bilingual language production, it generally does not occur in bilingual language comprehension. In this bilingual language comprehension study, we manipulated the relative activation of languages by letting participants practice in pure language blocks prior to a mixed language block. While no effect was found of practicing second-language words, asymmetrical switch costs were observed when practicing the same (Experiments 1 and 2) or different first-language words (Experiment 3) as in the following mixed language block. These findings indicate that, similar to bilingual production, bilingual comprehension relies on persisting, reactive language control. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals

    DEFF Research Database (Denmark)

    Albert, Magnus; Dantan, Aurelien Romain; Drewsen, Michael

    2011-01-01

    The control of one light field by another, ultimately at the single photon level1, 2, 3, 4, 5, 6, 7, is a challenging task that has numerous interesting applications within nonlinear optics4, 5 and quantum information science6, 7, 8. This type of control can only be achieved through highly...... transmission to full absorption of a single photon probe field are achieved within unprecedentedly narrow EIT windows of a few tens of kilohertz. By applying a weak switching field, this allows us to demonstrate nearly perfect switching of the transmission of the probe field. The results represent important...

  5. Quantifying microbe-mineral interactions leading to remotely detectable induced polarization signals

    Energy Technology Data Exchange (ETDEWEB)

    Ntarlagiannis, Dimitrios; Moysey, Stephen; Dean, Delphine

    2013-11-14

    The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealized systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for

  6. Quantifying Microbe-Mineral Interactions Leading to Remotely Detectable Induced Polarization Signals (Final Project Report)

    Energy Technology Data Exchange (ETDEWEB)

    Moysey, Stephen [Clemson University; Dean, Delphine [Clemson University; Dimitrios, Ntarlagiannis [Rutgers University

    2013-11-13

    The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealized systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for

  7. Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    Science.gov (United States)

    Luengo-Kovac, M.; Huang, S.; Del Gaudio, D.; Occena, J.; Goldman, R. S.; Raimondi, R.; Sih, V.

    2017-11-01

    The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InxGa1 -xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbit coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.

  8. Mycobacterium tuberculosislpdC, Rv0462, induces dendritic cell maturation and Th1 polarization

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Deok Rim [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Shin, Sung Jae; Kim, Woo Sik [Department of Microbiology, College of Medicine, Chungnam National University, Munwha-Dong, Jung-Ku, Daejeon 301-747 (Korea, Republic of); Noh, Kyung Tae; Park, Jin Wook; Son, Kwang Hee [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Park, Won Sun [Department of Physiology, Kangwon National University, School of Medicine, Chuncheon 200-701 (Korea, Republic of); Lee, Min-Goo [Department of Physiology, Korea University, College of Medicine, Anam-dong, Sungbuk-Gu, Seoul 136-705 (Korea, Republic of); Kim, Daejin [Department of Anatomy, Chung-Ang University, College of Medicine, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Shin, Yong Kyoo [Department of Pharmacology, Chung-Ang University, College of Medicine, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Jung, In Duk, E-mail: jungid@pusan.ac.kr [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Park, Yeong-Min, E-mail: immunpym@pusan.ac.kr [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of)

    2011-08-05

    Highlights: {yields} Treatment with Rv0462 induces the expression of surface molecules and the production of cytokines in DCs. {yields} Rv0462 induces the activation of MAPKs. {yields} Rv0462-treated DCs enhances the proliferation of CD4{sup +} T cells. -- Abstract: Mycobacterium tuberculosis, the etiological factor of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). In this study, we demonstrated that the gene encoding lipoamide dehydrogenase C (lpdC) from M. tuberculosis, Rv0462, induce maturation and activation of DCs involved in the MAPKs signaling pathway. Moreover, Rv0462-treated DCs activated naive T cells, polarized CD4{sup +} and CD8{sup +} T cells to secrete IFN-{gamma} in syngeneic mixed lymphocyte reactions, which would be expected to contribute to Th1 polarization of the immune response. Our results suggest that Rv0462 can contribute to the innate and adaptive immune responses during tuberculosis infection, and thus modulate the clinical course of tuberculosis.

  9. Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13.

    Science.gov (United States)

    Gao, Shanshan; Zhou, Juan; Liu, Na; Wang, Lijun; Gao, Qiyue; Wu, Yan; Zhao, Qiang; Liu, Peining; Wang, Shun; Liu, Yan; Guo, Ning; Shen, Yan; Wu, Yue; Yuan, Zuyi

    2015-08-01

    To address the underlying mechanisms by which curcumin facilitates M2 phenotype polarization of macrophages and its roles in the protective effects during experimental autoimmune myocarditis (EAM). The expression of classic M2 markers, including macrophage mannose receptor (MMR), arginase-1 (Arg-1) and peroxisome proliferator-activated receptor-γ (PPAR-γ) was upregulated in curcumin-treated Raw264.7 macrophages. Curcumin increased interleukin-4 (IL-4) and interleukin-13 (IL-13) mRNA expression and protein secretion. Curcumin notably increased STAT6 phosphorylation. Leflunomide, a STAT6 inhibitor, and IL-4 and/or IL-13 neutralizing antibodies antagonized the induction of MMR, Arg-1 and PPAR-γ by curcumin in Raw264.7 cells. In vivo, 6-week old male Lewis rats were used to induce EAM and orally administrated with curcumin or corn oil for 3weeks after myosin injection. Cardiac functional parameters, including left ventricular fractional shortening (LVFS), ejection fraction (EF), left ventricular end-systolic diameter (LVEDs) and heart rate (HR) were significantly improved by curcumin treatment. Curcumin also reduced the inflammatory cell infiltration and myocardial mRNA levels of interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS). Meanwhile, the myocardial mRNA levels of MMR and Arg-1 were markedly up-regulated by curcumin. Immunofluorescence assay showed that the number of CD68(+) MMR(+) and CD68(+) Arg-1(+) double positive macrophages in curcumin-treated myocardial tissue was significantly higher than untreated control. The number of CD68(+) iNOS(+) double positive macrophages was increased obviously in EAM group, but decreased markedly by curcumin treatment. Taken together, these results show that curcumin induces macrophage M2 polarization by secretion of IL-4 and/or IL-13. Curcumin ameliorates EAM by reducing infiltration inflammatory macrophages and by polarizing M0 and M1 macrophages to M2 phenotype. Copyright © 2015 Elsevier Ltd. All rights

  10. Shear wave induced resonance elastography of spherical masses with polarized torsional waves

    Science.gov (United States)

    Hadj Henni, Anis; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy

    2012-03-01

    Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an invitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary invivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.

  11. Resolving spectral information from time domain induced polarization data through 2-D inversion

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Ramm, James; Binley, A.

    2013-01-01

    SUMMARY Field-based time domain (TD) induced polarization (IP) surveys are usually modelled by taking into account only the integral chargeability, thus disregarding spectral content. Furthermore, the effect of the transmitted waveform is commonly neglected, biasing inversion results. Given...... these limitations of conventional approaches, a new 2-D inversion algorithm has been developed using the full voltage decay of the IP response, together with an accurate description of the transmitter waveform and receiver transfer function. This allows reconstruction of the spectral information contained in the TD...

  12. The effect of Taiwan's tax-induced increases in cigarette prices on brand-switching and the consumption of cigarettes.

    Science.gov (United States)

    Tsai, Yi-Wen; Yang, Chung-Lin; Chen, Chin-Shyan; Liu, Tsai-Ching; Chen, Pei-Fen

    2005-06-01

    The effect of raising cigarette taxes to reduce smoking has been the subject of several studies, which often treat the price of cigarettes as an exogenous factor given to smokers who respond to it by adjusting their smoking behavior. However, cigarette prices vary with brand and quality, and smokers can and do switch to lower-priced brands to reduce the impact of the tax on the cost of cigarettes as they try to consume the same number of cigarettes as they had before a tax hike. Using data from a two-year follow-up interview survey conducted before and after a new cigarette tax scheme was imposed in Taiwan in 2002, this study examines three behavioral changes smokers may make to respond to tax-induced cigarette price increase: brand-switching, amount consumed, and amount spent on smoking. These changes were studied in relation to smoker income, before-tax cigarette price, level of addiction, exposure to advertizing, and consumer loyalty. We found that smokers, depending upon exposure to advertizing, level of consumer loyalty and initial price of cigarettes, switched brands to maintain current smoking habits and control costs. We also found that the initial amount smoked and level of addiction, not price, at least not at the current levels in Taiwan, determined whether a smoker reduced the number of cigarettes he consumed. Copyright 2005 John Wiley & Sons, Ltd.

  13. Current-induced magnetization switching in a nano-scale CoFeB-MgO magnetic tunnel junction under in-plane magnetic field

    Directory of Open Access Journals (Sweden)

    N. Ohshima

    2017-05-01

    Full Text Available We study current-induced magnetization switching properties of a magnetic tunnel junction with junction diameter of 19 nm and resistance-area product of 6 Ωμm2 in the nanosecond regime with and without in-plane magnetic field. At zero field, for both parallel (P-to-anti-parallel (AP and AP-to-P switchings, the probability of switching PSW approaches unity with the increase of pulse voltage duration τP. However, under in-plane magnetic field, PSW for P-to-AP switching starts to saturate at a value lower than unity with increasing τP, while AP-to-P switching remains the same as in the absence of in-plane magnetic field. This in-plane field dependence of PSW can be partially explained by the influence of electric-field modulation of magnetic anisotropy.

  14. Current-induced magnetization switching in a nano-scale CoFeB-MgO magnetic tunnel junction under in-plane magnetic field

    Science.gov (United States)

    Ohshima, N.; Sato, H.; Kanai, S.; Llandro, J.; Fukami, S.; Matsukura, F.; Ohno, H.

    2017-05-01

    We study current-induced magnetization switching properties of a magnetic tunnel junction with junction diameter of 19 nm and resistance-area product of 6 Ω μ m2 in the nanosecond regime with and without in-plane magnetic field. At zero field, for both parallel (P)-to-anti-parallel (AP) and AP-to-P switchings, the probability of switching PSW approaches unity with the increase of pulse voltage duration τP. However, under in-plane magnetic field, PSW for P-to-AP switching starts to saturate at a value lower than unity with increasing τP, while AP-to-P switching remains the same as in the absence of in-plane magnetic field. This in-plane field dependence of PSW can be partially explained by the influence of electric-field modulation of magnetic anisotropy.

  15. Human lymphoma mutations reveal CARD11 as the switch between self-antigen–induced B cell death or proliferation and autoantibody production

    Science.gov (United States)

    Jeelall, Yogesh S.; Wang, James Q.; Law, Hsei-Di; Domaschenz, Heather; Fung, Herman K.H.; Kallies, Axel; Nutt, Stephen L.

    2012-01-01

    Self-tolerance and immunity are actively acquired in parallel through a poorly understood ability of antigen receptors to switch between signaling death or proliferation of antigen-binding lymphocytes in different contexts. It is not known whether this tolerance-immunity switch requires global rewiring of the signaling apparatus or if it can arise from a single molecular change. By introducing individual CARD11 mutations found in human lymphomas into antigen-activated mature B lymphocytes in mice, we find here that lymphoma-derived CARD11 mutations switch the effect of self-antigen from inducing B cell death into T cell–independent proliferation, Blimp1-mediated plasmablast differentiation, and autoantibody secretion. Our findings demonstrate that regulation of CARD11 signaling is a critical switch governing the decision between death and proliferation in antigen-stimulated mature B cells and that mutations in this switch represent a powerful initiator for aberrant B cell responses in vivo. PMID:23027925

  16. Characterization and modeling of SET/RESET cycling induced read-disturb failure time degradation in a resistive switching memory

    Science.gov (United States)

    Su, Po-Cheng; Hsu, Chun-Chi; Du, Sin-I.; Wang, Tahui

    2017-12-01

    Read operation induced disturbance in SET-state in a tungsten oxide resistive switching memory is investigated. We observe that the reduction of oxygen vacancy density during read-disturb follows power-law dependence on cumulative read-disturb time. Our study shows that the SET-state read-disturb immunity progressively degrades by orders of magnitude as SET/RESET cycle number increases. To explore the cause of the read-disturb degradation, we perform a constant voltage stress to emulate high-field stress effects in SET/RESET cycling. We find that the read-disturb failure time degradation is attributed to high-field stress-generated oxide traps. Since the stress-generated traps may substitute for some of oxygen vacancies in forming conductive percolation paths in a switching dielectric, a stressed cell has a reduced oxygen vacancy density in SET-state, which in turn results in a shorter read-disturb failure time. We develop an analytical read-disturb degradation model including both cycling induced oxide trap creation and read-disturb induced oxygen vacancy reduction. Our model can well reproduce the measured read-disturb failure time degradation in a cycled cell without using fitting parameters.

  17. Parahydrogen-induced polarization of carboxylic acids: a pilot study of valproic acid and related structures.

    Science.gov (United States)

    Lego, Denise; Plaumann, Markus; Trantzschel, Thomas; Bargon, Joachim; Scheich, Henning; Buntkowsky, Gerd; Gutmann, Torsten; Sauer, Grit; Bernarding, Johannes; Bommerich, Ute

    2014-07-01

    Parahydrogen-induced polarization (PHIP) is a promising new tool for medical applications of MR, including MRI. The PHIP technique can be used to transfer high non-Boltzmann polarization, derived from parahydrogen, to isotopes with a low natural abundance or low gyromagnetic ratio (e.g. (13)C), thus improving the signal-to-noise ratio by several orders of magnitude. A few molecules acting as metabolic sensors have already been hyperpolarized with PHIP, but the direct hyperpolarization of drugs used to treat neurological disorders has not been accomplished until now. Here, we report on the first successful hyperpolarization of valproate (valproic acid, VPA), an important and commonly used antiepileptic drug. Hyperpolarization was confirmed by detecting the corresponding signal patterns in the (1)H NMR spectrum. To identify the optimal experimental conditions for the conversion of an appropriate VPA precursor, structurally related molecules with different side chains were analyzed in different solvents using various catalytic systems. The presented results include hyperpolarized (13)C NMR spectra and proton images of related systems, confirming their applicability for MR studies. PHIP-based polarization enhancement may provide a new MR technique to monitor the spatial distribution of valproate in brain tissue and to analyze metabolic pathways after valproate administration. Copyright © 2014 John Wiley & Sons, Ltd.

  18. An Internal Polarity Landmark Is Important for Externally Induced Hyphal Behaviors in Candida albicans▿

    Science.gov (United States)

    Brand, Alexandra; Vacharaksa, Anjalee; Bendel, Catherine; Norton, Jennifer; Haynes, Paula; Henry-Stanley, Michelle; Wells, Carol; Ross, Karen; Gow, Neil A. R.; Gale, Cheryl A.

    2008-01-01

    Directional growth is a function of polarized cells such as neurites, pollen tubes, and fungal hyphae. Correct orientation of the extending cell tip depends on signaling pathways and effectors that mediate asymmetric responses to specific environmental cues. In the hyphal form of the eukaryotic fungal pathogen Candida albicans, these responses include thigmotropism and galvanotropism (hyphal turning in response to changes in substrate topography and imposed electrical fields, respectively) and penetration into semisolid substrates. During vegetative growth in C. albicans, as in the model yeast Saccharomyces cerevisiae, the Ras-like GTPase Rsr1 mediates internal cellular cues to position new buds in a prespecified pattern on the mother cell cortex. Here, we demonstrate that Rsr1 is also important for hyphal tip orientation in response to the external environmental cues that induce thigmotropic and galvanotropic growth. In addition, Rsr1 is involved in hyphal interactions with epithelial cells in vitro and its deletion diminishes the hyphal invasion of kidney tissue during systemic infection. Thus, Rsr1, an internal polarity landmark in yeast, is also involved in polarized growth responses to asymmetric environmental signals, a paradigm that is different from that described for the homologous protein in S. cerevisiae. Rsr1 may thereby contribute to the pathogenesis of C. albicans infections by influencing hyphal tip responses triggered by interaction with host tissues. PMID:18281602

  19. An internal polarity landmark is important for externally induced hyphal behaviors in Candida albicans.

    Science.gov (United States)

    Brand, Alexandra; Vacharaksa, Anjalee; Bendel, Catherine; Norton, Jennifer; Haynes, Paula; Henry-Stanley, Michelle; Wells, Carol; Ross, Karen; Gow, Neil A R; Gale, Cheryl A

    2008-04-01

    Directional growth is a function of polarized cells such as neurites, pollen tubes, and fungal hyphae. Correct orientation of the extending cell tip depends on signaling pathways and effectors that mediate asymmetric responses to specific environmental cues. In the hyphal form of the eukaryotic fungal pathogen Candida albicans, these responses include thigmotropism and galvanotropism (hyphal turning in response to changes in substrate topography and imposed electrical fields, respectively) and penetration into semisolid substrates. During vegetative growth in C. albicans, as in the model yeast Saccharomyces cerevisiae, the Ras-like GTPase Rsr1 mediates internal cellular cues to position new buds in a prespecified pattern on the mother cell cortex. Here, we demonstrate that Rsr1 is also important for hyphal tip orientation in response to the external environmental cues that induce thigmotropic and galvanotropic growth. In addition, Rsr1 is involved in hyphal interactions with epithelial cells in vitro and its deletion diminishes the hyphal invasion of kidney tissue during systemic infection. Thus, Rsr1, an internal polarity landmark in yeast, is also involved in polarized growth responses to asymmetric environmental signals, a paradigm that is different from that described for the homologous protein in S. cerevisiae. Rsr1 may thereby contribute to the pathogenesis of C. albicans infections by influencing hyphal tip responses triggered by interaction with host tissues.

  20. Soluble immune complexes shift the TLR-induced cytokine production of distinct polarized human macrophage subsets towards IL-10.

    Directory of Open Access Journals (Sweden)

    Carmen A Ambarus

    Full Text Available BACKGROUND: Costimulation of murine macrophages with immune complexes (ICs and TLR ligands leads to alternative activation. Studies on human myeloid cells, however, indicate that ICs induce an increased pro-inflammatory cytokine production. This study aimed to clarify the effect of ICs on the pro- versus anti-inflammatory profile of human polarized macrophages. MATERIALS AND METHODS: Monocytes isolated from peripheral blood of healthy donors were polarized for four days with IFN-γ, IL-4, IL-10, GM-CSF, M-CSF, or LPS, in the presence or absence of heat aggregated gamma-globulins (HAGGs. Phenotypic polarization markers were measured by flow cytometry. Polarized macrophages were stimulated with HAGGs or immobilized IgG alone or in combination with TLR ligands. TNF, IL-6, IL-10, IL-12, and IL-23 were measured by Luminex and/or RT-qPCR. RESULTS: HAGGs did not modulate the phenotypic polarization and the cytokine production of macrophages. However, HAGGs significantly altered the TLR-induced cytokine production of all polarized macrophage subsets, with the exception of MΦ(IL-4. In particular, HAGGs consistently enhanced the TLR-induced IL-10 production in both classically and alternatively polarized macrophages (M1 and M2. The effect of HAGGs on TNF and IL-6 production was less pronounced and depended on the polarization status, while IL-23p19 and IL-12p35 expression was not affected. In contrast with HAGGs, immobilized IgG induced a strong upregulation of not only IL-10, but also TNF and IL-6. CONCLUSION: HAGGs alone do not alter the phenotype and cytokine production of in vitro polarized human macrophages. In combination with TLR-ligands, however, HAGGs but not immobilized IgG shift the cytokine production of distinct macrophage subsets toward IL-10.

  1. Investigation of Current Induced Spin Polarization in III-V Semiconductor Epilayers

    Science.gov (United States)

    Luengo-Kovac, Marta

    In the development of a semiconductor spintronics device, a thorough understanding of spin dynamics in semiconductors is necessary. In particular, electrical control of electron spins is advantageous for its compatibility with present day electronics. In this thesis, we will discuss the electrical modification of the electron g-factor, which characterizes the strength of the interaction between a spin and a magnetic field, as well as investigate electrically generated spin polarizations as a function of various material parameters. We report on the modification of the electron g-factor by an in-plane electric field in an InGaAs epilayer. We performed external magnetic field scans of the Kerr rotation of the InGaAs film in order to measure the g-factor independently of the spin-orbit fields. The g-factor increases from -0.4473(0.0001) at 0 V/cm to -0.4419( 0.0001) at 50 V/cm applied along the [110] crystal axis. A comparison of temperature and voltage dependent photoluminescence measurements indicate that minimal channel heating occurs at these voltages. Possible explanations for this g-factor modification are discussed, including an increase in the electron temperature that is independent of the lattice temperature and the modification of the donor-bound electron wave function by the electric field. The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InGaAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the spin polarization mechanism is extrinsic. Temperature-dependent measurements of the spin dephasing rates and mobilities were used to characterize the relative strengths of the intrinsic D

  2. 1H chemically induced dynamic nuclear polarization in the photodecomposition of uranyl carboxylates

    International Nuclear Information System (INIS)

    Rykov, S.V.; Khudyakov, I.V.; Skakovsky, E.D.; Burrows, H.D.; Formosinho, S.J.; Miguel, M. da G.M.

    1991-01-01

    Chemically induced dynamic nuclear polarization ( 1 H CIDNP) has been observed during photolysis of uranyl salts of pivalic, propionic, and acetic acids in D 2 O solution, [ 2 H 6 ]acetone, [ 2 H 4 ]methanol, or in some other solvent. The multiplet polarization of isobutene and isobutane protons has been found under photolysis of deoxygenated pivalate solution. The polarized compounds are formed in the triplet pairs of tert-butyl free radicals. 1 H Emission of the tert-butylperoxyl group and emission of 1 H from isobutene have been recorded under photolysis of air-saturated pivalate solutions. The CIDNP of butane protons stays as a multiplet. Such changes in the presence of air/oxygen have arisen apparently because of the formation of tert-butylperoxyl free radical and its reaction with tert-butyl radical products, i.e. hydroperoxide (peroxide) and isobutene. Isobutene probably forms a complex with molecular oxygen which has a very short proton relaxation time. During the photolysis of uranyl pivalate in the presence of p-benzoquinone (5 x 10 -2 -0.1 mol dm -3 ) we have not observed any CIDNP, whereas under p-benzoquinone concentrations of 10 -3 -10 -2 mol dm -3 the CIDNP from both hydroquinone and p-benzoquinone has been followed. Photolysis of uranyl propionate has led to CIDNP from butane protons. An emission from methyl group protons of a compound with an ethylperoxyl fragment in the presence of air/oxygen has been observed. The same polarization picture has arisen under interaction of photoexcited uranyl with propionic acid. During the photolysis of uranyl acetate at relatively low concentrations (10 -2 mol dm -3 ) a CIDNP very similar to that registered for uranyl propionate was recorded. The ethyl fragment is probably obtained in reactions for two methyl radicals formed from acetate with the parent uranyl acetate, namely hydrogen-atom abstraction and addition reactions. (author)

  3. 3-D Forward modeling of Induced Polarization Effects of Transient Electromagnetic Method

    Science.gov (United States)

    Wu, Y.; Ji, Y.; Guan, S.; Li, D.; Wang, A.

    2017-12-01

    In transient electromagnetic (TEM) detection, Induced polarization (IP) effects are so important that they cannot be ignored. The authors simulate the three-dimensional (3-D) induced polarization effects in time-domain directly by applying the finite-difference time-domain method (FDTD) based on Cole-Cole model. Due to the frequency dispersion characteristics of the electrical conductivity, the computations of convolution in the generalized Ohm's law of fractional order system makes the forward modeling particularly complicated. Firstly, we propose a method to approximate the fractional order function of Cole-Cole model using a lower order rational transfer function based on error minimum theory in the frequency domain. In this section, two auxiliary variables are introduced to transform nonlinear least square fitting problem of the fractional order system into a linear programming problem, thus avoiding having to solve a system of equations and nonlinear problems. Secondly, the time-domain expression of Cole-Cole model is obtained by using Inverse Laplace transform. Then, for the calculation of Ohm's law, we propose an e-index auxiliary equation of conductivity to transform the convolution to non-convolution integral; in this section, the trapezoid rule is applied to compute the integral. We then substitute the recursion equation into Maxwell's equations to derive the iterative equations of electromagnetic field using the FDTD method. Finally, we finish the stimulation of 3-D model and evaluate polarization parameters. The results are compared with those obtained from the digital filtering solution of the analytical equation in the homogeneous half space, as well as with the 3-D model results from the auxiliary ordinary differential equation method (ADE). Good agreements are obtained across the three methods. In terms of the 3-D model, the proposed method has higher efficiency and lower memory requirements as execution times and memory usage were reduced by 20

  4. Critical role of W deposition condition on spin-orbit torque induced magnetization switching in nanoscale W/CoFeB/MgO

    Science.gov (United States)

    Zhang, C.; Fukami, S.; Watanabe, K.; Ohkawara, A.; DuttaGupta, S.; Sato, H.; Matsukura, F.; Ohno, H.

    2016-11-01

    We study the spin-orbit torque induced magnetization switching in W/CoFeB/MgO heterostructures with W deposited under different sputtering conditions. We show that the crystal structure and resistivity of W depend on the employed sputtering conditions. Switching current of nanoscale devices is smaller while effective anisotropy field is larger for the devices with more resistive W channel deposited at lower sputtering power and higher Ar gas pressure. The effective spin Hall angle evaluated from the switching probability varies by a factor of 2-3 depending on the W resistivity controlled by the sputtering conditions.

  5. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Susan; Personna, Y.R.; Ntarlagiannis, D.; Slater, L.; Yee, N.; O' Brien, M.; Hubbard, S.

    2008-02-15

    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface.We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfo vibriovulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS) sensitive silver-silver chloride (Ag-AgCl) electrodes (630 mV) were diagnostic of induced transitions between an aerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed 10m rad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.

  6. Spectral Induced Polarization Response of Biofilm Formation in Hanford Vadose Zone Sediment

    Science.gov (United States)

    Garcia, A.; Katsenovich, Y.; Lee, B.; Whitman, D.

    2017-12-01

    As a result of the U.S. Nuclear weapons program during the second world war and the cold war, there now exists a significant amount of uranium contamination at the U.S. Department of Energy Hanford site located in Washington state. In-situ immobilization of mobile uranium via injections of a soluble sodium tripolyphosphate amendment may prove effective in the formation of insoluble uranyl phosphate mineral, autunite. However, the injected polyphosphate undergoes hydrolysis in aqueous solutions to form orthophosphate, which serves as a readily available nutrient for the various microorganisms in the sediment. Sediment-filled column experiments conducted under saturated oxygen restricted conditions using geophysical Spectral Induced Polarization technique have shown the impact of microbes on the dissolution of autunite, a calcium uranyl phosphate mineral. Spectral Induced Polarization may be an effective way to track changes indicative of bacterial activities on the surrounding environment. This method can be a cost-effective alternative to the drilling of boreholes at a field scale.

  7. The use of the multiple-gradient array for geoelectrical resistivity and induced polarization imaging

    Science.gov (United States)

    Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.

    2014-12-01

    The use of most conventional electrode configurations in electrical resistivity survey is often time consuming and labour intensive, especially when using manual data acquisition systems. Often, data acquisition teams tend to reduce data density so as to speed up field operation thereby reducing the survey cost; but this could significantly degrade the quality and resolution of the inverse models. In the present work, the potential of using the multiple-gradient array, a non-conventional electrode configuration, for practical cost effective and rapid subsurface resistivity and induced polarization mapping was evaluated. The array was used to conduct 2D resistivity and time-domain induced polarization imaging along two traverses in a study site at Ota, southwestern Nigeria. The subsurface was characterised and the main aquifer delineated using the inverse resistivity and chargeability images obtained. The performance of the multiple-gradient array was evaluated by correlating the 2D resistivity and chargeability images with those of the conventional Wenner array as well as the result of some soundings conducted along the same traverses using Schlumberger array. The multiple-gradient array has been found to have the advantage of measurement logistics and improved image resolution over the Wenner array.

  8. Voltage induced magnetostrictive switching of nanomagnets: Strain assisted strain transfer torque random access memory

    Science.gov (United States)

    Khan, Asif; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Ghani, Tahir; Young, Ian A.

    2014-06-01

    A spintronic device, called the "strain assisted spin transfer torque (STT) random access memory (RAM)," is proposed by combining the magnetostriction effect and the spin transfer torque effect which can result in a dramatic improvement in the energy dissipation relative to a conventional STT-RAM. Magnetization switching in the device which is a piezoelectric-ferromagnetic heterostructure via the combined magnetostriction and STT effect is simulated by solving the Landau-Lifshitz-Gilbert equation incorporating the influence of thermal noise. The simulations show that, in such a device, each of these two mechanisms (magnetostriction and spin transfer torque) provides in a 90° rotation of the magnetization leading a deterministic 180° switching with a critical current significantly smaller than that required for spin torque alone. Such a scheme is an attractive option for writing magnetic RAM cells.

  9. Resistive switching and voltage induced modulation of tunneling magnetoresistance in nanosized perpendicular organic spin valves

    Directory of Open Access Journals (Sweden)

    Robert Göckeritz

    2016-04-01

    Full Text Available Nanoscale multifunctional perpendicular organic spin valves have been fabricated. The devices based on an La0.7Sr0.3MnO3/Alq3/Co trilayer show resistive switching of up to 4-5 orders of magnitude and magnetoresistance as high as -70% the latter even changing sign when voltage pulses are applied. This combination of phenomena is typically observed in multiferroic tunnel junctions where it is attributed to magnetoelectric coupling between a ferromagnet and a ferroelectric material. Modeling indicates that here the switching originates from a modification of the La0.7Sr0.3MnO3 surface. This modification influences the tunneling of charge carriers and thus both the electrical resistance and the tunneling magnetoresistance which occurs at pinholes in the organic layer.

  10. Resistive switching and voltage induced modulation of tunneling magnetoresistance in nanosized perpendicular organic spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Göckeritz, Robert; Homonnay, Nico; Müller, Alexander [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale) (Germany); Fuhrmann, Bodo [Interdisziplinäres Zentrum für Materialwissenschaften, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale) (Germany); Schmidt, Georg, E-mail: georg.schmidt@physik.uni-halle.de [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale) (Germany); Interdisziplinäres Zentrum für Materialwissenschaften, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale) (Germany)

    2016-04-15

    Nanoscale multifunctional perpendicular organic spin valves have been fabricated. The devices based on an La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/Alq3/Co trilayer show resistive switching of up to 4-5 orders of magnitude and magnetoresistance as high as -70% the latter even changing sign when voltage pulses are applied. This combination of phenomena is typically observed in multiferroic tunnel junctions where it is attributed to magnetoelectric coupling between a ferromagnet and a ferroelectric material. Modeling indicates that here the switching originates from a modification of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} surface. This modification influences the tunneling of charge carriers and thus both the electrical resistance and the tunneling magnetoresistance which occurs at pinholes in the organic layer.

  11. Voltage induced magnetostrictive switching of nanomagnets: Strain assisted strain transfer torque random access memory

    International Nuclear Information System (INIS)

    Khan, Asif; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Ghani, Tahir; Young, Ian A.

    2014-01-01

    A spintronic device, called the “strain assisted spin transfer torque (STT) random access memory (RAM),” is proposed by combining the magnetostriction effect and the spin transfer torque effect which can result in a dramatic improvement in the energy dissipation relative to a conventional STT-RAM. Magnetization switching in the device which is a piezoelectric-ferromagnetic heterostructure via the combined magnetostriction and STT effect is simulated by solving the Landau-Lifshitz-Gilbert equation incorporating the influence of thermal noise. The simulations show that, in such a device, each of these two mechanisms (magnetostriction and spin transfer torque) provides in a 90° rotation of the magnetization leading a deterministic 180° switching with a critical current significantly smaller than that required for spin torque alone. Such a scheme is an attractive option for writing magnetic RAM cells.

  12. Redox-induced reversible luminescence switching of cerium-doped upconversion nanoparticles

    International Nuclear Information System (INIS)

    Huang, Yanan; Xiao, Qingbo; Wang, Jian; Xi, Yonglan; Li, Fujin; Feng, Yamin; Shi, Liyi; Lin, Hongzhen

    2016-01-01

    Smart upconversion nanophosphors (UCNPs) that can be reversibly switched between two or more luminescent states by certain external stimuli have attracted considerable attention due to their great potential in biological applications. Here we report for the first time a type of redox-switchable UCNPs by codoping NaGdF 4 :Yb/Er nanorods with the redox-active Ce 3+ /Ce 4+ ion pairs. A reversible switching of their UC luminescence intensity was observed upon the variation of the surrounding redox environments. We show solid proof that the luminescence switching is caused by the tailoring of the NaGdF 4 host crystal structure in response to changing redox state of the codoped cerium ions. A proof-of-concept example is further demonstrated by using these UCNPs for probing the dynamical variation of redox environments in biological tissues. - Highlights: • Synthesis of upconversion nanoparticles doped with Ce 3+ /Ce 4+ ions. • The precise and reversible modification of crystal structure by redox reactions. • Tuning the upconversion luminescence by tailoring the crystal structure.

  13. Light-Responsive Ion-Redistribution-Induced Resistive Switching in Hybrid Perovskite Schottky Junctions

    KAUST Repository

    Guan, Xinwei

    2017-11-23

    Hybrid Perovskites have emerged as a class of highly versatile functional materials with applications in solar cells, photodetectors, transistors, and lasers. Recently, there have also been reports on perovskite-based resistive switching (RS) memories, but there remain open questions regarding device stability and switching mechanism. Here, an RS memory based on a high-quality capacitor structure made of an MAPbBr3 (CH3NH3PbBr3) perovskite layer sandwiched between Au and indium tin oxide (ITO) electrodes is reported. Such perovskite devices exhibit reliable RS with an ON/OFF ratio greater than 103, endurance over 103 cycles, and a retention time of 104 s. The analysis suggests that the RS operation hinges on the migration of charged ions, most likely MA vacancies, which reversibly modifies the perovskite bulk transport and the Schottky barrier at the MAPbBr3/ITO interface. Such perovskite memory devices can also be fabricated on flexible polyethylene terephthalate substrates with high bendability and reliability. Furthermore, it is found that reference devices made of another hybrid perovskite MAPbI3 consistently exhibit filament-type switching behavior. This work elucidates the important role of processing-dependent defects in the charge transport of hybrid perovskites and provides insights on the ion-redistribution-based RS in perovskite memory devices.

