Sample records for polarization imaging apparatus

  1. Polarization Imaging Apparatus with Auto-Calibration (United States)

    Zou, Yingyin Kevin (Inventor); Zhao, Hongzhi (Inventor); Chen, Qiushui (Inventor)


    A polarization imaging apparatus measures the Stokes image of a sample. The apparatus consists of an optical lens set, a first variable phase retarder (VPR) with its optical axis aligned 22.5 deg, a second variable phase retarder with its optical axis aligned 45 deg, a linear polarizer, a imaging sensor for sensing the intensity images of the sample, a controller and a computer. Two variable phase retarders were controlled independently by a computer through a controller unit which generates a sequential of voltages to control the phase retardations of the first and second variable phase retarders. A auto-calibration procedure was incorporated into the polarization imaging apparatus to correct the misalignment of first and second VPRs, as well as the half-wave voltage of the VPRs. A set of four intensity images, I(sub 0), I(sub 1), I(sub 2) and I(sub 3) of the sample were captured by imaging sensor when the phase retardations of VPRs were set at (0,0), (pi,0), (pi,pi) and (pi/2,pi), respectively. Then four Stokes components of a Stokes image, S(sub 0), S(sub 1), S(sub 2) and S(sub 3) were calculated using the four intensity images.

  2. Polarization Imaging Apparatus for Cell and Tissue Imaging and Diagnostics, Phase II (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in a novel visible-near infrared Stokes polarization imaging technology based on high performance fast...

  3. Polarization Imaging Apparatus for Cell and Tissue Imaging and Diagnostics, Phase I (United States)

    National Aeronautics and Space Administration — In recent years there has been an increasing interest in the propagation of polarized light in randomly scattering media. The investigation of backscattered light is...

  4. Imaging Apparatus And Method

    NARCIS (Netherlands)

    Manohar, Srirang; van Leeuwen, A.G.J.M.


    A thermoacoustic imaging apparatus comprises an electromagnetic radiation source configured to irradiate a sample area and an acoustic signal detection probe arrangement for detecting acoustic signals. A radiation responsive acoustic signal generator is added outside the sample area. The detection


    NARCIS (Netherlands)

    Manohar, Srirang; van Leeuwen, A.G.J.M.


    A thermoacoustic imaging apparatus comprises an electromagnetic radiation source configured to irradiate a sample area and an acoustic signal detection probe arrangement for detecting acoustic signals. A radiation responsive acoustic signal generator is added outside the sample area. The detection

  6. Radiation imaging apparatus

    International Nuclear Information System (INIS)


    This invention relates to a radiation imaging apparatus. It relates more particularly to apparatus of this general type which employs stationary X-ray source and detector arrays capable of acquiring multiple ultrafast scans per second to facilitate the dynamic study of moving human organs such as the beating heart. While the invention has many applications, it has particular utility in connection with computerized tomographic (CT) scanners. (Auth.)

  7. Magnetic resonance imaging apparatus

    International Nuclear Information System (INIS)

    Ehnholm, G.J.


    This patent describes an electron spin resonance enhanced magnetic resonance (MR) imaging (ESREMRI) apparatus able to generate a primary magnetic field during periods of nuclear spin transition excitation and magnetic resonance signal detection. This allows the generation of ESREMRI images of a subject. A primary magnetic field of a second and higher value generated during periods of nuclear spin transition excitation and magnetic resonance signal detection can be used to generate conventional MR images of a subject. The ESREMRI and native MR images so generated may be combined, (or superimposed). (author)

  8. Radiation imaging apparatus

    International Nuclear Information System (INIS)

    Cooperstein, G.; Lanza, R.C.; Sohval, A.R.


    Radiation imaging apparatus especially suited for use in a computerized tomographic (CT) scanner is specified. It employs a fixed array of discrete X-ray sources, each being a cold cathode diode having an impedance in excess of about 100 ohms and an adjacent fixed array of closely packed radiation detectors to produce images of rapidly moving body organs such as the beating heart. The X-ray source is pulsed by a 120 to 130 kv pulse of 150 to 160 ns duration, derived from an unregulated DC source, of output voltage 15 to 30 kv. Each X-ray source may comprise a cold cathode pulse or may be constituted by a pair of annular cathodes having radially extending anodes therebetween. (author)

  9. Dual-polarized feed antenna apparatus and method of use (United States)

    Sarehraz, Mohammed (Inventor); Buckle, Kenneth A. (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor); Goswami, D. Yogi (Inventor)


    An antenna apparatus and method for the interception of randomly polarized electromagnetic waves utilizing a dual polarized antenna which is excited through a cross-slot aperture using two well-isolated orthogonal feeds.

  10. Image forming apparatus

    DEFF Research Database (Denmark)


    An image H(x, y) for displaying a target image G(x, y) is displayed on a liquid-crystal display panel and illumination light from an illumination light source is made to pass therethrough to form an image on a PALSLM. Read light hv is radiated to the PALSLM and a phase-modulated light image alpha...... (x, y) read out of the PALSLM is subjected to Fourier transform by a lens. A phase contrast filter gives a predetermined phase shift to only the zero-order light component of Fourier light image alpha f(x, y). The phase-shifted light image is subjected to inverse Fourier transform by a lens...... to project an output image O(x, y) to an output plane. A light image O'(x, y) branched by a beam sampler is picked up by a pickup device and an evaluation value calculating unit evaluates conformity between the image O(x, y) and the image G(x, y).; A control unit performs feedback control of optical...

  11. Image forming apparatus

    DEFF Research Database (Denmark)


    (x, y) read out of the PALSLM is subjected to Fourier transform by a lens. A phase contrast filter gives a predetermined phase shift to only the zero-order light component of Fourier light image alpha f(x, y). The phase-shifted light image is subjected to inverse Fourier transform by a lens...... to project an output image O(x, y) to an output plane. A light image O'(x, y) branched by a beam sampler is picked up by a pickup device and an evaluation value calculating unit evaluates conformity between the image O(x, y) and the image G(x, y).; A control unit performs feedback control of optical...

  12. Radiation imaging apparatus

    International Nuclear Information System (INIS)

    Lange, K.; Wiesen, E.J.; Woronowicz, E.M.


    Improvements in the uniformity and resolution of scintillation cameras are described in detail. One of the problems in scintillation cameras is the non-uniform response of the photomultiplier array to light signals which results in non-uniformity of the displayed image. A novel method of overcoming the problem is presented. By electronically processing the signals from the photomultiplier array it is possible to deduce four co-ordinate signals viz +x, -x, +y and -y; the signals are summed to give the energy of the scintillation event. Details of the electronic circuits required are given. (U.K.)

  13. Automated multifunction apparatus for spectral and polarization measurements

    International Nuclear Information System (INIS)

    Stepanov, A.N.; Kurakov, A.Ya.


    An automated spectral apparatus is described that is based on an SDL-2 spectrometer for spectral and polarization measurements with small specimens (0.15 x 0.15 mm) by the Fourier-coefficient method in the visible and ultraviolet regions over a wide range of temperatures. The absorption, dichroism, birefringence, and polarization orientation of natural waves are determined simultaneously in a single measurement cycle. Polarization-luminescence spectra can also be recorded from one region of the specimen without its adjustment. 3 refs., 3 figs

  14. Simple apparatus for polarization sensing of analytes (United States)

    Gryczynski, Zygmunt; Gryczynski, Ignacy; Lakowicz, Joseph R.


    We describe a simple device for fluorescence sensing based on an unexpansive light source, a dual photocell and a Watson bridge. The emission is detected from two fluorescent samples, one of which changes intensity in response to the analyte. The emission from these two samples is observed through two orthogonally oriented polarizers and an analyzer polarizer. The latter polarizer is rotated to yield equal intensities from both sides of the dual photocell, as determined by a zero voltage from the Watson bridge. Using this device, we are able to measure fluorescein concentration to an accuracy near 2% at 1 (mu) M fluorescein, and pH values accurate to +/- 0.02 pH units. We also use this approach with a UV hand lamp and a glucose-sensitive protein to measure glucose concentrations near 2 (mu) M to an accuracy of +/- 0.1 (mu) M. This approach requires only simple electronics, which can be battery powered. Additionally, the method is generic, and can be applied with any fluorescent sample that displays a change in intensity. One can imagine this approach being used to develop portable point-of-care clinical devices.

  15. Imaging with Polarized Neutrons

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov


    Full Text Available Owing to their zero charge, neutrons are able to pass through thick layers of matter (typically several centimeters while being sensitive to magnetic fields due to their intrinsic magnetic moment. Therefore, in addition to the conventional attenuation contrast image, the magnetic field inside and around a sample can be visualized by detecting changes of polarization in a transmitted beam. The method is based on the spatially resolved measurement of the cumulative precession angles of a collimated, polarized, monochromatic neutron beam that traverses a magnetic field or sample.

  16. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Sipala, V.; Lo Presti, D.; Brianzi, M.; Civinini, C.; Bruzzi, M.; Scaringella, M.; Talamonti, C.; Bucciolini, M.; Cirrone, G.A.P.; Cuttone, G.; Randazzo, N.; Stancampiano, C.; Tesi, M.


    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  17. Method for Surface Scanning in Medical Imaging and Related Apparatus

    DEFF Research Database (Denmark)


    A method and apparatus for surface scanning in medical imaging is provided. The surface scanning apparatus comprises an image source, a first optical fiber bundle comprising first optical fibers having proximal ends and distal ends, and a first optical coupler for coupling an image from the image...

  18. Polarization-multiplexing ghost imaging (United States)

    Dongfeng, Shi; Jiamin, Zhang; Jian, Huang; Yingjian, Wang; Kee, Yuan; Kaifa, Cao; Chenbo, Xie; Dong, Liu; Wenyue, Zhu


    A novel technique for polarization-multiplexing ghost imaging is proposed to simultaneously obtain multiple polarimetric information by a single detector. Here, polarization-division multiplexing speckles are employed for object illumination. The light reflected from the objects is detected by a single-pixel detector. An iterative reconstruction method is used to restore the fused image containing the different polarimetric information by using the weighted sum of the multiplexed speckles based on the correlation coefficients obtained from the detected intensities. Next, clear images of the different polarimetric information are recovered by demultiplexing the fused image. The results clearly demonstrate that the proposed method is effective.

  19. Method and apparatus for enhancing radiometric imaging

    International Nuclear Information System (INIS)

    Logan, R. H.; Paradish, F. J.


    Disclosed is a method and apparatus for enhancing target detection, particularly in the millimeter wave frequency range, through the utilization of an imaging radiometer. The radiometer, which is a passive thermal receiver, detects the reflected and emitted thermal radiation of targets within a predetermined antenna/receiver beamwidth. By scanning the radiometer over a target area, a thermal image is created. At millimeter wave frequencies, the received emissions from the target area are highly dependent on the emissivity of the target of interest. Foliage will appear ''hot'' due to its high emissivity and metals will appear cold due to their low emissivities. A noise power illuminator is periodically actuated to illuminate the target of interest. When the illuminator is actuated, the role of emissivity is reversed, namely poorly emissive targets will generally be good reflectors which in the presence of an illuminator will appear ''hot''. The highly emissive targets (such as foliage and dirt) which absorb most of the transmitted energy will appear almost the same as in a nonilluminated, passive image. Using a data processor, the intensity of the passive image is subtracted from the intensity of the illuminated, active image which thereby cancels the background foliage, dirt, etc. and the reflective metallic targets are enhanced

  20. Polar synthetic imaging (United States)

    George, Jonathan K.


    In the search for low-cost wide spectrum imagers it may become necessary to sacrifice the expense of the focal plane array and revert to a scanning methodology. In many cases the sensor may be too unwieldy to physically scan and mirrors may have adverse effects on particular frequency bands. In these cases, photonic masks can be devised to modulate the incoming light field with a code over time. This is in essence code-division multiplexing of the light field into a lower dimension channel. In this paper a simple method for modulating the light field with masks of the Archimedes' spiral is presented and a mathematical model of the two-dimensional mask set is developed.

  1. Apparatus and methods for memory using in-plane polarization (United States)

    Liu, Junwei; Chang, Kai; Ji, Shuai-Hua; Chen, Xi; Fu, Liang


    A memory device includes a semiconductor layer with an in-plane polarization component switchable between a first direction and a second direction. A writing electrode is employed to apply a writing voltage to the semiconductor layer to change the in-plane polarization component between the first direction and the second direction. A reading electrode is employed to apply a reading voltage to the semiconductor layer to measure a tunneling current substantially perpendicular to the polarization direction of the in-plane polarization component. The directions of the reading voltage and the writing voltage are substantially perpendicular to each other. Therefore, the reading process is non-destructive. Thin films (e.g., one unit cell thick) of ferroelectric material can be used in the memory device to increase the miniaturization of the device.

  2. Imaging differential polarization microscope with electronic readout

    International Nuclear Information System (INIS)

    Mickols, W.; Tinoco, I.; Katz, J.E.; Maestre, M.F.; Bustamante, C.


