WorldWideScience

Sample records for polarization including circular

  1. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  2. Circular polarization observed in bioluminescence

    NARCIS (Netherlands)

    Wijnberg, Hans; Meijer, E.W.; Hummelen, J.C.; Dekkers, H.P.J.M.; Schippers, P.H.; Carlson, A.D.

    1980-01-01

    While investigating circular polarization in luminescence, and having found it in chemiluminescence, we have studied bioluminescence because it is such a widespread and dramatic natural phenomenon. We report here that left and right lanterns of live larvae of the fireflies, Photuris lucicrescens and

  3. Cygnus X-1: Discovery of variable circular polarization

    International Nuclear Information System (INIS)

    Michalsky, J.J.; Swedlund, J.B.; Stokes, R.A.

    1975-01-01

    HDE 226868, the optical counterpart of Cyg X-1, has been observed for circular polarization during 1974. Observations in five colors suggest that circular polarization results from an interstellar effect. Measurements of the blue polarization reveal circular polarization variations synchronous with the 5)./sub /6 orbital period. The circular polarization variation appears to be similar to the blue intensity variation

  4. Circular Polarization in Turbulent Blazar Jets

    Directory of Open Access Journals (Sweden)

    Nicholas Roy MacDonald

    2017-11-01

    Full Text Available Circular polarization (CP provides an invaluable probe into the underlying plasma content of relativistic jets. CP can be generated within the jet through a physical process known as linear birefringence. This is a physical mechanism through which initially linearly polarized emission produced in one region of the jet is attenuated by Faraday rotation as it passes through other regions of the jet with distinct magnetic field orientations. Marscher developed the turbulent extreme multi-zone (TEMZ model of blazar emission which mimics these types of magnetic geometries with collections of thousands of plasma cells passing through a standing conical shock. I have recently developed a radiative transfer algorithm to generate synthetic images of the time-dependent circularly polarized intensity emanating from the TEMZ model at different radio frequencies. In this study, we produce synthetic multi-epoch observations that highlight the temporal variability in the circular polarization produced by the TEMZ model. We also explore the effect that different plasma compositions within the jet have on the resultant levels of CP.

  5. Circular polarization in a non-magnetic resonant tunneling device

    Directory of Open Access Journals (Sweden)

    Airey Robert

    2011-01-01

    Full Text Available Abstract We have investigated the polarization-resolved photoluminescence (PL in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW PL presents strong circular polarization (values up to -70% at 19 T. The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects.

  6. Slotted Circularly Polarized Microstrip Antenna for RFID Application

    Directory of Open Access Journals (Sweden)

    S. Kumar

    2017-12-01

    Full Text Available A single layer coaxial fed rectangular microstrip slotted antenna for circular polarization (CP is proposed for radio frequency identification (RFID application. Two triangular shaped slots and one rectangular slot along the diagonal axis of a square patch have been embedded. Due to slotted structure along the diagonal axis and less surface area, good quality of circular polarization has been obtained with the reduction in the size of microstrip antenna by 4.04 %. Circular polarization radiation performance has been studied by size and angle variation of diagonally slotted structures. The experimental result found for 10-dB return loss is 44 MHz with 10MHz of 3dB Axial Ratio (AR bandwidth respectively at the resonant frequency 910 MHz. The overall proposed antenna size including the ground plane is 80 mm x 80 mm x 4.572 mm.

  7. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M.; Hussain, Z. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Growing interest in utilizing circular polarization prompted the design of bend-magnet beamline 9.3.2 at the Advanced Light Source, covering the 30-1500 eV spectral region, to include vertical aperturing capabilities for optimizing the collection of circular polarization above and below the orbit plane. After commissioning and early use of the beamline, a multilayer polarimeter was used to characterize the polarization state of the beam as a function of vertical aperture position. This report partially summarizes the polarimetry measurements and compares results with theoretical calculations intended to simulate experimental conditions.

  8. High Performance Circularly Polarized Microstrip Antenna

    Science.gov (United States)

    Bondyopadhyay, Probir K. (Inventor)

    1997-01-01

    A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.

  9. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    Science.gov (United States)

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  10. Molecular electron recollision dynamics in intense circularly polarized laser pulses

    Science.gov (United States)

    Bandrauk, André D.; Yuan, Kai-Jun

    2018-04-01

    Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.

  11. Molecular photoelectron holography with circularly polarized laser pulses.

    Science.gov (United States)

    Yang, Weifeng; Sheng, Zhihao; Feng, Xingpan; Wu, Miaoli; Chen, Zhangjin; Song, Xiaohong

    2014-02-10

    We investigate the photoelectron momentum distribution of molecular-ion H2+driven by ultrashort intense circularly polarized laser pulses. Both numerical solutions of the time-dependent Schrödinger equation (TDSE) and a quasiclassical model indicate that the photoelectron holography (PH) with circularly polarized pulses can occur in molecule. It is demonstrated that the interference between the direct electron wave and rescattered electron wave from one core to its neighboring core induces the PH. Moreover, the results of the TDSE predict that there is a tilt angle between the interference pattern of the PH and the direction perpendicular to the molecular axis. Furthermore, the tilt angle is sensitively dependent on the wavelength of the driven circularly polarized pulse, which is confirmed by the quasiclassical calculations. The PH induced by circularly polarized laser pulses provides a tool to resolve the electron dynamics and explore the spatial information of molecular structures.

  12. Spin polarization in quantum dots by radiation field with circular polarization

    CERN Document Server

    Bulgakov, E N

    2001-01-01

    For circular quantum dot (QD) with account of the Razhba spin-orbit interaction (SOI) an exact energy spectrum is obtained. For the small SOI constant the Eigen functions of the QD are found. It is shown that application of radiation field with circular polarization lifts the Kramers degeneracy of the Eigen states of the QD. Effective spin polarization of transmitted electrons through the QD by radiation field with circular polarization is demonstrated

  13. Negative circular polarization as a universal property of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Matthew W.; Spencer, Peter; Murray, Ray [The Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2015-03-23

    This paper shows that negative circular polarization, a spin flip of polarized carriers resulting in emission of opposite helicity, can be observed in undoped, n-doped, and p-doped InAs/GaAs quantum dots. These results contradict the usual interpretation of the effect. We show using power dependent and time resolved spectroscopy that the generation of negative circular polarization correlates with excited state emission. Furthermore, a longer spin lifetime of negatively polarized excitons is observed where emission is largely ground state in character.

  14. Circular polarization measurements with a Ge(Li) detector

    DEFF Research Database (Denmark)

    Kopecký, J.; Warming, Inge Elisabeth

    1969-01-01

    This paper presents the results obtained in measurements of the degree of circular polarization of gamma transitions to bound states of 33S, 36Cl, 49Ti, 56Mn, 57Fe, 60Co and 64Cu following the capture of polarized thermal neutrons. Spin values have been determined on the basis of these results....

  15. Polymer photovoltaic cells sensitive to the circular polarization of light

    Energy Technology Data Exchange (ETDEWEB)

    Gilot, Jan; Abbel, Robert; Lakhwani, Girish; Meijer, E.W.; Schenning, Albertus P.H.J.; Meskers, Stefan C.J. [Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology (Netherlands)

    2010-05-25

    Chiral conjugated polymer is used to construct a photovoltaic cell whose response depends on the circular polarization of the incoming light. The selectivity for left and right polarized light as a function of the thickness of the polymer layer is accounted for by modeling of the optical properties of all layers inside the device. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Simulation of erasure of photoinduced anisotropy by circularly polarized light

    DEFF Research Database (Denmark)

    Sajti, Sz.; Kerekes, Á.; Barabás, M.

    2001-01-01

    The temporal evolution of photoinduced birefringence is investigated on the basis of a model proposed by Pedersen and co-workers, This model is extended for the case of elliptically polarized light, and used to describe the erasure of photoinduced birefringence by circularly polarized light...

  17. A New Limit on CMB Circular Polarization from SPIDER

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, J. M.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bergman, A. S.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Doré, O.; Duivenvoorden, A. J.; Eriksen, H. K.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Freese, K.; Galloway, M.; Gambrel, A. E.; Gandilo, N. N.; Ganga, K.; Gudmundsson, J. E.; Halpern, M.; Hartley, J.; Hasselfield, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Huang, Z.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; Kermish, Z. D.; Li, S.; Mason, P. V.; Megerian, K.; Moncelsi, L.; Morford, T. A.; Netterfield, C. B.; Nolta, M.; Padilla, I. L.; Racine, B.; Rahlin, A. S.; Reintsema, C.; Ruhl, J. E.; Runyan, M. C.; Ruud, T. M.; Shariff, J. A.; Soler, J. D.; Song, X.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.; List, J. F. Van Der; Weber, A. C.; Wehus, I. K.; Wiebe, D. V.; Young, E. Y.

    2017-08-01

    We present a new upper limit on CMB circular polarization from the 2015 flight of SPIDER, a balloon-borne telescope designed to search for $B$-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the non-zero circular-to-linear polarization coupling of the HWP polarization modulators, data from SPIDER's 2015 Antarctic flight provides a constraint on Stokes $V$ at 95 and 150 GHz from $33<\\ell<307$. No other limits exist over this full range of angular scales, and SPIDER improves upon the previous limit by several orders of magnitude, providing 95% C.L. constraints on $\\ell (\\ell+1)C_{\\ell}^{VV}/(2\\pi)$ ranging from 141 $\\mu K ^2$ to 203 $\\mu K ^2$ at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain stronger constraints on circular polarization.

  18. Inkjet printed circularly polarized antennas for GPS applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2014-07-01

    Two novel, inkjet printed circularly polarized antenna designs are presented for GPS applications. First antenna design comprises a planar monopole which has been made circularly polarized by the introduction of an L-shaped slit. The antenna shows a gain of 0.2 dBi at 1.575 GHz with 3-dB axial ratio bandwidth of 3.8%. The second antenna design comprises a modified monopole in the form of an inverted L and has been termed as circularly polarized inverted L antenna (CILA). The antenna shows a gain of -2 dBi at 1.575 GHz with 3-dB axial ratio bandwidth of 4.1%. Both the antenna designs are attractive for mobile applications.

  19. A simple circular-polarized antenna: Circular waveguide horn coated with lossy magnetic material

    Science.gov (United States)

    Lee, Choon S.; Justice, D. W.; Lee, Shung-Wu

    1988-01-01

    It is shown that a circular waveguide horn coated with a lossy material in its interior wall can be used as an alternative to a corrugated waveguide for radiating a circularly polarized (CP) field. To achieve good CP radiation, the diameter of the structure must be larger than the free-space wavelength, and the coating material must be sufficiently lossy and magnetic. The device is cheaper and lighter in weight than the corrugated one.

  20. Acceleration of polarized protons in circular accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  1. Gold helix photonic metamaterial as broadband circular polarizer.

    Science.gov (United States)

    Gansel, Justyna K; Thiel, Michael; Rill, Michael S; Decker, Manuel; Bade, Klaus; Saile, Volker; von Freymann, Georg; Linden, Stefan; Wegener, Martin

    2009-09-18

    We investigated propagation of light through a uniaxial photonic metamaterial composed of three-dimensional gold helices arranged on a two-dimensional square lattice. These nanostructures are fabricated via an approach based on direct laser writing into a positive-tone photoresist followed by electrochemical deposition of gold. For propagation of light along the helix axis, the structure blocks the circular polarization with the same handedness as the helices, whereas it transmits the other, for a frequency range exceeding one octave. The structure is scalable to other frequency ranges and can be used as a compact broadband circular polarizer.

  2. Monolithic Superconducting Emitter of Tunable Circularly Polarized Terahertz Radiation

    Science.gov (United States)

    Elarabi, A.; Yoshioka, Y.; Tsujimoto, M.; Kakeya, I.

    2017-12-01

    We propose an approach to controlling the polarization of terahertz (THz) radiation from intrinsic Josephson-junction stacks in a single crystalline high-temperature superconductor Bi2Sr2CaCu2O8 . Monolithic control of the surface high-frequency current distributions in the truncated square mesa structure allows us to modulate the polarization of the emitted terahertz wave as a result of two orthogonal fundamental modes excited inside the mesa. Highly polarized circular terahertz waves with a degree of circular polarization of more than 99% can be generated using an electrically controlled method. The intuitive results obtained from the numerical simulation based on the conventional antenna theory are consistent with the observed emission characteristics.

  3. Circular polarization in the optical afterglow of GRB 121024A.

    Science.gov (United States)

    Wiersema, K; Covino, S; Toma, K; van der Horst, A J; Varela, K; Min, M; Greiner, J; Starling, R L C; Tanvir, N R; Wijers, R A M J; Campana, S; Curran, P A; Fan, Y; Fynbo, J P U; Gorosabel, J; Gomboc, A; Götz, D; Hjorth, J; Jin, Z P; Kobayashi, S; Kouveliotou, C; Mundell, C; O'Brien, P T; Pian, E; Rowlinson, A; Russell, D M; Salvaterra, R; di Serego Alighieri, S; Tagliaferri, G; Vergani, S D; Elliott, J; Fariña, C; Hartoog, O E; Karjalainen, R; Klose, S; Knust, F; Levan, A J; Schady, P; Sudilovsky, V; Willingale, R

    2014-05-08

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet when measured minutes after the burst, and it probes the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after the burst of GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and no circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blast wave. Here we report the detection of circularly polarized light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch-angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.

  4. Circularly polarized millimeter-wave imaging for personnel screening

    Science.gov (United States)

    Sheen, David M.; McMakin, Douglas L.; Lechelt, Wayne M.; Griffin, Jeffrey W.

    2005-05-01

    A novel polarimetric millimeter-wave imaging technique has been developed at the Pacific Northwest National Laboratory (PNNL) for concealed weapon detection applications. Wideband millimeter-wave imaging systems developed at PNNL utilize low-power, coherent, millimeter-wave illumination in the 10-100 GHz range to form high-resolution images of personnel. Electromagnetic waves in these frequency ranges easily penetrate most clothing materials and are reflected from the body and any concealed items. Three-dimensional images are formed using computer image reconstruction algorithms developed to mathematically focus the received wavefronts scattered from the target. Circular polarimetric imaging can be employed to obtain additional information from the target. Circularly polarized waves incident on relatively smooth reflecting targets are typically reversed in their rotational handedness, e.g. left-hand circular polarization (LHCP) is reflected to become right-hand circular polarization (RHCP). An incident wave that is reflected twice (or any even number) of times prior to returning to the transceiver, has its handedness preserved. Sharp features such as wires and edges tend to return linear polarization, which can be considered to be a sum of both LHCP and RHCP. These characteristics can be exploited for personnel screening by allowing differentiation of smooth features, such as the body, and sharper features present in many concealed items. Additionally, imaging artifacts due to multipath can be identified and eliminated. Laboratory imaging results have been obtained in the 10-20 GHz frequency range and are presented in this paper.

  5. Multiband Circular Polarizer Based on Fission Transmission of Linearly Polarized Wave for X-Band Applications

    Directory of Open Access Journals (Sweden)

    Farman Ali Mangi

    2016-01-01

    Full Text Available A multiband circular polarizer based on fission transmission of linearly polarized wave for x-band application is proposed, which is constructed of 2 × 2 metallic strips array. The linear-to-circular polarization conversion is obtained by decomposing the linearly incident x-polarized wave into two orthogonal vector components of equal amplitude and 90° phase difference between them. The innovative approach of “fission transmission of linear-to-circular polarized wave” is firstly introduced to obtain giant circular dichroism based on decomposition of orthogonal vector components through the structure. It means that the incident linearly polarized wave is converted into two orthogonal components through lower printed metallic strips layer and two transmitted waves impinge on the upper printed strips layer to convert into four orthogonal vector components at the end of structure. This projection and transmission sequence of orthogonal components sustain the chain transmission of electromagnetic wave and can achieve giant circular dichroism. Theoretical analysis and microwave experiments are presented to validate the performance of the structure. The measured results are in good agreement with simulation results. In addition, the proposed circular polarizer exhibits the optimal performance with respect to the normal incidence. The right handed circularly polarized wave is emitted ranging from 10.08 GHz to 10.53 GHz and 10.78 GHz to 11.12 GHz, while the left handed circular polarized wave is excited at 10.54 GHz–10.70 GHz and 11.13 GHz–11.14 GHz, respectively.

  6. Analysis of Circular Polarization of Cylindrically Bent Microstrip Antennas

    Directory of Open Access Journals (Sweden)

    Tiiti Kellomäki

    2012-01-01

    Full Text Available When circularly polarized (CP microstrip antennas are bent, the polarization becomes elliptical. We present a simple model that describes the phenomenon. The two linear modes present in a CP patch are modeled separately and added together to produce CP. Bending distorts the almost-spherical equiphase surface of a linearly polarized patch, which leads to phase imbalance in the far-field of a CP patch. The model predicts both the frequency shifting of the axial ratio band as well as the narrowing of the axial ratio beam. Uncontrolled bending is a problem associated especially with flexible textile antennas, and wearable antennas should therefore be designed somewhat conformal.

  7. Polarization dependent switching of asymmetric nanorings with a circular field

    Directory of Open Access Journals (Sweden)

    Nihar R. Pradhan

    2016-01-01

    Full Text Available We experimentally investigated the switching from onion to vortex states in asymmetric cobalt nanorings by an applied circular field. An in-plane field is applied along the symmetric or asymmetric axis of the ring to establish domain walls (DWs with symmetric or asymmetric polarization. A circular field is then applied to switch from the onion state to the vortex state, moving the DWs in the process. The asymmetry of the ring leads to different switching fields depending on the location of the DWs and direction of applied field. For polarization along the asymmetric axis, the field required to move the DWs to the narrow side of the ring is smaller than the field required to move the DWs to the larger side of the ring. For polarization along the symmetric axis, establishing one DW in the narrow side and one on the wide side, the field required to switch to the vortex state is an intermediate value.

  8. Modeling radio circular polarization in the Crab nebula

    Science.gov (United States)

    Bucciantini, N.; Olmi, B.

    2018-03-01

    In this paper, we present, for the first time, simulated maps of the circularly polarized synchrotron emission from the Crab nebula, using multidimensional state of the art models for the magnetic field geometry. Synchrotron emission is the signature of non-thermal emitting particles, typical of many high-energy astrophysical sources, both Galactic and extragalactic ones. Its spectral and polarization properties allow us to infer key information on the particles distribution function and magnetic field geometry. In recent years, our understanding of pulsar wind nebulae has improved substantially thanks to a combination of observations and numerical models. A robust detection or non-detection of circular polarization will enable us to discriminate between an electron-proton plasma and a pair plasma, clarifying once for all the origin of the radio emitting particles, setting strong constraints on the pair production in pulsar magnetosphere, and the role of turbulence in the nebula. Previous attempts at measuring the circular polarization have only provided upper limits, but the lack of accurate estimates, based on reliable models, makes their interpretation ambiguous. We show here that those results are above the expected values, and that current polarimetric techniques are not robust enough for conclusive result, suggesting that improvements in construction and calibration of next generation radio facilities are necessary to achieve the desired sensitivity.

  9. Circular polarization of light by planet Mercury and enantiomorphism of its surface minerals.

    Science.gov (United States)

    Meierhenrich, Uwe J; Thiemann, Wolfram H P; Barbier, Bernard; Brack, André; Alcaraz, Christian; Nahon, Laurent; Wolstencroft, Ray

    2002-04-01

    Different mechanisms for the generation of circular polarization by the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations. For BepiColombo, the ESA cornerstone mission 5 to Mercury, we propose to investigate this phenomenon using a concept which includes two instruments. The first instrument is a high-resolution optical polarimeter, capable to determine and map the circular polarization by remote scanning of Mercury's surface from the Mercury Planetary Orbiter MPO. The second instrument is an in situ sensor for the detection of the enantiomorphism of surface crystals and minerals, proposed to be included in the Mercury Lander MSE.

  10. Polarization-Dependent Multi-Functional Metamaterial as Polarization Filter, Transparent Wall and Circular Polarizer using Ring-Cross Resonator

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2017-09-01

    Full Text Available We propose a polarization-dependent multi-functional metamaterial using ring-cross resonator. Based on the analysis of surface current distributions induced by different polarized incidence, we demonstrate that the proposed metamaterial serves as a polarization filter, a transparent wall and a circular polarizer under different polarization normal incidence. Additionally, parameter analyses on the control of resonance are discussed to complementally explain the physical origin. Simulated results show that the proposed metamaterial functions as a polarization filter eliminating the x-polarization wave at 10.1 GHz and y-polarization wave at 14.3 GHz, a transparent wall transmitting both x-polarized and y-polarized incident waves at 12.6 GHz, and a broadband circular polarizer converting the +45° polarized (-45° polarized incident wave to the left (right handed circularly polarized wave from 10.8 to 12.8 GHz, respectively. Measured results agree well with the simulation and validate the performance of the proposed multifunctional metamaterial.

  11. A Novel Dual-Band Circularly Polarized Rectangular Slot Antenna

    Directory of Open Access Journals (Sweden)

    Biao Li

    2016-01-01

    Full Text Available A coplanar waveguide fed dual-band circularly polarized rectangular slot antenna is presented. The proposed antenna consists of a rectangular metal frame acting as a ground and an S-shaped monopole as a radiator. The spatial distribution of the surface current density is employed to demonstrate that the circular polarization is generated by the S-shaped monopole which controls the path of the surface currents. An antenna prototype, having overall dimension 37 × 37 × 1 mm3, has been fabricated on FR4 substrate with dielectric constant 4.4. The proposed antenna achieves 10 dB return loss bandwidths and 3 dB axial ratio (AR in the frequency bands 2.39–2.81 GHz and 5.42–5.92 GHz, respectively. Both these characteristics are suitable for WLAN and WiMAX applications.

  12. Amplification of Circularly Polarized Luminescence through Triplet-Triplet Annihilation-Based Photon Upconversion.

    Science.gov (United States)

    Han, Jianlei; Duan, Pengfei; Li, Xianggao; Liu, Minghua

    2017-07-26

    Amplification of circularly polarized luminescence (CPL) is demonstrated in a triplet-triplet annihilation-based photon upconversion (TTA-UC) system. When chiral binaphthyldiamine acceptors are sensitized with an achiral Pt(II) octaethylporphine (PtOEP) in solution, upconverted circularly polarized luminescence (UC-CPL) were observed for the first time, in which the positive or negative circularly polarized emission could be obtained respectively, following the molecular chirality of the acceptors (R/S). More interestingly, one order of magnitude amplification of the dissymmetry factor g lum in UC-CPL was obtained in comparison with the normal promoted CPL. The multistep photophysical process of TTA-UC including triplet-triplet energy transfer (TTET) and triplet-triplet annihilation (TTA) have been suggested to enhance the UC-CPL, which provided a new strategy to design CPL materials with a higher dissymmetry factor.

  13. Full-Stokes polarimetry with circularly polarized feeds. Sources with stable linear and circular polarization in the GHz regime

    Science.gov (United States)

    Myserlis, I.; Angelakis, E.; Kraus, A.; Liontas, C. A.; Marchili, N.; Aller, M. F.; Aller, H. D.; Karamanavis, V.; Fuhrmann, L.; Krichbaum, T. P.; Zensus, J. A.

    2018-01-01

    We present an analysis pipeline that enables the recovery of reliable information for all four Stokes parameters with high accuracy. Its novelty relies on the effective treatment of the instrumental effects even before the computation of the Stokes parameters, contrary to conventionally used methods such as that based on the Müller matrix. For instance, instrumental linear polarization is corrected across the whole telescope beam and significant Stokes Q and U can be recovered even when the recorded signals are severely corrupted by instrumental effects. The accuracy we reach in terms of polarization degree is of the order of 0.1-0.2%. The polarization angles are determined with an accuracy of almost 1°. The presented methodology was applied to recover the linear and circular polarization of around 150 active galactic nuclei, which were monitored between July 2010 and April 2016 with the Effelsberg 100-m telescope at 4.85 GHz and 8.35 GHz with a median cadence of 1.2 months. The polarized emission of the Moon was used to calibrate the polarization angle measurements. Our analysis showed a small system-induced rotation of about 1° at both observing frequencies. Over the examined period, five sources have significant and stable linear polarization; three sources remain constantly linearly unpolarized; and a total of 11 sources have stable circular polarization degree mc, four of them with non-zero mc. We also identify eight sources that maintain a stable polarization angle. All this is provided to the community for future polarization observations reference. We finally show that our analysis method is conceptually different from those traditionally used and performs better than the Müller matrix method. Although it has been developed for a system equipped with circularly polarized feeds, it can easily be generalized to systems with linearly polarized feeds as well. The data used to create Fig. C.1 are only available at the CDS via anonymous ftp to http

  14. Applications of circularly polarized photons at the ALS with a bend magnet source

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The purpose of this workshop is to focus attention on, and to stimulate the scientific exploitation of, the natural polarization properties of bend-magnet synchrotron radiation at the ALS -- for research in biology, materials science, physics, and chemistry. The topics include: The Advanced Light Source; Magnetic Circular Dichroism and Differential Scattering on Biomolecules; Tests of Fundamental Symmetries; High {Tc} Superconductivity; Photoemission from Magnetic and Non-magnetic Solids; Studies of Highly Correlated Systems; and Instrumentation for Photon Transport and Polarization Measurements.

  15. A computational protocol for the study of circularly polarized phosphorescence and circular dichroism in spin-forbidden absorption

    DEFF Research Database (Denmark)

    Kaminski, Maciej; Cukras, Janusz; Pecul, Magdalena

    2015-01-01

    We present a computational methodology to calculate the intensity of circular dichroism (CD) in spinforbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet–singlet transitions in chiral compounds. The protocol is based...... on the response function formalism and is implemented at the level of time-dependent density functional theory. It has been employed to calculate the spin-forbidden circular dichroism and circularly polarized phosphorescence signals of valence n - p* and n ’ p* transitions, respectively, in several chiral enones...

  16. Differential response to circularly polarized light by the jewel scarab beetle Chrysina gloriosa.

    Science.gov (United States)

    Brady, Parrish; Cummings, Molly

    2010-05-01

    Circularly polarized light is rare in the terrestrial environment, and cuticular reflections from scarab beetles are one of the few natural sources. Chrysina gloriosa LeConte 1854, a scarab beetle found in montane juniper forests of the extreme southwestern United States and northern Mexico, are camouflaged in juniper foliage; however, when viewed with right circularly polarizing filters, the beetles exhibit a stark black contrast. Given the polarization-specific changes in the appearance of C. gloriosa, we hypothesized that C. gloriosa can detect circularly polarized light. We tested for phototactic response and differential flight orientation of C. gloriosa toward different light stimuli. Chrysina gloriosa exhibited (a) positive phototaxis, (b) differential flight orientation between linear and circularly polarized light stimuli of equal intensities, and (c) discrimination between circularly polarized and unpolarized lights of different intensities consistent with a model of circular polarization sensitivity based on a quarter-wave plate. These results demonstrate that C. gloriosa beetles respond differentially to circularly polarized light. In contrast, Chrysina woodi Horn 1885, a close relative with reduced circularly polarized reflection, exhibited no phototactic discrimination between linear and circularly polarized light. Circularly polarized sensitivity may allow C. gloriosa to perceive and communicate with conspecifics that remain cryptic to predators, reducing indirect costs of communication.

  17. Generation of Gigawatt Circularly Polarized Attosecond-Pulse Pairs

    Science.gov (United States)

    Hu, K.; Wu, H.-C.

    2017-12-01

    A novel scheme for generating a pair of gigawatt attosecond pulses by coherent Thomson scattering from relativistic electron sheets is proposed. With a circularly polarized relativistic laser pulse, the scattered x-ray signal can have a saddlelike temporal profile, where the lower electromagnetic frequencies are found mostly in the center region of this saddlelike profile. By filtering out the latter, we can obtain two few-attosecond pulses separated by a subfemtosecond interval, which is tunable by controlling the energy of the sheet electrons. Such a pulse pair can be useful for an attosecond pump probe at an unprecedented time resolution and for ultrafast chiral studies in molecules and materials.

  18. Circular polarization with crossed-planar undulators in high-gain FELs

    CERN Document Server

    Kim, K J K J

    2000-01-01

    We propose a crossed undulator configuration for a high-gain free-electron laser to allow versatile polarization control. This configuration consists of a long (saturation length) planar undulator, a dispersive section, and a short (a few gain lengths) planar undulator oriented perpendicular to the first one. In the first undulator, a radiation component linearly polarized in the x-direction is amplified to saturation. In the second undulator, the x-polarized component propagates freely, while a new component, polarized in the y-direction, is generated and reaches saturation in a few gain lengths. By adjusting the strength of the dispersive section, the relative phase of two radiation components can be adjusted to obtain a suitable polarization for the total radiation field, including the circular polarization. The operating principle of the high-gain crossed undulator, which is quite different from that of the crossed undulator for spontaneous radiation, is illustrated in terms of 1-D FEL theory.

  19. Electron Interference in Molecular Circular Polarization Attosecond XUV Photoionization

    Directory of Open Access Journals (Sweden)

    Kai-Jun Yuan

    2015-01-01

    Full Text Available Two-center electron interference in molecular attosecond photoionization processes is investigated from numerical solutions of time-dependent Schrödinger equations. Both symmetric H\\(_2^+\\ and nonsymmetric HHe\\(^{2+}\\ one electron diatomic systems are ionized by intense attosecond circularly polarized XUV laser pulses. Photoionization of these molecular ions shows signature of interference with double peaks (minima in molecular attosecond photoelectron energy spectra (MAPES at critical angles \\(\\vartheta_c\\ between the molecular \\(\\textbf{R}\\ axis and the photoelectron momentum \\(\\textbf{p}\\. The interferences are shown to be a function of the symmetry of electronic states and the interference patterns are sensitive to the molecular orientation and pulse polarization. Such sensitivity offers possibility for imaging of molecular structure and orbitals.

  20. High-order-harmonic generation in benzene with linearly and circularly polarized laser pulses

    Science.gov (United States)

    Wardlow, Abigail; Dundas, Daniel

    2016-02-01

    High-order-harmonic generation in benzene is studied using a mixed quantum-classical approach in which the electrons are described using time-dependent density-functional theory while the ions move classically. The interaction with both linearly and circularly polarized infrared (λ =800 nm) laser pulses of duration of ten cycles (26.7 fs) is considered. The effect of allowing the ions to move is investigated as is the effect of including self-interaction corrections to the exchange-correlation functional. Our results for circularly polarized pulses are compared with previous calculations in which the ions were kept fixed and self-interaction corrections were not included, while our results for linearly polarized pulses are compared with both previous calculations and experiment. We find that even for the short-duration pulses considered here, the ionic motion greatly influences the harmonic spectra. While ionization and ionic displacements are greatest when linearly polarized pulses are used, the response to circularly polarized pulses is almost comparable, in agreement with previous experimental results.

  1. Circular Polarization of Light By Planet Mercury and Enantiomorphism of Its Surface Minerals

    Science.gov (United States)

    Meierhenrich, U. J.; Thiemann, W. H.-P.; Barbier, B.; Brack, A.; Nahon, L.; Alcaraz, C.; Wolstencroft, R.

    Different mechanisms for the generation of circular polarization on the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations. For Bepi- Colombo, we propose to investigate this phenomenon using a concept which includes two instruments. The first instrument is a high-resolution optical polarimeter,[1,2] ca- pable to determine and map the circular polarization by remote scanning of Mercury's surface from the Mercury Planetary Orbiter MPO. The second instrument is an in situ sensor for the detection of the enantiomorphism of surface crystals and minerals, proposed to be included in the Mercury Lander MSE. [1] C. Alcaraz, R. Thissen, M. Compin, A. Jolly, M. Drescher, L. Nahon: First po- larization measurements of Ophelie: a versatile polarization VUV undulator at Super- Aco. SPIE 3773 (1999), 250-261. [2] C. Alcaraz, J.L. Marlats, D. Nether, B. Pilette, L. Nahon: A dedicated precise polarimeter for measurement of VUV versatile photon polarizations, Applied Optics, manuscript under preparation.

  2. A Minkowski Fractal Circularly Polarized Antenna for RFID Reader

    Directory of Open Access Journals (Sweden)

    Yanzhong Yu

    2014-11-01

    Full Text Available A design of fractal-like antenna with circular polarization for radio frequency identification (RFID reader applications is presented in this article. The modified Minkowski fractal structure is adopted as radiating patch for size reduction and broadband operation. A corner-truncated technology and a slot-opened method are employed to realize circular polarization and improve the gain of the proposed antenna, respectively. The proposed antenna is analyzed and optimized by HFSS. Return loss and maximum gain of the optimized antenna achieve to -22.2 dB and 1.12 dB at 920 MHz, respectively. The optimized design has an axial ratio (AR of 1.2 dB at central frequency of 920 MHz and impedance bandwidth (S11<=-10 dB of 40 MHz (4.3 %. Its input impedance is (57.9-j2.6 W that is close to input impedance of coaxial line (50 W. Numerical results demonstrate that the optimized antenna exhibits acceptable performances and may satisfy requirements of RFID reader applications.

  3. Optimized fan-shaped chiral metamaterial as an ultrathin narrow-band circular polarizer at visible frequencies

    Science.gov (United States)

    He, Yizhuo; Wang, Xinghai; Ingram, Whitney; Ai, Bin; Zhao, Yiping

    2018-04-01

    Chiral metamaterials have the great ability to manipulate the circular polarizations of light, which can be utilized to build ultrathin circular polarizers. Here we build a narrow-band circular polarizer at visible frequencies based on plasmonic fan-shaped chiral nanostructures. In order to achieve the best optical performance, we systematically investigate how different fabrication factors affect the chiral optical response of the fan-shaped chiral nanostructures, including incident angle of vapor depositions, nanostructure thickness, and post-deposition annealing. The optimized fan-shaped nanostructures show two narrow bands for different circular polarizations with the maximum extinction ratios 7.5 and 6.9 located at wavelength 687 nm and 774 nm, respectively.

  4. Multi-band circular polarizer based on a twisted triple split-ring resonator

    International Nuclear Information System (INIS)

    Wu Song; Huang Xiao-Jun; Yang He-Lin; Xiao Bo-Xun; Jin Yan

    2014-01-01

    A multi-band circular polarizer using a twisted triple split-ring resonator (TSRR) is presented and studied numerically and experimentally. At four distinct resonant frequencies, the incident linearly polarized wave can be transformed into left/right-handed circularly polarized waves. Numerical simulation results show that a y-polarized wave can be converted into a right-handed circularly polarized wave at 5.738 GHz and 9.218 GHz, while a left-handed circularly polarized wave is produced at 7.292 GHz and 10.118 GHz. The experimental results are in agreement with the numerical results. The surface current distributions are investigated to illustrate the polarization transformation mechanism. Furthermore, the influences of the structure parameters of the circular polarizer on transmission spectra are discussed as well. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Annular billiard dynamics in a circularly polarized strong laser field

    Science.gov (United States)

    Kamor, A.; Mauger, F.; Chandre, C.; Uzer, T.

    2012-01-01

    We analyze the dynamics of a valence electron of the buckminsterfullerene molecule (C60) subjected to a circularly polarized laser field by modeling it with the motion of a classical particle in an annular billiard. We show that the phase space of the billiard model gives rise to three distinct trajectories: “whispering gallery orbits,” which hit only the outer billiard wall; “daisy orbits,” which hit both billiard walls (while rotating solely clockwise or counterclockwise for all time); and orbits that only visit the downfield part of the billiard, as measured relative to the laser term. These trajectories, in general, maintain their distinct features, even as the intensity is increased from 1010 to 1014Wcm-2. We attribute this robust separation of phase space to the existence of twistless tori.

  6. Komar fluxes of circularly polarized light beams and cylindrical metrics

    Science.gov (United States)

    Lynden-Bell, D.; Bičák, J.

    2017-11-01

    The mass per unit length of a cylindrical system can be found from its external metric as can its angular momentum. Can the fluxes of energy, momentum, and angular momentum along the cylinder also be so found? We derive the metric of a beam of circularly polarized electromagnetic radiation from the Einstein-Maxwell equations. We show how the uniform plane wave solutions miss the angular momentum carried by the wave. We study the energy, momentum, angular momentum, and their fluxes along the cylinder both for this beam and in general. The three Killing vectors of any stationary cylindrical system give three Komar flux vectors which in turn give six conserved fluxes. We elucidate Komar's mysterious factor 2 by evaluating Komar integrals for systems that have no trace to their stress tensors. The Tolman-Komar formula gives twice the energy for such systems which also have twice the gravity. For other cylindrical systems their formula gives correct results.

  7. Vertical-Strip-Fed Broadband Circularly Polarized Dielectric Resonator Antenna.

    Science.gov (United States)

    Altaf, Amir; Jung, Jin-Woo; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2017-08-18

    A vertical-strip-fed dielectric resonator antenna exhibiting broadband circular polarization characteristics is presented. A broad 3 dB axial ratio bandwidth (ARBW) is achieved by combining multiple orthogonal modes due to the use of a special-shaped dielectric resonator. The proposed antenna is fabricated to evaluate its actual performance capabilities. The antenna exhibits a measured 3 dB ARBW of 44.2% (3.35-5.25 GHz), lying within a -10 dB reflection bandwidth of 82.7% (2.44-5.88 GHz). The measured peak gain within 3 dB ARBW is found to be 5.66 dBic at 4.8 GHz. The measured results are in good agreement with the simulated results.

  8. A survey of synchrotron radiation devices producing circular or variable polarization

    International Nuclear Information System (INIS)

    Kim, K.J.

    1990-01-01

    This paper reviews the properties and operating principles of the new types of synchrotron radiation devices that produce circular polarization, or polarization that can be modulated in arbitrary fashion

  9. Circularly polarized near-field optical mapping of spin-resolved quantum Hall chiral edge states.

    Science.gov (United States)

    Mamyouda, Syuhei; Ito, Hironori; Shibata, Yusuke; Kashiwaya, Satoshi; Yamaguchi, Masumi; Akazaki, Tatsushi; Tamura, Hiroyuki; Ootuka, Youiti; Nomura, Shintaro

    2015-04-08

    We have successfully developed a circularly polarized near-field scanning optical microscope (NSOM) that enables us to irradiate circularly polarized light with spatial resolution below the diffraction limit. As a demonstration, we perform real-space mapping of the quantum Hall chiral edge states near the edge of a Hall-bar structure by injecting spin polarized electrons optically at low temperature. The obtained real-space mappings show that spin-polarized electrons are injected optically to the two-dimensional electron layer. Our general method to locally inject spins using a circularly polarized NSOM should be broadly applicable to characterize a variety of nanomaterials and nanostructures.

  10. Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots

    Science.gov (United States)

    Tohgha, Urice; Deol, Kirandeep K.; Porter, Ashlin G.; Bartko, Samuel G.; Choi, Jung Kyu; Leonard, Brian M.; Varga, Krisztina; Kubelka, Jan; Muller, Gilles; Balaz, Milan

    2014-01-01

    Chiral thiol capping ligands L- and D-cysteines induced modular chiroptical properties in achiral cadmium selenide quantum dots (CdSe QDs). Cys-CdSe prepared from achiral oleic acid capped CdSe by post-synthetic ligand exchange displayed size-dependent electronic circular dichroism (CD) and circularly polarized luminescence (CPL). Opposite CPL signals were measured for the CdSe QDs capped with D- and L-cysteine. The CD profile and CD anisotropy varied with size of CdSe nanocrystals with largest anisotropy observed for CdSe nanoparticles of 4.4 nm. Magic angle spinning solid state NMR (MAS ssNMR) experiments suggested bidentate interaction between cysteine and the surface of CdSe. Density functional theory (DFT) calculations verified that attachment of L- and D-cysteine to the surface of model (CdSe)13 nanoclusters induces measurable opposite CD signals for the exitonic band of the nanocluster. The chirality was induced by the hybridization of highest occupied CdSe molecular orbitals with those of the chiral ligand. PMID:24200288

  11. In-line phase retarder and polarimeter for conversion of linear to circular polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Smith, N.V.; Denlinger, J.D. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    An in-line polarimeter including phase retarder and linear polarizer was designed and commissioned on undulator beamline 7.0 for the purpose of converting linear to circular polarization for experiments downstream. In commissioning studies, Mo/Si multilayers at 95 eV were used both as the upstream, freestanding phase retarder and the downstream linear polarized. The polarization properties of the phase retarder were characterized by direct polarimetry and by collecting MCD spectra in photoemission from Gd and other magnetic surfaces. The resonant birefringence of transmission multilayers results from differing distributions of s- and p-component wave fields in the multilayer when operating near a structural (Bragg) interference condition. The resulting phase retardation is especially strong when the interference is at or near the Brewster angle, which is roughly 45{degrees} in the EUV and soft x-ray ranges.

  12. Analysis of the multipactor effect in circular waveguides excited by two orthogonal polarization waves

    International Nuclear Information System (INIS)

    Pérez, A. M.; Boria, V. E.; Gimeno, B.; Anza, S.; Vicente, C.; Gil, J.

    2014-01-01

    Circular waveguides, either employed as resonant cavities or as irises connecting adjacent guides, are widely present in many passive components used in different applications (i.e., particle accelerators and satellite subsystems). In this paper, we present the study of the multipactor effect in circular waveguides considering the coexistence of the two polarizations of the fundamental TE 11 circular waveguide mode. For a better understanding of the problem, only low multipactor orders have been explored as a function of the polarization ellipse eccentricity. Special attention has been paid to the linear and circular polarizations, but other more general configurations have also been explored

  13. Analysis of the multipactor effect in circular waveguides excited by two orthogonal polarization waves

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, A. M.; Boria, V. E. [Departamento de Comunicaciones-iTEAM, Universidad Politécnica de Valencia Camino de Vera s/n, 46022 Valencia (Spain); Gimeno, B. [Departamento de Física Aplicada y Electromagnetismo-ICMUV, Universitat de València c/Dr. Moliner, 50, 46100 Valencia (Spain); Anza, S.; Vicente, C.; Gil, J. [Aurora Software and Testing S.L., Edificio de Desarrollo Empresarial 9B, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2014-08-15

    Circular waveguides, either employed as resonant cavities or as irises connecting adjacent guides, are widely present in many passive components used in different applications (i.e., particle accelerators and satellite subsystems). In this paper, we present the study of the multipactor effect in circular waveguides considering the coexistence of the two polarizations of the fundamental TE{sub 11} circular waveguide mode. For a better understanding of the problem, only low multipactor orders have been explored as a function of the polarization ellipse eccentricity. Special attention has been paid to the linear and circular polarizations, but other more general configurations have also been explored.

  14. Swarm Robotics with Circular Formation Motion Including Obstacles Avoidance

    Directory of Open Access Journals (Sweden)

    Nabil M. Hewahi

    2017-07-01

    Full Text Available The robots science has been developed over the past few years, where robots have become used to accomplish difficult, repetitive or accurate tasks, which are very hard for humans to carry out. In this paper, we propose an algorithm to control the motion of a swarm of robots and make them able to avoid obstacles. The proposed solution is based on forming the robots in circular fashion. A group set of robots consists of multiple groups of robots, each group of robots consists of robots forming a circular shape and each group set is a circular form of robots. The proposed algorithm is concerned with first locating the randomly generated robots in groups and secondly with the swarm robot motion and finally with the swarm obstacle avoidance and swarm reorganization after crossing the obstacle. The proposed algorithm has been simulated with five different obstacles with various numbers of randomly generated robots. The results show that the swarm in the circular form can deal with the obstacles very effectively by passing the obstacles smoothly. The proposed algorithm has been compared with flocking algorithm and it is shown that the circular formation algorithm does not need extensive computation after obstacle avoidance whereas the flocking algorithm needs extensive computation. In addition, the circular formation algorithm maintains every robot in its group after avoiding the obstacles whereas with flocking algorithm does not.

  15. A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

    Directory of Open Access Journals (Sweden)

    Chong Zhang

    2015-01-01

    Full Text Available A new kind of circular polarization leaky-wave antenna with N-shaped slots cut in the upper side of substrate integrated waveguide (SIW is investigated and presented. The radiation pattern and polarization axial ratio of the leaky-wave antenna are studied. The results show that the width of N-shaped slots has significant effect on the circular polarization property of the antenna. By properly choosing structural parameters, the SIW based leaky-wave antenna can realize circular polarization with excellent axial ratio in 8 GHz satellite band.

  16. Dual circularly polarized broadside beam antenna based on metasurfaces

    Science.gov (United States)

    Tellechea, A.; Caminita, F.; Martini, E.; Ederra, I.; Teniente, J.; Iriarte, J. C.; Gonzalo, R.; Maci, S.

    2018-02-01

    Design details of a Ku band metasurface (MTS) antenna with dual circularly polarized (CP) broadside radiation is shown in this work. By means of the surface impedance tensor modulation, synchronized propagation of two transversal magnetic (TM) and transverse electric (TE) surface waves (SWs) is ensured in the structure, which contribute to the radiation in broadside direction by the generation of a CP leaky wave. The structure is implemented by elliptical subwavelength metallic elements with a cross-shaped aperture in the center, printed on top of a thin substrate with high permittivity (AD1000 with a thickness of λ0/17). For the experimental validation, the MTS prototype has been excited employing an orthomode transducer composed by a metallic stepped septum inside an air-filled waveguide. Two orthogonal TE11 modes excited with ±90° phase shift in the feed couple with the TM and TE SWs supported by the MTS and generate RHCP or LHCP broadside beam. Experimental results are compared with the simulation predictions. Finally, conclusions are drawn.

  17. Beamline 9.3.2 - a high-resolution, bend-magnet beamline with circular polarization capability

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Hussain, Z.; Howells, M.R. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Beamline 9.3.2 is a high resolution, SGM beamline on an ALS bending magnet with access to photon energies from 30-1500 eV. Features include circular polarization capability, a rotating chamber platform that allows switching between experiments without breaking vacuum, an active feedback system that keeps the beam centered on the entrance slit of the monochromator, and a bendable refocusing mirror. The beamline optics consist of horizontally and vertically focussing mirrors, a Spherical Grating Monochromator (SGM) with movable entrance and exit slits, and a bendable refocussing mirror. In addition, a movable aperature has been installed just upstream of the vertically focussing mirror which can select the x-rays above or below the plane of the synchrotron storage ring, allowing the user to select circularly or linearly polarized light. Circularly polarized x-rays are used to study the magnetic properties of materials. Beamline 9.3.2 can supply left and right circularly polarized x-rays by a computer controlled aperture which may be placed above or below the plane of the synchrotron storage ring. The degree of linear and circular polarization has been measured and calibrated.

  18. Last scattering, relic gravitons and the circular polarization of the CMB

    CERN Document Server

    Giovannini, Massimo

    2010-01-01

    The tensor contribution to the $V$-mode polarization induced by a magnetized plasma at last scattering vanishes exactly. Conversely a polarized background of relic gravitons cannot generate a $V$-mode polarization. The reported results suggest that, in the magnetized $\\Lambda$CDM paradigm, the dominant source of circular dichroism stems from the large-scale fluctuations of the spatial curvature.

  19. Attosecond polarization control in atomic RABBITT-like experiments assisted by a circularly polarized laser

    Science.gov (United States)

    Boll, D. I. R.; Fojón, O. A.

    2017-12-01

    We study theoretically the single ionization of noble gas atoms by the combined action of an attosecond pulse train with linear polarization and an assistant laser field with circular polarization. We employ a non-perturbative model that under certain approximations gives closed-form expressions for the angular distributions of photoelectrons. Interestingly, our model allow us to interpret these angular distributions as two-centre interferences where the orientation and the modulus of the separation vector between the virtual emitters is governed by the assistant laser field. Additionally, we show that such a configuration of light fields is similar to the polarization control technique, where both the attosecond pulse train and the assistant laser field have linear polarizations whose relative orientation may be controlled. Moreover, in order to compare our results with the available experimental data, we obtain analytical expressions for the cross sections integrated over the photoelectron emission angles. By means of these expressions, we define the ‘magic time’ as the delay for which the total cross sections for atomic targets exhibit the same functional form as the one of the monochromatic photoionization of diatomic molecular targets.

  20. Attosecond polarization control in atomic RABBITT-like experiments assisted by a circularly polarized laser

    International Nuclear Information System (INIS)

    Boll, D I R; Fojón, O A

    2017-01-01

    We study theoretically the single ionization of noble gas atoms by the combined action of an attosecond pulse train with linear polarization and an assistant laser field with circular polarization. We employ a non-perturbative model that under certain approximations gives closed-form expressions for the angular distributions of photoelectrons. Interestingly, our model allow us to interpret these angular distributions as two-centre interferences where the orientation and the modulus of the separation vector between the virtual emitters is governed by the assistant laser field. Additionally, we show that such a configuration of light fields is similar to the polarization control technique, where both the attosecond pulse train and the assistant laser field have linear polarizations whose relative orientation may be controlled. Moreover, in order to compare our results with the available experimental data, we obtain analytical expressions for the cross sections integrated over the photoelectron emission angles. By means of these expressions, we define the ‘magic time’ as the delay for which the total cross sections for atomic targets exhibit the same functional form as the one of the monochromatic photoionization of diatomic molecular targets. (paper)

  1. Circularly Polarized Microwave Antenna Element with Very Low Off-Axis Cross-Polarization

    Science.gov (United States)

    Greem. David; DuToit, Cornelis

    2013-01-01

    The goal of this work was to improve off-axis cross-polarization performance and ease of assembly of a circularly polarized microwave antenna element. To ease assembly, the initial design requirement of Hexweb support for the internal circuit part, as well as the radiating disks, was eliminated. There is a need for different plating techniques to improve soldering. It was also desirable to change the design to eliminate soldering as well as the need to use the Hexweb support. Thus, a technique was developed to build the feed without using solder, solving the lathing and soldering issue. Internal parts were strengthened by adding curvature to eliminate Hexweb support, and in the process, the new geometries of the internal parts opened the way for improving the off-axis cross-polarization performance as well. The radiating disks curvatures were increased for increased strength, but it was found that this also improved crosspolarization. Optimization of the curvatures leads to very low off-axis cross-polarization. The feed circuit was curved into a cylinder for improved strength, eliminating Hexweb support. An aperture coupling feed mechanism eliminated the need for feed pins to the disks, which would have required soldering. The aperture coupling technique also improves cross-polarization performance by effectively exciting the radiating disks very close to the antenna s central axis of symmetry. Because of the shape of the parts, it allowed for an all-aluminum design bolted together and assembled with no solder needed. The advantage of a solderless design is that the reliability is higher, with no single-point failure (solder), and no need for special plating techniques in order to solder the unit together. The shapes (curved or round) make for a more robust build without extra support materials, as well as improved offaxis cross-polarization.

  2. Linearly and circularly polarized laser photoinduced molecular order in azo dye doped polymer films

    Directory of Open Access Journals (Sweden)

    Saad Bendaoud

    2017-01-01

    Full Text Available Photo-induced behavior of Azo Disperse one (AZD1 doped Poly(Methyl MethAcrylate (PMMA using both linear and circular polarized light is studied. The anisotropy is not erased by the circular polarization light. The circular polarization light combined with relatively long lifetime of the cis state in azo dye doped polymers activate all transverse directions of the angular hole burning through the spot in the film inducing anisotropy. Under circular polarized light, there is no orientation perpendicularly to the helex described by the rotating electric field vector, trans molecules reorients in the propagation direction of the pump beam. The polarization state of the probe beam after propagation through the pumped spot depends strongly on the angle of incidence of both pump and probe beams on the input face. In the case where circular polarized pump and probe beams are under the same angle of incidence, the probe beam “sees” anisotropic film as if it is isotropic. Results of this work shows the possibility to reorient azobenzene-type molecules in two orthogonal directions using alternately linearly and circularly polarized beams.