  14. Electromechanical magnetization switching

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Eugene M. [Department of Physics and Astronomy, Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Jaafar, Reem [Department of Mathematics, Engineering and Computer Science, LaGuardia Community College, The City University of New York, 31-10 Thomson Avenue, Long Island City, New York 11101 (United States)

    2015-03-14

    We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained.

  15. Electromechanical magnetization switching

    International Nuclear Information System (INIS)

    Chudnovsky, Eugene M.; Jaafar, Reem

    2015-01-01

    We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained

  16. Study case - Induced Polarization response from a BTEX contaminated site in Brazil

    Science.gov (United States)

    Ustra, A.; Elis, V.; Minozzo, M.

    2011-12-01

    A hydrocarbon contaminated site in Brazil was investigated using DC-resistivity and Induced Polarization (IP) methods. The study area is a chemical industry facility that manufactures paint for automobiles. The industrial process involves the use of many hydrocarbon derivative products, including BTEX (benzene, toluene, ethyl benzene and xylene) and organic chlorides. The area was contaminated by some (not documented) accidental spills of BTEX throughout many years. Monitoring wells revealed concentrations from a few ppm to hundreds ppm of BTEX around the area, as well as other compounds. Two soil samples were collected from an area where some spills where known to have happened. Soil analyses of these samples found the presence of microbes, and therefore biodegradation is believed to be occurring at the site. The objective of this study is to relate the IP response distribution to the presence of contamination and/or microbial activity. The geophysical survey consisted in a rectangular mesh composed of 15 parallel lines with 60 meters of extension, using dipole-dipole array. Lines were spaced by 3 meters. Metallic electrodes were used for current injection, and non-polarizing electrodes (Cu/CuSO4) for potential measurement. Current was injected in cycles of 2 seconds. IP measurements were recorded after 160 milliseconds delay of current shut off, and integration time windows were 120, 220, 420, and 820 milliseconds. All data were concatenated into a single data set and submitted to 3D inversion routine. A conductive zone (resistivity less than 100 ohm.m and chargeability less than 2mV/V) was observed where microbes were found. This feature was interpreted as possibly due to natural biodegradation process, that increases total dissolved salts as a result of mineral weathering by organic acids produced in the degradation process. Normalized chargeability (chargeability divided by resistivity) showed an enhanced polarization zone where microbes were detected. This

  17. Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression.

    Science.gov (United States)

    Zhang, Tiantian; Bu, Pengli; Zeng, Joey; Vancura, Ales

    2017-10-13

    Regulation of mitochondrial biogenesis and respiration is a complex process that involves several signaling pathways and transcription factors as well as communication between the nuclear and mitochondrial genomes. Under aerobic conditions, the budding yeast Saccharomyces cerevisiae metabolizes glucose predominantly by glycolysis and fermentation. We have recently shown that altered chromatin structure in yeast induces respiration by a mechanism that requires transport and metabolism of pyruvate in mitochondria. However, how pyruvate controls the transcriptional responses underlying the metabolic switch from fermentation to respiration is unknown. Here, we report that this pyruvate effect involves heme. We found that heme induces transcription of HAP4 , the transcriptional activation subunit of the Hap2/3/4/5p complex, required for growth on nonfermentable carbon sources, in a Hap1p- and Hap2/3/4/5p-dependent manner. Increasing cellular heme levels by inactivating ROX1 , which encodes a repressor of many hypoxic genes, or by overexpressing HEM3 or HEM12 induced respiration and elevated ATP levels. Increased heme synthesis, even under conditions of glucose repression, activated Hap1p and the Hap2/3/4/5p complex and induced transcription of HAP4 and genes required for the tricarboxylic acid (TCA) cycle, electron transport chain, and oxidative phosphorylation, leading to a switch from fermentation to respiration. Conversely, inhibiting metabolic flux into the TCA cycle reduced cellular heme levels and HAP4 transcription. Together, our results indicate that the glucose-mediated repression of respiration in budding yeast is at least partly due to the low cellular heme level. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Fast magnetization switching in GaMnAs induced by electrical fields

    Czech Academy of Sciences Publication Activity Database

    Balestriere, P.; Devolder, T.; Kim, J.-V.; Lecoeur, P.; Wunderlich, Joerg; Novák, Vít; Jungwirth, Tomáš; Chappert, C.

    2011-01-01

    Roč. 99, č. 24 (2011), 242505/1-242505/3 ISSN 0003-6951 R&D Projects: GA MŠk LC510; GA MŠk(CZ) 7E08087 EU Projects: European Commission(XE) 214499 - NAMASTE; European Commission(XE) 268066 - 0MSPIN Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : magnet ization switching * ferromagnetic semiconductors Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 3.844, year: 2011

  19. Induced Polarization Signature of Biofilms in Porous Media: From Laboratory Experiments to Theoretical Developments and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Atekwana, Estella [Oklahoma State Univ., Stillwater, OK (United States); Patrauchan, Marianna [Oklahoma State Univ., Stillwater, OK (United States); Revil, Andre [Colorado School of Mines, Golden, CO (United States)

    2016-10-04

    Bioremediation strategies for mitigating the transport of heavy metals and radionuclides in subsurface sediments have largely targeted the use of dissimilatory metal and sulfate-reducing bacteria. Growth and metabolic activities from these organisms can significantly influence biogeochemical processes, including mineral dissolution/precipitation, fluctuating pH and redox potential (Eh) values, development of biofilms, and decreasing hydraulic conductivity. The Spectral Induced Polarization (SIP) technique has emerged as the technique most sensitive to the presence of microbial cells and biofilms in porous media; yet it is often difficult to unambiguously distinguish the impact of multiple and often competing processes that occur during in-situ biostimulation activities on the SIP signatures. The main goal of our project is to quantitatively characterize major components within bacterial biofilms (cells, DNA, metals, metabolites etc.) contributing to detectable SIP signatures. We specifically: (i) evaluated the contribution of biofilm components to SIP signatures, (ii) determined the contribution of biogenic minerals commonly found in biofilms to SIP signatures, (iii) determined if the SIP signatures can be used to quantify the rates of biofilm formation, (iv) developed models and a fundamental understanding of potential underlying polarization mechanisms at low frequencies (<40 kHz) resulting from the presence of microbial cells and biofilms

  20. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes.

    Science.gov (United States)

    Lundgaard, Iben; Luzhynskaya, Aryna; Stockley, John H; Wang, Zhen; Evans, Kimberley A; Swire, Matthew; Volbracht, Katrin; Gautier, Hélène O B; Franklin, Robin J M; Attwell, David; Káradóttir, Ragnhildur T

    2013-12-01

    Myelination is essential for rapid impulse conduction in the CNS, but what determines whether an individual axon becomes myelinated remains unknown. Here we show, using a myelinating coculture system, that there are two distinct modes of myelination, one that is independent of neuronal activity and glutamate release and another that depends on neuronal action potentials releasing glutamate to activate NMDA receptors on oligodendrocyte lineage cells. Neuregulin switches oligodendrocytes from the activity-independent to the activity-dependent mode of myelination by increasing NMDA receptor currents in oligodendrocyte lineage cells 6-fold. With neuregulin present myelination is accelerated and increased, and NMDA receptor block reduces myelination to far below its level without neuregulin. Thus, a neuregulin-controlled switch enhances the myelination of active axons. In vivo, we demonstrate that remyelination after white matter damage is NMDA receptor-dependent. These data resolve controversies over the signalling regulating myelination and suggest novel roles for neuregulin in schizophrenia and in remyelination after white matter damage.

  1. Thermodynamics and Kinetics of Guest-Induced Switching between “Basket Handle” Porphyrin Isomers

    Directory of Open Access Journals (Sweden)

    Alexander B. C. Deutman

    2014-04-01

    Full Text Available The synthesis and switching properties of two “basket handle” porphyrin isomers is described. The cis-oriented meso-phenyl groups of these porphyrins are linked at their ortho-positons via benzocrown-ether-based spacers, which as a result of slow atropisomerization are located either on the same side of the porphyrin plane (cis, or on opposite sides (trans. In solution, the cis-linked isomer slowly isomerizes in the direction of the thermodynamically more stable trans-isomer. In the presence of viologen (N,N'-dialkyl-4,4'-bipyridinium derivatives, which have different affinities for the two isomers, the isomerization equilibrium could be significantly influenced. In addition, the presence of these guests was found to enhance the rate of the switching process, which was suggested to be caused by favorable interactions between the positively charged guest and the crown ethers of the receptor, stabilizing the transition state energies of the isomerization reaction between the two isomers.

  2. Stress-Induced Resistive Switching in Pt/HfO2/Ti Devices

    Science.gov (United States)

    Zeevi, Gilad; Katsman, Alexander; Yaish, Yuval E.

    2018-02-01

    In the present work, we study the initial SET mechanism of resistive switching (RS) in Pt/HfO2/Ti devices under a static electrical stress and the RS mechanism under a bias sweeping mode with rates of 100 mV/s-300 mV/s. We characterize the thin HfO2 dielectric layer by x-ray photoelectron spectroscopy and x-ray diffraction. These findings show that the layer structure is stoichiometric and nanocrystalline with a crystal diameter of ˜ 14 Å. We measure the temporal dependence of the conductive filament growth at different temperatures and for various biases. Furthermore, these devices present stable bipolar resistive switching with a high-to-low resistive state (HRS/LRS) ratio of more than three orders of magnitude. Activation energy E RS ≈ 0.56 eV and drift current parameter V 0 ≈ 0.07 V were determined from the temporal dependence of the initial `SET' process, first HRS to LRS transition [for static electrical stress of V DS = (4.7-5.0 V)]. We analyze the results according to our model suggesting generation of double-charge oxygen vacancies at the anode and their diffusion across the dielectric layer. The double-charge vacancies transform to a single charge and then to neutral vacancies by capturing hot electrons, and form a conductive filament as soon as a critical neutral-vacancy cluster is formed across the dielectric layer.

  3. Switches induced by quorum sensing in a model of enzyme-loaded microparticles.

    Science.gov (United States)

    Bánsági, Tamás; Taylor, Annette F

    2017-03-01

    Quorum sensing refers to the ability of bacteria and other single-celled organisms to respond to changes in cell density or number with population-wide changes in behaviour. Here, simulations were performed to investigate quorum sensing in groups of diffusively coupled enzyme microparticles using a well-characterized autocatalytic reaction which raises the pH of the medium: hydrolysis of urea by urease. The enzyme urease is found in both plants and microorganisms, and has been widely exploited in engineering processes. We demonstrate how increases in group size can be used to achieve a sigmoidal switch in pH at high enzyme loading, oscillations in pH at intermediate enzyme loading and a bistable, hysteretic switch at low enzyme loading. Thus, quorum sensing can be exploited to obtain different types of response in the same system, depending on the enzyme concentration. The implications for microorganisms in colonies are discussed, and the results could help in the design of synthetic quorum sensing for biotechnology applications such as drug delivery. © 2018 The Author(s).

  4. Emergent bimodality and switch induced by time delays and noises in a synthetic gene circuit

    Science.gov (United States)

    Zhang, Chun; Du, Liping; Xie, Qingshuang; Wang, Tonghuan; Zeng, Chunhua; Nie, Linru; Duan, Weilong; Jia, Zhenglin; Wang, Canjun

    2017-10-01

    Based on the kinetic model for obtaining emergent bistability proposed by Tan et al. (2009), the effects of the fluctuations of protein synthesis rate and maximum dilution rate, the cross-correlation between two noises, and the time delay and the strength of the feedback loop in the synthetic gene circuit have been investigated through theoretical analysis and numerical simulation. Our results show that: (i) the fluctuations of protein synthesis rate and maximum dilution rate enhance the emergent bimodality of the probability distribution phenomenon, while the cross-correlation between two noises(λ), the time delay(τ) and the strength of the feedback loop(K) cause it to disappear; and (ii) the mean first passage time(MFPT) as functions of the noise strengths exhibits a maximum, this maximum is called noise-delayed switching (NDS) of the high concentration state. The NDS phenomenon shows that the noise can modify the stability of a metastable system in a counterintuitive way, the system remains in the metastable state for a longer time compared to the deterministic case. And the τ and the K enhances the stability of the ON state. The physical mechanisms for the switch between the ON and OFF states can be explained from the point of view of the effective potential.

  5. Giant thermal spin-torque-assisted magnetic tunnel junction switching.

    Science.gov (United States)

    Pushp, Aakash; Phung, Timothy; Rettner, Charles; Hughes, Brian P; Yang, See-Hun; Parkin, Stuart S P

    2015-05-26

    Spin-polarized charge currents induce magnetic tunnel junction (MTJ) switching by virtue of spin-transfer torque (STT). Recently, by taking advantage of the spin-dependent thermoelectric properties of magnetic materials, novel means of generating spin currents from temperature gradients, and their associated thermal-spin torques (TSTs), have been proposed, but so far these TSTs have not been large enough to influence MTJ switching. Here we demonstrate significant TSTs in MTJs by generating large temperature gradients across ultrathin MgO tunnel barriers that considerably affect the switching fields of the MTJ. We attribute the origin of the TST to an asymmetry of the tunneling conductance across the zero-bias voltage of the MTJ. Remarkably, we estimate through magneto-Seebeck voltage measurements that the charge currents that would be generated due to the temperature gradient would give rise to STT that is a thousand times too small to account for the changes in switching fields that we observe.

  6. Modeling induced polarization effects in helicopter time domain electromagnetic data: Synthetic case studies

    DEFF Research Database (Denmark)

    Viezzoli, Andrea; Kaminskiy, Vladislav; Fiandaca, Gianluca

    2017-01-01

    We have developed a synthetic multiparametric modeling and inversion exercise undertaken to study the robustness of inverting airborne time-domain electromagnetic (TDEM) data to extract Cole-Cole parameters. The following issues were addressed: nonuniqueness, ill posedness, dependency on manual...... constrained multiparametric inversion was evaluated, including recovery of chargeability distributions from shallow and deep targets based on analysis of induced polarization (IP) effects, simulated in airborne TDEM data. Different scenarios were studied, including chargeable targets associated...... by a shallower chargeable target, became possible only when full Cole-Cole modeling was used in the inversion. Lateral constraints improved the recoverability of model parameters. Finally, modeling IP effects increased the accuracy of recovered electrical resistivity models....

  7. Mapping of landfills using time-domain spectral induced polarization data

    DEFF Research Database (Denmark)

    Gazoty, Aurélie; Fiandaca, Gianluca; Pedersen, Jesper Bjergsted

    2012-01-01

    information from time-domain IP data. Thirteen IP/DC profiles were collected in the area, supplemented by el-log drilling for accurate correlation between the geophysics and the lithology. The data were inverted using a laterally constrained 1D inversion considering the full decay curves to retrieve the four......This study uses time-domain induced polarization data for the delineation and characterization of the former landfill site at Eskelund, Denmark. With optimized acquisition parameters combined with a new inversion algorithm, we use the full content of the decay curve and retrieve spectral...... Cole-Cole parameters. For all profiles, the results reveal a highly chargeable unit that shows a very good agreement to the findings from 15 boreholes covering the area, where the extent of the waste deposits was measured. The thickness and depth of surface measurements were furthermore validated by el-log...

  8. Parity nonconserving asymmetries in the resonance scattering and nuclear reactions induced by polarized protons

    International Nuclear Information System (INIS)

    Dumitrescu, O.; Horoi, M.; Carstoiu, F.; Stratan, G.

    1989-01-01

    The parity-nonconserving nucleon-nucleon (PNC-NN) interaction studied in nuclear systems provides an unique window on ΔS=0 hadronic weak processes. To check the predictions concerning the interactions between weak hadronic currents, low energy nuclear physics processes appear to be very suitable. Considering the nuclear reactions induced by polarized protons as low energy nuclear processes we derive expressions for the longitudinal and irregular transverse PNC analysing powers, when the reactions take place via parity mixed resonances. Applications for 13 C(p-vector,p) 13 C, 15 N(p-vector,p) 15 N and 15 N(p-vector,α) 12 C resonance reactions are done. (author). 23 refs, 4 figs, 2 tabs

  9. Recollision induced excitation-ionization with counter-rotating two-color circularly polarized laser field

    Science.gov (United States)

    Ben, Shuai; Guo, Pei-Ying; Pan, Xue-Fei; Xu, Tong-Tong; Song, Kai-Li; Liu, Xue-Shen

    2017-07-01

    Nonsequential double ionization of Ar by a counter-rotating two-color circularly polarized laser field is theoretically investigated. At the combined intensity in the "knee" structure range, the double ionization occurs mainly through recollision induced excitation followed by subsequent ionization of Ar+∗ . By tracing the history of the recollision trajectories, we explain how the relative intensity ratio of the two colors controls the correlated electron dynamics and optimizes the ionization yields. The major channels contributing to enhancing the double ionization are through the elliptical trajectories with smaller travel time but not through the triangle shape or the other long cycle trajectories. Furthermore, the correlated electron dynamics could be limited to the attosecond time scale by adjusting the relative intensity ratio. Finally, the double ionization from doubly excited complex at low laser intensity is qualitatively discussed.

  10. Investigations of a Cretaceous limestone with spectral induced polarization and scanning electron microscopy

    DEFF Research Database (Denmark)

    Johansson, Sara; Sparrembom, Charlotte; Fiandaca, Gianluca

    2017-01-01

    Characterization of varying bedrock properties is a common need in various contexts, ranging from large infrastructure pre-investigations to environmental protection. A direct current resistivity and time domain induced polarization (IP) survey aiming to characterize properties of a Cretaceous...... limestone was carried out in the Kristianstad basin, Sweden. The time domain IP data was processed with a recently developed method in order to suppress noise from the challenging urban setting in the survey area. The processing also enabled extraction of early decay times resulting in broader spectra......-ray spectroscopy, and the results showed that varying amounts of pyrite, glauconite and clay matrix were present at different levels in the limestone. The local high IP anomalies in the limestone could be caused by these minerals otherwise the IP responses were generally weak. There were also differences...

  11. Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots

    Science.gov (United States)

    Tohgha, Urice; Deol, Kirandeep K.; Porter, Ashlin G.; Bartko, Samuel G.; Choi, Jung Kyu; Leonard, Brian M.; Varga, Krisztina; Kubelka, Jan; Muller, Gilles; Balaz, Milan

    2014-01-01

    Chiral thiol capping ligands L- and D-cysteines induced modular chiroptical properties in achiral cadmium selenide quantum dots (CdSe QDs). Cys-CdSe prepared from achiral oleic acid capped CdSe by post-synthetic ligand exchange displayed size-dependent electronic circular dichroism (CD) and circularly polarized luminescence (CPL). Opposite CPL signals were measured for the CdSe QDs capped with D- and L-cysteine. The CD profile and CD anisotropy varied with size of CdSe nanocrystals with largest anisotropy observed for CdSe nanoparticles of 4.4 nm. Magic angle spinning solid state NMR (MAS ssNMR) experiments suggested bidentate interaction between cysteine and the surface of CdSe. Density functional theory (DFT) calculations verified that attachment of L- and D-cysteine to the surface of model (CdSe)13 nanoclusters induces measurable opposite CD signals for the exitonic band of the nanocluster. The chirality was induced by the hybridization of highest occupied CdSe molecular orbitals with those of the chiral ligand. PMID:24200288

  12. Theory of current-induced spin polarization in an electron gas

    Science.gov (United States)

    Gorini, Cosimo; Maleki Sheikhabadi, Amin; Shen, Ka; Tokatly, Ilya V.; Vignale, Giovanni; Raimondi, Roberto

    2017-05-01

    We derive the Bloch equations for the spin dynamics of a two-dimensional electron gas in the presence of spin-orbit coupling. For the latter we consider both the intrinsic mechanisms of structure inversion asymmetry (Rashba) and bulk inversion asymmetry (Dresselhaus), and the extrinsic ones arising from the scattering from impurities. The derivation is based on the SU(2) gauge-field formulation of the Rashba-Dresselhaus spin-orbit coupling. Our main result is the identification of a spin-generation torque arising from Elliot-Yafet scattering, which opposes a similar term arising from Dyakonov-Perel relaxation. Such a torque, which to the best of our knowledge has gone unnoticed so far, is of basic nature, i.e., should be effective whenever Elliott-Yafet processes are present in a system with intrinsic spin-orbit coupling, irrespective of further specific details. The spin-generation torque contributes to the current-induced spin polarization (CISP), also known as inverse spin-galvanic or Edelstein effect. As a result, the behavior of the CISP turns out to be more complex than one would surmise from consideration of the internal Rashba-Dresselhaus fields alone. In particular, the symmetry of the current-induced spin polarization does not necessarily coincide with that of the internal Rashba-Dresselhaus field, and an out-of-plane component of the CISP is generally predicted, as observed in recent experiments. We also discuss the extension to the three-dimensional electron gas, which may be relevant for the interpretation of experiments in thin films.

  13. Interface-Enhanced Spin-Orbit Torques and Current-Induced Magnetization Switching of Pd /Co /AlOx Layers

    Science.gov (United States)

    Ghosh, Abhijit; Garello, Kevin; Avci, Can Onur; Gabureac, Mihai; Gambardella, Pietro

    2017-01-01

    Magnetic heterostructures that combine large spin-orbit torque efficiency, perpendicular magnetic anisotropy, and low resistivity are key to developing electrically controlled memory and logic devices. Here, we report on vector measurements of the current-induced spin-orbit torques and magnetization switching in perpendicularly magnetized Pd /Co /AlOx layers as a function of Pd thickness. We find sizable dampinglike (DL) and fieldlike (FL) torques, on the order of 1 mT per 107 A /cm2 , which have different thicknesses and magnetization angle dependencies. The analysis of the DL torque efficiency per unit current density and the electric field using drift-diffusion theory leads to an effective spin Hall angle and spin-diffusion length of Pd larger than 0.03 and 7 nm, respectively. The FL spin-orbit torque includes a significant interface contribution, is larger than estimated using drift-diffusion parameters, and, furthermore, is strongly enhanced upon rotation of the magnetization from the out-of-plane to the in-plane direction. Finally, taking advantage of the large spin-orbit torques in this system, we demonstrate bipolar magnetization switching of Pd /Co /AlOx layers with a similar current density to that used for Pt /Co layers with a comparable perpendicular magnetic anisotropy.

  14. Induced Polarization with Electromagnetic Coupling: 3D Spectral Imaging Theory, EMSP Project No. 73836

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, F. Dale; Sogade, John

    2004-12-14

    This project was designed as a broad foundational study of spectral induced polarization (SIP) for characterization of contaminated sites. It encompassed laboratory studies of the effects of chemistry on induced polarization, development of 3D forward modeling and inversion codes, and investigations of inductive and capacitive coupling problems. In the laboratory part of the project a physico-chemical model developed in this project was used to invert laboratory IP spectra for the grain size and the effective grain size distribution of the sedimentary rocks as well as the formation factor, porosity, specific surface area, and the apparent fractal dimension. Furthermore, it was established that the IP response changed with the solution chemistry, the concentration of a given solution chemistry, valence of the constituent ions, and ionic radius. In the field part of the project, a 3D complex forward and inverse model was developed. It was used to process data acquired at two frequencies (1/16 Hz and 1/ 4Hz) in a cross-borehole configuration at the A-14 outfall area of the Savannah River Site (SRS) during March 2003 and June 2004. The chosen SRS site was contaminated with Tetrachloroethylene (TCE) and Trichloroethylene (PCE) that were disposed in this area for several decades till the 1980s. The imaginary conductivity produced from the inverted 2003 data correlated very well with the log10 (PCE) concentration derived from point sampling at 1 ft spacing in five ground-truth boreholes drilled after the data acquisition. The equivalent result for the 2004 data revealed that there were significant contaminant movements during the period March 2003 and June 2004, probably related to ground-truth activities and nearby remediation activities. Therefore SIP was successfully used to develop conceptual models of volume distributions of PCE/TCE contamination. In addition, the project developed non-polarizing electrodes that can be deployed in boreholes for years. A total of 28

  15. Revisiting the time domain induced polarization technique, from linearization to inversion

    Science.gov (United States)

    Kang, S.; Oldenburg, D.

    2015-12-01

    The induced polarization (IP) technique has been successful in mineral exploration, particularly for finding disseminated sulphide or porphyry deposits, but also in helping solve geotechnical and environmental problems. Electrical induced polarization (EIP) surveys use grounded electrodes and take measurements of the electric field while the current is both "on" and "off". Currently, 2D and 3D inversions of EIP data are generally carried out by first finding a background conductivity from the asymptotic "on-time" measurements. The DC resistivity problem is then linearized about that conductivity to obtain a linear relationship between the off-time data and the "pseudo-chargeability". The distribution of pseudo-chargeability in the earth is then interpreted within the context of the initial geoscience problem pursued. Despite its success, the current EIP implementation does have challenges. A fundamental assumption, that there is no electromagnetic induction (EM) effect, breaks down when the background is conductive. This is especially problematic in regions having conductive overburden. EM induction complicates, and sometimes overwhelms, the IP signal. To ameliorate this effect, we estimate the inductive signal, subtract it from the "off-time" data and invert the resultant IP data using the linearized formulation. We carefully examine the conditions under which this works. We also investigate the potential alterations to the linearized sensitivity function that are needed to allow a linearized inversion to be carried out. Inversions of EIP data recover a "chargeability" but this is not a uniquely defined quantity. There are multiple definitions of this property because there are a diverse number of ways in which an IP datum is defined. In time domain IP surveys, the data might be mV/V or a time-integrated voltage with units of ms. In reality however, data from an EIP survey have many time channels and each one can be inverted separately to produce a chargeability

  16. Polarization Induced Changes in LSM Thin Film Electrode Composition Observed by In Operando Raman Spectroscopy and TOF-SIMS

    DEFF Research Database (Denmark)

    McIntyre, Melissa D.; Traulsen, Marie Lund; Norrman, Kion

    2015-01-01

    electrical polarizations. Raman spectra recorded during polarization showed shifts in spectral intensities that were both reversible and dependent on the applied potential. Spectral changes were assigned to changes in the LSM electronic structure that resulted from changing oxide concentrations in the near......Polarization induced changes in LSM electrode composition were investigated by utilizing in operando Raman spectroscopy and post mortem TOF-SIMS depth profiling. Experiments were conducted on cells with 160 nm thick (La0.85Sr0.15)0.9MnO3±δ thin film electrodes in 10% O2 at 700 °C under various......-surface region. Ex situ TOF-SIMS depth profiles were recorded through the LSM electrodes and revealed distinct compositional changes throughout the electrodes. The electrode elements and impurities separated into well-defined layers that were more stratified for stronger applied polarizations. The mechanism...

  17. Stereoelectronic Effect-Induced Conductance Switching in Aromatic Chain Single-Molecule Junctions.

    Science.gov (United States)

    Xin, Na; Wang, Jinying; Jia, Chuancheng; Liu, Zitong; Zhang, Xisha; Yu, Chenmin; Li, Mingliang; Wang, Shuopei; Gong, Yao; Sun, Hantao; Zhang, Guanxin; Liu, Zhirong; Zhang, Guangyu; Liao, Jianhui; Zhang, Deqing; Guo, Xuefeng

    2017-02-08

    Biphenyl, as the elementary unit of organic functional materials, has been widely used in electronic and optoelectronic devices. However, over decades little has been fundamentally understood regarding how the intramolecular conformation of biphenyl dynamically affects its transport properties at the single-molecule level. Here, we establish the stereoelectronic effect of biphenyl on its electrical conductance based on the platform of graphene-molecule single-molecule junctions, where a specifically designed hexaphenyl aromatic chain molecule is covalently sandwiched between nanogapped graphene point contacts to create stable single-molecule junctions. Both theoretical and temperature-dependent experimental results consistently demonstrate that phenyl twisting in the aromatic chain molecule produces different microstates with different degrees of conjugation, thus leading to stochastic switching between high- and low-conductance states. These investigations offer new molecular design insights into building functional single-molecule electrical devices.

  18. Resistance switching of epitaxial VO2/Al2O3 heterostructure at room temperature induced by organic liquids

    Directory of Open Access Journals (Sweden)

    Mengmeng Yang

    2015-03-01

    Full Text Available We studied using organic liquids (cyclohexane, n-butanol, and ethylene glycol to modulate the transport properties at room temperature of an epitaxial VO2 film on a VO2/Al2O3 heterostructure. The resistance of the VO2 film increased when coated with cyclohexane or n-butanol, with maximum changes of 31% and 3.8%, respectively. In contrast, it decreased when coated with ethylene glycol, with a maximum change of −7.7%. In all cases, the resistance recovered to its original value after removing the organic liquid. This organic-liquid-induced reversible resistance switching suggests that VO2 films can be used as organic molecular sensors.

  19. All-optical signal processing for optical packet switching [Invited

    Science.gov (United States)

    Geldenhuys, R.; Liu, Y.; Calabretta, N.; Hill, M. T.; Huijskens, F. M.; Khoe, G. D.; Dorren, H. J. S.

    2004-12-01

    We present three optical signal processing functional blocks that enable 1×N optical packet switching. An ultrafast asynchronous multioutput all-optical header processor is demonstrated with a terahertz optical asymmetric demultiplexer in combination with a header preprocessor. It is shown that self-induced polarization rotation can be used for both the header processor and the header preprocessor. The second functional block is optical buffering. This is shown with both a laser neural network and a recirculating buffer. Related to this is a three-state all-optical memory based on coupled lasers, which increases the number of possible output states of an optical packet switch.

  20. Hydrogen-induced electrical and optical switching in Pd capped Pr ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. In this study, modification in the properties of hydrogen-induced switchable mirror based on Pr nanoparticle layers is reported. The reversible changes in hydrogen-induced electrical and optical properties of Pd capped Pr nanoparticle layers have been studied as a function of hydrogenation time and compared.

  1. Mapping geological structures in bedrock via large-scale direct current resistivity and time-domain induced polarization tomography

    DEFF Research Database (Denmark)

    Rossi, Matteo; Olsson, Per-Ivar; Johansson, Sara

    2017-01-01

    An investigation of geological conditions is always a key point for planning infrastructure constructions. Bedrock surface and rock quality must be estimated carefully in the designing process of infrastructures. A large direct-current resistivity and time-domain induced-polarization survey has b...... been performed in Dalby, Lund Municipality, southern Sweden, with the aim of mapping lithological variations in bedrock. The geology at the site is characterised by Precambrian granitic gneisses and amphibolites, which are intensely deformed, fractured, and partly weathered. In addition......-polarization profiles. The direct-current resistivity and time-domain induced-polarization methodology proved to be a suitable technique for extensively mapping weathered zones with poor geotechnical characteristics and tectonic structures, which can lead to severe problems for infrastructure construction and....../or constitute risk zones for aquifer contamination....

  2. Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand

    Science.gov (United States)

    Maddur, Mohan S.; Sharma, Meenu; Hegde, Pushpa; Stephen-Victor, Emmanuel; Pulendran, Bali; Kaveri, Srini V.; Bayry, Jagadeesh

    2015-01-01

    Dendritic cells (DCs) play a critical role in immune homeostasis by regulating the functions of various immune cells, including T and B cells. Notably, DCs also undergo education on reciprocal signalling by these immune cells and environmental factors. Various reports demonstrated that B cells have profound regulatory functions, although only few reports have explored the regulation of human DCs by B cells. Here we demonstrate that activated but not resting B cells induce maturation of DCs with distinct features to polarize Th2 cells that secrete interleukin (IL)-5, IL-4 and IL-13. B-cell-induced maturation of DCs is contact dependent and implicates signalling of B-cell activation molecules CD69, B-cell-activating factor receptor, and transmembrane activator and calcium-modulating cyclophilin ligand interactor. Mechanistically, differentiation of Th2 cells by B-cell-matured DCs is dependent on OX-40 ligand. Collectively, our results suggest that B cells have the ability to control their own effector functions by enhancing the ability of human DCs to mediate Th2 differentiation. PMID:24910129

  3. Development of a chromosomally integrated metabolite-inducible Leu3p-alpha-IPM "off-on" gene switch.

    Directory of Open Access Journals (Sweden)

    Maria Poulou

    2010-08-01

    Full Text Available Present technology uses mostly chimeric proteins as regulators and hormones or antibiotics as signals to induce spatial and temporal gene expression.Here, we show that a chromosomally integrated yeast 'Leu3p-alpha-IotaRhoMu' system constitutes a ligand-inducible regulatory "off-on" genetic switch with an extensively dynamic action area. We find that Leu3p acts as an active transcriptional repressor in the absence and as an activator in the presence of alpha-isopropylmalate (alpha-IotaRhoMu in primary fibroblasts isolated from double transgenic mouse embryos bearing ubiquitously expressing Leu3p and a Leu3p regulated GFP reporter. In the absence of the branched amino acid biosynthetic pathway in animals, metabolically stable alpha-IPM presents an EC(50 equal to 0.8837 mM and fast "OFF-ON" kinetics (t(50ON = 43 min, t(50OFF = 2.18 h, it enters the cells via passive diffusion, while it is non-toxic to mammalian cells and to fertilized mouse eggs cultured ex vivo.Our results demonstrate that the 'Leu3p-alpha-IotaRhoMu' constitutes a simpler and safer system for inducible gene expression in biomedical applications.

  4. Creation of High Mobility Two-Dimensional Electron Gases via Strain Induced Polarization at an Otherwise Nonpolar Complex Oxide Interface

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Trier, Felix; Kasama, Takeshi

    2015-01-01

    The discovery of two-dimensional electron gases (2DEGs) in SrTiO3-based heterostructures provides new opportunities for nanoelectronics. Herein, we create a new type of oxide 2DEG by the epitaxial-strain-induced polarization at an otherwise nonpolar perovskite-type interface of CaZrO3/SrTiO3. Rem...