    A differential polarization microscope forms two images: one of the transmitted intensity and the other due to the change in intensity between images formed when different polarizations of light are used. The interpretation of these images for linear dichroism and circular dichroism are described. The design constraints on the data acquisition systems and the polarization modulation are described. The advantage of imaging several biological systems which contain optically anisotropic structures are described

  3. Slim planar apparatus for converting LED light into collimated polarized light uniformly emitted from its top surface. (United States)

    Teng, Tun-Chien; Tseng, Li-Wei


    This study proposes a slim planar apparatus for converting nonpolarized light from a light-emitting diode (LED) into an ultra-collimated linearly polarized beam uniformly emitted from its top surface. The apparatus was designed based on a folded-bilayer configuration comprising a light-mixing collimation element, polarization conversion element, and polarization-preserving light guide plate (PPLGP) with an overall thickness of 5 mm. Moreover, the apparatus can be extended transversally by connecting multiple light-mixing collimation elements and polarization conversion elements in a side-by-side configuration to share a considerably wider PPLGP, so the apparatus can have theoretically unlimited width. The simulation results indicate that the proposed apparatus is feasible for the maximal backlight modules in 39-inch liquid crystal panels. In the case of an apparatus with a 480 × 80 mm emission area and two 8-lumen LED light sources, the average head-on polarized luminance and spatial uniformity over the emission area was 5000 nit and 83%, respectively; the vertical and transverse angular distributions of the emitting light were only 5° and 10°, respectively. Moreover, the average degree of polarization and energy efficiency of the apparatus were 82% and 72%, respectively. As compared with the high-performance ultra-collimated nonpolarized backlight module proposed in our prior work, not only did the apparatus exhibit outstanding optical performance, but also the highly polarized light emissions actually increased the energy efficiency by 100%.

  4. Method and apparatus for improving the alignment of radiographic images

    International Nuclear Information System (INIS)

    Schuller, P.D.; Hatcher, D.C.; Caelli, T.M.; Eggert, F.M.; Yuzyk, J.


    This invention relates generally to the field of radiology, and has to do particularly with a method and apparatus for improving the alignment of radiographic images taken at different times of the same tissue structure, so that the images can be sequentially shown in aligned condition, whereby changes in the structure can be noted. (author). 10 figs

  5. Apparatus and method X-ray image processing

    International Nuclear Information System (INIS)


    The invention relates to a method for X-ray image processing. The radiation passed through the object is transformed into an electric image signal from which the logarithmic value is determined and displayed by a display device. Its main objective is to provide a method and apparatus that renders X-ray images or X-ray subtraction images with strong reduction of stray radiation. (Auth.)

  6. Single photon imaging and timing array sensor apparatus and method (United States)

    Smith, R. Clayton


    An apparatus and method are disclosed for generating a three-dimension image of an object or target. The apparatus is comprised of a photon source for emitting a photon at a target. The emitted photons are received by a photon receiver for receiving the photon when reflected from the target. The photon receiver determines a reflection time of the photon and further determines an arrival position of the photon on the photon receiver. An analyzer is communicatively coupled to the photon receiver, wherein the analyzer generates a three-dimensional image of the object based upon the reflection time and the arrival position.

  7. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System (United States)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)


    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  8. NMR blood vessel imaging method and apparatus

    International Nuclear Information System (INIS)

    Riederer, S.J.


    A high speed method of forming computed images of blood vessels based on measurements of characteristics of a body is described comprising the steps of: subjecting a predetermined body area containing blood vessels of interest to, successively, applications of a short repetition time (TR) NMR pulse sequence during the period of high blood velocity and then to corresponding applications during the period of low blood velocity for successive heart beat cycles; weighting the collected imaging data from each application of the NMR pulse sequence according to whether the data was acquired during the period of high blood velocity or a period of low blood velocity of the corresponding heart beat cycle; accumulating weighted imaging data from a plurality of NMR pulse sequences corresponding to high blood velocity periods and from a plurality of NMR pulse sequences corresponding to low blood velocity periods; subtracting the weighted imaging data corresponding to each specific phase encoding acquired during the high blood velocity periods from the weighted imaging data for the same phase encoding corresponding to low blood velocity periods in order to compute blood vessel imaging data; and forming an image of the blood vessels of interest from the blood vessel imaging data

  9. Method and apparatus for imaging volume data

    International Nuclear Information System (INIS)

    Drebin, R.; Carpenter, L.C.


    An imaging system projects a two dimensional representation of three dimensional volumes where surface boundaries and objects internal to the volumes are readily shown, and hidden surfaces and the surface boundaries themselves are accurately rendered by determining volume elements or voxels. An image volume representing a volume object or data structure is written into memory. A color and opacity is assigned to each voxel within the volume and stored as a red (R), green (G), blue (B), and opacity (A) component, three dimensional data volume. The RGBA assignment for each voxel is determined based on the percentage component composition of the materials represented in the volume, and thus, the percentage of color and transparency associated with those materials. The voxels in the RGBA volume are used as mathematical filters such that each successive voxel filter is overlayed over a prior background voxel filter. Through a linear interpolation, a new background filter is determined and generated. The interpolation is successively performed for all voxels up to the front most voxel for the plane of view. The method is repeated until all display voxels are determined for the plane of view. (author)

  10. Method and apparatus for animal positioning in imaging systems (United States)

    Hadjioannou, Arion-Xenofon; Stout, David B.; Silverman, Robert W.


    An apparatus for imaging an animal includes a first mounting surface, a bed sized to support the animal and releasably secured to or integral with the first mounting surface. The apparatus also includes a plurality of straps, each having a first end in a fixed position relative to the bed and a second end for tightening around a limb of the animal. A method for in-vivo imaging of an animal includes providing an animal that has limbs, providing a first mounting surface, and providing a bed removably secured to or integral with the mounting surface and sized to support the animal as well as being coupled to a plurality of straps. The method also includes placing the animal on the bed between the plurality of straps and tightening at least two of the plurality of straps around at least two of the limbs such that the animal is substantially secured in place relative to the bed.

  11. Method and apparatus for producing tomographic images

    International Nuclear Information System (INIS)

    Annis, M.


    A device useful in producing a tomographic image of a selected slice of an object to be examined is described comprising: a source of penetrating radiation, sweep means for forming energy from the source into a pencil beam and repeatedly sweeping the pencil beam over a line in space to define a sweep plane, first means for supporting an object to be examined so that the pencil beam intersections the object along a path passing through the object and the selected slice, line collimating means for filtering radiation scattered by the object, the line collimating means having a field of view which intersects and sweep plane in a bounded line so that the line collimating means passes only radiation scattered by elementary volumes of the object lying along the bounded line, and line collimating means including a plurality of channels such substantially planar in form to collectively define the field of view, the channels oriented so that pencil beam sweeps along the bounded line as a function of time, and radiation detector means responsive to radiation passed by the line collimating means

  12. Data acquisition system for a proton imaging apparatus

    CERN Document Server

    Sipala, V; Bruzzi, M; Bucciolini, M; Candiano, G; Capineri, L; Cirrone, G A P; Civinini, C; Cuttone, G; Lo Presti, D; Marrazzo, L; Mazzaglia, E; Menichelli, D; Randazzo, N; Talamonti, C; Tesi, M; Valentini, S


    New developments in the proton-therapy field for cancer treatments, leaded Italian physics researchers to realize a proton imaging apparatus consisting of a silicon microstrip tracker to reconstruct the proton trajectories and a calorimeter to measure their residual energy. For clinical requirements, the detectors used and the data acquisition system should be able to sustain about 1 MHz proton rate. The tracker read-out, using an ASICs developed by the collaboration, acquires the signals detector and sends data in parallel to an FPGA. The YAG:Ce calorimeter generates also the global trigger. The data acquisition system and the results obtained in the calibration phase are presented and discussed.

  13. Apparatus and method for motion tracking in brain imaging

    DEFF Research Database (Denmark)


    Disclosed is apparatus and method for motion tracking of a subject in medical brain imaging. The method comprises providing a light projector and a first camera; projecting a first pattern sequence (S1) onto a surface region of the subject with the light projector, wherein the subject is positioned......2,1) based on the detected first pattern sequence (S1'); projecting the second pattern sequence (S2) onto a surface region of the subject with the light projector; detecting the projected second pattern sequence (S2') with the first camera; and determining motion tracking parameters based...


    Directory of Open Access Journals (Sweden)



    Full Text Available We apply different polarization imaging techniques for cancerous liver tissues, and compare the relative contrasts for difference polarization imaging (DPI, degree of polarization imaging (DOPI and rotating linear polarization imaging (RLPI. Experimental results show that a number of polarization imaging parameters are capable of differentiating cancerous cells in isotropic liver tissues. To analyze the contrast mechanism of the cancer-sensitive polarization imaging parameters, we propose a scattering model containing two types of spherical scatterers and carry on Monte Carlo simulations based on this bi-component model. Both the experimental and Monte Carlo simulated results show that the RLPI technique can provide a good imaging contrast of cancerous tissues. The bi-component scattering model provides a useful tool to analyze the contrast mechanism of polarization imaging of cancerous tissues.

  15. The Polarized Radiation Imaging and Spectroscopy Mission

    CERN Document Server

    André, Philippe; Banday, Anthony; Barbosa, Domingos; Barreiro, Belen; Bartlett, James; Bartolo, Nicola; Battistelli, Elia; Battye, Richard; Bendo, George; Benoȋt, Alain; Bernard, Jean-Philippe; Bersanelli, Marco; Béthermin, Matthieu; Bielewicz, Pawel; Bonaldi, Anna; Bouchet, François; Boulanger, François; Brand, Jan; Bucher, Martin; Burigana, Carlo; Cai, Zhen-Yi; Camus, Philippe; Casas, Francisco; Casasola, Viviana; Castex, Guillaume; Challinor, Anthony; Chluba, Jens; Chon, Gayoung; Colafrancesco, Sergio; Comis, Barbara; Cuttaia, Francesco; D'Alessandro, Giuseppe; Da Silva, Antonio; Davis, Richard; de Avillez, Miguel; de Bernardis, Paolo; de Petris, Marco; de Rosa, Adriano; de Zotti, Gianfranco; Delabrouille, Jacques; Désert, François-Xavier; Dickinson, Clive; Diego, Jose Maria; Dunkley, Joanna; Enßlin, Torsten; Errard, Josquin; Falgarone, Edith; Ferreira, Pedro; Ferrière, Katia; Finelli, Fabio; Fletcher, Andrew; Fosalba, Pablo; Fuller, Gary; Galli, Silvia; Ganga, Ken; García-Bellido, Juan; Ghribi, Adnan; Giard, Martin; Giraud-Héraud, Yannick; Gonzalez-Nuevo, Joaquin; Grainge, Keith; Gruppuso, Alessandro; Hall, Alex; Hamilton, Jean-Christophe; Haverkorn, Marijke; Hernandez-Monteagudo, Carlos; Herranz, Diego; Jackson, Mark; Jaffe, Andrew; Khatri, Rishi; Kunz, Martin; Lamagna, Luca; Lattanzi, Massimiliano; Leahy, Paddy; Lesgourgues, Julien; Liguori, Michele; Liuzzo, Elisabetta; Lopez-Caniego, Marcos; Macias-Perez, Juan; Maffei, Bruno; Maino, Davide; Mangilli, Anna; Martinez-Gonzalez, Enrique; Martins, Carlos J.A.P.; Masi, Silvia; Massardi, Marcella; Matarrese, Sabino; Melchiorri, Alessandro; Melin, Jean-Baptiste; Mennella, Aniello; Mignano, Arturo; Miville-Deschênes, Marc-Antoine; Monfardini, Alessandro; Murphy, Anthony; Naselsky, Pavel; Nati, Federico; Natoli, Paolo; Negrello, Mattia; Noviello, Fabio; O'Sullivan, Créidhe; Paci, Francesco; Pagano, Luca; Paladino, Rosita; Palanque-Delabrouille, Nathalie; Paoletti, Daniela; Peiris, Hiranya; Perrotta, Francesca; Piacentini, Francesco; Piat, Michel; Piccirillo, Lucio; Pisano, Giampaolo; Polenta, Gianluca; Pollo, Agnieszka; Ponthieu, Nicolas; Remazeilles, Mathieu; Ricciardi, Sara; Roman, Matthieu; Rosset, Cyrille; Rubino-Martin, Jose-Alberto; Salatino, Maria; Schillaci, Alessandro; Shellard, Paul; Silk, Joseph; Starobinsky, Alexei; Stompor, Radek; Sunyaev, Rashid; Tartari, Andrea; Terenzi, Luca; Toffolatti, Luigi; Tomasi, Maurizio; Trappe, Neil; Tristram, Matthieu; Trombetti, Tiziana; Tucci, Marco; Van de Weijgaert, Rien; Van Tent, Bartjan; Verde, Licia; Vielva, Patricio; Wandelt, Ben; Watson, Robert; Withington, Stafford; Cabrera, Nicolas


    PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISM's main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequency bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude better than COBE FIRAS. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISM

  16. A new apparatus for electron-ion multiple coincidence momentum imaging spectroscopy

    International Nuclear Information System (INIS)

    Morishita, Y.; Kato, M.; Pruemper, G.; Liu, X.-J.; Lischke, T.; Ueda, K.; Tamenori, Y.; Oura, M.; Yamaoka, H.; Suzuki, I.H.; Saito, N.