  3. Linear Polarization, Circular Polarization, and Depolarization of Gamma-ray Bursts: A Simple Case of Jitter Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jirong; Wang, Jiancheng, E-mail: jirongmao@mail.ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, 650011 Kunming, Yunnan Province (China)

    2017-04-01

    Linear and circular polarizations of gamma-ray bursts (GRBs) have been detected recently. We adopt a simplified model to investigate GRB polarization characteristics in this paper. A compressed two-dimensional turbulent slab containing stochastic magnetic fields is considered, and jitter radiation can produce the linear polarization under this special magnetic field topology. Turbulent Faraday rotation measure (RM) of this slab makes strong wavelength-dependent depolarization. The jitter photons can also scatter with those magnetic clumps inside the turbulent slab, and a nonzero variance of the Stokes parameter V can be generated. Furthermore, the linearly and circularly polarized photons in the optical and radio bands may suffer heavy absorptions from the slab. Thus we consider the polarized jitter radiation transfer processes. Finally, we compare our model results with the optical detections of GRB 091018, GRB 121024A, and GRB 131030A. We suggest simultaneous observations of GRB multi-wavelength polarization in the future.

  4. What makes single-helical metamaterials generate "pure" circularly polarized light?

    Science.gov (United States)

    Wu, Lin; Yang, ZhenYu; Zhao, Ming; Zhang, Peng; Lu, ZeQing; Yu, Yang; Li, ShengXi; Yuan, XiuHua

    2012-01-16

    Circular polarizers with left-handed helical metamaterials can transmit right-handed circularly polarized (RCP) light with few losses. But a certain amount of left-handed circularly polarized (LCP) light will occur in the transmitted light, which is the noise of the circular polarizer. Therefore, we defined the ratio of the RCP light intensity to the LCP light intensity as the signal-to-noise (S/N) ratio. In our previous work, it's found that circular polarizers with multi-helical metamaterials have two orders higher S/N ratios than that of single-helical metamaterials. However, it has been a great challenge to fabricate such multi-helical structures with micron or sub-micron feature sizes. Is it possible for the single-helical metamaterials to obtain equally high S/N ratios as the multi-helical ones? To answer this question, we systematically investigated the influences of structure parameters of single-helical metamaterials on the S/N ratios using the finite-different time-domain (FDTD) method. It was found that the single-helical metamaterials can also reach about 30dB S/N ratios, which are equal to the multi-helical ones. Furthermore, we explained the phenomenon by the antenna theory and optimized the performances of the single-helical circular polarizers.

  5. Circularly polarized light emission in scanning tunneling microscopy of magnetic systems

    International Nuclear Information System (INIS)

    Apell, S.P.; Penn, D.R.; Johansson, P.

    2000-01-01

    Light is produced when a scanning tunneling microscope is used to probe a metal surface. Recent experiments on cobalt utilizing a tungsten tip found that the light is circularly polarized; the sense of circular polarization depends on the direction of the sample magnetization, and the degree of polarization is of order 10%. This raises the possibility of constructing a magnetic microscope with very good spatial resolution. We present a theory of this effect for iron and cobalt and find a degree of polarization of order 0.1%. This is in disagreement with the experiments on cobalt as well as previous theoretical work which found order of magnitude agreement with the experimental results. However, a recent experiment on iron showed 0.0±2%. We predict that the use of a silver tip would increase the degree of circular polarization for a range of photon energies

  6. Forced Response of Polar Orthotropic Tapered Circular Plates Resting on Elastic Foundation

    Directory of Open Access Journals (Sweden)

    A. H. Ansari

    2016-01-01

    Full Text Available Forced axisymmetric response of polar orthotropic circular plates of linearly varying thickness resting on Winkler type of elastic foundation has been studied on the basis of classical plate theory. An approximate solution of problem has been obtained by Rayleigh Ritz method, which employs functions based upon the static deflection of polar orthotropic circular plates. The effect of transverse loadings has been studied for orthotropic circular plate resting on elastic foundation. The transverse deflections and bending moments are presented for various values of taper parameter, rigidity ratio, foundation parameter, and flexibility parameter under different types of loadings. A comparison of results with those available in literature shows an excellent agreement.

  7. Elimination of polarization degeneracy in circularly symmetric bianisotropic waveguides: a decoupled case.

    Science.gov (United States)

    Xu, Jing; Wu, Bingbing; Chen, Yuntian

    2015-05-04

    Mode properties of circularly symmetric waveguides with one special type of bianisotropy are studied using finite element approach. We find that the polarization degeneracy in circularly symmetric waveguides can be eliminated, by introducing intrinsic crossing coupling between electric and magnetic moments in the constituent units of the waveguide media. Breaking the polarization degeneracy in high order mode groups is also confirmed numerically. With the bianisotropic parameters chosen in this work, the x and y-polarized modes remain decoupled. Typically, the y-polarized modes remain completely unchanged, while the x-polarized modes are turned into leaky modes that are lossy along propagation direction. A perturbation model from coupled mode theory is developed to explain the results and shows excellent agreement. Such asymmetric behavior between different polarizations might be feasible and useful for developing compact polarizers in terahertz or mid-infrared regime.

  8. A New Dual Circularly Polarized Feed Employing a Dielectric Cylinder-Loaded Circular Waveguide Open End Fed by Crossed Dipoles

    Directory of Open Access Journals (Sweden)

    Jae-Hoon Bang

    2016-01-01

    Full Text Available This paper presents a new dual circularly polarized feed that provides good axial ratio over wide angles and low cross-polarized radiation in backward direction. A circular waveguide open end is fed with two orthogonally polarized waves in phase quadrature by a pair of printed crossed dipoles and a compact connectorized quadrature hybrid coupler. The waveguide aperture is loaded with a dielectric cylinder to reduce the cross-polarization beyond 90 degrees off the boresight. The fabricated feed has, at 5.5 GHz, 6.33-dBic copolarized gain, 3-dB beamwidth of 106°, 10-dB beamwidth of 195°, 3-dB axial ratio beamwidth of 215°, maximum cross-polarized gain of −21.4 dBic, and 27-dB port isolation. The reflection coefficient of the feed is less than −10 dB at 4.99–6.09 GHz.

  9. Circular polarization of radio emission from air showers in thunderstorm conditions

    NARCIS (Netherlands)

    Trinh, T. N. G.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Mitra, P.; Mulrey, K.; Nelles, A.; Thoudam, S.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; ter Veen, S.; Winchen, T.

    2017-01-01

    We present measured radio emission from cosmic-ray-induced air showers under thunderstorm conditions. We observe for these events large differences in intensity, linear polarization and circular polarization from the events measured under fair-weather conditions. This can be explained by the effects

  10. Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry.

    Science.gov (United States)

    Patty, C H Lucas; Luo, David A; Snik, Frans; Ariese, Freek; Buma, Wybren Jan; Ten Kate, Inge Loes; van Spanning, Rob J M; Sparks, William B; Germer, Thomas A; Garab, Győző; Kudenov, Michael W

    2018-03-09

    Spectropolarimetry of intact plant leaves allows to probe the molecular architecture of vegetation photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological information. In addition to the molecular signals due to the photosynthetic machinery, the cell structure and its arrangement within a leaf can create and modify polarization signals. Using Mueller matrix polarimetry with rotating retarder modulation, we have visualized spatial variations in polarization in transmission around the chlorophyll a absorbance band from 650 nm to 710 nm. We show linear and circular polarization measurements of maple leaves and cultivated maize leaves and discuss the corresponding Mueller matrices and the Mueller matrix decompositions, which show distinct features in diattenuation, polarizance, retardance and depolarization. Importantly, while normal leaf tissue shows a typical split signal with both a negative and a positive peak in the induced fractional circular polarization and circular dichroism, the signals close to the veins only display a negative band. The results are similar to the negative band as reported earlier for single macrodomains. We discuss the possible role of the chloroplast orientation around the veins as a cause of this phenomenon. Systematic artefacts are ruled out as three independent measurements by different instruments gave similar results. These results provide better insight into circular polarization measurements on whole leaves and options for vegetation remote sensing using circular polarization. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Design of Multilevel Sequential Rotation Feeding Networks Used for Circularly Polarized Microstrip Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Aixin Chen

    2012-01-01

    Full Text Available Sequential rotation feeding networks can significantly improve performance of the circularly polarized microstrip antenna array. In this paper, single, double, and multiple series-parallel sequential rotation feeding networks are examined. Compared with conventional parallel feeding structures, these multilevel feeding techniques present reduction of loss, increase of bandwidth, and improvement of radiation pattern and polarization purity. By using corner-truncated square patch as the array element and adopting appropriate level of sequential rotation series-parallel feeding structures as feeding networks, microstrip arrays can generate excellent circular polarization (CP over a relatively wide frequency band. They can find wide applications in phased array radar and satellite communication systems.

  12. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials.

    Science.gov (United States)

    Kim, Teun-Teun; Oh, Sang Soon; Kim, Hyeon-Don; Park, Hyun Sung; Hess, Ortwin; Min, Bumki; Zhang, Shuang

    2017-09-01

    Active control of polarization states of electromagnetic waves is highly desirable because of its diverse applications in information processing, telecommunications, and spectroscopy. However, despite the recent advances using artificial materials, most active polarization control schemes require optical stimuli necessitating complex optical setups. We experimentally demonstrate an alternative-direct electrical tuning of the polarization state of terahertz waves. Combining a chiral metamaterial with a gated single-layer sheet of graphene, we show that transmission of a terahertz wave with one circular polarization can be electrically controlled without affecting that of the other circular polarization, leading to large-intensity modulation depths (>99%) with a low gate voltage. This effective control of polarization is made possible by the full accessibility of three coupling regimes, that is, underdamped, critically damped, and overdamped regimes by electrical control of the graphene properties.

  13. Optically ambidextrous circularly polarized reflection from the chiral cuticle of the scarab beetle Chrysina resplendens.

    Science.gov (United States)

    Finlayson, Ewan D; McDonald, Luke T; Vukusic, Pete

    2017-06-01

    The evolution of structural colour mechanisms in biological systems has given rise to many interesting optical effects in animals and plants. The instance of the scarab beetle Chrysina resplendens is particularly distinctive. Its exoskeleton has a bright, golden appearance and reflects both right-handed and left-handed circularly polarized light concurrently. The chiral nanostructure responsible for these properties is a helicoid, in which birefringent dielectric planes are assembled with an incremental rotation. This study correlates details of the beetle's circularly polarized reflectance spectra directly with physical aspects of its structural morphology. Electron micrography is used to identify and measure the physical dimensions of the key constituent components. These include a chiral multilayer configuration comprising two chirped, left-handed helicoids that are separated by a birefringent retarder. A scattering matrix technique is used to simulate the system's optical behaviour in which the roles of each component of the morphological substructure are elucidated by calculation of the fields throughout its depth. © 2017 The Author(s).

  14. A solid-state dedicated circularly polarized luminescence spectrophotometer: Development and application.

    Science.gov (United States)

    Harada, Takunori; Hayakawa, Hiroshi; Watanabe, Masayuki; Takamoto, Makoto

    2016-07-01

    A new solid-state dedicated circularly polarized luminescence (CPL) instrument (CPL-200CD) was successfully developed for measuring true CPL spectra for optically anisotropic samples on the basis of the Stokes-Mueller matrix approach. Electric components newly installed in the CPL-200CD include a pulse motor-driven sample rotation holder and a 100 kHz lock-in amplifier to achieve the linearly polarized luminescence measurement, which is essential for obtaining the true CPL signal for optically anisotropic samples. An acquisition approach devised for solid-state CPL analysis reduces the measurement times for a data set by ca. 98% compared with the time required in our previous method. As a result, the developed approach is very effective for samples susceptible to light-induced degradation. The theory and implementation of the method are described, and examples of its application to a CPL sample with macroscopic anisotropies are provided. An important advantage of the developed instrument is its ability to obtain molecular information for both excited and ground states because circular dichroism measurements can be performed by switching the monochromatic light to white light without rearrangement of the sample.

  15. Circularly Polarized Low-Profile Antenna for Radiating Parallel to Ground Plane for RFID Reader Applications

    Directory of Open Access Journals (Sweden)

    Kittima Lertsakwimarn

    2013-01-01

    Full Text Available This paper presents a low-profile printed antenna with double U-shaped arms radiating circular polarization for the UHF RFID readers. The proposed antenna consists of double U-shaped strip structures and a capacitive feeding line to generate circular polarization. A part of the U-shaped arms is bent by 90° to direct the main beam parallel to the ground plane. From the results, -10 dB |S11| and 3 dB axial ratio of the antenna cover a typical UHF RFID band from 920 MHz to 925 MHz. The bidirectional beam is obtained with the maximum gain of 1.8 dBic in the parallel direction to the ground plane at the 925 MHz. The overall size of the proposed antenna including ground plane is 107 mm × 57 mm × 12.8 mm (0.33λ0 × 0.17λ0 × 0.04λ0.

  16. Four-wave mixing using polarization grating induced thermal grating in liquids exhibiting circular dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, J.A.; Tong, W.G. [San Diego State Univ., CA (United States). Dept. of Chemistry; Chandler, D.W.; Rahn, L.A. [Sandia National Lab., Livermore, CA (United States). Combustion Research Facility

    1995-04-01

    A novel four-wave mixing technique for the detection of circular dichroism in optically active liquid samples is demonstrated. When two cross-polarized laser beams are crossed at a small angle in a circular dichroic liquid a weak thermal grating is produced with a phase depending on the sign of the circular dichroism. The authors show that the polarization of one of the beams can be modified to allow coherent interference with an intensity-grating induced thermal grating. A probe beam scattering from the composite grating results in a signal that reveals the sign and magnitude of the circular dichroism. The use of this technique to optimize the signal-to-noise ratio in the presence of scattered light and laser intensity noise is discussed.

  17. Atomistic modeling of IR action spectra under circularly polarized electromagnetic fields: toward action VCD spectra.

    Science.gov (United States)

    Calvo, Florent

    2015-03-01

    The nonlinear response and dissociation propensity of an isolated chiral molecule, camphor, to a circularly polarized infrared laser pulse was simulated by molecular dynamics as a function of the excitation wavelength. The results indicate similarities with linear absorption spectra, but also differences that are ascribable to dynamical anharmonic effects. Comparing the responses between left- and right-circularly polarized pulses in terms of dissociation probabilities, or equivalently between R- and S-camphor to a similarly polarized pulse, we find significant differences for the fingerprint C = O amide mode, with a sensitivity that could be sufficient to possibly enable vibrational circular dichroism as an action technique for probing molecular chirality and absolute conformations in the gas phase. © 2015 Wiley Periodicals, Inc.

  18. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    CERN Document Server

    Shvets, G

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation.

  19. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    International Nuclear Information System (INIS)

    G. Shvets; N.J. Fisch; J.-M. Rax

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation

  20. Circular polarization in the optical afterglow of GRB 121024A

    DEFF Research Database (Denmark)

    Wiersema, K.; Covino, S.; Toma, K.

    2014-01-01

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of th...

  1. Circular polarization control for the European XFEL in the soft X-ray regime

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-06-01

    The possibility of producing X-ray radiation with high degree of circular polarization is an important asset at XFEL facilities. Polarization control is most important in the soft X-ray region.However, the baseline of the European XFEL, including the soft X-ray SASE3 line, foresees planar undulators only, yielding linearly-polarized radiation. It is clear that the lowest-risk strategy for implementing polarization control at SASE3 involves adding an APPLE II-type undulator at the end of the planar undulator, in order to exploit the micro bunching from the baseline FEL. Detailed experience is available in synchrotron radiation laboratories concerning the manufacturing of 5 m-long APPLE II undulators. However, the choice of a short helical radiator leads to the problem of background suppression. The driving idea of our proposal is that the background radiation can be suppressed by spatial filtering. This operation can be performed by inserting slits behind the APPLE II radiator, where the linearly-polarized radiation spot size is about 30 times larger than the radiation spot size from the helical radiator. The last 7 cells of the SASE3 undulator are left with an open gap in order to provide a total 42 m drift section for electron beam and radiation. Due to the presence of the drift the linearly-polarized radiation spot size increases, and the linearly polarized background radiation can be suppressed by the slits. At the same time, the microbunch structure is easily preserved, so that intense (100 GW) coherent radiation is emitted in the helical radiator. We propose a filtering setup consisting of a pair of water cooled slits for X-ray beam filtering and of a 5 m-long magnetic chicane, which creates an offset for slit installation immediately behind the helical radiator. Electrons and X-rays are separated before the slits by the magnetic chicane, so that the electron beam can pass by the filtering setup without perturbations. Based on start-to-end simulations we

  2. Photoemission of Bi_{2}Se_{3} with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation?

    Directory of Open Access Journals (Sweden)

    J. Sánchez-Barriga

    2014-03-01

    Full Text Available Topological insulators are characterized by Dirac-cone surface states with electron spins locked perpendicular to their linear momenta. Recent theoretical and experimental work implied that this specific spin texture should enable control of photoelectron spins by circularly polarized light. However, these reports questioned the so far accepted interpretation of spin-resolved photoelectron spectroscopy. We solve this puzzle and show that vacuum ultraviolet photons (50–70 eV with linear or circular polarization indeed probe the initial-state spin texture of Bi_{2}Se_{3} while circularly polarized 6-eV low-energy photons flip the electron spins out of plane and reverse their spin polarization, with its sign determined by the light helicity. Our photoemission calculations, taking into account the interplay between the varying probing depth, dipole-selection rules, and spin-dependent scattering effects involving initial and final states, explain these findings and reveal proper conditions for light-induced spin manipulation. Our results pave the way for future applications of topological insulators in optospintronic devices.

  3. Construction and performance of BL28 of the Photon Factory for circularly polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Kagoshima, Y.; Muto, S.; Miyahara, T.; Koide, T.; Yamamoto, S.; Kitamura, H.

    1992-01-01

    A branch beamline, BL28A, has been constructed for the application of circularly polarized vacuum ultraviolet radiation. The radiation can be obtained in the helical undulator operation mode of an insertion device, EMPW number-sign 28, which is also cut for elliptically polarized hard x-ray radiation. T first harmonic of the helical undulator radiation can be tuned from 40 to 350 eV with its corresponding K value from 3 to 0.2. A monochromator working basically with constant deviation optics was installed, and has started its operation. A circularly polarized flux of ∼10 10 photons/s has been achieved with energy resolution of around 500--1000 at the first harmonic peak. The circular polarization after the monochromator was estimated to be higher than 70% by comparing theory and experiment on the magnetic circular dichroism of nickel films in the 3p-3d excitation region. The design philosophy of the beamline and recent results on the performance tests are presented

  4. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Hurtado, A. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Institute of Photonics, Physics Department, University of Strathclyde, Wolfson Centre, 106 Rottenrow East, Glasgow G4 0NW, Scotland (United Kingdom); Korpijarvi, V.-M.; Guina, M. [Optoelectronics Research Centre (ORC), Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2015-01-12

    We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in future optical systems.

  5. Extended high circular polarization in the Orion massive star forming region: implications for the origin of homochirality in the solar system.

    Science.gov (United States)

    Fukue, Tsubasa; Tamura, Motohide; Kandori, Ryo; Kusakabe, Nobuhiko; Hough, James H; Bailey, Jeremy; Whittet, Douglas C B; Lucas, Philip W; Nakajima, Yasushi; Hashimoto, Jun

    2010-06-01

    We present a wide-field (approximately 6' x 6') and deep near-infrared (K(s) band: 2.14 mum) circular polarization image in the Orion nebula, where massive stars and many low-mass stars are forming. Our results reveal that a high circular polarization region is spatially extended (approximately 0.4 pc) around the massive star-forming region, the BN/KL nebula. However, other regions, including the linearly polarized Orion bar, show no significant circular polarization. Most of the low-mass young stars do not show detectable extended structure in either linear or circular polarization, in contrast to the BN/KL nebula. If our solar system formed in a massive star-forming region and was irradiated by net circularly polarized radiation, then enantiomeric excesses could have been induced, through asymmetric photochemistry, in the parent bodies of the meteorites and subsequently delivered to Earth. These could then have played a role in the development of biological homochirality on Earth.

  6. Analytical treatment of particle motion in circularly polarized slab-mode wave fields

    Science.gov (United States)

    Schreiner, Cedric; Vainio, Rami; Spanier, Felix

    2018-02-01

    Wave-particle interaction is a key process in particle diffusion in collisionless plasmas. We look into the interaction of single plasma waves with individual particles and discuss under which circumstances this is a chaotic process, leading to diffusion. We derive the equations of motion for a particle in the fields of a magnetostatic, circularly polarized, monochromatic wave and show that no chaotic particle motion can arise under such circumstances. A novel and exact analytic solution for the equations is presented. Additional plasma waves lead to a breakdown of the analytic solution and chaotic particle trajectories become possible. We demonstrate this effect by considering a linearly polarized, monochromatic wave, which can be seen as the superposition of two circularly polarized waves. Test particle simulations are provided to illustrate and expand our analytical considerations.

  7. Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses

    Science.gov (United States)

    Janda, T.; Roy, P. E.; Otxoa, R. M.; Šobáň, Z.; Ramsay, A.; Irvine, A. C.; Trojanek, F.; Surýnek, M.; Campion, R. P.; Gallagher, B. L.; Němec, P.; Jungwirth, T.; Wunderlich, J.

    2017-05-01

    Domain wall motion driven by ultra-short laser pulses is a pre-requisite for envisaged low-power spintronics combining storage of information in magnetoelectronic devices with high speed and long distance transmission of information encoded in circularly polarized light. Here we demonstrate the conversion of the circular polarization of incident femtosecond laser pulses into inertial displacement of a domain wall in a ferromagnetic semiconductor. In our study, we combine electrical measurements and magneto-optical imaging of the domain wall displacement with micromagnetic simulations. The optical spin-transfer torque acts over a picosecond recombination time of the spin-polarized photo-carriers that only leads to a deformation of the initial domain wall structure. We show that subsequent depinning and micrometre-distance displacement without an applied magnetic field or any other external stimuli can only occur due to the inertia of the domain wall.

  8. Quantitative assessment of spinal cord injury using circularly polarized coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Bae, Kideog; Zheng, Wei; Huang, Zhiwei

    2017-08-01

    We report the quantitative assessment of spinal cord injury using the circularly polarized coherent anti-Stokes Raman scattering (CP-CARS) technique together with Stokes parameters in the Poincaré sphere. The pump and Stokes excitation beams are circularly polarized to suppress both the linear polarization-dependent artifacts and the nonresonant background of tissue CARS imaging, enabling quantitative CP-CARS image analysis. This study shows that CP-CARS imaging uncovers significantly increased phase retardance of injured spinal cord tissue as compared to normal tissue, suggesting that CP-CARS is an appealing label-free imaging tool for determining the degree of tissue phase retardance, which could serve as a unique diagnostic parameter associated with nervous tissue injury.

  9. Circular Polarizations of Gravitational Waves from Core-Collapse Supernovae: A Clear Indication of Rapid Rotation.

    Science.gov (United States)

    Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi

    2016-04-15

    We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse.

  10. Unidirectional evanescent-wave coupling from circularly polarized electric and magnetic dipoles: An angular spectrum approach

    Science.gov (United States)

    Picardi, Michela F.; Manjavacas, Alejandro; Zayats, Anatoly V.; Rodríguez-Fortuño, Francisco J.

    2017-06-01

    Unidirectional evanescent-wave coupling from circularly polarized dipole sources is one of the most striking types of evidence of spin-orbit interactions of light and an inherent property of circularly polarized dipoles. Polarization handedness self-determines propagation direction of guided modes. In this paper, we compare two different approaches currently used to describe this phenomenon: the first requires the evaluation of the coupling amplitude between dipole and waveguide modes, while the second is based on the calculation of the angular spectrum of the dipole. We present an analytical expression of the angular spectrum of dipole radiation, unifying the description for both electric and magnetic dipoles. The symmetries unraveled by the implemented formalism show the existence of specific terms in the dipole spectrum which can be recognized as being directly responsible for directional evanescent-wave coupling. This provides a versatile tool for both a comprehensive understanding of the phenomenon and a fully controllable engineering of directionality of guided modes.

  11. Competition of circularly polarized laser modes in the modulation instability of hot magnetoplasma

    International Nuclear Information System (INIS)

    Sepehri Javan, N.

    2013-01-01

    The present study is aimed to investigate the problem of modulation instability of an intense laser beam in the hot magnetized plasma. The propagation of intense circularly polarized laser beam along the external magnetic field is considered using a relativistic fluid model. The nonlinear equation describing the interaction of laser pulse with magnetized hot plasma is derived in the quasi-neutral approximation, which is valid for hot plasma. Nonlinear dispersion equation for hot plasma is obtained. For left- and right-hand polarizations, the growth rate of instability is achieved and the effect of temperature, external magnetic field, and kind of polarization on the growth rate is considered. It is observed that for the right-hand polarization, increase of magnetic field leads to the increasing of growth rate. Also for the left-hand polarization, increase of magnetic field inversely causes decrease of the growth rate.

  12. Circularly polarized light interaction in topological insulators investigated by time-resolved ARPES

    Science.gov (United States)

    Bugini, D.; Hedayat, H.; Boschini, F.; Yi, H.; Chen, C.; Zhou, X.; Manzoni, C.; Dallera, C.; Cerullo, G.; Carpene, E.

    2017-10-01

    Topological Insulators (TI) represent a hot-topic for both basic physics and promising applications because of the in-plane spin-polarized surface states (TSS) arising within the bulk insulating energy gap. The backscattering protection and the control of the spin polarization using ultrashort light pulses open new scenarios in the use of this class of materials for future opto-spintronic devices. Using time- and angle-resolved photoemission spectroscopy on Sb x Bi(2‑x )Se y Te(3‑y ) class we studied the response of spin-polarized electrons to ultrashort circularly-polarized pulses. Here, we report for the first time the experimental evidence of a direct coupling between light and empty topological surface states (ESS) and the establishment of a flow of spin-polarized electrons in k-space i.e. a photon-induced spin-current.

  13. Scanning differential polarization microscope: Its use to image linear and circular differential scattering

    International Nuclear Information System (INIS)

    Mickols, W.; Maestre, M.F.

    1988-01-01

    A differential polarization microscope that couples the sensitivity of single-beam measurement of circular dichroism and circular differential scattering with the simultaneous measurement of linear dichroism and linear differential scattering has been developed. The microscope uses a scanning microscope stage and single-point illumination to give the very shallow depth of field found in confocal microscopy. This microscope can operate in the confocal mode as well as in the near confocal condition that can allow one to program the coherence and spatial resolution of the microscope. This microscope has been used to study the change in the structure of chromatin during the development of sperm in Drosophila

  14. NEAR-INFRARED IMAGING POLARIMETRY OF GGD 27: CIRCULAR POLARIZATION AND MAGNETIC FIELD STRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jungmi; Tamura, Motohide [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hough, James H. [University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Nagata, Tetsuya [Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Kusakabe, Nobuhiko [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Saito, Hiro, E-mail: jungmi.kwon@astron.s.u-tokyo.ac.jp [Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan)

    2016-06-20

    Near-infrared imaging polarimetry in the J , H , and K{sub s} bands was carried out for GGD 27 in the dark cloud Lynds 291. Details of an infrared reflection nebula associated with the optical nebulosity GGD 27 and the infrared nebula GGD 27 IRS are presented. Aperture photometry of 1263 point-like sources, detected in all three bands, was used to classify them based on a color–color diagram, and the linear polarization of several hundred sources was determined, with the latter used to map the magnetic field structure around GGD 27. This field, around GGD 27 IRS, appears to be associated with the extended CO outflow of IRAS 18162–2048; however, there are partly distorted or bent components in the field. The Chandrasekhar–Fermi method gives an estimate of the magnetic field strength as ∼90 μ G. A region associated with GGD 27 IRS is discovered to have a circular polarization in the range of ∼2%–11% in the K{sub s} band. The circular polarization has an asymmetric positive/negative pattern and extends out to ∼ 120″ or 1.0 pc. The circular and linear polarization patterns are explained as resulting from a combination of dense inner and fainter outer lobes, suggesting episodic outflow.

  15. Nonlinear optical responses to circularly polarized lights of the surface state of a topological insulator

    Science.gov (United States)

    Misawa, Tetsuro; Yokoyama, Takehito; Murakami, Shuichi

    2012-02-01

    Recent photoelectron spectroscopy experiments have revealed the presence of the Dirac cone on the surface of the topological insulator and its spin-splitting due to the spin-orbit interaction. In general, on spin-orbit coupled systems, electric fields induce spin polarizations as linear and nonlinear responses. Here we investigate the inverse Faraday effect on the surface of the topological insulator. The inverse Faraday effect is a non-linear optical effect where a circularly polarized light induces a dc spin polarization. We employ the Keldysh Green's function method to calculate the induced spin polarization and discuss its frequency dependence. In particular, in the low frequency limit, our analytical result gives the spin polarization proportional to the frequency and the square of the lifetime. As for the finite frequency regime, we employ numerical methods to discuss the resonance due to interband transitions. We also discuss the photogalvanic effect, where an illumination of a circular polarized light generates the dc charge current. Lastly, we evaluate those quantities with realistic parameters.[4pt] [1] T. Misawa, T. Yokoyama, S. Murakami, Phys. Rev. B84, 165407 (2011).

  16. Light trapping and circularly polarization at a Dirac point in 2D plasma photonic crystals

    Science.gov (United States)

    Li, Qian; Hu, Lei; Mao, Qiuping; Jiang, Haiming; Hu, Zhijia; Xie, Kang; Wei, Zhang

    2018-03-01

    Light trapping at the Dirac point in 2D plasma photonic crystal has been obtained. The new localized mode, Dirac mode, is attributable to neither photonic bandgap nor total internal reflection. It exhibits a unique algebraic profile and possesses a high-Q factor resonator of about 105. The Dirac point could be modulated by tuning the filling factor, plasma frequency and plasma cyclotron frequency, respectively. When a magnetic field parallel to the wave vector is applied, Dirac modes for right circularly polarized and left circularly polarized waves could be obtained at different frequencies, and the Q factor could be tuned. This property will add more controllability and flexibility to the design and modulation of novel photonic devices. It is also valuable for the possibilities of Dirac modes in photonic crystal containing other kinds of metamaterials.

  17. Design of CPW fed printed slot antenna with circular polarization for UWB application

    Science.gov (United States)

    Choudhary, N.; Tiwari, A.; Jangid, K. G.; Sharma, B. R.; Saini, J. S.; Kulhar, V. S.; Bhatnagar, D.

    2016-03-01

    This paper reports the design and performance of a CPW-fed circularized polarized elliptical slot antenna for UWB (ultra wide band) applications. The circular polarization is achieved by applying triangular stubs in the ground plane. The overall volume of this antenna is 40mm × 40 mm × 1.59 mm. The proposed antenna is simulated by applying CST Microwave Studio simulator. This elliptical patch slot antenna provides broad impedance bandwidth (3.1GHz to 10.6 GHz) with maximum gain 4.31dB at 4.45GHz. The simulated 3-dB axial ratio bandwidth is close to 2.51GHz (from 4.76GHz to 7.27GHz) which is 41.76% with respect to the central frequency 6.01GHz.

  18. Multiphoton ionization of the hydrogen atom by a circularly polarized electromagnetic field

    International Nuclear Information System (INIS)

    Prepelitsa, O.B.

    1999-01-01

    This paper examines the multiphoton ionization of the ground state of the hydrogen atom in the field of a circularly polarized intense electromagnetic wave. To describe the states of photoelectrons, quasiclassical wave functions are introduced that partially allow for the effect of an intense electromagnetic wave and that of the Coulomb potential. Expressions are derived for the angular and energy distributions of photoelectrons with energies much lower than the ionization potential of an unperturbed atom. It is found that, due to allowance for the Coulomb potential in the wave function of the final electron states, the transition probability near the ionization threshold tends to a finite value. In addition, the well-known selection rules for multiphoton transitions in a circularly polarized electromagnetic field are derived in a natural way. Finally, the results are compared with those obtained in the Keldysh-Faisal-Reiss approximation

  19. High-flux normal incidence monochromator for circularly polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Schaefers, F.; Peatman, W.; Eyers, A.; Heckenkamp, C.; Schoenhense, G.; Heinzmann, U.

    1986-01-01

    A 6.5-m normal incidence monochromator installed at the storage ring BESSY, which is optimized for a high throughput of circularly polarized off-plane radiation at moderate resolution is described. The monochromator employs two exit slits and is specially designed and used for low-signal experiments such as spin- and angle-resolved photoelectron spectroscopy on solids, adsorbates, free atoms, and molecules. The Monk--Gillieson mounting (plane grating in a convergent light beam) allows for large apertures with relatively little astigmatism. With two gratings, a flux of more than 10 11 photons s -1 bandwidth -1 (0.2--0.5 nm) with a circular polarization of more than 90% in the wavelength range from 35 to 675 nm is achieved

  20. Circularly Polarized Antenna Array Fed by Air-Bridge Free CPW-Slotline Network

    Directory of Open Access Journals (Sweden)

    Yilin Liu

    2017-01-01

    Full Text Available A novel design of 1×2 and 2×2 circularly polarized (CP microstrip patch antenna arrays is presented in this paper. The two CP antenna arrays are fed by sequentially rotated coplanar waveguide (CPW to slotline networks and are processed on 1 mm thick single-layer FR4 substrates. Both of the two arrays are low-profile and lightweight. An air-bridge free CPW-slotline power splitter is appropriately designed to form the feeding networks and realize the two CP antenna arrays. The mechanism of circular polarization in this design is explained. The simulated and measured impedance bandwidths as well as the 3 dB axial ratio bandwidths and the radiation patterns of the two proposed antenna arrays are presented. This proposed design can be easily extended to form a larger plane array with good performance owing to its simple structure.

  1. Fast helicity switching of x-ray circular polarization at beamline P09 at PETRA III

    International Nuclear Information System (INIS)

    Strempfer, J.; Mardegan, J. R. L.; Francoual, S.; Veiga, L. S. I.; Spitzbart, T.; Zink, H.; Bouchenoire, L.

    2016-01-01

    At the resonant scattering and diffraction beamline P09 at PETRA III/DESY, polarization manipulation in the X-ray energy range 3-13 keV is possible using wave-plates. Recently, fast flipping of circular polarization helicity using the Raspberry Pi controlled FPGA (PiLC) device developed at DESY and dedicated piezo-electric flippers has been commissioned. Functionality of the PiLC for XMCD and first XMCD measurements at the Fe K-and Dy-L 3 absorption edges are presented.

  2. Fast helicity switching of x-ray circular polarization at beamline P09 at PETRA III

    Energy Technology Data Exchange (ETDEWEB)

    Strempfer, J., E-mail: Joerg.Strempfer@desy.de; Mardegan, J. R. L.; Francoual, S.; Veiga, L. S. I.; Spitzbart, T.; Zink, H. [Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22603 Hamburg (Germany); Bouchenoire, L. [XMaS, ESRF, 6 rue Jules Horowitz, BP220, Grenoble 38043 (France); Department of Physics, University of Liverpool, Liverpool, L69 7ZE (United Kingdom)

    2016-07-27

    At the resonant scattering and diffraction beamline P09 at PETRA III/DESY, polarization manipulation in the X-ray energy range 3-13 keV is possible using wave-plates. Recently, fast flipping of circular polarization helicity using the Raspberry Pi controlled FPGA (PiLC) device developed at DESY and dedicated piezo-electric flippers has been commissioned. Functionality of the PiLC for XMCD and first XMCD measurements at the Fe K-and Dy-L{sub 3} absorption edges are presented.

  3. Dynamical model of coherent circularly polarized optical pulse interactions with two-level quantum systems

    International Nuclear Information System (INIS)

    Slavcheva, G.; Hess, O.

    2005-01-01

    We propose and develop a method for theoretical description of circularly (elliptically) polarized optical pulse resonant coherent interactions with two-level atoms. The method is based on the time-evolution equations of a two-level quantum system in the presence of a time-dependent dipole perturbation for electric dipole transitions between states with total angular-momentum projection difference (ΔJ z =±1) excited by a circularly polarized electromagnetic field [Feynman et al., J. Appl. Phys. 28, 49 (1957)]. The adopted real-vector representation approach allows for coupling with the vectorial Maxwell's equations for the optical wave propagation and thus the resulting Maxwell pseudospin equations can be numerically solved in the time domain without any approximations. The model permits a more exact study of the ultrafast coherent pulse propagation effects taking into account the vector nature of the electromagnetic field and hence the polarization state of the optical excitation. We demonstrate self-induced transparency effects and formation of polarized solitons. The model represents a qualitative extension of the well-known optical Maxwell-Bloch equations valid for linearly polarized light and a tool for studying coherent quantum control mechanisms

  4. Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces

    Science.gov (United States)

    Gao, Xi; Yu, Xing-Yang; Cao, Wei-Ping; Jiang, Yan-Nan; Yu, Xin-Hua

    2016-12-01

    An ultrathin micro-split Jerusalem-cross metasurface is proposed in this paper, which can efficiently convert the linear polarization of electromagnetic (EM) wave into the circular polarization in ultra-wideband. By symmetrically employing two micro-splits on the horizontal arm (in the x direction) of the Jerusalem-cross structure, the bandwidth of the proposed device is significantly extended. Both simulated and experimental results show that the proposed metasurface is able to convert linearly polarized waves into circularly polarized waves in a frequency range from 12.4 GHz to 21 GHz, with an axis ratio better than 1 dB. The simulated results also show that such a broadband and high-performance are maintained over a wide range of incident angle. The presented polarization converter can be used in a number of areas, such as spectroscopy and wireless communications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61461016 and 61661012), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2014GXNSFAA118366, 2014GXNSFAA118283, and 2015jjBB7002), and the Innovation Project of Graduate Education of Guilin University of Electronic Technology, China (Grant No. 2016YJCX82).

  5. Periodic array of quantum rings strongly coupled to circularly polarized light as a topological insulator

    Science.gov (United States)

    Kozin, V. K.; Iorsh, I. V.; Kibis, O. V.; Shelykh, I. A.

    2018-01-01

    We demonstrate theoretically that a strong high-frequency circularly polarized electromagnetic field can turn a two-dimensional periodic array of interconnected quantum rings into a topological insulator. The elaborated approach is applicable to calculate and analyze the electron energy spectrum of the array, the energy spectrum of the edge states, and the corresponding electronic densities. As a result, the present theory paves the way to optical control of the topological phases in ring-based mesoscopic structures.

  6. Anisotropy-Guided Enantiomeric Enhancement in Alanine Using Far-UV Circularly Polarized Light.

    Science.gov (United States)

    Meinert, Cornelia; Cassam-Chenaï, Patrick; Jones, Nykola C; Nahon, Laurent; Hoffmann, Søren V; Meierhenrich, Uwe J

    2015-06-01

    All life on Earth is characterized by its asymmetry - both the genetic material and proteins are composed of homochiral monomers. Understanding how this molecular asymmetry initially arose is a key question related to the origins of life. Cometary ice simulations, L-enantiomeric enriched amino acids in meteorites and the detection of circularly polarized electromagnetic radiation in star-forming regions point to a possible interstellar/protostellar generation of stereochemical asymmetry. Based upon our recently recorded anisotropy spectra g(λ) of amino acids in the vacuum-UV range, we subjected amorphous films of racemic (13)C-alanine to far-UV circularly polarized synchrotron radiation to probe the asymmetric photon-molecule interaction under interstellar conditions. Optical purities of up to 4% were reached, which correlate with our theoretical predictions. Importantly, we show that chiral symmetry breaking using circularly polarized light is dependent on both the helicity and the wavelength of incident light. In order to predict such stereocontrol, time-dependent density functional theory was used to calculate anisotropy spectra. The calculated anisotropy spectra show good agreement with the experimental ones. The European Space Agency's Rosetta mission, which successfully landed Philae on comet 67P/Churyumov-Gerasimenko on 12 November 2014, will investigate the configuration of chiral compounds and thereby obtain data that are to be interpreted in the context of the results presented here.

  7. SEARCH FOR A MAGNETIC FIELD VIA CIRCULAR POLARIZATION IN THE WOLF-RAYET STAR EZ CMa

    International Nuclear Information System (INIS)

    De la Chevrotière, A.; St-Louis, N.; Moffat, A. F. J.

    2013-01-01

    We report on the first deep, direct search for a magnetic field via the circular polarization of Zeeman splitting in a Wolf-Rayet (W-R) star. Using the highly efficient ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, we observed at three different epochs one of the best W-R candidates in the sky expected to harbor a magnetic field, the bright, highly variable WN4 star EZ CMa = WR6 = HD 50896. We looked for the characteristic circular polarization (Stokes V) pattern in strong emission lines that would arise as a consequence of a global, rotating magnetic field with a split monopole configuration. We also obtained nearly simultaneous linear polarization spectra (Stokes Q and U), which are dominated by electron scattering, most likely from a flattened wind with large-scale corotating structures. As the star rotates with a period of 3.766 days, our view of the wind changes, which in turn affects the value of the linear polarization in lines versus continuum at the ∼0.2% level. Depending on the epoch of observation, our Stokes V data were affected by significant crosstalk from Stokes Q and U to V. We removed this spurious signal from the circular polarization data and experimented with various levels of spectral binning to increase the signal-to-noise ratio of our data. In the end, no magnetic field is unambiguously detected in EZ CMa. Assuming that the star is intrinsically magnetic and harbors a split monopole configuration, we find an upper limit of B ∼ 100 G for the intensity of its field in the line-forming regions of the stellar wind.

  8. In-line production of a bi-circular field for generation of helically polarized high-order harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Kfir, Ofer, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il; Bordo, Eliyahu; Ilan Haham, Gil; Lahav, Oren; Cohen, Oren, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il [Solid State Institute and Physics Department, Technion, Haifa 32000 (Israel); Fleischer, Avner [Solid State Institute and Physics Department, Technion, Haifa 32000 (Israel); Department of Physics and Optical Engineering, Ort Braude College, Karmiel 21982 (Israel)

    2016-05-23

    The recent demonstration of bright circularly polarized high-order harmonics of a bi-circular pump field gave rise to new opportunities in ultrafast chiral science. In previous works, the required nontrivial bi-circular pump field was produced using a relatively complicated and sensitive Mach-Zehnder-like interferometer. We propose a compact and stable in-line apparatus for converting a quasi-monochromatic linearly polarized ultrashort driving laser field into a bi-circular field and employ it for generation of helically polarized high-harmonics. Furthermore, utilizing the apparatus for a spectroscopic spin-mixing measurement, we identify the photon spins of the bi-circular weak component field that are annihilated during the high harmonics process.

  9. Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Daniel; Rudolf, Denis, E-mail: d.rudolf@fz-juelich.de; Juschkin, Larissa [RWTH Aachen University, Experimental Physics of EUV, Steinbachstraße 15, 52074 Aachen (Germany); Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-9), JARA-FIT, 52425 Jülich (Germany); Weier, Christian; Adam, Roman; Schneider, Claus M. [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), JARA-FIT, 52425 Jülich (Germany); Winkler, Gerrit; Frömter, Robert [Institut für Angewandte Physik, Universität Hamburg, Jungiusstraße 11, 20355 Hamburg (Germany); Danylyuk, Serhiy [RWTH Aachen University, Chair for Technology of Optical Systems, JARA-FIT, Steinbachstraße 15, 52074 Aachen (Germany); Bergmann, Klaus [Fraunhofer Institute for Laser Technology, Steinbachstrasse 15, 52074 Aachen (Germany); Grützmacher, Detlev [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-9), JARA-FIT, 52425 Jülich (Germany)

    2014-10-15

    Generation of circularly polarized light in the extreme ultraviolet (EUV) spectral region (about 25 eV–250 eV) is highly desirable for applications in spectroscopy and microscopy but very challenging to achieve in a small-scale laboratory. We present a compact apparatus for generation of linearly and circularly polarized EUV radiation from a gas-discharge plasma light source between 50 eV and 70 eV photon energy. In this spectral range, the 3p absorption edges of Fe (54 eV), Co (60 eV), and Ni (67 eV) offer a high magnetic contrast often employed for magneto-optical and electron spectroscopy as well as for magnetic imaging. We simulated and designed an instrument for generation of linearly and circularly polarized EUV radiation and performed polarimetric measurements of the degree of linear and circular polarization. Furthermore, we demonstrate first measurements of the X-ray magnetic circular dichroism at the Co 3p absorption edge with a plasma-based EUV light source. Our approach opens the door for laboratory-based, element-selective spectroscopy of magnetic materials and spectro-microscopy of ferromagnetic domains.

  10. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2012-01-01

    switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007......Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After...... of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)]....

  11. Variation in the circularly polarized light reflection of Lomaptera (Scarabaeidae) beetles.

    Science.gov (United States)

    Carter, I E; Weir, K; McCall, M W; Parker, A R

    2016-07-01

    An extended spectroscopic study on the left-through-left circularly polarized reflection spectra of a large number of beetles from the Australasian Scrabaeidae:Cetoniinae of the Lomaptera genus was undertaken. We have obtained a five-category spectral classification. The principal spectral features, which even within the genus range from blue to infrared, are related to structural chirality in the beetle shells. The detailed features of each spectral classification are related to different structural perturbations of the helix, including various pitch values and abrupt twist defects. These spectral characteristics and associated shell structures are confirmed on the basis of simple modelling. An important conclusion from our study is that the simple helical structure resulting in a single symmetric Bragg peak is not the dominant spectral type. Rather the reality is a rich tapestry of spectral types. One intriguing specimen is identified via a scanning electron micrograph to consist of a double interstitial helix leading to a particular double-peak spectrum. © 2016 The Authors.

  12. Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

    Directory of Open Access Journals (Sweden)

    Yun Hao

    2016-01-01

    Full Text Available A circularly polarized (CP Microstrip Yagi array antenna (MSYA is designed in order to achieve high front-to-back ratio R(F/B and high gain over wide range in the forward radiation space. A Wilkinson power divider owning two output ways with the same magnitude and different phase is used to feed the antenna. Parametric studies are carried out to investigate the effects of some key geometrical sizes on the antenna’s performance. A prototype of the antenna is fabricated, and good agreement between the measured results and the numerical simulations is observed. The overlap bandwidth of VSWR ≤ 1.5 and AR ≤ 3 dB is about 11%. The steering angle (α between the peak gain direction and the broadside can achieve 35°, R(F/B reaches 19 dB, and the gain at the front point (G0 is only 4.3 dB lower than the maximum gain (Gm. The antenna has a wide beamwidth CP radiation pattern over wide spatial range including 0° ≤ θ ≤ 90° in vertical plane and −35° ≤ φ ≤ 55° in horizontal plane.

  13. Circularly Polarized X Rays: Another Probe of Ultrafast Molecular Decay Dynamics

    International Nuclear Information System (INIS)

    Travnikova, Oksana; Lindblad, Andreas; Nicolas, Christophe; Soederstroem, Johan; Kimberg, Victor; Miron, Catalin; Liu Jicai; Gel'mukhanov, Faris

    2010-01-01

    Dissociative nuclear motion in core-excited molecular states leads to a splitting of the fragment Auger lines: the Auger-Doppler effect. We present here for the first time experimental evidence for an Auger-Doppler effect following F1s→a 1g * inner-shell excitation by circularly polarized x rays in SF 6 . In spite of a uniform distribution of the dissociating S-F bonds near the polarization plane of the light, the intersection between the subpopulation of molecules selected by the core excitation with the cone of dissociation induces a strong anisotropy in the distribution of the S-F bonds that contributes to the scattering profile measured in the polarization plane.

  14. Nonlinear Free Vibration Analysis of Axisymmetric Polar Orthotropic Circular Membranes under the Fixed Boundary Condition

    Directory of Open Access Journals (Sweden)

    Zhoulian Zheng

    2014-01-01

    Full Text Available This paper presents the nonlinear free vibration analysis of axisymmetric polar orthotropic circular membrane, based on the large deflection theory of membrane and the principle of virtual displacement. We have derived the governing equations of nonlinear free vibration of circular membrane and solved them by the Galerkin method and the Bessel function to obtain the generally exact formula of nonlinear vibration frequency of circular membrane with outer edges fixed. The formula could be degraded into the solution from small deflection vibration; thus, its correctness has been verified. Finally, the paper gives the computational examples and comparative analysis with the other solution. The frequency is enlarged with the increase of the initial displacement, and the larger the initial displacement is, the larger the effect on the frequency is, and vice versa. When the initial displacement approaches zero, the result is consistent with that obtained on the basis of the small deflection theory. Results obtained from this paper provide the accurate theory for the measurement of the pretension of polar orthotropic composite materials by frequency method and some theoretical basis for the research of the dynamic response of membrane structure.

  15. Circular polarization of gravitational waves from non-rotating supernova cores: a new probe into the pre-explosion hydrodynamics

    Science.gov (United States)

    Hayama, Kazuhiro; Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2018-04-01

    We present an analysis of the circular polarization of gravitational-waves (GWs) using results from three-dimensional (3D), general relativistic (GR) core-collapse simulations of a non-rotating 15M⊙ star. For the signal detection, we perform a coherent network analysis taking into account the four interferometers of LIGO Hanford, LIGO Livingston, VIRGO, and KAGRA. We focus on the Stokes V parameter, which directly characterizes the asymmetry of the GW circular polarization. We find that the amplitude of the GW polarization becomes bigger for our 3D-GR model that exhibits strong activity of the standing accretion shock instability (SASI). Our results suggest that the SASI-induced accretion flows to the proto-neutron star (PNS) lead to a characteristic, low-frequency modulation (100 ˜ 200 Hz) in both the waveform and the GW circular polarization. By estimating the signal-to-noise ratio of the GW polarization, we demonstrate that the detection horizon of the circular polarization extends by more than a factor of several times farther comparing to that of the GW amplitude. Our results suggest that the GW circular polarization, if detected, could provide a new probe into the pre-explosion hydrodynamics such as the SASI activity and the g-mode oscillation of the PNS.

  16. Strong Circularly Polarized Luminescence from Highly Emissive Terbium Complexes in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Amanda; Lunkley, Jamie; Muller, Gilles; Raymond, Kenneth

    2010-03-15

    Two luminescent terbium(III) complexes have been prepared from chiral ligands containing 2-hydroxyisophthalamide (IAM) antenna chromophores and their non-polarized and circularly-polarized luminescence properties have been studied. These tetradentate ligands, which form 2:1 ligand/Tb{sup III} complexes, utilize diaminocyclohexane (cyLI) and diphenylethylenediamine (dpenLI) backbones, which we reasoned would impart conformational rigidity and result in Tb{sup III} complexes that display both large luminescence quantum yield ({phi}) values and strong circularly polarized luminescence (CPL) activities. Both Tb{sup III} complexes are highly emissive, with {phi} values of 0.32 (dpenLI-Tb) and 0.60 (cyLI-Tb). Luminescence lifetime measurements in H{sub 2}O and D{sub 2}O indicate that while cyLI-Tb exists as a single species in solution, dpenLI-Tb exists as two species: a monohydrate complex with one H{sub 2}O molecule directly bound to the Tb{sup III} ion and a complex with no water molecules in the inner coordination sphere. Both cyLI-Tb and dpenLI-Tb display increased CPL activity compared to previously reported Tb{sup III} complexes made with chiral IAM ligands. The CPL measurements also provide additional confirmation of the presence of a single emissive species in solution in the case of cyLI-Tb, and multiple emissive species in the case of dpenLI-Tb.