  5. Antiarthritic effect of polar extract of Curcuma longa on Monosodium Iodoacetate induced osteoarthritis in rats.

    Science.gov (United States)

    Murugan, Sasikumar; Bethapudi, Bharathi; Purusothaman, Divya; Raja, Prasanna; Velusami, Chandrasekaran Chinampudur

    2018-01-26

    Curcuma longa Linn, "the golden spice" is a common spice used in southern Asia and Middle East countries. It has a history of ethnopharmacological use for its various functional activities like antiseptic, anti-inflammatory, antioxidant, antimicrobial, anticancer and so on. To investigate the effects of polar extract of C. longa (PCL) against monosodium iodoacetate (MIA) induced osteoarthritis in rat and to compare with curcuminoids, which are contemporarily believed to be the only active phytochemicals of C. longa for relieving pain in osteoarthritis. Degenerative osteoarthritis in rats was induced by intra-articular injection of monosodium iodoacetate (MIA) in right knee. PCL or curcuminoids or tramadol was administered orally on the 5th day post MIA injection to rats. Weight bearing capacity and percentage inhibition of nociception of PCL treated groups were determined and compared with curcuminoids and tramadol (reference drug). In addition, gene expression of type II collagen and matrix metalloproteinases (MMP) in joint cartilage was measured by Reverse transcription polymerase chain reaction. PCL significantly decreased the difference in weight distribution between left and right limb in a dose dependent manner. Anti-arthritic activity of PCL is evident from gene expression analysis, significantly up regulating type II collagen gene (COL2A1) and down regulating MMP-3 and MMP-7. Polysaccharide extract of Curcuma longa showed beneficial effects on joints by exhibiting equilibrium between catabolism and anabolism of joint cartilage. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Proton magnetic resonance with parahydrogen induced polarization. Imaging strategies and continuous generation

    Energy Technology Data Exchange (ETDEWEB)

    Dechent, Jan Falk Frederik

    2012-12-17

    A major challenge in imaging is the detection of small amounts of molecules of interest. In the case of magnetic resonance imaging (MRI) their signals are typically concealed by the large background signal of e.g. the tissue of the body. This problem can be tackled by hyperpolarization which increases the NMR signals up to several orders of magnitude. However, this strategy is limited for {sup 1}H, the most widely used nucleus in NMR and MRI, because the enormous number of protons in the body screen the small amount of hyperpolarized ones. Here, I describe a method giving rise to high {sup 1}H MRI contrast for hyperpolarized molecules against a large background signal. The contrast is based on the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via parahydrogen induce polarization (PHIP) and it can easily be implemented in common pulse sequences. Hyperpolarization methods typically require expensive technical equipment (e.g. lasers or microwaves) and most techniques work only in batch mode, thus the limited lifetime of the hyperpolarization is limiting its applications. Therefore, the second part of my thesis deals with the simple and efficient generation of an hyperpolarization. These two achievements open up alternative opportunities to use the standard MRI nucleus {sup 1}H for e.g. metabolic imaging in the future.

  7. Carrier polarity engineering in carbon nanotube field-effect transistors by induced charges in polymer insulator

    Science.gov (United States)

    Aikawa, Shinya; Kim, Sungjin; Thurakitseree, Theerapol; Einarsson, Erik; Inoue, Taiki; Chiashi, Shohei; Tsukagoshi, Kazuhito; Maruyama, Shigeo

    2018-01-01

    We present that the electrical conduction type in carbon nanotube field-effect transistors (CNT-FETs) can be converted by induced charges in a polyvinyl alcohol (PVA) insulator. When the CNT channels are covered with pure PVA, the FET characteristics clearly change from unipolar p-type to ambipolar. The addition of ammonium ions (NH4+) in the PVA leads to further conversion to unipolar n-type conduction. The capacitance - voltage characteristics indicate that a high density of positive charges is induced at the PVA/SiO2 interface and within the bulk PVA. Electrons are electrostatically accumulated in the CNT channels due to the presence of the positive charges, and thus, stable n-type conduction of PVA-coated CNT-FETs is observed, even under ambient conditions. The mechanism for conversion of the conduction type is considered to be electrostatic doping due to the large amount of positive charges in the PVA. A blue-shift of the Raman G-band peak was observed for CNTs coated with NH4+-doped PVA, which corresponds to unipolar n-type CNT-FET behavior. These results confirm that carrier polarity engineering in CNT-FETs can be achieved with a charged PVA passivation layer.

  8. A gain-coefficient switched Alexandrite laser

    International Nuclear Information System (INIS)

    Lee, Chris J; Van der Slot, Peter J M; Boller, Klaus-J

    2013-01-01

    We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.

  9. Micromagnetic analysis of geometrically controlled current-driven magnetization switching

    Directory of Open Access Journals (Sweden)

    O. Alejos

    2017-05-01

    Full Text Available The magnetization dynamics induced by current pulses in a pair of two “S-shaped” ferromagnetic elements, each one consisting on two oppositely tilted tapered spikes at the ends of a straight section, is theoretically studied by means of micromagnetic simulations. Our results indicate that the magnetization reversal is triggered by thermal activation, which assists the current-induced domain nucleation and the propagation of domain walls. The detailed analysis of the magnetization dynamics reveals that the magnetization switching is only achieved when a single domain wall is nucleated in the correct corner of the element. In agreement with recent experimental studies, the switching is purely dictated by the shape, being independent of the current polarity. The statistical study points out that successful switching is only achieved within a narrow range of the current pulse amplitudes.

  10. Induced Voltage Self-Excitation for a Switched-Reluctance Generator. Experimental Verification of Concept

    National Research Council Canada - National Science Library

    Lipo, Thomas

    2000-01-01

    .... One means to excite the machine in a "self-starting" mode is to attach permanent magnets to the machine stator, so that rotor rotation will cause the magnet's field to induce electric current within...

  11. Residual-Charge Induced Memory Effect of Electric Polarization in Multiferroic CuFe1-xGaxO2 as Seen via Polarized Neutron Diffraction

    Science.gov (United States)

    Nakajima, Taro; Mitsuda, Setsuo; Yamazaki, Hiroe; Matsuura, Masato

    2013-02-01

    We have investigated ferroelectric polarization memory effect in a magneto-electric (ME) multiferroic CuFe1-x GaxO2 (CFGO) with x=0.035, which exhibits a spin-driven ferroelectric phase below TC˜ 7 K in zero magnetic field. In a previous study on CFGO(x=0.035), we have reported that the ferroelectric polarization induced by an applied electric field is retrieved after heating the sample to a non-ferroelectric high-temperature phase and then cooling down to the ferroelectric phase without electric field. [Mitsuda et al. Physica B 404 (2009) 2532] By measuring thermally stimulated electric current in detail, the previous study has elucidated that residual charges trapped in the sample are relevant to the memory effect. In the present study, we have performed polarized neutron diffraction measurements on CFGO(x=0.035) with applied electric fields, in order to investigate the multiferroic domain structure, which can reflect spatial distribution of internal electric fields due to the trapped charges. The present results have shown that the effect of the internal electric fields is significantly different from that of the ``uniform'' electric field applied on the first cooling. To explain the present results, we suggest a model that the residual charges are trapped on boundaries between the three types of magnetic domains originating from the trigonal symmetry of the crystal, implying that the presence of the bound charges of the ferroelectric polarization on the domain boundaries is a key to the memory effect in this system.

  12. Application of time domain induced polarization to the mapping of lithotypes in a landfill site

    Directory of Open Access Journals (Sweden)

    A. Gazoty

    2012-06-01

    Full Text Available A direct current (DC resistivity and time domain induced polarization (TDIP survey was undertaken at a decommissioned landfill site situated in Hørløkke, Denmark, for the purpose of mapping the waste deposits and to discriminate important geological units that control the hydrology of the surrounding area. It is known that both waste deposits and clay have clear signatures in TDIP data, making it possible to enhance the resolution of geological structures compared to DC surveys alone.

    Four DC/TDIP profiles were carried out crossing the landfill, and another seven profiles in the surroundings provide a sufficiently dense coverage of the entire area. The whole dataset was inverted using a 1-D laterally constrained inversion scheme, recently implemented for TDIP data, in order to use the entire decay curves for reconstructing the electrical parameters of the soil in terms of the Cole-Cole polarization model.

    Results show that it is possible to resolve both the geometry of the buried waste body and key geological structures. In particular, it was possible to find a silt/clay lens at depth that correlates with the flow direction of the pollution plume spreading out from the landfill and to map a shallow sandy layer rich in clay that likely has a strong influence on the hydrology of the site. This interpretation of the geophysical findings was constrained by borehole data, in terms of geology and gamma ray logging. The results of this study are important for the impact of the resolved geological units on the hydrology of the area, making it possible to construct more realistic scenarios of the variation of the pollution plume as a function of the climate change.

  13. Monitoring transport and equilibrium of heavy metals in soil using induced polarization

    Science.gov (United States)

    Shalem, T.; Huisman, J. A.; Zimmermann, E.; Furman, A.

    2017-12-01

    Soil and groundwater pollution in general, and by heavy metals in particular, is a major threat to human health, and especially in rapidly developing regions, such as China. Fast, accurate and low-cost measurement of heavy metal contamination is of high desire. Spectral induced polarization (SIP) may be an alternative to the tedious sampling techniques typically used. In the SIP method, an alternating current at a range of low frequencies is injected into the soil and the resultant potential is measured along the current's path. SIP is a promising method for monitoring heavy metals, because it is sensitive to the chemical composition of both the absorbed ions on the soil minerals and the pore fluid and to the interface between the two. The high sorption affinity of heavy metals suggests that their electrical signature may be significant, even at relatively low concentrations. The goal of this research is to examine the electrical signature of soil contaminated by heavy metals and of the pollution transport and remediation processes, in a non-tomographic fashion. Specifically, we are looking at the SIP response of various heavy metals in several settings: 1) at equilibrium state in batch experiments; 2) following the progress of a pollution front along a soil column through flow experiments and 3) monitoring the extraction of the contaminant by a chelating agent. Using the results, we develop and calibrate a multi-Cole-Cole model to separate the electrochemical and the interfacial components of the polarization. Last, we compare our results to the electrical signature of contaminated soil from southern China. Results of single metals from both batch and flow experiments display a shift of the relaxation time and a decrease in the phase response of the soil with increase of the metal concentration, suggesting strong sorption of the metals on the stern layer. Preliminary results also show evidence of electrodic polarization, assuming to be related to the formation of

  14. Short-Chain Fatty Acids Protect Against High-Fat Diet-Induced Obesity via a PPAR-Dependent Switch From Lipogenesis to Fat Oxidation

    NARCIS (Netherlands)

    den Besten, Gijs; Bleeker, Aycha; Gerding, Albert; van Eunen, Karen; Havinga, Rick; van Dijk, Theo H.; Oosterveer, Maaike H.; Jonker, Johan W.; Groen, Albert K.; Reijngoud, Dirk-Jan; Bakker, Barbara M.

    Short-chain fatty acids (SCFAs) are the main products of dietary fiber fermentation and are believed to drive the fiber-related prevention of the metabolic syndrome. Here we show that dietary SCFAs induce a peroxisome proliferator-activated receptor- (PPAR)-dependent switch from lipid synthesis to

  15. Size-Induced Switching of Nanowire Growth Direction: a New Approach Toward Kinked Nanostructures

    KAUST Repository

    Shen, Youde

    2016-04-26

    Exploring self-assembled nanostructures with controllable architectures has been a central theme in nanoscience and nanotechnology because of the tantalizing perspective of directly integrating such bottom-up nanostructures into functional devices. Here, the growth of kinked single-crystal In2O3 nanostructures consisting of a nanocone base and a nanowire tip with an epitaxial and defect-free transition is demonstrated for the first time. By tailoring the growth conditions, a reliable switching of the growth direction from [111] to [110] or [112] is observed when the Au catalyst nanoparticles at the apexes of the nanocones shrink below ≈100 nm. The natural formation of kinked nanoarchitectures at constant growth pressures is related to the size-dependent free energy that changes for different orientations of the nanowires. The results suggest that the mechanism of forming such kinked nanocone-nanowire nanostructures in well-controlled growth environment may be universal for a wide range of functional materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Malic enzyme tracers reveal hypoxia-induced switch in adipocyte NADPH pathway usage.

    Science.gov (United States)

    Liu, Ling; Shah, Supriya; Fan, Jing; Park, Junyoung O; Wellen, Kathryn E; Rabinowitz, Joshua D

    2016-05-01

    The critical cellular hydride donor NADPH is produced through various means, including the oxidative pentose phosphate pathway (oxPPP), folate metabolism and malic enzyme. In growing cells, it is efficient to produce NADPH via the oxPPP and folate metabolism, which also make nucleotide precursors. In nonproliferating adipocytes, a metabolic cycle involving malic enzyme holds the potential to make both NADPH and two-carbon units for fat synthesis. Recently developed deuterium ((2)H) tracer methods have enabled direct measurement of NADPH production by the oxPPP and folate metabolism. Here we enable tracking of NADPH production by malic enzyme with [2,2,3,3-(2)H]dimethyl-succinate and [4-(2)H]glucose. Using these tracers, we show that most NADPH in differentiating 3T3-L1 mouse adipocytes is made by malic enzyme. The associated metabolic cycle is disrupted by hypoxia, which switches the main adipocyte NADPH source to the oxPPP. Thus, (2)H-labeled tracers enable dissection of NADPH production routes across cell types and environmental conditions.

  17. Laser induced magnetization switching in a TbFeCo ferrimagnetic thin film: discerning the impact of dipolar fields, laser heating and laser helicity by XPEEM.

    Science.gov (United States)

    Gierster, L; Ünal, A A; Pape, L; Radu, F; Kronast, F

    2015-12-01

    We investigate laser induced magnetic switching in a ferrimagnetic thin film of Tb22Fe69Co9 by PEEM. Using a small laser beam with a spot size of 3-5 µm in diameter in combination with high resolution magnetic soft X-ray microscopy we are able to discriminate between different effects that govern the microscopic switching process, namely the influence of the laser heating, of the helicity dependent momentum transfer, and of the dipolar coupling. Applying a sequence of femtosecond laser pulses to a previously saturated TbFeCo film leads to the formation of ring shaped magnetic structures in which all three effects can be observed. Laser helicity assisted switching is only observed in a narrow region within the Gaussian profile of the laser spot. Whereas in the center of the laser spot we find clear evidence for thermal demagnetization and in the outermost areas magnetic switching is determined by dipolar coupling with the surrounding film. Our findings demonstrate that by reducing the laser spot size the influence of dipolar coupling on laser induced switching is becoming increasingly important. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Control of Domain Wall Polarity by Current Pulses

    Science.gov (United States)

    Vanhaverbeke, A.; Bischof, A.; Allenspach, R.

    2008-09-01

    Direct observation of current-induced propagation of purely transverse magnetic domain walls with spin-polarized scanning electron microscopy is reported in Fe30Ni70 nanowires. After propagation, the domain walls keep their transverse nature but switch polarity in some cases. For uniform Ni70Fe30 wires, the effect is random and illustrates domain-wall propagation above the Walker threshold. In the case of Ni70Fe30/Fe wires, the transverse magnetization component in the wall is entirely determined by the polarity of the current pulse, an effect that is not reconciled by present theories even when taking into account the nonuniform Oersted field generated by the current.

  19. Modelling and experimental verification of tip-induced polarization in Kelvin probe force microscopy measurements on dielectric surfaces

    DEFF Research Database (Denmark)

    Nielsen, Dennis Achton; Popok, Vladimir; Pedersen, Kjeld

    2015-01-01

    Kelvin probe force microscopy is a widely used technique for measuring surface potential distributions on the micro- and nanometer scale. The data are, however, often analyzed qualitatively, especially for dielectrics. In many cases, the phenomenon of polarization and its influence on the measured...... signals is disregarded leading to misinterpretation of the results. In this work, we present a model that allows prediction of the surface potential on a metal/polymer heterostructure as measured by Kelvin probe force microscopy by including the tip-induced polarization of the dielectric that arises...

  20. Tuning the polarization-induced free hole density in nanowires graded from GaN to AlN

    OpenAIRE

    Sarwar, A. T. M. Golam; Carnevale, Santino D.; Kent, Thomas F.; Yang, Fan; McComb, David W.; Myers, Roberto C.

    2014-01-01

    We report a systematic study of p-type polarization induced doping in graded AlGaN nanowire light emitting diodes grown on silicon wafers by plasma-assisted molecular beam epitaxy. The composition gradient in the p-type base is varied in a set of samples from 0.7 %Al/nm to 4.95 %Al/nm corresponding to negative bound polarization charge densities of 2.2x10^18 cm^-3 to 1.6x10^19 cm^-3. Capacitance measurements and energy band modeling reveal that for gradients greater than or equal to 1.30 %Al/...

  1. Q-switched Nd:YAG/V:YAG microchip 1338 nm laser for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    Q-switched microchip laser emitting radiation at wavelength 1338nm was tested as a radiation source for laser induced breakdown spectroscopy (LIBS). This laser used sandwich crystal which combined in one piece the cooling part (undoped YAG crystal 4mm long), the active laser part (Nd:YAG crystal 12mm long), and the saturable absorber (V:YAG crystal 0.7mm long). The diameter of this crystal was 5 mm. The microchip resonator consisted of dielectric mirrors directly deposited on the monolith crystal surfaces. The pump mirror (HT @ 808 nm, HR @ 1.3 ¹m) was placed on the undoped YAG part. The output coupler (R = 90% @ 1338 nm) was placed on the V:YAG part. The fibre-coupled 808nm pumping laser diode was operating in pulsed regime (rep. rate 250 Hz, pulse width 300 ¹s, pulse energy 6 mJ). Using this pumping, stable and high reproducible Q-switched pulses were generated at wavelength 1338 nm. Pulse length was 6.2 ns (FWHM) and the mean output power was 33mW. The single pulse energy and peak power was 0.13mJ and 21kW, respectively. Laser was operating in fundamental TEM00 mode. The laser radiation was focused on a tested sample using single plano-convex lens (focal length 75 mm). The focal spot radius was 40 ¹m. The corresponding peak-power density was 0.83GW/cm2. The laser induced break-down was successfully reached and corresponding laser-induced plasma spectra were recorded for set of metallic elements (Cu, Ag, Au, In, Zn, Al, Fe, Ni, Cr) and alloys (Sn-Pb solder, duralumin, stainless-steel, brass). To record the spectra, StellarNet BLACK-Comet concave grating CCD-based spectrometer was used without any special collimation optics. Thanks to used laser wavelength far from the detector sensitivity, no special filtering was needed to overcome the CCD dazzling. The constructed laser could significantly improve repletion-rate of up-to-date LIBS devices.

  2. Successful switch from bilateral brief pulse to right unilateral ultrabrief pulse electroconvulsive therapy after failure to induce seizures

    Directory of Open Access Journals (Sweden)

    Kawashima H

    2018-02-01

    Full Text Available Hirotsugu Kawashima,1 Yuko Kobayashi,1 Taro Suwa,2 Toshiya Murai,2 Ryuichi Yoshioka1 1Department of Psychiatry, Toyooka Hospital, Toyooka, Hyogo, Japan; 2Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan Abstract: Inducing adequate therapeutic seizures during electroconvulsive therapy (ECT is sometimes difficult due to a high seizure threshold, even at the maximum stimulus charge. Previous studies have demonstrated that seizure threshold is lower in patients treated with right unilateral ultrabrief pulse (RUL-UBP ECT than in those treated with bilateral or brief pulse (BL-BP ECT. Therefore, switching to RUL-UBP ECT may be beneficial for patients in whom seizure induction is difficult with conventional ECT. In the present report, we discuss the case of a patient suffering from catatonic schizophrenia in whom BL-BP ECT failed to induce seizures at the maximum charge. However, RUL-UBP ECT successfully elicited therapeutic seizures and enabled the patient to achieve complete remission. This case illustrates that, along with other augmentation strategies, RUL-UBP ECT represents an alternative for seizure induction in clinical practice. Keywords: electroconvulsive therapy, augmentation, ultrabrief pulse, electrode placement, seizure threshold

  3. Silence of long noncoding RNA PANDAR switches low-dose curcumin-induced senescence to apoptosis in colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Chen T

    2017-01-01

    Full Text Available Tao Chen,1,* Peng Yang,1,* Hui Wang,1 Zhen-Yu He2 1Department of General Surgery, The Second Clinical Medical College of Nanjing Medical University, 2Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China *These authors contributed equally to this work Abstract: Long noncoding RNAs (lncRNAs are emerging as having multiple roles in cancer progression. However, roles of lncRNAs in chemotherapy for colorectal cancer (CRC remain unclear. This study investigated the biological functions of lncRNA PANDAR in CRC cells treated with curcumin chemotherapy. Herein, we identified that PANDAR expression was not notably differential in CRC tissues compared with the corresponding normal tissues. Consistently, in vitro experiments revealed that knockdown of PANDAR could not change the proliferation, apoptosis, or senescence of CRC cells. Further analyses showed that low-dose curcumin could induce senescence in CRC cells without affecting cell apoptosis. Moreover, expression of PANDAR was increased in curcumin-treated CRC cells. Furthermore, silencing PANDAR in curcumin-treated cells increased apoptosis and greatly attenuated senescence possibly by stimulating the expression of PUMA. Together, these findings indicate that knockdown of lncRNA PANDAR switches curcumin-induced senescence to apoptosis, which may be potentially valuable in CRC therapy. Keywords: colorectal cancer, long noncoding RNA, PANDAR, curcumin, chemotherapy

  4. Vorinostat-induced autophagy switches from a death-promoting to a cytoprotective signal to drive acquired resistance.

    Science.gov (United States)

    Dupéré-Richer, D; Kinal, M; Ménasché, V; Nielsen, T H; Del Rincon, S; Pettersson, F; Miller, W H

    2013-02-07

    Histone deacetylase inhibitors (HDACi) have shown promising activity against hematological malignancies in clinical trials and have led to the approval of vorinostat for the treatment of cutaneous T-cell lymphoma. However, de novo or acquired resistance to HDACi therapy is inevitable, and their molecular mechanisms are still unclear. To gain insight into HDACi resistance, we developed vorinostat-resistant clones from the hematological cell lines U937 and SUDHL6. Although cross-resistant to some but not all HDACi, the resistant cell lines exhibit dramatically increased sensitivity toward chloroquine, an inhibitor of autophagy. Consistent with this, resistant cells growing in vorinostat show increased autophagy. Inhibition of autophagy in vorinostat-resistant U937 cells by knockdown of Beclin-1 or Lamp-2 (lysosome-associated membrane protein 2) restores sensitivity to vorinostat. Interestingly, autophagy is also activated in parental U937 cells by de novo treatment with vorinostat. However, in contrast to the resistant cells, inhibition of autophagy decreases sensitivity to vorinostat. These results indicate that autophagy can switch from a proapoptotic signal to a prosurvival function driving acquired resistance. Moreover, inducers of autophagy (such as mammalian target of rapamycin inhibitors) synergize with vorinostat to induce cell death in parental cells, whereas the resistant cells remain insensitive. These data highlight the complexity of the design of combination strategies using modulators of autophagy and HDACi for the treatment of hematological malignancies.

  5. Waterborne spectral induced polarization imaging to investigate stream-aquifer exchange

    Science.gov (United States)

    Hoehn, Philipp; Flores Orozco, Adrián; Hofmann, Thilo

    2017-04-01

    Detailed information about the geometrical and hydraulic properties of a streambed's colmation layer is critical for accurate numerical modelling of stream-aquifer exchange, which in turn is of pivotal importance for adequate groundwater management at bank filtration sites. Inverse methods in numerical groundwater modeling tend to bear high spatial uncertainty and existing methods are limited, e.g. fiber-optic distributed temperature sensing (FO-DTS) by its unidirectional sensitivity towards groundwater discharge. To overcome such deficiencies we propose the application of high resolution spectral induced polarization (SIP) imaging. The objective was to elucidate its capability to provide spatial estimates of parameters of a Cauchy-type boundary condition in groundwater flow modeling, namely hydraulic conductivity and thickness of potentially colmated substream sediment as well as stream stage. SIP measurements were collected along selected reaches of a losing-disconnected subalpine stream in a broad frequency bandwidth (0.063-225 Hz) using an array of 32 electrodes (at 1 m spacing), which was fully submerged at the stream bottom, while the equipment was mounted on a stationary-positioned inflatable rubber boat. A total of 32 transient infiltration tests, using an open-bottom standpipe (4.2 cm inner diameter), were performed to determine vertical hydraulic conductivity (kv) of the streambed at discrete positions along the electrical arrays. Imaging results of the real component of the complex electrical conductivity (σ') permitted to delineate stream stage and the general substream architecture; whereas the imaginary component (σ") revealed larger variability within the substream sediment, likely related to changes in the textural parameters. The kv dataset confirms the textural variability with values varying between 3•10-2 and 5•10-7 ms-1. The electrical imaging results exhibit the strongest polarization response at 75 Hz, suggesting that fine grains, as

  6. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice.

    Science.gov (United States)

    Kawanishi, Noriaki; Yano, Hiromi; Yokogawa, Yuka; Suzuki, Katsuhiko

    2010-01-01

    Recent studies suggest that exchange of macrophage phenotype (M1/M2) in adipose tissue is associated with chronic low-grade inflammation in obesity. M1 macrophages enhance a chronic inflammatory state in adipose tissues, whereas M2 macrophages inhibit it. Although exercise training might inhibit pro-inflammatory cytokine gene expression in adipose tissue, it remains unclear whether exercise training affects the phenotypic switch of macrophage polarization in adipose tissue. Therefore, we inveStigated the effect of exercise training on the macrophage phenotypic switch in adipose tissue in high-fat-induced obese mice. Male C57BL/6 mice were divided into four groups; normal diet (ND) control (n=7), ND exercise (n=7), high-fat-diet (HFD) control (n=12), and HFD exercise (n=12) groups. All exercised mice ran on a treadmill at 12-20 m/min for 60 min/day for 16 weeks. Tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, F4/80, monocyte chemotactic protein (MCP)-1, CXCL14, inter-cellular adhesion molecule (ICAM)-1, vascular-cellular adhesion molecule (VCAM)-1, CD11c, CD163 and toll-like receptor (TLR)4 mRNA expressions in adipose tissue were evaluated by real time-RT-PCR. In HFD mice, exercise training did not induce loss of body or adipose tissue mass, exercise training nevertheless markedly inhibited TNF-alpha and F4/80 mRNA expression in adipose tissue. The exercise training attenuated HFD-induced increase in ICAM-1 mRNA expression, but not MCP-1, CXCL14 and VCAM-1 mRNA expressions. In addition, increased CD11c mRNA expression, which is a M1 macrophage specific marker, with HFD treatment was attenuated by exercise training. In contrast, although the mRNA expression of CD163, a M2 macrophage specific marker, in adipose tissue was significantly decreased by HFD, the exercise training significantly increased its expression. Also, the higher mRNA expression of TLR4, which induces pro-inflammatory cytokine production after fatty acid recognition, was strongly inhibited by

  7. Intense source of spin-polarized electrons using laser-induced optical pumping

    International Nuclear Information System (INIS)

    Gray, L.G.; Giberson, K.W.; Cheng, C.; Keiffer, R.S.; Dunning, F.B.; Walters, G.K.

    1983-01-01

    A source of spin-polarized electrons based on a laser-pumped flowing helium afterglow is described. He(2 3 S) atoms contained in the afterglow are optically pumped using circularly polarized 1.08-μm (2 3 S→2 3 P) radiation provided by a NaF (F 2+ )( color-center laser. Spin angular momentum conservation in subsequent chemi-ionization reactions with CO 2 produces polarized electrons that are extracted from the afterglow. At low currents, < or approx. =1 μA, polarizations of approx.70%--80% are achieved. At higher currents the polarization decreases, falling to approx.40% at 50 μA. The spin polarization can be simply reversed (P→-P) and the source is suitable for use in the majority of low-energy spin-dependent scattering experiments proposed to date

  8. WRN loss induces switching of telomerase-independent mechanisms of telomere elongation.

    Directory of Open Access Journals (Sweden)

    April Renee Sandy Gocha

    Full Text Available Telomere maintenance can occur in the presence of telomerase or in its absence, termed alternative lengthening of telomeres (ALT. ALT adds telomere repeats using recombination-based processes and DNA repair proteins that function in homologous recombination. Our previous work reported that the RecQ-like BLM helicase is required for ALT and that it unwinds telomeric substrates in vitro. WRN is also a RecQ-like helicase that shares many biochemical functions with BLM. WRN interacts with BLM, unwinds telomeric substrates, and co-localizes to ALT-associated PML bodies (APBs, suggesting that it may also be required for ALT processes. Using long-term siRNA knockdown of WRN in three ALT cell lines, we show that some, but not all, cell lines require WRN for telomere maintenance. VA-13 cells require WRN to prevent telomere loss and for the formation of APBs; Saos-2 cells do not. A third ALT cell line, U-2 OS, requires WRN for APB formation, however WRN loss results in p53-mediated apoptosis. In the absence of WRN and p53, U-2 OS cells undergo telomere loss for an intermediate number of population doublings (50-70, at which point they maintain telomere length even with the continued loss of WRN. WRN and the tumor suppressor BRCA1 co-localize to APBs in VA-13 and U-2 OS, but not in Saos-2 cells. WRN loss in U-2 OS is associated with a loss of BRCA1 from APBs. While the loss of WRN significantly increases telomere sister chromatid exchanges (T-SCE in these three ALT cell lines, loss of both BRCA1 and WRN does not significantly alter T-SCE. This work demonstrates that ALT cell lines use different telomerase-independent maintenance mechanisms that variably require the WRN helicase and that some cells can switch from one mechanism to another that permits telomere elongation in the absence of WRN. Our data suggest that BRCA1 localization may define these mechanisms.

  9. LabVIEW-based control software for para-hydrogen induced polarization instrumentation

    International Nuclear Information System (INIS)

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-01-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ( 13 C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (B o ), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of 13 C based endogenous contrast agents used in molecular imaging

  10. Effect of heavy atoms on photochemically induced dynamic nuclear polarization in liquids

    Science.gov (United States)

    Okuno, Yusuke; Cavagnero, Silvia

    2018-01-01

    Given its short hyperpolarization time (∼10-6 s) and mostly non-perturbative nature, photo-chemically induced dynamic nuclear polarization (photo-CIDNP) is a powerful tool for sensitivity enhancement in nuclear magnetic resonance. In this study, we explore the extent of 1H-detected 13C nuclear hyperpolarization that can be gained via photo-CIDNP in the presence of small-molecule additives containing a heavy atom. The underlying rationale for this methodology is the well-known external-heavy-atom (EHA) effect, which leads to significant enhancements in the intersystem-crossing rate of selected photosensitizer dyes from photoexcited singlet to triplet. We exploited the EHA effect upon addition of moderate amounts of halogen-atom-containing cosolutes. The resulting increase in the transient triplet-state population of the photo-CIDNP sensitizer fluorescein resulted in a significant increase in the nuclear hyperpolarization achievable via photo-CIDNP in liquids. We also explored the internal-heavy-atom (IHA) effect, which is mediated by halogen atoms covalently incorporated into the photosensitizer dye. Widely different outcomes were achieved in the case of EHA and IHA, with EHA being largely preferable in terms of net hyperpolarization.

  11. LabVIEW-based control software for para-hydrogen induced polarization instrumentation.

    Science.gov (United States)

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-04-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ((13)C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (Bo), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of (13)C based endogenous contrast agents used in molecular imaging.

  12. Characterization of Natural Attenuation in a uranium-contaminated site by means of Induced Polarization Imaging

    Science.gov (United States)

    Flores Orozco, Adrián; Bücker, Matthias; Williams, Kenneth

    2014-05-01

    Field experiments at the U.S. Department of Energy's (DOE) Integrated Field Research Challenge site (IFRC) in Rifle, Colorado (USA) have repeatedly demonstrated the ability of microorganisms to reductively immobilize uranium (U) in U tailings-contaminated groundwater accompanying organic carbon amendment. At the same time, geophysical monitoring during such amendment experiments has proven that Induced Polarization (IP) datasets can provide valuable information regarding geochemical changes induced by stimulated microbial activity, such as precipitation of metallic minerals (e.g. FeS) and accumulation of reactive, electroactive ions (Fe[II]). Based on these findings, we present a novel, modified application of the IP imaging method. Specifically, we utilized an IP characterization approach to delineate areas where fluvially deposited organic material, within aquifer sediments, naturally stimulates the activity of subsurface microflora, leading to both the natural immobilization of uranium and accumulation of reduced end-products (minerals and pore fluids) capable of generating anomalous IP signatures. These so-called 'naturally reduced zones' (NRZ's) are characterized by elevated rates of microbial activity relative to sediments having a lower concentration of organic matter. As noted and based on our previous experiments at the site, the accumulation of metallic minerals represents suitable targets for the exploration with IP tomographic methods. Here, we explore the application of the IP imaging method for the characterization of NRZ's at the scale of the floodplain. We present imaging results obtained through the inversion of 70 independent lines distributed along the floodplain (~600 m2). Imaging results are validated through comparisons with lithological data obtained from wells drilled at the site and laboratory analysis of sediment and groundwater samples. Our results show the applicability of the IP method for characterizing regions of the subsurface having

  13. Proximity-induced spin-valley polarization in silicene or germanene on F-doped WS2

    KAUST Repository

    Sattar, Shahid

    2016-11-11

    Silicene and germanene are key materials for the field of valleytronics. However, interaction with the substrate, which is necessary to support the electronically active medium, becomes a major obstacle. In the present work, we propose a substrate (F-doped WS2) that avoids detrimental effects and at the same time induces the required valley polarization, so that no further steps are needed for this purpose. The behavior is explained by proximity effects on silicene or germanene, as demonstrated by first-principles calculations. Broken inversion symmetry due to the presence of WS2 opens a substantial band gap in silicene or germanene. F doping of WS2 results in spin polarization, which, in conjunction with proximity-enhanced spin-orbit coupling, creates sizable spin-valley polarization.

  14. Obesity-induces Organ and Tissue Specific Tight Junction Restructuring and Barrier Deregulation by Claudin Switching

    OpenAIRE

    Ahmad, Rizwan; Rah, Bilal; Bastola, Dhundy; Dhawan, Punita; Singh, Amar B.

    2017-01-01

    Obesity increases susceptibility to multiple organ disorders, however, underlying mechanisms remain unclear. The subclinical inflammation assisted by obesity-induced gut permeability may underlie obesity-associated co-morbidities. Despite eminent clinical significance of the obesity led gut barrier abnormalities, its precise molecular regulation remains unclear. It is also unknown whether barrier deregulations, similar to the gut, characterize other vital organs in obese individuals. The clau...

  15. microRNA-184 Induces a Commitment Switch to Epidermal Differentiation.