    We have developed a new experimental apparatus for the electron-ion multiple coincidence momentum imaging spectroscopy in order to obtain the angular distributions of vibration-resolved photoelectrons from molecules fixed in space. The apparatus consists of a four-stage molecular supersonic jet and a spectrometer analyzing three-dimensional momenta of fragment ions and electrons in coincidence

  17. [Research on Spectral Polarization Imaging System Based on Static Modulation]. (United States)

    Zhao, Hai-bo; Li, Huan; Lin, Xu-ling; Wang, Zheng


    The main disadvantages of traditional spectral polarization imaging system are: complex structure, with moving parts, low throughput. A novel method of spectral polarization imaging system is discussed, which is based on static polarization intensity modulation combined with Savart polariscope interference imaging. The imaging system can obtain real-time information of spectral and four Stokes polarization messages. Compared with the conventional methods, the advantages of the imaging system are compactness, low mass and no moving parts, no electrical control, no slit and big throughput. The system structure and the basic theory are introduced. The experimental system is established in the laboratory. The experimental system consists of reimaging optics, polarization intensity module, interference imaging module, and CCD data collecting and processing module. The spectral range is visible and near-infrared (480-950 nm). The white board and the plane toy are imaged by using the experimental system. The ability of obtaining spectral polarization imaging information is verified. The calibration system of static polarization modulation is set up. The statistical error of polarization degree detection is less than 5%. The validity and feasibility of the basic principle is proved by the experimental result. The spectral polarization data captured by the system can be applied to object identification, object classification and remote sensing detection.

  18. Study on polarized optical flow algorithm for imaging bionic polarization navigation micro sensor (United States)

    Guan, Le; Liu, Sheng; Li, Shi-qi; Lin, Wei; Zhai, Li-yuan; Chu, Jin-kui


    At present, both the point source and the imaging polarization navigation devices only can output the angle information, which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly. Optical flow is an image-based method for calculating the velocity of pixel point movement in an image. However, for ordinary optical flow, the difference in pixel value as well as the calculation accuracy can be reduced in weak light. Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection. In this paper, combining the polarization imaging technique with the traditional optical flow algorithm, a polarization optical flow algorithm is proposed, and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors. This research lays the foundation for day and night all-weather polarization navigation applications in future.

  19. A polarizing neutron periscope for neutron imaging

    International Nuclear Information System (INIS)

    Schulz, Michael; Boeni, Peter; Calzada, Elbio; Muehlbauer, Martin; Neubauer, Andreas; Schillinger, Burkhard


    Optical neutron polarizers like guides or benders destroy the collimation of a neutron beam due to multiple reflections or scattering. This makes them unsuitable for their use in polarized neutron radiography, because the beam collimation is essential to obtain high spatial resolution. We have developed a neutron polarizer based on the principle of an optical periscope with a zigzag double reflection on two parallel high-m supermirror polarizers. If the supermirrors are perfectly parallel and flat, the beam collimation is left unchanged by such a device. A first proof of concept version of this type of polarizer was built and tested. We expect to achieve a beam polarization of up to 99% with an improved version yet to be built.

  20. Polarimetric imaging of retinal disease by polarization sensitive SLO (United States)

    Miura, Masahiro; Elsner, Ann E.; Iwasaki, Takuya; Goto, Hiroshi


    Polarimetry imaging is used to evaluate different features of the macular disease. Polarimetry images were recorded using a commercially- available polarization-sensitive scanning laser opthalmoscope at 780 nm (PS-SLO, GDx-N). From data sets of PS-SLO, we computed average reflectance image, depolarized light images, and ratio-depolarized light images. The average reflectance image is the grand mean of all input polarization states. The depolarized light image is the minimum of crossed channel. The ratio-depolarized light image is a ratio between the average reflectance image and depolarized light image, and was used to compensate for variation of brightness. Each polarimetry image is compared with the autofluorescence image at 800 nm (NIR-AF) and autofluorescence image at 500 nm (SW-AF). We evaluated four eyes with geographic atrophy in age related macular degeneration, one eye with retinal pigment epithelium hyperplasia, and two eyes with chronic central serous chorioretinopathy. Polarization analysis could selectively emphasize different features of the retina. Findings in ratio depolarized light image had similarities and differences with NIR-AF images. Area of hyper-AF in NIR-AF images showed high intensity areas in the ratio depolarized light image, representing melanin accumulation. Areas of hypo-AF in NIR-AF images showed low intensity areas in the ratio depolarized light images, representing melanin loss. Drusen were high-intensity areas in the ratio depolarized light image, but NIR-AF images was insensitive to the presence of drusen. Unlike NIR-AF images, SW-AF images showed completely different features from the ratio depolarized images. Polarization sensitive imaging is an effective tool as a non-invasive assessment of macular disease.

  1. Research on fusion algorithm of polarization image in tetrolet domain (United States)

    Zhang, Dexiang; Yuan, BaoHong; Zhang, Jingjing


    Tetrolets are Haar-type wavelets whose supports are tetrominoes which are shapes made by connecting four equal-sized squares. A fusion method for polarization images based on tetrolet transform is proposed. Firstly, the magnitude of polarization image and angle of polarization image can be decomposed into low-frequency coefficients and high-frequency coefficients with multi-scales and multi-directions using tetrolet transform. For the low-frequency coefficients, the average fusion method is used. According to edge distribution differences in high frequency sub-band images, for the directional high-frequency coefficients are used to select the better coefficients by region spectrum entropy algorithm for fusion. At last the fused image can be obtained by utilizing inverse transform for fused tetrolet coefficients. Experimental results show that the proposed method can detect image features more effectively and the fused image has better subjective visual effect

  2. Method and apparatus for implementing material thermal property measurement by flash thermal imaging (United States)

    Sun, Jiangang


    A method and apparatus are provided for implementing measurement of material thermal properties including measurement of thermal effusivity of a coating and/or film or a bulk material of uniform property. The test apparatus includes an infrared camera, a data acquisition and processing computer coupled to the infrared camera for acquiring and processing thermal image data, a flash lamp providing an input of heat onto the surface of a two-layer sample with an enhanced optical filter covering the flash lamp attenuating an entire infrared wavelength range with a series of thermal images is taken of the surface of the two-layer sample.

  3. Method and apparatus for real time imaging and monitoring of radiotherapy beams (United States)

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA; Macey, Daniel J [Birmingham, AL; Weisenberger, Andrew G [Yorktown, VA


    A method and apparatus for real time imaging and monitoring of radiation therapy beams is designed to preferentially distinguish and image low energy radiation from high energy secondary radiation emitted from a target as the result of therapeutic beam deposition. A detector having low sensitivity to high energy photons combined with a collimator designed to dynamically image in the region of the therapeutic beam target is used.

  4. Polarization images of the inner regions of Comet Halley

    International Nuclear Information System (INIS)

    Eaton, N.; Scarrott, S.M.; Warren-Smith, R.F.


    The present CCD polarimeter images of intensity and polarization within the near-nucleus regions of Comet Halley show the occurrence of dust jets on two days in January, 1986, which exhibit increased polarizations above the level of the surrounding coma. Three possible reasons for the enhanced polarization in the jets are considered, assuming that the polarization increase is due to dust grains: (1) the size distribution of the grains could be different from the surrounding coma; (2) the material of the grains could have a different refractive index; and (3) the ratio of dust to gas emission could be different in the jets. 13 references

  5. Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite Polarization Sensitivity Analysis (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Waluschka, Eugene; Wang, Menghua


    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (SNPP) satellite that launched from Vandenberg Air Force Base, California, on October 28, 2011. It is a whiskbroom radiometer that provides +/-56.28deg scans of the Earth view. It has 22 bands, among which 14 are reflective solar bands (RSBs). The RSBs cover a wavelength range from 410 to 2250 nm. The RSBs of a remote sensor are usually sensitive to the polarization of incident light. For VIIRS, it is specified that the polarization factor should be smaller than 3% for 410 and 862 nm bands and 2.5% for other RSBs for the scan angle within +/-45deg. Several polarization sensitivity tests were performed prelaunch for SNPP VIIRS. The first few tests either had large uncertainty or were less reliable, while the last one was believed to provide the more accurate information about the polarization property of the instrument. In this paper, the measured data in the last polarization sensitivity test are analyzed, and the polarization factors and phase angles are derived from the measurements for all the RSBs. The derived polarization factors and phase angles are band, detector, and scan angle dependent. For near-infrared bands, they also depend on the half-angle mirror side. Nevertheless, the derived polarization factors are all within the specification, although the strong detector dependence of the polarization parameters was not expected. Compared to the Moderate Resolution Imaging Spectroradiometer on both Aqua and Terra satellites, the polarization effect on VIIRS RSB is much smaller.

  6. RMB identification based on polarization parameters inversion imaging (United States)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang


    Social order is threatened by counterfeit money. Conventional anti-counterfeit technology is much too old to identify its authenticity or not. The intrinsic difference between genuine notes and counterfeit notes is its paper tissue. In this paper a new technology of detecting RMB is introduced, the polarization parameter indirect microscopic imaging technique. A conventional reflection microscopic system is used as the basic optical system, and inserting into it with polarization-modulation mechanics. The near-field structural characteristics can be delivered by optical wave and material coupling. According to coupling and conduction physics, calculate the changes of optical wave parameters, then get the curves of the intensity of the image. By analyzing near-field polarization parameters in nanoscale, finally calculate indirect polarization parameter imaging of the fiber of the paper tissue in order to identify its authenticity.

  7. Active polarization imaging system based on optical heterodyne balanced receiver (United States)

    Xu, Qian; Sun, Jianfeng; Lu, Zhiyong; Zhou, Yu; Luan, Zhu; Hou, Peipei; Liu, liren


    Active polarization imaging technology has recently become the hot research field all over the world, which has great potential application value in the military and civil area. By introducing active light source, the Mueller matrix of the target can be calculated according to the incident light and the emitted or reflected light. Compared with conventional direct detection technology, optical heterodyne detection technology have higher receiving sensitivities, which can obtain the whole amplitude, frequency and phase information of the signal light. In this paper, an active polarization imaging system will be designed. Based on optical heterodyne balanced receiver, the system can acquire the horizontal and vertical polarization of reflected optical field simultaneously, which contain the polarization characteristic of the target. Besides, signal to noise ratio and imaging distance can be greatly improved.

  8. Method and Apparatus for Computed Imaging Backscatter Radiography (United States)

    Shedlock, Daniel (Inventor); Meng, Christopher (Inventor); Sabri, Nissia (Inventor); Dugan, Edward T. (Inventor); Jacobs, Alan M. (Inventor)


    Systems and methods of x-ray backscatter radiography are provided. A single-sided, non-destructive imaging technique utilizing x-ray radiation to image subsurface features is disclosed, capable of scanning a region using a fan beam aperture and gathering data using rotational motion.

  9. Circularly polarized antennas for active holographic imaging through barriers (United States)

    McMakin, Douglas L [Richland, WA; Severtsen, Ronald H [Richland, WA; Lechelt, Wayne M [West Richland, WA; Prince, James M [Kennewick, WA


    Circularly-polarized antennas and their methods of use for active holographic imaging through barriers. The antennas are dielectrically loaded to optimally match the dielectric constant of the barrier through which images are to be produced. The dielectric loading helps to remove barrier-front surface reflections and to couple electromagnetic energy into the barrier.

  10. A simple polarized-based diffused reflectance colour imaging system

    African Journals Online (AJOL)

    A simple polarized-based diffuse reflectance imaging system has been developed. The system is designed for both in vivo and in vitro imaging of agricultural specimen in the visible region. The system uses a commercial web camera and a halogen lamp that makes it relatively simple and less expensive for diagnostic ...

  11. Robust reflective ghost imaging against different partially polarized thermal light (United States)

    Li, Hong-Guo; Wang, Yan; Zhang, Rui-Xue; Zhang, De-Jian; Liu, Hong-Chao; Li, Zong-Guo; Xiong, Jun


    We theoretically study the influence of degree of polarization (DOP) of thermal light on the contrast-to-noise ratio (CNR) of the reflective ghost imaging (RGI), which is a novel and indirect imaging modality. An expression for the CNR of RGI with partially polarized thermal light is carefully derived, which suggests a weak dependence of CNR on the DOP, especially when the ratio of the object size to the speckle size of thermal light has a large value. Different from conventional imaging approaches, our work reveals that RGI is much more robust against the DOP of the light source, which thereby has advantages in practical applications, such as remote sensing.