  17. Uncovering the Circular Polarization Potential of Chiral Photonic Cellulose Films for Photonic Applications.

    Science.gov (United States)

    Zheng, Hongzhi; Li, Wanru; Li, Wen; Wang, Xiaojun; Tang, Zhiyong; Zhang, Sean Xiao-An; Xu, Yan

    2018-02-12

    Circularly polarized light (CPL) is central to photonic technologies. A key challenge lies in developing a general route for generation of CPL with tailored chiroptical activity using low-cost raw materials suitable for scale-up. This study presents that cellulose films with photonic bandgaps (PBG) and left-handed helical sense have an intrinsic ability for circular polarization leading to PBG-based CPL with extraordinary |g | values, well-defiend handedness, and tailorable wavelength by the PBG change. Using such cellulose films, incident light ranging from near-UV to near-IR can be transformed to passive L-CPL and R-CPL with viewing-side-dependent handedness and |g | values up to 0.87, and spontaneous emission transformed to R-CPL emission with |g | values up to 0.68. Unprecedented evidence is presented with theoretical underpinning that the PBG effect can stimulate the R-CPL emission. The potential of cellulose-based CPL films for polarization-based encryption is illustrated. The evaporation-induced self-assembly coupled with nanoscale mesogens of cellulose nanocrystals opens new venues for technological advances and enables a versatile strategy for rational design and scalable manufacturing of organic and inorganic CPL films for photonic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Multiport Circular Polarized RFID-Tag Antenna for UHF Sensor Applications.

    Science.gov (United States)

    Zaid, Jamal; Abdulhadi, Abdulhadi; Kesavan, Arun; Belaizi, Yassin; Denidni, Tayeb A

    2017-07-05

    A circular polarized patch antenna for UHF RFID tag-based sensor applications is presented, with the circular polarization (CP) generated by a new antenna shape, an asymmetric stars shaped slotted microstrip patch antenna (CP-ASSSMP). Four stars etched on the patch allow the antenna's size to be reduced by close to 20%. The proposed antenna is matched with two RFID chips via inductive-loop matching. The first chip is connected to a resistive sensor and acts as a sensor node, and the second is used as a reference node. The proposed antenna is used for two targets, serving as both reference and sensor simultaneously, thereby eliminating the need for a second antenna. Its reader can read the RFID chips at any orientation of the tag due to the CP. The measured reading range is about 25 m with mismatch polarization. The operating frequency band is 902-929 MHz for the two ports, which is covered by the US RFID band, and the axial-ratio bandwidth is about 7 MHz. In addition, the reader can also detect temperature, based on the minimum difference in the power required by the reference and sensor.

  19. Ionization of one- and three-dimensionally-oriented asymmetric-top molecules by intense circularly polarized femtosecond laser pulses

    DEFF Research Database (Denmark)

    Hansen, Jonas Lerche; Holmegaard, Lotte; Kalhøj, Line

    2011-01-01

    are quantum-state selected using a deflector and three-dimensionally (3D) aligned and oriented adiabatically using an elliptically polarized laser pulse in combination with a static electric field. A characteristic splitting in the molecular frame photoelectron momentum distribution reveals the position......We present a combined experimental and theoretical study on strong-field ionization of a three-dimensionally-oriented asymmetric top molecule, benzonitrile (C7H5N), by circularly polarized, nonresonant femtosecond laser pulses. Prior to the interaction with the strong field, the molecules...... of the nodal planes of the molecular orbitals from which ionization occurs. The experimental results are supported by a theoretical tunneling model that includes and quantifies the splitting in the momentum distribution. The focus of the present article is to understand strong-field ionization from 3D...

  20. Miniature magnetic bottle confined by circularly polarized laser light and measurements of the inverse Faraday effect in plasmas

    International Nuclear Information System (INIS)

    Eliezer, S.; Paiss, Y.; Horovitz, Y.; Henis, Z.

    1997-01-01

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss, depending on the laser intensity. In this configuration the circularly polarized light is used to obtain confinement of a plasma contained in a good conductor vessel. The confinement in this scheme is supported by the magnetic forces. The Lawson criterion for a DT plasma might be achieved for number density n = 5*10 21 cm -3 and confinement time τ= 20 ns. The laser and plasma parameters required to obtain an energetic gain are calculated. Experiments and preliminary calculations were performed to study the feasibility of the above scheme. Measurements of the axial magnetic field induced by circularly polarized laser light, the so called inverse Faraday effect, and of the absorption of circularly polarized laser light in plasma, are reported. The experiments were performed with a circularly polarized Nd:YAG laser, having a wavelength of 1.06 τm and a pulse duration of 7 ns, in a range of irradiances from 10 9 to 10 14 W/cm 2 . Axial magnetic fields from 500 Gauss to 2 megagauss were measured. Up to 5*10 13 W/cm 3 the results are in agreement with a nonlinear model of the inverse Faraday effect dominated by the ponderomotive force. For the laser irradiance studied here, 9*10 13 - 2.5*10 14 W/cm 2 , the absorption of circularly polarized light was 14% higher relative to the absorption of linear polarized light

  1. Circularly polarized few-optical-cycle solitons in the short-wave-approximation regime

    Energy Technology Data Exchange (ETDEWEB)

    Leblond, Herve [Laboratoire de Photonique d' Angers, EA 4464, Universite d' Angers, 2 Boulevard Lavoisier, F-49045 Angers Cedex 01 (France); Triki, Houria [Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, Post Office Box 12, 23000 Annaba (Algeria); Mihalache, Dumitru [Laboratoire de Photonique d' Angers, EA 4464, Universite d' Angers, 2 Boulevard Lavoisier, F-49045 Angers Cedex 01 (France); Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), 407 Atomistilor, RO-077125 Magurele-Bucharest (Romania); Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest (Romania)

    2011-08-15

    We consider the propagation of few-cycle pulses (FCPs) beyond the slowly varying envelope approximation in media in which the dynamics of constituent atoms is described by a two-level Hamiltonian by taking into account the wave polarization. We consider the short-wave approximation, assuming that the resonance frequency of the two-level atoms is well below the inverse of the characteristic duration of the optical pulse. By using the reductive perturbation method (multiscale analysis), we derive from the Maxwell-Bloch-Heisenberg equations the governing evolution equations for the two polarization components of the electric field in the first order of the perturbation approach. We show that propagation of circularly polarized (CP) few-optical-cycle solitons is described by a system of coupled nonlinear equations, which reduces in the scalar case to the standard sine Gordon equation describing the dynamics of linearly polarized FCPs in the short-wave-approximation regime. By direct numerical simulations, we calculate the lifetime of CP FCPs, and we study the transition to two orthogonally polarized single-humped pulses as a generic route of their instability.

  2. Raman backscattering of circularly polarized electromagnetic waves propagating along a magnetic field

    International Nuclear Information System (INIS)

    Maraghechi, B.; Willett, J.e.

    1979-01-01

    The stimulated Raman backscattering of an intense electromagnetic wave propagating in the extraordinary mode along a uniform, static magnetic field is considered. The dispersion relation for a homogeneous magnetized plasma in the presence of the circularly polarized pump waves is developed in the cold-plasma approximation with the pump frequency above the plasma frequency. Formulas are derived for the threshold νsub(OT) of the parametric instability and for the growth rate γ of the backscattered extraordinary wave and Langmuir wave. The effects of the magnetic field parallel to the direction of propagation on νsub(0T) and γ are studied numerically. (author)

  3. Unpinning of rotating spiral waves in cardiac tissues by circularly polarized electric fields

    Science.gov (United States)

    Feng, Xia; Gao, Xiang; Pan, De-Bei; Li, Bing-Wei; Zhang, Hong

    2014-04-01

    Spiral waves anchored to obstacles in cardiac tissues may cause lethal arrhythmia. To unpin these anchored spirals, comparing to high-voltage side-effect traditional therapies, wave emission from heterogeneities (WEH) induced by the uniform electric field (UEF) has provided a low-voltage alternative. Here we provide a new approach using WEH induced by the circularly polarized electric field (CPEF), which has higher success rate and larger application scope than UEF, even with a lower voltage. And we also study the distribution of the membrane potential near an obstacle induced by CPEF to analyze its mechanism of unpinning. We hope this promising approach may provide a better alternative to terminate arrhythmia.

  4. Investigation of beam self-polarization in the future e+e− circular collider

    CERN Document Server

    AUTHOR|(CDS)2075800

    2016-10-24

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the eþe− Future Circular Collider (FCC-eþe−) for Z and WW physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of selfpolarized leptons is considered. Preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-eþe− ring are presented.

  5. Photoionization in the presence of circularly polarized fundamental and odd-order harmonic fields

    Science.gov (United States)

    Ivanov, I. A.; Nam, Chang Hee; Kim, Kyung Taec

    2017-05-01

    We present a study of the photoelectron spectra for the ionization process driven by counterrotating and corotating circularly polarized fundamental and odd-order harmonic fields. The main features of the spectra, such as symmetric lobed structures, are understood using simple arguments based on the strong field approximation (SFA) picture of ionization. A deviation from this picture is, most notably, the presence of the low-energy structures (LES) in the spectra. We show that the Rydberg states populated as a result of the combined absorption of the photons from the fundamental and harmonic fields are responsible for the origin of LES.

  6. Dynamical polarizability of graphene irradiated by circularly polarized ac electric fields

    DEFF Research Database (Denmark)

    Busl, Maria; Platero, Gloria; Jauho, Antti-Pekka

    2012-01-01

    We examine the low-energy physics of graphene in the presence of a circularly polarized electric field in the terahertz regime. Specifically, we derive a general expression for the dynamical polarizability of graphene irradiated by an ac electric field. Several approximations are developed...... that allow one to develop a semianalytical theory for the weak-field regime. The ac field changes qualitatively the single- and many-electron excitations of graphene: Undoped samples may exhibit collective excitations (in contrast to the equilibrium situation), and the properties of the excitations in doped...

  7. Analytical Solutions of Temporal Evolution of Populations in Optically-Pumped Atoms with Circularly Polarized Light

    Directory of Open Access Journals (Sweden)

    Heung-Ryoul Noh

    2016-03-01

    Full Text Available We present an analytical calculation of temporal evolution of populations for optically pumped atoms under the influence of weak, circularly polarized light. The differential equations for the populations of magnetic sublevels in the excited state, derived from rate equations, are expressed in the form of inhomogeneous second-order differential equations with constant coefficients. We present a general method of analytically solving these differential equations, and obtain explicit analytical forms of the populations of the ground state at the lowest order in the saturation parameter. The obtained populations can be used to calculate lineshapes in various laser spectroscopies, considering transit time relaxation.

  8. Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows

    DEFF Research Database (Denmark)

    Bekshaev, A. Ya; Angelsky, O. V.; Hanson, Steen Grüner

    2012-01-01

    Based on the Mie theory and on the incident beam model via superposition of two plane waves, we analyze numerically the momentum flux of the field scattered by a spherical, nonmagnetic microparticle placed within the spatially inhomogeneous circularly polarized paraxial light beam. The asymmetry...... between the forward- and backward-scattered momentum fluxes in the Rayleigh scattering regime appears due to the spin part of the internal energy flow in the incident beam. The transverse ponderomotive forces exerted on dielectric and conducting particles of different sizes are calculated and special...

  9. Frequency-driven quantum oscillations in a graphene layer under circularly polarized ac fields

    Energy Technology Data Exchange (ETDEWEB)

    Vega Monroy, R., E-mail: ricardovega@mail.uniatlantico.edu.co; Martinez Castro, O.; Salazar Cohen, G.

    2015-06-19

    In this paper we predict a new type of quantum oscillations driven by the frequency of a circularly polarized ac field in a monolayer of graphene placed inside an optical cavity. We show that the displacement of the structure of photon-dressed electron states near the Fermi level and the electron transitions, from extended states to bound photon-dressed electron states inside an energy gap, lead to a periodic change of singularities in the electron density of states, resulting in quantum oscillations in thermodynamic, transport and other properties in graphene.

  10. Graphene superlattices in strong circularly polarized fields: Chirality, Berry phase, and attosecond dynamics

    Science.gov (United States)

    Koochaki Kelardeh, Hamed; Apalkov, Vadym; Stockman, Mark I.

    2017-08-01

    We propose and theoretically explore states of graphene superlattices with relaxed P and T symmetries created by strong circularly polarized ultrashort pulses. The conduction-band electron distribution in the reciprocal space forms an interferogram with discontinuities related to topological (Berry) fluxes at the Dirac points. This can be studied using time- and angle-resolved photoemission spectroscopy (TR-ARPES). Our findings hold promise for control and observation of ultrafast electron dynamics in topological solids and may be applied to petahertz-scale information processing.

  11. Circularly polarized lasing in chiral modulated semiconductor microcavity with GaAs quantum wells

    OpenAIRE

    Demenev, A. A.; Kulakovskii, V. D.; Schneider, C.; Brodbeck, S.; Kamp, M.; Höfling, S.; Lobanov, S. V.; Weiss, T.; Gippius, N. A.; Tikhodeev, S. G.

    2016-01-01

    This work has been funded by Russian Scientific Foundation (Grant No. 14-12-01372) and State of Bavaria. We report close to circularly polarized lasing at ћω = 1.473 and 1.522 eV from an AlAs/AlGaAs Bragg microcavity, with 12 GaAs quantum wells in the active region and chirally etched upper distributed Bragg refractor under optical pump at room temperature. The advantage of using the chiral photonic crystal with a large contrast of dielectric permittivities is its giant optical activity, a...

  12. Dynamical behaviour of FEL devices operating with two undulators having opposite circular polarizations

    International Nuclear Information System (INIS)

    Dattoli, G.; Ottaviani, P. L.; Bucci, L.

    2000-01-01

    Optical-Klystron FELs operating with undulators having opposite circular polarizations are characterized by a spontaneous emission spectrum which does not exhibit the characteristic interference pattern. The use of the Madey theorem may allow the conclusion that, for such configuration, the dispersive section does not provide any gain enhancement. In this paper it has been analyzed the problem from a dynamical point of view and clarify how the optical field evolve, what is the role of the bunching and how the consequences of the Madey theorem should be correctly understood [it

  13. Vitamin E Circular Dichroism Studies: Insights into Conformational Changes Induced by the Solvent’s Polarity

    Directory of Open Access Journals (Sweden)

    Drew Marquardt

    2016-12-01

    Full Text Available We used circular dichroism (CD to study differences in CD spectra between α-, δ-, and methylated-α-tocopherol in solvents with different polarities. CD spectra of the different tocopherol structures differ from each other in intensity and peak locations, which can be attributed to chromanol substitution and the ability to form hydrogen bonds. In addition, each structure was examined in different polarity solvents using the Reichardt index—a measure of the solvent’s ionizing ability, and a direct measurement of solvent–solute interactions. Differences across solvents indicate that hydrogen bonding is a key contributor to CD spectra at 200 nm. These results are a first step in examining the hydrogen bonding abilities of vitamin E in a lipid bilayer.

  14. Ionization of oriented carbonyl sulfide molecules by intense circularly polarized laser pulses

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We present combined experimental and theoretical results on strong-field ionization of oriented carbonyl sulfide molecules by circularly polarized laser pulses. The obtained molecular frame photoelectron angular distributions show pronounced asymmetries perpendicular to the direction...... of the molecular electric dipole moment. These findings are explained by a tunneling model invoking the laser-induced Stark shifts associated with the dipoles and polarizabilities of the molecule and its unrelaxed cation. The focus of the present article is to understand the strong-field ionization of one......-dimensionally-oriented polar molecules, in particular asymmetries in the emission direction of the photoelectrons. In the following article [Phys. Rev. A 83, 023406 (2011)] the focus is to understand strong-field ionization from three-dimensionally-oriented asymmetric top molecules, in particular the suppression of electron...

  15. Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light

    International Nuclear Information System (INIS)

    Varlamova, Olga; Costache, Florenta; Reif, Juergen; Bestehorn, Michael

    2006-01-01

    Surface ripples generation upon femtosecond laser ablation is attributed to self-organized structure formation from instability. We report that linear arrangements are observed not only for linearly polarized light but also for ablation with circularly polarized light. Long ordered chains of spherical nanoparticles, reminding of bead-strings are almost parallel but exhibit typical non-linear dynamics features such as bifurcations. In a first attempt to understand the self-assembly, we rely on models recently developed for the description of similar structures upon ion beam erosion and for the simulation of instabilities in thin liquid films. Our picture describes an unstable surface layer, non-uniformly eroded through Coulomb repulsion between individual positive charges

  16. Polarization-dependent atomic dipole traps behind a circular aperture for neutral-atom quantum computing

    International Nuclear Information System (INIS)

    Gillen-Christandl, Katharina; Copsey, Bert D.

    2011-01-01

    The neutral-atom quantum computing community has successfully implemented almost all necessary steps for constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the remaining problem of creating a quantum memory with individually addressable sites for quantum computing. The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture. Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers. In particular, for moderate laser intensities (∼100 W/cm 2 ) and comparatively small detunings (∼1000-10 000 linewidths), trap depths of ∼1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field distribution. We describe details of our calculations and include a summary of different notations and conventions for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found a method for bringing two traps together and apart controllably without expelling the atoms from the trap and without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can be brought together and apart for two-qubit gates for quantum computing.

  17. Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure.

    Science.gov (United States)

    McDonald, Luke T; Finlayson, Ewan D; Wilts, Bodo D; Vukusic, Pete

    2017-08-06

    Helicoidal architectures comprising various polysaccharides, such as chitin and cellulose, have been reported in biological systems. In some cases, these architectures exhibit stunning optical properties analogous to ordered cholesteric liquid crystal phases. In this work, we characterize the circularly polarized reflectance and optical scattering from the cuticle of the beetle Chalcothea smaragdina (Coleoptera: Scarabaeidae: Cetoniinae) using optical experiments, simulations and structural analysis. The selective reflection of left-handed circularly polarized light is attributed to a Bouligand-type helicoidal morphology within the beetle's exocuticle. Using electron microscopy to inform electromagnetic simulations of this anisotropic stratified medium, the inextricable connection between the colour appearance of C. smaragdina and the periodicity of its helicoidal rotation is shown. A close agreement between the model and the measured reflectance spectra is obtained. In addition, the elytral surface of C. smaragdina possesses a blazed diffraction grating-like surface structure, which affects the diffuse appearance of the beetle's reflected colour, and therefore potentially enhances crypsis among the dense foliage of its rainforest habitat.

  18. Circularly Polarized S Band Dual Frequency Square Patch Antenna Using Glass Microfiber Reinforced PTFE Composite

    Directory of Open Access Journals (Sweden)

    M. Samsuzzaman

    2014-01-01

    Full Text Available Circularly polarized (CP dual frequency cross-shaped slotted patch antenna on 1.575 mm thick glass microfiber reinforced polytetrafluoroethylene (PTFE composite material substrate is designed and fabricated for satellite applications. Asymmetric cross-shaped slots are embedded in the middle of the square patch for CP radiation and four hexagonal slots are etched on the four sides of the square patch for desired dual frequency. Different substrate materials have been analysed to achieve the desired operating band. The experimental results show that the impedance bandwidth is approximately 30 MHz (2.16 GHz to 2.19 GHz for lower band and 40 MHz (3.29 GHz to 3.33 GHz for higher band with an average peak gain of 6.59 dBiC and 5.52 dBiC, respectively. Several optimizations are performed to obtain the values of the antenna physical parameters. Moreover, the proposed antenna possesses compactness, light weight, simplicity, low cost, and circularly polarized. It is an attractive candidate for dual band satellite antennas where lower band can be used for uplink and upper band can be used for downlink.

  19. Circularly Polarized Luminescence from a Pyrene-Cyclodextrin Supra-Dendron.

    Science.gov (United States)

    Zhang, Yuening; Yang, Dong; Han, Jianlei; Zhou, Jin; Jin, Qingxian; Liu, Minghua; Duan, Pengfei

    2018-04-19

    Soft nanomaterials with circularly polarized luminescence (CPL) have been currently attracting great interests. Here, we report a pyrene-containing π-peptide dendrons hydrogel, which showed 1D and 2D nanostructures with varied CPL activities. It was found that the individual dendron formed hydrogels in a wide pH range (3-12) and self-assembled into helices with pH-tuned pitches. Through chirality transfer, the pyrene unit could show CPL originated from both the monomer and excimer bands. When cyclodextrin was introduced, different supra-dendrons were obtained with β-cyclodextrin (PGAc@β-CD) and γ-cyclodextrin (PGAc@γ-CD) through host-guest interactions, respectively. Interestingly, the PGAc@β-CD and PGAc@γ-CD supra-dendrons self-assembled into 2D nanosheet and entangled nanofibers, respectively, showing cyclodextrin induced circularly polarized emission from both the monomer and excimer bands of pyrene moiety. Thus, through a simple host-guest interaction, both the nanostructures and the chiroptical activities could be modulated.

  20. Vitrified chiral-nematic liquid crystalline films for selective reflection and circular polarization

    Energy Technology Data Exchange (ETDEWEB)

    Katsis, D.; Chen, P.H.M.; Mastrangelo, J.C.; Chen, S.H. [Univ. of Rochester, NY (United States); Blanton, T.N. [Eastman Kodak Co., Rochester, NY (United States)

    1999-06-01

    Nematic and left-handed chiral-nematic liquid crystals comprising methoxybiphenylbenzoate and (S)-(-)-1-phenylethylamine pendants to a cyclohexane core were synthesized and characterized. Although pristine samples were found to be polycrystalline, thermal quenching following heating to and annealing at elevated temperatures permitted the molecular orders characteristic of liquid crystalline mesomorphism to be frozen in the glassy state. Left at room temperature for 6 months, the vitrified liquid crystalline films showed no evidence of recrystallization. An orientational order parameter of 0.65 was determined with linear dichroism of a vitrified nematic film doped with Exalite 428 at a mole fraction of 0.0025. Birefringence dispersion of a blank vitrified nematic film was determined using a phase-difference method complemented by Abbe refractometry. A series of vitrified chiral-nematic films were prepared to demonstrate selective reflection and circular polarization with a spectral region tunable from blue to the infrared region by varying the chemical composition. The experimentally measured circular polarization spectra were found to agree with the Good-Karali theory in which all four system parameters were determined a priori: optical birefringence, average refractive index, selective reflection wavelength, and film thickness.

  1. Hole dynamics and spin currents after ionization in strong circularly polarized laser fields

    International Nuclear Information System (INIS)

    Barth, Ingo; Smirnova, Olga

    2014-01-01

    We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields. (paper)

  2. Improvement of RF Wireless Power Transmission Using a Circularly Polarized Retrodirective Antenna Array with EBG Structures

    Directory of Open Access Journals (Sweden)

    Son Trinh-Van

    2018-02-01

    Full Text Available This paper presents the performance improvement of a circularly polarized (CP retrodirective array (RDA through the suppression of mutual coupling effects. The RDA is designed based on CP Koch-shaped patch antenna elements with an inter-element spacing as small as 0.4 λ for a compact size ( λ is the wavelength in free space at the designed frequency of 5.2 GHz. Electromagnetic band gap (EBG structures are applied to reduce the mutual coupling between the antenna elements, thus improving the circular polarization characteristic of the RDA. Two CP RDAs with EBGs, in the case 5 × 5 and 10 × 10 arrays, are used as wireless power transmitters to transmit a total power of 50 W. A receiver is located at a distance of 1 m away from the transmitter to harvest the transmitted power. At the broadside direction, the simulated results demonstrate that the received powers are improved by approximately 11.32% and 12.45% when using the 5 × 5 and 10 × 10 CP RDAs with the EBGs, respectively, as the transmitters.

  3. 77 GHz MEMS antennas on high-resistivity silicon for linear and circular polarization

    KAUST Repository

    Sallam, M. O.

    2011-07-01

    Two new MEMS antennas operating at 77 GHz are presented in this paper. The first antenna is linearly polarized. It possesses a vertical silicon wall that carries a dipole on top of it. The wall is located on top of silicon substrate covered with a ground plane. The other side of the substrate carries a microstrip feeding network in the form of U-turn that causes 180 phase shift. This phase-shifter feeds the arms of the dipole antenna via two vertical Through-Silicon Vias (TSVs) that go through the entire wafer. The second antenna is circularly polarized and formed using two linearly polarized antennas spatially rotated with respect to each other by 90 and excited with 90 phase shift. Both antennas are fabricated using novel process flow on a single high-resistivity silicon wafer via bulk micromachining. Only three processing steps are required to fabricate these antennas. The proposed antennas have appealing characteristics, such as high polarization purity, high gain, and high radiation efficiency. © 2011 IEEE.

  4. Generation of circularly polarized XUV and soft-x-ray high-order harmonics by homonuclear and heteronuclear diatomic molecules subject to bichromatic counter-rotating circularly polarized intense laser fields

    Science.gov (United States)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2017-12-01

    Recently, studies of bright circularly polarized high-harmonic beams from atoms in the soft-x-ray region as a source for x-ray magnetic circular dichroism measurement in a tabletop-scale setup have received considerable attention. In this paper, we address the problem with molecular targets and perform a detailed quantum study of H2 +, CO, and N2 molecules in bichromatic counter-rotating circularly polarized laser fields where we adopt wavelengths (1300 and 790 nm) and intensities (2 ×1014W /cm2 ) reported in a recent experiment [Proc. Natl. Acad. Sci. USA 112, 14206 (2015), 10.1073/pnas.1519666112]. Our treatment of multiphoton processes in homonuclear and heteronuclear diatomic molecules is nonperturbative and based on the time-dependent density-functional theory for multielectron systems. The calculated radiation spectrum contains doublets of left and right circularly polarized harmonics with high-energy photons in the XUV and soft-x-ray ranges. Our results reveal intriguing and substantially different nonlinear optical responses for homonuclear and heteronuclear diatomic molecules subject to circularly polarized intense laser fields. We study in detail the below- and above-threshold harmonic regions and analyze the ellipticity and phase of the generated harmonic peaks.

  5. Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses

    Directory of Open Access Journals (Sweden)

    O. Klimo

    2008-03-01

    Full Text Available Acceleration of ions from ultrathin foils irradiated by intense circularly polarized laser pulses is investigated using one- and two-dimensional particle simulations. A circularly polarized laser wave heats the electrons much less efficiently than the wave of linear polarization and the ion acceleration process takes place on the front side of the foil. The ballistic evolution of the foil becomes important after all ions contained in the foil have been accelerated. In the ongoing acceleration process, the whole foil is accelerated as a dense compact bunch of quasineutral plasma implying that the energy spectrum of ions is quasimonoenergetic. Because of the ballistic evolution, the velocity spread of an accelerated ion beam is conserved while the average velocity of ions may be further increased. This offers the possibility to control the parameters of the accelerated ion beam. The ion acceleration process is described by the momentum transfer from the laser beam to the foil and it might be fairly efficient in terms of the energy transferred to the heavy ions even if the foil contains a comparable number of light ions or some surface contaminants. Two-dimensional simulations confirm the formation of the quasimonoenergetic spectrum of ions and relatively good collimation of the ion bunch, however the spatial distribution of the laser intensity poses constraints on the maximum velocity of the ion beam. The present ion acceleration mechanism might be suitable for obtaining a dense high energy beam of quasimonoenergetic heavy ions which can be subsequently applied in nuclear physics experiments. Our simulations are complemented by a simple theoretical model which provides the insights on how to control the energy, number, and energy spread of accelerated ions.

  6. Propagation of intense and short circularly polarized pulses in a molecular gas: From multiphoton ionization to nonlinear macroscopic effects

    Science.gov (United States)

    Lytova, M.; Lorin, E.; Bandrauk, A. D.

    2016-07-01

    We present a detailed analysis of the propagation dynamics of short and intense circularly polarized pulses in an aligned diatomic gas. Compared to linearly polarized intense pulses, high harmonic generation (HHG) and the coherent generation of attosecond pulses in the intense-circular-polarization case are a new research area. More specifically, we numerically study the propagation of intense and short circularly polarized pulses in the one-electron H2+ molecular gas, using a micro-macro Maxwell-Schrödinger model. In this model, the macroscopic polarization is computed from the solution of a large number of time-dependent Schrödinger equations, the source of dipole moments, and using a trace operator. We focus on the intensity and the phase of harmonics generated in the H2+ gas as a function of the pulse-propagation distance. We show that short coherent circularly polarized pulses of same helicity can be generated in the molecular gas as a result of cooperative phase-matching effects.

  7. Light in condensed matter in the upper atmosphere as the origin of homochirality: circularly polarized light from Rydberg matter.

    Science.gov (United States)

    Holmlid, Leif

    2009-01-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  8. Photo double ionization of helium 100 eV and 450 eV above threshold: II. Circularly polarized light

    International Nuclear Information System (INIS)

    Knapp, A; Kheifets, A; Bray, I; Weber, Th; Landers, A L; Schoessler, S; Jahnke, T; Nickles, J; Kammer, S; Jagutzki, O; Schmidt, L Ph H; Schoeffler, M; Osipov, T; Prior, M H; Schmidt-Boecking, H; Cocke, C L; Doerner, R

    2005-01-01

    We present a joint experimental and theoretical study of the fully differential cross section of the photo double ionization of helium with left and right circularly polarized light at E exc = 100 eV and 450 eV above the threshold. We analyse angular distributions for the slow electron and the normalized circular dichroism for various energy sharings of the excess energy between the two electrons. The experimental results are well reproduced by convergent close coupling calculations

  9. High-frequency microstrip cross resonators for circular polarization electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Henderson, J J; Ramsey, C M; Quddusi, H M; del Barco, E

    2008-07-01

    In this article we discuss the design and implementation of a novel microstrip resonator which allows absolute control of the microwaves polarization degree for frequencies up to 30 GHz. The sensor is composed of two half-wavelength microstrip line resonators, designed to match the 50 Omega impedance of the lines on a high dielectric constant GaAs substrate. The line resonators cross each other perpendicularly through their centers, forming a cross. Microstrip feed lines are coupled through small gaps to three arms of the cross to connect the resonator to the excitation ports. The control of the relative magnitude and phase between the two microwave stimuli at the input ports of each line allows for tuning the degree and type of polarization of the microwave excitation at the center of the cross resonator. The third (output) port is used to measure the transmitted signal, which is crucial to work at low temperatures, where reflections along lengthy coaxial lines mask the signal reflected by the resonator. Electron paramagnetic resonance spectra recorded at low temperature in an S=5/2 molecular magnet system show that 82% fidelity circular polarization of the microwaves is achieved over the central area of the resonator.

  10. All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Lin, Hermann; Kao, Meng-Chun; Lai, Chih-Ming; Huang, Jyun-Cin; Kuo, Wen-Chuan

    2014-02-01

    A swept source (SS)-based circular-state (CS) polarization-sensitive optical coherence tomography (PS-OCT) constructed entirely with polarization-maintaining fiber optics components is proposed with the experimental verification. By means of the proposed calibration scheme, bulk quarter-wave plates can be replaced by fiber optics polarization controllers to, therefore, realize an all-fiber optics CS SSPS-OCT. We also present a numerical dispersion compensation method, which can not only enhance the axial resolution, but also improve the signal-to-noise ratio of the images. We demonstrate that this compact and portable CS SSPS-OCT system with an accuracy comparable to bulk optics systems requires less stringent lens alignment and can possibly serve as a technology to realize PS-OCT instrument for clinical applications (e.g., endoscopy). The largest deviations in the phase retardation (PR) and fast-axis (FA) angle due to sample probe in the linear scanning and a rotation angle smaller than 65 deg were of the same order as those in stationary probe setups. The influence of fiber bending on the measured PR and FA is also investigated. The largest deviations of the PR were 3.5 deg and the measured FA change by ~12 to 21 deg. Finally, in vivo imaging of the human fingertip and nail was successfully demonstrated with a linear scanning probe.

  11. Computational efficiency improvement with Wigner rotation technique in studying atoms in intense few-cycle circularly polarized pulses

    International Nuclear Information System (INIS)

    Yuan, Minghu; Feng, Liqiang; Lü, Rui; Chu, Tianshu

    2014-01-01

    We show that by introducing Wigner rotation technique into the solution of time-dependent Schrödinger equation in length gauge, computational efficiency can be greatly improved in describing atoms in intense few-cycle circularly polarized laser pulses. The methodology with Wigner rotation technique underlying our openMP parallel computational code for circularly polarized laser pulses is described. Results of test calculations to investigate the scaling property of the computational code with the number of the electronic angular basis function l as well as the strong field phenomena are presented and discussed for the hydrogen atom

  12. Light-directing omnidirectional circularly polarized reflection from liquid-crystal droplets.

    Science.gov (United States)

    Fan, Jing; Li, Yannian; Bisoyi, Hari Krishna; Zola, Rafael S; Yang, Deng-Ke; Bunning, Timothy J; Weitz, David A; Li, Quan

    2015-02-09

    Constructing and tuning self-organized three-dimensional (3D) superstructures with tailored functionality is crucial in the nanofabrication of smart molecular devices. Herein we fabricate a self-organized, phototunable 3D photonic superstructure from monodisperse droplets of one-dimensional cholesteric liquid crystal (CLC) containing a photosensitive chiral molecular switch with high helical twisting power. The droplets are obtained by a glass capillary microfluidic technique by dispersing into PVA solution that facilitates planar anchoring of the liquid-crystal molecules at the droplet surface, as confirmed by the observation of normal incidence selective circular polarized reflection in all directions from the core of individual droplet. Photoirradiation of the droplets furnishes dynamic reflection colors without thermal relaxation, whose wavelength can be tuned reversibly by variation of the irradiation time. The results provided clear evidence on the phototunable reflection in all directions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances.

    Directory of Open Access Journals (Sweden)

    Mursyidul Idzam Sabran

    Full Text Available This paper presents a compact circularly polarized (CP antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz- 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11 impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations.

  14. CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

    Directory of Open Access Journals (Sweden)

    Sun-Woong Kim

    2017-01-01

    Full Text Available We propose a wide bandwidth antenna with a circular polarization for universal Ultra High Frequency (UHF radio-frequency identification (RFID reader applications. To achieve a wide 3 dB axial ratio (AR bandwidth, three T-shaped microstrip lines are inserted into the ground plane. The measured impedance bandwidth of the proposed antenna is 480 MHz and extends from 660 to 1080 MHz, and the 3 dB AR bandwidth is 350 MHz and extends from 800 to 1155 MHz. The radiation pattern is a bidirectional pattern with a maximum antenna gain of 3.67 dBi. The overall size of the proposed antenna is 114 × 114 × 0.8 mm3.

  15. Photodetachment of F- by a few-cycle circularly polarized laser field

    Science.gov (United States)

    Bivona, Saverio; Burlon, Riccardo; Leone, Claudio

    2006-12-01

    We report on calculations of the above threshold detachment of F- by a few-cycle circularly polarized laser field, discussing the effects of both the carrier-envelope relative phase and the number of the cycle contained in a pulse on the angular distribution of ejected photoelectron. The results are analyzed in terms of a two-step semiclassical model: after the electrons are detached through tunnelling their motion is determined by the electric field pulse according to the classical dynamics laws. Anisotropies in the angular distributions of the electrons ejected on the plane perpendicular to the laser propagation direction are found that depend on the number of cycle of the laser pulse.

  16. Improvement on a 2 × 2 Elements High-Gain Circularly Polarized Antenna Array

    Directory of Open Access Journals (Sweden)

    C. Liu

    2015-01-01

    Full Text Available A novel antipodal Vivaldi antenna with tapering serrated structure at the edges is proposed. Compared with traditional Vivaldi antennas without serrated structure, the gain of the designed antenna is significantly improved in the desired frequency band (4.5–7.5 GHz. In addition, a 2 × 2 Vivaldi antenna array with an orthorhombic structure is designed and fabricated to achieve a circular polarization (CP characteristic. With this configuration, the 3 dB axial ratio bandwidth of the array reaches about 42% with respect to the center frequency of 6 GHz and a high gain is achieved as well. The novel Vivaldi antenna and CP antenna array both have ultrawide band (UWB and high-gain characteristics, which may be applied to the field of commercial communication, remote sensing, and so forth.

  17. Dynamics of ultra-intense circularly polarized solitons under inhomogeneous plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dong [Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Key Laboratory of High Energy Density Physics Simulation, Ministry of Education, Peking University, Beijing 100871 (China); Zheng, C. Y.; He, X. T. [Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Key Laboratory of High Energy Density Physics Simulation, Ministry of Education, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2013-06-15

    The dynamics of the ultra-intense circularly polarized solitons under inhomogeneous plasmas are examined. The interaction is modeled by the Maxwell and relativistic hydrodynamic equations and is solved with fully implicit energy-conserving numerical scheme. The soliton is self-consistently generated by the interaction between laser and plasma on the vacuum-plasma interface, and the generation mechanism is well confirmed by two dimensional particle-in-cell simulation. It is shown that a propagating weak soliton can be decreased and reflected by increasing plasma background, which is consistent with the existing studies based on hypothesis of weak density response. However, it is found that ultra-intense soliton is well trapped and kept still when encountering increasing background. Probably, this founding can be applied for trapping and amplifying high-intensity laser-fields.

  18. Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses.

    Science.gov (United States)

    Yao, Jinping; Xie, Hongqiang; Zeng, Bin; Chu, Wei; Li, Guihua; Ni, Jielei; Zhang, Haisu; Jing, Chenrui; Zhang, Chaojin; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2014-08-11

    We experimentally demonstrate ultrafast dynamic of generation of the 337-nm nitrogen laser by injecting an external seed pulse into a femtosecond laser filament pumped by a circularly polarized laser pulse. In the pump-probe scheme, it is revealed that the population inversion between the C(3)Π(u) and B(3)Π(g) states of N(2) for the free-space 337-nm laser is firstly built up on the timescale of several picoseconds, followed by a relatively slow decay on the timescale of tens of picoseconds, depending on the nitrogen gas pressure. By measuring the intensities of 337-nm signal from nitrogen gas mixed with different concentrations of oxygen gas, it is also found that oxygen molecules have a significant quenching effect on the nitrogen laser signal. Our experimental observations agree with the picture of electron-impact excitation.

  19. Circularly Polarized Luminescence of Curium: A New Characterization of the 5f Actinide Complexes

    Science.gov (United States)

    Law, Ga-Lai; Andolina, Christopher M.; Xu, Jide; Luu, Vinh; Rutkowski, Philip X.; Muller, Gilles; Shuh, David K.; Gibson, John K.; Raymond, Kenneth N.

    2012-01-01

    A key distinction between the lanthanide (4f) and actinide (5f) transition elements is the increased role of f-orbital covalent bonding in the latter. Circularly polarized luminescence (CPL) is an uncommon but powerful spectroscopy which probes the electronic structure of chiral, luminescent complexes or molecules. While there are many examples of CPL spectra for the lanthanides, this report is the first for an actinide. Two chiral, octadentate chelating ligands based on orthoamide phenol (IAM) were used to complex curium(III). While the radioactivity kept the amount of material limited to micromole amounts, the spectra of the highly luminescent complexes showed significant emission peak-shifts between the different complexes, consistent with ligand field effects previously observed in luminescence spectra. PMID:22920726

  20. Recollision induced excitation-ionization with counter-rotating two-color circularly polarized laser field

    Science.gov (United States)

    Ben, Shuai; Guo, Pei-Ying; Pan, Xue-Fei; Xu, Tong-Tong; Song, Kai-Li; Liu, Xue-Shen

    2017-07-01

    Nonsequential double ionization of Ar by a counter-rotating two-color circularly polarized laser field is theoretically investigated. At the combined intensity in the "knee" structure range, the double ionization occurs mainly through recollision induced excitation followed by subsequent ionization of Ar+∗ . By tracing the history of the recollision trajectories, we explain how the relative intensity ratio of the two colors controls the correlated electron dynamics and optimizes the ionization yields. The major channels contributing to enhancing the double ionization are through the elliptical trajectories with smaller travel time but not through the triangle shape or the other long cycle trajectories. Furthermore, the correlated electron dynamics could be limited to the attosecond time scale by adjusting the relative intensity ratio. Finally, the double ionization from doubly excited complex at low laser intensity is qualitatively discussed.

  1. Oxygen-Bridged Diphenylnaphthylamine as a Scaffold for Full-Color Circularly Polarized Luminescent Materials.

    Science.gov (United States)

    Nishimura, Hidetaka; Tanaka, Kazuo; Morisaki, Yasuhiro; Chujo, Yoshiki; Wakamiya, Atsushi; Murata, Yasujiro

    2017-05-19

    An oxygen-bridged diphenylnaphthylamine with a helical shape was designed and synthesized as a key scaffold for circularly polarized luminescent (CPL) materials. The introduction of electron-withdrawing groups, such as formyl and 2,2-dicyanovinyl substituents at the naphthyl moiety in this skeleton effectively decreases the LUMO level and thus allows a tuning of the band gap. The prepared model compounds exhibit intense CPL signals with a dissymmetry factor (g value) of 10 -3 both in CH 2 Cl 2 solutions and in the solid states. The emission colors of these derivatives are influenced both by the substituents as well as by solvent effects, covering the whole visible region from blue to deep red.

  2. CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS

    Directory of Open Access Journals (Sweden)

    B. T. P. MADHAV

    2016-02-01

    Full Text Available Coplanar waveguide fed circularly polarized microstrip patch antenna performance evaluation is presented in this paper. The broadband characteristics are attained by placing open end slot at the lower side of the antenna. The proposed design has the return loss of less than -10dB and VSWR<2 in the desired band of operation. A gain of 3dB to 4dB is attained in the desired band with good radiation characteristics and a suitable axial ratio of less than 3 dB is attained in the prescribed band of operation. Proposed antenna is fabricated on the FR4 substrate with dielectric constant of 4.4. Parametric analysis with change in substrate permittivity also performed and the optimized dimensions are presented in this work.

  3. Classical trajectory analysis of Mg in a circularly polarized laser field

    Science.gov (United States)

    Xu, Tong-Tong; Ben, Shuai; Zhang, Jun; Liu, Xue-Shen

    2017-05-01

    The nonsequential double ionization (NSDI) of Mg atoms is investigated in a circularly polarized laser field using the classical ensemble method. We demonstrate the time evolution of the two-electron energy distribution, the time evolution of the repulsion energy distribution between two electrons in the double ionization process and the time of evolution of the distance distribution between the nucleus and two electrons. The theoretical results indicate that a single recollision leads to the NSDI process. Moreover, we also look into the elliptical trajectories to illustrate the difference in the return process of the first ionized electron. The dependence of the electron momentum distribution on the angle between the momentum and the force of laser field at the time of the first electron is also investigated and the results show that the angle plays a key role in the electron recollision time.

  4. Coulomb-corrected Volkov-type solution for an electron in an intense circularly polarized laser field

    Science.gov (United States)

    Bauer, Jaroslaw

    2001-04-01

    A simple analytical approximation exists for the wavefunction of an unbound electron interacting both with a strong circularly polarized laser field and an atomic Coulomb potential (Reiss and Krainov 1994 Phys. Rev. A 50 R910). This wavefunction is the Volkov state with a first-order Coulomb correction coming from some perturbative expansion of the potential in the Kramers-Henneberger reference frame. The expansion is valid, if the distance from the centre of the Coulomb force is smaller than the classical radius of motion of a free electron in a plane-wave field. We improve the approximate Coulomb-Volkov wavefunction by including the next term in the perturbative expansion of the atomic potential.

  5. A Study of the use of a Crystal as a `Quarter-Wave Plate' to Produce High Energy Circularly Polarized Photons

    CERN Multimedia

    Kononets, I

    2002-01-01

    %NA59 %title\\\\ \\\\We present a proposal to study the use of a crystal as a `quarter-wave plate' to produce high energy circularly polarized photons, starting from unpolarized electrons. The intention is to generate linearly polarized photons by letting electrons pass a crystalline target, where they interact coherently with the lattice nuclei. The photon polarization is subsequently turned into circular polarization after passing another crystal, which acts as a `quarter-wave plate'.

  6. Unified understanding of tunneling ionization and stabilization of atomic hydrogen in circularly and linearly polarized intense laser fields

    International Nuclear Information System (INIS)

    Miyagi, Haruhide; Someda, Kiyohiko

    2010-01-01

    On the basis of the Floquet formalism, the ionization mechanisms of atomic hydrogen in circularly and linearly polarized intense laser fields are discussed. By using the complex scaling method in the velocity gauge, the pole positions of the scattering-matrix on the complex quasienergy Riemann surface are calculated, and pole trajectories with respect to the variation of the laser intensity are obtained. In the low-frequency regime, the pole trajectory exhibits a smooth ponderomotive energy shift in the case of circular polarization. In contrast, the smoothness is lost in the case of linear polarization. In the high-frequency regime, the pole trajectories exhibit the stabilization phenomenon for both the types of polarization. These observations are elucidated by a unified picture based on the analysis of the adiabatic potentials for the radial motion of the electron in the acceleration gauge. The ionization in the case of circular polarization of the low-frequency regime is governed by the electron tunneling through a barrier of a single adiabatic potential. The stabilization in the high-frequency regime can be explained by the change in the avoided crossings among the adiabatic potential curves. The transition between the different frequency regimes is explicable by the change in the structure of the adiabatic potentials. The difference caused by the type of polarization is ascribable to the difference in the space-time symmetry.

  7. Counterintuitive angular shifts in the photoelectron momentum distribution for atoms in strong few-cycle circularly polarized laser pulses

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2009-01-01

    We solve the three-dimensional time-dependent Schrödinger equation for a three-cycle circularly polarized laser pulse interacting with an atom. The photoelectron momentum distributions show counterintuitive shifts, similar to those observed in a recent experiment (Eckle et al 2008 Science 322 1525...

  8. Circular polarization of γ-quanta radiated in the capture of polarized neutrons by protons and the quark compound bag model

    International Nuclear Information System (INIS)

    Grach, I.L.; Shmatkov, M.Zh.

    1983-01-01

    The circular polarization Psub(γ) of γ-quanta radiated in the capture of polarized neutrons by protons is calculated The contribution of the M1 and E2 radiation of nucleons to Psub(γ) is found using the accurate wave functions of the continuous spectrum. The contribution of the six-quark bag to the polarization Psub(γ) is determined. The value of Psub(γ) is related to the admixture of the 6q-bag in the deuteron. Experimental value of Psub(γ) corresponds to small (< or approximately 0.7%) admixture of the bag

  9. A helical optical for circular polarized UV-FEL project at the UVSOR

    Energy Technology Data Exchange (ETDEWEB)

    Hama, Hiroyuki [Institute for Molecular Science, Okazaki (Japan)

    1995-12-31

    Most of existing storage ring free electron lasers (SRFEL) are restricted those performances by degradation of mirrors in optical cavities. In general, the SRFEL gain at the short wavelength region with high energy electrons is quite low, and the high reflectivity mirrors such as dielectric multilayer mirrors are therefore required. The mirror degradation is considered as a result of irradiation of higher harmonic photons that are simultaneously emitted from planar optical klystron (OK) type undulators, which are commonly used in SRFEL. This problem is getting severer as the lasing wavelength becomes shorter. The UVSOR-FEL had been originally scheduled to be shutdown by 1996 because another undulator project for spectroscopic studies with circular polarized photon would take the FEL`s place. According to suggestion of the insertion device group of the SPring-8, we have designed a helical undulator that is able to vary degree and direction of the polarization easily. In addition, the undulator can be converted into a helical OK by replacing magnets at the center part of undulator in order to coexist with further FEL experiments. Using a calculated magnetic field for magnet configurations of the OK mode, the radiation spectrum at wide wavelength range was simulated by a Fourier transform of Lienard-Wiechert potentials. As a matter of course, some higher harmonics are radiated on the off-axis angle. However it was found out that the higher harmonics is almost negligible as far as inside a solid angle of the Gaussian laser mode. Moreover the gain at the UV region of 250 nm is expected to be much higher than our present FEL because of high brilliant fundamental radiation. The calculated spatial distribution of higher harmonics and the estimated instantaneous gain is presented. Advantages of the helical OK for SRFEL will be discussed in view of our experience, and a possibility of application two-color experiment with SR will be also mentioned.

  10. Asymmetric Vibration of Polar Orthotropic Annular Circular Plates of Quadratically Varying Thickness with Same Boundary Conditions

    Directory of Open Access Journals (Sweden)

    N. Bhardwaj

    2008-01-01

    Full Text Available In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thickness profile, material orthotropy and foundation constant for all three possible combinations of clamped, simply supported and free edge conditions are shown and discussed. It is found that (a higher elastic property in circumferential direction leads to higher stiffness against lateral vibration; (b Lateral vibration characteristics of F-Fplates is more sensitive towards parametric changes in material orthotropy and foundation stiffness than C-C and S-Splates; (c Effect of quadratical thickness variation on fundamental frequency is more significant in cases of C-C and S-S plates than that of F-Fplates. Thickness profile which is convex relative to plate center-line tends to result in higher stiffness of annular plates against lateral vibration than the one which is concave and (d Fundamental mode of vibration of C-C and S-Splates is axisymmetrical while that of F-Fplates is asymmetrical.

  11. Photoinduced electric currents in ring-shaped molecules by circularly polarized laser pulses

    International Nuclear Information System (INIS)

    Nobusada, Katsuyuki; Yabana, Kazuhiro

    2007-01-01

    We have theoretically demonstrated that circularly polarized laser pulses induce electric currents and magnetic moments in ring-shaped molecules Na 10 and benzene. The time-dependent adiabatic local density approximation is employed for this purpose, solving the time-dependent Kohn-Sham equation in real space and real time. It has been found that the electric currents are induced efficiently and persist continuously even after the laser pulses were switched off provided the frequency of the applied laser pulse is in tune with the excitation energy of the electronic excited state with the dipole strength for each molecular system. The electric currents are definitely revealed to be a second-order nonlinear optical response to the magnitude of the electric field. The magnetic dipole moments inevitably accompany the ring currents, so that the molecules are magnetized. The production of the electric currents and the magnetic moments in the present procedure is found to be much more efficient than that utilizing static magnetic fields

  12. Classical radiation effects on relativistic electrons in ultraintense laser fields with circular polarization

    Science.gov (United States)

    Schlegel, Theodor; Tikhonchuk, Vladimir T.

    2012-07-01

    The propagation of a relativistic electron with initial energy ≳100 MeV in a number of simple one-dimensional laser field configurations with circular polarization is studied by solving the relativistic equation of motion in the Landau-Lifschitz approach to account for the radiation friction force. The radiation back-reaction on the electron dynamics becomes visible at dimensionless field amplitudes a ≳ 10 at these high particle energies. Analytical expressions are derived for the energy and the longitudinal momentum of the electron, the frequency shift of the light scattered by the electron and the particle trajectories. These findings are compared with the numerical solutions of the basic equations. A strong radiation damping effect results in reduced light scattering, forming at the same time a broad quasi-continuous spectrum. In addition, the electron dynamics in the strong field of a quasistationary laser piston is investigated. Analytical solutions for the electron trajectories in this complex field pattern are obtained and compared with the numerical solutions. The radiation friction force may stop a relativistic electron after propagation over several laser wavelengths at high laser field strengths, which supports the formation of a stable piston.