    Science.gov (United States)

    Nagosa, Sara; Leesch, Friederike; Putin, Daria; Bhattacharya, Swarnabh; Altshuler, Anna; Serror, Laura; Amitai-Lange, Aya; Nasser, Waseem; Aberdam, Edith; Rouleau, Matthieu; Tattikota, Sudhir G; Poy, Matthew N; Aberdam, Daniel; Shalom-Feuerstein, Ruby

    2017-12-12

    miR-184 is a highly evolutionary conserved microRNA (miRNA) from fly to human. The importance of miR-184 was underscored by the discovery that point mutations in miR-184 gene led to corneal/lens blinding disease. However, miR-184-related function in vivo remained unclear. Here, we report that the miR-184 knockout mouse model displayed increased p63 expression in line with epidermal hyperplasia, while forced expression of miR-184 by stem/progenitor cells enhanced the Notch pathway and induced epidermal hypoplasia. In line, miR-184 reduced clonogenicity and accelerated differentiation of human epidermal cells. We showed that by directly repressing cytokeratin 15 (K15) and FIH1, miR-184 induces Notch activation and epidermal differentiation. The disease-causing miR-184 C57U mutant failed to repress K15 and FIH1 and to induce Notch activation, suggesting a loss-of-function mechanism. Altogether, we propose that, by targeting K15 and FIH1, miR-184 regulates the transition from proliferation to early differentiation, while mis-expression or mutation in miR-184 results in impaired homeostasis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. In-situ TEM study of domain switching in GaN thin films

    Science.gov (United States)

    Wang, Baoming; Wang, Tun; Haque, Aman; Snure, Michael; Heller, Eric; Glavin, Nicholas

    2017-09-01

    Microstructural response of gallium nitride (GaN) films, grown by metal-organic chemical vapor deposition, was studied as a function of applied electrical field. In-situ transmission electron microscopy showed sudden change in the electron diffraction pattern reflecting domain switching at around 20 V bias, applied perpendicular to the polarization direction. No such switching was observed for thicker films or for the field applied along the polarization direction. This anomalous behavior is explained by the nanoscale size effects on the piezoelectric coefficients of GaN, which can be 2-3 times larger than the bulk value. As a result, a large amount of internal energy can be imparted in 100 nm thick films to induce domain switching at relatively lower voltages to induce such events at the bulk scale.

  17. Giant flexoelectric polarization in a micromachined ferroelectric diaphragm

    KAUST Repository

    Wang, Zhihong

    2012-08-14

    The coupling between dielectric polarization and strain gradient, known as flexoelectricity, becomes significantly large on the micro- and nanoscale. Here, it is shown that giant flexoelectric polarization can reverse remnant ferroelectric polarization in a bent Pb(Zr0.52Ti0.48) O3 (PZT) diaphragm fabricated by micromachining. The polarization induced by the strain gradient and the switching behaviors of the polarization in response to an external electric field are investigated by observing the electromechanical coupling of the diaphragm. The method allows determination of the absolute zero polarization state in a PZT film, which is impossible using other existing methods. Based on the observation of the absolute zero polarization state and the assumption that bending of the diaphragm is the only source of the self-polarization, the upper bound of flexoelectric coefficient of PZT film is calculated to be as large as 2.0 × 10-4 C m -1. The strain gradient induced by bending the diaphragm is measured to be on the order of 102 m-1, three orders of magnitude larger than that obtained in the bulk material. Because of this large strain gradient, the estimated giant flexoelectric polarization in the bent diaphragm is on the same order of magnitude as the normal remnant ferroelectric polarization of PZT film. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Masakazu, E-mail: masakazu731079@yahoo.co.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Inoguchi, Toyoshi, E-mail: toyoshi@intmed3.med.kyushu-u.ac.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Batchuluun, Battsetseg, E-mail: battsetseg.batchuluun@gmail.com [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Sugiyama, Naonobu, E-mail: nao1@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Kobayashi, Kunihisa, E-mail: nihisak@fukuoka-u.ac.jp [Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino, Fukuoka 818-8502 (Japan); Sonoda, Noriyuki, E-mail: noriyuki@intmed3.med.kyushu-u.ac.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Takayanagi, Ryoichi, E-mail: takayana@intmed3.med.kyushu-u.ac.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2013-08-16

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.

  19. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    International Nuclear Information System (INIS)

    Fujii, Masakazu; Inoguchi, Toyoshi; Batchuluun, Battsetseg; Sugiyama, Naonobu; Kobayashi, Kunihisa; Sonoda, Noriyuki; Takayanagi, Ryoichi

    2013-01-01

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent

  20. Mycobacterium tuberculosis-Induced Polarization of Human Macrophage Orchestrates the Formation and Development of Tuberculous Granulomas In Vitro.

    Directory of Open Access Journals (Sweden)

    Zikun Huang

    Full Text Available The tuberculous granuloma is an elaborately organized structure and one of the main histological hallmarks of tuberculosis. Macrophages, which are important immunologic effector and antigen-presenting cells, are the main cell type found in the tuberculous granuloma and have high plasticity. Macrophage polarization during bacterial infection has been elucidated in numerous recent studies; however, macrophage polarization during tuberculous granuloma formation and development has rarely been reported. It remains to be clarified whether differences in the activation status of macrophages affect granuloma formation. In this study, the variation in macrophage polarization during the formation and development of tuberculous granulomas was investigated in both sections of lung tissues from tuberculosis patients and an in vitro tuberculous granuloma model. The roles of macrophage polarization in this process were also investigated. Mycobacterium tuberculosis (M. tuberculosis infection was found to induce monocyte-derived macrophage polarization. In the in vitro tuberculous granuloma model, macrophage transformation from M1 to M2 was observed over time following M. tuberculosis infection. M2 macrophages were found to predominate in both necrotic and non-necrotic granulomas from tuberculosis patients, while both M1 and M2 polarized macrophages were found in the non-granulomatous lung tissues. Furthermore, it was found that M1 macrophages promote granuloma formation and macrophage bactericidal activity in vitro, while M2 macrophages inhibit these effects. The findings of this study provide insights into the mechanism by which M. tuberculosis circumvents the host immune system as well as a theoretical foundation for the development of novel tuberculosis therapies based on reprogramming macrophage polarization.

  1. Dependence of InGaN solar cell performance on polarization-induced electric field and carrier lifetime

    International Nuclear Information System (INIS)

    Yang Jing; Zhao De-Gang; Jiang De-Sheng; Liu Zong-Shun; Chen Ping; Li Liang; Wu Liang-Liang; Le Ling-Cong; Li Xiao-Jing; He Xiao-Guang; Yang Hui; Wang Hui; Zhu Jian-Jun; Zhang Shu-Ming; Zhang Bao-Shun

    2013-01-01

    The effects of Mg-induced net acceptor doping concentration and carrier lifetime on the performance of a p—i—n InGaN solar cell are investigated. It is found that the electric field induced by spontaneous and piezoelectric polarization in the i-region could be totally shielded when the Mg-induced net acceptor doping concentration is sufficiently high. The polarization-induced potential barriers are reduced and the short circuit current density is remarkably increased from 0.21 mA/cm 2 to 0.95 mA/cm 2 by elevating the Mg doping concentration. The carrier lifetime determined by defect density of i-InGaN also plays an important role in determining the photovoltaic properties of solar cell. The short circuit current density severely degrades, and the performance of InGaN solar cell becomes more sensitive to the polarization when carrier lifetime is lower than the transit time. This study demonstrates that the crystal quality of InGaN absorption layer is one of the most important challenges in realizing high efficiency InGaN solar cells. (interdisciplinary physics and related areas of science and technology)

  2. In-situ probing of coupled atomic restructuring and metallicity of oxide heterointerfaces induced by polar adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, S. [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Zhou, H. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Paudel, T. R. [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588, USA; Irwin, J. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Podkaminer, J. P. [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Bark, C. W. [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Lee, D. [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Kim, T. H. [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Fong, D. D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Rzchowski, M. S. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Tsymbal, E. Y. [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588, USA; Eom, C. B. [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

    2017-10-02

    Microscopic understanding of the surface-controlled conductivity of the two dimensional electron gas at complex oxide interfaces is crucial for developing functional interfaces. We observe conductivity and structural modification using in-situ synchrotron surface x-ray diffraction as the surface of a model LaAlO3/SrTiO3 (001) heterostructure is changed by polar adsorbates. We find that polar adsorbate-induced interfacial metallicity reduces polar distortions in the LaAlO3 layer. First-principles density functional theory calculations show that surface dipoles introduced by polar adsorbates lead to additional charge transfer and the reduction of polar displacements in the LaAlO3 layer, consistent with the experimental observations. Our study supports that internal structural deformations controlling functionalities can be driven without the application of direct electrical or thermal bias and offers a route to tuning interfacial properties. These results also highlight the important role of in-situ x-ray scattering with atomic resolution in capturing and exploring structural distortions and charge density changes caused by external perturbations such as chemical adsorption, redox reaction, and generation and/or annihilation of surface defects.

  3. Partial spin absorption induced magnetization switching and its voltage-assisted improvement in an asymmetrical all spin logic device at the mesoscopic scale

    Science.gov (United States)

    Zhang, Yue; Zhang, Zhizhong; Wang, Lezhi; Nan, Jiang; Zheng, Zhenyi; Li, Xiang; Wong, Kin; Wang, Yu; Klein, Jacques-Olivier; Khalili Amiri, Pedram; Zhang, Youguang; Wang, Kang L.; Zhao, Weisheng

    2017-07-01

    Beyond memory and storage, future logic applications put forward higher requirements for electronic devices. All spin logic devices (ASLDs) have drawn exceptional interest as they utilize pure spin current instead of charge current, which could promise ultra-low power consumption. However, relatively low efficiencies of spin injection, transport, and detection actually impede high-speed magnetization switching and challenge perspectives of ASLD. In this work, we study partial spin absorption induced magnetization switching in asymmetrical ASLD at the mesoscopic scale, in which the injector and detector have the nano-fabrication compatible device size (>100 nm) and their contact areas are different. The enlarged contact area of the detector is conducive to the spin current absorption, and the contact resistance difference between the injector and the detector can decrease the spin current backflow. Rigorous spin circuit modeling and micromagnetic simulations have been carried out to analyze the electrical and magnetic features. The results show that, at the fabrication-oriented technology scale, the ferromagnetic layer can hardly be switched by geometrically partial spin current absorption. The voltage-controlled magnetic anisotropy (VCMA) effect has been applied on the detector to accelerate the magnetization switching by modulating magnetic anisotropy of the ferromagnetic layer. With a relatively high VCMA coefficient measured experimentally, a voltage of 1.68 V can assist the whole magnetization switching within 2.8 ns. This analysis and improving approach will be of significance for future low-power, high-speed logic applications.

  4. Spectral Induced Polarization (SIP) monitoring during Microbial Enhanced Oil Recovery (MEOR)

    Science.gov (United States)

    Heenan, J. W.; Ntarlagiannis, D.; Slater, L. D.

    2010-12-01

    Jeffrey Heenan, Dimitrios Ntarlagiannis, Lee Slater Department of Earth and Environmental Sciences, Rutgers University, Newark NJ Microbial Enhanced Oil Recovery (MEOR) is an established, cost effective, method for enhancing tertiary oil recovery. Although not commonly used for shallow heavy oils, it could be a viable alternative since it can offer sustainable economic recovery and minimal environmental impact. A critical component of successful MEOR treatments is accurate, real time monitoring of the biodegradation processes resulting from the injection of microbial communities into the formation; results of recent biogeophysical research suggest that minimally-invasive geophysical methods could significantly contribute to such monitoring efforts. Here we present results of laboratory experiments, to assess the sensitivity of the spectral induced polarization method (SIP) to MEOR treatments. We used heavy oil, obtained from a shallow oilfield in SW Missouri, to saturate three sand columns. We then followed common industry procedures,and used a commercially available microbial consortia, to treat the oil columns. The active MEOR experiments were performed in duplicate while a control column maintained similar conditions, without promoting microbial activity and oil degradation. We monitored the SIP signatures, between 0.001 Hz and 1000 Hz, for a period of six months. To support the geophysical measurements we also monitored common geochemical parameters, including pH, Eh and fluid conductivity, and collected weekly fluid samples from the outflow and inflow for further analysis; fluid samples were analyzed to confirm that microbes actively degraded the heavy oils in the column while destructive analysis of the solid materials was performed upon termination of the experiment. Preliminary analysis of the results suggests that SIP is sensitive to MEOR processes. In both inoculated columns we recorded an increase in the low frequency polarization with time; measureable

  5. Spectral Induced Polarization (SIP) measurements for monitoring toluene contamination in clayey soils

    Science.gov (United States)

    Ustra, A.; Slater, L. D.; Ntarlagiannis, D.

    2010-12-01

    The Spectral Induced Polarization (SIP) method has previously shown potential for detecting hydrocarbons in the subsurface when clay minerals are present. However, results from recent studies of soils containing hydrocarbon contaminants are inconclusive, and further research is needed. In an effort to better constrain the sensitivity of SIP to toluene contamination in clayey soils, samples consisting of mixtures of quartzitic sand and montmorillonite (5 and 10% by weight) were contaminated with varying amounts of toluene (5, 10 and 20% by weight) and saturated with sodium nitrate solution (0.003 mol/L). The SIP response of the various samples was monitored for a period of about 40 days. An important aspect of this experimental work was to minimize measurement errors related with the experimental set up and uncertainty in the interpretation of effects of hydrocarbon presence that will result from any variations in sample packing. Errors from the experimental setup (electrodes, sample holder and data acquisition device) varied from 0.02 mrad (at 0.01 Hz) to 9 mrad (at 1000 Hz), as determined from calibration measurements on water samples with known electrical properties. Variations associated with the packing effect (based on repeated sample packs) were from 0.1 mrad (at 0.01 Hz) to 11 mrad (at 1000 Hz). The real and imaginary conductivities at specified frequencies and the integral chargeability and time constant (obtained from a Debye decomposition fitting) were correlated to toluene and clay content. Repeated SIP measurements suggest that the toluene contaminated samples may take significant time to come into equilibrium. Low frequency SIP measurements are significantly related to toluene content only during early stages of contamination, when the dependence of SIP on clay concentration is apparently suppressed. At later time, progress towards a steady state SIP response (interpreted to indicate equilibrium surface chemistry) results in loss of a significant

  6. Development of an inducible caspase-9 safety switch for pluripotent stem cell–based therapies

    Directory of Open Access Journals (Sweden)

    Chuanfeng Wu

    2014-01-01

    Full Text Available Induced pluripotent stem cell (iPSC therapies offer a promising path for patient-specific regenerative medicine. However, tumor formation from residual undifferentiated iPSC or transformation of iPSC or their derivatives is a risk. Inclusion of a suicide gene is one approach to risk mitigation. We introduced a dimerizable-“inducible caspase-9” (iCasp9 suicide gene into mouse iPSC (miPSC and rhesus iPSC (RhiPSC via a lentivirus, driving expression from either a cytomegalovirus (CMV, elongation factor-1 α (EF1α or pluripotency-specific EOS-C(3+ promoter. Exposure of the iPSC to the synthetic chemical dimerizer, AP1903, in vitro induced effective apoptosis in EF1α-iCasp9-expressing (EF1α-iPSC, with less effective killing of EOS-C(3+-iPSC and CMV-iPSC, proportional to transgene expression in these cells. AP1903 treatment of EF1α-iCasp9 miPSC in vitro delayed or prevented teratomas. AP1903 administration following subcutaneous or intravenous delivery of EF1α-iPSC resulted in delayed teratoma progression but did not ablate tumors. EF1α-iCasp9 expression was downregulated during in vitro and in vivo differentiation due to DNA methylation at CpG islands within the promoter, and methylation, and thus decreased expression, could be reversed by 5-azacytidine treatment. The level and stability of suicide gene expression will be important for the development of suicide gene strategies in iPSC regenerative medicine.

  7. Bias voltage induced resistance switching effect in single-molecule magnets’ tunneling junction

    Science.gov (United States)

    Zhang, Zhengzhong; Jiang, Liang

    2014-09-01

    An electric-pulse-induced reversible resistance change effect in a molecular magnetic tunneling junction, consisting of a single-molecule magnet (SMM) sandwiched in one nonmagnetic and one ferromagnetic electrode, is theoretically investigated. By applying a time-varying bias voltage, the SMM's spin orientation can be manipulated with large bias voltage pulses. Moreover, the different magnetic configuration at high-resistance/low-resistance states can be ‘read out’ by utilizing relative low bias voltage. This device scheme can be implemented with current technologies (Khajetoorians et al 2013 Science 339 55) and has potential application in molecular spintronics and high-density nonvolatile memory devices.

  8. Bias voltage induced resistance switching effect in single-molecule magnets' tunneling junction.

    Science.gov (United States)

    Zhang, Zhengzhong; Jiang, Liang

    2014-09-12

    An electric-pulse-induced reversible resistance change effect in a molecular magnetic tunneling junction, consisting of a single-molecule magnet (SMM) sandwiched in one nonmagnetic and one ferromagnetic electrode, is theoretically investigated. By applying a time-varying bias voltage, the SMM's spin orientation can be manipulated with large bias voltage pulses. Moreover, the different magnetic configuration at high-resistance/low-resistance states can be 'read out' by utilizing relative low bias voltage. This device scheme can be implemented with current technologies (Khajetoorians et al 2013 Science 339 55) and has potential application in molecular spintronics and high-density nonvolatile memory devices.

  9. Light-induced switching in pDTE-FICO 1D photonic structures

    Science.gov (United States)

    Kriegel, Ilka; Scotognella, Francesco

    2018-03-01

    We propose the design of 1D photonic crystals and microcavities in which fluorine-indium codoped cadmium oxide (FICO) nanocrystal based layers and layers of diarylethene-based polyester (pDTE) are alternated or embedded in a microcavity. The irradiation with UV light results in two different behaviours: (i) it dopes the FICO nanocrystals inducing a blue shift of their plasmonic resonances; (ii) it changes the real part of the refractive index of the photochromic pDTE polymer. These two behaviours are combined in the proposed photonic structures and can be useful for switchable filters and cavities for light emission.

  10. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals

    Science.gov (United States)

    Alikin, D. O.; Ievlev, A. V.; Turygin, A. P.; Lobov, A. I.; Kalinin, S. V.; Shur, V. Ya.

    2015-05-01

    Currently, ferroelectric materials with designed domain structures are considered as a perspective material for new generation of photonic, data storage, and data processing devices. Application of external electric field is the most convenient way of the domain structure formation. Lots of papers are devoted to the investigation of domain kinetics on polar surface of crystals while the forward growth remains one of the most mysterious stages due to lack of experimental methods allowing to study it. Here, we performed tip-induced polarization reversal on X- and Y-non-polar cuts in single-crystal of congruent lithium niobate which allows us to study the forward growth with high spatial resolution. The revealed difference in the shape and length of domains induced on X- and Y-cuts is beyond previously developed theoretical approaches used for the theoretical consideration of the domains growth at non-polar ferroelectric surfaces. To explain experimental results, we used kinetic approach with anisotropy of screening efficiency along different crystallographic directions.

  11. Electron induced conformational changes of an imine-based molecular switch on a Au(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Lotze, Christian; Henningsen, Nils; Franke, Katharina; Schulze, Gunnar; Pascual, Jose Ignacio [Inst. f. Experimentalphysik, Freie Universitaet Berlin (Germany); Luo, Ying; Haag, Rainer [Inst. f. Organische Chemie, Freie Universitaet Berlin (Germany)

    2009-07-01

    Azobenzene-based molecules exhibit a cis-trans configurational photoisomerisation in solution. Recently, the adsorption properties of azobenzene derivatives have been investigated on different metal surfaces in order to explore the possible changes in the film properties induced by external stimuli. In azobenzene, the diazo-bridge is a key group for the isomerization process. Its interaction with a metal surface is dominated through the N lone-pair electrons, which reduces the efficiency of the conformational change. In order to reduce the molecule-surface interaction, we explore an alternative molecular architecture by substituting the diazo-bridge (-N=N-) of azobenzene by an imine-group (-N=CH-). We have investigated the imine-based compound para-carboxyl-di-benzene-imine (PCI) adsorbed on a Au(111) surface. The carboxylic terminations mediates the formation of strongly bonded molecular dimers, which align in ordered rows preferentially following the fcc regions of the Au(111) herringbone reconstruction. Low temperature scanning tunneling microscopy was used to induce conformational changes between trans and cis state of individual molecules in a molecular monolayer.

  12. Cell therapy to induce allograft tolerance: Time to switch to plan B?

    Directory of Open Access Journals (Sweden)

    Antoine eSicard

    2015-04-01

    Full Text Available Organ transplantation is widely acknowledged as the best option for end stage failure of vital organs. Long-term graft survival is however limited by graft rejection, a destructive process resulting from the response of recipient’s immune system against donor-specific alloantigens. Prevention of rejection currently relies exclusively on immunosuppressive drugs that lack antigen specificity and therefore increase the risk for infections and cancers. Induction of donor-specific tolerance would provide indefinite graft survival without morbidity and therefore represents the Grail of transplant immunologists.Progresses in the comprehension of immunoregulatory mechanisms over the last decades have paved the way for cell therapies to induce allograft tolerance. The first part of the present article reviews the promising results obtained in experimental models with adoptive transfer of ex vivo-expanded regulatory CD4+ T cells (CD4+ Tregs and discuss which source and specificity should be preferred for transferred CD4+ Tregs. Interestingly, B cells have recently emerged as potent regulatory cells, able to establish a privileged crosstalk with CD4+ T cells. The second part of the present article reviews the evidences demonstrating the crucial role of regulatory B cells in transplantation tolerance. We propose the possibility to harness B cell regulatory functions to improve cell-based therapies aiming at inducing allograft tolerance.

  13. Interface-induced chiral domain walls, spin spirals and skyrmions revealed by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    von Bergmann, Kirsten; Kubetzka, André; Pietzsch, Oswald; Wiesendanger, Roland

    2014-10-01

    The spin textures of ultra-thin magnetic layers exhibit surprising variety. The loss of inversion symmetry at the interface of the magnetic layer and substrate gives rise to the so-called Dzyaloshinskii-Moriya interaction which favors non-collinear spin arrangements with unique rotational sense. Here we review the application of spin-polarized scanning tunneling microscopy to such systems, which has led to the discovery of interface-induced chiral domain walls and spin spirals. Recently, different interface-driven skyrmion lattices have been found, and the writing as well as the deleting of individual skyrmions based on local spin-polarized current injection has been demonstrated. These interface-induced non-collinear magnetic states offer new exciting possibilities to study fundamental magnetic interactions and to tailor material properties for spintronic applications.

  14. Direct observation of a force-induced switch in the anisotropic mechanical unfolding pathway of a protein.

    Science.gov (United States)

    Jagannathan, Bharat; Elms, Phillip J; Bustamante, Carlos; Marqusee, Susan

    2012-10-30

    Many biological processes generate force, and proteins have evolved to resist and respond to tension along different force axes. Single-molecule force spectroscopy allows for molecular insight into the behavior of proteins under force and the mechanism of protein folding in general. Here, we have used src SH3 to investigate the effect of different pulling axes under the low-force regime afforded by an optical trap. We find that this small cooperatively folded protein shows an anisotropic response to force; the protein is more mechanically resistant to force applied along a longitudinal axis compared to force applied perpendicular to the terminal β strand. In the longitudinal axis, we observe an unusual biphasic behavior revealing a force-induced switch in the unfolding mechanism suggesting the existence of two parallel unfolding pathways. A site-specific variant can selectively affect one of these pathways. Thus, even this simple two-state protein demonstrates a complex mechanical unfolding trajectory, accessing multiple unfolding pathways under the low-force regime of the optical trap; the specific unfolding pathway depends on the perturbation axis and the applied force.

  15. Conformational switching of ethano-bridged Cu,H2-bis-porphyrin induced by aromatic amines.

    Science.gov (United States)

    Bettini, Simona; Maglie, Emanuela; Pagano, Rosanna; Borovkov, Victor; Inoue, Yoshihisa; Valli, Ludovico; Giancane, Gabriele

    2015-01-01

    Cu,H2-bis-porphyrin (Cu,H2-Por2), in which copper porphyrin and free-base porphyrin are linked together by an ethano-bridge, was dissolved in chloroform and spread at the air/liquid subphase interface of a Langmuir trough. The bis-porphyrin derivative, floating film was characterized by reflection spectroscopy and the surface pressure of the floating film was studied as a function of the mean area per molecule. When aromatic amines are dissolved in the subphase, an evident interaction between the bis-porphyrin host and the aromatic amine guest is observed. A clear-cut variation of the profile of surface pressure vs area per molecule curve is observed. Reflection spectroscopy highlights that the aromatic amines dissolved in the subphase are able to induce the syn-to-anti conformational switching in the bis-porphyrin derivative. The Langmuir-Schaefer technique has been used to transfer the floating bis-porphyrin film (when using pure water as a subphase) to a surface plasmon resonance (SPR) substrate and the resulting device was able to detect the presence of aniline at concentrations as low as 1 nM in aqueous solution. The high selectivity of the SPR sensing device has been verified by checking the spectral response of the active layer towards other analytes dissolved in the aqueous solutions.

  16. Conformational switching of ethano-bridged Cu,H2-bis-porphyrin induced by aromatic amines

    Directory of Open Access Journals (Sweden)

    Simona Bettini

    2015-11-01

    Full Text Available Cu,H2-bis-porphyrin (Cu,H2-Por2, in which copper porphyrin and free-base porphyrin are linked together by an ethano-bridge, was dissolved in chloroform and spread at the air/liquid subphase interface of a Langmuir trough. The bis-porphyrin derivative, floating film was characterized by reflection spectroscopy and the surface pressure of the floating film was studied as a function of the mean area per molecule. When aromatic amines are dissolved in the subphase, an evident interaction between the bis-porphyrin host and the aromatic amine guest is observed. A clear-cut variation of the profile of surface pressure vs area per molecule curve is observed. Reflection spectroscopy highlights that the aromatic amines dissolved in the subphase are able to induce the syn-to-anti conformational switching in the bis-porphyrin derivative. The Langmuir–Schaefer technique has been used to transfer the floating bis-porphyrin film (when using pure water as a subphase to a surface plasmon resonance (SPR substrate and the resulting device was able to detect the presence of aniline at concentrations as low as 1 nM in aqueous solution. The high selectivity of the SPR sensing device has been verified by checking the spectral response of the active layer towards other analytes dissolved in the aqueous solutions.

  17. A combined nuclear and nucleolar localization motif in activation-induced cytidine deaminase (AID) controls immunoglobulin class switching.

    Science.gov (United States)

    Hu, Yi; Ericsson, Ida; Torseth, Kathrin; Methot, Stephen P; Sundheim, Ottar; Liabakk, Nina B; Slupphaug, Geir; Di Noia, Javier M; Krokan, Hans E; Kavli, Bodil

    2013-01-23

    Activation-induced cytidine deaminase (AID) is a DNA mutator enzyme essential for adaptive immunity. AID initiates somatic hypermutation and class switch recombination (CSR) by deaminating cytosine to uracil in specific immunoglobulin (Ig) gene regions. However, other loci, including cancer-related genes, are also targeted. Thus, tight regulation of AID is crucial to balance immunity versus disease such as cancer. AID is regulated by several mechanisms including nucleocytoplasmic shuttling. Here we have studied nuclear import kinetics and subnuclear trafficking of AID in live cells and characterized in detail its nuclear localization signal. Importantly, we find that the nuclear localization signal motif also directs AID to nucleoli where it colocalizes with its interaction partner, catenin-β-like 1 (CTNNBL1), and physically associates with nucleolin and nucleophosmin. Moreover, we demonstrate that release of AID from nucleoli is dependent on its C-terminal motif. Finally, we find that CSR efficiency correlates strongly with the arithmetic product of AID nuclear import rate and DNA deamination activity. Our findings suggest that directional nucleolar transit is important for the physiological function of AID and demonstrate that nuclear/nucleolar import and DNA cytosine deamination together define the biological activity of AID. This is the first study on subnuclear trafficking of AID and demonstrates a new level in its complex regulation. In addition, our results resolve the problem related to dissociation of deamination activity and CSR activity of AID mutants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Low-pulse energy Q-switched Nd:YAG laser treatment for hair-dye-induced Riehl's melanosis.

    Science.gov (United States)

    On, Hye Rang; Hong, Won Jin; Roh, Mi Ryung

    2015-06-01

    Riehl's melanosis, a form of dermatitis characterized by reticulate pigmentation, typically presents as a gray-brown to black hyperpigmentation on the face and neck. Among the various etiologic factors suggested, photoallergic reaction and pigmented contact dermatitis resulting from exposure to drugs, coal tar dyes, optical whitener, or other ingredients found in cosmetics are believed to be the major contributing factors in this disease. The histopathological features of Riehl's melanosis mainly consist of pigmentary incontinence along with infiltration of numerous dermal melanophages and lymphohistiocytes.1,2 Additionally, notable clinical improvements in the treatment of this condition have been reported for intense pulsed light (IPL) therapy, in comparison to long-term topical application of bleaching agents.2 Here, we report the cases of two Asian patients treated with a low-pulse energy 1,064-nm Q-switched (QS) Nd:YAG laser for hair dye-induced Riehl's melanosis on the face and neck. In conclusion, we observed that Riehl's melanosis on the face and neck was effectively and safely treated with a low-pulse energy 1,064-nm QS Nd:YAG laser. We suggest that this method can be used in Asian patients with Riehl's melanosis at risk of postinflammatory hyperpigmentation from excessive light or laser energy delivery.

  19. Psychosis After Switch in Opioid Maintenance Agonist and Risperidone-Induced Pisa Syndrome: Two Critical Incidents in Dual Diagnosis Treatment.

    Science.gov (United States)

    Sutter, Manuel; Walter, Marc; Dürsteler, Kenneth M; Strasser, Johannes; Vogel, Marc

    2017-01-01

    Dual diagnosis commonly occurs among patients with an opioid use disorder. Treatment is ideally performed in an integrated fashion. We present a case that illustrates the complex and challenging psychiatric and medical therapy of such patients in the light of the literature. We report on a 56-year-old patient with schizophrenia and opioid dependence who experienced both risperidone-induced Pisa syndrome and, 3 years later, acute psychosis after switching the opioid substitution medication from methadone to slow-release oral morphine due to QT prolongation. With the current availability of a diversity of substitution opioids in Switzerland (methadone, buprenorphine, diacetylmorphine, sustained-release oral morphine), studies on differential effectiveness of these agents in opioid-dependent subpopulations with selective comorbidity profiles are desirable. The same is true for further investigation of the involvement of the opioid receptor system in schizophrenia. In clinical practice, any alteration of opioid medication in patients with dual diagnosis and a history of schizophrenia should be accompanied by close observation for psychotic symptoms.

  20. MiR-223/Pknox1 axis protects mice from CVB3-induced viral myocarditis by modulating macrophage polarization.

    Science.gov (United States)

    Gou, Weihui; Zhang, Zhen; Yang, Chunfeng; Li, Yumei

    2018-03-07

    Macrophage polarization plays a crucial role in regulating myocardial inflammation and injuries of coxsackievirus B3 (CVB3)-induced viral myocarditis (VM). It has been reported that miR-223 is a potent regulator of inflammatory responses that involved in macrophage polarization. However, the functional roles of miR-223 in CVB3-induced VM still remain unknown. Here, we found that miR-223 expression was significantly down-regulated in heart tissues and heart-infiltrating macrophages of CVB3-infected mice. Up-regulation of miR-223 in vivo protected the mice against CVB3-induced myocardial injuries characterized by the increased body weight and survival, enhanced left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), relieved inflammation, depressed creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH) and aspartate transaminase (AST) levels, reduced production of interferon (IFN)-γ, interleukin (IL)-6 as well as increased IL-10. We subsequently found that miR-233 up-regulation significantly suppressed the expression of M1 markers (iNOS, TNF-α and CD 86), and promoted the expression of M2 markers (Arginase-1, Fizz-1 and CD 206) in vivo and in vitro. Furthermore, we confirmed that miR-223 directly targeted Pknox1 to inhibit its expression, and the expression of Pknox1 was inversely correlated with miR-223 expression in heart tissues and heart-infiltrating macrophages of CVB3-infected mice. Gain-of-function analyses indicated that Pknox1 overexpression partially reversed the polarization phenotypes regulated by miR-223 overexpression. Taken together, the data suggest that miR-223 protects against CVB3-induced inflammation and myocardial damage, which may partly attribute to the regulation of macrophage polarization via targeting Pknox1. Copyright © 2018. Published by Elsevier Inc.

  1. Induced polarization (IP) imaging for the improved characterization of clay-rich landslides

    Science.gov (United States)

    Gallistl, Jakob; Flores-Orozco, Adrián; Ottowitz, David; Gautier, Stéphanie; Malet, Jean-Philippe

    2017-04-01

    Landslides pose a significant socio-economical natural hazard, in particular those developed in clay-rich environments due to their suddenness, volumes and propagations. Typically induced by meteorological phenomena (i.e. strong precipitations) the understanding of water circulation in clayey landslides is critical for an adequate hydromechanical modeling and the development of accurate early warning systems. In recent years, electrical resistivity tomography (ERT) has been widely applied to characterize the structure of landslides and monitoring of hydrogeological changes, aiming at an improved understanding of the water flow patterns. However, clay-rich sediments limit the applicability of ERT due the low contrast in the electrical signatures of clay minerals and saturated soil. Taking into account the strong induced polarization (IP) response in the presence of clay minerals, we propose the application of the IP imaging method to improve the delineation of structures and heterogeneities controlling water flow circulation in clayey landslides. To better evaluate the IP method at different geological conditions, here we discuss IP imaging results for data collected at two different landslides located in France (La Valette in the South East Alps, and Lodève located in the southern border of the Massif Central Massif) as well as two sites in Austria. These sites were selected due to the extensive non-geophysical information available and the ERT monitoring data measured over several years. IP measurements have been collected in both time- and frequency-domain to further assess the advantages of the different techniques in particular towards the quantification of hydrogeological parameters, such as dominating grain size and hydraulic conductivity. Imaging results demonstrate an improved lithological characterization, permitting the delineation of the sliding plane as well as a better discrimination of clay lenses with enhanced resolution. Nevertheless the clay

  2. Charge trapping-detrapping induced resistive switching in Ba0.7Sr0.3TiO3

    Directory of Open Access Journals (Sweden)

    Xi Zou

    2012-09-01

    Full Text Available Intensive research has been devoted to the resistive switching phenomena observed in many transitional metal oxides because of its potential for non-volatile memory application. To clarify the underlying mechanism of resistive switching, a planar device can provide information that is not accessible in conventional vertical sandwich structures. Here we report the observation of resistive switching behavior in a Pt/Ba0.7Sr0.3TiO3/Pt planar device. Using in-situ scanning Kelvin probe microscopy, we demonstrate that charge trapping/detrapping around the Pt/Ba0.7Sr0.3TiO3 interface modulates the Schottky barrier, resulting in the observed resistive switching. The findings are valuable for the understanding of resistive switching in oxide materials.