  12. Method and apparatus to image biological interactions in plants (United States)

    Weisenberger, Andrew; Bonito, Gregory M.; Reid, Chantal D.; Smith, Mark Frederick


    A method to dynamically image the actual translocation of molecular compounds of interest in a plant root, root system, and rhizosphere without disturbing the root or the soil. The technique makes use of radioactive isotopes as tracers to label molecules of interest and to image their distribution in the plant and/or soil. The method allows for the study and imaging of various biological and biochemical interactions in the rhizosphere of a plant, including, but not limited to, mycorrhizal associations in such regions.

  13. Tomographic X-ray apparatus for the production of transverse layer images

    International Nuclear Information System (INIS)

    Liebetruth, R.


    In an extension of the utility of rotary scan tomographic x-ray apparatus, the apparatus is locked in a fixed angular relationship and the patient support is automatically advanced in small longitudinal increments relative to the angularly fixed scanner, the scanner being pulsed in synchronism with the longitudinal steps to produce successive sets of transmittance readings defining a radiographic shadow image having a substantial longitudinal extent. The stored sets of readings may be reproduced on a conventional television display unit. Advantageously, the scanner may present a fan-type beam which in a fixed angular relationship to the patient still scans a substantial portion of the patient cross section, the x-ray source or sources being pulsed at successive longitudinal positions of the patient relative to the scanning apparatus, and the successive sets of readings being utilized for on line display of a shadow radiograph covering the desired longitudinal extent

  14. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging. (United States)

    Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui


    We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. Digital all-sky polarization imaging of partly cloudy skies. (United States)

    Pust, Nathan J; Shaw, Joseph A


    Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.

  16. Ultrafast Ultrasound Imaging With Cascaded Dual-Polarity Waves. (United States)

    Zhang, Yang; Guo, Yuexin; Lee, Wei-Ning


    Ultrafast ultrasound imaging using plane or diverging waves, instead of focused beams, has advanced greatly the development of novel ultrasound imaging methods for evaluating tissue functions beyond anatomical information. However, the sonographic signal-to-noise ratio (SNR) of ultrafast imaging remains limited due to the lack of transmission focusing, and thus insufficient acoustic energy delivery. We hereby propose a new ultrafast ultrasound imaging methodology with cascaded dual-polarity waves (CDWs), which consists of a pulse train with positive and negative polarities. A new coding scheme and a corresponding linear decoding process were thereby designed to obtain the recovered signals with increased amplitude, thus increasing the SNR without sacrificing the frame rate. The newly designed CDW ultrafast ultrasound imaging technique achieved higher quality B-mode images than coherent plane-wave compounding (CPWC) and multiplane wave (MW) imaging in a calibration phantom, ex vivo pork belly, and in vivo human back muscle. CDW imaging shows a significant improvement in the SNR (10.71 dB versus CPWC and 7.62 dB versus MW), penetration depth (36.94% versus CPWC and 35.14% versus MW), and contrast ratio in deep regions (5.97 dB versus CPWC and 5.05 dB versus MW) without compromising other image quality metrics, such as spatial resolution and frame rate. The enhanced image qualities and ultrafast frame rates offered by CDW imaging beget great potential for various novel imaging applications.

  17. Improved sliced velocity map imaging apparatus optimized for H photofragments. (United States)

    Ryazanov, Mikhail; Reisler, Hanna


    Time-sliced velocity map imaging (SVMI), a high-resolution method for measuring kinetic energy distributions of products in scattering and photodissociation reactions, is challenging to implement for atomic hydrogen products. We describe an ion optics design aimed at achieving SVMI of H fragments in a broad range of kinetic energies (KE), from a fraction of an electronvolt to a few electronvolts. In order to enable consistently thin slicing for any imaged KE range, an additional electrostatic lens is introduced in the drift region for radial magnification control without affecting temporal stretching of the ion cloud. Time slices of ∼5 ns out of a cloud stretched to ⩾50 ns are used. An accelerator region with variable dimensions (using multiple electrodes) is employed for better optimization of radial and temporal space focusing characteristics at each magnification level. The implemented system was successfully tested by recording images of H fragments from the photodissociation of HBr, H2S, and the CH2OH radical, with kinetic energies ranging from 3 eV. It demonstrated KE resolution ≲1%-2%, similar to that obtained in traditional velocity map imaging followed by reconstruction, and to KE resolution achieved previously in SVMI of heavier products. We expect it to perform just as well up to at least 6 eV of kinetic energy. The tests showed that numerical simulations of the electric fields and ion trajectories in the system, used for optimization of the design and operating parameters, provide an accurate and reliable description of all aspects of system performance. This offers the advantage of selecting the best operating conditions in each measurement without the need for additional calibration experiments.

  18. Polarization imaging enhancement for target vision through haze (United States)

    Wu, Hai-Ying; Zhang, San-Xi; Li, Jie; LI, Bin; Tang, Zi-li; Liu, Biao; Jia, Wen-Wu


    Haze, fog, and smoke are turbid medium in the atmosphere which usually degrade viewing condition of outdoor scenes. The resulted images lose contrast and color fidelity with serious degradation. Due to loss of large detailed information of measured scene, it will usually lead to invalid detection and measurement. The suspended particles in the atmosphere and the scene being measured give rise to polarization changes by their reflection. In the process of reflection, absorption and scattering, the object itself can be determined by its own polarization characteristics. Based on this point, we proposed an approach for target vision through haze. This approach is based on the polarization differences between the scene being measured and the scattering background to move the haze effects. It can realize a great visibility enhancement and enable the scene rendering even if imaged under restricted viewing conditions with low polarization. In this work, the detailed theoretical operation principle is presented. A validating imaging system is established and the corresponding experiment is carried out. We present the experimental results of haze-free image of scene with recovered high contrast. This method also can be used to effectively enhance the imaging performance of any other optical system.

  19. Method and apparatus for measuring surface movement of an object using a polarizing interferometer (United States)

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.


    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figs.

  20. Atmospheric Polarization Imaging with Variable Aerosols, Clouds, and Surface Albedo (United States)


    values found in this region only during episodes of intense wildfire smoke. Detailed analysis of the aerosols in this smoke plume and their effect...Continuous outdoor operation of an all-sky polarization imager,” Proc. SPIE 7672 (Polarization: Measurement, Analysis , and Remote Sensing IX), 76720A-1-7, 7...Pust, “ Lunar corona in ice wave cloud,” 10th International Meeting on Light and Color in Nature, St. Mary’s College of Maryland, 16-20 June 2010. 2

  1. Usefulness and limitation of functional MRI with echo planar imaging using clinical MR apparatus

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Zenke, Kiichiro; Saito, Masahiro; Sadamoto, Kazuhiko; Ohue, Shiro; Sakaki, Saburo; Kumon, Yoshiaki; Kabasawa, Hiroyuki; Nagasawa, Kiyoshi


    We studied blood oxygen level-dependent (BOLD) functional MRI (fMRI) with EPI sequence in 21 normal volunteers and 8 presurgical clinical patients using a 1.5 T clinical MRI apparatus. To optimize the imaging parameters, we compared the fMRI images obtained by GFE-EPI and by SE-EPI in normal volunteers while each squeezed a sponge ball. We identified the motor cortex in 85.7% of normal volunteers by GFE-EPI in contrast to only 28.6% by SE-EPI. In addition, our clinical MR apparatus, using optimized parameters, maximally provides 15 slices per 5 seconds. In patients with brain tumor close to the sensorimotor cortex, we attempted to identify the motor cortex preoperatively by this procedure and found a significant increase of signal intensity in the motor cortex in 5 of 8 patients. In conclusion, fMRI using EPI may be useful for identifying the motor cortex preoperatively. However, further development of the apparatus is needed to obtain better temporal and spatial resolution for clinical applications. (author)

  2. Advances in polarization sensitive multiphoton nano-bio-imaging

    Directory of Open Access Journals (Sweden)

    Zyss J.


    Full Text Available In this talk, we shall shortly review four main directions of ongoing research in our laboratories, directed at the conception and demonstration of a variety of innovative configurations in nanoscale multiphoton imaging. A common feature to all of these directions appears to be the central role played by the involvement of polarization features, both in- and outgoing, moreover so in view of the tensorial aspects inherent to nonlinear schemes such second-harmonic generation, electro-optic modulation or two-photon fluorescence which will ne emphasized. These advances relate to the new domain of nonlinear ellipsometry in multiphoton imaging [1], of high relevance to fundamental aspects of nanophotonics and nanomaterial engineering as well as towards basic life science issues. The four domains to be shortly reported are: a polarization resolved second-harmonic generation in semiconductor QD’s with record small sizes in the 10-12 nm range [2] b original use of two-photon confocal polarization resolved microscopy in DNA stained by two photon fluorescent dyes in different LC phases arrangements so as to characterize these as well as ascertain the respective DNA-dye orientation (intercalant or groves [3] c elaboration and demonstration of an electrooptic confocal microscope in a highly sensitive interferometric and homodyne detection configuration allowing to map weak electric potentials such as in artificial functionalized membranes, the dynamical investigation of firing and propagation aspects of action potentials in neurones being currently the next step [4] d original plasmon based enhanced nanoscale confocal imaging involving a dual detection scheme (fluorescence imaging and ATR plasmon coupling in reflection whereby adequate preparation and switching of the incoming polarization state between radial, linear and azimuthal configurations, entail different images and plasmon enhancement levels [5].

  3. Radiography apparatus

    International Nuclear Information System (INIS)

    Sashin, D.; Sternglass, E.J.


    The apparatus of the present invention provides radiography apparatus wherein the use of a flat, generally rectangular beam or a fan-shaped beam of radiation in combination with a collimator, scintillator and device for optically coupling a self-scanning array of photodiodes to the scintillator means will permit production of images or image data with high contrast sensitivity and detail. It is contemplated that the self-scanning array of photodiodes may contain from about 60 to 2048, and preferably about 256 to 2048, individual photodiode elements per inch of object width, thereby permitting maximum data collection to produce a complete image or complete collection of image data

  4. Humidity effects on scanning polarization force microscopy imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yue, E-mail: [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); Key Laboratory of Interfacial Physics and Technology of Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhou, Yuan, E-mail: [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); Sun, Yanxia; Zhang, Lijuan [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Ying; Hu, Jun; Zhang, Yi [Key Laboratory of Interfacial Physics and Technology of Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)


    Highlights: • The humidity dramatically affects the contrast of scanning polarization force microscopy (SPFM) imaging on mica surface. • This influence roots in the sensitive dielectric constant of mica surface to the humidity change. • A strategy of controllable and repeatable imaging the local dielectric properties of nanomaterials with SPFM is proposed. - Abstract: Scanning polarization force microscopy (SPFM) is a useful surface characterization technique to visually characterize and distinguish nanomaterial with different local dielectric properties at nanometer scale. In this paper, taking the individual one-atom-thick graphene oxide (GO) and reduced graphene oxide (rGO) sheets on mica as examples, we described the influences of environmental humidity on SPFM imaging. We found that the apparent heights (AHs) or contrast of SPFM imaging was influenced significantly by relative humidity (RH) at a response time of a few seconds. And this influence rooted in the sensitive dielectric constant of mica surface to the RH change. While dielectric properties of GO and rGO sheets were almost immune to the humidity change. In addition, we gave the method to determine the critical humidity at which the contrast conversion happened under different conditions. And this is important to the contrast control and repeatable imaging of SPFM through RH adjusting. These findings suggest a strategy of controllable and repeatable imaging the local dielectric properties of nanomaterials with SPFM, which is critically important for further distinguishment, manipulation, electronic applications, etc.

  5. Optical image encryption method based on incoherent imaging and polarized light encoding (United States)

    Wang, Q.; Xiong, D.; Alfalou, A.; Brosseau, C.


    We propose an incoherent encoding system for image encryption based on a polarized encoding method combined with an incoherent imaging. Incoherent imaging is the core component of this proposal, in which the incoherent point-spread function (PSF) of the imaging system serves as the main key to encode the input intensity distribution thanks to a convolution operation. An array of retarders and polarizers is placed on the input plane of the imaging structure to encrypt the polarized state of light based on Mueller polarization calculus. The proposal makes full use of randomness of polarization parameters and incoherent PSF so that a multidimensional key space is generated to deal with illegal attacks. Mueller polarization calculus and incoherent illumination of imaging structure ensure that only intensity information is manipulated. Another key advantage is that complicated processing and recording related to a complex-valued signal are avoided. The encoded information is just an intensity distribution, which is advantageous for data storage and transition because information expansion accompanying conventional encryption methods is also avoided. The decryption procedure can be performed digitally or using optoelectronic devices. Numerical simulation tests demonstrate the validity of the proposed scheme.

  6. Random laser illumination: an ideal source for biomedical polarization imaging? (United States)

    Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.


    Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.

  7. Imaging, object detection, and change detection with a polarized multistatic GPR array (United States)

    Beer, N. Reginald; Paglieroni, David W.