  13. Application of circularly polarized laser radiation for sensing of crystal clouds.

    Science.gov (United States)

    Balin, Yurii; Kaul, Bruno; Kokhanenko, Grigorii; Winker, David

    2009-04-13

    The application of circularly polarized laser radiation and measurement of the fourth Stokes parameter of scattered radiation considerably reduce the probability of obtaining ambiguous results for radiation depolarization in laser sensing of crystal clouds. The uncertainty arises when cloud particles appear partially oriented by their large diameters along a certain azimuth direction. Approximately in 30% of all cases, the measured depolarization depends noticeably on the orientation of the lidar reference plane with respect to the particle orientation direction. In this case, the corridor of the most probable depolarization values is about 0.1-0.15, but in individual cases, it can be noticeably wider. The present article considers theoretical aspects of this phenomenon and configuration of a lidar capable of measuring the fourth Stokes parameter together with an algorithm of lidar signal processing in the presence of optically thin cloudiness when molecular scattering cannot be neglected. It is demonstrated that the element ?44 of the normalized backscattering phase matrix (BSPM) can be measured. Results of measurements are independent of the presence or absence of azimuthal particle orientation. For sensing in the zenith or nadir, this element characterizes the degree of horizontal orientation of long particle diameters under the action of aerodynamic forces arising during free fall of particles.

  14. Circularly Polarized Luminescence in Enantiopure Europium and Terbium Complexes with Modular, All-Oxygen Donor Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Do, King; Ingram, Andrew; Moore, Evan; Muller, Gilles; Raymond, Kenneth

    2009-06-04

    The modular syntheses of three new octadentate, enantiopure ligands are reported, one with the bidentate chelating unit 2-hydroxyisophthalamide (IAM) and two with bidentate 1-hydroxy-2-pyridinone (1,2-HOPO) units. A new design principle is introduced for the chiral, non-racemic hexamines which constitute the central backbones for the presented class of ligands. The terbium(III) complex of the IAM ligand, as well as the europium(III) complexes of the 1,2-HOPO ligands, are synthesized and characterized by various techniques (NMR, UV, CD, luminescence spectroscopy). All species exhibit excellent stability and moderate to high luminescence efficiency (quantum yields {phi}{sub Eu} = 0.05-0.08 and {phi}{sub Tb} = 0.30-0.57) in aqueous solution at physiological pH. Special focus is put onto the properties of the complexes in regard to circularly polarized luminescence (CPL). The maximum luminescence dissymmetry factors (glum) in aqueous solution are high with |glum|max = 0.08-0.40. Together with the very favorable general properties (good stability, high quantum yields, long lifetimes), the presented lanthanide complexes can be considered as good candidates for analytical probes based on CPL in biologically relevant environments.

  15. SCRLH-TL Based Sequential Rotation Feed Network for Broadband Circularly Polarized Antenna Array

    Directory of Open Access Journals (Sweden)

    B. F. Zong

    2016-04-01

    Full Text Available In this paper, a broadband circularly polarized (CP microstrip antenna array using composite right/left-handed transmission line (SCRLH-TL based sequential rotation (SR feed network is presented. The characteristics of a SCRLH-TL are initially investigated. Then, a broadband and low insertion loss 45º phase shifter is designed using the SCRLH-TL and the phase shifter is employed in constructing a SR feed network for CP antenna array. To validate the design method of the SR feed network, a 2×2 antenna array comprising sequentially rotated coupled stacked CP antenna elements is designed, fabricated and measured. Both the simulated and measured results indicate that the performances of the antenna element are further enhanced when the SR network is used. The antenna array exhibits the VSWR less than 1.8 dB from 4 GHz to 7 GHz and the 3 dB axial ratio (AR from 4.4 GHz to 6.8 GHz. Also, high peak gain of 13.7 dBic is obtained. Besides, the normalized radiation patterns at the operating frequencies are symmetrical and the side lobe levels are low at φ=0º and φ=90º.

  16. Helical Oligonaphthodioxepins Showing Intense Circularly Polarized Luminescence (CPL) in Solution and in the Solid State.

    Science.gov (United States)

    Takaishi, Kazuto; Yamamoto, Takahiro; Hinoide, Sakiko; Ema, Tadashi

    2017-07-12

    A series of oligonaphthodioxepins was synthesized, revealing a helically arranged octamer, (R,R,R,R,R,R,R)-3, which showed intense circularly polarized luminescence (CPL) both in solution and in the solid state. The fluorescence quantum yields (Φ FL ) in solution and in the solid state were 0.90 and 0.22, respectively, and the g lum values in solution and in the solid state were +2.2×10 -3 and +7.0×10 -3 , respectively. This is one of the highest solid-state CPL g lum values yet reported. The high Φ FL and g lum values were due to the rigidity, as well as to the fact that (R,R,R,R,R,R,R)-3 was a non-planar molecule. Moreover, (R,R,R,R,R,R,R)-3 was highly stable both chemically and stereochemically. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dynamical behaviour of FEL devices operating with two undulators having opposite circular polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Rome (Italy); Ottaviani, P.L. [ENEA, Divisione Fisica Applicata, Centro Ricerche, Bologna (Italy); Bucci, L. [ENEA, Guest Rome (Italy)

    2000-07-01

    Optical-Klystron FELs operating with undulators having opposite circular polarizations are characterized by a spontaneous emission spectrum which does not exhibit the characteristic interference pattern. The use of the Madey theorem may allow the conclusion that, for such configuration, the dispersive section does not provide any gain enhancement. In this paper it has been analyzed the problem from a dynamical point of view and clarify how the optical field evolve, what is the role of the bunching and how the consequences of the Madey theorem should be correctly understood. [Italian] Klystron ottici operanti con ondulatori aventi polarizzazione elicoidali opposte, sono caratterizzati da uno spettro di emissione spontanea senza il termine interferenziale dovuto alla sezione dispersiva. L'uso del teorema di Madey indurrebbe alla conclusione che, per una tale configurazione, la sezione dispersiva non induce nessun aumento del guadagno. In questo lavoro analizziamo il problema da un punto di vista dinamico che chiarisce l'evoluzione del campo ottico, quale e' il ruolo del bunching e come le conseguenze del teorema di Madey debbano essere interpretate.

  18. Circularly polarized triple band glass shaped monopole patch antenna with metallic reflector for bluetooth & wireless applications

    Energy Technology Data Exchange (ETDEWEB)

    Jangid, K. G.; Kulhar, V. S. [Department of Physics, Manipal University Jaipur, Jaipur-303007 (India); Choudhary, N.; Jain, P.; Sharma, B. R.; Saini, J. S.; Bhatnagar, D., E-mail: dbhatnagar-2000@rediffmail.com [Microwave Lab, Department of Physics, University of Rajasthan, Jaipur-302004 (India)

    2016-03-09

    This paper presents the design and performance of strip line fed glass shaped monopole patch antenna having with overall size 30mm × 30 mm × 1.59 mm. In the patch; an eight shaped slot and in the ground plane an eight shaped ring are introduced. A metallic ground plane is also introduced at appropriate location beneath the ground plane. The proposed antenna is simulated by applying CST Microwave Studio simulator. Antenna provides circularly polarized radiations, triple broad impedance bandwidth of 203MHz (2.306GHz to 2.510GHz), 42MHz (2.685GHz to 2.757GHz) & GHz (3.63 GHz to 6.05 GHz), high flat gain (close to 5dBi) and good radiation properties in the desired frequency range. This antenna may be a very useful tool for 2.45GHz Bluetooth communication band as well as for 2.4GHz/5.2 GHz /5.8 GHz WLAN bands & 3.7GHz/5.5 GHz Wi-Max bands.

  19. Evidence of a circularly polarized light mode along the optic axis in c-cut NH4H2PO4, induced by circular differential reflection and anomalous birefringence

    International Nuclear Information System (INIS)

    Kaminsky, Werner; Steininger, Steven; Herreros-Cedres, Javier; Glazer, Anthony Michael

    2010-01-01

    The anomalous birefringence and circular differential reflection of NH 4 H 2 PO 4 (4-bar2m), cut on the optic axis, have been found to cause an additional signal in measurements of the optical rotation employing polarized light technology, with the sample between crossed and slightly modulated linear polarizers (tilting high accuracy universal polarimetry). The azimuthal rotation of the linearly polarized light, up to 100 times larger than expected, is described in terms of a circularly polarized light mode along the optic axis of varying amplitude. Experimental evidence leading to our conclusion is given and a qualitative model for the effect is presented.

  20. Low-Gain Circularly Polarized Antenna with Torus-Shaped Pattern

    Science.gov (United States)

    Amaro, Luis R.; Kruid, Ronald C.; Vacchione, Joseph D.; Prata, Aluizio

    2012-01-01

    The Juno mission to Jupiter requires an antenna with a torus-shaped antenna pattern with approximately 6 dBic gain and circular polarization over the Deep Space Network (DSN) 7-GHz transmit frequency and the 8-GHz receive frequency. Given the large distances that accumulate en-route to Jupiter and the limited power afforded by the solar-powered vehicle, this toroidal low-gain antenna requires as much gain as possible while maintaining a beam width that could facilitate a +/-10deg edge of coverage. The natural antenna that produces a toroidal antenna pattern is the dipole, but the limited approx. = 2.2 dB peak gain would be insufficient. Here a shaped variation of the standard bicone antenna is proposed that could achieve the required gains and bandwidths while maintaining a size that was not excessive. The final geometry that was settled on consisted of a corrugated, shaped bicone, which is fed by a WR112 waveguide-to-coaxial- waveguide transition. This toroidal low-gain antenna (TLGA) geometry produced the requisite gain, moderate sidelobes, and the torus-shaped antenna pattern while maintaining a very good match over the entire required frequency range. Its "horn" geometry is also low-loss and capable of handling higher powers with large margins against multipactor breakdown. The final requirement for the antenna was to link with the DSN with circular polarization. A four-layer meander-line array polarizer was implemented; an approach that was fairly well suited to the TLGA geometry. The principal development of this work was to adapt the standard linear bicone such that its aperture could be increased in order to increase the available gain of the antenna. As one increases the aperture of a standard bicone, the phase variation across the aperture begins to increase, so the larger the aperture becomes, the greater the phase variation. In order to maximize the gain from any aperture antenna, the phase should be kept as uniform as possible. Thus, as the standard

  1. Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves.

    Science.gov (United States)

    Li, Long; Zhou, Xiaoxiao

    2018-03-23

    In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.

  2. Circularly polarized microwaves for magnetic resonance study in the GHz range: Application to nitrogen-vacancy in diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Mrózek, M., E-mail: mariusz.mrozek@uj.edu.pl; Rudnicki, D. S.; Gawlik, W. [Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow (Poland); Mlynarczyk, J. [Department of Electronics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland)

    2015-07-06

    The ability to create time-dependent magnetic fields of controlled polarization is essential for many experiments with magnetic resonance. We describe a microstrip circuit that allows us to generate strong magnetic field at microwave frequencies with arbitrary adjusted polarization. The circuit performance is demonstrated by applying it to an optically detected magnetic resonance and Rabi nutation experiments in nitrogen-vacancy color centers in diamond. Thanks to high efficiency of the proposed microstrip circuit and degree of circular polarization of 85%; it is possible to address the specific spin states of a diamond sample using a low power microwave generator. The circuit may be applied to a wide range of magnetic resonance experiments with a well-controlled polarization of microwaves.

  3. Study of a filament with a circularly polarized beam at 3.8 cm

    International Nuclear Information System (INIS)

    Straka, R.M.; Papagiannis, M.D.; Kogut, J.A.

    1975-01-01

    Extensive observations of left and right circularly polarized emission were carried out with the 120 ft Haystack antenna, which at 3.8 cm has a HPBW of 4.4 minutes of arc. During a very quite period, September 22-26, 1974, two regions were observed in the southern hemisphere of the sun with brightness temperatures approximately 10% below the surrounding solar disk temperature. Hα photographs show that the main region was associated with a long filament. The separation between the center of the radio depression and the filament increased as the filament advanced toward the limb, with the depression finally disappearing when the filament was at a radial distance >0.8 R(Sun) from the center of the solar disk. These observations are in agreement with a filament model consisting of a thin, tall and exceedingly long sheet of enhanced density encaged in a large and equally long tunnel-like cavity of lower density. The electron density at the 3.8 cm emission level which occurs immediately below the transition zone was estimated to be lower inside the cavity than outside by a factor of 2. The origin of the other depression remains unclear because no relation to any Hα or magnetic feature could be found. A possible association with a coronal hole could not be established because no pertinent EUV or X-ray data were available. It would be of interest to investigate in future observations if a secondary depression is normally associated with the primary depression region over a long filament. (Auth.)

  4. Calcium hydroxylapatite treatment of human skin: evidence of collagen turnover through picrosirius red staining and circularly polarized microscopy

    Directory of Open Access Journals (Sweden)

    Zerbinati N

    2018-01-01

    Full Text Available Nicola Zerbinati,1 Alberto Calligaro2 1Department of Surgical and Morphological Sciences, University of Insubria (Varese and Polyspecialist Medical Center, Pavia, 2Department of Public Health, Experimental and Forensic Medicine, Unit of Histology and Embryology, University of Pavia, Pavia, Italy Background: Calcium hydroxylapatite (CaHA, Radiesse® is a biocompatible, injectable filler for facial soft-tissue augmentation that provides volume to tissues, followed by a process of neocollagenesis for improved skin quality. Objective: To examine the effects of CaHA treatment on the molecular organization of collagen using a combination of picrosirius red staining and circularly polarized light microscopy.Methods: Five subjects received subdermal injection of 0.3 mL of CaHA in tissues scheduled for removal during abdominoplasty 2 months later. Tissue specimens from the CaHA injection site and a control untreated area were obtained from excised skin at the time of surgery. Processed tissue sections were stained with picrosirius red solution 0.1% and visualized under circularly polarized light microscopy for identification of thick mature (type I and thin newly formed (type III collagen fibers. Pixel signals from both the control and CaHA-treated areas were extracted from the images, and morphometric computerized hue analysis was performed to provide a quantitative evaluation of mature and newly formed collagen fibers.Results: Under picrosirius red staining and circularly polarized light microscopy, green/yellow areas (thin newly formed collagen type III were visible among the collagen fibers in tissue sections from the area of CaHA injection. In contrast, the majority of the collagen fibers appeared red (thick mature collagen type I in control tissues. Morphometric analysis confirmed that, following CaHA treatment, the proportion of fibers represented by thin newly formed collagen type III increased significantly (p<0.01 in comparison with the

  5. Generation of azimuthally polarized beams in fast axial flow CO2 laser with hybrid circular subwavelength grating mirror.

    Science.gov (United States)

    Zhao, Jiang; Li, Bo; Zhao, Heng; Wang, Wenjin; Hu, Yi; Liu, Sisi; Wang, Youqing

    2014-06-10

    A hybrid circular subwavelength grating mirror is proposed and fabricated as a rear mirror in a fast axial flow CO2 laser system to generate azimuthally polarized beams (APBs). This grating mirror, with particular gold-covered ridges and nanopillar-stuffed grooves, performs wideband TE wave reflectivity and high polarization selectivity. It shows that the polarization selectivity mechanism lies in the gold ridge's high reflectivity to the TE wave and the lower TM wave reflectivity, which are the result of the mode leaking into substrate through the dielectric-like nanopillar layer. Finally, a high-quality 550 W APB is obtained in subsequent experiments, which provides potential applications in drilling and welding.

  6. Calculation of the vibrationally resolved, circularly polarized luminescence of d-camphorquinone and (S,S)-trans-beta-hydrindanone.

    Science.gov (United States)

    Pritchard, Benjamin; Autschbach, Jochen

    2010-08-02

    Circularly polarized luminescence (CPL), the differential emission of left- and right-handed circularly polarized light from a molecule, is modeled by using time-dependent density functional theory. Calculations of the CPL spectra for the first electronic excited states of d-camphorquinone and (S,S)-trans-beta-hydrindanone under the Franck-Condon approximation and using various functionals are presented, as well as calculations of absorption, emission, and circular dichroism spectra. The functionals B3LYP, BHLYP, and CAM-B3LYP are employed, along with the TZVP and aug-cc-pVDZ Gaussian-type basis sets. For the lowest-energy transitions, all functionals and basis sets perform comparably, with the long-range-corrected CAM-B3LYP better reproducing the excitation energy of camphorquinone but leading to a blue shift with respect to experiment for hydrindanone. The vibrationally resolved spectra of camphorquinone are very well reproduced in terms of peak location, widths, shapes, and intensities. The spectra of hydrindanone are well reproduced in terms of overall envelope shape and width, as well as the lack of prominent vibrational structure in the emission and CPL spectra. Overall the simulated spectra compare well with experiment, and reproduce the band shapes, emission red shifts, and presence or absence of visible vibrational fine structure.

  7. Compact, Highly Efficient, and Fully Flexible Circularly Polarized Antenna Enabled by Silver Nanowires for Wireless Body-Area Networks.

    Science.gov (United States)

    Jiang, Zhi Hao; Cui, Zheng; Yue, Taiwei; Zhu, Yong; Werner, Douglas H

    2017-08-01

    A compact and flexible circularly polarized (CP) wearable antenna is introduced for wireless body-area network systems at the 2.4 GHz industrial, scientific, and medical (ISM) band, which is implemented by employing a low-loss composite of polydimethylsiloxane (PDMS) and silver nanowires (AgNWs). The circularly polarized radiation is enabled by placing a planar linearly polarized loop monopole above a finite anisotropic artificial ground plane. By truncating the anisotropic artificial ground plane to contain only 2 by 2 unit cells, an integrated antenna with a compact form factor of 0.41λ 0 × 0.41λ 0 × 0.045λ 0 is obtained, all while possessing an improved angular coverage of CP radiation. A flexible prototype was fabricated and characterized, experimentally achieving S 11 antenna is compared to a conventional CP patch antenna of the same physical size, which is also comprised of the same PDMS and AgNW composite. The results of this comparison reveal that the proposed antenna has much more stable performance under bending and human body loading, as well as a lower specific absorption rate. In all, the demonstrated wearable antenna offers a compact, flexible, and robust solution which makes it a strong candidate for future integration into body-area networks that require efficient off-body communications.

  8. Natural circular dichroism of amino acid films observed in soft X-ray and VUV region using polarizing undulator

    International Nuclear Information System (INIS)

    Nakagawa, K.; Kaneko, F.; Ohta, Y.; Tanaka, M.; Kitada, T.; Agui, A.; Fujii, F.; Yokoya, A.; Yagi-Watanabe, K.; Yamada, T.

    2005-01-01

    We observed the natural circular dichroism NCD of amino acid films in the soft X-ray region for the first time [M. Tanaka, K. Nakagawa, A. Agui, K. Fujii, A. Yokoya, Physica Scripta, in press]. Based on the success, a new generation of detection system is now under preparation. Vacuum ultraviolet NCD of amino acid films was measured successfully using a polarizing undulator [H. Onuki, Nucl. Instrum. Meth. A 246 (1986) 94] installed at the TERAS electron storage ring at AIST, Tsukuba, Japan. A result of NCD measurement for alanine films is described in detail

  9. Polarization tracking system for free-space optical communication, including quantum communication

    Science.gov (United States)

    Nordholt, Jane Elizabeth; Newell, Raymond Thorson; Peterson, Charles Glen; Hughes, Richard John

    2018-01-09

    Quantum communication transmitters include beacon lasers that transmit a beacon optical signal in a predetermined state of polarization such as one of the states of polarization of a quantum communication basis. Changes in the beacon polarization are detected at a receiver, and a retarder is adjusted so that the states of polarization in a received quantum communication optical signal are matched to basis polarizations. The beacon and QC signals can be at different wavelengths so that the beacon does not interfere with detection and decoding of the QC optical signal.

  10. Cross-polarization detection enables fast measurement of vibrational circular dichroism

    Czech Academy of Sciences Publication Activity Database

    Bouř, Petr

    2009-01-01

    Roč. 10, č. 12 (2009), s. 1983-1985 ISSN 1439-4235 Institutional research plan: CEZ:AV0Z40550506 Keywords : vibrational circular dichroism * time-resolved experiment Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.453, year: 2009

  11. Use of Linear and Circular Polarization: The Secret LCD Screen and 3D Cinema

    Science.gov (United States)

    Richtberg, Stefan; Girwidz, Raimund

    2017-01-01

    References to everyday life are important for teaching physics. Discussing polarization phenomena, liquid crystal displays (LCDs) and 3D cinemas provide such references. In this paper we describe experiments to support students' understanding of linearly polarized light as well as the phenomenon of inverted colors using a secret LCD screen.…

  12. Controlling electron quantum paths for generation of circularly polarized high-order harmonics by H2+ subject to tailored (ω , 2 ω ) counter-rotating laser fields

    Science.gov (United States)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2018-04-01

    Recently, studies of high-order harmonics (HHG) from atoms driven by bichromatic counter-rotating circularly polarized laser fields as a source of coherent circularly polarized extreme ultraviolet (XUV) and soft-x-ray beams in a tabletop-scale setup have received considerable attention. Here, we demonstrate the ability to control the electron recollisions giving three returns per one cycle of the fundamental frequency ω by using tailored bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields with a molecular target. The full control of the electronic pathway is first analyzed by a classical trajectory analysis and then extended to a detailed quantum study of H2+ molecules in bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields. The radiation spectrum contains doublets of left- and right-circularly polarized harmonics in the XUV ranges. We study in detail the below-, near-, and above-threshold harmonic regions and describe how excited-state resonances alter the ellipticity and phase of the generated harmonic peaks.

  13. Stopping power and polarization induced in a plasma by a fast charged particle in circular motion

    Energy Technology Data Exchange (ETDEWEB)

    Villo-Perez, Isidro [Departamento de Electronica, Tecnologia de las Computadoras y Proyectos, Universidad Politecnica de Cartagena, Cartagena (Spain); Arista, Nestor R. [Division Colisiones Atomicas, Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, Bariloche (Argentina); Garcia-Molina, Rafael [Departamento de Fisica, Universidad de Murcia, Murcia (Spain)

    2002-03-28

    We describe the perturbation induced in a plasma by a charged particle in circular motion, analysing in detail the evolution of the induced charge, the electrostatic potential and the energy loss of the particle. We describe the initial transitory behaviour and the different ways in which convergence to final stationary solutions may be obtained depending on the basic parameters of the problem. The results for the stopping power show a resonant behaviour which may give place to large stopping enhancement values as compared with the case of particles in straight-line motion with the same linear velocity. The results also explain a resonant effect recently obtained for particles in circular motion in magnetized plasmas. (author)

  14. Molecular density functional theory of water including density–polarization coupling

    OpenAIRE

    Jeanmairet, Guillaume; Lévy, Nicolas; Levesque, Maximilien; Borgis, Daniel

    2016-01-01

    International audience; We present a three-dimensional molecular density functional theory of water derived fromfirst-principles that relies on the particle’s density and multipolar polarization density andincludes the density–polarization coupling. This brings two main benefits: (i) scalar densityand vectorial multipolar polarization density fields are much more tractable and give morephysical insight than the full position and orientation densities, and (ii) it includes the fulldensity–pola...

  15. The effect of the excitation and of the temperature on the photoluminescence circular polarization of AlInAs/AlGaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sellami, N. [Unite de Recherche de Physique des Semiconducteurs et Capteurs, Institut Preparatoire aux Etudes Scientifiques et Techniques, La Marsa 2070 (Tunisia); Melliti, A., E-mail: adnenmelliti@yahoo.fr [Unite de Recherche de Physique des Semiconducteurs et Capteurs, Institut Preparatoire aux Etudes Scientifiques et Techniques, La Marsa 2070 (Tunisia); Sahli, A.; Maaref, M.A. [Unite de Recherche de Physique des Semiconducteurs et Capteurs, Institut Preparatoire aux Etudes Scientifiques et Techniques, La Marsa 2070 (Tunisia); Testelin, C. [Institut des NanoSciences de Paris, Campus Boucicaut, Universites Paris 6 et 7, CNRS, UMR7588, 140 rue de Lourmel, 75015 Paris (France); Kuszelewiez, R. [Laboratoire de Photonique et Nanostructures, CNRS, UPR 20 (France)

    2009-12-15

    In this paper, we present a study of photoluminescence (PL) from AlInAs/AlGaAs quantum dots (QDs) structures grown by molecular beam epitaxy. Specifically, we describe the effects of the temperature and of the excitation density on the photoluminescence circular polarization. We have found that the circular polarization degree depends on temperature. On the other hand, the study of the excitation density dependent circular polarization PL degree shows that the last increases in the case of the sample of weak dot density. However, in the case of large dot density, it is almost constant in the excitation density range from 0.116 W cm{sup -2} to 9 W cm{sup -2}.

  16. Ionization of oriented targets by intense circularly polarized laser pulses: Imprints of orbital angular nodes in the two-dimensional momentum distribution

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2010-01-01

    We solve the three-dimensional time-dependent Schrödinger equation for a few-cycle circularly polarized femtosecond laser pulse that interacts with an oriented target exemplified by an argon atom, initially in a 3px or 3py state. The photoelectron momentum distributions show distinct signatures......, we show that ionization by a circularly polarized pulse completely maps out the angular nodal structure of the initial state, thus providing a potential tool for studying orbital symmetry in individual systems or during chemical reactions....

  17. Reduction of the Thomson scattering cross-section in a strong circularly polarized light field in plasma with the change of its spectrum

    Science.gov (United States)

    Korobkin, Vladlen V.; Romanovsky, Michael Y.

    1992-06-01

    It is shown that in a strong circularly polarized laser field, classical electron motion around the ions can occur. The non-relativistic scattering by these electrons in plasma has a certain (Thomson) cross-section only in the limit of a very strong field (it is practically the case of relativistic motion of electrons). In a circularly polarized field with an amplitude on the order of the inneratomic one, the cross section of this process is less. In the spectrum that the scattering of this field gives in plasma, there are non-ion satellites along with the basic frequency.

  18. Seismic behavior of circular reinforced concrete bridge columns under combined loading including torsion.

    Science.gov (United States)

    2009-12-01

    Reinforced concrete (RC) columns of skewed and curved bridges with unequal spans and column heights can be subjected to : combined loading including axial, flexure, shear, and torsion loads during earthquakes. The combination of axial loads, shear : ...

  19. Solid polymer films exhibiting handedness-switchable, full-color-tunable selective reflection of circularly polarized light.

    Science.gov (United States)

    Nagata, Yuuya; Takagi, Keisuke; Suginome, Michinori

    2014-07-16

    Poly(quinoxaline-2,3-diyl)s bearing (S)-2-methylbutyl, n-butyl, and 8-chlorooctyl groups as side chains were synthesized to fabricate dry solid polymer thin films. These films exhibited selective reflection of right-handed circular polarized light (CPL) in the visible region after annealing in CHCl3 vapor at room temperature. The handedness of reflected CPL was inverted to the left after annealing in 1,2-dichloroethane vapor. It was also found that the color of a particular single film along with the handedness of reflected CPL were fully tuned reversibly, upon exposure of the film to the vapor of various mixtures of chloroform and 1,2-dichloroethane in different ratios.

  20. Dual-Band Operation of a Circularly Polarized Four-Arm Curl Antenna with Asymmetric Arm Length

    Directory of Open Access Journals (Sweden)

    Son Xuat Ta

    2016-01-01

    Full Text Available This paper presents dual-band operation of a single-feed composite cavity-backed four-arm curl antenna. Dual-band operation is achieved with the presence of the asymmetrical arm structure. A pair of vacant-quarter printed rings is used in the feed structure to produce a good circular polarization (CP at both bands. The cavity-backed reflector is employed to improve the CP radiation characteristics in terms of the 3-dB axial ratio beamwidth and broadside gain. The proposed antenna is widely applicable in dual-band communication systems that have a small frequency ratio. Examples of such a system are global positioning systems.

  1. The generation of a complete spiral spot and multi split rings by focusing three circularly polarized vortex beams

    Science.gov (United States)

    Chen, Jiannong; Gao, Xiumin; Zhu, Linwei; Xu, Qinfeng; Ma, Wangzi

    2014-05-01

    We demonstrate that a complete right-handed or left-handed spiral-shaped focus can be created by focusing circularly polarized and three spatially shifted vortex beams through high numerical objective. By dividing the back aperture into multi annular zones and applying an additional phase term, the multi focal spots aligned along z axis of individual three dimensional focal shapes can be generated. The spiral shaped focus provides a pathway of manipulating the micro-particles in a curved trajectory and opens up a possibility of measuring mechanical torque of biological large molecules such as DNA by chemically binding one end on the cover-glass. The multi focal spots aligned along the z axis can eliminate the need of z axis scanning in the direct laser writing fabrication of some metamaterials which is composed of three-dimensional array of specific shapes of building blocks.

  2. Propagation properties of right-hand circularly polarized Airy-Gaussian beams through slabs of right-handed materials and left-handed materials.

    Science.gov (United States)

    Huang, Jiayao; Liang, Zijie; Deng, Fu; Yu, Weihao; Zhao, Ruihuang; Chen, Bo; Yang, Xiangbo; Deng, Dongmei

    2015-11-01

    The propagation of right-hand circularly polarized Airy-Gaussian beams (RHCPAiGBs) through slabs of right-handed materials (RHMs) and left-handed materials (LHMs) is investigated analytically and numerically with the transfer matrix method. An approximate analytical expression for the RHCPAiGBs passing through a paraxial ABCD optical system is derived on the basis of the Huygens diffraction integral formula. The intensity and the phase distributions of the RHCPAiGBs through RHMs and LHMs are demonstrated. The influence of the parameter χ0 on the propagation of RHCPAiGBs through RHM and LHM slabs is investigated. The RHCPAiGBs possess transverse-momentum currents, which shows that the physics underlying this intriguing accelerating effect is that of the combined contributions of the transverse spin and transverse orbital currents. Additionally, we go a step further to explore the radiation force including the gradient force and scattering force of the RHCPAiGBs.

  3. Stereo photograph of atomic arrangement by circularly-polarized-light two-dimensional photoelectron spectroscopy

    CERN Document Server

    Daimon, H

    2003-01-01

    A stereo photograph of atomic arrangement was obtained for the first time. The stereo photograph was displayed directly on the screen of display-type spherical-mirror analyzer without any computer-aided conversion process. This stereo photography was realized taking advantage of the phenomenon of circular dichroism in photoelectron angular distribution due to the reversal of orbital angular momentum of photoelectrons. The azimuthal shifts of forward focusing peaks in a photoelectron angular distribution pattern taken with left and right helicity light in a special arrangement are the same as the parallaxes in a stereo view of atoms. Hence a stereoscopic recognition of three-dimensional atomic arrangement is possible, when the left eye and the right eye respectively view the two images obtained by left and right helicity light simultaneously.

  4. Bright Linearly and Circularly Polarized Extreme Ultraviolet and Soft X-ray High Harmonics for Absorption Spectroscopy

    Science.gov (United States)

    Fan, Tingting

    High harmonic generation (HHG) is an extreme nonlinear optical process. When implemented in a phase-matched geometry, HHG coherent upconverts femtosecond laser light into coherent "X-ray laser" beams, while retaining excellent spatial and temporal coherence, as well as the polarization state of the driving laser. HHG has a tabletop footprint, with femtosecond to attosecond time resolution, combined with nanometer spatial resolution. As a consequence of these unique capabilities, HHG is now being widely adopted for use in molecular spectroscopy and imaging, materials science, as well as nanoimaging in general. In the first half of this thesis, I demonstrate high flux linearly polarized soft X-ray HHG, driven by a single-stage 10-mJ Ti:sapphire regenerative amplifier at a repetition rate of 1 kHz. I first down-converted the laser to 1.3 mum using an optical parametric amplifier, before up-converting it into the soft X-ray region using HHG in a high-pressure, phase-matched, hollow waveguide geometry. The resulting optimally phase-matched broadband spectrum extends to 200 eV, with a soft X-ray photon flux of > 106 photons/pulse/1% bandwidth at 1 kHz, corresponding to > 109 photons/s/1% bandwidth, or approximately a three orders-of-magnitude increase compared with past work. Using this broad bandwidth X-ray source, I demonstrated X-ray absorption spectroscopy of multiple elements and transitions in molecules in a single spectrum, with a spectral resolution of 0.25 eV, and with the ability to resolve the near edge fine structure. In the second half of this thesis, I discuss how to generate the first bright circularly polarized (CP) soft X-ray HHG and also use them to implement the first tabletop X-ray magnetic circular dichroism (XMCD) measurements. Using counter-rotating CP lasers at 1.3 mum and 0.79 mum, I generated CPHHG with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right CP peaks, with energies

  5. High-Frequency Microstrip Cross Resonators for Circular Polarization EPR Spectroscopy

    OpenAIRE

    Henderson, J. J.; Ramsey, C. M.; Quddusi, H. M.; del Barco, E.

    2008-01-01

    In this article we discuss the design and implementation of a novel microstrip resonator which allows for the absolute control of the microwaves polarization degree for frequencies up to 30 GHz. The sensor is composed of two half-wavelength microstrip line resonators, designed to match the 50 Ohms impedance of the lines on a high dielectric constant GaAs substrate. The line resonators cross each other perpendicularly through their centers, forming a cross. Microstrip feed lines are coupled th...

  6. Reduction of the Thompson scattering cross section in a strong circularly polarized light field in a plasma with the change of its spectrum. “quantum-classical” electron

    Science.gov (United States)

    Korobkin, V. V.; Romanovsky, M. Yu.

    1992-12-01

    It is shown that in a strong circularly polarized laser field a classical electron motion around ions can occur. The scattering of these electrons in a plasma has the Thompson cross section in the limit of strongs field only and for a subrelativistic motion of the electrons. There are non-ion satellites apart from the basic frequency in the scattering spectrum.

  7. Generation of Bright Phase-matched Circularly-polarized Extreme Ultraviolet High Harmonics

    Science.gov (United States)

    2014-12-08

    the first experiment, the HHG beam was spectrally dispersed using a spectrometer com- posed of a toroidal mirror, a laminar Au grating with a groove...field of the foil. The alternating polarity of the CCD Grating Toroid Magnetic foil Electro- magnet Al filter λ = 790 nm, 40 fs, 4 kHz, 10 W λ/2 λ/2 λ/4...our spectrometer. The spectrometer consists of a toroid mirror (glass substrate coated by 100 nm of B4C and tilted at a grazing angle of 8°), a

  8. Molecular density functional theory of water including density-polarization coupling.

    Science.gov (United States)

    Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel

    2016-06-22

    We present a three-dimensional molecular density functional theory of water derived from first-principles that relies on the particle's density and multipolar polarization density and includes the density-polarization coupling. This brings two main benefits: (i) scalar density and vectorial multipolar polarization density fields are much more tractable and give more physical insight than the full position and orientation densities, and (ii) it includes the full density-polarization coupling of water, that is known to be non-vanishing but has never been taken into account. Furthermore, the theory requires only the partial charge distribution of a water molecule and three measurable bulk properties, namely the structure factor and the Fourier components of the longitudinal and transverse dielectric susceptibilities.

  9. Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses

    Czech Academy of Sciences Publication Activity Database

    Janda, Tomáš; Roy, P.E.; Otxoa, R.M.; Šobáň, Zbyněk; Ramsay, A.; Irvine, A.C.; Trojánek, F.; Surynek, M.; Campion, R. P.; Gallagher, B. L.; Němec, P.; Jungwirth, Tomáš; Wunderlich, Joerg

    2017-01-01

    Roč. 8, May (2017), 1-7, č. článku 15226. ISSN 2041-1723 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G EU Projects: European Commission(XE) 610115 - SC2 Institutional support: RVO:68378271 Keywords : spintronics * domain walls Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 12.124, year: 2016

  10. Protons and electrons generated from a 5-{mu}m thick copper tape target irradiated by s-, circularly-, and p-polarized 55-fs laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Advanced Photon Research Center, Japan Atomic Energy Agency, Umeimidai 8-1, Kizu, Kyoto 619-0215 (Japan); National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan)], E-mail: lizhong@sinap.ac.cn; Daido, H. [Advanced Photon Research Center, Japan Atomic Energy Agency, Umeimidai 8-1, Kizu, Kyoto 619-0215 (Japan); Fukumi, A. [Advanced Photon Research Center, Japan Atomic Energy Agency, Umeimidai 8-1, Kizu, Kyoto 619-0215 (Japan); National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Bulanov, S.V.; Sagisaka, A.; Ogura, K.; Yogo, A.; Nishiuchi, M.; Orimo, S.; Mori, M. [Advanced Photon Research Center, Japan Atomic Energy Agency, Umeimidai 8-1, Kizu, Kyoto 619-0215 (Japan); Oishi, Y.; Nayuki, T.; Fujii, T.; Nemoto, K. [Central Research Institute of Electric Power Industry, Nagasaka 2-6-1, Yokosuka, Kanagawa 240-0196 (Japan); Nakamura, S.; Noda, A. [Institute of Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Choi, I.W.; Sung, J.H.; Ko, D.-K.; Lee, J. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2007-10-01

    The angular distribution and energy spectra of energetic protons emitted from a 5-{mu}m thick copper tape target irradiated by p-, circularly-, and s-polarized 55-fs laser pulses with intensity of 8-9x10{sup 18} W/cm{sup 2} are measured. The protons are found in the rear target normal direction while the hot electrons are found in the laser propagation direction. The maximum energy of protons is equal to 1.34 MeV for p-polarized irradiation. The energy spectrum of protons depends strongly on the total amount of electrons but it does not so strongly depend on the electron angular distribution under our experiment conditions. Two-dimensional particle in cell simulations also show the maximal proton acceleration for the p-polarized pulse, less efficient acceleration for the circular polarization, and lower acceleration efficiency in the case of the s-polarization, which is related to the electron acceleration efficiency at the front side of the target.

  11. Helicity-Selective Phase-Matching and Quasi-Phase matching of Circularly Polarized High-Order Harmonics: Towards Chiral Attosecond Pulses

    Science.gov (United States)

    2016-05-23

    used under the terms of the Creative Commons Attribution 3.0 licence . Any further distribution of this work must maintain attribution to the author(s...condition for full phase matching by analyzing the operator that propagates the vec- torial pump field in circularly polarized HHG (we assume nothing about...throughout propagation. It is instructive to obtain the propagation operator that transfer t  E , 0BC ( ) of equation (6) to t  E z,BC ( ) of equation (7

  12. Algorithms and Programs for Strong Gravitational Lensing In Kerr Space-time Including Polarization

    Science.gov (United States)

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie; Maddumage, Prasad

    2015-05-01

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.

  13. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    International Nuclear Information System (INIS)

    Chen, Bin; Maddumage, Prasad; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie

    2015-01-01

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python

  14. NON-RACEMIC AMINO ACID PRODUCTION BY ULTRAVIOLET IRRADIATION OF ACHIRAL INTERSTELLAR ICE ANALOGS WITH CIRCULARLY POLARIZED LIGHT

    International Nuclear Information System (INIS)

    De Marcellus, Pierre; Nuevo, Michel; Danger, Gregoire; Deboffle, Dominique; Le Sergeant d'Hendecourt, Louis; Meinert, Cornelia; Filippi, Jean-Jacques; Meierhenrich, Uwe J.; Nahon, Laurent

    2011-01-01

    The delivery of organic matter to the primitive Earth via comets and meteorites has long been hypothesized to be an important source for prebiotic compounds such as amino acids or their chemical precursors that contributed to the development of prebiotic chemistry leading, on Earth, to the emergence of life. Photochemistry of inter/circumstellar ices around protostellar objects is a potential process leading to complex organic species, although difficult to establish from limited infrared observations only. Here we report the first abiotic cosmic ice simulation experiments that produce species with enantiomeric excesses (e.e.'s). Circularly polarized ultraviolet light (UV-CPL) from a synchrotron source induces asymmetric photochemistry on initially achiral inter/circumstellar ice analogs. Enantioselective multidimensional gas chromatography measurements show significant e.e.'s of up to 1.34% for ( 13 C)-alanine, for which the signs and absolute values are related to the helicity and number of CPL photons per deposited molecule. This result, directly comparable with some L excesses measured in meteorites, supports a scenario in which exogenous delivery of organics displaying a slight L excess, produced in an extraterrestrial environment by an asymmetric astrophysical process, is at the origin of biomolecular asymmetry on Earth. As a consequence, a fraction of the meteoritic organic material consisting of non-racemic compounds may well have been formed outside the solar system. Finally, following this hypothesis, we support the idea that the protosolar nebula has indeed been formed in a region of massive star formation, regions where UV-CPL of the same helicity is actually observed over large spatial areas.

  15. Quasi-analytical synthesis of continuous phase correcting structures to increase the directivity of circularly polarized Fabry-Perot resonator antennas

    International Nuclear Information System (INIS)

    Afzal, Muhammad U.; Esselle, Karu P.

    2015-01-01

    This paper presents a quasi-analytical technique to design a continuous, all-dielectric phase correcting structures (PCSs) for circularly polarized Fabry-Perot resonator antennas (FPRAs). The PCS has been realized by varying the thickness of a rotationally symmetric dielectric block placed above the antenna. A global analytical expression is derived for the PCS thickness profile, which is required to achieve nearly uniform phase distribution at the output of the PCS, despite the non-uniform phase distribution at its input. An alternative piecewise technique based on spline interpolation is also explored to design a PCS. It is shown from both far- and near-field results that a PCS tremendously improves the radiation performance of the FPRA. These improvements include an increase in peak directivity from 22 to 120 (from 13.4 dBic to 20.8 dBic) and a decrease of 3 dB beamwidth from 41.5° to 15°. The phase-corrected antenna also has a good directivity bandwidth of 1.3 GHz, which is 11% of the center frequency

  16. Reflection of circularly polarized light and the effect of particle distribution on circular dichroism in evaporation induced self-assembled cellulose nanocrystal thin films

    Science.gov (United States)

    Hewson, D.; Vukusic, P.; Eichhorn, S. J.

    2017-06-01

    Evaporation induced self-assembled (EISA) thin films of cellulose nanocrystals (CNCs) have shown great potential for displaying structural colour across the visible spectrum. They are believed primarily to reflect left handed circularly polarised (LCP) light due to their natural tendency to form structures comprising left handed chirality. Accordingly the fabrication of homogenously coloured CNC thin films is challenging. Deposition of solid material towards the edge of a dried droplet, via the coffee-stain effect, is one such difficulty in achieving homogenous colour across CNC films. These effects are most easily observed in films prepared from droplets where observable reflection of visible light is localised around the edge of the dry film. We report here, the observation of both left and right hand circularly polarised (LCP/RCP) light in reflection from distinct separate regions of CNC EISA thin films and we elucidate how these reflections are dependent on the distribution of CNC material within the EISA thin film. Optical models of reflection are presented which are based on structures revealed using high resolution transmission electron microscopy (TEM) images of film cross sections. We have also employed spectroscopic characterisation techniques to evaluate the distribution of solid CNC material within a selection of CNC EISA thin films and we have correlated this distribution with polarised light spectra collected from each film. We conclude that film regions from which RCP light was reflected were associated with lower CNC concentrations and thicker film regions.

  17. Reflection of circularly polarized light and the effect of particle distribution on circular dichroism in evaporation induced self-assembled cellulose nanocrystal thin films

    Directory of Open Access Journals (Sweden)

    D. Hewson

    2017-06-01

    Full Text Available Evaporation induced self-assembled (EISA thin films of cellulose nanocrystals (CNCs have shown great potential for displaying structural colour across the visible spectrum. They are believed primarily to reflect left handed circularly polarised (LCP light due to their natural tendency to form structures comprising left handed chirality. Accordingly the fabrication of homogenously coloured CNC thin films is challenging. Deposition of solid material towards the edge of a dried droplet, via the coffee-stain effect, is one such difficulty in achieving homogenous colour across CNC films. These effects are most easily observed in films prepared from droplets where observable reflection of visible light is localised around the edge of the dry film. We report here, the observation of both left and right hand circularly polarised (LCP/RCP light in reflection from distinct separate regions of CNC EISA thin films and we elucidate how these reflections are dependent on the distribution of CNC material within the EISA thin film. Optical models of reflection are presented which are based on structures revealed using high resolution transmission electron microscopy (TEM images of film cross sections. We have also employed spectroscopic characterisation techniques to evaluate the distribution of solid CNC material within a selection of CNC EISA thin films and we have correlated this distribution with polarised light spectra collected from each film. We conclude that film regions from which RCP light was reflected were associated with lower CNC concentrations and thicker film regions.

  18. Analytic model for the long-term evolution of circular Earth satellite orbits including lunar node regression

    Science.gov (United States)

    Zhu, Ting-Lei; Zhao, Chang-Yin; Zhang, Ming-Jiang

    2017-04-01

    This paper aims to obtain an analytic approximation to the evolution of circular orbits governed by the Earth's J2 and the luni-solar gravitational perturbations. Assuming that the lunar orbital plane coincides with the ecliptic plane, Allan and Cook (Proc. R. Soc. A, Math. Phys. Eng. Sci. 280(1380):97, 1964) derived an analytic solution to the orbital plane evolution of circular orbits. Using their result as an intermediate solution, we establish an approximate analytic model with lunar orbital inclination and its node regression be taken into account. Finally, an approximate analytic expression is derived, which is accurate compared to the numerical results except for the resonant cases when the period of the reference orbit approximately equals the integer multiples (especially 1 or 2 times) of lunar node regression period.

  19. Information Circulars

    International Nuclear Information System (INIS)

    1973-01-01

    Information circulars are published from time to time under the symbol INFCIRC/.. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A subject index to the circulars is presented overleaf. It covers all those published in the last five years (that is, since the beginning of 1968 and ending with INFCIRC/192), as well as others which, for one reason or another, are still considered to be of current rather than merely historical interest. Such circulars can be traced by reference to the indexes that were included in earlier revisions of the present document.

  20. Thermosetting polymer for dynamic nuclear polarization: Solidification of an epoxy resin mixture including TEMPO

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Yohei, E-mail: noda.yohei@jaea.go.jp [Quantum Beam Science Centre, Sector of Nuclear Science Research, Japan Atomic Energy Agency, Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Kumada, Takayuki [Quantum Beam Science Centre, Sector of Nuclear Science Research, Kansai Photon Science Institute, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Yamaguchi, Daisuke; Shamoto, Shin-ichi [Quantum Beam Science Centre, Sector of Nuclear Science Research, Japan Atomic Energy Agency, Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan)

    2015-03-11

    We investigated the dynamic nuclear polarization (DNP) of typical thermosetting polymers (two-component type epoxy resins; Araldite{sup ®} Standard or Araldite{sup ®} Rapid) doped with a (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO) radical. The doping process was developed by carefully considering the decomposition of TEMPO during the solidification of the epoxy resin. The TEMPO electron spin in each two-component paste decayed slowly, which was favorable for our study. Furthermore, despite the dissolved TEMPO, the mixture of the two-component paste successfully solidified. With the resulting TEMPO-doped epoxy-resin samples, DNP experiments at 1.2 K and 3.35 T indicated a magnitude of a proton-spin polarization up to 39%. This polarization is similar to that (35%) obtained for TEMPO-doped polystyrene (PS), which is often used as a standard sample for DNP. To combine this solidification of TEMPO-including mixture with a resin-casting technique enables a creation of polymeric target materials with a precise and complex structure.

  1. Thermosetting polymer for dynamic nuclear polarization: Solidification of an epoxy resin mixture including TEMPO

    International Nuclear Information System (INIS)

    Noda, Yohei; Kumada, Takayuki; Yamaguchi, Daisuke; Shamoto, Shin-ichi

    2015-01-01

    We investigated the dynamic nuclear polarization (DNP) of typical thermosetting polymers (two-component type epoxy resins; Araldite ® Standard or Araldite ® Rapid) doped with a (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO) radical. The doping process was developed by carefully considering the decomposition of TEMPO during the solidification of the epoxy resin. The TEMPO electron spin in each two-component paste decayed slowly, which was favorable for our study. Furthermore, despite the dissolved TEMPO, the mixture of the two-component paste successfully solidified. With the resulting TEMPO-doped epoxy-resin samples, DNP experiments at 1.2 K and 3.35 T indicated a magnitude of a proton-spin polarization up to 39%. This polarization is similar to that (35%) obtained for TEMPO-doped polystyrene (PS), which is often used as a standard sample for DNP. To combine this solidification of TEMPO-including mixture with a resin-casting technique enables a creation of polymeric target materials with a precise and complex structure

  2. Nonlinear dynamics of circularly polarized laser pulse propagating in a magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons distributions

    Energy Technology Data Exchange (ETDEWEB)

    Etemadpour, R.; Dorranian, D., E-mail: doran@srbiau.ac.ir [Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sepehri Javan, N. [Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil (Iran, Islamic Republic of)

    2016-05-15

    The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.

  3. 20/30 GHz dual-band circularly polarized reflectarray antenna based on the concentric dual split-loop element

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst; Vesterdal Larsen, Niels; Vesterager Gothelf, Ulrich

    2012-01-01

    A concentric dual split-loop element is designed and investigated for reflectarray antenna design in the emerging 20 GHz and 30 GHz Ka-band satellite communication spectrum. The element is capable of providing adjustment of the phase of reflection coefficients for circular plane waves in two...

  4. Operational Circulars

    CERN Multimedia

    2003-01-01

    Operational Circular N° 4 - April 2003 Conditions for use by members of the CERN personnel of vehicles belonging to or rented by CERN - This circular has been drawn up. Operational Circular N° 5 - October 2000 Use of CERN computing facilities - Further details on the personal use of CERN computing facilities Operational Circular N° 5 and its Subsidiary Rules http://cern.ch/ComputingRules defines the rules for the use of CERN computing facilities. One of the basic principles governing such use is that it must come within the professional duties of the user concerned, as defined by the user's divisional hierarchy. However, personal use of the computing facilities is tolerated or allowed provided : a) It is in compliance with Operational Circular N° 5 and not detrimental to official duties, including those of other users; b) the frequency and duration is limited and there is a negligible use of CERN resources; c) it does not constitute a political, commercial and/or profit-making activity; d) it is not...

  5. Three-Way-Switchable (Right/Left/OFF) Selective Reflection of Circularly Polarized Light on Solid Thin Films of Helical Polymer Blends.

    Science.gov (United States)

    Nagata, Yuuya; Uno, Makoto; Suginome, Michinori

    2016-06-13

    Two poly(quinoxaline-2,3-diyl) copolymers bearing miscibility-enhancing 8-chlorooctyloxy and (S)-2-methylbutoxy or n-butoxy side chains were synthesized. After annealing in CHCl3 vapor, a polymer-blend film of these copolymers exhibited selective reflection of right-handed circularly polarized light (CPL) in the visible region. The handedness of the CPL reflected was completely inverted upon annealing of the film in THF vapor. Annealing in n-hexane vapor resulted in the phase separation of the polymer blend, which turned the selective reflection off. This three-way-switchable reflection, that is, reflection of right-handed or left-handed CPL, together with an OFF state, could be observed visually through right- and left-handed CPL filters. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effect of a radial space-charge field on the movement of particles in a magneto-static field and under the influence of a circularly polarized wave

    International Nuclear Information System (INIS)

    Buffa, A.