  3. Spectral Induced Polarization approaches to characterize reactive transport parameters and processes

    Science.gov (United States)

    Schmutz, M.; Franceschi, M.; Revil, A.; Peruzzo, L.; Maury, T.; Vaudelet, P.; Ghorbani, A.; Hubbard, S. S.

    2017-12-01

    For almost a decade, geophysical methods have explored the potential for characterization of reactive transport parameters and processes relevant to hydrogeology, contaminant remediation, and oil and gas applications. Spectral Induced Polarization (SIP) methods show particular promise in this endeavour, given the sensitivity of the SIP signature to geological material electrical double layer properties and the critical role of the electrical double layer on reactive transport processes, such as adsorption. In this presentation, we discuss results from several recent studies that have been performed to quantify the value of SIP parameters for characterizing reactive transport parameters. The advances have been realized through performing experimental studies and interpreting their responses using theoretical and numerical approaches. We describe a series of controlled experimental studies that have been performed to quantify the SIP responses to variations in grain size and specific surface area, pore fluid geochemistry, and other factors. We also model chemical reactions at the interface fluid/matrix linked to part of our experimental data set. For some examples, both geochemical modelling and measurements are integrated into a SIP physico-chemical based model. Our studies indicate both the potential of and the opportunity for using SIP to estimate reactive transport parameters. In case of well sorted granulometry of the samples, we find that the grain size characterization (as well as the permeabililty for some specific examples) value can be estimated using SIP. We show that SIP is sensitive to physico-chemical conditions at the fluid/mineral interface, including the different pore fluid dissolved ions (Na+, Cu2+, Zn2+, Pb2+) due to their different adsorption behavior. We also showed the relevance of our approach to characterize the fluid/matrix interaction for various organic contents (wetting and non-wetting oils). We also discuss early efforts to jointly

  4. Characterization of ice Content in Permafrost Soils on the Seward Peninsula, Alaska Using Induced Polarization

    Science.gov (United States)

    Nolan, J.; Parsekian, A.; Slater, L.; Plug, L.; Grosse, G.; Walter, K.

    2008-12-01

    Zones of high ice content are imaged using direct current (DC) and induced polarization (IP) electrical measurements in Permafrost soils on the Northern Seward Peninsula. Variable ice content in near surface permafrost as a result of ice wedge development is a major control on thermokarst erosion rates, making the characterization of distribution important to process modeling. A set of IP and DC resistivity measurements were collected at five locations, four in varying generations of thermokarst lake basins and one where there is no evidence of thermokarst lake basin development. GPR data was also collected using 100 and 200 mHz unsheilded antenna at each line, as well as high precision DGPS measurements, vegetation mapping, active layer thickness measurements, and soil characterization using test pits and nearby outcrops. DC resistivity and GPR results correspond well to the active layer probe and test pits dug to the bottom of the active layer. IP imaging shows the location of elevated ice content as strongly nonpolarizable anomolies which correlate to ice wedge ridges measured with GPS and observed from vegetation patterning. Non-polarizable targets found deeper in the permefrost at the site not yet effected by thermokarst erosion indicates that Pleistocene aged ice wedges are below the Holocene ice wedges expressed at the surface as distinct patterning, confirming that ice content distribution may not be easily estimated from surface patterning alone. These observations are confirmed by nearby exposures of ice wedges. The results show that the IP measurements are useful for characterizing ice content distribution in permafrost soils may be used to link ground based observations with larger scale estimates that are needed for process and carbon balance modeling of permafrost soils.

  5. The Current State of Nanoparticle-Induced Macrophage Polarization and Reprogramming Research

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Miao

    2017-02-01

    Full Text Available Macrophages are vital regulators of the host defense in organisms. In response to different local microenvironments, resting macrophages (M0 can be polarized into different phenotypes, pro-inflammatory (M1 or anti-inflammatory (M2, and perform different roles in different physiological or pathological conditions. Polarized macrophages can also be further reprogrammed by reversing their phenotype according to the changed milieu. Macrophage polarization and reprogramming play essential roles in maintaining the steady state of the immune system and are involved in the processes of many diseases. As foreign substances, nanoparticles (NPs mainly target macrophages after entering the body. NPs can perturb the polarization and reprogramming of macrophages, affect their immunological function and, therefore, affect the pathological process of disease. Optimally-designed NPs for the modulation of macrophage polarization and reprogramming might provide new solutions for treating diseases. Systematically investigating how NPs affect macrophage polarization is crucial for understanding the regulatory effects of NPs on immune cells in vivo. In this review, macrophage polarization by NPs is summarized and discussed.

  6. An aromatic region to induce a switch between agonism and inverse agonism at the ghrelin receptor

    DEFF Research Database (Denmark)

    Els, Sylvia; Schild, Enrico; Petersen, Pia Steen

    2012-01-01

    The ghrelin receptor displays a high constitutive activity suggested to be involved in the regulation of appetite and food intake. Here, we have created peptides with small changes in the core binding motif -wFw- of the hexapeptide KwFwLL-NH(2) that can swap the peptide behavior from inverse...... agonism to agonism, indicating the importance of this sequence. Introduction of β-(3-benzothienyl)-d-alanine (d-Bth), 3,3-diphenyl-d-alanine (d-Dip) and 1-naphthyl-d-alanine (d-1-Nal) at position 2 resulted in highly potent and efficient inverse agonists, whereas the substitution of d......-tryptophane at position 4 with 1-naphthyl-d-alanine (d-1-Nal) and 2-naphthyl-d-alanine (d-2-Nal) induces agonism in functional assays. Competitive binding studies showed a high affinity of the inverse agonist K-(d-1-Nal)-FwLL-NH(2) at the ghrelin receptor. Moreover, mutagenesis studies of the receptor revealed key...

  7. An electron induced two-dimensional switch made of azobenzene derivatives anchored in supramolecular assemblies.

    Science.gov (United States)

    Henzl, Jörg; Morgenstern, Karina

    2010-06-21

    Supramolecular assemblies of 4-anilino-4'-nitroazobenzene are investigated on the Au(111) surface by low temperature scanning tunneling microscopy and spectroscopy with submolecular resolution. Adsorption at 250 K leads to three different structures that are formed via hydrogen bonds: a star structure and two types of line structures: a meandering and a zigzag line. The formation of these supramolecular assemblies is affected by the available space on the fcc domains of the reconstructed Au(111) substrate as well as by the two-dimensional chirality of the molecules on the surface. The star structure is enantiomerically pure, while both types of lines consist of a racemic mixture. Bonding between homochiral pairs differ from the one between heterochiral pairs in the position of the hydrogen bonds. Inside these supramolecular assemblies two configurations of the molecules are identified: An almost straight trans-configuration and a slightly bent cis*-configuration. The trans-configuration largely reflects the structure of this isomer in gas phase, while the cis*-configuration is two-dimensional on the surface in contrast to the three-dimensional gas phase cis-configuration. The reversible trans-cis* isomerization is induced by electron tunneling through the LUMO+1 state of the molecule, which is located at +2.9 V.

  8. Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, Joseph; Ingeman-Nielsen, Thomas; Christiansen, Anders V.

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP...... and subsurface temperatures supplemented the DC-IP measurements. A time-lapse DC-IP monitoring system has been acquiring at least six datasets per day on a 42-electrode profile with 0.5. m electrode spacing since July 2013. Remote control of the data acquisition system enables interactive adaptation...

  9. Monolithic InP-based fast optical switch module for optical networks of the future

    DEFF Research Database (Denmark)

    Xi, Chen; Regan, James; Durrant, Tim

    2015-01-01

    We summarized the development of Venture Photonics’ sub-10 ns fast optical switch which demonstrates low insertion loss, excellent crosstalk level and polarization independent switching performance.......We summarized the development of Venture Photonics’ sub-10 ns fast optical switch which demonstrates low insertion loss, excellent crosstalk level and polarization independent switching performance....

  10. Electrically-induced polarization selection rules of a graphene quantum dot

    Science.gov (United States)

    Dong, Qing-Rui; Li, Yan; Jia, Chen; Wang, Fu-Li; Zhang, Ya-Ting; Liu, Chun-Xiang

    2018-05-01

    We study theoretically the single-electron triangular zigzag graphene quantum dot in uniform in-plane electric fields. The absorption spectra of the dot are calculated by the tight-binding method. The energy spectra and the distribution of wave functions are also presented to analyse the absorption spectra. The orthogonal zero-energy eigenstates are arranged along to the direction of the external field. The remarkable result is that all intraband transitions and some interband transitions are forbidden when the absorbed light is polarized along the direction of the electric field. With x-direction electric field, all intraband absorption is y polarized due to the electric-field-direction-polarization selection rule. Moreover, with y-direction electric field, all absorption is either x or y polarized due to the parity selection rule as well as to the electric-field-direction-polarization selection rule. Our calculation shows that the formation of the absorption spectra is co-decided by the polarization selection rules and the overlap between the eigenstates of the transition.

  11. Interface-Induced Polarization in SrTiO 3 -LaCrO 3 Superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Comes, Ryan B. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Spurgeon, Steven R. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Heald, Steve M. [Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Kepaptsoglou, Despoina M. [SuperSTEM, SciTech Daresbury Campus, Daresbury WA44AD UK; Jones, Lewys [Department of Materials, University of Oxford, Oxford OX13PH UK; Ong, Phuong Vu [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Bowden, Mark E. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Ramasse, Quentin M. [SuperSTEM, SciTech Daresbury Campus, Daresbury WA44AD UK; Sushko, Peter V. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Chambers, Scott A. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2016-02-29

    Epitaxial interfaces and superlattices comprised of polar and non-polar perovskite oxides have generated a good deal of interest because of the variety of novel properties they possess. In this work, we examine superlattices comprised of SrTiO3 (STO) and LaCrO3 (LCO) layers; we demonstrate that the differing band alignment of the polar LCO layer and the non-polar STO layer produces a ferroelectric phase transition throughout the STO layers of the superlattice. Through x-ray absorption near edge spectroscopy and aberration-corrected scanning transmission electron microscopy we show that the Ti cations are displaced off-center in the TiO6 octahedra along the superlattice growth direction. We also demonstrate that a built-in potential gradient exists within the STO and LCO layers via in situ x-ray photoelectron spectroscopy measurements. Density functional theory models of the system are in excellent agreement with these results, predicting both the ferroelectric octahedral distortion and the built-in electric field. These results represent a new avenue for research in perovskite superlattices, as two non-ferroelectric phases are shown to induce a bulk ferroelectric response due to interfacial phenomena.

  12. Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Gregorčič, Peter, E-mail: peter.gregorcic@fs.uni-lj.si [Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana (Slovenia); Sedlaček, Marko; Podgornik, Bojan [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia); Reif, Jürgen [Brandenburgische Technische Universitaet – BTU Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany)

    2016-11-30

    Highlights: • Low number of differently polarized ps laser pulses is superimposed on tool steel. • Last pulses determine the ripples orientation for single spot and coherent traces. • Previously formed structures are overridden by later incident pulses. • Ripples contrast depends on total exposure, independent on pulses’ polarization. • Weak role of pre-formed structures makes interference scenarios questionable. - Abstract: Laser-induced periodic surface structures (LIPSS) are produced on cold work tool steel by irradiation with a low number of picosecond laser pulses. As expected, the ripples, with a period of about 90% of the laser wavelength, are oriented perpendicular to the laser polarization. Subsequent irradiation with the polarization rotated by 45° or 90° results in a corresponding rotation of the ripples. This is visible already with the first pulse and becomes almost complete – erasing the previous orientation – after as few as three pulses. The phenomenon is not only observed for single-spot irradiation but also for writing long coherent traces. The experimental results strongly defy the role of surface plasmon-polaritons as the predominant key to LIPSS formation.

  13. Finding buried metallic pipes using a non-destructive approach based on 3D time-domain induced polarization data

    Science.gov (United States)

    Shao, Zhenlu; Revil, André; Mao, Deqiang; Wang, Deming

    2018-04-01

    The location of buried utility pipes is often unknown. We use the time-domain induced polarization method to non-intrusively localize metallic pipes. A new approach, based on injecting a primary electrical current between a pair of electrodes and measuring the time-lapse voltage response on a set of potential electrodes after shutting down this primary current is used. The secondary voltage is measured on all the electrodes with respect to a single electrode used as a reference for the electrical potential, in a way similar to a self-potential time lapse survey. This secondary voltage is due to the formation of a secondary current density in the ground associated with the polarization of the metallic pipes. An algorithm is designed to localize the metallic object using the secondary voltage distribution by performing a tomography of the secondary source current density associated with the polarization of the pipes. This algorithm is first benchmarked on a synthetic case. Then, two laboratory sandbox experiments are performed with buried metallic pipes located in a sandbox filled with some clean sand. In Experiment #1, we use a horizontal copper pipe while in Experiment #2 we use an inclined stainless steel pipe. The result shows that the method is effective in localizing these two pipes. At the opposite, electrical resistivity tomography is not effective in localizing the pipes because they may appear resistive at low frequencies. This is due to the polarization of the metallic pipes which blocks the charge carriers at its external boundaries.

  14. Tuning the polarization-induced free hole density in nanowires graded from GaN to AlN

    Energy Technology Data Exchange (ETDEWEB)

    Golam Sarwar, A. T. M.; Carnevale, Santino D. [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Kent, Thomas F.; Yang, Fan; McComb, David W. [Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Myers, Roberto C., E-mail: myers.1079@osu.edu [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-01-19

    We report a systematic study of p-type polarization-induced doping in graded AlGaN nanowire light emitting diodes grown on silicon wafers by plasma-assisted molecular beam epitaxy. The composition gradient in the p-type base is varied in a set of samples from 0.7%Al/nm to 4.95%Al/nm corresponding to negative bound polarization charge densities of 2.2 × 10{sup 18 }cm{sup −3} to 1.6 × 10{sup 19 }cm{sup −3}. Capacitance measurements and energy band modeling reveal that for gradients greater than or equal to 1.30%Al/nm, the deep donor concentration is negligible and free hole concentrations roughly equal to the bound polarization charge density are achieved up to 1.6 × 10{sup 19 }cm{sup −3} at a gradient of 4.95%Al/nm. Accurate grading lengths in the p- and n-side of the pn-junction are extracted from scanning transmission electron microscopy images and are used to support energy band calculation and capacitance modeling. These results demonstrate the robust nature of p-type polarization doping in nanowires and put an upper bound on the magnitude of deep donor compensation.

  15. Tuning the polarization-induced free hole density in nanowires graded from GaN to AlN

    Science.gov (United States)

    Golam Sarwar, A. T. M.; Carnevale, Santino D.; Kent, Thomas F.; Yang, Fan; McComb, David W.; Myers, Roberto C.

    2015-01-01

    We report a systematic study of p-type polarization-induced doping in graded AlGaN nanowire light emitting diodes grown on silicon wafers by plasma-assisted molecular beam epitaxy. The composition gradient in the p-type base is varied in a set of samples from 0.7%Al/nm to 4.95%Al/nm corresponding to negative bound polarization charge densities of 2.2 × 1018 cm-3 to 1.6 × 1019 cm-3. Capacitance measurements and energy band modeling reveal that for gradients greater than or equal to 1.30%Al/nm, the deep donor concentration is negligible and free hole concentrations roughly equal to the bound polarization charge density are achieved up to 1.6 × 1019 cm-3 at a gradient of 4.95%Al/nm. Accurate grading lengths in the p- and n-side of the pn-junction are extracted from scanning transmission electron microscopy images and are used to support energy band calculation and capacitance modeling. These results demonstrate the robust nature of p-type polarization doping in nanowires and put an upper bound on the magnitude of deep donor compensation.

  16. Analysis of Induced Polarization effects in airborne TEM data - a case study from central East Greenland

    Science.gov (United States)

    Maack Rasmussen, Thorkild; Brethes, Anaïs; Pierpaolo Guarnieri, Pierpaolo; Bauer, Tobias

    2017-04-01

    Data from a high-resolution airborne SkyTEM time-domain electromagnetic survey conducted in central East Greenland were analysed. An analysis based on utilization of a Self Organizing Map procedure for response curve characterization and analyses based on data inversion and modelling are presented. The survey was flown in 2013 along the eastern margin of the Jameson Land basin with the purpose of base metal exploration and with sulphide mineralization as target. The survey area comprises crystalline basement to the East and layered Early Triassic to Jurassic sediments to the West. The layers are dipping a few degrees towards West. The Triassic sequence is 1 to 2 km thick and mostly of continental origin. The fluviatile Early Triassic arkoses and conglomerates, the Upper Triassic grey limestone and black shale beds and overlying gypsiferous sandstones and mudstones are known to host disseminated sulphides. E-W oriented lines were flown with an average terrain clearance of 30m and a separation of 300m. The data were initially processed and inverted by SkyTEM Aps. The conductivity models showed some conductive layers as well as induced polarization (IP) effects in the data. IP effects in TEM data reflect the relaxation of polarized charges in the ground which can be good indicators of the presence of metallic particles. Some of these locations were drilled during the following field season but unfortunately did not reveal the presence of mineralization. The aim of this study is therefore to understand the possible causes of these IP effects. Electrical charge accumulation in the ground can be related to the presence of sulphides, oxides or graphite or to the presence of clays or fibrous minerals. Permafrost may also cause IP effects and is then expected to be associated with a highly resistive subsurface. Several characteristics of the transient curves (IP indicators) of the SkyTEM survey were extracted and analysed by using the Kohonen Self-Organizing Map (SOM

  17. A β-Ta system for current induced magnetic switching in the absence of external magnetic field

    Science.gov (United States)

    Chen, Wenzhe; Qian, Lijuan; Xiao, Gang

    2018-05-01

    Magnetic switching via Giant Spin Hall Effect (GSHE) has received great interest for its role in developing future spintronics logic or memory devices. In this work, a new material system (i.e. a transition metal sandwiched between two ferromagnetic layers) with interlayer exchange coupling is introduced to realize the deterministic field-free perpendicular magnetic switching. This system uses β-Ta, as the GSHE agent to generate a spin current and as the interlayer exchange coupling medium to generate an internal field. The critical switching current density at zero field is on the order of 106 A/cm2 due to the large spin Hall angle of β-Ta. The internal field, along with switching efficiency, depends strongly on the orthogonal magnetization states of two ferromagnetic coupling layers in this system.

  18. Modeling and inversion Matlab algorithms for resistivity, induced polarization and seismic data

    Science.gov (United States)

    Karaoulis, M.; Revil, A.; Minsley, B. J.; Werkema, D. D.

    2011-12-01

    M. Karaoulis (1), D.D. Werkema (3), A. Revil (1,2), A., B. Minsley (4), (1) Colorado School of Mines, Dept. of Geophysics, Golden, CO, USA. (2) ISTerre, CNRS, UMR 5559, Université de Savoie, Equipe Volcan, Le Bourget du Lac, France. (3) U.S. EPA, ORD, NERL, ESD, CMB, Las Vegas, Nevada, USA . (4) USGS, Federal Center, Lakewood, 10, 80225-0046, CO. Abstract We propose 2D and 3D forward modeling and inversion package for DC resistivity, time domain induced polarization (IP), frequency-domain IP, and seismic refraction data. For the resistivity and IP case, discretization is based on rectangular cells, where each cell has as unknown resistivity in the case of DC modelling, resistivity and chargeability in the time domain IP modelling, and complex resistivity in the spectral IP modelling. The governing partial-differential equations are solved with the finite element method, which can be applied to both real and complex variables that are solved for. For the seismic case, forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wavepaths are materialized by Fresnel volumes rather than by conventional rays. This approach accounts for complicated velocity models and is advantageous because it considers frequency effects on the velocity resolution. The inversion can accommodate data at a single time step, or as a time-lapse dataset if the geophysical data are gathered for monitoring purposes. The aim of time-lapse inversion is to find the change in the velocities or resistivities of each model cell as a function of time. Different time-lapse algorithms can be applied such as independent inversion, difference inversion, 4D inversion, and 4D active time constraint inversion. The forward algorithms are benchmarked against analytical solutions and inversion results are compared with existing ones. The algorithms are packaged as Matlab codes with a simple Graphical User Interface. Although the code is parallelized for multi

  19. Investigations of a Cretaceous limestone with spectral induced polarization and scanning electron microscopy

    Science.gov (United States)

    Johansson, Sara; Sparrenbom, Charlotte; Fiandaca, Gianluca; Lindskog, Anders; Olsson, Per-Ivar; Dahlin, Torleif; Rosqvist, Håkan

    2017-02-01

    Characterization of varying bedrock properties is a common need in various contexts, ranging from large infrastructure pre-investigations to environmental protection. A direct current resistivity and time domain induced polarization (IP) survey aiming to characterize properties of a Cretaceous limestone was carried out in the Kristianstad basin, Sweden. The time domain IP data was processed with a recently developed method in order to suppress noise from the challenging urban setting in the survey area. The processing also enabled extraction of early decay times resulting in broader spectra of the time decays and inversion for Cole-Cole parameters. The aims of this study is to investigate if large-scale geoelectrical variations as well as small-scale structural and compositional variations exist within the Kristianstad limestone, and to evaluate the usefulness of Cole-Cole inverted IP data in early time ranges for bedrock characterization. The inverted sections showed variations within the limestone that could be caused by variations in texture and composition. Samples from a deep drilling in the Kristianstad basin were investigated with scanning electron microscopy and energy dispersive X-ray spectroscopy, and the results showed that varying amounts of pyrite, glauconite and clay matrix were present at different levels in the limestone. The local high IP anomalies in the limestone could be caused by these minerals otherwise the IP responses were generally weak. There were also differences in the texture of the limestone at different levels, governed by fossil shapes and composition, proportions of calcareous cement and matrix as well as amount of silicate grains. Textural variations may have implications on the variation in Cole-Cole relaxation time and frequency factor. However, more research is needed in order to directly connect microgeometrical properties in limestone to spectral IP responses. The results from this study show that it is possible to recover

  20. Pseudospark switches

    International Nuclear Information System (INIS)

    Billault, P.; Riege, H.; Gulik, M. van; Boggasch, E.; Frank, K.

    1987-01-01

    The pseudospark discharge is bound to a geometrical structure which is particularly well suited for switching high currents and voltages at high power levels. This type of discharge offers the potential for improvement in essentially all areas of switching operation: peak current and current density, current rise, stand-off voltage, reverse current capability, cathode life, and forward drop. The first pseudospark switch was built at CERN at 1981. Since then, the basic switching characteristics of pseudospark chambers have been studied in detail. The main feature of a pseudospark switch is the confinement of the discharge plasma to the device axis. The current transition to the hollow electrodes is spread over a rather large surface area. Another essential feature is the easy and precise triggering of the pseudospark switch from the interior of the hollow electrodes, relatively far from the main discharge gap. Nanosecond delay and jitter values can be achieved with trigger energies of less than 0.1 mJ, although cathode heating is not required. Pseudospark gaps may cover a wide range of high-voltage, high-current, and high-pulse-power switching at repetition rates of many kilohertz. This report reviews the basic researh on pseudospark switches which has been going on at CERN. So far, applications have been developed in the range of thyratron-like medium-power switches at typically 20 to 40 kV and 0.5 to 10 kA. High-current pseudospark switches have been built for a high-power 20 kJ pulse generator which is being used for long-term tests of plasma lenses developed for the future CERN Antiproton Collector (ACOL). The high-current switches have operated for several hundred thousand shots, with 20 to 50 ns jitter at 16 kV charging voltage and more than 100 kA peak current amplitude. (orig.)

  1. Performance Analysis of Multiradio Transmitter with Polar or Cartesian Architectures Associated with High Efficiency Switched-Mode Power Amplifiers (invited paper

    Directory of Open Access Journals (Sweden)

    F. Robert

    2010-12-01

    Full Text Available This paper deals with wireless multi-radio transmitter architectures operating in the frequency band of 800 MHz – 6 GHz. As a consequence of the constant evolution in the communication systems, mobile transmitters must be able to operate at different frequency bands and modes according to existing standards specifications. The concept of a unique multiradio architecture is an evolution of the multistandard transceiver characterized by a parallelization of circuits for each standard. Multi-radio concept optimizes surface and power consumption. Transmitter architectures using sampling techniques and baseband ΣΔ or PWM coding of signals before their amplification appear as good candidates for multiradio transmitters for several reasons. They allow using high efficiency power amplifiers such as switched-mode PAs. They are highly flexible and easy to integrate because of their digital nature. But when the transmitter efficiency is considered, many elements have to be taken into account: signal coding efficiency, PA efficiency, RF filter. This paper investigates the interest of these architectures for a multiradio transmitter able to support existing wireless communications standards between 800 MHz and 6 GHz. It evaluates and compares the different possible architectures for WiMAX and LTE standards in terms of signal quality and transmitter power efficiency.

  2. Effects of electric field and light polarization on the electromagnetically induced transparency in an impurity doped quantum ring

    Science.gov (United States)

    Bejan, D.; Stan, C.; Niculescu, E. C.

    2018-01-01

    We theoretically investigated the effects of the impurity position, in-plane electric field, intensity and polarization of the probe and control lasers on the electromagnetically induced transparency (EIT) in GaAs/GaAlAs disc shaped quantum ring. Our study reveals that, depending on the impurity position, the quantum system presents two specific configurations for the EIT occurrence even in the absence of the external electric field, i.e. ladder-configuration or V-configuration, and changes the configuration from ladder to V for specific electric field values. The polarization of the probe and control lasers plays a crucial role in obtaining a good transparency. The electric field controls the red-shift (blue-shift) of the transparency window and modifies its width. The system exhibits birefringence for the probe light in a limited interval of electric field values.

  3. Switching antidepressants

    African Journals Online (AJOL)

    depressive disorder, with response rates of 50-60%. Switching within or between classes of antidepressants is often required in patients with an insufficient response to SSRIs.12 Because they share a similar mechanism of action, the immediate substitution of one SSRI for another is probably the easiest switching option.

  4. Semaphorin3A induces nerve regeneration in the adult cornea-a switch from its repulsive role in development.

    Directory of Open Access Journals (Sweden)

    Min Zhang

    Full Text Available The peripheral sensory nerves that innervate the cornea can be easily damaged by trauma, surgery, infection or diabetes. Several growth factors and axon guidance molecules, such as Semaphorin3A (Sema3A are upregulated upon cornea injury. Nerves can regenerate after injury but do not recover their original density and patterning. Sema3A is a well known axon guidance and growth cone repellent protein during development, however its role in adult cornea nerve regeneration remains undetermined. Here we investigated the neuro-regenerative potential of Sema3A on adult peripheral nervous system neurons such as those that innervate the cornea. First, we examined the gene expression profile of the Semaphorin class 3 family members and found that all are expressed in the cornea. However, upon cornea injury there is a fast increase in Sema3A expression. We then corroborated that Sema3A totally abolished the growth promoting effect of nerve growth factor (NGF on embryonic neurons and observed signs of growth cone collapse and axonal retraction after 30 min of Sema3A addition. However, in adult isolated trigeminal ganglia or dorsal root ganglia neurons, Sema3A did not inhibited the NGF-induced neuronal growth. Furthermore, adult neurons treated with Sema3A alone produced similar neuronal growth to cells treated with NGF and the length of the neurites and branching was comparable between both treatments. These effects were replicated in vivo, where thy1-YFP neurofluorescent mice subjected to cornea epithelium debridement and receiving intrastromal pellet implantation containing Sema3A showed increased corneal nerve regeneration than those receiving pellets with vehicle. In adult PNS neurons, Sema3A is a potent inducer of neuronal growth in vitro and cornea nerve regeneration in vivo. Our data indicates a functional switch for the role of Sema3A in PNS neurons where the well-described repulsive role during development changes to a growth promoting effect

  5. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.

    Science.gov (United States)

    Sadeghi, S M

    2014-09-01

    When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.

  6. Charge transfer state induced from locally excited state by polar solvent

    Science.gov (United States)

    Sun, Mengtao

    2005-06-01

    The photophysical properties of the novel perylene imide (Pi) and oligo-pentaphenyl bisfluorene (pPh) containing molecule have been investigated by quantum chemical methods. It is concluded that the first excited singlet state in the gas is the locally excited state; while the lowest excited state in polar solvents is the intramolecular charge transfer (ICT) state, which corresponds to the ICT from pPh to Pi. This excited state in the polar solvent adopts a planar geometry, in marked contrast to the twisted geometry in the gas phase. The planar geometry in the polar solvent significantly delocalized densities of HOMOs, compared to those in the gas phase, but the influence of the planar geometry to densities of LUMO is very small. Overall, the computed results remain in good agreement with the relevant experimental data.

  7. Magnetic field induced strong valley polarization in the three-dimensional topological semimetal LaBi

    Science.gov (United States)

    Kumar, Nitesh; Shekhar, Chandra; Klotz, J.; Wosnitza, J.; Felser, Claudia

    2017-10-01

    LaBi is a three-dimensional rocksalt-type material with a surprisingly quasi-two-dimensional electronic structure. It exhibits excellent electronic properties such as the existence of nontrivial Dirac cones, extremely large magnetoresistance, and high charge-carrier mobility. The cigar-shaped electron valleys make the charge transport highly anisotropic when the magnetic field is varied from one crystallographic axis to another. We show that the electrons can be polarized effectively in these electron valleys under a rotating magnetic field. We achieved a polarization of 60% at 2 K despite the coexistence of three-dimensional hole pockets. The valley polarization in LaBi is compared to the sister compound LaSb where it is found to be smaller. The performance of LaBi is comparable to the highly efficient bismuth.

  8. Resistivity, induced polarization, and self-potential methods in geothermal exploration

    Energy Technology Data Exchange (ETDEWEB)

    Ward, S.H.; Sill, W.R.

    1982-01-01

    An overview of the literature is presented. This is followed by a statement of some elementary electromagnetic theory necessary to establish the MKS system of units and the fundamental physics governing electrical methods of exploration. Next there is presented a reasonably detailed discussion of the electrical properties of earth materials including normal mode of conduction, surface conduction, electrode polarization, membrane polarization, semiconduction, melt conduction, real and complex resistivity, and the origin of self-potentials in geothermal systems. To illustrate how electrical methods are used within the framework of integrated geological, geochemical, and geophysical exploration, the case history of the Monroe-Red Hill hot springs system is presented.

  9. How, when and where can spatial segregation induce opinion polarization? Two competing models

    NARCIS (Netherlands)

    Feliciani, T.; Flache, A.; Tolsma, J.

    2017-01-01

    Increasing ethnic diversity fosters scholarly interest in how the spatial segregation of groups affects opinion polarization in a society. Despite much empirical and theoretical research, there is little consensus in the literature on the causal link between the spatial segregation of two groups and

  10. Inositol Trisphosphate-Induced Ca2+ Signaling Modulates Auxin Transport and PIN Polarity

    Czech Academy of Sciences Publication Activity Database

    Zhang, J.; Vanneste, S.; Brewer, P. B.; Michniewicz, M.; Grones, P.; Kleine-Vehn, J.; Löfke, Ch.; Teichmann, T.; Bielach, A.; Cannoot, B.; Hoyerová, Klára; Chen, X.; Xue, H. W.; Benková, E.; Zažímalová, Eva; Friml, J.

    2011-01-01

    Roč. 20, č. 6 (2011), s. 855-866 ISSN 1534-5807 Institutional research plan: CEZ:AV0Z50380511 Keywords : PIN polarity * auxin distribution * Inositol trisphosphate Subject RIV: ED - Physiology Impact factor: 14.030, year: 2011

  11. How, when and where can Spatial Segregation Induce Opinion Polarization? Two Competing Models

    NARCIS (Netherlands)

    Feliciani, Thomas; Flache, Andreas; Tolsma, Jochem

    2017-01-01

    Increasing ethnic diversity fosters scholarly interest in how the spatial segregation of groups affects opinion polarization in a society. Despite much empirical and theoretical research, there is little consensus in the literature on the causal link between the spatial segregation of two groups and

  12. Involuntary switching into the native language induced by electrocortical stimulation of the superior temporal gyrus: a multimodal mapping study.

    Science.gov (United States)

    Tomasino, Barbara; Marin, Dario; Canderan, Cinzia; Maieron, Marta; Budai, Riccardo; Fabbro, Franco; Skrap, Miran

    2014-09-01

    We describe involuntary language switching from L2 to L1 evoked by electro-stimulation in the superior temporal gyrus in a 30-year-old right-handed Serbian (L1) speaker who was also a late Italian learner (L2). The patient underwent awake brain surgery. Stimulation of other portions of the exposed cortex did not cause language switching as did not stimulation of the left inferior frontal gyrus, where we evoked a speech arrest. Stimulation effects on language switching were selective, namely, interfered with counting behaviour but not with object naming. The coordinates of the positive site were combined with functional and fibre tracking (DTI) data. Results showed that the language switching site belonged to a significant fMRI cluster in the left superior temporal gyrus/supramarginal gyrus found activated for both L1 and L2, and for both the patient and controls, and did not overlap with the inferior fronto-occipital fasciculus (IFOF), the inferior longitudinal fasciculus (ILF) and the superior longitudinal fasciculus (SLF). This area, also known as Stp, has a role in phonological processing. Language switching phenomenon we observed can be partly explained by transient dysfunction of the feed-forward control mechanism hypothesized by the DIVA (Directions Into Velocities of Articulators) model (Golfinopoulos, E., Tourville, J. A., & Guenther, F. H. (2010). The integration of large-scale neural network modeling and functional brain imaging in speech motor control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Nonlinear unitary transformations of space-variant polarized light fields from self-induced geometric-phase optical elements

    Science.gov (United States)

    Kravets, Nina; Brasselet, Etienne

    2018-01-01

    We propose to couple the optical orientational nonlinearities of liquid crystals with their ability to self-organize to tailor them to control space-variant-polarized optical fields in a nonlinear manner. Experimental demonstration is made using a liquid crystal light valve that behaves like a light-driven geometric phase optical element. We also unveil two original nonlinear optical processes, namely self-induced separability and nonseparability. These results contribute to the advancement of nonlinear singular optics that is still in its infancy despite 25 years of effort, which may foster the development of nonlinear protocols to manipulate high-dimensional optical information both in the classical and quantum regimes.