    A polarized detection system performs imaging, object detection, and change detection factoring in the orientation of an object relative to the orientation of transceivers. The polarized detection system may operate on one of several modes of operation based on whether the imaging, object detection, or change detection is performed separately for each transceiver orientation. In combined change mode, the polarized detection system performs imaging, object detection, and change detection separately for each transceiver orientation, and then combines changes across polarizations. In combined object mode, the polarized detection system performs imaging and object detection separately for each transceiver orientation, and then combines objects across polarizations and performs change detection on the result. In combined image mode, the polarized detection system performs imaging separately for each transceiver orientation, and then combines images across polarizations and performs object detection followed by change detection on the result.

  8. Imaging of Polarization-dependent Photocurrent in Graphene Photodevices (United States)

    Kim, Minjung; Yoon, Duhee; Ang Yoon, Ho; Lee, Sang Wook; Cheong, Hyeonsik


    Recently, a metal-graphene-metal photodetector for high-speed optical communications was reported. In addition, a graphene-based photodetector was reported to be able to absorb broadband light owing to the unique band structure of graphene [Mueller et al., Nature Photonics 4, 297 (2010)]. We investigated the polarization dependence of the photocurrent generated in metal-graphene-metal junctions. The graphene photodevice was fabricated by depositing Pd/Au and Ti/Au electrodes on single-layer graphene samples. When the polarization of incident laser beam is rotated with respect to the metal-graphene-metal junction, the photocurrent is significantly modulated. In addition, we measured the exact positions where the photocurrent is generated by measuring the photocurrent and Raman images of the graphene photodevices simultaneously.

  9. Static dual-channel polarization imaging spectrometer for simultaneous acquisition of inphase and antiphase interference images

    International Nuclear Information System (INIS)

    Mu, Tingkui; Zhang, Chunmin; Ren, Wenyi; Jian, Xiaohua


    The raw data acquired by Fourier-transform imaging spectrometers are the physical superposition of an interferogram and image. To reconstruct an accurate spectrum from a pure interferogram via Fourier transformation and get a pure image that is undisturbed by fringes, the interferogram and the image need to be separated. Although it can be achieved by digital image processing, heavy computations with approximation would be introduced. To overcome these drawbacks and in the meantime avoid the influence of the rapid changes of the observed scene and the perturbations of the rotating elements, a static dual-channel polarization imaging spectrometer that can simultaneously acquire inphase and antiphase interference images is presented. The extraction of a pure image and pure fringe can be simply achieved from the difference and the summation of the two interference images, respectively. The feasibility of the spectrometer and its features are described, and the influence of the polarization direction of the polarizers on the background image and fringe is discussed

  10. Apparatus and method of manufacture for an imager equipped with a cross-talk barrier (United States)

    Pain, Bedabrata (Inventor)


    An imager apparatus and associated starting material are provided. In one embodiment, an imager is provided including a silicon layer of a first conductivity type acting as a junction anode. Such silicon layer is adapted to convert light to photoelectrons. Also included is a semiconductor well of a second conductivity type formed in the silicon layer for acting as a junction cathode. Still yet, a barrier is formed adjacent to the semiconductor well. In another embodiment, a starting material is provided including a first silicon layer and an oxide layer disposed adjacent to the first silicon layer. Also included is a second silicon layer disposed adjacent to the oxide layer opposite the first silicon layer. Such second silicon layer is further equipped with an associated passivation layer and/or barrier.

  11. Astronomical Polarimetry with the RIT Polarization Imaging Camera (United States)

    Vorobiev, Dmitry V.; Ninkov, Zoran; Brock, Neal


    In the last decade, imaging polarimeters based on micropolarizer arrays have been developed for use in terrestrial remote sensing and metrology applications. Micropolarizer-based sensors are dramatically smaller and more mechanically robust than other polarimeters with similar spectral response and snapshot capability. To determine the suitability of these new polarimeters for astronomical applications, we developed the RIT Polarization Imaging Camera to investigate the performance of these devices, with a special attention to the low signal-to-noise regime. We characterized the device performance in the lab, by determining the relative throughput, efficiency, and orientation of every pixel, as a function of wavelength. Using the resulting pixel response model, we developed demodulation procedures for aperture photometry and imaging polarimetry observing modes. We found that, using the current calibration, RITPIC is capable of detecting polarization signals as small as ∼0.3%. The relative ease of data collection, calibration, and analysis provided by these sensors suggest than they may become an important tool for a number of astronomical targets.

  12. Apparatus for real-time acoustic imaging of Rayleigh-Bénard convection

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Kerry, K.


    We have successfully designed, built and tested an experimental apparatus which is capable of providing the first real-time ultrasound images of Rayleigh-B\\'{e}nard convection in optically opaque fluids confined to large aspect ratio experimental cells. The apparatus employs a modified version of a commercially available ultrasound camera to capture images (30 frames per second) of flow patterns in a fluid undergoing Rayleigh Bénard convection. The apparatus was validated by observing convection rolls in 5cSt polydimethylsiloxane (PDMS) polymer fluid. Our first objective, after having built the apparatus, was to use it to study the sequence of transitions from diffusive to time--dependent heat transport in liquid mercury. The aim was to provide important information on pattern formation in the largely unexplored regime of very low Prandtl number fluids. Based on the theoretical stability diagram for liquid mercury, we anticipated that straight rolls should be stable over a range of Rayleigh numbers, between 1708 and approximately 1900. Though some of our power spectral densities were suggestive of the existence of weak convection, we have been unable to unambiguously visualize stable convection rolls above the theoretical onset of convection in liquid mercury. Currently, we are seeking ways to increase the sensitivity of our apparatus, such as (i) improving the acoustic impedance matching between our materials in the ultrasound path and (ii) reducing the noise level in our acoustic images due to turbulence and cavitation in the cooling fluids circulating above and below our experimental cell. If we are able to convincingly improve the sensitivity of our apparatus, and we still do not observe stable convection rolls in liquid mercury, then it may be the case that the theoretical stability diagram requires revision. In that case, either (i) straight rolls are not stable in a large aspect ratio cell at the Prandtl numbers associated with liquid mercury, or (ii

  13. Polarization information processing and software system design for simultaneously imaging polarimetry (United States)

    Wang, Yahui; Liu, Jing; Jin, Weiqi; Wen, Renjie


    Simultaneous imaging polarimetry can realize real-time polarization imaging of the dynamic scene, which has wide application prospect. This paper first briefly illustrates the design of the double separate Wollaston Prism simultaneous imaging polarimetry, and then emphases are put on the polarization information processing methods and software system design for the designed polarimetry. Polarization information processing methods consist of adaptive image segmentation, high-accuracy image registration, instrument matrix calibration. Morphological image processing was used for image segmentation by taking dilation of an image; The accuracy of image registration can reach 0.1 pixel based on the spatial and frequency domain cross-correlation; Instrument matrix calibration adopted four-point calibration method. The software system was implemented under Windows environment based on C++ programming language, which realized synchronous polarization images acquisition and preservation, image processing and polarization information extraction and display. Polarization data obtained with the designed polarimetry shows that: the polarization information processing methods and its software system effectively performs live realize polarization measurement of the four Stokes parameters of a scene. The polarization information processing methods effectively improved the polarization detection accuracy.

  14. Method and apparatus for magnetic resonance imaging and spectroscopy using microstrip transmission line coils (United States)

    Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei


    Apparatus and method for MRI imaging using a coil constructed of microstrip transmission line (MTL coil) are disclosed. In one method, a target is positioned to be imaged within the field of a main magnetic field of a magnet resonance imaging (MRI) system, a MTL coil is positioned proximate the target, and a MRI image is obtained using the main magnet and the MTL coil. In another embodiment, the MRI coil is used for spectroscopy. MRI imaging and spectroscopy coils are formed using microstrip transmission line. These MTL coils have the advantageous property of good performance while occupying a relatively small space, thus allowing MTL coils to be used inside restricted areas more easily than some other prior art coils. In addition, the MTL coils are relatively simple to construct of inexpensive components and thus relatively inexpensive compared to other designs. Further, the MTL coils of the present invention can be readily formed in a wide variety of coil configurations, and used in a wide variety of ways. Further, while the MTL coils of the present invention work well at high field strengths and frequencies, they also work at low frequencies and in low field strengths as well.

  15. Theory and analysis of a large field polarization imaging system with obliquely incident light. (United States)

    Lu, Xiaotian; Jin, Weiqi; Li, Li; Wang, Xia; Qiu, Su; Liu, Jing


    Polarization imaging technology provides information about not only the irradiance of a target but also the polarization degree and angle of polarization, which indicates extensive application potential. However, polarization imaging theory is based on paraxial optics. When a beam of obliquely incident light passes an analyser, the direction of light propagation is not perpendicular to the surface of the analyser and the applicability of the traditional paraxial optical polarization imaging theory is challenged. This paper investigates a theoretical model of a polarization imaging system with obliquely incident light and establishes a polarization imaging transmission model with a large field of obliquely incident light. In an imaging experiment with an integrating sphere light source and rotatable polarizer, the polarization imaging transmission model is verified and analysed for two cases of natural light and linearly polarized light incidence. Although the results indicate that the theoretical model is consistent with the experimental results, the theoretical model distinctly differs from the traditional paraxial approximation model. The results prove the accuracy and necessity of the theoretical model and the theoretical guiding significance for theoretical and systematic research of large field polarization imaging.

  16. Polarization-dependent imaging contrast in abalone shells (United States)

    Metzler, Rebecca A.; Zhou, Dong; Abrecht, Mike; Chiou, Jau-Wern; Guo, Jinghua; Ariosa, Daniel; Coppersmith, Susan N.; Gilbert, P. U. P. A.


    Many biominerals contain micro- or nanocrystalline mineral components, organized accurately into architectures that confer the material with improved mechanical performance at the macroscopic scale. We present here an effect which enables us to observe the relative orientation of individual crystals at the submicron scale. We call it polarization-dependent imaging contrast (PIC), as it is an imaging development of the well-known x-ray linear dichroism. Most importantly, PIC is obtained in situ, in biominerals. We present here PIC in the prismatic and nacreous layers of Haliotis rufescens (red abalone), confirm it in geologic calcite and aragonite, and corroborate the experimental data with theoretical simulated spectra. PIC reveals different and unexpected aspects of nacre architecture that have inspired theoretical models for nacre formation.

  17. A new crossed molecular beam apparatus using time-sliced ion velocity imaging technique

    International Nuclear Information System (INIS)

    Wu Guorong; Zhang Weiqing; Pan Huilin; Shuai Quan; Jiang Bo; Dai Dongxu; Yang Xueming


    A new crossed molecular beam apparatus has been constructed for investigating polyatomic chemical reactions using the time-sliced ion velocity map imaging technique. A unique design is adopted for one of the two beam sources and allows us to set up the molecular beam source either horizontally or vertically. This can be conveniently used to produce versatile atomic or radical beams from photodissociation and as well as electric discharge. Intensive H-atom beam source with high speed ratio was produced by photodissociation of the HI molecule and was reacted with the CD 4 molecule. Vibrational-state resolved HD product distribution was measured by detecting the CD 3 product. Preliminary results were also reported on the F+SiH 4 reaction using the discharged F atom beam. These results demonstrate that this new instrument is a powerful tool for investigating chemical dynamics of polyatomic reactions.

  18. A portable microscopy system for fluorescence, polarized, and brightfield imaging (United States)

    Gordon, Paul; Wattinger, Rolla; Lewis, Cody; Venancio, Vinicius Paula; Mertens-Talcott, Susanne U.; Coté, Gerard


    The use of mobile phones to conduct diagnostic microscopy at the point-of-care presents intriguing possibilities for the advancement of high-quality medical care in remote settings. However, it is challenging to create a single device that can adapt to the ever-varying camera technologies in phones or that can image with the customization that multiple modalities require for applications such as malaria diagnosis. A portable multi-modal microscope system is presented that utilizes a Raspberry Pi to collect and transmit data wirelessly to a myriad of electronic devices for image analysis. The microscopy system is capable of providing to the user correlated brightfield, polarized, and fluorescent images of samples fixed on traditional microscopy slides. The multimodal diagnostic capabilities of the microscope were assessed by measuring parasitemia of Plasmodium falciparum-infected thin blood smears. The device is capable of detecting fluorescently-labeled DNA using FITC excitation (490 nm) and emission (525 nm), the birefringent P. falciparum byproduct hemozoin, and detecting brightfield absorption with a resolution of 0.78 micrometers (element 9-3 of a 1951 Air Force Target). This microscopy system is a novel portable imaging tool that may be a viable candidate for field implementation if challenges of system durability, cost considerations, and full automation can be overcome.

  19. Stokes image reconstruction for two-color microgrid polarization imaging systems. (United States)

    Lemaster, Daniel A


    The Air Force Research Laboratory has developed a new microgrid polarization imaging system capable of simultaneously reconstructing linear Stokes parameter images in two colors on a single focal plane array. In this paper, an effective method for extracting Stokes images is presented for this type of camera system. It is also shown that correlations between the color bands can be exploited to significantly increase overall spatial resolution. Test data is used to show the advantages of this approach over bilinear interpolation. The bounds (in terms of available reconstruction bandwidth) on image resolution are also provided.