    1967-06-01

    The effect of a circularly polarized wave on a cylindrical plasma in a axial magnetostatic field and a radial space-charge field proportional to r is studied. Single particle motion is considered. The electrostatic field produces a shift in the cyclotron resonance frequency and,in case of high charge density, a radial movement of the off-resonance particles. In these conditions a radio-frequency-particle resonance is also possible called 'drift-resonance'. The drift resonance can be produced, with whistler mode, and may be employed in ion acceleration. Afterwards parametrical resonances produced by space-charge field oscillations and collisional limits of theory are studied. Cases in which ion acceleration is possible are considered on the basis of a quantitative analysis of results. (author) [fr

  7. Electron's anomalous magnetic-moment effects on electron-hydrogen elastic collisions in the presence of a circularly polarized laser field

    International Nuclear Information System (INIS)

    Elhandi, S.; Taj, S.; Attaourti, Y.; Manaut, B.; Oufni, L.

    2010-01-01

    The effect of the electron's anomalous magnetic moment on the relativistic electronic dressing for the process of electron-hydrogen atom elastic collisions is investigated. We consider a laser field with circular polarization and various electric field strengths. The Dirac-Volkov states taking into account this anomaly are used to describe the process in the first order of perturbation theory. The correlation between the terms coming from this anomaly and the electric field strength gives rise to the strong dependence of the spinor part of the differential cross section (DCS) with respect to these terms. A detailed study has been devoted to the nonrelativistic regime as well as the moderate relativistic regime. Some aspects of this dependence as well as the dynamical behavior of the DCS in the relativistic regime have been addressed.

  8. Ultrashort x-ray pulse generation by nonlinear Thomson scattering of a relativistic electron with an intense circularly polarized laser pulse

    Directory of Open Access Journals (Sweden)

    F. Liu

    2012-07-01

    Full Text Available The nonlinear Thomson scattering of a relativistic electron with an intense laser pulse is calculated numerically. The results show that an ultrashort x-ray pulse can be generated by an electron with an initial energy of 5 MeV propagating across a circularly polarized laser pulse with a duration of 8 femtosecond and an intensity of about 1.1×10^{21}  W/cm^{2}, when the detection direction is perpendicular to the propagation directions of both the electron and the laser beam. The optimal values of the carrier-envelop phase and the intensity of the laser pulse for the generation of a single ultrashort x-ray pulse are obtained and verified by our calculations of the radiation characteristics.

  9. A New Approach to Suppress the Effect of Machining Error for Waveguide Septum Circular Polarizer at 230 GHz Band in Radio Astronomy

    Science.gov (United States)

    Hasegawa, Yutaka; Harada, Ryohei; Tokuda, Kazuki; Kimura, Kimihiro; Ogawa, Hideo; Onishi, Toshikazu; Nishimura, Atsushi; Han, Johnson; Inoue, Makoto

    2017-05-01

    A new stepped septum-type waveguide circular polarizer (SST-CP) was developed to operate in the 230 GHz band for radio astronomy, especially submillimeter-band VLBI observations. For previously reported SST-CP models, the 230 GHz band is too high to achieve the design characteristics in manufactured devices because of unexpected machining errors. To realize a functional SST-CP that can operate in the submillimeter band, a new method was developed, in which the division surface is shifted from the top step of the septum to the second step from the top, and we simulated the expected machining error. The SST-CP using this method can compensate for specified machining errors and suppress serious deterioration. To verify the proposed method, several test pieces were manufactured, and their characteristics were measured using a VNA. These results indicated that the insertion losses were approximately 0.75 dB, and the input return losses and the crosstalk of the left- and right-hand circular polarization were greater than 20 dB at 220-245 GHz on 300 K. Moreover, a 230 GHz SST-CP was developed by the proposed method and installed in a 1.85-m radio telescope receiver systems, and then had used for scientific observations during one observation season without any problems. These achievements demonstrate the successful development of a 230 GHz SST-CP for radio astronomical observations. Furthermore, the proposed method can be applicable for observations in higher frequency bands, such as 345 GHz.

  10. Administrative Circulars

    CERN Multimedia

    Département des Ressources humaines

    2004-01-01

    Administrative Circular N° 2 (Rev. 2) - May 2004 Guidelines and procedures concerning recruitment and probation period of staff members This circular has been revised. It cancels and replaces Administrative Circular N° 2 (Rev. 1) - March 2000. Administrative Circular N° 9 (Rev. 3) - May 2004 Staff members contracts This circular has been revised. It cancels and replaces Administrative Circular N° 9 (Rev. 2) - March 2000. Administrative Circular N° 26 (Rev. 4) - May 2004 Procedure governing the career evolution of staff members This circular has also been revised. It Administrative Circulars Administrative Circular N° 26 (Rev. 3) - December 2001 and brings up to date the French version (Rev. 4) published on the HR Department Web site in January 2004. Operational Circular N° 7 - May 2004 Work from home This circular has been drawn up. Operational Circular N° 8 - May 2004 Dealing with alcohol-related problems...

  11. Difference between the Brewster angle and angle of minimum reflectance for incident unpolarized or circularly polarized light at interfaces between transparent media.

    Science.gov (United States)

    Azzam, R M A

    2015-06-01

    For reflection at interfaces between transparent optically isotropic media, the difference between the Brewster angle ϕB of zero reflectance for incident p-polarized light and the angle ϕu min of minimum reflectance for incident unpolarized or circularly polarized light is considered as function of the relative refractive n in external and internal reflection. We determine the following. (i) ϕu min reflection (n > 1), the maximum difference (ϕB - ϕu min)max = 75° at n = 2 + √3. (iii) In internal reflection and 0 reflectance R0 at normal incidence is in the range 0 ≤ R0 ≤ 1/3, ϕu min = 0, and ϕB - ϕu min = ϕB. (v) For internal reflection and 0 < n < 2 - √3, ϕu min exhibits an unexpected maximum (= 12.30°) at n = 0.24265. Finally, (vi) for 1/3 ≤ R0 < 1, Ru min at ϕu min is limited to the range 1/3 ≤ Ru min < 1/2.

  12. Indoor radio channel modeling and mitigation of fading effects using linear and circular polarized antennas in combination for smart home system at 868 MHz

    Science.gov (United States)

    Wunderlich, S.; Welpot, M.; Gaspard, I.

    2014-11-01

    The markets for smart home products and services are expected to grow over the next years, driven by the increasing demands of homeowners considering energy monitoring, management, environmental controls and security. Many of these new systems will be installed in existing homes and offices and therefore using radio based systems for cost reduction. A drawback of radio based systems in indoor environments are fading effects which lead to a high variance of the received signal strength and thereby to a difficult predictability of the encountered path loss of the various communication links. For that reason it is necessary to derive a statistical path loss model which can be used to plan a reliable and cost effective radio network. This paper presents the results of a measurement campaign, which was performed in six buildings to deduce realistic radio channel models for a high variety of indoor radio propagation scenarios in the short range devices (SRD) band at 868 MHz. Furthermore, a potential concept to reduce the variance of the received signal strength using a circular polarized (CP) patch antenna in combination with a linear polarized antenna in an one-to-one communication link is presented.

  13. Circular differential microscopy

    International Nuclear Information System (INIS)

    Maestre, M.F.; Bustamante, C.; Keller, D.

    1985-01-01

    The authors describe the historical development of the theory of differential imaging and the invention of the circular differential imaging microscope. The technique is shown to be a logical extension of the research on the interaction of circularly polarized light with stuctures whose dimensions are arbitrary with respect to the wavelength of light. Shown is the circular dichroism spectra in arbitrary units of E. cirrhosa sperm heads, measured by techniques with different collection angles of scattered light. Also presented is a scanning electron micrograph of a freexe-dried sperm head from E. cirrhosa. It was shown that circular differential scattering is specially sensitive to the dimensions of the structure close to the wavelength of the incident light, and application of circular intensity differential scattering theory to images extend these results

  14. The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits

    International Nuclear Information System (INIS)

    Blanchet, Luc; Faye, Guillaume; Iyer, Bala R; Sinha, Siddhartha

    2008-01-01

    The gravitational waveform (GWF) generated by inspiralling compact binaries moving in quasi-circular orbits is computed at the third post-Newtonian (3PN) approximation to general relativity. Our motivation is two-fold: (i) to provide accurate templates for the data analysis of gravitational wave inspiral signals in laser interferometric detectors; (ii) to provide the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high post-Newtonian prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. This extension of the GWF by half a PN order (with respect to previous work at 2.5PN order) is based on the algorithm of the multipolar post-Minkowskian formalism, and mandates the computation of the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also obtain the 3PN extension of the source multipole moments in the case of compact binaries, and compute the contributions of hereditary terms (tails, tails-of-tails and memory integrals) up to 3PN order. The end results are given for both the complete plus and cross polarizations and the separate spin-weighted spherical harmonic modes

  15. Lethality in mice and rats exposed to 2450 MHz circularly polarized microwaves as a function of exposure duration and environmental factors

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E.; Kinn, J.B.; Ali, J.; Carter, H.B.; Rehnberg, B.; Stead, A.G.

    1985-02-01

    Adult male CD-1 mice and CD rats were used to determine LD50/24 h lethality rates from exposure to 2450-MHz circularly polarized microwaves. Groups of 16 mice or six rats were exposed in each of 32 combinations of nominal power density, exposure duration, and environmental temperature and relative humidity. An analysis of variance probit model was used to determine the influence each variable had on the probability of death. Significant factors in lethality were nominal power density, exposure duration and environmental temperature, but not environmental relative humidity. The estimated power density (mW cm-2) required to kill 50% of the animals in 24 h is halved when the environmental temperature is increased from 20 to 30 degrees C. Similarly, only 20-25% of the power density is required when the exposure duration is increased from 1 to 4 h. The use of nominal power density as a predictor of the probability of death was more efficient than specific absorption rate estimated experimentally by twin-well calorimetry. The exposure of one mouse at a time, instead of 16, did not alter the predicted death rate.

  16. ANN Synthesis Model of Single-Feed Corner-Truncated Circularly Polarized Microstrip Antenna with an Air Gap for Wideband Applications

    Directory of Open Access Journals (Sweden)

    Zhongbao Wang

    2014-01-01

    Full Text Available A computer-aided design model based on the artificial neural network (ANN is proposed to directly obtain patch physical dimensions of the single-feed corner-truncated circularly polarized microstrip antenna (CPMA with an air gap for wideband applications. To take account of the effect of the air gap, an equivalent relative permittivity is introduced and adopted to calculate the resonant frequency and Q-factor of square microstrip antennas for obtaining the training data sets. ANN architectures using multilayered perceptrons (MLPs and radial basis function networks (RBFNs are compared. Also, six learning algorithms are used to train the MLPs for comparison. It is found that MLPs trained with the Levenberg-Marquardt (LM algorithm are better than RBFNs for the synthesis of the CPMA. An accurate model is achieved by using an MLP with three hidden layers. The model is validated by the electromagnetic simulation and measurements. It is enormously useful to antenna engineers for facilitating the design of the single-feed CPMA with an air gap.

  17. Baryon spectroscopy with polarization observables from CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Steffen [Univ. of South Carolina, Columbia, SC (United States)

    2016-08-01

    Meson photoproduction is an important tool in the study of baryon resonances. The spectrum of broad and overlapping nucleon excitations can be greatly clarified by use of polarization observables. The N* program at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) includes experimental studies with linearly and circularly polarized tagged photon beams, longitudinally and transversely polarized nucleon targets, and recoil polarizations. An overview of these experimental studies and recent results will be given.

  18. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  19. Polarization phenomena in nucleon-nucleon scattering at intermediate and high energies including the present status of dibaryons

    Energy Technology Data Exchange (ETDEWEB)

    Yokosawa, A.

    1985-01-01

    We review experimental results concerning polarization phenomena in nucleon-nucleon scattering in which both the elastic scattering and hadron-production reaction are included. We also present summary of S = 0 dibaryon resonances and candidates by reviewing experimental data in the nucleon-nucleon system, ..gamma..d channel, ..pi..d elastic scattering, pp ..-->.. ..pi..d channel, deuteron break-up reactions, and narrow structures in missing-mass spectra. 93 refs., 26 figs.

  20. Compton polarimetry detection of small circularly and linearly polarized impurities in Mössbauer 8.4 keV (3/2-1/2) M1 γ-transition of {sup 169}Tm

    Energy Technology Data Exchange (ETDEWEB)

    Tsinoev, V.; Cherepanov, V.; Shuvalov, V.; Balysh, A.; Gabbasov, R., E-mail: graul@list.ru [National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-12-15

    The arrangement of an experiment to detect the P−odd and P, T−odd polarized part of the Mössbauer ({sup +}3/2– {sup +}1/2) gamma transition of a deformed {sup 169}Tm nucleus with an energy of 8.4 keV by Compton polarimetry is discussed. Tm {sub 2}O{sub 3} single crystal with a quadrupolarly split Mössbauer spectrum is proposed as a resonance polarizer. A Be-scatterer-based Compton polarimeter and a synchronously detecting system will be used to measure the P-odd circular polarization P{sub C}and P, T-odd linear polarization P{sub L}.The expected accuracy of measuring the relative magnitude of the P, T-odd contribution is about 1% of the magnitude of usual weak nucleon–nucleon interaction.

  1. Faecal virome of healthy chickens reveals a large diversity of the eukaryote viral community, including novel circular ssDNA viruses.

    Science.gov (United States)

    Lima, Diane A; Cibulski, Samuel P; Finkler, Fabrine; Teixeira, Thais F; Varela, Ana Paula M; Cerva, Cristine; Loiko, Márcia R; Scheffer, Camila M; Dos Santos, Helton F; Mayer, Fabiana Q; Roehe, Paulo M

    2017-04-01

    This study is focused on the identification of the faecal virome of healthy chickens raised in high-density, export-driven poultry farms in Brazil. Following high-throughput sequencing, a total of 7743 de novo-assembled contigs were constructed and compared with known nucleotide/amino acid sequences from the GenBank database. Analyses with blastx revealed that 279 contigs (4 %) were related to sequences of eukaryotic viruses. Viral genome sequences (total or partial) indicative of members of recognized viral families, including Adenoviridae, Caliciviridae, Circoviridae, Parvoviridae, Picobirnaviridae, Picornaviridae and Reoviridae, were identified, some of those representing novel genotypes. In addition, a range of circular replication-associated protein encoding DNA viruses were also identified. The characterization of the faecal virome of healthy chickens described here not only provides a description of the viruses encountered in such niche but should also represent a baseline for future studies comparing viral populations in healthy and diseased chicken flocks. Moreover, it may also be relevant for human health, since chickens represent a significant proportion of the animal protein consumed worldwide.

  2. Enantiomeric excesses induced in amino acids by ultraviolet circularly polarized light irradiation of extraterrestrial ice analogs: A possible source of asymmetry for prebiotic chemistry

    International Nuclear Information System (INIS)

    Modica, Paola; De Marcellus, Pierre; D'Hendecourt, Louis Le Sergeant; Meinert, Cornelia; Meierhenrich, Uwe J.; Nahon, Laurent

    2014-01-01

    The discovery of meteoritic amino acids with enantiomeric excesses of the L-form (ee L ) has suggested that extraterrestrial organic materials may have contributed to prebiotic chemistry and directed the initial occurrence of the ee L that further led to homochirality of amino acids on Earth. A proposed mechanism for the origin of ee L in meteorites involves an asymmetric photochemistry of extraterrestrial ices by UV circularly polarized light (CPL). We have performed the asymmetric synthesis of amino acids on achiral extraterrestrial ice analogs by VUV CPL, investigating the chiral asymmetry transfer at two different evolutionary stages at which the analogs were irradiated (regular ices and/or organic residues) and at two different photon energies (6.6 and 10.2 eV). We identify 16 distinct amino acids and precisely measure the L-enantiomeric excesses using the enantioselective GC × GC-TOFMS technique in five of them: α-alanine, 2,3-diaminopropionic acid, 2-aminobutyric acid, valine, and norvaline, with values ranging from ee L = –0.20% ± 0.14% to ee L = –2.54% ± 0.28%. The sign of the induced ee L depends on the helicity and the energy of CPL, but not on the evolutionary stage of the samples, and is the same for all five considered amino acids. Our results support an astrophysical scenario in which the solar system was formed in a high-mass star-forming region where icy grains were irradiated during the protoplanetary phase by an external source of CPL of a given helicity and a dominant energy, inducing a stereo-specific photochemistry.

  3. Simulation of AZ-PN100 resist pattern fluctuation in X-ray lithography, including synchrotron beam polarization

    International Nuclear Information System (INIS)

    Scheckler, E.W.; Ogawa, Taro; Tanaka, Toshihiko; Takeda, Eiji; Oizumi, Hiroaki.

    1993-01-01

    A new simulation model for nanometer-scale pattern fluctuation in X-ray lithography is presented and applied to a study of AZ-PN100 negative chemical amplification resist. The exposure simulation considers polarized photons from a synchrotron radiation (SR) source. Monte Carlo simulation of Auger and photoelectron generation is followed by electron scattering simulation to determine the deposited energy distribution at the nanometer scale, including beam polarization effects. An acid-catalyst random walk model simulates the post-exposure bake (PEB) step. Fourier transform infrared (FTIR) spectroscopy and developed resist thickness measurements are used to fit PEB and rate models for AZ-PN100. A polymer removal model for development simulation predicts the macroscopic resist shape and pattern roughness. The simulated 3σ linewidth variation is in excess of 24 nm. Simulation also shows a detrimental effect if the beam polarization is perpendicular to the line. Simulation assuming a theoretical ideal exposure yields a 50 nm minimum line for standard process conditions. (author)

  4. Information Circulars

    International Nuclear Information System (INIS)

    1969-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars which were of current interest on 15 January 1969 is given below, followed by an index to their subject matter. Other circulars can be traced by reference to earlier issues of the present document.

  5. Information Circulars

    International Nuclear Information System (INIS)

    1965-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current on 31 December 1964 is given, followed by an index to their subject matter.

  6. Information circulars

    International Nuclear Information System (INIS)

    1997-02-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Member States. This revision contains INFCIRCs published up to February 1997, grouped by field of activity. A complete list of information circulars in numerical order is given in an annex

  7. Information circulars

    International Nuclear Information System (INIS)

    1992-08-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Members of the Agency. This revision contains INFCIRCs published up to mid-August 1992. A complete numerical lift of Information Circulars with their titles is reproduced in an Annex

  8. Information circulars

    International Nuclear Information System (INIS)

    1999-06-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Member States. This revision contains INFCIRCs published up to the end of May 1999, grouped by field of activity. A complete list of information circulars in numerical order is given in an annex

  9. Information circulars

    International Nuclear Information System (INIS)

    1994-08-01

    Information circulars are published from time to time under the symbol INFCIRC/... for the purpose of bringing matters of general interest to the attention of all Members of the Agency. The present revision contains INFCIRCs published up to mid-August 1994. A complete numerical list of information circulars is reproduced with their titles in the Annex

  10. Information Circulars

    International Nuclear Information System (INIS)

    1966-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current or on the press on 15 May 1966 is given, followed by an index to their subject matter.

  11. Information circulars

    International Nuclear Information System (INIS)

    2002-05-01

    Information circulars are published from time to time under the symbol INFCIRC/... for the purpose of bringing matters of general interest to the attention of all Members of the Agency. The present revision contains INFCIRCs published up to the end of April 2002. A complete numerical list of information circulars is reproduced with their titles in the Annex

  12. Tight beta-turns in peptides. DFT-based study of infrared absorption and vibrational circular dichroism for various conformers including solvent effects

    Czech Academy of Sciences Publication Activity Database

    Kim, J.; Kapitán, Josef; Lakhani, A.; Bouř, Petr; Keiderling, T. A.

    2008-01-01

    Roč. 119, 1/3 (2008), s. 81-97 ISSN 1432-881X R&D Projects: GA ČR GA203/06/0420 Grant - others:NSF(US) CHE03-16014 Institutional research plan: CEZ:AV0Z40550506 Keywords : peptide beta -turn * density functional theory * infrared absorption * vibrational circular dichroism Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.370, year: 2008

  13. High Precision Linear And Circular Polarimetry. Sources With Stable Stokes Q,U & V In The Ghz Regime

    Science.gov (United States)

    Myserlis, Ioannis; Angelakis, E.; Zensus, J. A.

    2017-10-01

    We present a novel data analysis pipeline for the reconstruction of the linear and circular polarization parameters of radio sources. It includes several correction steps to minimize the effect of instrumental polarization, allowing the detection of linear and circular polarization degrees as low as 0.3 %. The instrumental linear polarization is corrected across the whole telescope beam and significant Stokes Q and U can be recovered even when the recorded signals are severely corrupted. The instrumental circular polarization is corrected with two independent techniques which yield consistent Stokes V results. The accuracy we reach is of the order of 0.1-0.2 % for the polarization degree and 1\\u00ba for the angle. We used it to recover the polarization of around 150 active galactic nuclei that were monitored monthly between 2010.6 and 2016.3 with the Effelsberg 100-m telescope. We identified sources with stable polarization parameters that can be used as polarization standards. Five sources have stable linear polarization; three are linearly unpolarized; eight have stable polarization angle; and 11 sources have stable circular polarization, four of which with non-zero Stokes V.

  14. Coherent π{sup 0}-photoproduction on the deuteron near the η-production threshold including polarization observables

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Eed M., E-mail: eeddarwish@gmail.com [Physics Department, Faculty of Science, Sohag University, Sohag 82524 (Egypt); Physics Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, P.O. Box 30002 (Saudi Arabia); Al-Thoyaib, Suleiman S. [Physics Department, Faculty of Science, Qassim University, Buraydah 51452, P.O. Box 6644 (Saudi Arabia)

    2014-12-15

    Coherent π{sup 0}-photoproduction on the deuteron including polarization observables is studied in the energy region near the η-production threshold at backward center-of-mass angles of the outgoing pion. This work is motivated by the measurements of the CLAS Collaboration at Jefferson Lab, where a cusp-like structure in the energy dependence of the differential cross section has been observed at extremely backward pion angles. The present approach is based on the impulse approximation and first-order rescattering diagrams with intermediate production of both π- and η-mesons. Numerical results for unpolarized cross sections, the linear photon asymmetry (Σ), the vector (T{sub 11}) and tensor (T{sub 2M}, M=0, 1, 2) deuteron target asymmetries, and the double polarization E-asymmetry are predicted and compared with available experimental data and other theoretical models. The effect of first-order rescattering is found to be much larger in spin asymmetries than in the unpolarized cross sections. It reaches on average about 40% in the tensor target and E asymmetries. Compared to the experimental data from CLAS Collaboration, sizable discrepancies are found. This is not the case for the linear photon asymmetry, for which a better comparison with the data from YerPhI Collaboration is obtained.

  15. Circular Updates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Circular Updates are periodic sequentially numbered instructions to debriefing staff and observers informing them of changes or additions to scientific and specimen...

  16. Baryon spectroscopy with polarization observables from CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Steffen [Univ. of South Carolina, Columbia, SC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-11-01

    The spectrum of nucleon excitations is dominated by broad and overlapping resonances. Polarization observables in photoproduction reactions are key in the study of these excitations. They give indispensable constraints to partial-wave analyses and help clarify the spectrum. A series of polarized photoproduction experiments have been performed at the Thomas Jefferson National Accelerator Facility with the CEBAF Large Acceptance Spectrometer (CLAS). These measurements include data with linearly and circularly polarized tagged-photon beams, longitudinally and transversely polarized proton and deuterium targets, and recoil polarizations through the observation of the weak decay of hyperons. An overview of these studies and recent results will be given.

  17. Information circulars

    International Nuclear Information System (INIS)

    1987-06-01

    The document summarizes the information circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Members of the Agency. In the main body of the document only those documents which are regarded as likely to be of current interest are listed. A complete numerical list of information circulars with their titles is reproduced in the Annex

  18. Information circulars

    International Nuclear Information System (INIS)

    1989-04-01

    The document summarizes the Information Circulars published by the IAEA under the symbol INFCIRC/ for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A complete list of INFCIRCs in numerical order with their titles is given in the Annex

  19. Structure of polarization-resolved conoscopic patterns of planar oriented liquid crystal cells

    Science.gov (United States)

    Kiselev, A. D.; Vovk, R. G.

    2010-05-01

    The geometry of distributions of the polarization of light in conoscopic patterns of planar oriented nematic and cholesteric liquid crystal (LC) cells is described in terms of the polarization singularities including C-points (points of circular polarization) and L lines (lines of linear polarization). Conditions for the formation of polarization singularities ( C-points) in an ensemble of conoscopic patterns parametrized by the polarization azimuth and ellipticity of the incident light wave have been studied. A characteristic feature of these conditions is selectivity with respect to the polarization parameters of the incident light wave. The polarization azimuth and ellipticity are determining parameters for nematic and cholesteric LC cells, respectively.

  20. Metallic layer-by-layer photonic crystals for linearly-polarized thermal emission and thermophotovoltaic device including same

    Science.gov (United States)

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P.

    2016-07-26

    Metallic thermal emitters consisting of two layers of differently structured nickel gratings on a homogeneous nickel layer are fabricated by soft lithography and studied for polarized thermal radiation. A thermal emitter in combination with a sub-wavelength grating shows a high extinction ratio, with a maximum value close to 5, in a wide mid-infrared range from 3.2 to 7.8 .mu.m, as well as high emissivity up to 0.65 at a wavelength of 3.7 .mu.m. All measurements show good agreement with theoretical predictions. Numerical simulations reveal that a high electric field exists within the localized air space surrounded by the gratings and the intensified electric-field is only observed for the polarizations perpendicular to the top sub-wavelength grating. This result suggests how the emissivity of a metal can be selectively enhanced at a certain range of wavelengths for a given polarization.

  1. Circular RNAs

    DEFF Research Database (Denmark)

    Han, Yi-Neng; Xia, Shengqiang; Zhang, Yuan-Yuan

    2017-01-01

    Circular RNAs (circRNAs) are a novel type of universal and diverse endogenous noncoding RNAs (ncRNAs) and they form a covalently closed continuous loop without 5' or 3' tails unlike linear RNAs. Most circRNAs are presented with characteristics of abundance, stability, conservatism, and often exhi...... and expression regulators, RBP sponges in cancer as well as current research methods of circRNAs, providing evidence for the significance of circRNAs in cancer diagnosis and clinical treatment....

  2. ELECTROMAGNETIC SCATTERING AND ANTENNA TECHNOLOGY (EMSAT) Task Order 0003: Design of a Circularly Polarized, 20 60 GHZ Active Phased Array for Wide Angle Scanning

    Science.gov (United States)

    2017-08-08

    the band and for scan angles up to 60° from normal. The antenna efficiency and axial ratio degrade by 1 dB at some points near the edges of the band...Prescribed by ANSI Std. Z39-18 i Approved for public release; distribution is unlimited Table of Contents Section Page 1.0 Summary...51 6.4 Estimating Finite Polarizer Edge Effects

  3. Circular mats under arbitrary loading

    International Nuclear Information System (INIS)

    Banerjee, A.; Jankov, Z.D.

    1975-01-01

    The analysis of mats as in nuclear power plants may become difficult when the large number of features are intended to be accounted for. Circular mats and arbitrary loadings are only a few of these that are considered. If the subgrade reaction can be represented as the function of subgrade displacement as given by Winkler's, Boussinesq's, or two elastic characteristic approaches, the general numerical method is then possible. Boussinesq's approach was treated in more detail when applied on circular mat with arbitrary loadings. Full polar grid formation that must be used when liftoff occurs is compared to harmonic formulation. The possibility of taking into account the superstructure restraint is indicated

  4. The Case for Tetrahedral Oxy-subhydride (TOSH Structures in the Exclusion Zones of Anchored Polar Solvents Including Water

    Directory of Open Access Journals (Sweden)

    Klaus Oehr

    2014-11-01

    Full Text Available We hypothesize a mechanistic model of how negatively-charged exclusion zones (EZs are created. While the growth of EZs is known to be associated with the absorption of ambient photonic energy, the molecular dynamics giving rise to this process need greater elucidation. We believe they arise due to the formation of oxy-subhydride structures (OH−(H2O4 with a tetrahedral (sp3 (OH−(H2O3 core. Five experimental data sets derived by previous researchers were assessed in this regard: (1 water-derived EZ light absorbance at specific infrared wavelengths, (2 EZ negative potential in water and ethanol, (3 maximum EZ light absorbance at 270 nm ultraviolet wavelength, (4 ability of dimethyl sulphoxide but not ether to form an EZ, and (5 transitory nature of melting ice derived EZs. The proposed tetrahedral oxy-subhydride structures (TOSH appear to adequately account for all of the experimental evidence derived from water or other polar solvents.

  5. A Strategy for Simultaneous Isolation of Less Polar Ginsenosides, Including a Pair of New 20-Methoxyl Isomers, from Flower Buds of Panax ginseng

    Directory of Open Access Journals (Sweden)

    Sha-Sha Li

    2017-03-01

    Full Text Available The present study was designed to simultaneously isolate the less polar ginsenosides from the flower buds of Panax ginseng (FBPG. Five ginsenosides, including a pair of new 20-methoxyl isomers, were extracted from FBPG and purified through a five-step integrated strategy, by combining ultrasonic extraction, Diaion Hp-20 macroporous resin column enrichment, solid phase extraction (SPE, reversed-phase high-performance liquid chromatography (RP-HPLC analysis and preparation, and nuclear magnetic resonance (NMR analysis. The quantification of the five ginsenosides was also discussed by a developed method with validations within acceptable limits. Ginsenoside Rg5 showed content of about 1% in FBPG. The results indicated that FBPG might have many different ginsenosides with diverse chemical structures, and the less polar ginsenosides were also important to the quality control and standardization of FBPG.

  6. Polarization holographic optical recording of a new photochromic diarylethene

    Science.gov (United States)

    Pu, Shouzhi; Miao, Wenjuan; Chen, Anyin; Cui, Shiqiang

    2008-12-01

    A new symmetrical photochromic diarylethene, 1,2-bis[2-methyl-5-(3-methoxylphenyl)-3-thienyl]perfluorocyclopentene (1a), was synthesized, and its photochromic properties were investigated. The compound exhibited good photochromism both in solution and in PMMA film with alternating irradiation by UV/VIS light, and the maxima absorption of its closed-ring isomer 1b are 582 and 599 nm, respectively. Using diarylethene 1b/PMMA film as recording medium and a He-Ne laser (633 nm) for recording and readout, four types of polarization and angular multiplexing holographic optical recording were performed perfectly. For different types of polarization recording including parallel linear polarization recording, parallel circular polarization recording, orthogonal linear polarization recording and orthogonal circular polarization recording,have been accomplished successfully. The results demonstrated that the orthogonal circular polarization recording is the best method for polarization holographic optical recording when this compound was used as recording material. With angular multiplexing recording technology, two high contrast holograms were recorded in the same place on the film with the dimension of 0.78 μm2.

  7. Enantioselective femtosecond laser photoionization spectrometry of limonene using photoelectron circular dichroism

    NARCIS (Netherlands)

    Rafiee Fanood, M.M.; Janssen, M.H.M.; Powis, I.

    2015-01-01

    Limonene is ionized by circularly polarized 420 nm femtosecond laser pulses. Ion mass and photoelectron energy spectra identify the dominant (2 + 1) multiphoton ionization mechanism, aided by TDDFT calculations of the Rydberg excitations. Photoelectron circular dichroism measurements on pure

  8. Spiky soliton in circular polarized Alfven wave

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Sanuki, H.; Konno, K.; Wadati, M.

    1979-06-01

    A new type of nonlinear evolution equation for the Alfven waves, propagating parallel to the magnetic field, is now registered to the completely integrable family of nonlinear evolution equations. In spite of the extensive studies of Kaup and Newell, and of Kawata and Inoue, these analysis have been dealing with solutions for restricted boundary conditions. The present paper presents full account of stationary solitary wave solutions for the plane wave boundary condition. The obtained results exhibit peculiar structure of spiky modulation of amplitude and phase, which arises from the derivative nonlinear coupling term. A nonlinear equation for complex amplitude associated with the carrier wave is shown to be a mixed type of nonlinear Schroedinger equation, having and ordinary cubic nonlinear term and the derivative of cubic nonlinear term. (author)

  9. Broadband Circularly Polarized Patch Antenna and Method

    Science.gov (United States)

    2016-09-16

    invention to provide a patch antenna having improved impedance bandwidth and optimized axial ratio over a wide range of frequencies. Attorney Docket...rods 28 in layers above emitter 12. Spacers 26 can be made from syntactic foam, polystyrene foam, polyethylene foam or any number of other polymer ... ceramic having a permittivity εr ~ 30. Other high dielectric material can be used for rods 28 if it has a permittivity εr between about 25 to 35

  10. Circular dichroism of luminous energy, induced by the dissipation in light scattering by aligned atoms

    International Nuclear Information System (INIS)

    Agre, M.Ya.

    1996-01-01

    A compact expression for the cross section of light scattering by aligned atomic systems is derived. It is shown that in above-threshold or resonant scattering, when the channel of luminous energy dissipation is open, circular dichroism effects can be observed in the angular distribution and the degree of polarization of the scattered light. In such cases circular polarization of the scattered light is also induced when the incident light has no circular polarization

  11. Polarization singularity anarchy in three dimensional ellipse fields

    Science.gov (United States)

    Freund, Isaac

    2004-11-01

    Lines of circular polarization, C lines, and lines of linear polarization, L lines, are studied in a computer simulated random three-dimensional ellipse field. Although we verify existing predictions for the location of particular points on these lines at which the sign of the topological index of the line inverts, we show that from the point of view of foliations of the field such points are better described as points of pair production. We find a new set of true sign inversion points, and show that when all possible foliations are considered this set includes all points on the line. We also find three new families of polarization singularities whose members include all polarization ellipses. The recently described polarization singularity democracy in two-dimensional fields evidently explodes into polarization singularity anarchy in three-dimensional fields.

  12. Circular polarisation in AGN

    NARCIS (Netherlands)

    Macquart, JP

    2002-01-01

    We discuss the constraints that recent observations place on circular polarisation in AGN. In many sources the circular polarisation is variable on short timescales, indicating that it originates in compact regions of the sources. The best prospects for gleaning further information about circular

  13. Modeling magnetic circular dichroism within the polarizable embedding approach

    DEFF Research Database (Denmark)

    Nørby, Morten Steen; Coriani, Sonia; Kongsted, Jacob

    2018-01-01

    Magnetic circular dichroism (MCD) is defined as the differential absorption of left and right circularly polarized light in a sample subjected to an external magnetic field. In order to interpret the results of MCD measurements, theoretical predictions of key MCD parameters can be of utmost...... of the more conventional dielectric continuum approach. Results are presented for cytosine and hypoxanthine solvated in water....

  14. Administrative Circulars Rev.

    CERN Multimedia

    2003-01-01

    Administrative Circular N° 19 (Rev. 3) - April 2003 Subsistence indemnity - Other expenses necessarily incurred in the course of duty travelAdministrative Circular N° 25 (Rev. 2) - April 2003 Shift work - Special provisions for the Fire and Rescue Service - These circulars have been revised. Human Resources Division Tel. 74128Copies of these circulars are available in the Divisional Secretariats. In addition, administrative and operational circulars, as well as the lists of those in force, are available for consultation on the Web at: http://humanresources.web.cern.ch/humanresources/internal/admin_services/admincirc/listadmincirc.asp

  15. Dynamics of a charged particle in a circularly polarized travelling electromagnetic wave. Self-consistent model for the wave-particle dynamical interaction; Dynamique d'une particule chargee dans un champ electromagnetique polarise circulairement. Traitement auto-consistant de l'interaction entre plusieurs particules et l'onde

    Energy Technology Data Exchange (ETDEWEB)

    Bourdier, A

    1999-07-01

    This work concerns mainly the dynamics of a charged particle in an electromagnetic wave. It is a first step in elaborating a more general model permitting to predict the wave-particle interaction. We show how deriving a first integral gives an idea on how to create an electron current in a cold electron plasma. We present results which can be used to test the 2D and 3D Vlasov-Maxwell codes being built up in CEA-DAM. These codes will allow the calcination of the magnetic field created by an electromagnetic wave like the one due to the inverse Faraday effect when a circularly polarized wave drives the electrons of a plasma into circular orbits. (author)

  16. Exciton circular dichroism in channelrhodopsin.

    Science.gov (United States)

    Pescitelli, Gennaro; Kato, Hideaki E; Oishi, Satomi; Ito, Jumpei; Maturana, Andrés Daniel; Nureki, Osamu; Woody, Robert W

    2014-10-16

    Channelrhodopsins (ChRs) are of great interest currently because of their important applications in optogenetics, the photostimulation of neurons. The absorption and circular dichroism (CD) spectra of C1C2, a chimera of ChR1 and ChR2 of Chlamydomonas reinhardtii, have been studied experimentally and theoretically. The visible absorption spectrum of C1C2 shows vibronic fine structure in the 470 nm band, consistent with the relatively nonpolar binding site. The CD spectrum has a negative band at 492 nm (Δε(max) = -6.17 M(-1) cm(-1)) and a positive band at 434 nm (Δε(max) = +6.65 M(-1) cm(-1)), indicating exciton coupling within the C1C2 dimer. Time-dependent density functional theory (TDDFT) calculations are reported for three models of the C1C2 chromophore: (1) the isolated protonated retinal Schiff base (retPSB); (2) an ion pair, including the retPSB chromophore, two carboxylate side chains (Asp 292, Glu 162), modeled by acetate, and a water molecule; and (3) a hybrid quantum mechanical/molecular mechanical (QM/MM) model depicting the binding pocket, in which the QM part consists of the same ion pair as that in (2) and the MM part consists of the protein residues surrounding the ion pair within 10 Å. For each of these models, the CD of both the monomer and the dimer was calculated with TDDFT. For the dimer, DeVoe polarizability theory and exciton calculations were also performed. The exciton calculations were supplemented by calculations of the coupling of the retinal transition with aromatic and peptide group transitions. For the dimer, all three methods and three models give a long-wavelength C2-axis-polarized band, negative in CD, and a short-wavelength band polarized perpendicular to the C2 axis with positive CD, differing in wavelength by 1-5 nm. Only the retPSB model gives an exciton couplet that agrees qualitatively with experiment. The other two models give a predominantly or solely positive band. We further analyze an N-terminal truncated mutant

  17. High intensity circular proton accelerators

    International Nuclear Information System (INIS)

    Craddock, M.K.

    1987-12-01

    Circular machines suitable for the acceleration of high intensity proton beams include cyclotrons, FFAG accelerators, and strong-focusing synchrotrons. This paper discusses considerations affecting the design of such machines for high intensity, especially space charge effects and the role of beam brightness in multistage accelerators. Current plans for building a new generation of high intensity 'kaon factories' are reviewed. 47 refs

  18. Publication of administrative circular

    CERN Multimedia

    HR Department

    2009-01-01

    ADMINISTRATIVE CIRCULAR NO. 23 (REV. 2) – SPECIAL WORKING HOURS Administrative Circular No. 23 (Rev. 2) entitled "Special working hours", approved following discussion in the Standing Concertation Committee on 9 December 2008, will be available on the intranet site of the Human Resources Department as from 19 December 2008: http://cern.ch/hr-docs/admincirc/admincirc.asp It cancels and replaces Administrative Circular No. 23 (Rev. 1) entitled "Stand-by duty" of April 1988. A "Frequently Asked Questions" information document on special working hours will also be available on this site. Paper copies of this circular will shortly be available in Departmental Secretariats. Human Resources Department Tel. 78003

  19. PUBLICATION OF ADMINISTRATIVE CIRCULAR

    CERN Multimedia

    HR Department

    2008-01-01

    ADMINISTRATIVE CIRCULAR NO. 23 (REV. 2) – SPECIAL WORKING HOURS Administrative Circular No. 23 (Rev. 2) entitled "Special working hours", approved following discussion in the Standing Concertation Committee meeting of 9 December 2008, will be available on the intranet site of the Human Resources Department as from 19 December 2008: http://cern.ch/hr-docs/admincirc/admincirc.asp It cancels and replaces Administrative Circular No. 23 (Rev. 1) entitled "Stand-by duty" of April 1988. A "Frequently Asked Questions" information document on special working hours will also be available on this site. Paper copies of this circular will shortly be available in departmental secretariats. Human Resources Department Tel. 78003

  20. A Circular Statistical Method for Extracting Rotation Measures

    Indian Academy of Sciences (India)

    Abstract. We propose a new method for the extraction of Rotation Measures from spectral polarization data. The method is based on maximum likelihood analysis and takes into account the circular nature of the polarization data. The method is unbiased and statistically more efficient than the standard 2 procedure.

  1. Precessing deuteron polarization

    International Nuclear Information System (INIS)

    Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.

    2002-01-01

    The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments

  2. Towards Circular Economy

    DEFF Research Database (Denmark)

    Guldmann, Eva

    The present report concerns the practical process of developing initiatives based on the circular economy in eight Danish companies. The report outlines how the process of integrating the circular economy was approached in each of the participating companies during 2014 and 2015 and what came out...

  3. Towards Circular Business Models

    DEFF Research Database (Denmark)

    Guldmann, Eva; Remmen, Arne

    The present report concerns the practical process of developing initiatives based on the circular economy in eight Danish companies. The report outlines how the process of integrating the circular economy was approached in each of the participating companies during 2014 and 2015 and what came out...

  4. The generalized circular model

    NARCIS (Netherlands)

    Webers, H.M.

    1995-01-01

    In this paper we present a generalization of the circular model. In this model there are two concentric circular markets, which enables us to study two types of markets simultaneously. There are switching costs involved for moving from one circle to the other circle, which can also be thought of as

  5. Circularity and Lambda Abstraction

    DEFF Research Database (Denmark)

    Danvy, Olivier; Thiemann, Peter; Zerny, Ian

    2013-01-01

    unknowns from what is done to them, which we lambda-abstract with functions. The circular unknowns then become dead variables, which we eliminate. The result is a strict circu- lar program a la Pettorossi. This transformation is reversible: given a strict circular program a la Pettorossi, we introduce...

  6. Building a Circular Future

    DEFF Research Database (Denmark)

    Merrild, Heidi

    2016-01-01

    Natural resources are scarce and construction accounts for 40 percent of the material and energy consumption in Europe. This means that a switch to a circular future is necessary. ’Building a Circular Future’ maps out where we are, where we are going, and what is needed for this conversion to take...... of the circular strategies is not only in the future. Increased flexibility, optimized operation and maintenance, as well as a healthier building, is low-hanging fruit that can be harvested today. The project’s principles can be implemented in industrialized construction in a large scale today. That is proven...... by the three 1:1 prototypes of building elements, which are designed for maximum reuse and circular economy, that has been developed as a result of the project. Several built projects and commercially available products support this assertion. CIRCULAR PRINCIPLES The focus throughout the book is how to build...

  7. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  8. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    On the basis of the results obtained by Silver and Saunders [4] for the field radiated from an arbitrary slot in a perfectly conducting circular cylinder, expressions have been derived for the field radiated by a narrow helical slot, with an arbitrary aperture field distribution, in a circular...... antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...

  9. Supply chain in a circular economy: a multidimensional research agenda

    OpenAIRE

    Dora, M; Manjot Singh Bhatia; Gallear, D

    2016-01-01

    This paper focuses on analysing and synthesising the extant research published on supply chains in the context of circular economy. Circular supply chain (CSC) broadly relates to remanufacturing, reusing and recycling processes in the circular economy in which at every stage of a product’s lifecycle consideration is given to the most efficient use of resources (Genovese et al., 2015). The Circular Economy promoted by the European Commission includes industrial systems that are restorative by ...

  10. Administrative & Operational Circulars - Reminder

    CERN Document Server

    HR Department

    2011-01-01

    All Administrative and Operational Circulars are available on the intranet site of the Human Resources Department at the following address: http://cern.ch/hr-docs/admincirc/admincirc.asp Department Head Office  

  11. The Circular Camera Movement

    DEFF Research Database (Denmark)

    Hansen, Lennard Højbjerg

    2014-01-01

    It has been an accepted precept in film theory that specific stylistic features do not express specific content. Nevertheless, it is possible to find many examples in the history of film in which stylistic features do express specific content: for instance, the circular camera movement is used re...... such as the circular camera movement. Keywords: embodied perception, embodied style, explicit narration, interpretation, style pattern, television style...

  12. Surface Tension of Binary Mixtures Including Polar Components Modeled by the Density Gradient Theory Combined with the PC-SAFT Equation of State

    Czech Academy of Sciences Publication Activity Database

    Vinš, Václav; Planková, Barbora; Hrubý, Jan

    2013-01-01

    Roč. 34, č. 5 (2013), s. 792-812 ISSN 0195-928X R&D Projects: GA AV ČR IAA200760905; GA ČR(CZ) GPP101/11/P046; GA ČR GA101/09/1633 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : chemical polarity * gradient theory * surface tension Subject RIV: BJ - Thermodynamics Impact factor: 0.623, year: 2013 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10765-012-1207-z

  13. Kramers-Kronig relations for interstellar polarization

    International Nuclear Information System (INIS)

    Martin, P.G.

    1975-01-01

    The difficulties encountered in using the Kramers-Kronig relations to predict the behavior of interstellar polarization are pointed out, while at the same time their value in an interpretive role is acknowledged. Observations of interstellar circular polarization lead to restrictions on the interstellar grain composition, and additional constraints should be possible through measurement of linear polarization in the infrared and the ultraviolet

  14. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2015-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detector, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The internat...

  15. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The interna...

  16. Towards Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    The Large Hadron Collider (LHC) at CERN presently provides proton-proton collisions at a centre-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics programme will extend through the second half of the 2030’s. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ∼100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCC-ee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on $Nb_3Sn$ superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton c...

  17. Circular depolarization ratios of single water droplets and finite ice circular cylinders: a modeling study

    Directory of Open Access Journals (Sweden)

    M. Nicolet

    2012-05-01

    Full Text Available Computations of the phase matrix elements for single water droplets and ice crystals in fixed orientations are presented to determine if circular depolarization δC is more accurate than linear depolarization for phase discrimination. T-matrix simulations were performed to calculate right-handed and left-handed circular depolarization ratios δ+C, respectively δ−C and to compare them with linear ones. Ice crystals are assumed to have a circular cylindrical shape where their surface-equivalent diameters range up to 5 μm. The circular depolarization ratios of ice particles were generally higher than linear depolarization and depended mostly on the particle orientation as well as their sizes. The fraction of non-detectable ice crystals (δ<0.05 was smaller considering a circular polarized light source, reaching 4.5%. However, water droplets also depolarized light circularly for scattering angles smaller than 179° and size parameters smaller than 6 at side- and backscattering regions. Differentiation between ice crystals and water droplets might be difficult for experiments performed at backscattering angles which deviate from 180° unlike LIDAR applications. Instruments exploiting the difference in the P44/P11 ratio at a scattering angle around 115° are significantly constrained in distinguishing between water and ice because small droplets with size parameters between 5 and 10 do cause very high circular depolarizations at this angle. If the absence of the liquid phase is confirmed, the use of circular depolarization in single particle detection is more sensitive and less affected by particle orientation.

  18. Circular on planned parenthood, 1987.

    Science.gov (United States)

    1987-01-01

    In 1987 fourteen units of the Government of Henan issued a Circular stating that: "Planned parenthood must be publicized deep into the grass roots and among the people, and importance must be attached to results." The Circular stresses: "In the propaganda drive, it is necessary to successfully grasp three key links: 1. It is necessary to disseminate intensively the important directive on population problems that is contained in the report of the 13th CPC National Congress and the seriousness of the population situation of our country and province so that the cadres and the masses can understand the relationship between population control and the achievement of the strategic target of the three big steps, understand the reason for carrying out planned parenthood, understand that the one-child policy is still advocated, and conscientiously carry out planned parenthood. 2. It is essential to succeed in propagating knowledge of contraception, sterilization, childbirth, and child care and in conducting ideological education for those who undergo operations and for their family members. 3. It is imperative to visit those who have undergone operations and to help them solve practically their difficulties in making a living." The Circular concludes by demanding that under the unified leadership of party committees and governments at all levels, the propaganda drive be carried out by relying on the efforts of all of society. In conjunction with their own work, departments, including the propaganda, education, public health, and cultural departments, must carry out propaganda and education for planned parenthood. full text

  19. SIMULTANEOUS LINEAR AND CIRCULAR OPTICAL POLARIMETRY OF ASTEROID (4) VESTA

    Energy Technology Data Exchange (ETDEWEB)

    Wiktorowicz, Sloane J.; Nofi, Larissa A., E-mail: sloanew@ucolick.org [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-02-10

    From a single 3.8 hr observation of the asteroid (4) Vesta at 13.°7 phase angle with the POlarimeter at Lick for Inclination Studies of Hot jupiters 2 (POLISH2) at the Lick Observatory Shane 3 m telescope, we confirm rotational modulation of linear polarization in the B and V bands. We measure the peak-to-peak modulation in the degree of linear polarization to be ΔP = (294 ± 35) × 10{sup −6} (ppm) and time-averaged ΔP/P = 0.0575 ± 0.0069. After rotating the plane of linear polarization to the scattering plane, asteroidal rotational modulation is detected with 12σ confidence and observed solely in Stokes Q/I. POLISH2 simultaneously measures Stokes I, Q, U (linear polarization), and V (circular polarization), but we detect no significant circular polarization with a 1σ upper limit of 78 ppm in the B band. Circular polarization is expected to arise from multiple scattering of sunlight by rough surfaces, and it has previously been detected in nearly all other classes of solar system bodies except for asteroids. Subsequent observations may be compared with surface albedo maps from the Dawn Mission, which may allow the identification of compositional variation across the asteroidal surface. These results demonstrate the high accuracy achieved by POLISH2 at the Lick 3 m telescope, which is designed to directly detect scattered light from spatially unresolvable exoplanets.

  20. New modeling of reflection interference contrast microscopy including polarization and numerical aperture effects: application to nanometric distance measurements and object profile reconstruction.

    Science.gov (United States)

    Theodoly, O; Huang, Z-H; Valignat, M-P

    2010-02-02

    We have developed a new and improved optical model of reflection interference contrast microscopy (RICM) to determine with a precision of a few nanometers the absolute thickness h of thin films on a flat surface in immersed conditions. The model takes into account multiple reflections between a planar surface and a multistratified object, finite aperture illumination (INA), and, for the first time, the polarization of light. RICM intensity I is typically oscillating with h. We introduce a new normalization procedure that uses the intensity extrema of the same oscillation order for both experimental and theoretical intensity values and permits us to avoid significant error in the absolute height determination, especially at high INA. We also show how the problem of solution degeneracy can be solved by taking pictures at two different INA values. The model is applied to filled polystyrene beads and giant unilamellar vesicles of radius 10-40 microm sitting on a glass substrate. The RICM profiles I(h) can be fitted for up to two to three oscillation orders, and extrema positions are correct for up to five to seven oscillation orders. The precision of the absolute distance and of the shape of objects near a substrate is about 5 nm in a range from 0 to 500 nm, even under large numerical aperture conditions. The method is especially valuable for dynamic RICM experiments and with living cells where large illumination apertures are required.

  1. Transposable elements and circular DNAs

    KAUST Repository

    Mourier, Tobias

    2016-09-26

    Circular DNAs are extra-chromosomal fragments that become circularized by genomic recombination events. We have recently shown that yeast LTR elements generate circular DNAs through recombination events between their flanking long terminal repeats (LTRs). Similarly, circular DNAs can be generated by recombination between LTRs residing at different genomic loci, in which case the circular DNA will contain the intervening sequence. In yeast, this can result in gene copy number variations when circles contain genes and origins of replication. Here, I speculate on the potential and implications of circular DNAs generated through recombination between human transposable elements.