  14. The effect of the external medium on the gravity-induced polarity of cytoplasmic streaming in Chara corallina (Characeae)

    Science.gov (United States)

    Staves, M. P.; Wayne, R.; Leopold, A. C.

    1997-01-01

    Gravity induces a polarity of cytoplasmic streaming in vertical internodal cells of Chara such that the downwardly directed stream moves faster than the upwardly directed stream. In order to determine whether the statolith theory (in which intracellular sedimenting particles are responsible for gravity sensing) or the gravitational pressure theory (in which the entire protoplast acts as the gravity sensor) best explain the gravity response in Chara internodal cells, we controlled the physical properties of the external medium, including density and osmolarity, with impermeant solutes and examined the effect on the polarity of cytoplasmic streaming. As the density of the external medium is increased, the polarity of cytoplasmic streaming decreases and finally disappears when the density of the external medium is equal to that of the cell (1015 kg/m3). A further increase in the density of the external medium causes a reversal of the gravity response. These results are consistent with the gravitational pressure theory of gravity sensing since the buoyancy of the protoplast is dependent on the difference between the density of the protoplast and the external medium, and are inconsistent with the statolith theory since the buoyancy of intracellular particles are unaffected by changes in the external medium.

  15. Temperature Driven Topological Switch in 1T'-MoTe2 and Strain Induced Nematicity in NaFeAs

    Science.gov (United States)

    Berger, Ayelet Denise Notis

    Quasiparticle interference (QPI) is a powerful technique within Scanning Tunneling Microscopy (STM) that is used to probe the electronic bandstructure of materials. This thesis presents two examples using QPI to measure the bandstructure in materials with exotic electronic states that can be tuned via outside parameters (temperature and strain). In Part I of the thesis, we discuss the temperature dependence of Fermi Arcs in 1T'-MoTe 2, and then in Part II, the strain dependent nematic state in NaFeAs. The recent discovery of Weyl semimetals has introduced a new family of materials with topologically protected electronic properties and potential applications due to their anomalous transport effects. Even more useful is a Weyl semimetal that can be turned "on" and "off," switching between a topological and trivial state. One possible material is MoTe2, which undergoes a phase transition at 240K. This thesis consists of experiments using Scanning Tunneling Microscopy (STM) and Spectroscopy (STS) at different temperatures to visualize changes in the electronic bandstructure of MoTe2 across the topological phase transition. We show that a signature of topologically protected Fermi Arcs is present at low temperatures but disappears at room temperature, in the trivial phase. We include an in-depth discussion of how to account for thermal effects when comparing these two types of measurements. In Part II, we discuss strain induced nematicity in NaFeAs, an iron pnictide. Nematic fluctuations and spin correlations play an important role in the phase diagram of the iron pnictides, a family of unconventional superconductors. Illuminating the mechanism behind this symmetry breaking is key to understanding the superconducting state. Previous work has shown that nematicity in the iron pnictides responds strongly to applied strain [1, 2]. In this thesis, I present results from a new experimental technique, elasto-scanning tunneling microscopy (E-STM), which combines in situ strain

  16. Infective Larvae of Brugia malayi Induce Polarization of Host Macrophages that Helps in Immune Evasion

    Directory of Open Access Journals (Sweden)

    Aditi Sharma

    2018-02-01

    Full Text Available Filarial parasites suppress, divert, or polarize the host immune response to aid their survival. However, mechanisms that govern the polarization of host MΦs during early filarial infection are not completely understood. In this study, we infected BALB/c mice with infective larvae stage-3 of Brugia malayi (Bm-L3 and studied their effect on the polarization of splenic MΦs. Results showed that MΦs displayed M2-phenotype by day 3 p.i. characterized by upregulated IL-4, but reduced IL-12 and Prostaglandin-D2 secretion. Increased arginase activity, higher arginase-1 but reduced NOS2 expression and poor phagocytic and antigen processing capacity was also observed. M2 MΦs supported T-cell proliferation and characteristically upregulated p-ERK but downregulated NF-κB-p65 and NF-κB-p50/105. Notably, Bm-L3 synergized with host regulatory T-cells (Tregs and polarized M2 MΦs to regulatory MΦs (Mregs by day 7 p.i., which secreted copious amounts of IL-10 and prostaglandin-E2. Mregs also showed upregulated expression levels of MHC-II, CD80, and CD86 and exhibited increased antigen-processing capacity but displayed impaired activation of NF-κB-p65 and NF-κB-p50/105. Neutralization of Tregs by anti-GITR + anti-CD25 antibodies checked the polarization of M2 MΦs to Mregs, decreased accumulation of regulatory B cells and inflammatory monocytes, and reduced secretion of IL-10, but enhanced IL-4 production and percentages of eosinophils, which led to Bm-L3 killing. In summary, we report hitherto undocumented effects of early Bm-L3 infection on the polarization of splenic MΦs and show how infective larvae deftly utilize the functional plasticity of host MΦs to establish themselves inside the host.

  17. Huge capacity optical packet switching and buffering.

    Science.gov (United States)

    Shinada, Satoshi; Furukawa, Hideaki; Wada, Naoya

    2011-12-12

    We demonstrate 2.56 Tbit/s/port dual-polarization DWDM/DQPSK variable-length optical packet (20 Gbit/s × 64 wavelengths × 2 polarizations) switching and buffering by using a 2×2 optical packet switch (OPS) system. The optical data plane of the OPS system was constructed of multi-connected electro-optical switches and fiber delay lines. The accumulated polarization dependent loss of each optical path in the data plane was less than 5 dB. This low-polarization-dependence OPS system enabled us to handle DWDM/DQPSK optical packets (1.28 Tbit/s/port) with time-varying polarization after transmission through 100 km fiber in the field. © 2011 Optical Society of America

  18. Assessment of laser photobiomodulation and polarized light on the healing of cutaneous wounds on euthyroid and hypothyroid induced rats

    Science.gov (United States)

    Ramalho, Luciana Maria Pedreira; Weyll, Barbara Mayoral Pedroso; da Costa Lino, Maíra Dória M.; Ramalho, Maria Jose Pedreira; Barbosa Pinheiro, Antonio Luis

    2010-02-01

    The aim of this study was to assess the influence of low-level laser therapy (LLLT) or polarized light (PL) in cutaneous wound healing of hypothyroid rats at dosages of 20 or 40J/cm2. Bioestimulatory effects of Laser radiation and Polarized light are recognized alternative therapies to improve healing on systemic disease patients, but their usefulness in the improvement of hypothyroidism healing impairment is uncertain till date. Forty Wistar rats were used in this study. Hypothyroidism was propylthiouracil- induced. Standard excisional cutaneous wounds were created without suturing and LLLT (λ660nm, 30mW, φ 3mm) or PL (λ 400-2000nm, 40mW, φ 10mm) was applied every 48 hours up to seven days on experimental groups. The rats were killed on the eighth day when wound contraction was assessed. The healing features were evaluated by light microscopy (H/E and Sirius Red). The cutaneous wounds of hypothyroid rats showed delayed healing process characterized by reduced thickness of epithelial layers, incipient formation of disorganized collagen fibers and wound contraction to a lesser extent (FISHER, p=0.0276), when compared to the euthyroid group. The use of both the Laser and Polarized Light on hypothyroid rats increased the amount of fibroblasts and the thickness of collagen fibers, especially on the L 20J/cm2 group. Euthyroid rats have still demonstrated more regular collagen fibers pattern than hypothyroid rats. It was therefore concluded that hypothyroidism delays wound healing and both Laser photobiomodulation and Polarized Light at 20j/cm2 dosages had improved the healing process in hypothyroid rats.

  19. Magnetic switching

    International Nuclear Information System (INIS)

    Kirbie, H.C.

    1989-01-01

    Magnetic switching is a pulse compression technique that uses a saturable inductor (reactor) to pass pulses of energy between two capacitors. A high degree of pulse compression can be achieved in a network when several of these simple, magnetically switched circuits are connected in series. Individual inductors are designed to saturate in cascade as a pulse moves along the network. The technique is particularly useful when a single-pulse network must be very reliable or when a multi-pulse network must operate at a high pulse repetition frequency (PRF). Today, magnetic switches trigger spark gaps, sharpen the risetimes of high energy pulses, power large lasers, and drive high PRF linear induction accelerators. This paper will describe the technique of magnetic pulse compression using simple networks and design equations. A brief review of modern magnetic materials and of their role in magnetic switch design will be presented. 12 refs., 8 figs

  20. Vitamin E Circular Dichroism Studies: Insights into Conformational Changes Induced by the Solvent’s Polarity

    Directory of Open Access Journals (Sweden)

    Drew Marquardt

    2016-12-01

    Full Text Available We used circular dichroism (CD to study differences in CD spectra between α-, δ-, and methylated-α-tocopherol in solvents with different polarities. CD spectra of the different tocopherol structures differ from each other in intensity and peak locations, which can be attributed to chromanol substitution and the ability to form hydrogen bonds. In addition, each structure was examined in different polarity solvents using the Reichardt index—a measure of the solvent’s ionizing ability, and a direct measurement of solvent–solute interactions. Differences across solvents indicate that hydrogen bonding is a key contributor to CD spectra at 200 nm. These results are a first step in examining the hydrogen bonding abilities of vitamin E in a lipid bilayer.

  1. Stark-state resonances induced by low-frequency elliptically polarized fields

    Science.gov (United States)

    Richards, D.

    1997-09-01

    We analyse the effect of a low-frequency elliptically polarized electric field on an excited hydrogen atom using classical dynamics. It is shown that at particular frequencies the ionization probability is a non-monotonic function of the field strength and that at these frequencies the classical ionization probabilities agree well with those of experiment. We show that this unusual behaviour is produced by resonance between Stark states and the driving field near the circularly polarized limit. By averaging over the fast motion, to produce a mean-motion approximation, we show how the resonance affects the motion and that the effect is different according to whether the electron is initially rotating in the same or in the opposite direction to the field.

  2. Magnetic field induced polarization enhancement in monolayers of tungsten dichalcogenides: effects of temperature

    Science.gov (United States)

    Smoleński, T.; Kazimierczuk, T.; Goryca, M.; Molas, M. R.; Nogajewski, K.; Faugeras, C.; Potemski, M.; Kossacki, P.

    2018-01-01

    Optical orientation of localized/bound excitons is shown to be effectively enhanced by the application of magnetic fields as low as 20 mT in monolayer WS2. At low temperatures, the evolution of the polarization degree of different emission lines of monolayer WS2 with increasing magnetic fields is analyzed and compared to similar results obtained on a WSe2 monolayer. We study the temperature dependence of this effect up to T=60 K for both materials, focusing on the dynamics of the valley pseudospin relaxation. A rate equation model is used to analyze our data and from the analysis of the width of the polarization dip in magnetic field we conclude that the competition between the dark exciton pseudospin relaxation and the decay of the dark exciton population into the localized states are rather different in these two materials which are representative of the two extreme cases for the ratio of relaxation rate and depolarization rate.

  3. X-ray polarization fluctuations induced by cloud eclipses in active galactic nuclei

    Czech Academy of Sciences Publication Activity Database

    Marin, Frederic; Dovčiak, Michal

    2015-01-01

    Roč. 573, January (2015), A60/1-A60/8 ISSN 0004-6361 R&D Projects: GA MŠk LD12010 Grant - others:EU(XE) COST action MP1104 Institutional support: RVO:67985815 Keywords : galaxies: Seyfert * polarization * radiative transfer * relativistic processes * scattering * X-rays: general Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  4. Polarity-induced persistent surface reconstruction in SrRuO3(111) thin films.

    Science.gov (United States)

    Xie, Weimei; Saghayezhian, Mohammad; Gu, M. Q.; Guo, Hangwen; Wu, X. S.; Plummer, E. W.; Zhang, Jiandi

    The surface structural and electronic properties of SrRuO3/SrTiO3\\ (111) as function of the film thickness are investigated. It is found that, though the interface of SRO/STO (111) has no polar mismatch and negligible lattice mismatch, the polar surface of SrRuO3 (111) thin films results in a persistent surface reconstruction. Above 2 unit cells, a (√{ 3} ×√{ 3}) R30° surface reconstruction is observed with both Low energy and reflection high energy electron diffraction. X-ray photoemission spectroscopy shows that the reconstruction is associated with the ordered oxygen vacancies on SrO3-δ terminated surface to compensate the surface polarity. Post annealing in oxygen/ozone mixture restores the p(1 × 1) surface structure, but results in different surface relaxation and enhances the metallicity thus reducing the thickness of dead layer in this material. Supported by U.S. DOE under Grant No. DOE DE-SC0002136.

  5. Magnetization reversal of ferromagnetic nanoparticles induced by a stream of polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kozhushner, M.A.; Gatin, A.K.; Grishin, M.V.; Shub, B.R. [Semenov Institute of Chemical Physics of RAS, 4, Kosygin Street, Moscow 119991 (Russian Federation); Kim, V.P.; Khomutov, G.B. [Faculty of Physics, Lomonosov Moscow State University, Lenin Gory 1-2, Moscow 119991 (Russian Federation); Ilegbusi, O.J. [University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2450 (United States); Trakhtenberg, L.I. [Semenov Institute of Chemical Physics of RAS, 4, Kosygin Street, Moscow 119991 (Russian Federation)

    2016-09-15

    The remagnetization of ferromagnetic Fe{sub 3}O{sub 4} nanoparticles of several thousand cubic nanometers by spin-polarized current is investigated. For this purpose, magnetite nanoparticles are synthesized and deposited on a conductive nonmagnetic substrate. The remagnetization is conducted in high-vacuum scanning tunneling microscope (STM). The STM tip from magnetized iron wire constitutes one electrode while the ferromagnetic nanoparticle on the graphite surface represents the second electrode. The measured threshold value of remagnetization current (I{sub thresh}=9 nA) is the lowest value of current at which remagnetization occurs. The change in nanoparticle magnetization is detected by the effect of giant magnetic resistance, specifically, the dependence of the weak polarized current (Ipolarized current on magnetic moment of small ferromagnetic nanoclusters. The peculiarities of size dependence of the observed effects are explained. - Highlights: • Ferromagnetic nanoparticle in STM with ferromagnetic tip. • Change of the direction of nanoparticle magnetization by current I>I{sub cr}=9 nA. • GMR effect used to control change of magnetization.

  6. Direct current (DC) resistivity and Induced Polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, J.; Fiandaca, G.; Ingeman-Nielsen, Thomas

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (...... non-intrusively and reliably image freezing patterns and their lateral variation on a 10-100 m scale that is difficult to sample by point measurements.......) measurements at high temporal resolution at a heath tundra site on Disko Island on the west coast of Greenland (69°N). Borehole sediment characteristics and subsurface temperatures supplemented the DC-IP measurements. Data acquired during the freezing period of October 2013 – February 2014 clearly image...... the soil freezing as a strong increase in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below-freezing...

  7. Spectral time-domain induced polarization and magnetic surveying – an efficient tool for characterization of solid waste deposits in developing countries

    DEFF Research Database (Denmark)

    Wemegah, David Dotse; Fiandaca, Gianluca; Auken, Esben

    Time-domain induced polarization (IP) and magnetic data were acquired to map and characterize the decommissioned, un-engineered, municipal solid waste deposit site of the Kwame Nkrumah University of Science and Technology (KNUST), located in the Kumasi Metropolis of Ghana. Thirteen induced...

  8. Peroxide induced volatile and non-volatile switching behavior in ZnO-based electrochemical metallization memory cell.

    Science.gov (United States)

    Simanjuntak, Firman Mangasa; Chandrasekaran, Sridhar; Pattanayak, Bhaskar; Lin, Chun-Chieh; Tseng, Tseung-Yuen

    2017-09-20

    We explore the use of cubic-zinc peroxide (ZnO 2 ) as a switching material for electrochemical metallization memory (ECM) cell. The ZnO 2 was synthesized with a simple peroxide surface treatment. Devices made without surface treatment exhibits a high leakage current due to the self-doped nature of the hexagonal-ZnO material. Thus, its switching behavior can only be observed when a very high current compliance is employed. The synthetic ZnO 2 layer provides a sufficient resistivity to the Cu/ZnO 2 /ZnO/ITO devices. The high resistivity of ZnO 2 encourages the formation of a conducting bridge to activate the switching behavior at a lower operation current. Volatile and non-volatile switching behaviors with sufficient endurance and an adequate memory window are observed in the surface-treated devices. The room temperature retention of more than 10 4 s confirms the non-volatility behavior of the devices. In addition, our proposed device structure is able to work at a lower operation current among other reported ZnO-based ECM cells.

  9. Electrical Resistivity Tomography and Induced Polarization for Mapping the Subsurface of Alluvial Fans: A Case Study in Punata (Bolivia

    Directory of Open Access Journals (Sweden)

    Andres Gonzales Amaya

    2016-11-01

    Full Text Available Conceptual models of aquifer systems can be refined and complemented with geophysical data, and they can assist in understanding hydrogeological properties such as groundwater storage capacity. This research attempts to use geoelectrical methods, Electrical Resistivity Tomography and Induced Polarization parameters, for mapping the subsurface in alluvial fans and to demonstrate its applicability; the Punata alluvial fan was used as a case study. The resistivity measurements proved to be a good tool for mapping the subsurface in the fan, especially when used in combination with Induced Polarization parameters (i.e., Normalized Chargeability. The Punata alluvial fan characterization indicated that the top part of the subsurface is composed of boulders in a matrix of finer particles and that the grain size decreases with depth; the electrical resistivity of these deposits ranged from 200 to 1000 Ωm, while the values of normalized chargeability were lower than 0.05 mS/m. The bottom of the aquifer system consisted of a layer with high clay content, and the resistivity ranged from 10 to 100 Ωm, while the normalized chargeability is higher than 0.07 mS/m. With the integration of these results and lithological information, a refined conceptual model is proposed; this model gives a more detailed description of the local aquifer system. It can be concluded that geoelectrical methods are useful for mapping aquifer systems in alluvial fans.

  10. EGCG in Green Tea Induces Aggregation of HMGB1 Protein through Large Conformational Changes with Polarized Charge Redistribution

    Science.gov (United States)

    Meng, Xuan-Yu; Li, Baoyu; Liu, Shengtang; Kang, Hongsuk; Zhao, Lin; Zhou, Ruhong

    2016-02-01

    As a major effective component in green tea, (-)-epigallocatechin-3-gallate (EGCG)’s potential benefits to human health have been widely investigated. Recent experimental evidences indicate that EGCG can induce the aggregation of HMGB1 protein, a late mediator of inflammation, which subsequently stimulates the autophagic degradation and thus provides protection from lethal endotoxemia and sepsis. In this study, we use molecular dynamics (MD) simulations to explore the underlying molecular mechanism of this aggregation of HMGB1 facilitated by EGCG. Our simulation results reveal that EGCG firmly binds to HMGB1 near Cys106, which supports previous preliminary experimental evidence. A large HMGB1 conformational change is observed, where Box A and Box B, two homogenous domains of HMGB1, are repositioned and packed together by EGCG. This new HMGB1 conformation has large molecular polarity and distinctive electrostatic potential surface. We suggest that the highly polarized charge distribution leads to the aggregation of HMGB1, which differs from the previous hypothesis that two HMGB1 monomers are linked by the dimer of EGCG. Possible aggregating modes have also been investigated with potential of mean force (PMF) calculations. Finally, we conclude that the conformation induced by EGCG is more aggregation-prone with higher binding free energies as compared to those without EGCG.

  11. Progesterone therapy induces an M1 to M2 switch in microglia phenotype and suppresses NLRP3 inflammasome in a cuprizone-induced demyelination mouse model.

    Science.gov (United States)

    Aryanpour, Roya; Pasbakhsh, Parichehr; Zibara, Kazem; Namjoo, Zeinab; Beigi Boroujeni, Fatemeh; Shahbeigi, Saeed; Kashani, Iraj Ragerdi; Beyer, Cordian; Zendehdel, Adib

    2017-10-01

    Demyelination of the central nervous system (CNS) has been associated to reactive microglia in neurodegenerative disorders, such as multiple sclerosis (MS). The M1 microglia phenotype plays a pro-inflammatory role while M2 is involved in anti-inflammatory processes in the brain. In this study, CPZ-induced demyelination mouse model was used to investigate the effect of progesterone (PRO) therapy on microglia activation and neuro-inflammation. Results showed that progesterone therapy (CPZ+PRO) decreased neurological behavioral deficits, as demonstrated by significantly decreased escape latencies, in comparison to CPZ mice. In addition, CPZ+PRO caused a significant reduction in the mRNA expression levels of M1-markers (iNOS, CD86, MHC-II and TNF-α) in the corpus callosum region, whereas the expression of M2-markers (Trem-2, CD206, Arg-1 and TGF-β) was significantly increased, in comparison to CPZ mice. Moreover, CPZ+PRO resulted in a significant decrease in the number of iNOS + and Iba-1 + /iNOS + cells (M1), whereas TREM-2 + and Iba-1 + /TREM-2 + cells (M2) significantly increased, in comparison to CPZ group. Furthermore, CPZ+PRO caused a significant decrease in mRNA and protein expression levels of NLRP3 and IL-18 (~2-fold), in comparison to the CPZ group. Finally, CPZ+PRO therapy was accompanied with reduced levels of demyelination, compared to CPZ, as confirmed by immunofluorescence to myelin basic protein (MBP) and Luxol Fast Blue (LFB) staining, as well as transmission electron microscopy (TEM) analysis. In summary, we reported for the first time that PRO therapy causes polarization of M2 microglia, attenuation of M1 phenotype, and suppression of NLRP3 inflammasome in a CPZ-induced demyelination model of MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Optical fiber switch

    Science.gov (United States)

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  13. Ultrafast magnetic vortex core switching driven by the topological inverse Faraday effect.

    Science.gov (United States)

    Taguchi, Katsuhisa; Ohe, Jun-ichiro; Tatara, Gen

    2012-09-21

    We present a theoretical discovery of an unconventional mechanism of inverse Faraday effect which acts selectively on topological magnetic structures. The effect, topological inverse Faraday effect, is induced by the spin Berry's phase of the magnetic structure when a circularly polarized light is applied. Thus a spin-orbit interaction is not necessary unlike that in the conventional inverse Faraday effect. We demonstrate by numerical simulation that topological inverse Faraday effect realizes ultrafast switching of a magnetic vortex within a switching time of 150 ps without magnetic field.

  14. Switching behaviour of modulated ferroelectrics: the kinetics of the field induced lock-in transition in K{sub 2}SeO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Leist, J; Gibhardt, H; Hradil, K; Eckold, G [Institute of Physical Chemistry, Georg-August-University of Goettingen (Germany)

    2011-08-03

    The field induced switching process across the ferroelectric lock-in transition in K{sub 2}SeO{sub 4} has been studied on a millisecond timescale using stroboscopic neutron diffraction. The time evolution of both the first and the third order satellites was examined. The time constants are found to vary with temperature between 0.2 and 1.2 ms. This is an order of magnitude faster than in the isostructural Rb{sub 2}ZnCl{sub 4}. Moreover, the time dependence of the satellite's linewidth provides information about the evolution of the coherence of the modulated structure.

  15. Uncertainties of atmospheric polarimetric measurements with sun-sky radiometers induced by errors of relative orientations of polarizers

    Science.gov (United States)

    Li, Li; Li, Zhengqiang; Li, Kaitao; Sun, Bin; Wu, Yanke; Xu, Hua; Xie, Yisong; Goloub, Philippe; Wendisch, Manfred

    2018-04-01

    In this study errors of the relative orientations of polarizers in the Cimel polarized sun-sky radiometers are measured and introduced into the Mueller matrix of the instrument. The linearly polarized light with different polarization directions from 0° to 180° (or 360°) is generated by using a rotating linear polarizer in front of an integrating sphere. Through measuring the referential linearly polarized light, the errors of relative orientations of polarizers are determined. The efficiencies of the polarizers are obtained simultaneously. By taking the error of relative orientation into consideration in the Mueller matrix, the accuracies of the calculated Stokes parameters, the degree of linear polarization, and the angle of polarization are remarkably improved. The method may also apply to other polarization instruments of similar types.

  16. Pulse train induced rotational excitation and orientation of a polar molecule.

    Science.gov (United States)

    Tyagi, Ashish; Arya, Urvashi; Vidhani, Bhavna; Prasad, Vinod

    2014-08-14

    We investigate theoretically the rotational excitation and field free molecular orientation of polar HBr molecule, interacting with train of ultrashort laser pulses. By adjusting the number of pulses, pulse period and the intensity of the pulse, one can suppress a population while simultaneously enhancing the desired population in particular rotational state. We have used train of laser pulses of different shaped pulse envelopes. The dynamics and orientation of molecules in the presence of pulse train of different shapes is studied and explained. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Selective Solvent-Induced Stabilization of Polar Oxide Surfaces in an Electrochemical Environment

    Science.gov (United States)

    Yoo, Su-Hyun; Todorova, Mira; Neugebauer, Jörg

    2018-02-01

    The impact of an electrochemical environment on the thermodynamic stability of polar oxide surfaces is investigated for the example of ZnO(0001) surfaces immersed in water using density functional theory calculations. We show that solvation effects are highly selective: They have little effect on surfaces showing a metallic character, but largely stabilize semiconducting structures, particularly those that have a high electrostatic penalty in vacuum. The high selectivity is shown to have direct consequences for the surface phase diagram and explains, e.g., why certain surface structures could be observed only in an electrochemical environment.

  18. Magnetized Reverse Shock: Density-fluctuation-induced Field Distortion, Polarization Degree Reduction, and Application to GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Deng Wei; Zhang Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States); Li Hui [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stone, James M., E-mail: deng@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: hli@lanl.gov, E-mail: jstone@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States)

    2017-08-10

    The early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ , of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the “Athena++” relativistic MHD code to simulate a relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.

  19. Microstructure and mechanical changes induced by Q-Switched pulse laser on human enamel with aim of caries prevention

    Science.gov (United States)

    Apsari, R.; Pratomo, D. A.; Hikmawati, D.; Bidin, N.

    2016-03-01

    This study was conducted to determine the effect of Q-Switched Nd: YAG laser energy dose to human enamel caries. The specifications of Q-Switched Nd: YAG laser as followed: wavelength of 1064 nm and 6 ns pulse width. Caries enamel samples taken from human teeth molars of 17-35 ages and the type of media caries. Energy doses used in this study were 723.65 mJ/cm2, 767.72 mJ/cm2, and 1065.515 mJ/cm2; 5 Hz repetition rate, and 20 second exposure time. Samples characterized the surface morphology and the percentage of constituent elements, especially calcium/phosphorus (Ca/P) with FESEM-EDAX. The fraction volume and crystallinity percentage of hydroxyapatite (HA) with XRD and hardness value using Vickers Microhardness Test. The results indicated that exposure of Q-Switched Nd:YAG laser on enamel caries resulting cracks, holes, and melt due to plasma production effects in the surface. Plasma production effect also resulted in micro properties such as percentage of Ca/P was close to normal, the fraction volume and crystallinity percentage of HA went up but did not change the crystal structure (in terms of the lattice structure). The hardness value also rose as linear as exposure energy dose caused by phototermal effect. Based on the results, Q-Switched Nd:YAG laser can be used as contactless drill dental caries replacement candidate with the additional therapy effect such as localized caries in order to avoid the spread, the ratio of Ca/P approaching healthy teeth, the fraction volume and crystallinity percentage of HA rose and established stronger teeth with peak energy dose 1065.515 mJ/cm2.

  20. Pyrosequencing analysis of source water switch and sulfate-induced bacterial community transformation in simulated drinking water distribution pipes.

    Science.gov (United States)

    Yang, Fan; Shi, Baoyou; Zhang, Weiyu; Cui, Jing; Guo, Jianbo; Wang, Dongsheng; Wu, Nan; Liu, Xinyuan

    2017-12-01

    Inter-basin water transfer and source water switching will be increasingly launched due to significant population increase and the shortage of the local water resources in cities around the world. Source water switch may cause physiochemical and microbiological de-stabilization of pipe material, biofilms, and loose deposits in drinking water distribution system (DWDS). Great sulfate alteration during source water switch had been deemed as the main cause of a red water case that occurred in a northern China city. To ascertain the relationship between water quality changing and bacterial communities of biofilms in DWDS and possible bacteria risk in a red water case, water quality changing experiments in simulated DWDSs were conducted for approximately 2 years. Twenty-five corrosion scale samples and eight water samples collected from pipe harvest sites or during experimental periods were analyzed for their bacterial community composition by 454-pyrosequencing technology. Taxonomy results together with redundancy analysis (RDA) or canonical correspondence analysis (CCA) and hierarchical cluster analysis all indicated that bacterial community of samples with groundwater (GW) or surface water (SW) supply history and their variations under high sulfate water were rather different owing to different water source histories and the original pipe scale characteristics. Potential opportunistic pathogens: Burkholderia, Escherichia-Shigella, Mycobacterium, Serratia, Ralstonia, Novosphingobium, Flavobacterium, Sphingomonas, and Sphingopyxis were observed in scale or water samples.

  1. Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta from polar habitats.

    Directory of Open Access Journals (Sweden)

    Martina Pichrtová

    Full Text Available Filamentous Zygnematophyceae are typical components of algal mats in the polar hydro-terrestrial environment. Under field conditions, they form senescent vegetative cells, designated as pre-akinetes, which are tolerant to desiccation and osmotic stress.Pre-akinete formation and desiccation tolerance was investigated experimentally under monitored laboratory conditions in four strains of Arctic and Antarctic isolates with vegetative Zygnema sp. morphology. Phylogenetic analyses of rbcL sequences revealed one Arctic strain as genus Zygnemopsis, phylogenetically distant from the closely related Zygnema strains. Algae were cultivated in liquid or on solidified medium (9 weeks, supplemented with or lacking nitrogen. Nitrogen-free cultures (liquid as well as solidified consisted of well-developed pre-akinetes after this period. Desiccation experiments were performed at three different drying rates (rapid: 10% relative humidity, slow: 86% rh and very slow; viability, effective quantum yield of PS II, visual and ultrastructural changes were monitored. Recovery and viability of pre-akinetes were clearly dependent on the drying rate: slower desiccation led to higher levels of survival. Pre-akinetes survived rapid drying after acclimation by very slow desiccation.The formation of pre-akinetes in polar Zygnema spp. and Zygnemopsis sp. is induced by nitrogen limitation. Pre-akinetes, modified vegetative cells, rather than specialized stages of the life cycle, can be hardened by mild desiccation stress to survive rapid drying. Naturally hardened pre-akinetes play a key role in stress tolerance and dispersal under the extreme conditions of polar regions, where sexual reproduction and production of dormant stages is largely suppressed.

  2. Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta) from polar habitats.

    Science.gov (United States)

    Pichrtová, Martina; Kulichová, Jana; Holzinger, Andreas

    2014-01-01

    Filamentous Zygnematophyceae are typical components of algal mats in the polar hydro-terrestrial environment. Under field conditions, they form senescent vegetative cells, designated as pre-akinetes, which are tolerant to desiccation and osmotic stress. Pre-akinete formation and desiccation tolerance was investigated experimentally under monitored laboratory conditions in four strains of Arctic and Antarctic isolates with vegetative Zygnema sp. morphology. Phylogenetic analyses of rbcL sequences revealed one Arctic strain as genus Zygnemopsis, phylogenetically distant from the closely related Zygnema strains. Algae were cultivated in liquid or on solidified medium (9 weeks), supplemented with or lacking nitrogen. Nitrogen-free cultures (liquid as well as solidified) consisted of well-developed pre-akinetes after this period. Desiccation experiments were performed at three different drying rates (rapid: 10% relative humidity, slow: 86% rh and very slow); viability, effective quantum yield of PS II, visual and ultrastructural changes were monitored. Recovery and viability of pre-akinetes were clearly dependent on the drying rate: slower desiccation led to higher levels of survival. Pre-akinetes survived rapid drying after acclimation by very slow desiccation. The formation of pre-akinetes in polar Zygnema spp. and Zygnemopsis sp. is induced by nitrogen limitation. Pre-akinetes, modified vegetative cells, rather than specialized stages of the life cycle, can be hardened by mild desiccation stress to survive rapid drying. Naturally hardened pre-akinetes play a key role in stress tolerance and dispersal under the extreme conditions of polar regions, where sexual reproduction and production of dormant stages is largely suppressed.

  3. Spectral Induced Polarization of Low-pH Concrete. Influence of the Electrical Double Layer and Pore Size

    Science.gov (United States)

    Leroy, P. G.; Gaboreau, S.; Zimmermann, E.; Hoerdt, A.; Claret, F.; Huisman, J. A.; Tournassat, C.

    2017-12-01

    Low-pH concretes are foreseen to be used in nuclear waste disposal. Understanding their reactivity upon the considered host-rock is a key point. Evolution of mineralogy, porosity, pore size distribution and connectivity can be monitored in situ using geophysical methods such as induced polarization (IP). This electrical method consists of injecting an alternating current and measuring the resulting voltage in the porous medium. Spectral IP (SIP) measurements in the 10 mHz to 10 kHz frequency range were carried out on low-pH concrete and cement paste first in equilibrium and then in contact with a CO2 enriched and diluted water. We observed a very high resistivity of the materials (> 10 kOhm m) and a strong phase shift between injected current and measured voltage (superior to 40 mrad and above 100 mrad for frequencies > 100 Hz). These observations were modelled by considering membrane polarization with ion exclusion in nanopores whose surface electrical properties were computed using a basic Stern model of the cement/water interface. Pore size distribution was deduced from SIP and was compared to the measured ones. In addition, we observed a decrease of the material resistivity due to the dissolution of cement in contact with external water. Our results show that SIP may be a valuable method to monitor the mineralogy and the petrophysical and transport properties of cements.

  4. Demonstration of heterogeneous parahydrogen induced polarization using hyperpolarized agent migration from dissolved Rh(I) complex to gas phase.