  20. Adaptive polarization image fusion based on regional energy dynamic weighted average

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yong-qiang; PAN Quan; ZHANG Hong-cai


    According to the principle of polarization imaging and the relation between Stokes parameters and the degree of linear polarization, there are much redundant and complementary information in polarized images. Since man-made objects and natural objects can be easily distinguished in images of degree of linear polarization and images of Stokes parameters contain rich detailed information of the scene, the clutters in the images can be removed efficiently while the detailed information can be maintained by combining these images. An algorithm of adaptive polarization image fusion based on regional energy dynamic weighted average is proposed in this paper to combine these images. Through an experiment and simulations,most clutters are removed by this algorithm. The fusion method is used for different light conditions in simulation, and the influence of lighting conditions on the fusion results is analyzed.

  1. Magnetic resonance imaging and image analysis for assessment of HPMC matrix tablets structural evolution in USP Apparatus 4. (United States)

    Kulinowski, Piotr; Dorożyński, Przemysław; Młynarczyk, Anna; Węglarz, Władysław P


    The purpose of the study was to present a methodology for the processing of Magnetic Resonance Imaging (MRI) data for the quantification of the dosage form matrix evolution during drug dissolution. The results of the study were verified by comparison with other approaches presented in literature. A commercially available, HPMC-based quetiapine fumarate tablet was studied with a 4.7T MR system. Imaging was performed inside an MRI probe-head coupled with a flow-through cell for 12 h in circulating water. The images were segmented into three regions using threshold-based segmentation algorithms due to trimodal structure of the image intensity histograms. Temporal evolution of dry glassy, swollen glassy and gel regions was monitored. The characteristic features were observed: initial high expansion rate of the swollen glassy and gel layers due to initial water uptake, dry glassy core disappearance and maximum area of swollen glassy region at 4 h, and subsequent gel layer thickness increase at the expense of swollen glassy layer. The temporal evolution of an HPMC-based tablet by means of noninvasive MRI integrated with USP Apparatus 4 was found to be consistent with both the theoretical model based on polymer disentanglement concentration and experimental VIS/FTIR studies.

  2. Encephalographic apparatus

    International Nuclear Information System (INIS)


    An X-ray apparatus is described for determining the size and location of brain tumours by tomography during pneumoencephalography. The apparatus comprises an image recording device arranged opposite an X-ray source and a frame mounted on a tiltable patient table and rotatable with respect to the table. A patient support is arranged in the frame and is rotatable with respect to the frame. Air injected into the patients' spinal column travels up into the brain and displaces some of the cerebral fluid. Tomographic X-ray exposures are made of the air bubble which moves around in the brain cavities as the patient is rotated. (U.K.)

  3. Early diagnosis of teeth erosion using polarized laser speckle imaging (United States)

    Nader, Christelle Abou; Pellen, Fabrice; Loutfi, Hadi; Mansour, Rassoul; Jeune, Bernard Le; Brun, Guy Le; Abboud, Marie


    Dental erosion starts with a chemical attack on dental tissue causing tooth demineralization, altering the tooth structure and making it more sensitive to mechanical erosion. Medical diagnosis of dental erosion is commonly achieved through a visual inspection by the dentist during dental checkups and is therefore highly dependent on the operator's experience. The detection of this disease at preliminary stages is important since, once the damage is done, cares become more complicated. We investigate the difference in light-scattering properties between healthy and eroded teeth. A change in light-scattering properties is observed and a transition from volume to surface backscattering is detected by means of polarized laser speckle imaging as teeth undergo acid etching, suggesting an increase in enamel surface roughness.

  4. Study of the voxel-based specific regional analysis system for Alzheimer's disease imaging sequence after magnetic resonance apparatus replacement

    International Nuclear Information System (INIS)

    Tsukagoshi, Yuki; Kanai, Yoshihiro; Yasui, Gou; Abe, Yuuji; Maemura, Keisuke; Nakazawa, Masaki; Yamaji, Yuugo; Mihara, Ban


    In our institute, an MR apparatus, MAGNETOM VISION (Siemens) was replaced by ECHELON Vega (HITACHI). Z-score data acquired by MPRAGE (VISION) was compared with those by radio frequency-spoiled steady-state acquisition with rewinded gradient echo (RSSG) and gradient echo inversion recovery (GEIR) (ECHELON). For this study, ten normal volunteers were recruited and their data ware obtained within two months using both apparatuses. In addition, the difference of the contrasts of the images of these apparatuses was compared. There was a significant difference between Z-scores of MPRAGE and RSSG while there was no difference between MPRAGE and GEIR. As for the contrast, data of MPRAGE were similar to those of GEIR. To compare Z-scores acquired with MAGNTOM VISION (Siemens), it seems appropriate to use GEIR in ECHELON Vega. (author)

  5. Orthogonal polarization spectral (OPS) imaging and topographical characteristics of oral squamous cell carcinoma

    NARCIS (Netherlands)

    Lindeboom, Jerome A.; Mathura, Keshen R.; Ince, Can


    Tumor microcirculatory characteristics until now have only been assessed by histological examination of biopsies or invasive imaging technique. The recent introduction of orthogonal polarization spectral (OPS) imaging as a new tool for in vivo visualization of human microcirculation makes it

  6. Orthogonal polarization spectral imaging of the microcirculation during acute hypervolemic hemodilution and epidural lidocaine injection

    NARCIS (Netherlands)

    van den Oever, Huub L. A.; Dzoljic, Misa; Ince, Can; Hollmann, Markus W.; Mokken, Fleur C.


    We used Orthogonal Polarization Spectral Imaging to examine the microcirculation of the vaginal mucosa in nine anesthetized patients during two consecutive anesthetic interventions: hypervolemic hemodilution using hydroxyethyl starch followed by thoracic epidural lidocaine. Images taken before and

  7. Polarized near-infrared autofluorescence imaging combined with near-infrared diffuse reflectance imaging for improving colonic cancer detection. (United States)

    Shao, Xiaozhuo; Zheng, Wei; Huang, Zhiwei


    We evaluate the diagnostic feasibility of the integrated polarized near-infrared (NIR) autofluorescence (AF) and NIR diffuse reflectance (DR) imaging technique developed for colonic cancer detection. A total of 48 paired colonic tissue specimens (normal vs. cancer) were measured using the integrated NIR DR (850-1100 nm) and NIR AF imaging at the 785 nm laser excitation. The results showed that NIR AF intensities of cancer tissues are significantly lower than those of normal tissues (ppolarization conditions gives a higher diagnostic accuracy (of ~92-94%) compared to non-polarized NIR AF imaging or NIR DR imaging. Further, the ratio imaging of NIR DR to NIR AF with polarization provides the best diagnostic accuracy (of ~96%) among the NIR AF and NIR DR imaging techniques. This work suggests that the integrated NIR AF/DR imaging under polarization condition has the potential to improve the early diagnosis and detection of malignant lesions in the colon.

  8. Target recognition of log-polar ladar range images using moment invariants (United States)

    Xia, Wenze; Han, Shaokun; Cao, Jie; Yu, Haoyong


    The ladar range image has received considerable attentions in the automatic target recognition field. However, previous research does not cover target recognition using log-polar ladar range images. Therefore, we construct a target recognition system based on log-polar ladar range images in this paper. In this system combined moment invariants and backpropagation neural network are selected as shape descriptor and shape classifier, respectively. In order to fully analyze the effect of log-polar sampling pattern on recognition result, several comparative experiments based on simulated and real range images are carried out. Eventually, several important conclusions are drawn: (i) if combined moments are computed directly by log-polar range images, translation, rotation and scaling invariant properties of combined moments will be invalid (ii) when object is located in the center of field of view, recognition rate of log-polar range images is less sensitive to the changing of field of view (iii) as object position changes from center to edge of field of view, recognition performance of log-polar range images will decline dramatically (iv) log-polar range images has a better noise robustness than Cartesian range images. Finally, we give a suggestion that it is better to divide field of view into recognition area and searching area in the real application.

  9. Radiography apparatus

    International Nuclear Information System (INIS)

    Redmayne, I.G.B.


    Apparatus for the inspection of pipe welds comprises a radiation source for transmitting radiation, say as X-rays, through a pipe weld and a detector in a box arranged diametrically opposite the source, with respect to the pipe, for detecting the transmitted radiation and providing electrical signals which are processed to produce an image of the weld. The source and detector are mounted on a frame which is rotatable about an inner frame clamped to the pipe. (author)

  10. Investigation on principle of polarization-difference imaging in turbid conditions (United States)

    Ren, Wei; Guan, Jinge


    We investigate the principle of polarization-difference imaging (PDI) of objects in optically scattering environments. The work is performed by both Marius's law and Mueller-Stokes formalism, and is further demonstrated by simulation. The results show that the object image is obtained based on the difference in polarization direction between the scatter noise and the target signal, and imaging performance is closely related to the choice of polarization analyzer axis. In addition, this study illustrates the potential of Stoke vector for promoting application of PDI system in the real world scene.

  11. The impact of Faraday effects on polarized black hole images of Sagittarius A*. (United States)

    Jiménez-Rosales, Alejandra; Dexter, Jason


    We study model images and polarization maps of Sagittarius A* at 230 GHz. We post-process GRMHD simulations and perform a fully relativistic radiative transfer calculation of the emitted synchrotron radiation to obtain polarized images for a range of mass accretion rates and electron temperatures. At low accretion rates, the polarization map traces the underlying toroidal magnetic field geometry. At high accretion rates, we find that Faraday rotation internal to the emission region can depolarize and scramble the map. We measure the net linear polarization fraction and find that high accretion rate "jet-disc" models are heavily depolarized and are therefore disfavoured. We show how Event Horizon Telescope measurements of the polarized "correlation length" over the image provide a model-independent upper limit on the strength of these Faraday effects, and constrain plasma properties like the electron temperature and magnetic field strength.

  12. Multiplex Mass Spectrometric Imaging with Polarity Switching for Concurrent Acquisition of Positive and Negative Ion Images (United States)

    Korte, Andrew R.; Lee, Young Jin


    We have recently developed a multiplex mass spectrometry imaging (MSI) method which incorporates high mass resolution imaging and MS/MS and MS3 imaging of several compounds in a single data acquisition utilizing a hybrid linear ion trap-Orbitrap mass spectrometer (Perdian and Lee, Anal. Chem. 82, 9393-9400, 2010). Here we extend this capability to obtain positive and negative ion MS and MS/MS spectra in a single MS imaging experiment through polarity switching within spiral steps of each raster step. This methodology was demonstrated for the analysis of various lipid class compounds in a section of mouse brain. This allows for simultaneous imaging of compounds that are readily ionized in positive mode (e.g., phosphatidylcholines and sphingomyelins) and those that are readily ionized in negative mode (e.g., sulfatides, phosphatidylinositols and phosphatidylserines). MS/MS imaging was also performed for a few compounds in both positive and negative ion mode within the same experimental set-up. Insufficient stabilization time for the Orbitrap high voltage leads to slight deviations in observed masses, but these deviations are systematic and were easily corrected with a two-point calibration to background ions.

  13. Prostate Cancer Detection Using Near Infrared Spectral Polarization Imaging

    National Research Council Canada - National Science Library

    Alfano, R. R; Wang, W. B


    .... The technique is based on the spectral and polarization properties of light scattered, absorbed and emitted from prostate cancerous and normal tissues, and contrast agents targeted to the prostate cancers. Results of finding...

  14. High spatial precision nano-imaging of polarization-sensitive plasmonic particles (United States)

    Liu, Yunbo; Wang, Yipei; Lee, Somin Eunice


    Precise polarimetric imaging of polarization-sensitive nanoparticles is essential for resolving their accurate spatial positions beyond the diffraction limit. However, conventional technologies currently suffer from beam deviation errors which cannot be corrected beyond the diffraction limit. To overcome this issue, we experimentally demonstrate a spatially stable nano-imaging system for polarization-sensitive nanoparticles. In this study, we show that by integrating a voltage-tunable imaging variable polarizer with optical microscopy, we are able to suppress beam deviation errors. We expect that this nano-imaging system should allow for acquisition of accurate positional and polarization information from individual nanoparticles in applications where real-time, high precision spatial information is required.