  2. Polarized electroluminescence from silicon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bagraev, Nikolay; Danilovsky, Eduard; Gets, Dmitry; Klyachkin, Leonid; Kudryavtsev, Andrey; Kuzmin, Roman; Malyarenko, Anna [Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Mashkov, Vladimir [St. Petersburg State Polytechnical University, 195251 St. Petersburg (Russian Federation)

    2012-05-15

    We present the first findings of the circularly polarized electroluminescence (CPEL) from silicon nanostructures which are the p-type ultra-narrow silicon quantum well (Si-QW) confined by {delta}-barriers heavily doped with boron. The CPEL dependences on the forward current and lateral electric field show the circularly polarized light emission which appears to be caused by the exciton recombination through the negative-U dipole boron centers at the Si-QW-{delta}-barriers interface with the assistance of phosphorus donors. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  4. Kappa Coefficients for Circular Classifications

    NARCIS (Netherlands)

    Warrens, Matthijs J.; Pratiwi, Bunga C.

    2016-01-01

    Circular classifications are classification scales with categories that exhibit a certain periodicity. Since linear scales have endpoints, the standard weighted kappas used for linear scales are not appropriate for analyzing agreement between two circular classifications. A family of kappa

  5. Circular spectropolarimetric sensing of chiral photosystems in decaying leaves

    Science.gov (United States)

    Patty, C. H. Lucas; Visser, Luuk J. J.; Ariese, Freek; Buma, Wybren Jan; Sparks, William B.; van Spanning, Rob J. M.; Röling, Wilfred F. M.; Snik, Frans

    2017-03-01

    Circular polarization spectroscopy has proven to be an indispensable tool in photosynthesis research and (bio)molecular research in general. Oxygenic photosystems typically display an asymmetric Cotton effect around the chlorophyll absorbance maximum with a signal ≤ 1 % . In vegetation, these signals are the direct result of the chirality of the supramolecular aggregates. The circular polarization is thus directly influenced by the composition and architecture of the photosynthetic macrodomains, and is thereby linked to photosynthetic functioning. Although ordinarily measured only on a molecular level, we have developed a new spectropolarimetric instrument, TreePol, that allows for both laboratory and in-the-field measurements. Through spectral multiplexing, TreePol is capable of fast measurements with a sensitivity of ∼ 1 *10-4 and is therefore suitable of non-destructively probing the molecular architecture of whole plant leaves. We have measured the chiroptical evolution of Hedera helix leaves for a period of 22 days. Spectrally resolved circular polarization measurements (450-900 nm) on whole leaves in transmission exhibit a strong decrease in the polarization signal over time after plucking, which we accredit to the deterioration of chiral macro-aggregates. Chlorophyll a levels measured over the same period by means of UV-vis absorption and fluorescence spectroscopy showed a much smaller decrease. With these results we are able to distinguish healthy from deteriorating leaves. Hereby we indicate the potency of circular polarization spectroscopy on whole and intact leaves as a nondestructive tool for structural and plant stress assessment. Additionally, we underline the establishment of circular polarization signals as remotely accessible means of detecting the presence of extraterrestrial life.

  6. Manipulating light polarizations with a hyperbolic metamaterial waveguide.

    Science.gov (United States)

    Zhu, Hua; Yin, Xiang; Chen, Lin; Zhu, Zhongshu; Li, Xun

    2015-10-15

    In this Letter we demonstrate that a hyperbolic metamaterial (HMM) waveguide array exhibits a giant modal birefringence between the TE and TM modes by utilization of a rectangular waveguide cross section. We further reveal that the designed polarization manipulation device using such a HMM waveguide array with a subwavelength thickness presents the ability to function as a polarizer or quarter- or half-wave plate that enables transmission only for electromagnetic wave (EW) that is polarized at a specific direction, or converting linearly polarized EW to circularly and elliptically polarized EW or rotating linearly polarized EW with 90° at terahertz (THz) frequencies. A giant modal birefringence between the TE and TM modes from 0.8 to 2 between 2 and 4.8 THz is achievable, which is dozens of times higher than conventional quartz birefringent crystals for THz waves. This polarization manipulation device has the performance merits including high transmission efficiency, ultra-compactness, and tunable birefringence, offering a promising approach to manipulating the polarization states of EW.

  7. Enhanced Circular Dichroism via Symmetry Breaking in a Chiral Plasmonic Nanoparticle Oligomer

    Science.gov (United States)

    Le, Khai Q.

    2018-02-01

    A chiral plasmonic nanoparticle oligomer, consisting of four symmetrically arranged nanodisks of different heights and having different optical absorption responses to left and right-handed circularly polarized light illumination, has been experimentally reported in the literature. The resulting circular dichroism (CD) signal was detectable with state of the art CD spectrometers but was much weaker than those of existing chiral nanostructures, i.e., three-dimensional (3-D) chiral metamaterials. In this letter, via symmetry breaking in such an oligomer, the author demonstrates that the CD can be enhanced up to six times compared to that of a symmetric oligomer, and is in the range of a relevant 3-D chiral metamolecule. Through investigation of geometrical parameters including particle size, asymmetric and symmetric gaps, the CD evolution was reported, which provides a useful guideline for design of two-dimensional chiral oligomers adopted as efficient probes for CD spectroscopic applications.

  8. High-speed circular polarimetry of AM Herculis

    International Nuclear Information System (INIS)

    Stockman, H.S.; Sargent, T.A.

    1979-01-01

    The magnetic variable AM Her shows synchronous 3.09 hr variations in its optical flux and polarization, its spectral features, and its two-component X-ray flux. Similar optical behavior is seen in AN UMa and VV Pup. While most theories for these systems assume that the accreting, magnetic white dwarf is rotating with the orbital period, a ''fast rotator'' model has been suggested by Fabian et al. Their model predicts strong modulation of the optical circular polarization with a period of approx.1 minute. We have measured the circular polarization in Am Her for 6 hours with 2 s resolution and obtain an upper limit of 0.2% on the semiamplitude of any steady oscillation in the polarization with a period less than 2 minutes. Such a low limit essentially eliminates fast-rotator models for AM Her. However, the circular polarization is found to show strong flickering with time scales greater than 10 s. This is correlated with the varying optical flux, proving that the optical flickering occurs near the surface of the white dwarf where the field is strong enough for optical cyclotron emission. The lack of significant flickering with time scales less than 10 s and a 30 s delay between flickers in the flux and in polarization suggest that the optical emission region is more extended than ''thin shock'' models predict

  9. Circular fringe projection profilometry.

    Science.gov (United States)

    Zhao, Hong; Zhang, Chunwei; Zhou, Changquan; Jiang, Kejian; Fang, Meiqi

    2016-11-01

    In this Letter, a novel three-dimensional (3D) measurement method, called the circular fringe projection profilometry (CFPP), is proposed. Similar to the conventional fringe projection profilometry, CFPP also requires fringe pattern projection and capture, phase demodulation, and phase unwrapping. However, it works with a totally different mechanism. CFPP recovers the height of a point by calculating its distance to the optical center of a projector along the optical axis. This distance is calculated with the aid of the divergence angle of a projected light ray and the distance between the measured point and the optical axis. The distance between the measured point and the optical axis is detected by a camera with telecentric lenses, while the divergence angle can be calculated from the phase of a captured circular fringe pattern. The validity of CFPP is confirmed by a set of experiments.

  10. ADMINISTRATIVE CIRCULAR N° 12

    CERN Multimedia

    Human Resources Division

    2002-01-01

    Following a recommendation by the Standing Concertation Committee, the Director-General has approved the amounts used for the reimbursements mentioned in Administrative Circular N° 12 as follows : The figures, effective from 1 September 2002, are : § 8a : 16 Swiss francs (unchanged) § 9a : 640 Swiss francs (previously 622.- Swiss francs) § 9b : 32 Swiss francs (unchanged) Human Resources Division Tel. 72862

  11. Administrative Circular N° 12

    CERN Document Server

    2003-01-01

    Following a recommendation by the Standing Concertation Committee, the Director-General has approved the amounts used for the reimbursements mentioned in Administrative Circular N° 12 as follows : The figures, effective from 1 September 2003, are : § 8a : 16.50 Swiss francs (previously 16.- Swiss francs) § 9a : 663 Swiss francs (previously 640.- Swiss francs) § 9b : 33 Swiss francs (previously 32.- Swiss francs) Human Resources Division Tel. 72862/74474

  12. ADMINISTRATIVE CIRCULAR N° 12

    CERN Document Server

    HR Division

    2001-01-01

    Following a recommendation by the Standing Concertation Committee, the Director-General has approved an adjustment of the amounts used for the reimbursements mentioned in Administrative Circular N° 12. The new figures, effective from 1 September 2001, are : § 8a : 16 Swiss francs (previously 15.50 Swiss francs) § 9a : 622 Swiss francs (previously 609.- Swiss francs) § 9b : 32 Swiss francs (previously 31.- Swiss francs)

  13. ADMINISTRATIVE CIRCULAR NR 12

    CERN Document Server

    Division HR; HR Division; Tel. 72862

    2000-01-01

    Following a recommendation by the Standing Concertation Committee, the Director-General has approved an adjustment of the amounts used for the reimbursements mentioned in Administrative Circular N° 12. The new figures, effective from 1 September 2000, are : § 8a : 15.50 Swiss francs (previously 15.- Swiss francs) § 9a : 609 Swiss francs (previously 591.- Swiss francs) § 9b : 31 Swiss francs (previously 30.- Swiss francs)

  14. Circular arc structures

    KAUST Repository

    Bo, Pengbo

    2011-07-01

    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  15. Perturbation approach to design of circularly polarised microstrip antennas

    Science.gov (United States)

    Lo, Y. T.; Richards, W. F.

    1981-05-01

    One of the most interesting applications of microstrip antennas is its use for transmitting or receiving circularly polarized (CP) waves. A description is given of a simple but accurate method to determine the critical dimensions needed to produce circular polarization for nearly square and nearly circular microstrip antennas. Shen (1981) in connection with the determination of the proper dimensions of an elliptical patch CP microstrip antenna first expressed the modal field in terms of Mathieu functions. To avoid the complicated numerical computation of the Mathieu functions, he approximated these functions in terms of Bessel functions. It is pointed out that the computation of Mathieu functions, or their approximate expressions can be avoided altogether if a perturbation method is applied to find the resonant frequencies of the two orthogonal modes. The implementation of this approach is demonstrated.

  16. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  17. Circular spectropolarimetric sensing of chiral photosystems in decaying leaves

    NARCIS (Netherlands)

    Patty, C. H Lucas; Visser, Luuk J J; Ariese, Freek; Buma, Wybren Jan; Sparks, William B.; van Spanning, Rob J M; Röling, Wilfred F M; Snik, Frans

    2016-01-01

    Circular polarization spectroscopy has proven to be an indispensable tool in photosynthesis research and (bio)molecular research in general. Oxygenic photosystems typically display an asymmetric Cotton effect around the chlorophyll absorbance maximum with a signal ≤1%. In vegetation, these signals

  18. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  19. Numerical simulation of spin motion in circular accelerators using spinor formulation

    International Nuclear Information System (INIS)

    Nghiem, P.; Tkatchenko, A.

    1992-07-01

    A simple method is presented based on spinor algebra formalism for tracking the spin motion in circular accelerators. Using an analytical expression of the one-turn transformation matrix including the effects of perturbating fields or of siberian snakes, a simple and very fast numerical code has been written for studying spin motion in various circumstances. In particular, effects of synchrotron oscillations on final polarization after one isolated resonance crossing are simulated. Results of these calculations agree very well with those which have been obtained previously from analytical approaches or from other numerical-simulation programs. (author) 8 refs.; 14 figs

  20. Circular RNAs in cancer

    DEFF Research Database (Denmark)

    Kristensen, L S; Hansen, T B; Venø, M T

    2018-01-01

    Circular RNA (circRNA) is a novel member of the noncoding cancer genome with distinct properties and diverse cellular functions, which is being explored at a steadily increasing pace. The list of endogenous circRNAs involved in cancer continues to grow; however, the functional relevance of the vast...... for circRNA cancer research and current caveats, which must be addressed to facilitate the translation of basic circRNA research into clinical use.Oncogene advance online publication, 9 October 2017; doi:10.1038/onc.2017.361....

  1. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap

    2016-09-01

    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  2. Polarization conversion based on an all-dielectric metasurface for optical fiber applications

    Science.gov (United States)

    Liu, Tongming; Yang, Sen; Tang, Donghua; Da, Haixia; Feng, Rui; Zhu, Tongtong; Sun, Fangkui; Ding, Weiqiang

    2017-08-01

    Polarization conversion (PC) in optical fiber is a very important operation in practice. To date, however, PC in fiber is usually achieved by coupling an external bulk element, or using the birefringence results from mechanically squeezing or coiling the fiber. In this paper, we propose a distinct approach for PC in optical fiber by introducing an all-dielectric metasurface in it, which has been proven to be compact, efficient and robust. Based on this approach, nearly perfect PCs from the linear polarization fundamental mode, i.e. {{LP}}01x mode to various other polarization modes, are achieved, including the {{LP}}01y mode, left/right-handed circular polarization mode, and also vector modes with radial and azimuthal polarizations. In addition, the fabrication of this all-dielectric-based metasurface is compatible with semiconductor manufacturing technologies, which makes the PC presented here competitive against traditional ones, and may find potential applications in optical fiber elements and systems.

  3. Use of the Polarized Radiance Distribution Camera System in the RADYO Program

    Science.gov (United States)

    2011-01-28

    polarizer’s (Melles Griot , 03 FPG 019). Polarizer’s are orientated at 0 deg, 60 deg, and 120 deg (angles relative to the first polarizer). The combination...combination of a broadband mica quarter wave plate (Melles Griot , 02 WRM001) and a polarizer to form a circular polarization analyzer. The combination of the

  4. Forced vibrations of rotating circular cylindrical shells

    International Nuclear Information System (INIS)

    Igawa, Hirotaka; Maruyama, Yoshiyuki; Endo, Mitsuru

    1995-01-01

    Forced vibrations of rotating circular cylindrical shells are investigated. Basic equations, including the effect of initial stress due to rotation, are formulated by the finite-element method. The characteristic relations for finite elements are derived from the energy principle by considering the finite strain. The equations of motion can be separated into quasi-static and dynamic ones, i.e., the equations in the steady rotating state and those in the vibration state. Radial concentrated impulses are considered as the external dynamic force. The transient responses of circular cylindrical shells are numerically calculated under various boundary conditions and rotating speeds. (author)

  5. Optics modules for circular accelerator design

    International Nuclear Information System (INIS)

    Brown, K.L.; Servranckx, R.V.

    1986-05-01

    The first-order differential equations of motion for a single particle in a closed circular machine are solved, introducing the concepts of phase shift, beta functions, and the Courant-Snyder invariant. The transfer matrix between two points in the machine is derived as a function of the phase shift and the parameters contained in the Courant-Snyder invariant. Typical optical modules used in circular machine designs are introduced and related to their characteristic transfer matrix elements, the phase shift through them, and the Courant-Snyder-Twiss parameters. The systematics of some elementary phase ellipse matching problems between optical modules are discussed. Second-order optical modules are discussed, including how they are used to provide the momentum bandwidth needed for the design of a typical circular machine

  6. Acceleration of polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1998-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian snakes are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  7. Circular Migration and Human Development

    OpenAIRE

    Newland, Kathleen

    2009-01-01

    This paper explores the human development implications of circular migration — both where it occurs naturally and where governments work to create it. The paper discusses various conceptions and definitions of circular migration, and concludes that circular migration is not intrinsically positive or negative in relation to human development; its impact depends upon the circumstances in which it occurs, the constraints that surround it and—above all—the degree of choice that ind...

  8. the mathematics of ghanaian circular musical drumheads

    African Journals Online (AJOL)

    User

    The mathematics of percussion drums and other musical instruments has been delved into by lots of researchers tackling it from different angles, and especially for circular drumheads with constant tension. Such drums include the conga which usually produces rhythmic sounds. But little or no attempt has been made.

  9. the mathematics of ghanaian circular musical drumheads

    African Journals Online (AJOL)

    User

    overtones. INTRODUCTION. The mathematics of percussion drums and other musical instruments has been delved into by lots of researchers tackling it from different angles, and especially for circular drumheads with constant tension. Such drums include the conga which usually produces rhythmic sounds. But little or no ...

  10. Broadband asymmetric waveguiding of light without polarization limitations.

    Science.gov (United States)

    Xu, Yadong; Gu, Chendong; Hou, Bo; Lai, Yun; Li, Jensen; Chen, Huanyang

    2013-01-01

    Optical diodes are fundamental elements for optical computing and information processing. Attempts to realize such non-reciprocal propagation of light by breaking the time-reversal symmetry include using indirect interband photonic transitions, the magneto-optical effect, optical nonlinearity or photonic crystals. Alternatively, asymmetric reciprocal transmission of light has been proposed in photonic metamaterial structures for either circularly or linearly polarized waves. Here we employ the recent concept of gradient index metamaterials to demonstrate a waveguide with asymmetric propagation of light, independent of polarization. The device blocks both transverse electric and magnetic polarized modes in one direction but transmits them in the other for a broadband spectrum. Unlike previous works using chiral properties of metamaterials, our device is based on the principle of momentum symmetry breaking at interfaces with phase discontinuities. Experiments in the microwave region verify our findings, which may pave the way to feasible passive optical diodes.

  11. Imaging differential polarization microscope with electronic readout

    International Nuclear Information System (INIS)

    Mickols, W.; Tinoco, I.; Katz, J.E.; Maestre, M.F.; Bustamante, C.

    1985-01-01

    A differential polarization microscope forms two images: one of the transmitted intensity and the other due to the change in intensity between images formed when different polarizations of light are used. The interpretation of these images for linear dichroism and circular dichroism are described. The design constraints on the data acquisition systems and the polarization modulation are described. The advantage of imaging several biological systems which contain optically anisotropic structures are described

  12. Collision Technologies for Circular Colliders

    Science.gov (United States)

    Levichev, Eugene

    2015-02-01

    For several decades already, particle colliders have been essential tools for particle physics. From the very beginning, such accelerators have been among the most complicated scientific instruments ever built, including a number of innovative technological developments. Examples are ultrahigh vacuum systems, magnets with a very high magnetic field, and equipment for sub-ns synchronization and sub-mm precision alignment of equipment inside multi-km underground tunnels. Some key technologies are related to the focusing of the beam down to a scale of sub-μm at the collision point to obtain high luminosity. This review provides an overview of collision concepts and technologies for circular particle colliders, starting from the first ideas. In particular, it discusses such novel schemes and related technologies as crab waist collision and round beam collision.

  13. Operational circular No. 1 (Rev. 1) – Operational circulars

    CERN Multimedia

    HR Department

    2011-01-01

    Operational Circular No. 1 (Rev. 1) is applicable to members of the personnel and other persons concerned. Operational Circular No. 1 (Rev. 1) entitled "Operational circulars", approved following discussion at the Standing Concertation Committee meeting on 4 May 2011, is available on the intranet site of the Human Resources Department: https://hr-docs.web.cern.ch/hr-docs/opcirc/opcirc.asp It cancels and replaces Operational Circular No. 1 entitled "Operational Circulars” of December 1996. This new version clarifies, in particular, that operational circulars do not necessarily arise from the Staff Rules and Regulations, and the functional titles have been updated to bring them into line with the current CERN organigram. Department Head Office  

  14. Circular defects detection in welded joints using circular hough transform

    International Nuclear Information System (INIS)

    Hafizal Yazid; Mohd Harun; Shukri Mohd; Abdul Aziz Mohamed; Shaharudin Sayuti; Muhamad Daud

    2007-01-01

    Conventional radiography is one of the common non-destructive testing which employs manual image interpretation. The interpretation is very subjective and depends much on the inspector experience and working conditions. It is therefore useful to have pattern recognition system in order to assist human interpreter in evaluating the quality of the radiograph sample, especially radiographic image of welded joint. This paper describes a system to detect circular discontinuities that is present in the joints. The system utilizes together 2 different algorithms, which is separability filter to identify the best object candidate and Circular Hough Transform to detect the present of circular shape. The result of the experiment shows a promising output in recognition of circular discontinuities in a radiographic image. This is based on 81.82-100% of radiography film with successful circular detection by using template movement of 10 pixels. (author)

  15. Light-matter interactions in a polarization standing wave

    OpenAIRE

    Fang, X.; MacDonald, K.F.; Zheludev, N.I.

    2015-01-01

    We report on the application of polarization standing waves (PSW) to the coherent control of light-matter interactions in planar photonic nanostructures. Such waves, formed by counter-propagating (linear or circular) orthogonally polarized beams can uniquely detect polarization conversion, planar chirality and related asymmetric transmission effects.

  16. Polarization-dependent diffraction in all-dielectric, twisted-band structures

    Energy Technology Data Exchange (ETDEWEB)

    Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr, E-mail: pwasylcz@fuw.edu.pl [Photonic Nanostructure Facility, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)

    2015-11-23

    We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.

  17. Realisation and Optimization the System of Ridge Waveguide Polarizer by Genetic Algorithms for Telecommunication Satellite Antennas

    OpenAIRE

    BOUSALAH, FAYZA; BOUKLI HACENE, NOUR EDDINE

    2012-01-01

    The ridged waveguide polarizer is considered as the better way to get right-hand and left-hand circular polarization in the antennas of telecommunications satellites. In fact, it is a system of three ports used to feed a square waveguide antenna in order to achieve high purity in the right-hand and left-hand circular polarization. Obtaining a great purity of polarization results by the addition from screw from adaptation and blades from correction. A solution with ...

  18. Structural characterization of chiral molecules using vibrational circular dichroism spectroscopy

    DEFF Research Database (Denmark)

    Lassen, Peter Rygaard

    2006-01-01

    chiral molecules. This project is about application of one such technique, circular dichroism (CD) spectroscopy, which measures the difference in absorption of left- and right circularly polarized light - hence the name circular dichroism. This study has focused on the infrared (IR) range because...... compounds of pharmaceutical interest. Others are transition metal complexes relevant for the search for parity-violation effects in vibrational spectroscopy (rhenium complexes), for asymmetric catalysis (Schiff-base complexes), or as model systems for metal centres in biology (Schiff-bases and heme....... Currently, only part of the enhancement can be reproduced theoretically, as demonstrated for the Schiff-bases. Their conformers and absolute configurations were also identified. As for proteins, the interpretation of their spectra is different, because the immense number of overlapping vibrational modes...

  19. Prediction of vapor-liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part I: Application to H 2O-CO 2 system

    Science.gov (United States)

    Sun, Rui; Dubessy, Jean

    2010-04-01

    Molecular based equations of state (EOS) are attractive because they can take into account the energetic contribution of the main types of molecular interactions. This study models vapor-liquid equilibrium (VLE) and PVTx properties of the H 2O-CO 2 binary system using a Lennard-Jones (LJ) referenced SAFT (Statistical Associating Fluid Theory) EOS. The improved SAFT-LJ EOS is defined in terms of the residual molar Helmholtz energy, which is a sum of four terms representing the contributions from LJ segment-segment interactions, chain-forming among the LJ segments, short-range associations and long-range multi-polar interactions. CO 2 is modeled as a linear chain molecule with a constant quadrupole moment, and H 2O is modeled as a spherical molecule with four association sites and a dipole moment. The multi-polar contribution to Helmholtz energy, including the dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole contribution for H 2O-CO 2 system, is calculated using the theory of Gubbins and Twu (1978). Six parameters for pure H 2O and four parameters for pure CO 2 are needed in our model. The Van der Waals one-fluid mixing rule is used to calculate the Lennard-Jones energy parameter and volume parameter for the mixture. Two or three binary parameters are needed for CO 2-H 2O mixtures, which are evaluated from phase equilibrium data of the binary system. Comparison with the experimental data shows that our model represents the PVT properties of CO 2 better than other SAFT EOS without a quadrupole contribution. For the CO 2-H 2O system, our model agrees well with the vapor-liquid equilibrium data from 323-623 K. The average relative deviation for CO 2 solubility (expressed in mole fraction) in water is within 6%. Our model can also predict the PVTx properties of CO 2-H 2O mixtures up to 1073 K and 3000 bar. The good performance of this model indicates that: (1) taking account of the multi-polar contribution explicitly improves the agreement of calculated

  20. Development of nonperturbative nonlinear optics models including effects of high order nonlinearities and of free electron plasma: Maxwell-Schrödinger equations coupled with evolution equations for polarization effects, and the SFA-like nonlinear optics model

    Science.gov (United States)

    Lorin, E.; Lytova, M.; Memarian, A.; Bandrauk, A. D.

    2015-03-01

    This paper is dedicated to the exploration of non-conventional nonlinear optics models for intense and short electromagnetic fields propagating in a gas. When an intense field interacts with a gas, usual nonlinear optics models, such as cubic nonlinear Maxwell, wave and Schrödinger equations, derived by perturbation theory may become inaccurate or even irrelevant. As a consequence, and to include in particular the effect of free electrons generated by laser-molecule interaction, several heuristic models, such as UPPE, HOKE models, etc, coupled with Drude-like models [1, 2], were derived. The goal of this paper is to present alternative approaches based on non-heuristic principles. This work is in particular motivated by the on-going debate in the filamentation community, about the effect of high order nonlinearities versus plasma effects due to free electrons, in pulse defocusing occurring in laser filaments [3-9]. The motivation of our work goes beyond filamentation modeling, and is more generally related to the interaction of any external intense and (short) pulse with a gas. In this paper, two different strategies are developed. The first one is based on the derivation of an evolution equation on the polarization, in order to determine the response of the medium (polarization) subject to a short and intense electromagnetic field. Then, we derive a combined semi-heuristic model, based on Lewenstein’s strong field approximation model and the usual perturbative modeling in nonlinear optics. The proposed model allows for inclusion of high order nonlinearities as well as free electron plasma effects.

  1. Digitalizing the Circular Economy

    Science.gov (United States)

    Reuter, Markus A.

    2016-12-01

    Metallurgy is a key enabler of a circular economy (CE), its digitalization is the metallurgical Internet of Things (m-IoT). In short: Metallurgy is at the heart of a CE, as metals all have strong intrinsic recycling potentials. Process metallurgy, as a key enabler for a CE, will help much to deliver its goals. The first-principles models of process engineering help quantify the resource efficiency (RE) of the CE system, connecting all stakeholders via digitalization. This provides well-argued and first-principles environmental information to empower a tax paying consumer society, policy, legislators, and environmentalists. It provides the details of capital expenditure and operational expenditure estimates. Through this path, the opportunities and limits of a CE, recycling, and its technology can be estimated. The true boundaries of sustainability can be determined in addition to the techno-economic evaluation of RE. The integration of metallurgical reactor technology and systems digitally, not only on one site but linking different sites globally via hardware, is the basis for describing CE systems as dynamic feedback control loops, i.e., the m-IoT. It is the linkage of the global carrier metallurgical processing system infrastructure that maximizes the recovery of all minor and technology elements in its associated refining metallurgical infrastructure. This will be illustrated through the following: (1) System optimization models for multimetal metallurgical processing. These map large-scale m-IoT systems linked to computer-aided design tools of the original equipment manufacturers and then establish a recycling index through the quantification of RE. (2) Reactor optimization and industrial system solutions to realize the "CE (within a) Corporation—CEC," realizing the CE of society. (3) Real-time measurement of ore and scrap properties in intelligent plant structures, linked to the modeling, simulation, and optimization of industrial extractive process

  2. Circular photocurrent in Ag/Pd resistive films upon excitation by femtosecond laser pulses

    Science.gov (United States)

    Mikheev, G. M.; Saushin, A. S.; Vanyukov, V. V.; Mikheev, K. G.; Svirko, Yu. P.

    2016-11-01

    This paper presents the results of the experimental investigation of the generation of nanosecond photocurrent pulses in silver-palladium (Ag/Pd) resistive films under excitation by laser pulses with a duration of 120 fs at a wavelength of 795 nm. The photocurrent was detected in the direction perpendicular to the plane of incidence of the laser beam on the film. The 20-μm-thick films under investigation were a porous polycrystalline material consisting predominantly of nanocrystallites of the palladium oxide PdO and the Ag-Pd solid solution. The direction of the photocurrent observed in the films depends on the sign of the circular polarization of the incident radiation. It was found that the observed photocurrent depends on the angle of incidence in accordance with the odd law and consists of the circular and linear contributions, which are dependent on and independent of the sign of the circular polarization, respectively. It was shown that the circular photocurrent is significantly higher than the linear photocurrent. It was established that, for both the circular and linear polarizations, the photocurrent is directly proportional to the power of the excitation radiation. For the linearly polarized laser radiation, the photocurrent depends on the polarization angle in accordance with the odd law. The regularities revealed are consistent with the mechanism of the generation of transverse photocurrent with the photon drag effect.

  3. RFID antenna design for circular polarization in UHF band

    Science.gov (United States)

    Shahid, Hamza; Khan, Muhammad Talal Ali; Tayyab, Umais; Irshad, Usama Bin; Alkhazraji, Emad; Javaid, Muhammad Sharjeel

    2017-05-01

    A miniature half cross dipole antenna for defense and aerospace RFID applications in UHF band is presented. The dipole printed line arms are half crossed shape on top of dielectric substrate backed by reactive impedance surface. The antenna fed by a coaxial cable at the gap separating the dipole arms. Our design is intended to work at 2.42 GHz for RFID readers. The radiation pattern obtained has HPBW of 112, return loss of 22.24 dB and 90 MHz bandwidth.

  4. Minimum Q circularly polarized electrically small spherical antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2011-01-01

    The radiation problem for the TM10- and TE10-mode electric current densities on the surface of a spherical magnetic-coated PEC core is solved analytically. The combination of the electric and magnetic dipole modes reduces the radiation Q of the antenna. Moreover, with an appropriately designed ma...

  5. Dual wavelength asymmetric photochemical synthesis with circularly polarized light† †Electronic supplementary information (ESI) available: Full detailed methods used for the entire study; further discussion of the work not central to the main message of the paper; full derivation of the kinetics models used to predict the dual wavelength enantioselectivity; computational details and energy breakdown; more complete mechanism for the reaction. See DOI: 10.1039/c4sc03897e

    Science.gov (United States)

    Richardson, Robert D.; Baud, Matthias G. J.; Weston, Claire E.; Rzepa, Henry S.

    2015-01-01

    Asymmetric photochemical synthesis using circularly polarized (CP) light is theoretically attractive as a means of absolute asymmetric synthesis and postulated as an explanation for homochirality on Earth. Using an asymmetric photochemical synthesis of a dihydrohelicene as an example, we demonstrate the principle that two wavelengths of CP light can be used to control separate reactions. In doing so, a photostationary state (PSS) is set up in such a way that the enantiomeric induction intrinsic to each step can combine additively, significantly increasing the asymmetric induction possible in these reactions. Moreover, we show that the effects of this dual wavelength approach can be accurately determined by kinetic modelling of the PSS. Finally, by coupling a PSS to a thermal reaction to trap the photoproduct, we demonstrate that higher enantioselectivity can be achieved than that obtainable with single wavelength irradiation, without compromising the yield of the final product. PMID:29218156

  6. Switching the response of metasurfaces in polarization standing waves

    OpenAIRE

    Fang, X.; MacDonald, K.F.; Zheludev, N.I.

    2015-01-01

    We demonstrate experimentally that standing waves of polarization, as opposed to intensity, can be engaged to coherently control light-matter interactions in planar photonic nanostructures, presenting unique opportunities for all-optical data processing and polarization-dependent molecular spectroscopy. Such waves, formed by counter-propagating (linear or circular) orthogonally polarized beams can, for example, uniquely detect polarization conversion, planar chirality and related asymmetric t...

  7. An Undulator based Polarized Positron Source for CLIC

    CERN Document Server

    Liu, Wanming; Rinolfi, Louis; Sheppard, John

    2010-01-01

    A viable positron source scheme is proposed that uses circularly polarized gamma rays generated from the main 250 GeV electron beam. The beam passes through a helical superconducting undulator with a magnetic field of ~ 1 Tesla and a period of 1.15 cm. The gamma-rays produced in the undulator in the energy range between ~ 3 MeV – 100 MeV will be directed to a titanium target and produce polarized positrons. The positrons are then captured, accelerated and transported to a Pre-Damping Ring (PDR). Detailed parameter studies of this scheme including positron yield, and undulator parameter dependence are presented. Effects on the 250 GeV CLIC main beam, including emittance growth and energy loss from the beam passing through the undulator are also discussed

  8. Polarization feedback laser stabilization

    Science.gov (United States)

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  9. Acceleration of Polarized Protons to High Energy

    International Nuclear Information System (INIS)

    Roser, T.

    1999-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian Snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian Snakes and polarimeters are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  10. Nuclear collisions at the Future Circular Collider

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, N., E-mail: nestor.armesto@usc.es [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia-Spain (Spain); Dainese, A. [INFN – Sezione di Padova, 35131 Padova (Italy); D' Enterria, D. [Physics Department, CERN, CH-1211 Genéve 23 (Switzerland); Masciocchi, S. [EMMI and GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Roland, C. [Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Salgado, C.A. [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia-Spain (Spain); Leeuwen, M. van [Nikhef, National Institute for Subatomic Physics, Amsterdam (Netherlands); Institute for Subatomic Physics of Utrecht University, Utrecht (Netherlands); Wiedemann, U.A. [Physics Department, CERN, CH-1211 Genéve 23 (Switzerland)

    2016-12-15

    The Future Circular Collider is a new proposed collider at CERN with centre-of-mass energies around 100 TeV in the pp mode. Ongoing studies aim at assessing its physics potential and technical feasibility. Here we focus on updates in physics opportunities accessible in pA and AA collisions not covered in previous Quark Matter contributions, including Quark-Gluon Plasma and gluon saturation studies, novel hard probes of QCD matter, and photon-induced collisions.

  11. Nuclear collisions at the Future Circular Collider

    CERN Document Server

    Armesto, N.; d'Enterria, D.; Masciocchi, S.; Roland, C.; Salgado, C.A.; van Leeuwen, M.; Wiedemann, U.A.

    2016-01-01

    The Future Circular Collider is a new proposed collider at CERN with centre-of-mass energies around 100 TeV in the pp mode. Ongoing studies aim at assessing its physics potential and technical feasibility. Here we focus on updates in physics opportunities accessible in pA and AA collisions not covered in previous Quark Matter contributions, including Quark-Gluon Plasma and gluon saturation studies, novel hard probes of QCD matter, and photon-induced collisions.

  12. Colorectal laterally spreading tumors show characteristic expression of cell polarity factors, including atypical protein kinase C λ/ι, E-cadherin, β-catenin and basement membrane component.

    Science.gov (United States)

    Ichikawa, Yasushi; Nagashima, Yoji; Morioka, Kaori; Akimoto, Kazunori; Kojima, Yasuyuki; Ishikawa, Takashi; Goto, Ayumu; Kobayashi, Noritoshi; Watanabe, Kazuteru; Ota, Mitsuyoshi; Fujii, Shoichi; Kawamata, Mayumi; Takagawa, Ryo; Kunizaki, Chikara; Takahashi, Hirokazu; Nakajima, Atsushi; Maeda, Shin; Shimada, Hiroshi; Inayama, Yoshiaki; Ohno, Shigeo; Endo, Itaru

    2014-09-01

    Colorectal flat-type tumors include laterally spreading tumors (LSTs) and flat depressed-type tumors. The former of which shows a predominant lateral spreading growth rather than an invasive growth. The present study examined the morphological characteristics of LSTs, in comparison with polypoid- or flat depressed-type tumors, along with the expression of atypical protein kinase C (aPKC) λ/ι, a pivotal cell polarity regulator, and the hallmarks of cell polarity, as well as with type IV collagen, β-catenin and E-cadherin. In total, 37 flat-type (24 LSTs and 13 flat depressed-type tumors) and 20 polypoid-type colorectal tumors were examined. The LSTs were classified as 15 LST adenoma (LST-A) and nine LST cancer in adenoma (LST-CA). An immunohistochemical examination was performed on aPKC λ/ι, type IV collagen, β-catenin and E-cadherin. The LST-A and -CA showed a superficial replacing growth pattern, with expression of β-catenin and E-cadherin in the basolateral membrane and type IV collagen along the basement membrane. In addition, 86.6% of LST-A and 55.6% of LST-CA showed aPKC λ/ι expression of 1+ (weak to normal intensity staining in the cytoplasm compared with the normal epithelium). Furthermore, ~45% of the polypoid-type adenomas showed 2+ (moderate intensity staining in the cytoplasm and/or nucleus) and 66.7% of the polypoid-type cancer in adenoma were 3+ (strong intensity staining in the cytoplasm and nucleus). A statistically significant positive correlation was observed between the expression of aPKC λ/ι and β-catenin (r=0.842; P<0.001), or type IV collagen (r=0.823; P<0.001). The LSTs showed a unique growth pattern, different from the expanding growth pattern presented by a polypoid tumor and invasive cancer. The growth characteristics of LST appear to be caused by adequate coexpression of β-catenin, type IV collagen and aPKC λ/ι.

  13. Enhancing circular dichroism by super chiral hot spots from a chiral metasurface with apexes

    Science.gov (United States)

    Wang, Zeng; Teh, Bing Hong; Wang, Yue; Adamo, Giorgio; Teng, Jinghua; Sun, Handong

    2017-05-01

    Manipulating light spin (or circular polarization) is an important research field and may find broad applications from sensors, display technology, to quantum computing and communication. To this end, planar metasurfaces with larger circular dichroism are strongly demanded. However, current planar chiral metasurface structures suffer from either fabrication challenge, especially from near-infrared to visible spectrum, or insufficient circular dichroism. Here, we report a chiral metasurface composed of achiral nanoholes which allow for precisely creating apexes in the designed structure. Our investigation indicates that the apexes act as super chiral hot spots and enable the highly concentrated near-field optical chirality leading to a remarkable enhancement of circular dichroism in the far-field. A 4-fold enhancement of the circular dichroism and a strong optical activity of ˜15 degrees have been experimentally achieved. Besides the enhanced chirality, our design genuinely overcomes the nanofabrication challenge faced in existing planar chiral metasurfaces.

  14. Topological events in polarization resolved angular patterns of nematic liquid crystal cells at varying ellipticity of incident wave

    OpenAIRE

    Kiselev, Alexei D.; Vovk, Roman G.

    2008-01-01

    We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by analyzing the polarization state as a function of the incidence angles and the polarization of the incident wave. The polarization resolved angular patterns emerging after the NLC cell illuminated by the convergent light beam are described in terms of the polarization singularities such as C-points (points of circular polarization) and L-lines (lines of linear polarization). For ...

  15. Homologous Circular-ribbon Flares Driven by Twisted Flux Emergence

    Science.gov (United States)

    Xu, Z.; Yang, K.; Guo, Y.; Zhao, J.; Zhao, Z. J.; Kashapova, L.

    2017-12-01

    In this paper, we report two homologous circular-ribbon flares associated with two filament eruptions. They were well observed by the New Vacuum Solar Telescope and the Solar Dynamics Observatory on 2014 March 5. Prior to the flare, two small-scale filaments enclosed by a circular pre-flare brightening lie along the circular polarity inversion line around the parasitic polarity, which has shown a continuous rotation since its first appearance. Two filaments eventually erupt in sequence associated with two homologous circular-ribbon flares and display an apparent writhing signature. Supplemented by the nonlinear force-free field extrapolation and the magnetic field squashing factor investigation, the following are revealed. (1) This event involves the emergence of magnetic flux ropes into a pre-existing polarity area, which yields the formation of a 3D null-point topology in the corona. (2) Continuous input of the free energy in the form of a flux rope from beneath the photosphere may drive a breakout-type reconnection occurring high in the corona, supported by the pre-flare brightening. (3) This initiation reconnection could release the constraint on the flux rope and trigger the MHD instability to first make filament F1 lose equilibrium. The subsequent more violent magnetic reconnection with the overlying flux is driven during the filament rising. In return, the eruption of filament F2 is further facilitated by the reduction of the magnetic tension force above. These two processes form a positive feedback to each other to cause the energetic mass eruption and flare.

  16. Laser-driven polarized H/D sources and targets

    International Nuclear Information System (INIS)

    Clasie, B.; Crawford, C.; Dutta, D.; Gao, H.; Seely, J.; Xu, W.

    2005-01-01

    Traditionally, Atomic Beam Sources are used to produce targets of nuclear polarized hydrogen (H) or deuterium (D) for experiments using storage rings. Laser-Driven Sources (LDSs) offer a factor of 20-30 gain in the target thickness (however, with lower polarization) and may produce a higher overall figure of merit. The LDS is based on the technique of spin-exchange optical pumping where alkali vapor is polarized by absorbing circularly polarized laser photons. The H or D atoms are nuclear-polarized through spin-exchange collisions with the polarized alkali vapor and through subsequent hyperfine interactions during frequent H-H or D-D collisions

  17. Modelling the circular polarisation of Earth-like exoplanets: constraints on detecting homochirality

    Science.gov (United States)

    Hogenboom, Michael; Stam, Daphne; Rossi, Loic; Snik, Frans

    2016-04-01

    polarisation signals for both spatially resolved and spatially unresolved planets, using various atmospheric and surface properties and across a range of phase angles. As a test, the calculated degree of circular polarisation resulting from the multiple scattering of light in an atmosphere with varying properties was compared with results presented by Kawata te{circatmos} and was found to be in agreement. Initial modelling of the atmospheric scattering of light by a planetary disk has shown a presence of degree of circular polarisation in the order of 10-4. This represents a static case with one cloudy hemisphere, one cloudless hemisphere and a Lambertian surface. Results containing varied patchy cloud patterns shall also be presented in a bid to reflect the random nature of planetary cloud cover. We will also present the calculated degree of circular polarisation of planets with various cloud coverage and a circularly polarising surface in order to discover the influence of organisms on the numerical results. {1} {hansen} J. E. {Hansen} and L. D. {Travis}. {Light scattering in planetary atmospheres}. {Space Science Reviews}, 16:527-610, October 1974. {circplanets} J. C. {Kemp} and R. D. {Wolstencroft}. {Circular Polarization: Jupiter and Other Planets}. {Nature}, 232:165-168, July 1971. {chiralbailey} J. {Bailey}. {Circular Polarization and the Origin of Biomolecular Homochirality}. In G. {Lemarchand} and K. {Meech}, editors, {Bioastronomy 99}, volume 213 of {Astronomical Society of the Pacific Conference Series}, 2000. {circpolchar} L. {Nagdimunov}, L. {Kolokolova}, and D. {Mackowski}. {Characterization and remote sensing of biological particles using circular polarization}. {Journal of Quantitative Spectroscopy and Radiative Transfer}, 131:59-65, December 2013. dehaan} J. F. {de Haan}, P. B. {Bosma}, and J. W. {Hovenier}. {The adding method for multiple scattering calculations of polarized light}. {Astronomy and Astrophysics}, 183:371-391, September 1987. {circatmos} Y

  18. Supermarkets and unhealthy food marketing: An international comparison of the content of supermarket catalogues/circulars.

    Science.gov (United States)

    Charlton, Emma L; Kähkönen, Laila A; Sacks, Gary; Cameron, Adrian J

    2015-12-01

    Supermarket marketing activities have a major influence on consumer food purchases. This study aimed to assess and compare the contents of supermarket marketing circulars from a range of countries worldwide from an obesity prevention perspective. The contents of supermarket circulars from major supermarket chains in 12 non-random countries were collected and analysed over an eight week period from July to September 2014 (n=89 circulars with 12,563 food products). Circulars were largely English language and from countries representing most continents. Food products in 25 sub-categories were categorised as discretionary or non-discretionary (core) food or drinks based on the Australian Guide to Healthy Eating. The total number of products in each subcategory in the whole circular, and on front covers only, was calculated. Circulars from most countries advertised a high proportion of discretionary foods. The only exceptions were circulars from the Philippines (no discretionary foods) and India (11% discretionary food). Circulars from six countries advertised more discretionary foods than core foods. Front covers tended to include a much greater proportion of healthy products than the circulars overall. Supermarket circulars in most of the countries examined include a high percentage of discretionary foods, and therefore promote unhealthy eating behaviours that contribute to the global obesity epidemic. A clear opportunity exists for supermarket circulars to promote rather than undermine healthy eating behaviours of populations. Governments need to ensure that supermarket marketing is included as part of broader efforts to restrict unhealthy food marketing. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Ecodesign for a Circular Economy

    DEFF Research Database (Denmark)

    Bundgaard, Anja Marie

    The Earth is a closed system and with the exception of energy, the resources available to us are finite, but our consumption and productions systems are typically linear systems where resources are extracted, used and wasted. The circular economy is proposed as an alternative and is defined...... as a consumption and production system based on closed loops that minimise resources, energy flows and environmental degradation. In this PhD thesis, I have examined how ecodesign can close the material loops in the circular economy for electrical and electronic equipment. The study examines how to improve...... be necessary to develop both product and company specific guidelines. The analysis revealed that activities or product attributes of importance to a circular economy are not solely driven by ecodesign....

  20. Polarization control of high order harmonics in the EUV photon energy range.

    Science.gov (United States)

    Vodungbo, Boris; Barszczak Sardinha, Anna; Gautier, Julien; Lambert, Guillaume; Valentin, Constance; Lozano, Magali; Iaquaniello, Grégory; Delmotte, Franck; Sebban, Stéphane; Lüning, Jan; Zeitoun, Philippe

    2011-02-28

    We report the generation of circularly polarized high order harmonics in the extreme ultraviolet range (18-27 nm) from a linearly polarized infrared laser (40 fs, 0.25 TW) focused into a neon filled gas cell. To circularly polarize the initially linearly polarized harmonics we have implemented a four-reflector phase-shifter. Fully circularly polarized radiation has been obtained with an efficiency of a few percents, thus being significantly more efficient than currently demonstrated direct generation of elliptically polarized harmonics. This demonstration opens up new experimental capabilities based on high order harmonics, for example, in biology and materials science. The inherent femtosecond time resolution of high order harmonic generating table top laser sources renders these an ideal tool for the investigation of ultrafast magnetization dynamics now that the magnetic circular dichroism at the absorption M-edges of transition metals can be exploited.

  1. Realisation and Optimization the System of Ridge WaveguidePolarizer by Genetic Algorithms for Telecommunication Satellite Antennas

    OpenAIRE

    BOUSALAH1, FAYZA; NOUR EDDINE2; BOUKLI HACENE

    2013-01-01

    The ridged waveguide polarizer is considered as the better way to get right-hand and left-hand circular polarization in the antennas of telecommunications satellites. In fact, it is a system of three ports used to feed a square waveguide antenna in order to achieve high purity in the right-hand and left-hand circular polarization. Obtaining a great purity of polarization results by the addition from screw from adaptation and blades from correction. A solution with this pr...

  2. Logistic regression for circular data

    Science.gov (United States)

    Al-Daffaie, Kadhem; Khan, Shahjahan

    2017-05-01

    This paper considers the relationship between a binary response and a circular predictor. It develops the logistic regression model by employing the linear-circular regression approach. The maximum likelihood method is used to estimate the parameters. The Newton-Raphson numerical method is used to find the estimated values of the parameters. A data set from weather records of Toowoomba city is analysed by the proposed methods. Moreover, a simulation study is considered. The R software is used for all computations and simulations.

  3. Circular coloring and Mycielski construction

    OpenAIRE

    Alishahi, Meysam; Hajiabolhassan, Hossein

    2010-01-01

    In this paper, we investigate circular chromatic number of Mycielski construction of graphs. It was shown in \\cite{MR2279672} that $t^{{\\rm th}}$ Mycielskian of the Kneser graph $KG(m,n)$ has the same circular chromatic number and chromatic number provided that $m+t$ is an even integer. We prove that if $m$ is large enough, then $\\chi(M^t(KG(m,n)))=\\chi_c(M^t(KG(m,n)))$ where $M^t$ is $t^{{\\rm th}}$ Mycielskian. Also, we consider the generalized Kneser graph $KG(m,n,s)$ and show that there ex...

  4. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  5. Best Practice Examples of Circular Business Models

    DEFF Research Database (Denmark)

    Guldmann, Eva

    Best practice examples of circular business models are presented in this report. The purpose is to inform and inspire interested readers, in particular companies that aspire to examine the potentials of the circular economy. Circular business models in two different sectors are examined, namely...... the textile and clothing sector as well as the durable goods sector. In order to appreciate the notion of circular business models, the basics of the circular economy are outlined along with three frameworks for categorizing the various types of circular business models. The frameworks take point of departure......, and to look for circular business opportunities in this flow of goods and value, is key in a circular economy. Establishing new or closer collaboration with stakeholders within or beyond the traditional supply chain is another important skill in creating circular business models. Many of the examined...

  6. Primal-dual path-following algorithms for circular programming

    Directory of Open Access Journals (Sweden)

    Baha Alzalg

    2017-06-01

    Full Text Available Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case‎. ‎Alizadeh and Goldfarb [Math‎. ‎Program‎. ‎Ser‎. ‎A 95 (2003 3--51] introduced primal-dual path-following algorithms for solving second-order cone programming problems‎. ‎In this paper‎, ‎we generalize their work by using the machinery of Euclidean Jordan algebras associated with the circular cones to derive primal-dual path-following interior point algorithms for circular programming problems‎. ‎We prove polynomial convergence of the proposed algorithms by showing that the circular logarithmic barrier is a strongly self-concordant barrier‎. ‎The numerical examples show the path-following algorithms are simple and efficient‎.

  7. Experiments with Fermilab polarized proton and polarized antiproton beams

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the π degree production at high p perpendicular and in the Λ (Σ degree), π ± , π degree production at large x F , and Δσ L (pp, bar pp) measurements. 18 refs

  8. An optically pumped polarized lithium ion source

    International Nuclear Information System (INIS)

    Myers, E.G.; Mendez, A.J.; Schmidt, B.G.; Kemper, K.W.

    1991-01-01

    A laser-optically-pumped polarized lithium ion source is being developed to provide beams of nuclear polarized 6,7 Li - for injection into the FSU tandem Van de Graaff-linac. Electro-optically modulated, circularly polarized light optically pumps a lithium atomic beam into a single magnetic substate, M 1 =1, M J =1/2. No inhomogeneous magnetic field (sextupole or quadrupole) is needed. Adiabatic rf transitions enable the polarization to be changed by transferring the population into different magnetic substates. Using a second electro-optic to modulate a second beam from the same laser, and Zeeman tuning, the polarization of the atomic beam is obtained by laser induced fluorescence. The polarized atomic beam is ionized to Li + and then charge exchanged to Li - . (orig.)

  9. Topological px+ipy superfluid phase of fermionic polar molecules

    NARCIS (Netherlands)

    Levinsen, J.; Cooper, N.R.; Shlyapnikov, G.V.

    2011-01-01

    We discuss the topological px+ipy superfluid phase in a 2D gas of single-component fermionic polar molecules dressed by a circularly polarized microwave field. This phase emerges because the molecules may interact with each other via a potential Vo(r) that has an attractive dipole-dipole 1/r^3 tail,

  10. 140 CIRCULAR INTERACTION BETWEEN LINGUISTIC ...

    African Journals Online (AJOL)

    economy. Although a country or administrative district should have one or more official languages for obvious reasons, Nelde (1991) proposes that the ... circular interaction between linguistic departments and language departments. Finding an answer to' Plato's abovementioned problem entails that as many languages as ...