    Science.gov (United States)

    Kovtunov, Kirill V; Barskiy, Danila A; Shchepin, Roman V; Coffey, Aaron M; Waddell, Kevin W; Koptyug, Igor V; Chekmenev, Eduard Y

    2014-07-01

    Parahydrogen-induced polarization (PHIP) was used to demonstrate the concept that highly polarized, catalyst-free fluids can be obtained in a catalysis-free regime using a chemical reaction with molecular addition of parahydrogen to a water-soluble Rh(I) complex carrying a payload of compound with unsaturated (C═C) bonds. Hydrogenation of norbornadiene leads to formation of norbornene, which is eliminated from the Rh(I) complex and, therefore, leaves the aqueous phase and becomes a gaseous hyperpolarized molecule. The Rh(I) metal complex resides in the original liquid phase, while the product of hydrogen addition is found exclusively in the gaseous phase based on the affinity. Hyperpolarized norbornene (1)H NMR signals observed in situ were enhanced by a factor of approximately 10,000 at a static field of 47.5 mT. High-resolution (1)H NMR at a field of 9.4 T was used for ex situ detection of hyperpolarized norbornene in the gaseous phase, where a signal enhancement factor of approximately 160 was observed. This concept of stoichiometric as opposed to purely catalytic use of PHIP-available complexes with an unsaturated payload precursor molecule can be extended to other contrast agents for both homogeneous and heterogeneous PHIP. The Rh(I) complex was employed in aqueous medium suitable for production of hyperpolarized contrast agents for biomedical use. Detection of PHIP hyperpolarized gas by low-field NMR is demonstrated here for the first time.

  5. Built-in and Induced Polarization Across LaAlO3/SrTiO3 Heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Guneeta, Singh-Bhalla

    2011-08-15

    Ionic crystals terminated at oppositely charged polar surfaces are inherently unstable and expected to undergo surface reconstructions to maintain electrostatic stability. Essentially, an electric field that arises between oppositely charged atomic planes gives rise to a built-in potential that diverges with thickness. Here we present evidence of such a built-in potential across polar LaAlO{sub 3} thin films grown on SrTiO{sub 3} substrates, a system well known for the electron gas that forms at the interface. By performing tunneling measurements between the electron gas and metallic electrodes on LaAlO{sub 3} we measure a built-in electric field across LaAlO{sub 3} of 80.1 meV/{angstrom}. Additionally, capacitance measurements reveal the presence of an induced dipole moment across the heterostructure. We forsee use of the ionic built-in potential as an additional tuning parameter in both existing and novel device architectures, especially as atomic control of oxide interfaces gains widespread momentum.

  6. Intermediate energy charge-exchange reactions induced by polarized 3He

    International Nuclear Information System (INIS)

    Kim, B.T.

    1998-01-01

    Spin polarization transfer is proven to be very useful in obtaining detailed information of the continuum nuclear responses. The data, taken for the (vector p,vector n) reactions, have enabled us to separate the response into the spin longitudinal and transverse components. These partial nuclear responses have been successfully used to make critical tests of nuclear structure models. In the present paper, we first summarize the results of the data and the theoretical analyses made so far. We then discuss information obtainable from the ( 3 vector He,vector t) reaction, emphasizing on the differences and similarities in comparison with the (vector p,vector n) reaction. The results of numerical calculations made for ( 3 vector He,vector t) reactions based on the microscopic distorted wave impulse approximation will also be reported. (orig.)

  7. Application of time domain induced polarization to the mapping of lithotypes in a landfill site

    DEFF Research Database (Denmark)

    Legaz, Aurélie; Fiandaca, Gianluca; Pedersen, Jesper Bjergsted

    2012-01-01

    area. It is known that both waste deposits andclay have clear signatures in TDIP data, making it possibleto enhance the resolution of geological structures comparedto DC surveys alone.Four DC/TDIP profiles were carried out crossing the landfill,and another seven profiles in the surroundings providea.......Results show that it is possible to resolve both the geometryof the buried waste body and key geological structures.In particular, it was possible to find a silt/clay lens at depththat correlates with the flow direction of the pollution plumespreading out from the landfill and to map a shallow sandylayer rich......A direct current (DC) resistivity and time domaininduced polarization (TDIP) survey was undertaken at a decommissionedlandfill site situated in Hørløkke, Denmark,for the purpose of mapping the waste deposits and to discriminateimportant geological units that control the hydrology ofthe surrounding...

  8. Asymmetrical edges induced strong current-polarization in embedded graphene nanoribbons

    Science.gov (United States)

    Li, Kuanhong; Zhang, Xiang-Hua

    2018-05-01

    We investigate the electronic structures and transport properties of the embedded zigzag graphene nanoribbon (E-ZGNR) in hexagonal boron nitride trenches, which are achievable in recent experiments. Our first principles results show that the E-ZGNR has a significant enhanced conductivity relative to common ZGNRs due to the existence of asymmetrical edge structures. Moreover, only one spin-orientation electrons possess a widely opened band gap at the magnetic ground state with anti-ferromagnetic configuration, resulting in a full current-polarization at low bias region. Our findings indicate that the state-of-the-art embedding technology is quite useful for tuning the electronic structure of ZGNR and building possible spin injection and spin filter devices in spintronics.

  9. Lateral-electric-field-induced spin polarization in a suspended GaAs quantum point contact

    Science.gov (United States)

    Pokhabov, D. A.; Pogosov, A. G.; Zhdanov, E. Yu.; Shevyrin, A. A.; Bakarov, A. K.; Shklyaev, A. A.

    2018-02-01

    The conductance of a GaAs-based suspended quantum point contact (QPC) equipped with lateral side gates has been experimentally studied in the absence of the external magnetic field. The half-integer conductance plateau ( 0.5 ×2 e2/h ) has been observed when an asymmetric voltage between the side gates is applied. The appearance of this plateau has been attributed to the spin degeneracy lifting caused by the spin-orbit coupling associated with the lateral electric field in the asymmetrically biased QPC. We have experimentally demonstrated that, despite the relatively small g-factor in GaAs, the observation of the spin polarization in the GaAs-based QPC became possible after the suspension due to the enhancement of the electron-electron interaction and the effect of the electric field guiding. These features are caused by a partial confinement of the electric field lines within a suspended semiconductor layer with a high dielectric constant.

  10. NADPH Oxidase-4 Driven Cardiac Macrophage Polarization Protects Against Myocardial Infarction–Induced Remodeling

    Directory of Open Access Journals (Sweden)

    Heloise Mongue-Din, PharmD, PhD

    2017-12-01

    Full Text Available The reactive oxygen species–generating enzyme NADPH oxidase 4 (Nox4 is up-regulated in the heart after myocardial infarction (MI. Mice with cardiomyocyte-targeted Nox4 overexpression (TG displayed increased macrophages in the heart at baseline, with skewing toward an M2 phenotype compared with wild-type controls (WT. After MI, TG mice had a higher proportion of M2 macrophages along with higher survival, decreased cardiac remodeling, and better contractile function than wild-type mice. The post-MI increase in cardiac matrix metalloproteinase–2 activity was substantially blunted in TG mice. These results indicate that cardiomyocyte Nox4 modulates macrophage polarization toward an M2 phenotype, resulting in improved post-MI survival and remodeling, likely through the attenuation of cardiac matrix metalloproteinase–2 activity.

  11. Induced Proton Polarization for pi0 Electroproduction at Q2 = 0.126 GeV2/c2 Around the Delta(1232) Resonance

    International Nuclear Information System (INIS)

    Glen Warren; Ricardo Alarcon; Christopher Armstrong; Burin Asavapibhop; David Barkhuff; William Bertozzi; Volker Burkert; Chen, J.; Jian-Ping Chen; Joseph Comfort; Daniel Dale; George Dodson; Dolfini, S.; Dow, K.; Martin Epstein; Manouchehr Farkhondeh; John Finn; Shalev Gilad; Ralf Gothe; Xiaodong Jiang; Mark Jones; Kyungseon Joo; Karabarbounis, A.; James Kelly; Stanley Kowalski; Kunz, C.; Liu, D.; Lourie, R.W.; Richard Madey; Demetrius Margaziotis; Pete Markowitz; Justin McIntyre; Mertz, C.; Brian Milbrath; Rory Miskimen; Joseph Mitchell; Mukhopadhyay, S.; Costas Papanicolas; Charles Perdrisat; Vina Punjabi; Liming Qin; Paul Rutt; Adam Sarty; Jeffrey Shaw; Soong, S.B.; Tieger, D.; Christoph Tschalaer; William Turchinetz; Paul Ulmer; Scott Van Verst; Vellidis, C.; Lawrence Weinstein; Steven Williamson; Rhett Woo; Alaen Young

    1998-01-01

    We present a measurement of the induced proton polarization P n in π 0 electroproduction on the proton around the Δ resonance. The measurement was made at a central invariant mass and a squared four-momentum transfer of W = 1231 MeV and Q 2 = 0.126 GeV 2 /c 2 , respectively. We measured a large induced polarization, P n = -0.397 ± 0.055 ± 0.009. The data suggest that the scalar background is larger than expected from a recent effective Hamiltonian model

  12. Switchable Polarization in Mn Embedded Graphene.

    Science.gov (United States)

    Noor-A-Alam, Mohammad; Ullah, Hamid; Shin, Young-Han

    2018-03-14

    Graphene, despite its many unique properties, is neither intrinsically polar due to inversion symmetry nor magnetic. However, based on density functional theory, we find that Mn, one of transition metals, embedded in single or double vacancy (Mn@SV and Mn@DV) in a graphene monolayer induces a dipole moment perpendicular to the sheet, which can be switched from up to down by Mn penetration through the graphene. Such switching could be realized by an external stimuli introduced through the tip of a scanning probe microscope, as already utilized in the studies of molecular switches. We estimate the energy barriers for dipole switching, which are found to be 2.60 eV and 0.28 eV for Mn@SV and Mn@DV, respectively. However, by applying biaxial tensile strain, we propose a mechanism for tuning the barrier. We find that 10% biaxial tensile strain, which is already experimentally achievable in graphene-like two-dimensional materials, can significantly reduce the barrier to 0.16 eV in Mn@SV. Moreover, in agreement with previous studies, we find a high magnetic moment of 3 μ B for both Mn@SV and Mn@DV, promising the potential of these structures in spintronics as well as in nanoscale electro-mechanical or memory devices.

  13. Distribution of conductive minerals as associated with uranium minerals at Dendang Arai sector by induced polarization method

    International Nuclear Information System (INIS)

    Nurdin, M.; Nikijuluw, N.; Subardjo; Sudarto, S.

    2000-01-01

    Based on previous investigation results, a favourable zone of 20-80 meters in wide, 80-240 meters in length and in the direction of East-West to Northwest-Southeast was found. The favourable zone is conductor, associated with sulfide. Induced polarization method has been applied to find vertical and horizontal sulfide distribution. The measurement was conducted in perpendicular to lateral direction of the conductive zone in an interval of 20 meters. Properties measured are apparent resistivity and charge ability. Measurement results indicated the presence of sulfide zone with the position and dip are sub-vertical. Sulfide zones were found on the fault cross-point with the directions being East-West to East South East-West North West by fault is North-South. This anomalies were then represented in 3 (three) dimension tomographic model. (author)

  14. Thermal behavior induced by vacuum polarization on causal horizons in comparison with the standard heat bath formalism

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Institut fuer Theoretische Physik, Berlin (Germany); E-mail schroer@cbpf.br

    2003-02-01

    Modular theory of operator algebras and the associated K MS property are used to obtain a unified description for the thermal aspects of the standard heat bath situation and those caused by quantum vacuum fluctuations from localization. An algebraic variant of light front holography reveals that the vacuum polarization on wedge horizons is compressed into the light ray direction. Their absence in the transverse direction is the prerequisite to an area (generalized Banknotes-) behavior of entropy-like measures which reveal the loss of purity due to restrictions to wedges and their horizons. Besides the well-known fact that localization-induced (generalized Hawking-) temperature is fixed by the geometric aspects, this area behavior (versus the standard volume dependence) constitutes the main difference between localization-caused and standard thermal behavior. (author)

  15. Polarization and fluence effects in femtosecond laser induced micro/nano structures on stainless steel with antireflection property

    Science.gov (United States)

    Yao, Caizhen; Ye, Yayun; Jia, Baoshen; Li, Yuan; Ding, Renjie; Jiang, Yong; Wang, Yuxin; Yuan, Xiaodong

    2017-12-01

    In this paper, micro/nano structures on stainless steel were prepared in single spot irradiation mode and scan mode by using femtosecond laser technique. The influence of polarization and fluence on the formation of micro/nano structures were explored. Surface morphology, microstructure, roughness and composition of prepared samples were characterized. The antireflection property and wettability of laser treated samples were also tested and compared with that of original stainless steel.Results showed that the laser-induced spot consists of two distinct regions due to the Gaussian beam profile: a core region of moth-eye-like structure and a peripheral region of nanoparticles-covered laser-induced periodic surface structure (NC-LIPSS). The proportion of the core region and dimension of micro/nano structure increase with increasing laser fluence. Polarization can be used to tune the direction of NC-LIPSS. Atomic ratios of Cr and Mn increase and atomic ratio of Ni decreases after laser irradiation. Oxygen is not detected on laser irradiated samples, indicating that oxidation reactions are not significant during the interaction process between femtosecond laser and 304 stainless steel. These are good for the application of stainless steel as its physical properties would not change or even enhanced. The overlaps between two laser scan lines significantly influence the surface roughness and should be controlled carefully during the preparation process. The laser irradiated surface has a better antireflection property in comparison with that of original stainless steel, which may due to the scattering and absorption of micro/nano structures. Contact angle of micro/nano structured stainless steel decreases with the increase of laser fluence. The hydrophilic property can be explained by Wenzel's model. The interference between the surface plasmon wave and the incident light wave leads to the formation of NC-LIPSS.

  16. Three-dimension Cole-Cole model inversion of induced polarization data based on regularized conjugate gradient method

    Science.gov (United States)

    Xu, Zhengwei

    Modeling of induced polarization (IP) phenomena is important for developing effective methods for remote sensing of subsurface geology and is widely used in mineral exploration. However, the quantitative interpretation of IP data in a complex 3D environment is still a challenging problem of applied geophysics. In this dissertation I use the regularized conjugate gradient method to determine the 3D distribution of the four parameters of the Cole-Cole model based on surface induced polarization (IP) data. This method takes into account the nonlinear nature of both electromagnetic induction (EMI) and IP phenomena. The solution of the 3D IP inverse problem is based on the regularized smooth inversion only. The method was tested on synthetic models with DC conductivity, intrinsic chargeability, time constant, and relaxation parameters, and it was also applied to the practical 3D IP survey data. I demonstrate that the four parameters of the Cole-Cole model, DC electrical resistivity, rho 0 , chargeability, eta time constant, tau and the relaxation parameter, C, can be recovered from the observed IP data simultaneously. There are four Cole-Cole parameters involved in the inversion, in other words, within each cell, there are DC conductivity (sigma0 ), chargeability (eta), time parameters (tau), and relaxation parameters (C) compared to conductivity only, used in EM only inversion. In addition to more inversion parameters used in IP survey, dipole-dipole configuration which requires more sources and receivers. One the other hand, calculating Green tensor and Frechet matrix time consuming and storing them requires a lot of memory. So, I develop parallel computation using MATLAB parallel tool to speed up the calculation.

  17. A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation.

    Science.gov (United States)

    Ponder, Rebecca G; Fonville, Natalie C; Rosenberg, Susan M

    2005-09-16

    Special mechanisms of mutation are induced in microbes under growth-limiting stress causing genetic instability, including occasional adaptive mutations that may speed evolution. Both the mutation mechanisms and their control by stress have remained elusive. We provide evidence that the molecular basis for stress-induced mutagenesis in an E. coli model is error-prone DNA double-strand break repair (DSBR). I-SceI-endonuclease-induced DSBs strongly activate stress-induced mutations near the DSB, but not globally. The same proteins are required as for cells without induced DSBs: DSBR proteins, DinB-error-prone polymerase, and the RpoS starvation-stress-response regulator. Mutation is promoted by homology between cut and uncut DNA molecules, supporting a homology-mediated DSBR mechanism. DSBs also promote gene amplification. Finally, DSBs activate mutation only during stationary phase/starvation but will during exponential growth if RpoS is expressed. Our findings reveal an RpoS-controlled switch from high-fidelity to mutagenic DSBR under stress. This limits genetic instability both in time and to localized genome regions, potentially important evolutionary strategies.

  18. Matrix metalloproteinase 7 restrains Helicobacter pylori-induced gastric inflammation and premalignant lesions in the stomach by altering macrophage polarization.

    Science.gov (United States)

    Krakowiak, M S; Noto, J M; Piazuelo, M B; Hardbower, D M; Romero-Gallo, J; Delgado, A; Chaturvedi, R; Correa, P; Wilson, K T; Peek, R M

    2015-04-02

    Helicobacter pylori is the strongest risk factor for the development of gastric cancer. Although the specific mechanisms by which this pathogen induces carcinogenesis have not been fully elucidated, high-expression interleukin (IL)-1β alleles are associated with increased gastric cancer risk among H. pylori-infected persons. In addition, loss of matrix metalloproteinase 7 (MMP7) increases mucosal inflammation in mouse models of epithelial injury, and we have shown that gastric inflammation is increased in H. pylori-infected MMP7(-/-) C57BL/6 mice. In this report, we define mechanisms that underpin such responses and extend these results into a genetic model of MMP7 deficiency and gastric cancer. Wild-type (WT) or MMP7(-/-) C57BL/6 mice were challenged with broth alone as an uninfected control or the H. pylori strain PMSS1. All H. pylori-challenged mice were successfully colonized. As expected, H. pylori-infected MMP7(-/-) C57BL/6 mice exhibited a significant increase in gastric inflammation compared with uninfected or infected WT C57BL/6 animals. Loss of MMP7 resulted in M1 macrophage polarization within H. pylori-infected stomachs, as assessed by Luminex technology and immunohistochemistry, and macrophages isolated from infected MMP7-deficient mice expressed significantly higher levels of the M1 macrophage marker IL-1β compared with macrophages isolated from WT mice. To extend these findings into a model of gastric cancer, hypergastrinemic WT INS-GAS or MMP7(-/-) INS-GAS mice were challenged with H. pylori strain PMSS1. Consistent with findings in the C57BL/6 model, H. pylori-infected MMP7-deficient INS-GAS mice exhibited a significant increase in gastric inflammation compared with either uninfected or infected WT INS-GAS mice. In addition, the incidence of gastric hyperplasia and dysplasia was significantly increased in H. pylori-infected MMP7(-/-) INS-GAS mice compared with infected WT INS-GAS mice, and loss of MMP7 promoted M1 macrophage polarization. These

  19. The switching behaviors induced by torsion angle in a diblock co-oligomer molecule with tailoring graphene nanoribbon electrodes

    Science.gov (United States)

    Yang, Aiyun; Xia, Caijuan; Zhang, Boqun; Wang, Jun; Su, Yaoheng; Tu, Zheyan

    2018-02-01

    By applying first-principles method based on density functional theory combined with nonequilibrium Green’s function, we investigate the effect of torsion angle on the electronic transport properties in dipyrimidinyl-diphenyl co-oligomer molecular device with tailoring graphene nanoribbon electrodes. The results show that the torsion angle plays an important role on the electronic transport properties of the molecular device. When the torsion angle rotates from 0∘ to 90∘, the molecular devices exhibit very different current-voltage characteristics which can realize the on and off states of the molecular switch.

  20. Morphological control and polarization switching in polymer ...

    Indian Academy of Sciences (India)

    Abstract. Liquid crystals dispersed in polymer systems constitute novel class of optical materials. The precise control of the liquid crystal droplet morphology in the polymer matrix is essentially required to meet the pre- requisites of display device. Experiments have been carried out to investigate and identify the material pro-.

  1. Morphological control and polarization switching in polymer ...

    Indian Academy of Sciences (India)

    Liquid crystals dispersed in polymer systems constitute novel class of optical materials. The precise control of the liquid crystal droplet morphology in the polymer matrix is essentially required to meet the prerequisites of display device. Experiments have been carried out to investigate and identify the material properties and ...

  2. Morphological control and polarization switching in polymer ...

    Indian Academy of Sciences (India)

    School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala 147 004, India. Abstract. Liquid crystals dispersed in ... dye concentration to liquid crystal ratio led to better optical responses as well as the .... PDLC film) is an important measure of performance for any electro-optic display.

  3. Multiscale modeling of current-induced switching in magnetic tunnel junctions using ab initio spin-transfer torques

    Science.gov (United States)

    Ellis, Matthew O. A.; Stamenova, Maria; Sanvito, Stefano

    2017-12-01

    There exists a significant challenge in developing efficient magnetic tunnel junctions with low write currents for nonvolatile memory devices. With the aim of analyzing potential materials for efficient current-operated magnetic junctions, we have developed a multi-scale methodology combining ab initio calculations of spin-transfer torque with large-scale time-dependent simulations using atomistic spin dynamics. In this work we introduce our multiscale approach, including a discussion on a number of possible schemes for mapping the ab initio spin torques into the spin dynamics. We demonstrate this methodology on a prototype Co/MgO/Co/Cu tunnel junction showing that the spin torques are primarily acting at the interface between the Co free layer and MgO. Using spin dynamics we then calculate the reversal switching times for the free layer and the critical voltages and currents required for such switching. Our work provides an efficient, accurate, and versatile framework for designing novel current-operated magnetic devices, where all the materials details are taken into account.

  4. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  5. Antidiabetic activity of medium-polar extract from the leaves of Stevia rebaudiana Bert. (Bertoni) on alloxan-induced diabetic rats

    Science.gov (United States)

    Misra, Himanshu; Soni, Manish; Silawat, Narendra; Mehta, Darshana; Mehta, B. K.; Jain, D. C.

    2011-01-01

    Objective: To investigate the medicative effects of medium-polar (benzene:acetone, 1:1, v/v) extract of leaves from Stevia rebaudiana (family Asteraceae) on alloxan-induced diabetic rats. Materials and Methods: Diabetes was induced in adult albino Wistar rats by intraperitoneal (i.p.) injection of alloxan (180 mg/kg). Medium-polar extract was administered orally at daily dose of 200 and 400 mg/kg body wt. basis for 10 days. The control group received normal saline (0.9%) for the same duration. Glibenclamide was used as positive control reference drug against Stevia extract. Results: Medium-polar leaf extract of S. rebaudiana (200 and 400 mg/kg) produced a delayed but significant (P Stevia extract was found to antagonize the necrotic action of alloxan and thus had a re-vitalizing effect on β-cells of pancreas. PMID:21687353

  6. Stopping power and polarization induced in a plasma by a fast charged particle in circular motion

    Energy Technology Data Exchange (ETDEWEB)

    Villo-Perez, Isidro [Departamento de Electronica, Tecnologia de las Computadoras y Proyectos, Universidad Politecnica de Cartagena, Cartagena (Spain); Arista, Nestor R. [Division Colisiones Atomicas, Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, Bariloche (Argentina); Garcia-Molina, Rafael [Departamento de Fisica, Universidad de Murcia, Murcia (Spain)

    2002-03-28

    We describe the perturbation induced in a plasma by a charged particle in circular motion, analysing in detail the evolution of the induced charge, the electrostatic potential and the energy loss of the particle. We describe the initial transitory behaviour and the different ways in which convergence to final stationary solutions may be obtained depending on the basic parameters of the problem. The results for the stopping power show a resonant behaviour which may give place to large stopping enhancement values as compared with the case of particles in straight-line motion with the same linear velocity. The results also explain a resonant effect recently obtained for particles in circular motion in magnetized plasmas. (author)

  7. Thickness Dependence of Switching Behavior in Ferroelectric BiFeO3 Thin Films: A Phase-Field Simulation

    Directory of Open Access Journals (Sweden)

    Guoping Cao

    2017-11-01

    Full Text Available A phase-field approach to the analysis of the thickness effects in electric-field-induced domain switching in BiFeO3 thin films has been formulated. Time evolutions of domain switching percentage for films with different thicknesses were explored to reveal the primary switching path and its dependence on film thickness. In addition, hysteresis loop for these films were calculated to obtain their coercive fields. Results show a nonlinear thickness dependence of coercive field for ultrathin films. A parametric study of the interactions between film thickness, coercive field, current-voltage (I-V response, and polarization switching behavior is herein discussed, which could provide physical insights into materials engineering.

  8. Molecular Switch Role of Akt in Polygonatum odoratum Lectin-Induced Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer A549 Cells

    Science.gov (United States)

    Shi, Zheng; Wang, Hailian; Zhang, Bin; Zhao, Kailiang; Qi, Wei; Bao, Jinku; Wang, Yi

    2014-01-01

    Polygonatum odoratum lectin (POL), isolated from traditional Chinese medicine herb (Mill.) Druce, has drawn rising attention due to its wide biological activities. In the present study, anti-tumor effects, including apoptosis- and autophagy-inducing properties of POL, were determined by a series of cell biology methods such as MTT, cellular morphology observation, flow cytometry, immunoblotting. Herein, we found that POL could simultaneously induce apoptosis and autophagy in human non-small cell lung cancer A549 cells. POL initiated apoptosis through inhibiting Akt-NF-κB pathway, while POL triggered autophagy via suppressing Akt-mTOR pathway, suggesting the molecular switch role of Akt in regulating between POL-induced apoptosis and autophagy. Moreover, ROS was involved in POL-induced inhibition of Akt expression, and might therefore mediate both apoptosis and autophagy in A549 cells. In addition, POL displayed no significant cytotoxicity toward normal human embryonic lung fibroblast HELF cells. Due to the anti-tumor activities, POL might become a potent anti-cancer drug in future therapy, which might pave the way for exploring GNA-related lectins into effective drugs in cancer treatment. PMID:24992302

  9. The Cancer Mutation D83V Induces an α-Helix to β-Strand Conformation Switch in MEF2B.

    Science.gov (United States)

    Lei, Xiao; Kou, Yi; Fu, Yang; Rajashekar, Niroop; Shi, Haoran; Wu, Fang; Xu, Jiang; Luo, Yibing; Chen, Lin

    2018-04-13

    MEF2B is a major target of somatic mutations in non-Hodgkin lymphoma. Most of these mutations are non-synonymous substitutions of surface residues in the MADS-box/MEF2 domain. Among them, D83V is the most frequent mutation found in tumor cells. The link between this hotspot mutation and cancer is not well understood. Here we show that the D83V mutation induces a dramatic α-helix to β-strand switch in the MEF2 domain. Located in an α-helix region rich in β-branched residues, the D83V mutation not only removes the extensive helix stabilization interactions but also introduces an additional β-branched residue that further shifts the conformation equilibrium from α-helix to β-strand. Cross-database analyses of cancer mutations and chameleon sequences revealed a number of well-known cancer targets harboring β-strand favoring mutations in chameleon α-helices, suggesting a commonality of such conformational switch in certain cancers and a new factor to consider when stratifying the rapidly expanding cancer mutation data. Copyright © 2018. Published by Elsevier Ltd.

  10. Regulatory Cells and Immunosuppressive Cytokines: Parasite-Derived Factors Induce Immune Polarization

    Directory of Open Access Journals (Sweden)

    Ali Ouaissi

    2007-01-01

    Full Text Available Parasitic infections are prevalent in both tropical and subtropical areas. Most of the affected and/or exposed populations are living in developing countries where control measures are lacking or inadequately applied. Although significant progress has been made in our understanding of the immune response to parasites, no definitive step has yet been successfully done in terms of operational vaccines against parasitic diseases. Evidence accumulated during the past few years suggests that the pathology observed during parasitic infections is in part due to deregulation of normal components of the immune system, mainly cytokines, antibodies, and immune effector cell populations. A large number of studies that illustrate how parasites can modify the host immune system for their own benefit have been reported in both metazoan and protozoan parasites. The first line of defense against foreign organisms is barrier tissue such as skin, humoral factors, for instance the complement system and pentraxin, which upon activation of the complement cascade facilitate pathogen recognition by cells of innate immunity such as macrophages and DC. However, all the major groups of parasites studied have been shown to contain and/or to release factors, which interfere with both arms of the host immune system. Even some astonishing observations relate to the production by some parasites of orthologues of mammalian cytokines. Furthermore, chronic parasitic infections have led to the immunosuppressive environment that correlates with increased levels of myeloid and T suppressor cells that may limit the success of immunotherapeutic strategies based on vaccination. This minireview briefly analyzes some of the current data related to the regulatory cells and molecules derived from parasites that affect cellular function and contribute to the polarization of the immune response of the host. Special attention is given to some of the data from our laboratory illustrating the

  11. Role of aromatic amino acids in carbohydrate binding of plant lectins : Laser photo chemically induced dynamic nuclear polarization study of hevein domain-containing lectins

    NARCIS (Netherlands)

    Siebert, HC; vonderLieth, CW; Kaptein, R; Beintema, JJ; Dijkstra, K; vanNuland, N; Soedjanaatmadja, UMS; Rice, A; Vliegenthart, JFG; Wright, CS; Gabius, HJ

    Carbohydrate recognition by lectins often involves the side chains of tyrosine, tryptophan, and histidine residues. These moieties are able to produce chemically induced dynamic nuclear polarization (CIDNP) signals after laser irradiation in the presence of a suitable radical pair-generating dye.

  12. Generating parahydrogen-induced polarization using immobilized iridium complexes in the gas-phase hydrogenation of carbon-carbon double and triple bonds

    NARCIS (Netherlands)

    Skovpin, I.V.; Zhivonitko, V.V.; Kaptein, R.; Koptyug, I.V.

    2013-01-01

    Immobilized iridium complexes synthesized using [Ir(COD)Cl]2 by anchoring on hydrous and anhydrous silica gels were studied in terms of generating parahydrogen-induced polarization (PHIP) in the gas-phase hydrogenation of propylene and propyne. Distinguishing differences in the hydrogenations of

  13. Giant thermal spin-torque–assisted magnetic tunnel junction switching

    Science.gov (United States)

    Pushp, Aakash; Phung, Timothy; Rettner, Charles; Hughes, Brian P.; Yang, See-Hun; Parkin, Stuart S. P.

    2015-01-01

    Spin-polarized charge currents induce magnetic tunnel junction (MTJ) switching by virtue of spin-transfer torque (STT). Recently, by taking advantage of the spin-dependent thermoelectric properties of magnetic materials, novel means of generating spin currents from temperature gradients, and their associated thermal-spin torques (TSTs), have been proposed, but so far these TSTs have not been large enough to influence MTJ switching. Here we demonstrate significant TSTs in MTJs by generating large temperature gradients across ultrathin MgO tunnel barriers that considerably affect the switching fields of the MTJ. We attribute the origin of the TST to an asymmetry of the tunneling conductance across the zero-bias voltage of the MTJ. Remarkably, we estimate through magneto-Seebeck voltage measurements that the charge currents that would be generated due to the temperature gradient would give rise to STT that is a thousand times too small to account for the changes in switching fields that we observe. PMID:25971730

  14. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    International Nuclear Information System (INIS)

    Bastrukov, S I; Yang, J; Podgainy, D V; Weber, F

    2003-01-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameters taken from early and current works on transport coefficients of dense matter. It is found that the effect of viscosity is crucial for the lifetime of magneto-torsion vibrations but it does not appreciably affect the periods of this seismic mode which fall in the realm of periods of pulsed emission of soft gamma-ray repeaters and anomalous x-ray pulsars - young super-magnetized neutron stars, radiating, according to the magnetar model, at the expense of the magnetic energy release. Finally, we present arguments that the long periodic pulsed emission of these stars in a quiescent regime of radiation can be interpreted as a manifestation of weakly damped seismic magneto-torsion vibrations exhibiting the field induced spin polarization of baryon matter

  15. Influence of iRoot SP and mineral trioxide aggregate on the activation and polarization of macrophages induced by lipopolysaccharide.

    Science.gov (United States)

    Yuan, Zhenglin; Zhu, Xiaodan; Li, Yuhong; Yan, Ping; Jiang, Han

    2018-04-02

    Biomaterials could affect the inflammation reaction and wound healing via the activation and polarization of macrophages. However, the influence of iRoot SP and mineral trioxide aggregate (MTA) on macrophage polarization under inflammatory conditions was not reported although these two root filling materials have been applied extensively in patients undergoing endodontic treatment. Therefore, the present study aimed to explore the mechanism how iRoot SP and MTA affect the cell behavior of RAW 264.7 macrophages when stimulated by lipopolysaccharide (LPS) in vitro. The gene expression of three main related pro-inflammatory cytokines (IL-1β, TNF-α, IL-6) was examined by quantitative real-time polymerase chain reaction (qRT-PCR) in RAW 264.7 macrophages when stimulated by iRoot SP and MTA in the presence of LPS. The protein expression of the M1 and M2 phenotype specific markers, CD11c and CD206, was assessed by immunofluorescence and flow cytometry in RAW 264.7 macrophages. LPS promoted the expression of IL-1β, TNF-α, and IL-6 in RAW 264.7 macrophages as compared to the control group. Both iRoot SP and MTA were significantly able to enhance the expression of IL-1β, TNF-α, and IL-6 in RAW 264.7 macrophages as compared to LPS group. LPS could increase the expression of CD11c as compared to the control group while iRoot SP and MTA were able to enhance the expression of both CD11c and CD206 as compared to LPS group. iRoot SP and MTA could potentially promote the release of pro-inflammatory cytokines in RAW 264.7 macrophages and induce into M1/M2 phenotype when cultured with LPS.

  16. Successful treatment of tattoo-induced pseudolymphoma with sequential ablative fractional resurfacing followed by Q-switched Nd: Yag 532 nm laser

    Directory of Open Access Journals (Sweden)

    Tan Siyun Lucinda

    2013-01-01

    Full Text Available Decorative tattooing has been linked with a range of complications, with pseudolymphoma being unusual and challenging to manage. We report a case of tattoo-induced pseudolymphoma, who failed treatment with potent topical and intralesional steroids. She responded well to sequential treatment with ablative fractional resurfacing (AFR followed by Q-Switched (QS Nd:YAG 532 nm laser. Interestingly, we managed to document the clearance of her tattoo pigments after laser treatments on histology and would like to highlight the use of special stains such as the Grocott′s Methenamine Silver (GMS stain as a useful method to assess the presence of tattoo pigment in cases where dense inflammatory infiltrates are present.