  15. Three-dimensional imaging through turbid media based on polarization-difference liquid-crystal microlens array (United States)

    Xin, Zhaowei; Wei, Dong; Li, Dapeng; Xie, Xingwang; Chen, Mingce; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng


    In this paper, a polarization difference liquid-crystal microlens array (PD-LCMLA) for three dimensional imaging application through turbid media is fabricated and demonstrated. This device is composed of a twisted nematic liquidcrystal cell (TNLCC), a polarizer and a liquid-crystal microlens array. The polarizer is sandwiched between the TNLCC and LCMLA to help the polarization difference system achieving the orthogonal polarization raw images. The prototyped camera for polarization difference imaging has been constructed by integrating the PD-LCMLA with an image sensor. The orthogonally polarized light-field images are recorded by switching the working state of the TNLCC. Here, by using a special microstructure in conjunction with the polarization-difference algorithm, we demonstrate that the three-dimensional information in the scattering media can be retrieved from the polarization-difference imaging system with an electrically tunable PD-LCMLA. We further investigate the system's potential function based on the flexible microstructure. The microstructure provides a wide operation range in the manipulation of incident beams and also emerges multiple operation modes for imaging applications, such as conventional planar imaging, polarization imaging mode, and polarization-difference imaging mode. Since the PD-LCMLA demonstrates a very low power consumption, multiple imaging modes and simple manufacturing, this kind of device presents a potential to be used in many other optical and electro-optical systems.

  16. Direct visualization of polarization reversal of organic ferroelectric memory transistor by using charge modulated reflectance imaging (United States)

    Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa


    By using the charge modulated reflectance (CMR) imaging technique, charge distribution in the pentacene organic field-effect transistor (OFET) with a ferroelectric gate insulator [P(VDF-TrFE)] was investigated in terms of polarization reversal of the P(VDF-TrFE) layer. We studied the polarization reversal process and the carrier spreading process in the OFET channel. The I-V measurement showed a hysteresis behavior caused by the spontaneous polarization of P(VDF-TrFE), but the hysteresis I-V curve changes depending on the applied drain bias, possibly due to the gradual shift of the polarization reversal position in the OFET channel. CMR imaging visualized the gradual shift of the polarization reversal position and showed that the electrostatic field formed by the polarization of P(VDF-TrFE) contributes to hole and electron injection into the pentacene layer and the carrier distribution is significantly dependent on the direction of the polarization. The polarization reversal position in the channel region is governed by the electrostatic potential, and it happens where the potential reaches the coercive voltage of P(VDF-TrFE). The transmission line model developed on the basis of the Maxwell-Wagner effect element analysis well accounts for this polarization reversal process in the OFET channel.

  17. Imaging Local Polarization in Ferroelectric Thin Films by Coherent X-Ray Bragg Projection Ptychography (United States)

    Hruszkewycz, S. O.; Highland, M. J.; Holt, M. V.; Kim, Dongjin; Folkman, C. M.; Thompson, Carol; Tripathi, A.; Stephenson, G. B.; Hong, Seungbum; Fuoss, P. H.


    We used x-ray Bragg projection ptychography (BPP) to map spatial variations of ferroelectric polarization in thin film PbTiO3, which exhibited a striped nanoscale domain pattern on a high-miscut (001) SrTiO3 substrate. By converting the reconstructed BPP phase image to picometer-scale ionic displacements in the polar unit cell, a quantitative polarization map was made that was consistent with other characterization. The spatial resolution of 5.7 nm demonstrated here establishes BPP as an important tool for nanoscale ferroelectric domain imaging, especially in complex environments accessible with hard x rays.

  18. Dual-polarization interference microscopy for advanced quantification of phase associated with the image field. (United States)

    Bouchal, Petr; Chmelík, Radim; Bouchal, Zdeněk


    A new concept of dual-polarization spatial light interference microscopy (DPSLIM) is proposed and demonstrated experimentally. The method works with two orthogonally polarized modes in which signal and reference waves are combined to realize the polarization-sensitive phase-shifting, thus allowing advanced reconstruction of the phase associated with the image field. The image phase is reconstructed directly from four polarization encoded interference records by a single step processing. This is a progress compared with common methods, in which the phase of the image field is reconstructed using the optical path difference and the amplitudes of interfering waves, which are calculated in multiple-step processing of the records. The DPSLIM is implemented in a common-path configuration using a spatial light modulator, which is connected to a commercial microscope Nikon E200. The optical performance of the method is demonstrated in experiments using both polystyrene microspheres and live LW13K2 cells.

  19. Study on Low Illumination Simultaneous Polarization Image Registration Based on Improved SURF Algorithm (United States)

    Zhang, Wanjun; Yang, Xu


    Registration of simultaneous polarization images is the premise of subsequent image fusion operations. However, in the process of shooting all-weather, the polarized camera exposure time need to be kept unchanged, sometimes polarization images under low illumination conditions due to too dark result in SURF algorithm can not extract feature points, thus unable to complete the registration, therefore this paper proposes an improved SURF algorithm. Firstly, the luminance operator is used to improve overall brightness of low illumination image, and then create integral image, using Hession matrix to extract the points of interest to get the main direction of characteristic points, calculate Haar wavelet response in X and Y directions to get the SURF descriptor information, then use the RANSAC function to make precise matching, the function can eliminate wrong matching points and improve accuracy rate. And finally resume the brightness of the polarized image after registration, the effect of the polarized image is not affected. Results show that the improved SURF algorithm can be applied well under low illumination conditions.

  20. Diffusion weighted imaging with circularly polarized oscillating gradients

    DEFF Research Database (Denmark)

    Lundell, Henrik; Sønderby, Casper Kaae; Dyrby, Tim B


    presented. One major hurdle in practical implementation is the low effective diffusion weighting provided at high frequency with limited gradient strength. THEORY: As a solution to the low diffusion weighting of OGSE, circularly polarized OGSE (CP-OGSE) is introduced. CP-OGSE gives a twofold increase...


    NARCIS (Netherlands)



    We have derived surface photometry for a sample of five polar ring(PR) galaxies in the optical (B and R bands) and in the near-IR (K band). Our preliminary results show that the morphology of these objects is heavily perturbed by dust, which sometimes completely hides the real distribution of the

  2. A study on high NA and evanescent imaging with polarized illumination (United States)

    Yang, Seung-Hune

    Simulation techniques are developed for high NA polarized microscopy with Babinet's principle, partial coherence and vector diffraction for non-periodic geometries. A mathematical model for the Babinet approach is developed and interpreted. Simulation results of the Babinet's principle approach are compared with those of Rigorous Coupled Wave Theory (RCWT) for periodic structures to investigate the accuracy of this approach and its limitations. A microscope system using a special solid immersion lens (SIL) is introduced to image Blu-Ray (BD) optical disc samples without removing the protective cover layer. Aberration caused by the cover layer is minimized with a truncated SIL. Sub-surface imaging simulation is achieved by RCWT, partial coherence, vector diffraction and Babinet's Principle. Simulated results are compared with experimental images and atomic force microscopy (AFM) measurement. A technique for obtaining native and induced using a significant amount of evanescent energy is described for a solid immersion lens (SIL) microscope. Characteristics of native and induced polarization images for different object structures and materials are studied in detail. Experiments are conducted with a NA = 1.48 at lambda = 550nm microscope. Near-field images are simulated and analyzed with an RCWT approach. Contrast curve versus object spatial frequency calculations are compared with experimental measurements. Dependencies of contrast versus source polarization angles and air gap for native and induced polarization image profiles are evaluated. By using the relationship between induced polarization and topographical structure, an induced polarization image of an alternating phase shift mask (PSM) is converted into a topographical image, which shows very good agreement with AFM measurement. Images of other material structures include a dielectric grating, chrome-on-glass grating, silicon CPU structure, BD-R and BD-ROM.

  3. Anchored LH2 complexes in 2D polarization imaging. (United States)

    Tubasum, Sumera; Sakai, Shunsuke; Dewa, Takehisa; Sundström, Villy; Scheblykin, Ivan G; Nango, Mamoru; Pullerits, Tõnu


    Protein is a soft material with inherently large structural disorder. Consequently, the bulk spectroscopies of photosynthetic pigment protein complexes provide averaged information where many details are lost. Here we report spectroscopy of single light-harvesting complexes where fluorescence excitation and detection polarizations are both independently rotated. Two samples of peripheral antenna (LH2) complexes from Rhodopseudomonas acidophila were studied. In one, the complexes were embedded in polyvinyl alcohol (PVA) film; in the other, they were anchored on the glass surface and covered by the PVA film. LH2 contains two rings of pigment molecules-B800 and B850. The B800 excitation polarization properties of the two samples were found to be very similar, indicating that orientation statistics of LH2s are the same in these two very different preparations. At the same time, we found a significant difference in B850 emission polarization statistics. We conclude that the B850 band of the anchored sample is substantially more disordered. We argue that both B800 excitation and B850 emission polarization properties can be explained by the tilt of the anchored LH2s due to the spin-casting of the PVA film on top of the complexes and related shear forces. Due to the tilt, the orientation statistics of two samples become similar. Anchoring is expected to orient the LH2s so that B850 is closer to the substrate. Consequently, the tilt-related strain leads to larger deformation and disorder in B850 than in B800.


    Energy Technology Data Exchange (ETDEWEB)

    Huffenberger, K. M. [Department of Physics, Florida State University, P.O. Box 3064350, Tallahassee, FL 32306-4350 (United States); Araujo, D.; Zwart, J. T. L. [Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Bischoff, C.; Buder, I. [Kavli Institute for Cosmological Physics, Department of Physics, Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States); Chinone, Y.; Hasegawa, M. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Cleary, K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 E. California Blvd M/C 249-17, Pasadena, CA 91125 (United States); Kusaka, A. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Monsalve, R. [School of Earth and Space Exploration, Arizona State University, 781 E. Terrace Road, Tempe, AZ 85287 (United States); Næss, S. K. [Department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Newburgh, L. B. [Dunlap Institute, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Reeves, R. [CePIA, Departamento de Astronomía, Universidad de Concepción (Chile); Ruud, T. M.; Eriksen, H. K. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Wehus, I. K.; Gaier, T. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Dickinson, C. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Gundersen, J. O., E-mail: [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Collaboration: QUIET Collaboration; and others


    We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ∼480 such sources within QUIET’s four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30–40 mJy per Stokes parameter. At signal-to-noise ratio > 3 significance, we detect linear polarization for seven sources in Q-band and six in W-band; only 1.3 ± 1.1 detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements >1 Jy, the polarization fractions are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10%–20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models—ones that scale a fixed polarization fraction with frequency—are inadequate to model the behavior of these sources and their contributions to polarization maps.

  5. Averaged subtracted polarization imaging for endoscopic diagnostics of surface microstructures on translucent mucosae (United States)

    Kanamori, Katsuhiro


    An endoscopic image processing technique for enhancing the appearance of microstructures on translucent mucosae is described. This technique employs two pairs of co- and cross-polarization images under two different linearly polarized lights, from which the averaged subtracted polarization image (AVSPI) is calculated. Experiments were then conducted using an acrylic phantom and excised porcine stomach tissue using a manual experimental setup with ring-type lighting, two rotating polarizers, and a color camera; better results were achieved with the proposed method than with conventional color intensity image processing. An objective evaluation method that uses texture analysis was developed and used to evaluate the enhanced microstructure images. This paper introduces two types of online, rigid-type, polarimetric endoscopic implementations using a polarized ring-shaped LED and a polarimetric camera. The first type uses a beam-splitter-type color polarimetric camera, and the second uses a single-chip monochrome polarimetric camera. Microstructures on the mucosa surface were enhanced robustly with these online endoscopes regardless of the difference in the extinction ratio of each device. These results show that polarimetric endoscopy using AVSPI is both effective and practical for hardware implementation.

  6. Imaging of dental material by polarization-sensitive optical coherence tomography (United States)

    Dichtl, Sabine; Baumgartner, Angela; Hitzenberger, Christoph K.; Moritz, Andreas; Wernisch, Johann; Robl, Barbara; Sattmann, Harald; Leitgeb, Rainer; Sperr, Wolfgang; Fercher, Adolf F.


    Partial coherence interferometry (PCI) and optical coherence tomography (OCT) are noninvasive and noncontact techniques for high precision biometry and for obtaining cross- sectional images of biologic structures. OCT was initially introduced to depict the transparent tissue of the eye. It is based on interferometry employing the partial coherence properties of a light source with high spatial coherence ut short coherence length to image structures with a resolution of the order of a few microns. Recently this technique has been modified for cross section al imaging of dental and periodontal tissues. In vitro and in vivo OCT images have been recorded, which distinguish enamel, cemento and dentin structures and provide detailed structural information on clinical abnormalities. In contrast to convention OCT, where the magnitude of backscattered light as a function of depth is imaged, polarization sensitive OCT uses backscattered light to image the magnitude of the birefringence in the sample as a function of depth. First polarization sensitive OCT recordings show, that changes in the mineralization status of enamel or dentin caused by caries or non-caries lesions can result in changes of the polarization state of the light backscattered by dental material. Therefore polarization sensitive OCT might provide a new diagnostic imaging modality in clinical and research dentistry.

  7. Tomographic scanning apparatus

    International Nuclear Information System (INIS)


    Details are given of a tomographic scanning apparatus, with particular reference to a multiplexer slip ring means for receiving output from the detectors and enabling interfeed to the image reconstruction station. (U.K.)

  8. Imaging and manipulation of a polar molecule on Ag(111)

    DEFF Research Database (Denmark)

    Lin, R.; Braun, K.F.; Tang, H.