  11. Inverting the Circular Radon Transform

    National Research Council Canada - National Science Library

    Redding, Nicholas

    2001-01-01

    ...) can be viewed as the inversion of the circular Radon transform. The advantage of viewing image formation in this way is that it could be used in situations where more standard methods could fail such as high squint and ultra-wideband SAR...

  12. 76 FR 70037 - Federal Regulations; OMB Circulars, OFPP Policy Letters, and CASB Cost Accounting Standards...

    Science.gov (United States)

    2011-11-10

    ... Circulars, OFPP Policy Letters, and CASB Cost Accounting Standards Included in the Semiannual Agenda of..., and Cost Accounting Standards Board (CASB) Cost Accounting Standards. DATES: The withdrawal is...

  13. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-17

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  14. Development of polarization magneto-optics of paramagnetic crystals

    International Nuclear Information System (INIS)

    Zapasskij, V.S.; Feofilov, P.P.

    1975-01-01

    The present status of the polarization magnetooptics of crystals containing paramagnetic ion impurities is reviewed. The paper discusses methods of measurement of circular magnetic anisotropy and results obtained in recent years in the field of conventional magnetooptical studies, e.g., magnetooptical activity in absorption spectra for intrinsic and impurity defects in crystals, luminescence magnetic circular polarization, anisotropy of magnetooptical activity in cubic crystals. The main emphasis is placed on new trends in polarization magnetooptics: studies of interactions of a spin system with a lattice, in particular, spin-lattice relaxation and spin memory effect, experiments in the double radiooptical resonance, studies of optical spin relaxation, nonlinear magnetooptical effects, etc

  15. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  16. Concentric circular focusing reflector realized using high index contrast gratings

    Science.gov (United States)

    Fang, Wenjing; Huang, Yongqing; Fei, Jiarui; Duan, Xiaofeng; Liu, Kai; Ren, Xiaomin

    2017-11-01

    A non-periodic concentric circular high index contrast grating (CC-HCG) focusing reflector on 500 nm silicon-on-insulator (SOI) platform is fabricated and experimentally demonstrated. The proposed mirror is realized with phase modulation of wave front in a high reflectivity region. The circular structure based HCG focusing reflector has a spot of high concentration at the 10.87 mm with normal incidence for radially polarization, along with the center wavelength set at 1550 nm. The FWHM spot size of the focusing beam decreases to 260 μm, and the intensity increases to 1.26 compared with the incident beam. The focusing efficiency of about 80% is observed at 1550 nm in the experimental measurement.

  17. Design of an unmanned Martian polar exploration system

    Science.gov (United States)

    Baldwin, Curt; Chitwood, Denny; Demann, Brian; Ducheny, Jordan; Hampton, Richard; Kuhns, Jesse; Mercer, Amy; Newman, Shawn; Patrick, Chris; Polakowski, Tony

    1994-01-01

    The design of an unmanned Martian polar exploration system is presented. The system elements include subsystems for transportation of material from earth to Mars, study of the Martian north pole, power generation, and communications. Early next century, three Atlas 2AS launch vehicles will be used to insert three Earth-Mars transfer vehicles, or buses, into a low-energy transfer orbit. Capture at Mars will be accomplished by aerobraking into a circular orbit. Each bus contains four landers and a communications satellite. Six of the twelve total landers will be deployed at 60 deg intervals along 80 deg N, and the remaining six landers at 5 deg intervals along 30 deg E from 65 deg N to 90 deg N by a combination of retrorockets and parachutes. The three communications satellites will be deployed at altitudes of 500 km in circular polar orbits that are 120 deg out of phase. These placements maximize the polar coverage of the science and communications subsystems. Each lander contains scientific equipment, two microrovers, power supplies, communications equipment, and a science computer. The lander scientific equipment includes a microweather station, seismometer, thermal probe, x-ray spectrometer, camera, and sounding rockets. One rover, designed for short-range (less than 2 km) excursions from the lander, includes a mass spectrometer for mineral analysis, an auger/borescope system for depth profiling, a deployable thermal probe, and charge coupled device cameras for terrain visualization/navigation. The second rover, designed for longer-range (2-5 km) excursions from the lander, includes radar sounding/mapping equipment, a seismometer, and laser ranging devices. Power for all subsystems is supplied by a combination of solar cells, Ni-H batteries, and radioisotope thermoelectric generators. Communications are sequenced from rovers, sounding rockets, and remote sensors to the lander, then to the satellites, through the Deep Space Network to and from earth.

  18. Polarization Characteristics of Zebra Patterns in Type IV Solar Radio Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Kaneda, K.; Misawa, H.; Tsuchiya, F.; Obara, T. [Planetary Plasma and Atmospheric Research Center, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Iwai, K. [National Institute of Information and Communications Technology, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795 (Japan); Katoh, Y. [Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Masuda, S., E-mail: k.kaneda@pparc.gp.tohoku.ac.jp [Institute for Space—Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2017-06-10

    The polarization characteristics of zebra patterns (ZPs) in type IV solar bursts were studied. We analyzed 21 ZP events observed by the Assembly of Metric-band Aperture Telescope and Real-time Analysis System between 2010 and 2015 and identified the following characteristics: a degree of circular polarization (DCP) in the range of 0%–70%, a temporal delay of 0–70 ms between the two circularly polarized components (i.e., the right- and left-handed components), and dominant ordinary-mode emission in about 81% of the events. For most events, the relation between the dominant and delayed components could be interpreted in the framework of fundamental plasma emission and depolarization during propagation, though the values of DCP and delay were distributed across wide ranges. Furthermore, it was found that the DCP and delay were positively correlated (rank correlation coefficient R = 0.62). As a possible interpretation of this relationship, we considered a model based on depolarization due to reflections at sharp density boundaries assuming fundamental plasma emission. The model calculations of depolarization including multiple reflections and group delay during propagation in the inhomogeneous corona showed that the DCP and delay decreased as the number of reflections increased, which is consistent with the observational results. The dispersive polarization characteristics could be explained by the different numbers of reflections causing depolarization.

  19. Polarization in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Papadichev, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)

    1995-12-31

    Polarization of electromagnetic radiation is required very often in numerous scientific and industrial applications: studying of crystals, molecules and intermolecular interaction high-temperature superconductivity, semiconductors and their transitions, polymers and liquid crystals. Using polarized radiation allows to obtain important data (otherwise inaccessible) in astrophysics, meteorology and oceanology. It is promising in chemistry and biology for selective influence on definite parts of molecules in chain synthesis reactions, precise control of various processes at cell and subcell levels, genetic engineering etc. Though polarization methods are well elaborated in optics, they can fail in far-infrared, vacuum-ultraviolet and X-ray regions because of lack of suitable non-absorbing materials and damaging of optical elements at high specific power levels. Therefore, it is of some interest to analyse polarization of untreated FEL radiation obtained with various types of undulators, with and without axial magnetic field. The polarization is studied using solutions for electron orbits in various cases: plane or helical undulator with or without axial magnetic field, two plane undulators, a combination of right- and left-handed helical undulators with equal periods, but different field amplitudes. Some examples of how a desired polarization (elliptical circular or linear) can be obtained or changed quickly, which is necessary in many experiments, are given.

  20. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.

    Science.gov (United States)

    Sadeghi, S M

    2014-09-01

    When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.

  1. Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  2. Circular Business: Collaborate and Circulate : a bookreview

    NARCIS (Netherlands)

    Timmermans, Ratna W.; Witjes, S.|info:eu-repo/dai/nl/381088200

    2016-01-01

    With their book, “Circular Business: Collaborate and Circulate”, Circular Collaboration, Amersfoort, ISBN: 978-90-824902-0-6, €35, Kraaijenhagen et al. (2016) give companies practical guidance on their contribution to the development of a more circular economy by presenting a practical 10-step

  3. Capacitance of circular patch resonator

    International Nuclear Information System (INIS)

    Miano, G.; Verolino, L.; Naples Univ.; Panariello, G.; Vaccaro, V.G.; Naples Univ.

    1995-11-01

    In this paper the capacitance of the circular microstrip patch resonator is computed. It is shown that the electrostatic problem can be formulated as a system of dual integral equations, and the most interesting techniques of solutions of these systems are reviewed. Some useful approximated formulas for the capacitance are derived and plots of the capacitance are finally given in a wide range of dielectric constants

  4. Colours in a Circular Economy

    OpenAIRE

    Niinimäki, Kirsi; Smirnova, Eugenia; Ilen, Elina; Sixta, Herbert; Hummel, Michael

    2017-01-01

    | openaire: EC/H2020/646226/EU//Trash-2-Cash This paper reports on preliminary results on the recycling of coloured cellulose-based textiles using a novel dry-jet wet spinning denoted as the Ioncell-F process. The practical possibility of colour circulation is useful knowledge for colour designers in the industry. The findings can help define further parameters for circular economy products

  5. OSIRIS (Observing System Including PolaRisation in the Solar Infrared Spectrum) instrument: a multi-directional, polarized radiometer in the visible and shortwave infrared, airborne prototype of 3MI / EPS-SG Eumetsat - ESA mission

    Science.gov (United States)

    Matar, C.; Auriol, F.; Nicolas, J. M.; Parol, F.; Riedi, J.; Djellali, M. S.; Cornet, C.; Waquet, F.; Catalfamo, M.; Delegove, C.; Loisil, R.

    2017-12-01

    OSIRIS instrument largely inherits from the POLDER concept developed and operated between 1991 (first airborne prototype) and 2013 (end of the POLDER-3/PARASOL space-borne mission). It consists in two optical systems, one covering the visible to near infrared range (440, 490, 670, 763, 765, 870, 910 and 940 nm) and a second one for the shortwave infrared (940, 1020, 1240, 1360, 1620 and 2200 nm). Each optical system is composed of a wide field-of-view optics (114° and 105° respectively) associated to two rotating wheels with interferential filters (spectral) and analyzers filters (polarization) respectively, and a 2D array of detectors. For each channel, radiance is measured once without analyzer, followed by sequential measurements with the three analyzers shifted by an angle of 60° to reconstruct the total and polarized radiances. The complete acquisition sequence for all spectral channels last a couple of seconds according to the chosen measurement protocol. Thanks to the large field of view of the optics, any target is seen under several viewing angles during the aircraft motion. In a first step we will present the new ground characterization of the instrument based on laboratory measurements (linearity, flat-field, absolute calibration, induced polarization, polarizers efficiency and position), the radiometric model and the Radiometric Inverted Model (RIM) used to develop the Level 1 processing chain that is used to produce level 1 products (normalized radiances, polarized or not, with viewing geometries) from the instrument generated level 0 files (Digital Counts) and attitude information from inertial system. The stray light issues will be specifically discussed. In a second step we will present in-flight radiometric and geometric methods applied to OSIRIS data in order to control and validate ground-based calibrated products: molecular scattering method and sun-glint cross-band method for radiometric calibration, glories, rainbows and sun-glint targets

  6. Multi-circular flux motor

    Energy Technology Data Exchange (ETDEWEB)

    El-Kharashi, Eyhab Aly, E-mail: EyhabElkharahi@hotmail.com [Faculty of Engineering, Electrical Power and Machines Department, Ain Shams University, 1 El-Sarayat Street, Abdou Basha Square, Abbassia 11517, Cairo (Egypt)

    2011-11-15

    Highlights: {yields} The paper uses the multi-circular rotor in the switched reluctance motor to increase its output torque and its efficiency. {yields} Finite element is used to model the new SRM accurately. {yields} The Matlab/Simulink is used to dynamically model the new SRM. {yields} The paper compares the torque capability of the multi-circular rotor SRM. {yields} The new SRM produces approximately double the torque of its equivalent conventional SRM. - Abstract: The paper introduces a new type of electrical machines which has significantly high output torque. The toothed-rotor in the conventional electrical machine is replaced by a multi-circular rotor to increase the saliency and to shorten the flux loops consequently the output torque increases. The paper presents the design steps of this new type of electrical machine and also examines its performance. In addition, the paper compares the percentage increase in output torque from the proposed new electric machine to its equivalent conventional motor. Then the paper proceeds to discuss the relation between the switching on angle and the maximum speed, the torque ripples, and the efficiency.

  7. Polarization-controlled asymmetric excitation of surface plasmons

    KAUST Repository

    Xu, Quan

    2017-08-28

    Free-space light can be coupled into propagating surface waves at a metal–dielectric interface, known as surface plasmons (SPs). This process has traditionally faced challenges in preserving the incident polarization information and controlling the directionality of the excited SPs. The recently reported polarization-controlled asymmetric excitation of SPs in metasurfaces has attracted much attention for its promise in developing innovative plasmonic devices. However, the unit elements in these works were purposely designed in certain orthogonal polarizations, i.e., linear or circular polarizations, resulting in limited two-level polarization controllability. Here, we introduce a coupled-mode theory to overcome this limit. We demonstrated theoretically and experimentally that, by utilizing the coupling effect between a pair of split-ring-shaped slit resonators, exotic asymmetric excitation of SPs can be obtained under the x-, y-, left-handed circular, and right-handed circular polarization incidences, while the polarization information of the incident light can be preserved in the excited SPs. The versatility of the presented design scheme would offer opportunities for polarization sensing and polarization-controlled plasmonic devices.

  8. PCDDB: the Protein Circular Dichroism Data Bank, a repository for circular dichroism spectral and metadata.

    Science.gov (United States)

    Whitmore, Lee; Woollett, Benjamin; Miles, Andrew John; Klose, D P; Janes, Robert W; Wallace, B A

    2011-01-01

    The Protein Circular Dichroism Data Bank (PCDDB) is a public repository that archives and freely distributes circular dichroism (CD) and synchrotron radiation CD (SRCD) spectral data and their associated experimental metadata. All entries undergo validation and curation procedures to ensure completeness, consistency and quality of the data included. A web-based interface enables users to browse and query sample types, sample conditions, experimental parameters and provides spectra in both graphical display format and as downloadable text files. The entries are linked, when appropriate, to primary sequence (UniProt) and structural (PDB) databases, as well as to secondary databases such as the Enzyme Commission functional classification database and the CATH fold classification database, as well as to literature citations. The PCDDB is available at: http://pcddb.cryst.bbk.ac.uk.

  9. Selective Deflection of Polarized Light Via Coherently Driven Four-Level Atoms in a Double-Λ Configuration

    International Nuclear Information System (INIS)

    Guo Yu

    2010-01-01

    We study the interaction of a weak probe field, having two circular polarized components, i.e., σ - and σ + polarization, with an optically dense medium of four-level atoms in a double-Λ configuration, which is mediated by the electromagnetically induced transparency with a polarized control light with spatially inhomogeneous profile. We analyse the deflection of the polarized probe light and we find that we can selectively determine which circular component will be deflected after the polarized probe light enters the atom medium via adjusting the polarization and detuning of the control field. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. n-Nucleotide circular codes in graph theory.

    Science.gov (United States)

    Fimmel, Elena; Michel, Christian J; Strüngmann, Lutz

    2016-03-13

    The circular code theory proposes that genes are constituted of two trinucleotide codes: the classical genetic code with 61 trinucleotides for coding the 20 amino acids (except the three stop codons {TAA,TAG,TGA}) and a circular code based on 20 trinucleotides for retrieving, maintaining and synchronizing the reading frame. It relies on two main results: the identification of a maximal C(3) self-complementary trinucleotide circular code X in genes of bacteria, eukaryotes, plasmids and viruses (Michel 2015 J. Theor. Biol. 380, 156-177. (doi:10.1016/j.jtbi.2015.04.009); Arquès & Michel 1996 J. Theor. Biol. 182, 45-58. (doi:10.1006/jtbi.1996.0142)) and the finding of X circular code motifs in tRNAs and rRNAs, in particular in the ribosome decoding centre (Michel 2012 Comput. Biol. Chem. 37, 24-37. (doi:10.1016/j.compbiolchem.2011.10.002); El Soufi & Michel 2014 Comput. Biol. Chem. 52, 9-17. (doi:10.1016/j.compbiolchem.2014.08.001)). The univerally conserved nucleotides A1492 and A1493 and the conserved nucleotide G530 are included in X circular code motifs. Recently, dinucleotide circular codes were also investigated (Michel & Pirillo 2013 ISRN Biomath. 2013, 538631. (doi:10.1155/2013/538631); Fimmel et al. 2015 J. Theor. Biol. 386, 159-165. (doi:10.1016/j.jtbi.2015.08.034)). As the genetic motifs of different lengths are ubiquitous in genes and genomes, we introduce a new approach based on graph theory to study in full generality n-nucleotide circular codes X, i.e. of length 2 (dinucleotide), 3 (trinucleotide), 4 (tetranucleotide), etc. Indeed, we prove that an n-nucleotide code X is circular if and only if the corresponding graph [Formula: see text] is acyclic. Moreover, the maximal length of a path in [Formula: see text] corresponds to the window of nucleotides in a sequence for detecting the correct reading frame. Finally, the graph theory of tournaments is applied to the study of dinucleotide circular codes. It has full equivalence between the combinatorics

  11. Design Studies for Flux and Polarization Measurements of Photons and Positrons for SLAC Proposal E166: An experiment to test polarized positron production in the FFTB (LCC-0107)

    Energy Technology Data Exchange (ETDEWEB)

    Woods, M

    2003-10-02

    We present results from design studies carried out to investigate measurements of the flux, spectrum and polarization of undulator photons for SLAC Proposal E166. A transmission Compton polarimeter is considered for measuring the photon circular polarization. We also present results for measuring the flux and spectrum of positrons produced by the undulator photons in an 0.5X{sub 0} Titanium target. And we present some considerations for use of a transmission Compton polarimeter to measure the circular polarization of bremsstrahlung photons emitted by the polarized positrons in a thin radiator.

  12. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    International Nuclear Information System (INIS)

    Longhi, E C; Bencok, P; Dobrynin, A; Rial, E C M; Rose, A; Steadman, P; Thompson, C; Thomson, A; Wang, H

    2013-01-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  13. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    Science.gov (United States)

    Longhi, E. C.; Bencok, P.; Dobrynin, A.; Rial, E. C. M.; Rose, A.; Steadman, P.; Thompson, C.; Thomson, A.; Wang, H.

    2013-03-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  14. Apico-basal polarity complex and cancer

    Indian Academy of Sciences (India)

    Apico-basal polarity is a cardinal molecular feature of adult eukaryotic epithelial cells and appears to be involved in several key cellular processes including polarized cell migration and maintenance of tissue architecture. Epithelial cell polarity is maintained by three well-conserved polarity complexes, namely, PAR, Crumbs ...

  15. How to debrief teamwork interactions: using circular questions to explore and change team interaction patterns.

    Science.gov (United States)

    Kolbe, Michaela; Marty, Adrian; Seelandt, Julia; Grande, Bastian

    2016-01-01

    We submit that interaction patterns within healthcare teams should be more comprehensively explored during debriefings in simulation-based training because of their importance for clinical performance. We describe how circular questions can be used for that purpose. Circular questions are based on social constructivism. They include a variety of systemic interviewing methods. The goals of circular questions are to explore the mutual dependency of team members' behavior and recurrent behavior patterns, to generate information, to foster perspective taking, to "fluidize" problems, and to put actions into relational contexts. We describe the nature of circular questions, the benefits they offer, and ways of applying them during debriefings.

  16. High-power millimeter-wave mode converters in overmoded circular waveguides using periodic wall perturbations

    International Nuclear Information System (INIS)

    Thumm, M.

    1984-07-01

    This work reports on measurements and calculations (coupled mode equations) on the conversion of circular elecric TEsub(0n) gyrotron mode compositions (TE 01 to TE 04 ) at 28 and 70 GHz to the linearly polarized TE 11 mode by means of a mode converter system using periodic waveguide wall perturbations. Mode transducers with axisymmetric radius perturbations transform the TEsub(0n) gyrotron mode mixture to the more convenient TE 01 mode for long-distance transmission through overmoded waveguides. Proper matching of the phase differences between the TEsub(0n) modes and of lengths and perturbation amplitudes of the several converter sections is required. A mode converter with constant diameter and periodically perturbed curvature transfers the unpolarized TE 01 mode into the TE 11 mode which produces an almost linearly polarized millimeter-wave beam needed for efficient electron cyclotron heating (ECRH) of plasmas in thermonuclear fusion devices. The experimentally determined TEsub(0n)-to-TE 01 conversion efficiency is (98+-1)% at 28 and 70 GHz (99% predicted) while the TE 01 -to-TE 11 converter has a (96+-2)% conversion efficiency at 28 GHz (95% predicted) and (94+-2)% at 70 GHz (93% predicted); ohmic losses are included. (orig./AH)

  17. Nuclear spin polarization of targets

    International Nuclear Information System (INIS)

    Happer, W.

    1990-01-01

    Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases

  18. Polarization Properties of Laser Solitons

    Directory of Open Access Journals (Sweden)

    Pedro Rodriguez

    2017-04-01

    Full Text Available The objective of this paper is to summarize the results obtained for the state of polarization in the emission of a vertical-cavity surface-emitting laser with frequency-selective feedback added. We start our research with the single soliton; this situation presents two perpendicular main orientations, connected by a hysteresis loop. In addition, we also find the formation of a ring-shaped intensity distribution, the vortex state, that shows two homogeneous states of polarization with very close values to those found in the soliton. For both cases above, the study shows the spatially resolved value of the orientation angle. It is important to also remark the appearance of a non-negligible amount of circular light that gives vectorial character to all the different emissions investigated.

  19. Investigation of the polarization state of dual APPLE-II undulators.

    Science.gov (United States)

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S; Sawhney, Kawal

    2016-01-01

    The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  20. First measurement of the polarization observable E in the p→(γ→,π+n reaction up to 2.25 GeV

    Directory of Open Access Journals (Sweden)

    S. Strauch

    2015-11-01

    Full Text Available First results from the longitudinally polarized frozen-spin target (FROST program are reported. The double-polarization observable E, for the reaction γ→p→→π+n, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2.37 GeV. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National Accelerator Facility. These polarization data agree fairly well with previous partial-wave analyses at low photon energies. Over much of the covered energy range, however, significant deviations are observed, particularly in the high-energy region where high-L multipoles contribute. The data have been included in new multipole analyses resulting in updated nucleon resonance parameters. We report updated fits from the Bonn–Gatchina, Jülich–Bonn, and SAID groups.

  1. Political polarization

    OpenAIRE

    Dixit, Avinash K.; Weibull, Jörgen W.

    2007-01-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  2. Political polarization.

    Science.gov (United States)

    Dixit, Avinash K; Weibull, Jörgen W

    2007-05-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  3. Second-harmonic generation in shear wave beams with different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)

    2015-10-28

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  4. The protein circular dichroism data bank, a Web-based site for access to circular dichroism spectroscopic data.

    Science.gov (United States)

    Whitmore, Lee; Woollett, Benjamin; Miles, Andrew J; Janes, Robert W; Wallace, B A

    2010-10-13

    The Protein Circular Dichroism Data Bank (PCDDB) is a newly released resource for structural biology. It is a web-accessible (http://pcddb.cryst.bbk.ac.uk) data bank for circular dichroism (CD) and synchrotron radiation circular dichroism (SRCD) spectra and their associated experimental and secondary metadata, with links to protein sequence and structure data banks. It is designed to provide a public repository for CD spectroscopic data on macromolecules, to parallel the Protein Data Bank (PDB) for crystallographic, electron microscopic, and nuclear magnetic resonance spectroscopic data. Similarly to the PDB, it includes validation checking procedures to ensure good practice and the integrity of the deposited data. This paper reports on the first public release of the PCDDB, which provides access to spectral data that comprise standard reference datasets. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. 76 FR 60357 - Federal Regulations; OMB Circulars, OFPP Policy Letters, and CASB Cost Accounting Standards...

    Science.gov (United States)

    2011-09-29

    ... Circulars, OFPP Policy Letters, and CASB Cost Accounting Standards Included in the Semiannual Agenda of..., and Cost Accounting Standards Board (CASB) Cost Accounting Standards. OMB Circulars and OFPP Policy...,'' ``proposed rule,'' and ``final rule'' stages. CASB Cost Accounting Standards are issued under authority...

  6. Development of Precise Lunar Orbit Propagator and Lunar Polar Orbiter’s Lifetime Analysis

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2010-06-01

    Full Text Available To prepare for a Korean lunar orbiter mission, a precise lunar orbit propagator; Yonsei precise lunar orbit propagator (YSPLOP is developed. In the propagator, accelerations due to the Moon’s non-spherical gravity, the point masses of the Earth, Moon, Sun, Mars, Jupiter and also, solar radiation pressures can be included. The developed propagator’s performance is validated and propagation errors between YSPOLP and STK/Astrogator are found to have about maximum 4-m, in along-track direction during 30 days (Earth’s time of propagation. Also, it is found that the lifetime of a lunar polar orbiter is strongly affected by the different degrees and orders of the lunar gravity model, by a third body’s gravitational attractions (especially the Earth, and by the different orbital inclinations. The reliable lifetime of circular lunar polar orbiter at about 100 km altitude is estimated to have about 160 days (Earth’s time. However, to estimate the reasonable lifetime of circular lunar polar orbiter at about 100 km altitude, it is strongly recommended to consider at least 50 × 50 degrees and orders of the lunar gravity field. The results provided in this paper are expected to make further progress in the design fields of Korea’s lunar orbiter missions.

  7. Circular intensity differential scattering of light by helical structures. II. Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, C.; Maestre, M.F.; Tinoco, I. Jr.

    1980-12-15

    Analysis and numerical calculations were made of the total scattering and differential scattering of circularly polarized light by helices as models of chiral structures. The differential scattering patterns are much more sensitive than the total scattering to helical parameters. For large helices the angular dependence of these patterns show lobes which alternate in sign. The number of lobes and the positions of the zeros directly measure the ratios of radius and pitch to wavelength. The signs depend on the sense of the helix. The results are compared with measured circular intensity differential scattering of membranes from the bacterium Spirillum serpens. Good qualitative agreement is obtained.

  8. Polarization of photoelectrons produced from atoms by synchrotron radiation

    International Nuclear Information System (INIS)

    Hughes, V.W.; Lu, D.C.; Huang, K.N.

    1981-01-01

    The polarization of photoelectrons from stoms has proved to be an important tool for studying correlation effects in atoms, as well as relativistic effects such as the spin-orbit interaction. Extensive experimental and theoretical studies have been made of the Fano effect, which is the production of polarized electrons by photoionization of unpolarized atoms by circularly polarized light. The experiments have dealt mostly with alkali atoms and with photon energies slightly above the ionization thresholds. Measurements that could be made to utilize polarized radiation are discussed

  9. Circular economy and nuclear energy

    International Nuclear Information System (INIS)

    2016-01-01

    Circular economy means no production of waste through re-using and recycling. As other industries, nuclear industry has committed itself to a policy of sustainability and resource preservation. EDF has developed a 5 point strategy: 1) the closure of the fuel cycle through recycling, 2) operating nuclear power plants beyond 40 years, 3) reducing the volume of waste, 4) diminishing the consumption of energy through the implementation of new processes (for instance the enrichment through centrifugation uses 50 times less power than gaseous diffusion enrichment) and 5) making evolve the prevailing doctrine concerning the management of very low level radioactive waste: making possible the re-use of slightly contaminated steel scrap or concrete instead of storing them in dedicated disposal centers. (A.C.)

  10. Circular arc snakes and kinematic surface generation

    KAUST Repository

    Barton, Michael

    2013-05-01

    We discuss the theory, discretization, and numerics of curves which are evolving such that part of their shape, or at least their curvature as a function of arc length, remains unchanged. The discretization of a curve as a smooth sequence of circular arcs is well suited for such purposes, and allows us to reduce evolution of curves to the evolution of a control point collection in a certain finite-dimensional shape space. We approach this evolution by a 2-step process: linearized evolution via optimized velocity fields, followed by optimization in order to exactly fulfill all geometric side conditions. We give applications to freeform architecture, including "rationalization" of a surface by congruent arcs, form finding and, most interestingly, non-static architecture. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  11. Some properties of circular proteins

    International Nuclear Information System (INIS)

    Prosselkov, P.; John, P.; Dixon, N.E.; Liepinsh, E.; Williams, N.K.; University of Sydney, NSW; Matthews, J.M.; Otting, G.; Karolinska Institutet, Stockholm,

    2002-01-01

    Full text: Protein backbone cyclization can be achieved by use of a circularly-permuted split mini-intein. We have used the small N-terminal domain of the E coli DnaB helicase (DnaB-N, residues 24-136) as a model protein for cyclization because its structure has been determined both by NMR spectroscopy and X-ray crystallography, and its ends are close together. Joining of the ends of DnaB-N' via a 9-amino acid linker occurs efficiently in vivo, and the circular (cz-) protein is stabilized in comparison to the linear (Hn-) protein against thermal denaturation (ΔΔG ∼2 kcal/mol). DnaB-N exists as a dimer in the crystalline state and in solution at high concentrations. To produce linear and cyclized versions that could not dimerize, Phe102 (at the dimer interface) was changed to Glu. NMR spectra showed that the F102E mutants remained monomeric at high concentrations but otherwise had essentially the same structures as the wild-type domains. Individual rate constants for proton exchange at the amide groups in lin- and cz-DnaB-N were determined at 10 C. Although they varied as expected depending on exposure to solvent, the ratios of rates between corresponding amides in the two proteins were constant. In the same buffer, lin- and cz-DnaB-N both unfolded reversibly, with transition temperatures of 37.9 and 48.5 deg C, respectively. Correlation of the (constant) ratio of amide exchange rates with measured thermodynamic parameters suggests that amide exchange in DnaB-N occurs predominantly in a globally unfolded state. Similar studies with other proteins are underway

  12. Basic design of beamline and polarization control

    International Nuclear Information System (INIS)

    Watanabe, M.

    2006-01-01

    The basic concept of synchrotron radiation beamlines for' vacuum ultraviolet and X-ray experiments has been introduced to beginning users and designers of beamlines. The beamline defined here is composed of a front end, pre-mirrors, and a monochromator with refocusing mirrors, which are connected by beam pipes, providing monochromatic light for the experiments. Firstly, time characteristics of the synchrotron radiation are briefly reviewed. Secondly, the basic technology is introduced as the fundamental knowledge required to both users and designers. The topics are photoabsorption by air and solids, front ends and beam pipes, mirrors, monochromators, and filters. Thirdly, the design consideration is described mainly for the designers. The topics are design principle, principle of ray tracing, optical machinery and control, and vacuum. Fourthly, polarization control is considered. The topics are polarizers, polarization diagnosis of beamline, and circularly-polarized light generation. Finally, a brief summary is given introducing some references for further knowledge of the user's and the designers. (authors)

  13. The origin of radio pulsar polarization

    Science.gov (United States)

    Dyks, J.

    2017-12-01

    Polarization of radio pulsar profiles involves a number of poorly understood, intriguing phenomena, such as the existence of comparable amounts of orthogonal polarization modes (OPMs), strong distortions of polarization angle (PA) curves into shapes inconsistent with the rotating vector model (RVM), and the strong circular polarization V which can be maximum (instead of zero) at the OPM jumps. It is shown that the comparable OPMs and large V result from a coherent addition of phase-delayed waves in natural propagation modes, which are produced by a linearly polarized emitted signal. The coherent mode summation implies opposite polarization properties to those known from the incoherent case, in particular, the OPM jumps occur at peaks of V, whereas V changes sign at a maximum linear polarization fraction L/I. These features are indispensable to interpret various observed polarization effects. It is shown that statistical properties of emission and propagation can be efficiently parametrized in a simple model of coherent mode addition, which is successfully applied to complex polarization phenomena, such as the stepwise PA curve of PSR B1913+16 and the strong PA distortions within core components of pulsars B1933+16 and B1237+25. The inclusion of coherent mode addition opens the possibility for a number of new polarization effects, such as inversion of relative modal strength, twin minima in L/I coincident with peaks in V, 45° PA jumps in weakly polarized emission, and loop-shaped core PA distortions. The empirical treatment of the coherency of mode addition makes it possible to advance the understanding of pulsar polarization beyond the RVM model.

  14. Culture as a Caveat Towards Circular Economy

    DEFF Research Database (Denmark)

    Guerrieri, Valeria

    2015-01-01

    Circular economy represents an economic and political challenge, as well as a cultural one, requiring a massive transformation on all levels of society. But why is cultural change so important to understanding today’s economy and how can the circular model be considered a truly cross...

  15. A Random Walk on a Circular Path

    Science.gov (United States)

    Ching, W.-K.; Lee, M. S.

    2005-01-01

    This short note introduces an interesting random walk on a circular path with cards of numbers. By using high school probability theory, it is proved that under some assumptions on the number of cards, the probability that a walker will return to a fixed position will tend to one as the length of the circular path tends to infinity.

  16. Nanofocusing in circular sector-like nanoantennas

    DEFF Research Database (Denmark)

    Zenin, Volodymyr; Pors, Anders Lambertus; Han, Zhanghua

    2014-01-01

    a concentric circular line of phase contrast, demonstrating resonant excitation of a standing wave of counter-propagating surface plasmons, travelling between a tip and opposite circular edge of the antenna. Transmission spectra obtained in the range 900 - 2100 nm are in good agreement with numerical...

  17. 76 FR 60590 - Environmental Justice; Proposed Circular

    Science.gov (United States)

    2011-09-29

    ... recipients of FTA funds on how to fully engage environmental justice populations in the public transportation... Federal Transit Administration Environmental Justice; Proposed Circular AGENCY: Federal Transit... guidance in the form of a Circular on incorporating environmental justice principles into plans, projects...

  18. Spin-polarized electron tunneling across a Si delta-doped GaMnAs/n-GaAs interface

    DEFF Research Database (Denmark)

    Andresen, S.E.; Sørensen, B.S.; Lindelof, P.E.

    2003-01-01

    Spin-polarized electron coupling across a Si delta-doped GaMnAs/n-GaAs interface was investigated. The injection of spin-polarized electrons was detected as circular polarized emission from a GaInAs/GaAs quantum well light emitting diode. The angular momentum selection rules were simplified...

  19. Polarization and collision velocity dependence of associative ionization in cold Na (3p)-Na(3p) collisions

    NARCIS (Netherlands)

    Meijer, H.A.J.

    1990-01-01

    We studied the polarization dependence of the associative ionization (AI) process Na(3p) + Na(3p) → Na2+ at collision velocities between 100 and 700 m/s (5 and 200 K), using linearly and circularly polarized light for the excitation. We found that the polarization dependence varies strongly in the

  20. Superconducting Undulator with Variably Polarized Light

    CERN Document Server

    Hwang, Ching Shiang; Ching Fan, Tai; Li, W P; Lin, P H

    2004-01-01

    This study investigates planar in-vacuo superconducting undulators with periodic length of 5 cm (IVSU5) producing linearly and circularly polarized infrared rays or xrays source. The vertically wound racetrack coil is selected for the coil and pole fabrication of the IVSU5. When the up and down magnetic pole arrays with alternative directions rotated wires in the horizontal plane, a helical field radiates circularly polarized light in the electron storage ring, the free electron laser (FEL), and the energy recovery linac (ERL) facilities. Meanwhile, an un-rotated wire is constructed together with the rotated wire on the same undulator is used to switch the linear horizontal and vertical, the right- and left-circular polarization radiation. Given a periodic length of 5 cm and a gap of 23 mm, the maximum magnetic flux density in the helical undulator are Bz = 1.5 T and Bx = 0.5 T when the wires rotated by 20°. This article describes the main factors of the planar and helical undulator design for FEL and...

  1. Multiple scattering of polarized light in a turbid medium

    International Nuclear Information System (INIS)

    Gorodnichev, E. E.; Kuzovlev, A. I.; Rogozkin, D. B.

    2007-01-01

    It is shown that multiple scattering of polarized light in a turbid medium can be represented as independent propagation of three basic modes: intensity and linearly and circularly polarized modes. Weak interaction between the basic modes can be described by perturbation theory and gives rise to 'overtones' (additional polarization modes). Transport equations for the basic and additional modes are derived from a vector radiative transfer equation. Analytical solutions to these equations are found in the practically important cases of diffusive light propagation and small-angle multiple scattering. The results obtained are in good agreement with experimental and numerical results and provide an explanation for the experimentally observed difference in depolarization between linearly and circularly polarized waves

  2. Polarization Imaging and Insect Vision

    Science.gov (United States)

    Green, Adam S.; Ohmann, Paul R.; Leininger, Nick E.; Kavanaugh, James A.

    2010-01-01

    For several years we have included discussions about insect vision in the optics units of our introductory physics courses. This topic is a natural extension of demonstrations involving Brewster's reflection and Rayleigh scattering of polarized light because many insects heavily rely on optical polarization for navigation and communication.…

  3. GPM GROUND VALIDATION DUAL POLARIZATION RADIOMETER GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual Polarization Radiometer GCPEx dataset includes brightness temperature measurements at frequencies 90 GHz (not polarized) and 150 GHz...

  4. Observing the Cosmic Microwave Background Polarization with Variable-delay Polarization Modulators for the Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Harrington, Kathleen; CLASS Collaboration

    2018-01-01

    The search for inflationary primordial gravitational waves and the optical depth to reionization, both through their imprint on the large angular scale correlations in the polarization of the cosmic microwave background (CMB), has created the need for high sensitivity measurements of polarization across large fractions of the sky at millimeter wavelengths. These measurements are subjected to instrumental and atmospheric 1/f noise, which has motivated the development of polarization modulators to facilitate the rejection of these large systematic effects.Variable-delay polarization modulators (VPMs) are used in the Cosmology Large Angular Scale Surveyor (CLASS) telescopes as the first element in the optical chain to rapidly modulate the incoming polarization. VPMs consist of a linearly polarizing wire grid in front of a moveable flat mirror; varying the distance between the grid and the mirror produces a changing phase shift between polarization states parallel and perpendicular to the grid which modulates Stokes U (linear polarization at 45°) and Stokes V (circular polarization). The reflective and scalable nature of the VPM enables its placement as the first optical element in a reflecting telescope. This simultaneously allows a lock-in style polarization measurement and the separation of sky polarization from any instrumental polarization farther along in the optical chain.The Q-Band CLASS VPM was the first VPM to begin observing the CMB full time in 2016. I will be presenting its design and characterization as well as demonstrating how modulating polarization significantly rejects atmospheric and instrumental long time scale noise.

  5. Spin-polarized tunneling through a ferromagnetic insulator

    NARCIS (Netherlands)

    Kok, M.; Kok, M.; Beukers, J.N.; Brinkman, Alexander

    2009-01-01

    The polarization of the tunnel conductance of spin-selective ferromagnetic insulators is modeled, providing a generalized concept of polarization including both the effects of electrode and barrier polarization. The polarization model is extended to take additional non-spin-polarizing insulating

  6. FUTURE CIRCULAR COLLIDER LOGISTICS STUDY

    CERN Document Server

    Beißert, Ulrike; Kuhlmann, Gerd; Nettsträter, Andreas; Prasse, Christian; Wohlfahrt, Andreas

    2018-01-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research CERN in Geneva is the largest and most powerful collider in the world. CERN and its research and experimental infrastructure is not only a focus for the science community but is also very much in the public eye. With the Future Circular Collider (FCC) Study, CERN has begun to examine the feasibility of a new underground accelerator ring with a length of approximately 100 kilometres. Logistics is of great importance for the construction, assembly and operation of the FCC. During the planning, construction and assembly of the LHC, logistics proved to be one of the key factors. As the FCC is even larger than the LHC, logistics will also become more and more significant. This report therefore shows new concepts, methods and analytics for logistics, supply chain and transport concepts as part of the FCC study. This report deals with three different logistics aspects for the planning and construction phase of FCC: 1. A discussion of d...

  7. Soil and land management in a circular economy.

    Science.gov (United States)

    Breure, A M; Lijzen, J P A; Maring, L

    2018-05-15

    This article elaborates the role of soil and land management in a circular economy. The circular economy is highly dependent on the functioning of soils and land for the production of food and other biomass; the storage, filtration and transformation of many substances including water, carbon, and nitrogen; the provision of fresh mineral resources and fossil fuels; and the use of their functions as the platform for nature and human activities. Resource demand is increasing as a result of the growing human population. In addition to the shrinking availability of resources resulting from their unsustainable use in the past, our planet's diminishing potential for resource production, due to a range of reasons, is leading to resource scarcity, especially in the case of depletable resources. As an economic system that focuses on maximizing the reuse of resources and products and minimizing their depreciation, the circular economy greatly influences, and depends on, soil and land management. The concise management of the resources, land and soil is thus necessary, to make a circular economy successful. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Polar low monitoring

    Science.gov (United States)

    Bobylev, Leonid; Zabolotskikh, Elizaveta; Mitnik, Leonid

    2010-05-01

    passive microwave data make it possible to retrieve several important atmospheric and oceanic parameters inside the polar lows, such as sea surface wind speed, water vapour content in the atmosphere, total liquid water content in the clouds and others, providing not only qualitative image of a vortex, but also quantitative information about these severe events, constituting a promising tool for their study and monitoring. An approach for detection and tracking of polar lows is developed utilizing the data from two sensors: SSM/I onboard DMSP and Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) onboard Aqua satellite. This approach consists of two stages. At the first stage total atmospheric water vapor fields are retrieved from SSM/I and AMSRE-E measurement data using precise Arctic polar algorithms, developed at NIERSC. These algorithms are applicable over open water. They have high retrieval accuracies under a wide range of environmental conditions. Algorithms are based on numerical simulation of brightness temperatures and their inversion by means of Neural Networks. At the second stage the vortex structures are detected in these fields, polar lows are identified and tracked and some of their parameters are calculated. A few case studies are comprehensively conducted based on SSM/I and AMSRE-E measurements and using other satellite data including visible, infrared and SAR images, QuickScat Scatterometer wind fields, surface analysis maps and re-analysis data, which demonstrated the advantages of satellite passive microwave data usage in the polar low studies.

  9. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  10. Linear and circular dichroism in angle resolved Fe 3p photomission. Revision 1

    International Nuclear Information System (INIS)

    Tamura, E.; Waddill, G.D.; Tobin, J.G.; Sterne, P.A.

    1994-01-01

    Using a recently developed spin-polarized, fully relativistic, multiple scattering approach based on the layer KKR Green function method, we have reproduced the Fe 3p angle-resolved soft x-ray photoemission spectra and analyzed the associated large magnetic dichroism effects for excitation with both linearly and circularly polarized light. Comparison between theory and experiment yields a spin-orbit splitting of 1.0--1.2 eV and an exchange splitting of 0.9-- 1.0 eV for Fe 3p. These values are 50--100% larger than those hitherto obtained experimentally

  11. Bulk and surface effects in x-ray magnetic circular dichroism of iron clusters

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej; Ebert, H.

    2003-01-01

    Roč. 53, č. 1 (2003), s. 55-62 ISSN 0011-4626. [Symposium on Surface Physics /9./. Třešt', 02.09.2002-06.09.2002] R&D Projects: GA ČR GA202/02/0841 Institutional research plan: CEZ:AV0Z1010914 Keywords : x-ray magnetic circular dichroism * clusters * spin-polarized relativistic KKR Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.263, year: 2003

  12. Optical circular deflector with attosecond resolution for ultrashort electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2017-05-01

    Full Text Available A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode (TEM_{01^{*}} in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the method and numerical results with reasonable parameters are both presented. It is shown that the temporal resolution can reach up to ∼100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.

  13. Light-induced spin polarizations in quantum rings

    NARCIS (Netherlands)

    Joibari, F.K.; Blanter, Y.M.; Bauer, G.E.W.

    2014-01-01

    Nonresonant circularly polarized electromagnetic radiation can exert torques on magnetizations by the inverse Faraday effect (IFE). Here, we discuss the enhancement of IFE by spin-orbit interactions. We illustrate the principle by studying a simple generic model system, i.e., the

  14. Thomson scattering of polarized photons in an intense laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Byung Yunn

    2006-02-21

    We present a theoretical analysis of the Thomson scattering of linearly and circularly polarized photons from a pulsed laser by electrons. The analytical expression for the photon distribution functions presented in this paper should be useful to designers of Thomson scattering experiments.

  15. Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials

    Science.gov (United States)

    Shen, Xin-Wei; Tong, Wen-Yi; Gong, Shi-Jing; Duan, Chun-Gang

    2018-03-01

    The concept of ferrovalley materials has been proposed very recently. The existence of spontaneous valley polarization, resulting from ferromagnetism, in such hexagonal 2D materials makes nonvolatile valleytronic applications realizable. Here, we introduce a new member of ferrovalley family with orthorhombic lattice, i.e. monolayer group-IV monochalcogenides (GIVMs), in which the intrinsic valley polarization originates from ferroelectricity, instead of ferromagnetism. Combining the group theory analysis and first-principles calculations, we demonstrate that, different from the valley-selective circular dichroism in hexagonal lattice, linearly polarized optical selectivity for valleys exists in the new type of ferrovalley materials. On account of the distinctive property, a prototype of electrically tunable polarizer is realized. In the ferrovalley-based polarizer, a laser beam can be optionally polarized in x- or y-direction, depending on the ferrovalley state controlled by external electric fields. Such a device can be further optimized to emit circularly polarized radiation with specific chirality and to realize the tunability for operating wavelength. Therefore, we show that 2D orthorhombic ferrovalley materials are the promising candidates to provide an advantageous platform to realize the polarizer driven by electric means, which is of great importance in extending the practical applications of valleytronics.

  16. Investigation of the state of polarization of light in a single-mode fiber waveguide

    Science.gov (United States)

    Kozel, S. M.; Kreopalov, V. I.; Listvin, V. N.; Glavatskikh, N. A.

    1983-01-01

    An analysis is made of the polarization anisotropy of a single-mode fiber with a twisted elliptic core. The Jones matrix is obtained and the complex function of the state of polarization of light in a fiber is investigated. The results are reported of measurements of the linear and circular birefringence of a borosilicate single-mode glass fiber.

  17. Investigation of the polarization anisotropy in a single-mode quartz fiber

    Science.gov (United States)

    Kozel, S. M.; Listvin, V. N.; Shatalin, S. V.

    A method is presented for investigating the fiber-length dependence of optical activity, linear birefringence and the azimuth of the major axis of linear birefringence on the basis of the evolution of two states of light polarization in a fiber with arbitrary polarization anisotropy. Linear and circular birefringent properties of the fiber are determined, and, it is shown that the fiber is irregular.

  18. VIIRS/J1 polarization narrative

    Science.gov (United States)

    Waluschka, Eugene; McCorkel, Joel; McIntire, Jeff; Moyer, David; McAndrew, Brendan; Brown, Steven W.; Lykke, Keith R.; Young, James B.; Fest, Eric; Butler, James; Wang, Tung R.; Monroy, Eslim O.; Turpie, Kevin; Meister, Gerhard; Thome, Kurtis J.

    2015-09-01

    The polarization sensitivity of the Visible/NearIR (VISNIR) bands in the Joint Polar Satellite Sensor 1 (J1) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was measured using a broadband source. While polarization sensitivity for bands M5-M7, I1, and I2 was less than 2.5 %, the maximum polarization sensitivity for bands M1, M2, M3, and M4 was measured to be 6.4 %, 4.4 %, 3.1 %, and 4.3 %, respectively with a polarization characterization uncertainty of less than 0.38%. A detailed polarization model indicated that the large polarization sensitivity observed in the M1 to M4 bands is mainly due to the large polarization sensitivity introduced at the leading and trailing edges of the newly manufactured VISNIR bandpass focal plane filters installed in front of the VISNIR detectors. This was confirmed by polarization measurements of bands M1 and M4 bands using monochromatic light. Discussed are the activities leading up to and including the two polarization tests, some discussion of the polarization model and the model results, the role of the focal plane filters, the polarization testing of the Aft-Optics-Assembly, the testing of the polarizers at the National Aeronautics and Space Administration's (NASA) Goddard center and at the National Institute of Science and Technology (NIST) facility and the use of NIST's Traveling Spectral Irradiance and Radiance responsivity Calibrations using Uniform Sources (T-SIRCUS) for polarization testing and associated analyses and results.

  19. VIIRS-J1 Polarization Narrative

    Science.gov (United States)

    Waluschka, Eugene; McCorkel, Joel; McIntire, Jeff; Moyer, David; McAndrew, Brendan; Brown, Steven W.; Lykke, Keith; Butler, James; Meister, Gerhard; Thome, Kurtis J.

    2015-01-01

    The VIS/NIR bands polarization sensitivity of Joint Polar Satellite Sensor 1 (JPSS1) Visible/Infrared Imaging Radiometer Suite (VIIRS) instrument was measured using a broadband source. While polarization sensitivity for bands M5-M7, I1, and I2 was less than 2.5%, the maximum polarization sensitivity for bands M1, M2, M3, and M4 was measured to be 6.4%, 4.4%, 3.1%, and 4.3%, respectively with a polarization characterization uncertainty of less than 0.3%. A detailed polarization model indicated that the large polarization sensitivity observed in the M1 to M4 bands was mainly due to the large polarization sensitivity introduced at the leading and trailing edges of the newly manufactured VISNIR bandpass focal plane filters installed in front of the VISNIR detectors. This was confirmed by polarization measurements of bands M1 and M4 bands using monochromatic light. Discussed are the activities leading up to and including the instruments two polarization tests, some discussion of the polarization model and the model results, the role of the focal plane filters, the polarization testing of the Aft-Optics-Assembly, the testing of the polarizers at Goddard and NIST and the use of NIST's T-SIRCUS for polarization testing and associated analyses and results.

  20. Discovery of araneiforms outside of the South Polar Layered Deposits

    Science.gov (United States)

    Schwamb, Megan E.; Aye, K.-Michael; Portyankina, Ganna; Hansen, Candice; Lintott, Chris J.; Allen, Campbell; Allen, Sarah; Calef, Fred J.; Duca, Simone; McMaster, Adam; R. M Miller, Grant

    2017-10-01

    Mars' south polar region is sculpted by the seasonal cycle of freezing and thawing of exposed carbon dioxide (CO2) ice. In the Southern Spring, CO2 jets loft dust and dirt through cracks in the sublimating CO2 ice sheet to the surface where winds blow the material into the hundreds of thousands of dark fans observed from orbit. During this seasonal process, it is thought that the CO2 gas also exploits weaknesses in the surface below the ice sheet to carve dendritic channels known as araneiforms. Planet Four: Terrains (http://terrains.planetfour.org) is a citizen science project enlisting the general public to review ~6 m/pixel resolution Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) subimages to identify: (1) araneiforms (including features with a central pit and radiating channels known as ‘spiders’) (2) erosional depressions, troughs, mesas, ridges, and quasi-circular pits characteristic of the South Polar Residual Cap (SPRC) which we collectively refer to as ‘Swiss cheese terrain’, and (3) craters.We provide an overview of Planet Four: Terrains and discuss the distributions of our high confidence classic spider araneiforms and Swiss cheese terrain identifications in CTX images covering 11% of the South polar regions at latitudes ≤ -75 degrees N. Previously spiders were reported as being confined to the South Polar Layered Deposits (SPLD). We present the first identification of araneiforms at locations outside of the SPLD and discuss the implications for the CO2 jet hypothesis.Acknowledgements: This work uses data generated via the Zooniverse.org platform, development of which was supported by a Global Impact Award from Google, and by the Alfred P. Sloan Foundation. We also thank the HIRSE and MRO Teams for their help in scheduling and acquiring our requested observations.