  17. Successful Treatment of Tattoo-Induced Pseudolymphoma with Sequential Ablative Fractional Resurfacing Followed by Q-Switched Nd: YAG 532 nm Laser

    Science.gov (United States)

    Lucinda, Tan Siyun; Hazel, Oon Hwee Boon; Joyce, Lee Siong Siong; Hon, Chua Sze

    2013-01-01

    Decorative tattooing has been linked with a range of complications, with pseudolymphoma being unusual and challenging to manage. We report a case of tattoo-induced pseudolymphoma, who failed treatment with potent topical and intralesional steroids. She responded well to sequential treatment with ablative fractional resurfacing (AFR) followed by Q-Switched (QS) Nd:YAG 532 nm laser. Interestingly, we managed to document the clearance of her tattoo pigments after laser treatments on histology and would like to highlight the use of special stains such as the Grocott's Methenamine Silver (GMS) stain as a useful method to assess the presence of tattoo pigment in cases where dense inflammatory infiltrates are present. PMID:24470721

  18. Electric-pulse-induced resistance switching effect in the bulk of La0.5Ca0.5MnO3 ceramics

    Directory of Open Access Journals (Sweden)

    M. L. Wu

    2014-04-01

    Full Text Available In the majority of contributions, the electrical–pulse-induced resistance (EPIR switching effect of perovskite manganites is thought to originate from the extrinsic interfacial Schottky barrier between the metal electrode and the surface of sample. In this work, La0.5Ca0.5MnO3 (LCMO ceramic samples were synthesized by solid state reaction and the transport properties, especially, the EPIR effect and memristor behavior were investigated under 4-wire method using silver-glue as electrodes. Although the I-V characteristic of LCMO shows an ohmic linearity under the 4-wire mode at room temperature, a stable and remarkable EPIR can still be observed when the pulse voltage is more than a critical value. This bulk EPIR effect is novel for rare - earth doped manganites.

  19. Estimation of Parasitic Resistance of Electrolytic Capacitor and Filter Inductor and Prediction of Input Filter Induced Oscillations in a Switch-Mode Magnet Power Supply

    Directory of Open Access Journals (Sweden)

    Rajul Lal Gour

    2016-01-01

    Full Text Available In switch-mode power converters with large ratings, it is important to be able to predict the parasitic resistances associated with circuit elements such as electrolytic capacitor and filter inductor in the initial converter design stage itself to avoid the cost and time associated with actual design, prototype fabrication, and testing of these components. Knowing the values of parasitic elements is also important as they decide the possibility of closed-loop instability, besides affecting the other circuit parameters. In this paper, a way to estimate the equivalent series resistance of electrolytic capacitor and the winding resistance of filter inductor is proposed leading to their closed form expressions in terms of system parameters. Using these, procedure to predict the closed-loop instability induced due to the input filter is exemplified with illustrative calculations.

  20. Characterization of textural and hydric heterogeneities in argillaceous geo-materials using induced polarization method: application to the excavation damaged zone (EDZ) of the Tournemire experimental station

    International Nuclear Information System (INIS)

    Okay, Gonca

    2011-01-01

    This Ph-D thesis investigates the potential of clay rocks for deep geological disposal of radioactive waste. Underground excavations are responsible in their vicinity a region, where the clay-rock is damaged or disturbed. This region must to be characterized to ensure the safety of repositories. The extension of the excavation damaged zone (EDZ) and its evolution over time have been investigated thought electrical resistivity and induced polarization methods from three galleries belonging to the French Institute of Radioprotection and Nuclear Safety (IRSN)'s experimental underground research laboratory of Tournemire (Aveyron, France). Time domain induced polarisation indicates the presence of mineralization (e.g., especially pyrite) located in the structural discontinuities such as tectonic fractures (mm-cm), tectonic fault (m) and calcareous nodules (cm). Combined electrical resistivity and Induced Polarization methods show the possibility to delineate textural changes associated to desaturation of the clay-rock induced by the ventilation of galleries. The impact of the desaturation is particularly observed on the gallery's walls. In addition, Spectral Induced Polarization (SIP) tomography results can be used to discriminate the responses of the de-saturated zones from the fractured zones. We have performed laboratory experiments (in the range 1.4 mHz - 12 kHz) using saturated unconsolidated sand-clay mixtures. The results illustrate that the amplitude of polarization is strongly affected by the surface properties of these mixtures (e.g., cation exchange capacity, specific surface area) and by the volumetric clay content. However, the amplitude of polarization is independent of the concentration of electrolyte. The SIP response is also strongly sensitive to the mineralogy of the clays. (author)

  1. Direct observation of hopping induced spin polarization current in oxygen deficient Co-doped ZnO by Andreev reflection technique

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kung-Shang; Huang, Tzu-Yu; Dwivedi, G.D. [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Lin, Lu-Kuei; Lee, Shang-Fan [Taiwan Institute of Physics, Academia Sinica, Taipei, Taiwan (China); Sun, Shih-Jye [Department of Applied Physics, National Kaohsiung University, Kaohsiung, Taiwan (China); Chou, Hsiung, E-mail: hchou@mail.nsysu.edu.tw [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2017-07-01

    Highlights: • Co-doped ZnO thin-films were grown with varying V{sub O} concentartion. • PCAR measurements were done to study the SPC. • High spin polarization was observed above a certain V{sub O} concentartion. • High V{sub O} samples provide a high density of completed percolation path. • This complete percolation path gives rise to high SPC. - Abstract: Oxygen vacancy induced ferromagnetic coupling in diluted magnetic oxide (DMO) semiconductors have been reported in several studies, but technologically more crucial spin-polarized current (SPC) is still under-developed in DMOs. Few studies have claimed that VRH mechanism can originate the SPC, but, how VRH mechanism associated with percolation path, is not clearly understood. We used Point-contact Andreev reflection (PCAR) technique to probe the SPC in Co-doped ZnO (CZO) films. Since the high resistance samples cause broadening in conductance(G)-voltage(V) curves, which may result in an unreliable evaluation of spin polarization, we include two extra parameters, (i) effective temperature and (ii) spreading resistance, for the simulation to avoid the uncertainty in extracting spin polarization. The effective G-V curves and higher spin polarization can be obtained above a certain oxygen vacancy concentration. The number of completed and fragmentary percolation paths is proportional to the concentration of oxygen vacancies. For low oxygen vacancy samples, the Pb-tip has a higher probability of covering fragmentary percolation paths than the complete ones, due to its small contact size. The completed paths may remain independent of one another and get polarized in different directions, resulting in lower spin-polarization value. High oxygen vacancy samples provide a high density of completed path, most of them link to one another by crossing over, and gives rise to high spin-polarization value.

  2. 3-D time-domain induced polarization tomography: a new approach based on a source current density formulation

    Science.gov (United States)

    Soueid Ahmed, A.; Revil, A.

    2018-04-01

    Induced polarization (IP) of porous rocks can be associated with a secondary source current density, which is proportional to both the intrinsic chargeability and the primary (applied) current density. This gives the possibility of reformulating the time domain induced polarization (TDIP) problem as a time-dependent self-potential-type problem. This new approach implies a change of strategy regarding data acquisition and inversion, allowing major time savings for both. For inverting TDIP data, we first retrieve the electrical resistivity distribution. Then, we use this electrical resistivity distribution to reconstruct the primary current density during the injection/retrieval of the (primary) current between the current electrodes A and B. The time-lapse secondary source current density distribution is determined given the primary source current density and a distribution of chargeability (forward modelling step). The inverse problem is linear between the secondary voltages (measured at all the electrodes) and the computed secondary source current density. A kernel matrix relating the secondary observed voltages data to the source current density model is computed once (using the electrical conductivity distribution), and then used throughout the inversion process. This recovered source current density model is in turn used to estimate the time-dependent chargeability (normalized voltages) in each cell of the domain of interest. Assuming a Cole-Cole model for simplicity, we can reconstruct the 3-D distributions of the relaxation time τ and the Cole-Cole exponent c by fitting the intrinsic chargeability decay curve to a Cole-Cole relaxation model for each cell. Two simple cases are studied in details to explain this new approach. In the first case, we estimate the Cole-Cole parameters as well as the source current density field from a synthetic TDIP data set. Our approach is successfully able to reveal the presence of the anomaly and to invert its Cole

  3. Radiation and inhibition of angiogenesis by canstatin synergize to induce HIF-1α–mediated tumor apoptotic switch

    Science.gov (United States)

    Magnon, Claire; Opolon, Paule; Ricard, Marcel; Connault, Elisabeth; Ardouin, Patrice; Galaup, Ariane; Métivier, Didier; Bidart, Jean-Michel; Germain, Stéphane; Perricaudet, Michel; Schlumberger, Martin

    2007-01-01

    Tumor radioresponsiveness depends on endothelial cell death, which leads in turn to tumor hypoxia. Radiation-induced hypoxia was recently shown to trigger tumor radioresistance by activating angiogenesis through hypoxia-inducible factor 1–regulated (HIF-1–regulated) cytokines. We show here that combining targeted radioiodide therapy with angiogenic inhibitors, such as canstatin, enhances direct tumor cell apoptosis, thereby overcoming radio-induced HIF-1–dependent tumor survival pathways in vitro and in vivo. We found that following dual therapy, HIF-1α increases the activity of the canstatin-induced αvβ5 signaling tumor apoptotic pathway and concomitantly abrogates mitotic checkpoint and tetraploidy triggered by radiation. Apoptosis in conjunction with mitotic catastrophe leads to lethal tumor damage. We discovered that HIF-1 displays a radiosensitizing activity that is highly dependent on treatment modalities by regulating key apoptotic molecular pathways. Our findings therefore support a crucial role for angiogenesis inhibitors in shifting the fate of radiation-induced HIF-1α activity from hypoxia-induced tumor radioresistance to hypoxia-induced tumor apoptosis. This study provides a basis for developing new biology-based clinically relevant strategies to improve the efficacy of radiation oncology, using HIF-1 as an ally for cancer therapy. PMID:17557121

  4. Induced polarization of Λ(1116) in kaon electroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Gabrielyan, M.; Raue, B. A.; Carman, D. S.; Park, K.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Baturin, V.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, T.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D' Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Forest, T. A.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Levine, W. I.; Livingston, K.; MacGregor, I. J. D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mestayer, M. D.; Mirazita, M.; Mokeev, V.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Pasyuk, E.; Peng, P.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Rimal, D.; Ripani, M.; Rizzo, A.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Simonyan, A.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Tang, W.; Ungaro, M.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.; Zonta, I.

    2014-09-01

    We have measured the induced polarization of the Λ(1116) in the reaction ep→e'K+Λ, detecting the scattered e' and K+ in the final state along with the proton from the decay Λ→pπ-.The present study used the CEBAF Large Acceptance Spectrometer (CLAS), which allowed for a large kinematic acceptance in invariant energy W (1.6≤W≤2.7 GeV) and covered the full range of the kaon production angle at an average momentum transfer Q2=1.90 GeV2.In this experiment a 5.50 GeV electron beam was incident upon an unpolarized liquid-hydrogen target. We have mapped out the W and kaon production angle dependencies of the induced polarization and found striking differences from photoproduction data over most of the kinematic range studied. However, we also found that the induced polarization is essentially Q2 independent in our kinematic domain, suggesting that somewhere below the Q2 covered here there must be a strong Q2 dependence. Along with previously published photo- and electroproduction cross sections and polarization observables, these data are needed for the development of models, such as effective field theories, and as input to coupled-channel analyses that can provide evidence of previously unobserved s-channel resonances.

  5. Analytical Evaluation of the Effect of Cross-Polarization-induced Crosstalk on the BER Performance of a PDM-QPSK Coherent Homodyne Optical Transmission System

    Science.gov (United States)

    Taher, K. A.; Majumder, S. P.

    2017-05-01

    An analytical approach is developed to find the effect of cross-polarization (XPol)-induced crosstalk on the bit error rate (BER) performance of a polarization division multiplex (PDM) quadrature phase shift keying (QPSK) optical transmission system with polarization diversity receiver. Analytical expression for the XPol-induced crosstalk and signal to crosstalk plus noise ratio (SCNR) are developed at the output of polarization diversity PDM-QPSK coherent optical homodyne receiver conditioned on a given value of mean misalignment angle. Considering Maxwellian distribution for the pdf of the misalignment angle, the average SCNR and average BER are derived. Results show that there is significant deterioration in the BER performance and power penalty due to XPol-induced crosstalk. Penalties in signal power are found to be 8.85 dB, 11.28 dB and 12.59 dB correspondingly for LO laser power of -10 dBm, -5 dBm and 0 dBm at a data rate of 100 Gbps, mean misalignment angle of 7.5 degree and BER of 10-9 compared to the signal power without crosstalk.

  6. Physical limitations to efficient high-speed spin-torque switching in magnetic tunnel junctions

    Science.gov (United States)

    Heindl, R.; Rippard, W. H.; Russek, S. E.; Kos, A. B.

    2011-02-01

    We have investigated the physical limitations to efficient high-speed spin-torque switching by means of write error rates both experimentally as well as through macrospin simulations. The spin-torque-induced write operations were performed on in-plane MgO magnetic tunnel junctions. The write error rates were determined from up to 106 switching events as a function of pulse amplitude and duration (5 to 100 ns) for devices with different thermal stability factors. Both experiments and simulations show qualitatively similar results. In particular, the write error rates as a function of pulse voltage amplitude increase at higher rates for pulse durations below ≈50 ns. Simulations show that the write error rates can be reduced only to some extent by the use of materials with perpendicular anisotropy and reduced damping, whereas noncollinear orientation of the spin current polarization and the magnetic easy axis increases the write error rates. The cause for the write error rates is related to the underlying physics of spin-torque switching and the occurrence of the stagnation point on the magnetization switching trajectory where the spin-torque disappears and the device loses the energy needed to switch. The stagnation point can be accessed either during the initial magnetization distribution or by thermal diffusion during the switching process.

  7. Switchable Induced Polarization in LaAlO3/SrTiO3 Heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bark, C [University of Wisconsin, Madison; Sharma, P. [University of Nebraska; Wang, Y. [University of Nebraska; Baek, Seung Hyub [University of Wisconsin, Madison; Lee, S. [University of Wisconsin, Madison; Ryu, S. [University of Wisconsin, Madison; Folkman, C H [University of Wisconsin; Paudel, Tula R [ORNL; Kumar, Amit [ORNL; Kalinin, Sergei V [ORNL; Sokolov, A. [University of Nebraska; Tsymbal, E Y [University of Nebraska, Lincoln; Rzchowski, M [University of Wisconsin; Gruverman, Alexei [ORNL; Eom, Professor Chang-Beom [University of Wisconsin, Madison

    2012-01-01

    Demonstration of a tunable conductivity of the LaAlO3/SrTiO3 interfaces drew significant attention to the development of oxide electronic structures where electronic confinement can be reduced to the nanometer range. While the mechanisms for the conductivity modulation are quite different and include metal insulator phase transition and surface charge writing, generally it is implied that this effect is a result of electrical modification of the LaAlO3 surface (either due to electrochemical dissociation of surface adsorbates or free charge deposition) leading to the change in the twodimensional electron gas (2DEG) density at the LaAlO3/SrTiO3 (LAO/STO) interface. In this paper, using piezoresponse force microscopy we demonstrate a switchable electromechanical response of the LAO overlayer, which we attribute to the motion of oxygen vacancies through the LAO layer thickness. These electrically induced reversible changes in bulk stoichiometry of the LAO layer are a signature of a possible additional mechanism for nanoscale oxide 2DEG control on LAO/STO interfaces.

  8. Dicer loss and recovery induce an oncogenic switch driven by transcriptional activation of the oncofetal Imp1-3 family.

    Science.gov (United States)

    JnBaptiste, Courtney K; Gurtan, Allan M; Thai, Kevin K; Lu, Victoria; Bhutkar, Arjun; Su, Mei-Ju; Rotem, Asaf; Jacks, Tyler; Sharp, Phillip A

    2017-04-01

    MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression critical for organismal viability. Changes in miRNA activity are common in cancer, but how these changes relate to subsequent alterations in transcription and the process of tumorigenesis is not well understood. Here, we report a deep transcriptional, oncogenic network regulated by miRNAs. We present analysis of the gene expression and phenotypic changes associated with global miRNA restoration in miRNA-deficient fibroblasts. This analysis uncovers a miRNA-repressed network containing oncofetal genes Imp1 , Imp2 , and Imp3 ( Imp1-3 ) that is up-regulated primarily transcriptionally >100-fold upon Dicer loss and is resistant to resilencing by complete restoration of miRNA activity. This Dicer-resistant epigenetic switch confers tumorigenicity to these cells. Let-7 targets Imp1-3 are required for this tumorigenicity and feed back to reinforce and sustain expression of the oncogenic network. Together, these Dicer-resistant genes constitute an mRNA expression signature that is present in numerous human cancers and is associated with poor survival. © 2017 JnBaptiste et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Sub/supercritical carbon dioxide induced phase switching for the reaction and separation in ILs/methanol

    Directory of Open Access Journals (Sweden)

    Jiayu Xin

    2016-07-01

    Full Text Available Separation of products from ionic liquid (IL solvents is one of the main challenges that hinder their utilizations. In this study, the production of γ-valerolactone (GVL by selective hydrogenation of α-angelica lactone (AL and separation of the products from the IL solvent were carried out by using subcritical CO2 as a “switch” at room temperature. After the mixture was separated into two phases by subcritical CO2, AL and nano Pd/C catalyst were only found in the lower IL-rich phase, GVL was produced with quantitative yield and enriched in the upper methanol-rich phase. Pure GVL can be obtained by depressurizing to release CO2 and evaporation to remove methanol of the upper phase, the lower phase containing IL, catalyst and methanol can be recycled for the next reaction. The strategy may provide a new approach to produce and separate products from IL solvents at mild conditions. Keywords: Separation, Ionic liquids, Selective hydrogenation, Mild condition, Subcritical CO2

  10. Molecular Rotors as Switches

    Directory of Open Access Journals (Sweden)

    Kang L. Wang

    2012-08-01

    >I–V characteristics suggests the source of the observed switching effects to be the result of the redox-induced ligand rotation around the copper metal center and this attribution of switching is consistent with the observed temperature dependence of the switching behavior as well as the proposed energy diagram of the device. The observed resistance switching shows the potential for future non-volatile memories and logic devices applications. This review will discuss the progress and provide a perspective of molecular motion for nanoelectronics and other applications.

  11. 3D Inversion of Induced Polarization Data From Borehole Measurements to Map Subsurface Contaminations of Tetrachloroethylene and Trichloroethylene.

    Science.gov (United States)

    Briggs, V. A.; Sogade, J.; Minsley, B.; Lambert, M.; Coles, D.; Repert, P.; Morgan, F.; Rossabi, J.; Riha, B.

    2003-12-01

    The purpose of this study is to image contaminant plumes of tetrachloroethylene (PCE) and Trichloroethylene (TCE) in a subsurface environment. PCE and TCE have been used in the metals fabrication industry since the start of the second word war and subsequently millions of tons of these chemicals have been released in to the environment. Once in the water supply these contaminants are difficult to remove and can be toxic at the part per billion level. Remediation at the source of many of these contaminated sites, in the form of vapour extraction, can effectively remove alot of the chemicals but without techniques to delineate the size and shape of the contaminated zone, or to monitor the effectiveness of the remediation effort, it is difficult to quantify the remediation success. Using complex resistivity methods it is possible to determine the spatial extent and concentration of these chemicals due to their effect on the pore space chemistry. Even at parts per billion the contaminantas can significantly alter the IP signature enabling detection. Data were collected from a site in South Carolina where these chemcals are known to have been released in large quantities from the 1950's through to the 1980's. Induced Polarization data were measured in a multi-borehole environment to ensure good data coverage. Data is inverted using a 3D finite difference bi-conjugate gradient method and correlated to ground truth boreholes within the region of interest.

  12. An Empirical Orthogonal Function Reanalysis of the Northern Polar External and Induced Magnetic Field During Solar Cycle 23

    Science.gov (United States)

    Shore, R. M.; Freeman, M. P.; Gjerloev, J. W.

    2018-01-01

    We apply the method of data-interpolating empirical orthogonal functions (EOFs) to ground-based magnetic vector data from the SuperMAG archive to produce a series of month length reanalyses of the surface external and induced magnetic field (SEIMF) in 110,000 km2 equal-area bins over the entire northern polar region at 5 min cadence over solar cycle 23, from 1997.0 to 2009.0. Each EOF reanalysis also decomposes the measured SEIMF variation into a hierarchy of spatiotemporal patterns which are ordered by their contribution to the monthly magnetic field variance. We find that the leading EOF patterns can each be (subjectively) interpreted as well-known SEIMF systems or their equivalent current systems. The relationship of the equivalent currents to the true current flow is not investigated. We track the leading SEIMF or equivalent current systems of similar type by intermonthly spatial correlation and apply graph theory to (objectively) group their appearance and relative importance throughout a solar cycle, revealing seasonal and solar cycle variation. In this way, we identify the spatiotemporal patterns that maximally contribute to SEIMF variability over a solar cycle. We propose this combination of EOF and graph theory as a powerful method for objectively defining and investigating the structure and variability of the SEIMF or their equivalent ionospheric currents for use in both geomagnetism and space weather applications. It is demonstrated here on solar cycle 23 but is extendable to any epoch with sufficient data coverage.

  13. Induced polarization imaging applied to exploration for low-sulfidation epithermal Au-Ag deposits, Seongsan mineralized district, South Korea

    Science.gov (United States)

    Han, Man-Ho; Shin, Seung Wook; Park, Samgyu; Cho, Seong-Jun; Kim, Jung-Ho

    2016-10-01

    The determination of mineralization boundaries during mineral exploration for undiscovered low-sulfidation epithermal Au-Ag deposits is a significant challenge because of the extensive survey areas required. Induced polarization (IP) imaging is an effective geophysical technique for the detection of sulfides or clay. Thus, this method is considered useful to determine the boundaries of subsurface mineralization and hydrothermal alteration associated with epithermal deposits. We used 2D and 3D IP imaging to define the silicification and mineralization boundaries of the Moisan deposit in the Seongsan mineralized district, which is geologically well-known. The boundaries of the silicification zone were defined by high resistivity values of 600 Ω-m, and those of the mineralization zone were defined by high global chargeability values of 3 mV V-1. The continuity of the high resistivity anomaly corresponded well to the silicification (quartz veins) exposed in outcrop. In addition, it is geologically reasonable that the chargeability anomaly, ⩾3 mV V-1, associated with the mineralization/hydrothermal alteration zone was concentrated at near-surface depths, and extensively surrounding the resistivity anomaly, ⩾600 Ω-m, associated with the silicification zone.

  14. Large 3D resistivity and induced polarization acquisition using the Fullwaver system: towards an adapted processing methodology

    Science.gov (United States)

    Truffert, Catherine; Leite, Orlando; Gance, Julien; Texier, Benoît; Bernard, Jean

    2017-04-01

    Driven by needs in the mineral exploration market for ever faster and ever easier set-up of large 3D resistivity and induced polarization, autonomous and cableless recorded systems come to the forefront. Opposite to the traditional centralized acquisition, this new system permits a complete random distribution of receivers on the survey area allowing to obtain a real 3D imaging. This work presents the results of a 3 km2 large experiment up to 600m of depth performed with a new type of autonomous distributed receivers: the I&V-Fullwaver. With such system, all usual drawbacks induced by long cable set up over large 3D areas - time consuming, lack of accessibility, heavy weight, electromagnetic induction, etc. - disappear. The V-Fullwavers record the entire time series of voltage on two perpendicular axes, for a good determination of the data quality although I-Fullwaver records injected current simultaneously. For this survey, despite good assessment of each individual signal quality, on each channel of the set of Fullwaver systems, a significant number of negative apparent resistivity and chargeability remains present in the dataset (around 15%). These values are commonly not taken into account in the inversion software although they may be due to complex geological structure of interest (e.g. linked to the presence of sulfides in the earth). Taking into account that such distributed recording system aims to restitute the best 3D resistivity and IP tomography, how can 3D inversion be improved? In this work, we present the dataset, the processing chain and quality control of a large 3D survey. We show that the quality of the data selected is good enough to include it into the inversion processing. We propose a second way of processing based on the modulus of the apparent resistivity that stabilizes the inversion. We then discuss the results of both processing. We conclude that an effort could be made on the inclusion of negative apparent resistivity in the inversion

  15. Human monocyte-derived dendritic cells exposed to microorganisms involved in hypersensitivity pneumonitis induce a Th1-polarized immune response.

    Science.gov (United States)

    Bellanger, Anne-Pauline; Pallandre, Jean-René; Borg, Christophe; Loeffert, Sophie; Gbaguidi-Haore, Houssein; Millon, Laurence

    2013-08-01

    Hypersensitivity pneumonitis (HP) is an immunoallergic disease characterized by a prominent interstitial infiltrate composed predominantly of lymphocytes secreting inflammatory cytokines. Dendritic cells (DCs) are known to play a pivotal role in the lymphocytic response. However, their cross talk with microorganisms that cause HP has yet to be elucidated. This study aimed to investigate the initial interactions between human monocyte-derived DCs (MoDCs) and four microorganisms that are different in nature (Saccharopolyspora rectivirgula [actinomycetes], Mycobacterium immunogenum [mycobacteria], and Wallemia sebi and Eurotium amstelodami [filamentous fungi]) and are involved in HP. Our objectives were to determine the cross talk between MoDCs and HP-causative agents and to determine whether the resulting immune response varied according to the microbial extract tested. The phenotypic activation of MoDCs was measured by the increased expression of costimulatory molecules and levels of cytokines in supernatants. The functional activation of MoDCs was measured by the ability of MoDCs to induce lymphocytic proliferation and differentiation in a mixed lymphocytic reaction (MLR). E. amstelodami-exposed (EA) MoDCs expressed higher percentages of costimulatory molecules than did W. sebi-exposed (WS), S. rectivirgula-exposed (SR), or M. immunogenum-exposed (MI) MoDCs (P < 0.05, Wilcoxon signed-rank test). EA-MoDCs, WS-MoDCs, SR-MoDCs, and MI-MoDCs induced CD4(+) T cell proliferation and a Th1-polarized immune response. The present study provides evidence that, although differences were initially observed between MoDCs exposed to filamentous fungi and MoDCs exposed to bacteria, a Th1 response was ultimately promoted by DCs regardless of the microbial extract tested.

  16. Resistive switching in Ag-TiO{sub 2} contacts

    Energy Technology Data Exchange (ETDEWEB)

    Ghenzi, N., E-mail: ghenzi@cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, (1650) San Martin, Pcia. de Buenos Aires (Argentina); Stoliar, P. [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, (1650) San Martin, Pcia. de Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, Campus Migueletes, UNSAM, Pcia. de Buenos Aires (Argentina); Fuertes, M.C. [Gerencia Quimica, CAC, CNEA, (1650) San Martin, Pcia. de Buenos Aires (Argentina); Marlasca, F.G.; Levy, P. [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, (1650) San Martin, Pcia. de Buenos Aires (Argentina)

    2012-08-15

    We study the electric pulse induced resistance switching of TiO{sub 2}-Ag contacts at room temperature, exploring both unipolar and bipolar switching modes. Initially we observed unipolar response. After hundred pulsing cycles the unipolar switching response vanishes but the device can still be operated in bipolar switching regime. The underlying mechanism for resistance switching is modeled in terms of formation and rupture of filament, and movement of oxygen vacancies.

  17. T cells' immunological synapses induce polarization of brain astrocytes in vivo and in vitro: a novel astrocyte response mechanism to cellular injury.

    Science.gov (United States)

    Barcia, Carlos; Sanderson, Nicholas S R; Barrett, Robert J; Wawrowsky, Kolja; Kroeger, Kurt M; Puntel, Mariana; Liu, Chunyan; Castro, Maria G; Lowenstein, Pedro R

    2008-08-20

    Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular communication between T cells and target cells, both in vitro and in vivo. How target virally infected astrocytes respond to the formation of immunological synapses established by effector T cells is unknown. Herein we demonstrate that, as a consequence of T cell attack, infected astrocytes undergo dramatic morphological changes. From normally multipolar cells, they become unipolar, extending a major protrusion towards the immunological synapse formed by the effector T cells, and withdrawing most of their finer processes. Thus, target astrocytes become polarized towards the contacting T cells. The MTOC, the organizer of cell polarity, is localized to the base of the protrusion, and Golgi stacks are distributed throughout the protrusion, reaching distally towards the immunological synapse. Thus, rather than causing astrocyte hypertrophy, antiviral T cells cause a major structural reorganization of target virally infected astrocytes. Astrocyte polarization, as opposed to hypertrophy, in response to T cell attack may be due to T cells providing a very focused attack, and thus, astrocytes responding in a polarized manner. A similar polarization of Golgi stacks towards contacting T cells was also detected using an in vitro allogeneic model. Thus, different T cells are able to induce polarization of target astrocytes. Polarization of target astrocytes in response to immunological synapses may play an important role in regulating the outcome of the response of astrocytes to attacking effector T cells, whether during antiviral (e.g. infected during HIV, HTLV-1, HSV-1 or LCMV infection), anti

  18. T cells' immunological synapses induce polarization of brain astrocytes in vivo and in vitro: a novel astrocyte response mechanism to cellular injury.

    Directory of Open Access Journals (Sweden)

    Carlos Barcia

    2008-08-01

    Full Text Available Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular communication between T cells and target cells, both in vitro and in vivo. How target virally infected astrocytes respond to the formation of immunological synapses established by effector T cells is unknown.Herein we demonstrate that, as a consequence of T cell attack, infected astrocytes undergo dramatic morphological changes. From normally multipolar cells, they become unipolar, extending a major protrusion towards the immunological synapse formed by the effector T cells, and withdrawing most of their finer processes. Thus, target astrocytes become polarized towards the contacting T cells. The MTOC, the organizer of cell polarity, is localized to the base of the protrusion, and Golgi stacks are distributed throughout the protrusion, reaching distally towards the immunological synapse. Thus, rather than causing astrocyte hypertrophy, antiviral T cells cause a major structural reorganization of target virally infected astrocytes.Astrocyte polarization, as opposed to hypertrophy, in response to T cell attack may be due to T cells providing a very focused attack, and thus, astrocytes responding in a polarized manner. A similar polarization of Golgi stacks towards contacting T cells was also detected using an in vitro allogeneic model. Thus, different T cells are able to induce polarization of target astrocytes. Polarization of target astrocytes in response to immunological synapses may play an important role in regulating the outcome of the response of astrocytes to attacking effector T cells, whether during antiviral (e.g. infected during HIV, HTLV-1, HSV-1 or LCMV

  19. Sporadic on/off switching of HTLV-1 Tax expression is crucial to maintain the whole population of virus-induced leukemic cells.

    Science.gov (United States)

    Mahgoub, Mohamed; Yasunaga, Jun-Ichirou; Iwami, Shingo; Nakaoka, Shinji; Koizumi, Yoshiki; Shimura, Kazuya; Matsuoka, Masao

    2018-02-06

    Viruses causing chronic infection artfully manipulate infected cells to enable viral persistence in vivo under the pressure of immunity. Human T-cell leukemia virus type 1 (HTLV-1) establishes persistent infection mainly in CD4+ T cells in vivo and induces leukemia in this subset. HTLV-1-encoded Tax is a critical transactivator of viral replication and a potent oncoprotein, but its significance in pathogenesis remains obscure due to its very low level of expression in vivo. Here, we show that Tax is expressed in a minor fraction of leukemic cells at any given time, and importantly, its expression spontaneously switches between on and off states. Live cell imaging revealed that the average duration of one episode of Tax expression is ∼19 hours. Knockdown of Tax rapidly induced apoptosis in most cells, indicating that Tax is critical for maintaining the population, even if its short-term expression is limited to a small subpopulation. Single-cell analysis and computational simulation suggest that transient Tax expression triggers antiapoptotic machinery, and this effect continues even after Tax expression is diminished; this activation of the antiapoptotic machinery is the critical event for maintaining the population. In addition, Tax is induced by various cytotoxic stresses and also promotes HTLV-1 replication. Thus, it seems that Tax protects infected cells from apoptosis and increases the chance of viral transmission at a critical moment. Keeping the expression of Tax minimal but inducible on demand is, therefore, a fundamental strategy of HTLV-1 to promote persistent infection and leukemogenesis. Copyright © 2018 the Author(s). Published by PNAS.

  20. Dietary-Induced Signals That Activate the Gonadal Longevity Pathway during Development Regulate a Proteostasis Switch in Caenorhabditis elegans Adulthood

    Directory of Open Access Journals (Sweden)

    Netta Shemesh

    2017-08-01

    Full Text Available Cell-non-autonomous signals dictate the functional state of cellular quality control systems, remodeling the ability of cells to cope with stress and maintain protein homeostasis (proteostasis. One highly regulated cell-non-autonomous switch controls proteostatic capacity in Caenorhabditis elegans adulthood. Signals from the reproductive system down-regulate cyto-protective pathways, unless countered by signals reporting on germline proliferation disruption. Here, we utilized dihomo-γ-linolenic acid (DGLA that depletes the C. elegans germline to ask when cell-non-autonomous signals from the reproductive system determine somatic proteostasis and whether such regulation is reversible. We found that diet supplementation of DGLA resulted in the maintenance of somatic proteostasis after the onset of reproduction. DGLA-dependent proteostasis remodeling was only effective if animals were exposed to DGLA during larval development. A short exposure of 16 h during the second to fourth larval stages was sufficient and required to maintain somatic proteostasis in adulthood but not to extend lifespan. The reproductive system was required for DGLA-dependent remodeling of proteostasis in adulthood, likely via DGLA-dependent disruption of germline stem cells. However, arachidonic acid (AA, a somatic regulator of this pathway that does not require the reproductive system, presented similar regulatory timing. Finally, we showed that DGLA- and AA-supplementation led to activation of the gonadal longevity pathway but presented differential regulatory timing. Proteostasis and stress response regulators, including hsf-1 and daf-16, were only activated if exposed to DGLA and AA during development, while other gonadal longevity factors did not show this regulatory timing. We propose that C. elegans determines its proteostatic fate during development and is committed to either reproduction, and thus present restricted proteostasis, or survival, and thus present robust