  1. NEAR-INFRARED CIRCULAR AND LINEAR POLARIMETRY OF MONOCEROS R2

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jungmi; Tamura, Motohide [Department of Astronomy, Graduate School of Science, The University of Tokyo, 113-0033 (Japan); Hough, James H. [University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Nagata, Tetsuya [Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Kusakabe, Nobuhiko [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-09-01

    We have conducted simultaneous JHK{sub s}-band imaging circular and linear polarimetry of the Monoceros R2 (Mon R2) cluster. We present results from deep and wide near-infrared linear polarimetry of the Mon R2 region. Prominent and extended polarized nebulosities over the Mon R2 field are revisited, and an infrared reflection nebula associated with the Mon R2 cluster and two local reflection nebulae, vdB 67 and vdB 69, is detected. We also present results from deep imaging circular polarimetry in the same region. For the first time, the observations show relatively high degrees of circular polarization (CP) in Mon R2, with as much as approximately 10% in the K{sub s} band. The maximum CP extent of a ring-like nebula around the Mon R2 cluster is approximately 0.60 pc, while that of a western nebula, around vdB 67, is approximately 0.24 pc. The extended size of the CP is larger than those seen in the Orion region around IRc2, while the maximum degree of CP of ∼10% is smaller than those of ∼17% seen in the Orion region. Nonetheless, both the CP size and degree of this region are among the largest in our infrared CP survey of star-forming regions. We have also investigated the time variability of the degree of the polarization of several infrared sources and found possible variations in three sources.

  2. Circular dichroism spectroscopy of fluorescent proteins

    NARCIS (Netherlands)

    Visser, N.V.; Hink, M.A.; Borst, J.W.; Krogt, van der G.N.M.; Visser, A.J.W.G.

    2002-01-01

    Circular dichroism (CD) spectra have been obtained from several variants of green fluorescent protein: blue fluorescent protein (BFP), enhanced cyan fluorescent protein (CFP), enhanced green fluorescent protein (GFP), enhanced yellow fluorescent protein (YFP), all from Aequorea victoria, and the red

  3. 17 CFR 230.253 - Offering circular.

    Science.gov (United States)

    2010-04-01

    .... Repetition of information should be avoided; cross-referencing of information within the document is... COMPLETENESS OF ANY OFFERING CIRCULAR OR OTHER SELLING LITERATURE. THESE SECURITIES ARE OFFERED PURSUANT TO AN...

  4. On Stellar Flash Echoes from Circular Rings

    Science.gov (United States)

    Nemiroff, Robert; Mukherjee, Oindabi

    2018-01-01

    A flash -- or any episode of variability -- that occurs in the vicinity of a circular ring might be seen several times later, simultaneously, as echoes on the ring. Effective images of the flash are created and annihilated in pairs, with as many as four flash images visible concurrently. Videos detailing sequences of image pair creation, tandem motion, and subsequent image annihilation are shown, given simple opacity and scattering assumptions. It is proven that, surprisingly, images from a second pair creation event always annihilate with images from the first. Caustic surfaces between flash locations yielding two and four images are computed. Although such ring echos surely occur, their practical detection might be difficult as it could require dedicated observing programs involving sensitive photometry of extended objects. Potential flash sources include planetary and interstellar gas and dust rings near and around variable stars, flare stars, novae, supernovae, and GRBs. Potentially recoverable information includes size, distance, temporal history, and angular isotropy of both the ring and flash.

  5. Ionization in elliptically polarized pulses: Multielectron polarization effects and asymmetry of photoelectron momentum distributions

    DEFF Research Database (Denmark)

    Shvetsov-Shilovskiy, Nikolay; Dimitrovski, Darko; Madsen, Lars Bojer

    2012-01-01

    In the tunneling regime we present a semiclassical model of above-threshold ionization with inclusion of the Stark shift of the initial state, the Coulomb potential, and a polarization induced dipole potential. The model is used for the investigation of the photoelectron momentum distributions...... in close to circularly polarized light, and it is validated by comparison with ab initio results and experiments. The momentum distributions are shown to be highly sensitive to the tunneling exit point, the Coulomb force, and the dipole potential from the induced dipole in the atomic core...

  6. Polar source analysis : technical memorandum

    Science.gov (United States)

    2017-09-29

    The following technical memorandum describes the development, testing and analysis of various polar source data sets. The memorandum also includes recommendation for potential inclusion in future releases of AEDT. This memorandum is the final deliver...

  7. Modeling of circular-grating surface-emitting lasers

    Science.gov (United States)

    Shams-Zadeh-Amiri, Ali M.

    been used to obtain the far-field pattern of the aperture. It has been shown that the far-field patterns of all circular apertures except those with the first harmonic azimuthal variation have a dark spot at their centers. Threshold analysis of circular-grating lasers has been performed by considering surface emission. In this study, we have assumed that the laser beam is circularly symmetric. Based on the large argument approximation of the Hankel functions, we have shown that the interaction between the amplitudes of the guided modes can be described by coupled-mode equations containing coupling factors to the radiation field. These factors have been obtained by using the Green's function approach. The transfer matrix method is essential in obtaining the Green's function. The relationship between the input current and the output power of circular-grating lasers producing circularly symmetric beams has been derived by developing suitable rate equations for the total number of photons and the phase of the optical amplitude in the laser cavity. We have solved the rate equations above the threshold under steady state conditions. Formulas for radiating power and far-field patterns have also been presented. The theoretical treatment of the radiation modes developed earlier makes it possible to include radiation modes in coupled-mode equations in cylindrical structures. We have done so to pave the way for treating laser fields that are not circularly symmetric. Among them, the laser fields that have the first harmonic azimuthal variation are highly desirable due to the nonzero value of the radiation field on the axis of the laser.

  8. Apico-basal polarity complex and cancer

    Indian Academy of Sciences (India)

    2014-01-27

    Jan 27, 2014 ... and regulated by several polarity proteins. These polarity pro- teins are often targeted by EMT inducers, leading to their altered function, ultimately facilitating cell migration (Martin-Belmonte and Perez-Moreno 2012). EMT-related alterations include over- expression or deregulation of components of polarity ...

  9. A Conceptual Framework for Circular Design

    Directory of Open Access Journals (Sweden)

    Mariale Moreno

    2016-09-01

    Full Text Available Design has been recognised in the literature as a catalyst to move away from the traditional model of take-make-dispose to achieve a more restorative, regenerative and circular economy. As such, for a circular economy to thrive, products need to be designed for closed loops, as well as be adapted to generate revenues. This should not only be at the point of purchase, but also during use, and be supported by low-cost return chains and reprocessing structures, as well as effective policy and regulation. To date, most academic and grey literature on the circular economy has focused primarily on the development of new business models, with some of the latter studies addressing design strategies for a circular economy, specifically in the area of resource cycles and design for product life extension. However, these studies primarily consider a limited spectrum of the technical and biological cycles where materials are recovered and restored and nutrients (e.g., materials, energy, water are regenerated. This provides little guidance or clarity for designers wishing to design for new circular business models in practice. As such, this paper aims to address this gap by systematically analysing previous literature on Design for Sustainability (DfX (e.g., design for resource conservation, design for slowing resource loops and whole systems design and links these approaches to the current literature on circular business models. A conceptual framework is developed for circular economy design strategies. From this conceptual framework, recommendations are made to enable designers to fully consider the holistic implications for design within a circular economy.

  10. Unleashing the Power of the Circular Economy

    Energy Technology Data Exchange (ETDEWEB)

    Kok, L.; Wurpel, G.; Ten Wolde, A. [IMSA Amsterdam, Amsterdam (Netherlands)

    2013-04-15

    The concept of circular economy is an economic and industrial system that focuses on the reusability of products and raw materials, reduces value destruction in the overall system and aims at value creation within each tier of the system. This report for Circle Economy (CE) outlines the general direction and concrete steps that must be taken to accomplish a breakthrough to a circular economy. It also provides a knowledge base behind the concept, connecting it to sustainability.

  11. Detailed analysis of evolution of the state of polarization in all-fiber polarization transformers.

    Science.gov (United States)

    Zhu, Xiushan; Jain, Ravinder K

    2006-10-30

    We present a detailed analysis of key attributes and performance characteristics of controllably-spun birefringent-fiber-based all-fiber waveplates or "all fiber polarization transformers" (AFPTs), first proposed and demonstrated by Huang [11]; these AFPTs consist essentially of a long carefully-designed "spin-twisted" high-birefringence fiber, fabricated by slowly varying the spin rate of a birefringent fiber preform (either from very fast to very slow or vice versa) while the fiber is being drawn. The evolution of the eigenstate from a linear polarization state to a circular polarization state, induced by slow variation of the intrinsic structure from linear anisotropy at the unspun end to circular anisotropy at the fast-spun end, enables the AFPT to behave like an all-fiber quarter-wave plate independent of the wavelength of operation. Power coupling between local eigenstates causes unique evolution of the polarization state along the fiber, and has been studied to gain insight into - as well as to understand detailed characteristics of -- the polarization transformation behavior. This has been graphically illustrated via plots of the relative power in these local eigenstates as a function of distance along the length of the fiber and plots of the extinction ratio of the output state of polarization (SOP) as a function of distance and the normalized spin rate. Deeper understanding of such polarization transformers has been further elucidated by quantitative calculations related to two crucial requirements for fabricating practical AFPT devices. Our calculations have also indicated that the polarization mode dispersion behaviour of the AFPT is much smaller than that of the original birefringent fiber. Finally, a specific AFPT was experimentally investigated at two widely-separated wavelengths (1310 nm and 1550 nm) of interest in telecommunications systems applications, further demonstrating and elucidating the broadband character of such AFPTs.

  12. Upgrading the AGS polarized beam facility

    International Nuclear Information System (INIS)

    Ratner, L.G.

    1991-01-01

    Although present techniques for crossing depolarizing resonances in circular accelerators work, they are very time-consuming to implement and were only able to provide about a 40% polarized beam at 22 GeV in the Alternating Gradient Synchrotron (AGS). We propose to install a partial ''Siberian Snake'' solenoid in the AGS to eliminate the need to correct imperfection resonances and to make other modifications in our intrinsic resonance correctors. This will allow us to reach an energy of 25 GeV with 70% polarization and will enable the AGS to be an efficient injector of polarized protons into the Relativistic Heavy Ion Collider (RHIC), as well as being able to carry on a fixed-target program with minimum set-up time. 3 refs., 5 figs., 1 tab

  13. Fast algorithms for approximate circular string matching.

    Science.gov (United States)

    Barton, Carl; Iliopoulos, Costas S; Pissis, Solon P

    2014-03-22

    Circular string matching is a problem which naturally arises in many biological contexts. It consists in finding all occurrences of the rotations of a pattern of length m in a text of length n. There exist optimal average-case algorithms for exact circular string matching. Approximate circular string matching is a rather undeveloped area. In this article, we present a suboptimal average-case algorithm for exact circular string matching requiring time O(n). Based on our solution for the exact case, we present two fast average-case algorithms for approximate circular string matching with k-mismatches, under the Hamming distance model, requiring time O(n) for moderate values of k, that is k=O(m/logm). We show how the same results can be easily obtained under the edit distance model. The presented algorithms are also implemented as library functions. Experimental results demonstrate that the functions provided in this library accelerate the computations by more than three orders of magnitude compared to a naïve approach. We present two fast average-case algorithms for approximate circular string matching with k-mismatches; and show that they also perform very well in practice. The importance of our contribution is underlined by the fact that the provided functions may be seamlessly integrated into any biological pipeline. The source code of the library is freely available at http://www.inf.kcl.ac.uk/research/projects/asmf/.

  14. Identification of Circular RNAs From the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley

    Directory of Open Access Journals (Sweden)

    Behrooz eDarbani

    2016-06-01

    Full Text Available RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts.Keywords: circular RNAs, coding and non-coding transcripts, leaves, seeds, transfer cells, micronutrients, mitochondria

  15. Polarimetric purity and the concept of degree of polarization

    Science.gov (United States)

    Gil, José J.; Norrman, Andreas; Friberg, Ari T.; Setälä, Tero

    2018-02-01

    The concept of degree of polarization for electromagnetic waves, in its general three-dimensional version, is revisited in the light of the implications of the recent findings on the structure of polarimetric purity and of the existence of nonregular states of polarization [J. J. Gil et al., Phys Rev. A 95, 053856 (2017), 10.1103/PhysRevA.95.053856]. From the analysis of the characteristic decomposition of a polarization matrix R into an incoherent convex combination of (1) a pure state Rp, (2) a middle state Rm given by an equiprobable mixture of two eigenstates of R, and (3) a fully unpolarized state Ru -3 D, it is found that, in general, Rm exhibits nonzero circular and linear degrees of polarization. Therefore, the degrees of linear and circular polarization of R cannot always be assigned to the single totally polarized component Rp. It is shown that the parameter P3 D proposed formerly by Samson [J. C. Samson, Geophys. J. R. Astron. Soc. 34, 403 (1973), 10.1111/j.1365-246X.1973.tb02404.x] takes into account, in a proper and objective form, all the contributions to polarimetric purity, namely, the contributions to the linear and circular degrees of polarization of R as well as to the stability of the plane containing its polarization ellipse. Consequently, P3 D constitutes a natural representative of the degree of polarimetric purity. Some implications for the common convention for the concept of two-dimensional degree of polarization are also analyzed and discussed.

  16. Statistics of polarization speckle: theory versus experiment

    DEFF Research Database (Denmark)

    Wang, Wei; Hanson, Steen Grüner; Takeda, Mitsuo

    2010-01-01

    In this paper, we reviewed our recent work on the statistical properties of polarization speckle, described by stochastic Stokes parameters fluctuating in space. Based on the Gaussian assumption for the random electric field components and polar-interferometer, we investigated theoretically...... and experimentally the statistics of Stokes parameters of polarization speckle, including probability density function of Stokes parameters with the spatial degree of polarization, autocorrelation of Stokes vector and statistics of spatial derivatives for Stokes parameters....

  17. Physics Perspectives for a Future Circular Collider: FCC-ee

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The lectures will briefly discuss the parameters of a Future Circular Collider, before addressing in detail the physics perspectives and the challenges for the experiments and detector systems. The main focus will be on ee and pp collisions, but opportunities for e—p physics will also be covered. The FCC physics perspectives will be presented with reference to the ongoing LHC programme, including the physics potential from future upgrades to the LHC in luminosity and possibly energy.  

  18. Electron spin injection from a regrown Fe layer in a spin-polarized vertical-cavity surface-emitting laser

    Science.gov (United States)

    Holub, M.; Bhattacharya, P.; Shin, J.; Saha, D.

    2007-04-01

    An electroluminescence circular polarization of 23% and threshold current reduction of 11% are obtained in an electrically pumped spin-polarized vertical-cavity surface-emitting laser. Electron spin injection is accomplished utilizing a regrown Fe/ n-AlGaAs Schottky tunnel barrier deposited around the base of the laser mesas. Negligible circular polarizations and threshold current reductions are measured for nonmagnetic and Fe-based control VCSELs, which provides convincing evidence of spin injection, transport, and detection in our spin-polarized laser.

  19. Reconfigurable micromachined antenna with polarization diversity for mm-wave applications

    KAUST Repository

    Sallam, Mai O.

    2012-03-01

    In this paper a novel MEMS antenna with reconfigurable polarization operating at 60 GHz is presented. This antenna can provide vertical linear polarization, horizontal linear polarization, left hand circular polarization (LHCP), or right hand circular polarization (RHCP) based on the states of the switches present in the feeding network. The proposed antenna is characterized by having its radiating elements isolated from the feeding circuitry via a ground plane without the need for wafer bonding or hybrid integration. Such advantage results in good electric performance while maintains low fabrication cost. The antenna parameters are optimized using HFSS and the results are cross-validated using CST. The good agreement between the two simulators, confirms that the proposed antenna enjoys attractive radiation characteristics for all polarization senses. © 2012 IEEE.

  20. Polarization of photons emitted by decaying dark matter

    Directory of Open Access Journals (Sweden)

    W. Bonivento

    2017-02-01

    Full Text Available Radiatively decaying dark matter may be searched through investigating the photon spectrum of galaxies and galaxy clusters. We explore whether the properties of dark matter can be constrained through the study of a polarization state of emitted photons. Starting from the basic principles of quantum mechanics we show that the models of symmetric dark matter are indiscernible by the photon polarization. However, we find that the asymmetric dark matter consisted of Dirac fermions is a source of circularly polarized photons, calling for the experimental determination of the photon state.

  1. Polarization Observables T and F in single π0- and η-Photoproduction off quasi-free Nucleons

    Directory of Open Access Journals (Sweden)

    Strub Thomas

    2014-01-01

    Single π0- and η-photoproduction off a transversally polarized d-butanol target has been measured with circularly polarized bremsstrahlung photons generated by the MAMI-C electron microtron. With the nearly 4π acceptance of the combined Crystal Ball/TAPS setup the double polarization observable F and the target asymmetry T can be extracted for the first time for polarized, quasi-free neutrons over a wide energy and angular range.

  2. Detection of HBV Covalently Closed Circular DNA

    Directory of Open Access Journals (Sweden)

    Xiaoling Li

    2017-06-01

    Full Text Available Chronic hepatitis B virus (HBV infection affects approximately 240 million people worldwide and remains a serious public health concern because its complete cure is impossible with current treatments. Covalently closed circular DNA (cccDNA in the nucleus of infected cells cannot be eliminated by present therapeutics and may result in persistence and relapse. Drug development targeting cccDNA formation and maintenance is hindered by the lack of efficient cccDNA models and reliable cccDNA detection methods. Southern blotting is regarded as the gold standard for quantitative cccDNA detection, but it is complicated and not suitable for high-throughput drug screening, so more sensitive and simple methods, including polymerase chain reaction (PCR-based methods, Invader assays, in situ hybridization and surrogates, have been developed for cccDNA detection. However, most methods are not reliable enough, and there are no unified standards for these approaches. This review will summarize available methods for cccDNA detection. It is hoped that more robust methods for cccDNA monitoring will be developed and that standard operation procedures for routine cccDNA detection in scientific research and clinical monitoring will be established.

  3. Status of the Future Circular Collider Study

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    Following the 2013 update of the European Strategy for Particle Physics, the international Future Circular Collider (FCC) Study has been launched by CERN as host institute. Its main purpose and long-term goal is to design an energyfrontier hadron collider (FCC-hh) with a centre-of-mass energy of about 100 TeV in a new 80–100 km tunnel. The FCC study also includes the design of a 90–350 GeV highluminosity lepton collider (FCC-ee) installed in the same tunnel, serving as Higgs, top and Z factory, as a potential intermediate step, as well as an electron-proton collider option (FCC-he). The physics cases for such machines are being assessed and concepts for experiments will be developed by the end of 2018, in time for the next update of the European Strategy for Particle Physics. This overview summarizes the status of machine designs and parameters, and it discusses the essential technical components being developed in the frame of the FCC study. Key elements are superconducting accelerator-dipole magnets wit...

  4. Coherent population trapping with polarization modulation

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Peter, E-mail: enxue.yun@obspm.fr; Guérandel, Stéphane; Clercq, Emeric de [LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 61 avenue de l' Observatoire, 75014 Paris (France)

    2016-06-28

    Coherent population trapping (CPT) is extensively studied for future vapor cell clocks of high frequency stability. In the constructive polarization modulation CPT scheme, a bichromatic laser field with polarization and phase synchronously modulated is applied on an atomic medium. A high contrast CPT signal is observed in this so-called double-modulation configuration, due to the fact that the atomic population does not leak to the extreme Zeeman states, and that the two CPT dark states, which are produced successively by the alternate polarizations, add constructively. Here, we experimentally investigate CPT signal dynamics first in the usual configuration, a single circular polarization. The double-modulation scheme is then addressed in both cases: one pulse Rabi interaction and two pulses Ramsey interaction. The impact and the optimization of the experimental parameters involved in the time sequence are reviewed. We show that a simple seven-level model explains the experimental observations. The double-modulation scheme yields a high contrast similar to the one of other high contrast configurations like push-pull optical pumping or crossed linear polarization scheme, with a setup allowing a higher compactness. The constructive polarization modulation is attractive for atomic clock, atomic magnetometer, and high precision spectroscopy applications.

  5. On polarization in biomembranes

    DEFF Research Database (Denmark)

    Zecchi, Karis Amata

    close to physiological conditions, making these effects biologically relevant. In this work, we consider the case of asymmetric membranes which can display spontaneous polarization in the absence of a field. Close to the phase transition, we find that the membrane displays piezoelectric, flexoelectric...... on different geometries point in the direction of a flexoelectric mechanism behind current rectification in lipid bilayers. Finally, we suggest that our updated equivalent circuit should be included in the interpretation of elctrophysiological data....

  6. Multifrequency Behaviour of Polars

    Directory of Open Access Journals (Sweden)

    K. Reinsch

    2015-02-01

    Full Text Available Cataclysmic variables emit over a wide range of the electromagnetic spectrum. In this paper I will review observations of polars in relevant passbands obtained during the last decade and will discuss their diagnostical potential to access the physics of the main components within the binary systems. This will include a discussion of intrinsic source variability and the quest for simultaneous multi-frequency observations.

  7. Polare maskuliniteter

    Directory of Open Access Journals (Sweden)

    Marit Anne Hauan

    2012-05-01

    Full Text Available In this paper my aim is to read and understand the journal of Gerrit de Veer from the last journey of William Barents to the Arctic Regions in 1596 and the journal of captain Junge on his hunting trip from Tromsø to Svalbard in 1834.It is nearly 240 years between this to voyages. The first journal is known as the earliest report from the arctic era. Gerrit de Veer adds instructive copper engravings to his text and give us insight in the crews meeting with this new land. Captain Junges journal is found together with his dead crew in a house in a fjord nearby Ny-Ålesund and has no drawings, but word. Both of these journals may be read as sources of the knowledge and understanding of the polar region. They might also unveil the ideas of how to deal with and survive under the challenges that is given. In addition one can ask if the sources can tell us more about how men describe their challenges. Can the way they expressed themselves in the journals give us an understanding of masculinity? And not least help us to create good questions of the change in the ideas of masculinities which is said to follow the change in understanding of the wilderness.

  8. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  9. Automated calibration and control for polarization-resolved second harmonic generation on commercial microscopes.

    Science.gov (United States)

    Romijn, Elisabeth I; Finnøy, Andreas; Kumar, Rajesh; Lilledahl, Magnus B

    2018-01-01

    Polarization-resolved second harmonic generation (P-SHG) microscopy has evolved as a promising technique to reveal subresolution information about the structure and orientation of ordered biological macromolecules. To extend the adoption of the technique, it should be easily integrated onto commercial laser scanning microscopes. Furthermore, procedures for easy calibration and assessment of measurement accuracy are essential, and measurements should be fully automated to allow for analysis of large quantities of samples. In this paper we present a setup for P-SHG which is readily incorporated on commercial multiphoton microscopes. The entire system is completely automated which allows for rapid calibration through the freely available software and for automated imaging for different polarization measurements, including linear and circular polarization of the excitation beam. The results show that calibration settings are highly system dependent. We also show that the accuracy of the polarization control is easily quantified and that it varies between systems. The accuracy can be tuned by iterative alignment of optics or a more fine-grained calibration procedure. Images of real samples show that the red accuracy of the results is easily visualized with the automated setup. Through this system we believe that P-SHG could develop a wider adoption in biomedical applications.

  10. Solitary waves in a magneto-electro-elastic circular rod

    International Nuclear Information System (INIS)

    Xue, C X; Pan, E; Zhang, S Y

    2011-01-01

    A simple nonlinear model is proposed in this paper to study the solitary wave in a circular magneto-electro-elastic rod. Based on the constitutive relation for transversely isotropic piezoelectric and piezomagnetic materials, combined with the differential equations of motion, we derive the longitudinal wave motion equation in a long circular rod. The nonlinearity considered is geometrically associated with the nonlinear normal strain in the longitudinal rod direction and the transverse Poisson's effect is included by introducing the effective Poisson's ratio. The nonlinear solitary wave equation is solved by the Jacobi elliptic function expansion method and numerical examples demonstrate not only the existence of such a wave but also some interesting characteristics of the solitary wave in the rod made of different multiphase coupled materials

  11. Improved triglyceride transesterification by circular permuted Candida antarctica lipase B.

    Science.gov (United States)

    Yu, Ying; Lutz, Stefan

    2010-01-01

    Lipases represent a versatile class of biocatalysts with numerous potential applications in industry including the production of biodiesel via enzyme-catalyzed transesterification. In this article, we have investigated the performance of cp283, a variant of Candida antarctica lipase B (CALB) engineered by circular permutation, with a series of esters, as well as pure and complex triglycerides. In comparison with wild-type CALB, the permutated enzyme showed consistently higher catalytic activity (2.6- to 9-fold) for trans and interesterification of the different substrates with 1-butanol and ethyl acetate as acyl acceptors. Differences in the observed rates for wild-type CALB and cp283 are believe to be related to changes in the rate-determining step of the catalytic cycle as a result of circular permutation.

  12. Circular cylinders and pressure vessels stress analysis and design

    CERN Document Server

    Vullo, Vincenzo

    2014-01-01

    This book provides comprehensive coverage of stress and strain analysis of circular cylinders and pressure vessels, one of the classic topics of machine design theory and methodology. Whereas other books offer only a partial treatment of the subject and frequently consider stress analysis solely in the elastic field, Circular Cylinders and Pressure Vessels broadens the design horizons, analyzing theoretically what happens at pressures that stress the material beyond its yield point and at thermal loads that give rise to creep. The consideration of both traditional and advanced topics ensures that the book will be of value for a broad spectrum of readers, including students in postgraduate, and doctoral programs and established researchers and design engineers. The relations provided will serve as a sound basis for the design of products that are safe, technologically sophisticated, and compliant with standards and codes and for the development of innovative applications.

  13. Statistics of polarization and Stokes parameters of stochastic waves

    Science.gov (United States)

    Hole, M. J.; Robinson, P. A.; Cairns, Iver H.

    2004-09-01

    Several theories now exist to describe the probability distribution functions (PDFs) for the electric field strength, intensity, and power of signals. In this work, a model is developed for the PDFs of the polarization properties of the superposition of multiple transverse wave populations. The polarization of each transverse wave population is described by a polarization ellipse with fixed axial ratio and polarization angle, and PDFs for the field strength and phase. Wave populations are vectorially added, and expressions found for the Stokes parameters I , U , Q , and V , as well as the degrees of linear and circular polarization, and integral expressions for their statistics. In this work, lognormal distributions are chosen for the electric field, corresponding to stochastic growth, and polarization PDFs are numerically calculated for the superposition of orthonormal mode populations, which might represent the natural modes emitted by a source. Examples are provided of the superposition of linear, circular, and elliptically polarized wave populations in cases where the component field strength PDFs are the same, and where one field strength PDF is dominant.

  14. Polarized deuteron elastic scattering from a polarized proton target

    International Nuclear Information System (INIS)

    Schmelzer, R.; Kuiper, H.; Schoeberl, M.; Berber, S.; Hilmert, H.; Koeppel, R.; Pferdmenges, R.; Zankel, H.

    1983-01-01

    Measurements are reported of the spin correlation parameter Cy,y for the elastic scattering of 10.0 MeV vector polarized deuterons from a polarized proton target at five CM angles (76 0 ,85 0 ,98 0 ,115 0 ,132 0 ). The experimental results are compared with different predictions. A Faddeev type calculation on the basis of local potentials also including approximate Coulomb distortion is favoured by our experimental results. (orig.)

  15. Volume polarization holographic recording in thick phenanthrenequinone-doped poly(methyl methacrylate) photopolymer

    Science.gov (United States)

    Lin, Shiuan Huei; Chen, Po-Lin; Chuang, Chun-I.; Chao, Yu-Faye; Hsu, Ken Y.

    2011-08-01

    Volume polarization holographic recording in phenanthrenequinone-doped poly (methyl methacrylate) photopolymer is obtained. Photoinduced birefringence in a 2mm thick sample is measured by a phase-modulated ellipsometry. The birefringence induced in this material by linearly polarized beam at 514nm reaches 1.2×10-5. In addition, ability for recording volume polarization grating using two different polarization configurations is demonstrated and compared. The experimental results show that the diffraction efficiency of the hologram reaches to ˜40% by using two orthogonal circularly polarized beams.

  16. Promoting Diversity Through Polar Interdisciplinary Coordinated Education (Polar ICE)

    Science.gov (United States)

    McDonnell, J. D.; Hotaling, L. A.; Garza, C.; Van Dyk, P. B.; Hunter-thomson, K. I.; Middendorf, J.; Daniel, A.; Matsumoto, G. I.; Schofield, O.

    2017-12-01

    Polar Interdisciplinary Coordinated Education (ICE) is an education and outreach program designed to provide public access to the Antarctic and Arctic regions through polar data and interactions with the scientists. The program provides multi-faceted science communication training for early career scientists that consist of a face-to face workshop and opportunities to apply these skills. The key components of the scientist training workshop include cultural competency training, deconstructing/decoding science for non-expert audiences, the art of telling science stories, and networking with members of the education and outreach community and reflecting on communication skills. Scientists partner with educators to provide professional development for K-12 educators and support for student research symposia. Polar ICE has initiated a Polar Literacy initiative that provides both a grounding in big ideas in polar science and science communication training designed to underscore the importance of the Polar Regions to the public while promoting interdisciplinary collaborations between scientists and educators. Our ultimate objective is to promote STEM identity through professional development of scientists and educators while developing career awareness of STEM pathways in Polar science.

  17. Environmental issues elimination through circular economy

    Science.gov (United States)

    Špirková, M.; Pokorná, E.; Šujanová, J.; Samáková, J.

    2016-04-01

    Environmental efforts of European Union are currently going towards circular economy. Tools like Extended Producer Responsibility and Eco-design were established. The circular economy deals with resources availability issue on one hand and waste management on the other hand. There are few pioneering companies all over the world with some kind of circular economy practice. Generally the concept is not very wide-spread. The paper aims to evaluate possibility of transition towards circular economy in Slovak industrial companies. They need to have an active approach to material treatment of their products after usage stage. Innovation is another important pre-condition for the transition. Main problem of current cradle to grave system is landfilling of valuable materials after one cycle of usage. Their potential value for next manufacturing cycles is lost. Companies may do not see connection between waste management and material resource prices and volatility of supplies. Municipalities are responsible for municipal waste collection and treatment in Slovakia. The circular economy operates by cradle to cradle principle. Company manages material flow until the material comes back to the beginning of manufacturing process by itself or by another partners. Stable material supplies with quite low costs are provided this way. It is necessary to deal with environmental problems in phase of product design. Questionnaire survey results show on one hand low involvement of industrial companies in waste management area, however on the other hand they are open to environmental innovations in future.

  18. Environmental issues elimination through circular economy

    International Nuclear Information System (INIS)

    Špirková, M.; Pokorná, E.; Šujanová, J.; Samáková, J.

    2016-01-01

    Environmental efforts of European Union are currently going towards circular economy. Tools like Extended Producer Responsibility and Eco-design were established. The circular economy deals with resources availability issue on one hand and waste management on the other hand. There are few pioneering companies all over the world with some kind of circular economy practice. Generally the concept is not very wide-spread. The paper aims to evaluate possibility of transition towards circular economy in Slovak industrial companies. They need to have an active approach to material treatment of their products after usage stage. Innovation is another important pre-condition for the transition. Main problem of current cradle to grave system is landfilling of valuable materials after one cycle of usage. Their potential value for next manufacturing cycles is lost. Companies may do not see connection between waste management and material resource prices and volatility of supplies. Municipalities are responsible for municipal waste collection and treatment in Slovakia. The circular economy operates by cradle to cradle principle. Company manages material flow until the material comes back to the beginning of manufacturing process by itself or by another partners. Stable material supplies with quite low costs are provided this way. It is necessary to deal with environmental problems in phase of product design. Questionnaire survey results show on one hand low involvement of industrial companies in waste management area, however on the other hand they are open to environmental innovations in future.

  19. Environmental issues elimination through circular economy

    Energy Technology Data Exchange (ETDEWEB)

    Špirková, M., E-mail: marta.spirkova@stuba.sk; Pokorná, E.; Šujanová, J.; Samáková, J. [Paulínska 16, 917 24 Trnava, Slovakia, Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava (Slovakia)

    2016-04-21

    Environmental efforts of European Union are currently going towards circular economy. Tools like Extended Producer Responsibility and Eco-design were established. The circular economy deals with resources availability issue on one hand and waste management on the other hand. There are few pioneering companies all over the world with some kind of circular economy practice. Generally the concept is not very wide-spread. The paper aims to evaluate possibility of transition towards circular economy in Slovak industrial companies. They need to have an active approach to material treatment of their products after usage stage. Innovation is another important pre-condition for the transition. Main problem of current cradle to grave system is landfilling of valuable materials after one cycle of usage. Their potential value for next manufacturing cycles is lost. Companies may do not see connection between waste management and material resource prices and volatility of supplies. Municipalities are responsible for municipal waste collection and treatment in Slovakia. The circular economy operates by cradle to cradle principle. Company manages material flow until the material comes back to the beginning of manufacturing process by itself or by another partners. Stable material supplies with quite low costs are provided this way. It is necessary to deal with environmental problems in phase of product design. Questionnaire survey results show on one hand low involvement of industrial companies in waste management area, however on the other hand they are open to environmental innovations in future.

  20. Experimental evidence for circular inference in schizophrenia

    Science.gov (United States)

    Jardri, Renaud; Duverne, Sandrine; Litvinova, Alexandra S.; Denève, Sophie

    2017-01-01

    Schizophrenia (SCZ) is a complex mental disorder that may result in some combination of hallucinations, delusions and disorganized thinking. Here SCZ patients and healthy controls (CTLs) report their level of confidence on a forced-choice task that manipulated the strength of sensory evidence and prior information. Neither group's responses can be explained by simple Bayesian inference. Rather, individual responses are best captured by a model with different degrees of circular inference. Circular inference refers to a corruption of sensory data by prior information and vice versa, leading us to `see what we expect' (through descending loops), to `expect what we see' (through ascending loops) or both. Ascending loops are stronger for SCZ than CTLs and correlate with the severity of positive symptoms. Descending loops correlate with the severity of negative symptoms. Both loops correlate with disorganized symptoms. The findings suggest that circular inference might mediate the clinical manifestations of SCZ.

  1. Charged Particle Optics in Circular Higgs Factory

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-26

    Similar to a super B-factory, a circular Higgs factory will require strong focusing systems near the interaction points and a low-emittance lattice in arcs to achieve a factory luminosity. At electron beam energy of 120 GeV, beamstrahlung effects during the collision pose an additional challenge to the collider design. In particular, a large momentum acceptance at 2 percent level is necessary to retain an adequate beam lifetime. This turns out to be the most challenging aspect in the design of circular Higgs factory. In this paper, an example will be provided to illustrate the beam dynamics in circular Higgs factory, emphasizing on the chromatic optics. Basic optical modules and advanced analysis will be presented. Most important, we will show that 2% momentum aperture is achievable

  2. Nonlinear Gyrokinetic Theory With Polarization Drift

    International Nuclear Information System (INIS)

    Wang, L.; Hahm, T.S.

    2010-01-01

    A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the wide-spread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)].

  3. First attempt of the measurement of the beam polarization at an accelerator with the optical electron polarimeter POLO

    CERN Document Server

    Collin, B; Essabaa, S; Frascaria, R; Gacougnolle, R; Kunne, Ronald Alexander; Aulenbacher, K; Tioukine, V

    2004-01-01

    The conventional methods for measuring the polarization of electron beams are either time consuming, invasive or accurate only to a few percent. We developped a method to measure electron beam polarization by observing the light emitted by argon atoms following their excitation by the impact of polarized electrons. The degree of circular polarization of the emitted fluorescence is directly related to the electron polarization. We tested the polarimeter on a test GaAs source available at the MAMI electron accelerator in Mainz, Germany. The polarimeter determines the polarization of a 50 keV electron beam decelerated to a few eV and interacting with an effusive argon gas jet. The resulting decay of the excited states produces the emission of a circularly polarized radiation line at 811.5 nm which is observed and analyzed.

  4. Effect of Crest Roughness on Flow Characteristics over Circular Weirs

    Directory of Open Access Journals (Sweden)

    Rasoul Ghobadian

    2013-12-01

    Full Text Available Different construction materials with different roughness used to make circular weirs highly affect surface roughness and, in turn, flow hydraulics passing over these structures.  In the present research, numerous experiments under different hydraulic conditions were performed on a physical model to study the effects of roughness on flow hydraulics over a circular weir. The flow hydraulics included velocity profile, discharge coefficient and longitudinal water surface profile. The actual water surface elevation and velocity profile at different cross sections were measured using a point gauge and micro current meter, respectively. About 200 experimental tests were performed on a circular weir made of polyethylene with 29.5 cm height, 30cm wide, and 7.5 cm radius. The results showed that for a constant discharge, as the weir surface roughness increases the upstream water level over the weir increases and the discharge coefficient reduces. The velocity profile at upstream sections of the weir crest is extremely different from that over the weir crest while the velocity profile at downstream sections of the weir crest follows the same pattern as those experienced at the weir crest. Also, the increased roughness makes the velocity profile over the weir more uniform, with a higher average velocity. Finally the effects of roughness on velocity values are less near weir in comparison with water surface.

  5. Product design in the circular economy

    DEFF Research Database (Denmark)

    Atlason, Reynir Smari; Giacalone, Davide; Parajuly, Keshav

    2017-01-01

    . Such strategies may also assist societies in the transition to a more circular economy. However, at the end of a product's useful life, it is uncertain whether the end users will handle the product according to the original intention of the product developers. Situated within this context, this research...... of according to a favorable EoL scenarios, but may not have any prior expectations at point of purchase. Reuse potential emerged as the most attractive EoL scenario, suggesting that users' preferences are largely aligned with the concept of circular economy. Interestingly, women were found to prefer all Eo...

  6. Strong Circular Dichroism in Photoelectron Diffraction from Nonchiral, Nonmagnetic Material—Direct Observation of Rotational Motion of Electrons

    Science.gov (United States)

    Daimon, Hiroshi; Nakatani, Takeshi; Imada, Shin; Suga, Shigemasa; Kagoshima, Yasushi; Miyahara, Tsuneaki

    1993-10-01

    Strong circular dichroism is found in 2-dimensional angular distribution patterns of the Si 2p photoelectrons from the Si(001) surface, which has no chirality and magnetism. The forward focusing peaks in the pattern rotate clockwise or counterclockwise when the helicity of the incident circularly polarized light is reversed. These rotations of the pattern are explained by rotational motion of photoelectrons around the nuclei. This is the first direct observation of the rotational motion of the electrons and clarifies the correspondence between the classical and the quantum mechanical ideas of angular momentum.

  7. Laser detection of spin-polarized hydrogen from HCl and HBr photodissociation: comparison of H- and halogen-atom polarizations.

    Science.gov (United States)

    Sofikitis, Dimitris; Rubio-Lago, Luis; Bougas, Lykourgos; Alexander, Andrew J; Rakitzis, T Peter

    2008-10-14

    Thermal HCl and HBr molecules were photodissociated using circularly polarized 193 nm light, and the speed-dependent spin polarization of the H-atom photofragments was measured using polarized fluorescence at 121.6 nm. Both polarization components, described by the a(0)(1)(perpendicular) and Re[a(1)(1)(parallel, perpendicular)] parameters which arise from incoherent and coherent dissociation mechanisms, are measured. The values of the a(0)(1)(perpendicular) parameter, for both HCl and HBr photodissociation, are within experimental error of the predictions of both ab initio calculations and of previous measurements of the polarization of the halide cofragments. The experimental and ab initio theoretical values of the Re[a(1)(1)(parallel, perpendicular)] parameter show some disagreement, suggesting that further theoretical investigations are required. Overall, good agreement occurs despite the fact that the current experiments photodissociate molecules at 295 K, whereas previous measurements were conducted at rotational temperatures of about 15 K.

  8. Circular economy opportunity in the wind industry. Final report

    International Nuclear Information System (INIS)

    Bellini, Robert

    2015-05-01

    The objective of this study is to identify how the circular economy can be an opportunity for the French wind industry. A broad review of circular economy issues for the wind industry value chain has been conducted in order to be used as a decision making tool for ADEME and the wind industry stakeholders. First of all, a 'flow analysis' (including material, logistic and services related to wind power) has been carried out in order to highlight the specific challenges of circular economy for the wind sector. The strategic opportunities that meet these issues have then been identified. A selection of six opportunities has been further investigated to assess the benefits, to analyze the barriers and to identify actions that ADEME could initiate to foster these opportunities. These investigated opportunities are the following: - To structure a recycling chain for wind blades; - To promote the business model of the extension of wind turbine's lifetime; - To promote skills improvement of local providers for reconditioning and maintenance services; - To adapt the offshore hubs to integrate dismantling activity of onshore equipments; - To increase the manufacturing capacity of wind towers in France to increase local sourcing; - To encourage the creation of a leading French manufacturer to optimize the supply chain. In the light of this analysis, it can be concluded that circular economy represents a strategic opportunity for the French wind energy sector. The opportunities we focused on make up a consistent set of initiatives that improve the environmental, economic and social performance of the wind energy sector by strengthening industrial activities and services throughout all the life cycle: manufacturing stage (optimization of logistics flows and local manufacturing), use phase (maintenance, repair) and end-of-life phase of wind turbine (dismantling, recycling). While the sector has so far been focused on better solving technological challenges and

  9. Status of the Future Circular Collider Study

    Science.gov (United States)

    Benedikt, Michael

    2016-03-01

    Following the 2013 update of the European Strategy for Particle Physics, the international Future Circular Collider (FCC) Study has been launched by CERN as host institute, to design an energy frontier hadron collider (FCC-hh) in a new 80-100 km tunnel with a centre-of-mass energy of about 100 TeV, an order of magnitude beyond the LHC's, as a long-term goal. The FCC study also includes the design of a 90-350 GeV high-luminosity lepton collider (FCC-ee) installed in the same tunnel, serving as Higgs, top and Z factory, as a potential intermediate step, as well as an electron-proton collider option (FCC-he). The physics cases for such machines will be assessed and concepts for experiments will be developed in time for the next update of the European Strategy for Particle Physics by the end of 2018. The presentation will summarize the status of machine designs and parameters and discuss the essential technical components to be developed in the frame of the FCC study. Key elements are superconducting accelerator-dipole magnets with a field of 16 T for the hadron collider and high-power, high-efficiency RF systems for the lepton collider. In addition the unprecedented beam power presents special challenges for the hadron collider for all aspects of beam handling and machine protection. First conclusions of geological investigations and implementation studies will be presented. The status of the FCC collaboration and the further planning for the study will be outlined.

  10. Somatic DNA recombination yielding circular DNA and deletion of a genomic region in embryonic brain

    International Nuclear Information System (INIS)

    Maeda, Toyoki; Chijiiwa, Yoshiharu; Tsuji, Hideo; Sakoda, Saburo; Tani, Kenzaburo; Suzuki, Tomokazu

    2004-01-01

    In this study, a mouse genomic region is identified that undergoes DNA rearrangement and yields circular DNA in brain during embryogenesis. External region-directed inverse polymerase chain reaction on circular DNA extracted from late embryonic brain tissue repeatedly detected DNA of this region containing recombination joints. Wide-range genomic PCR and digestion-circularization PCR analysis showed this region underwent recombination accompanied with deletion of intervening sequences, including the circularized regions. This region was mapped by fluorescence in situ hybridization to C1 on mouse chromosome 16, where no gene and no physiological DNA rearrangement had been identified. DNA sequence in the region has segmental homology to an orthologous region on human chromosome 3q.13. These observations demonstrated somatic DNA recombination yielding genomic deletions in brain during embryogenesis

  11. Administrative Circular No. 11 (Rev. 3) - Categories of members of the personnel

    CERN Multimedia

    2014-01-01

    Administrative Circular No. 11 (Rev. 3) entitled “Categories of members of the personnel”, approved by the Director-General following discussion at the Standing Concertation Committee meeting of 3 July 2014 and entering into force on 1 September 2014, is available on the intranet site of the Human Resources Department.   This circular is applicable to all members of the personnel. It cancels and replaces Administrative Circular No. 11 (Rev. 2) entitled “Categories of members of the personnel” of January 2013. The circular was revised in order to include a minor adjustment of the determination of required period of break in the payment of subsistence allowance to certain categories of associated members of the personnel (taking account of possible technical means of control). Furthermore, the possibility of traineeships of long duration was restricted to cases in which the traineeship is awarded pursuant to an agreement between CERN and a...

  12. OPERATIONAL CIRCULAR No. 4 (REV. 1) – USE OF VEHICLES BELONGING TO OR RENTED BY CERN

    CERN Multimedia

    2012-01-01

    Operational Circular No. 4 (Rev. 1) entitled “Use of vehicles belonging to or rented by CERN”, approved by the Director-general following discussion in the Standing Concertation Committee meeting of 15 February 2012, is available on the intranet site of the Human Resources Department: https://hr-docs.web.cern.ch/hr-docs/opcirc/opcirc.asp It cancels and replaces Operational Circular No. 4 entitled “Conditions for use by members of the CERN personnel of vehicles belonging to or rented by CERN” of April 2003. This new version enables, in particular, to include CERN contractors and their personnel, to harmonize the structure of the circular with other circulars and to simplify the procedures by permitting electronics forms. Department Head Office HR Department

  13. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  14. Undulator-Based Production of Polarized Photons

    International Nuclear Information System (INIS)

    McDonald, Kirk

    2008-01-01

    'Project Title: Undulator-Based Production of Polarized Photons' DOE Contract Number: FG02-04ER41355 Principal Investigator: Prof. Kirk McDonald Period of Performance: 09/10/2004 thru 08/31/2006 This award was to fund Princeton's activity on SLAC experiment E166, 'Undulator-Based Production of Polarized Positrons' which was performed at SLAC during June and September 2005. Princeton U. fabricated a magnetic spectrometer for this experiment, and participated in the commissioning, operation, and analysis of the experiment, for which Prof. McDonald was a co-spokesperson. The experiment demonstrated that an intense positron beam with 80% longitudinal polarization could be generated by conversion of MeVenergy circularly polarized photons in a thin target, which photons were generated by passage of high-energy electrons through a helical undulator. This technique has since been adopted as the baseline for the polarized positron source of the proposed International Linear Collider. Results of the experiment have been published in Physical Review Letters, vol 100, p 210801 (2008) (see attached .pdf file), and a longer paper is in preparation.

  15. High luminosity polarized proton collisions at RHIC

    International Nuclear Information System (INIS)

    Roser, T.

    2001-01-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) provides the unique opportunity to collide polarized proton beams at a center-of-mass energy of up to 500 GeV and luminosities of up to 2 x 10 32 cm -2 s -1 . Such high luminosity and high energy polarized proton collisions will open up the possibility of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. After successful operation of RHIC with gold beams polarized protons from the AGS have been successfully injected into RHIC and accelerated using a full Siberian snakes built from four superconducting helical dipoles. A new high energy proton polarimeter was also successfully commissioned. Operation with two snakes per RHIC ring is planned for next year

  16. An image formation algorithm for missile-borne circular-scanning SAR

    Science.gov (United States)

    Gao, Yesheng; Wang, Kaizhi; Liu, Xingzhao

    2013-12-01

    Circular-scanning SAR is an imaging mode with its antenna beam rotating continuously with respect to the vertical axis. An image formation algorithm for the missile-borne circular-scanning SAR is proposed in this article. Based on the principle of the polar format algorithm, the focus algorithm is generalized to form each subimage when the antenna beam scans at an arbitrary position. By calculating the 2-D position of each calibration point between the scatterers and the subimages, a method is presented to correct the geometric distortion of each subimage. This method is able to correct the geometric distortion even in the case of high maneuvering. These subimages are then mosaicked together to form a circular image. The simulation results under three different maneuvering trajectories are given, the subimages are formed by the focusing algorithm, and then the final circular image can be formed by mosaicking 71 subimages, each of which is after geometric distortion correction. The simulations validate the proposed image formation algorithm, and the results satisfy system design requirements.

  17. Resolution enhancement in active underwater polarization imaging with modulation transfer function analysis.

    Science.gov (United States)

    Han, Jiefei; Yang, Kecheng; Xia, Min; Sun, Liying; Cheng, Zao; Liu, Hao; Ye, Junwei

    2015-04-10

    Active polarization imaging technology is a convenient and promising method for imaging in a scattering medium such as fog and turbid water. However, few studies have investigated the influence of polarization on the resolution in underwater imaging. This paper reports on the effects of polarization detection on the resolution of underwater imaging by using active polarization imaging technology. An experimental system is designed to determine the influence under various polarization and water conditions. The modulation transfer function is introduced to estimate the resolution variations at different spatial frequencies. Results show that orthogonal detection supplies the best resolution compared with other polarization directions in the turbid water. The performance of the circular polarization method is better than the linear process. However, if the light propagates under low scattering conditions, such as imaging in clean water or at small optical thickness, the resolution enhancement is not sensitive to the polarization angles.

  18. Angular structure of light polarization and singularities in transmittance of nematic liquid crystal cells

    Science.gov (United States)

    Kiselev, Alexei D.; Vovk, Roman G.; Buinyi, Igor O.; Soskin, Marat S.

    2007-06-01

    We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by analyzing the polarization state as a function of the incidence angles. Our theoretical results are obtained by evaluating the Stokes parameters that characterize the polarization state of plane waves propagating through the NLC layer at varying direction of incidence. Using the Stokes polarimetry technique we carried out the measurements of the polarization resolved conoscopic patterns emerging after the homeotropically aligned NLC cell illuminated by the convergent light beam. The resulting polarization resolved angular patterns are described both theoretically and experimentally in terms of the polarization singularities such as C-points (points of circular polarization) and L-lines (lines of linear polarization). When the ellipticity of the incident light varies, the angular patterns are found to undergo transformations involving the processes of creation and annihilation of the C-points.

  19. 'Inca City' is Part of a Circular Feature

    Science.gov (United States)

    2002-01-01

    MGS MOC Release No. MOC2-319, 8 August 2002 [figure removed for brevity, see original site] 'Inca City' is the informal name given by Mariner 9 scientists in 1972 to a set of intersecting, rectilinear ridges that are located among the layered materials of the south polar region of Mars. Their origin has never been understood; most investigators thought they might be sand dunes, either modern dunes or, more likely, dunes that were buried, hardened, then exhumed. Others considered them to be dikes formed by injection of molten rock (magma) or soft sediment into subsurface cracks that subsequently hardened and then were exposed at the surface by wind erosion. The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) has provided new information about the 'Inca City' ridges, though the camera's images still do not solve the mystery. The new information comes in the form of a MOC red wide angle context frame taken in mid-southern spring, shown above left and above right. The original Mariner 9 view of the ridges is seen at the center. The MOC image shows that the 'Inca City' ridges, located at 82oS, 67oW, are part of a larger circular structure that is about 86 km (53 mi) across. It is possible that this pattern reflects an origin related to an ancient, eroded meteor impact crater that was filled-in, buried, then partially exhumed. In this case, the ridges might be the remains of filled-in fractures in the bedrock into which the crater formed, or filled-in cracks within the material that filled the crater. Or both explanations could be wrong. While the new MOC image shows that 'Inca City' has a larger context as part of a circular form, it does not reveal the exact origin of these striking and unusual martian landforms.

  20. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.