    A scanning tunneling microscope (STM) was applied to image and laterally manipulate isolated phosphangulene molecules on Ag(111) at 6 K. Atomic-resolution images clearly revealed three characteristic types of appearances (three-lobed, fish and bump shape) for the adsorbed molecules, which could...

  9. Statistical Image Recovery From Laser Speckle Patterns With Polarization Diversity (United States)


    several techniques for speckle suppression in optical imaging [19]. However, averaging nonimaged laser speckle patterns does not yield the same result...Comparison”. Applied Optics , 21(15):2758–2769, August 1982. 13. Fienup, James R. “Image Formation from Nonimaged Laser Speckle Patterns”. S. R. Robinson...6 ν Optical Frequency . . . . . . . . . . . . . . . . . . . . . . 6 t Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 ϕ

  10. Polarized Light Corridor Demonstrations. (United States)

    Davies, G. R.


    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  11. Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography (United States)

    Ravanfar, Mohammadreza; Pfeiffer, Ferris M.; Bozynski, Chantelle C.; Wang, Yuanbo; Yao, Gang


    Collagen degeneration is an important pathological feature of osteoarthritis. The purpose of this study is to investigate whether the polarization-sensitive optical coherence tomography (PSOCT)-based optical polarization tractography (OPT) can be useful in imaging collagen structural changes in human osteoarthritic cartilage samples. OPT eliminated the banding artifacts in conventional PSOCT by calculating the depth-resolved local birefringence and fiber orientation. A close comparison between OPT and PSOCT showed that OPT provided improved visualization and characterization of the zonal structure in human cartilage. Experimental results obtained in this study also underlined the importance of knowing the collagen fiber orientation in conventional polarized light microscopy assessment. In addition, parametric OPT imaging was achieved by quantifying the surface roughness, birefringence, and fiber dispersion in the superficial zone of the cartilage. These quantitative parametric images provided complementary information on the structural changes in cartilage, which can be useful for a comprehensive evaluation of collagen damage in osteoarthritic cartilage.

  12. Real time polarization sensor image processing on an embedded FPGA/multi-core DSP system (United States)

    Bednara, Marcus; Chuchacz-Kowalczyk, Katarzyna


    Most embedded image processing SoCs available on the market are highly optimized for typical consumer applications like video encoding/decoding, motion estimation or several image enhancement processes as used in DSLR or digital video cameras. For non-consumer applications, on the other hand, optimized embedded hardware is rarely available, so often PC based image processing systems are used. We show how a real time capable image processing system for a non-consumer application - namely polarization image data processing - can be efficiently implemented on an FPGA and multi-core DSP based embedded hardware platform.

  13. Polarization image segmentation of radiofrequency ablated porcine myocardial tissue.

    Directory of Open Access Journals (Sweden)

    Iftikhar Ahmad

    Full Text Available Optical polarimetry has previously imaged the spatial extent of a typical radiofrequency ablated (RFA lesion in myocardial tissue, exhibiting significantly lower total depolarization at the necrotic core compared to healthy tissue, and intermediate values at the RFA rim region. Here, total depolarization in ablated myocardium was used to segment the total depolarization image into three (core, rim and healthy zones. A local fuzzy thresholding algorithm was used for this multi-region segmentation, and then compared with a ground truth segmentation obtained from manual demarcation of RFA core and rim regions on the histopathology image. Quantitative comparison of the algorithm segmentation results was performed with evaluation metrics such as dice similarity coefficient (DSC = 0.78 ± 0.02 and 0.80 ± 0.02, sensitivity (Sn = 0.83 ± 0.10 and 0.91 ± 0.08, specificity (Sp = 0.76 ± 0.17 and 0.72 ± 0.17 and accuracy (Acc = 0.81 ± 0.09 and 0.71 ± 0.10 for RFA core and rim regions, respectively. This automatic segmentation of parametric depolarization images suggests a novel application of optical polarimetry, namely its use in objective RFA image quantification.

  14. Copper-free click reactions with polar bicyclononyne derivatives for modulation of cellular imaging. (United States)

    Leunissen, E H P; Meuleners, M H L; Verkade, J M M; Dommerholt, J; Hoenderop, J G J; van Delft, F L


    The ability of cells to incorporate azidosugars metabolically is a useful tool for extracellular glycan labelling. The exposed azide moiety can covalently react with alkynes, such as bicyclo[6.1.0]nonyne (BCN), by strain-promoted alkyne-azide cycloaddition (SPAAC). However, the use of SPAAC can be hampered by low specificity of the cycloalkyne. In this article we describe the synthesis of more polar BCN derivatives and their properties for selective cellular glycan labelling. The new polar derivatives [amino-BCN, glutarylamino-BCN and bis(hydroxymethyl)-BCN] display reaction rates similar to those of BCN and are less cell-permeable. The labelling specificity in HEK293 cells is greater than that of BCN, as determined by confocal microscopy and flow cytometry. Interestingly, amino-BCN appears to be highly specific for the Golgi apparatus. In addition, the polar BCN derivatives label the N-glycan of the membrane calcium channel TRPV5 in HEK293 cells with significantly enhanced signal-to-noise ratios. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Methods and apparatuses for detection of radiation with semiconductor image sensors (United States)

    Cogliati, Joshua Joseph


    A semiconductor image sensor is repeatedly exposed to high-energy photons while a visible light obstructer is in place to block visible light from impinging on the sensor to generate a set of images from the exposures. A composite image is generated from the set of images with common noise substantially removed so the composite image includes image information corresponding to radiated pixels that absorbed at least some energy from the high-energy photons. The composite image is processed to determine a set of bright points in the composite image, each bright point being above a first threshold. The set of bright points is processed to identify lines with two or more bright points that include pixels therebetween that are above a second threshold and identify a presence of the high-energy particles responsive to a number of lines.


    Directory of Open Access Journals (Sweden)

    A. R. D. Putri


    Full Text Available The surface of Mars has been an object of interest for planetary research since the launch of Mariner 4 in 1964. Since then different cameras such as the Viking Visual Imaging Subsystem (VIS, Mars Global Surveyor (MGS Mars Orbiter Camera (MOC, and Mars Reconnaissance Orbiter (MRO Context Camera (CTX and High Resolution Imaging Science Experiment (HiRISE have been imaging its surface at ever higher resolution. The High Resolution Stereo Camera (HRSC on board of the European Space Agency (ESA Mars Express, has been imaging the Martian surface, since 25th December 2003 until the present-day. HRSC has covered 100 % of the surface of Mars, about 70 % of the surface with panchromatic images at 10-20 m/pixel, and about 98 % at better than 100 m/pixel (Neukum et. al., 2004, including the polar regions of Mars. The Mars polar regions have been studied intensively recently by analysing images taken by the Mars Express and MRO missions (Plaut et al., 2007. The South Polar Residual Cap (SPRC does not change very much in volume overall but there are numerous examples of dynamic phenomena associated with seasonal changes in the atmosphere. In particular, we can examine the time variation of layers of solid carbon dioxide and water ice with dust deposition (Bibring, 2004, spider-like channels (Piqueux et al., 2003 and so-called Swiss Cheese Terrain (Titus et al., 2004. Because of seasonal changes each Martian year, due to the sublimation and deposition of water and CO2 ice on the Martian south polar region, clearly identifiable surface changes occur in otherwise permanently icy region. In this research, good quality HRSC images of the Mars South Polar region are processed based on previous identification as the optimal coverage of clear surfaces (Campbell et al., 2015. HRSC images of the Martian South Pole are categorized in terms of quality, time, and location to find overlapping areas, processed into high quality Digital Terrain Models (DTMs and

  17. PRISM (Polarized Radiation Imaging and Spectroscopy Mission): an extended white paper

    NARCIS (Netherlands)

    André, Philippe; Baccigalupi, Carlo; Banday, Anthony; Barbosa, Domingos; Barreiro, Belen; Bartlett, James; Bartolo, Nicola; Battistelli, Elia; Battye, Richard; Bendo, George; Benoît, Alain; Bernard, Jean-Philippe; Bersanelli, Marco; Béthermin, Matthieu; Bielewicz, Pawel; Bonaldi, Anna; Bouchet, François; Boulanger, François; Brand, Jan; Bucher, Martin; Burigana, Carlo; Cai, Zhen-Yi; Camus, Philippe; Casas, Francisco; Casasola, Viviana; Castex, Guillaume; Challinor, Anthony; Chluba, Jens; Chon, Gayoung; Colafrancesco, Sergio; Comis, Barbara; Cuttaia, Francesco; D'Alessandro, Giuseppe; Da Silva, Antonio; Davis, Richard; de Avillez, Miguel; de Bernardis, Paolo; de Petris, Marco; de Rosa, Adriano; de Zotti, Gianfranco; Delabrouille, Jacques; Désert, François-Xavier; Dickinson, Clive; Diego, Jose Maria; Dunkley, Joanna; Enßlin, Torsten; Errard, Josquin; Falgarone, Edith; Ferreira, Pedro; Ferrière, Katia; Finelli, Fabio; Fletcher, Andrew; Fosalba, Pablo; Fuller, Gary; Galli, Silvia; Ganga, Ken; García-Bellido, Juan; Ghribi, Adnan; Giard, Martin; Giraud-Héraud, Yannick; Gonzalez-Nuevo, Joaquin; Grainge, Keith; Gruppuso, Alessandro; Hall, Alex; Hamilton, Jean-Christophe; Haverkorn, Marijke; Hernandez-Monteagudo, Carlos; Herranz, Diego; Jackson, Mark; Jaffe, Andrew; Khatri, Rishi; Kunz, Martin; Lamagna, Luca; Lattanzi, Massimiliano; Leahy, Paddy; Lesgourgues, Julien; Liguori, Michele; Liuzzo, Elisabetta; Lopez-Caniego, Marcos; Macias-Perez, Juan; Maffei, Bruno; Maino, Davide; Mangilli, Anna; Martinez-Gonzalez, Enrique; Martins, Carlos J. A. P.; Masi, Silvia; Massardi, Marcella; Matarrese, Sabino; Melchiorri, Alessandro; Melin, Jean-Baptiste; Mennella, Aniello; Mignano, Arturo; Miville-Deschênes, Marc-Antoine; Monfardini, Alessandro; Murphy, Anthony; Naselsky, Pavel; Nati, Federico; Natoli, Paolo; Negrello, Mattia; Noviello, Fabio; O'Sullivan, Créidhe; Paci, Francesco; Pagano, Luca; Paladino, Rosita; Palanque-Delabrouille, Nathalie; Paoletti, Daniela; Peiris, Hiranya; Perrotta, Francesca; Piacentini, Francesco; Piat, Michel; Piccirillo, Lucio; Pisano, Giampaolo; Polenta, Gianluca; Pollo, Agnieszka; Ponthieu, Nicolas; Remazeilles, Mathieu; Ricciardi, Sara; Roman, Matthieu; Rosset, Cyrille; Rubino-Martin, Jose-Alberto; Salatino, Maria; Schillaci, Alessandro; Shellard, Paul; Silk, Joseph; Starobinsky, Alexei; Stompor, Radek; Sunyaev, Rashid; Tartari, Andrea; Terenzi, Luca; Toffolatti, Luigi; Tomasi, Maurizio; Trappe, Neil; Tristram, Matthieu; Trombetti, Tiziana; Tucci, Marco; Van de Weijgaert, Rien; Van Tent, Bartjan; Verde, Licia; Vielva, Patricio; Wandelt, Ben; Watson, Robert; Withington, Stafford


    PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations

  18. An Image Matching Method Based on Fourier and LOG-Polar Transform

    Directory of Open Access Journals (Sweden)

    Zhijia Zhang


    Full Text Available This Traditional template matching methods are not appropriate for the situation of large angle rotation between two images in the online detection for industrial production. Aiming at this problem, Fourier transform algorithm was introduced to correct image rotation angle based on its rotatary invariance in time-frequency domain, orienting image under test in the same direction with reference image, and then match these images using matching algorithm based on log-polar transform. Compared with the current matching algorithms, experimental results show that the proposed algorithm can not only match two images with rotation of arbitrary angle, but also possess a high matching accuracy and applicability. In addition, the validity and reliability of algorithm was verified by simulated matching experiment targeting circular images.

  19. Polarization and infrared imaging of regions of star formation

    International Nuclear Information System (INIS)

    Moneti, A.


    Observational studies of two regions of star formation, the Taurus cloud and the BN-KL region of Orion, are presented. The magnetic field structure in the Taurus cloud was studied in order to investigate its possible role in the evolution of the cloud. It was found that the magnetic field is generally perpendicular to the elongated structures that make up the cloud, and it is deduced that the observed structure could be due to the effects of the magnetic field during the early stages of collapse. In addition, it was found that the magnetic field may have prevented the formation of massive stars by inhibiting the collapse of large cores, while not affecting the collapse of the small ones. Using a new near-infrared array camera, high resolution (1'') images of several young stars embedded in the cloud were obtained. Most of these sources have extended, spatially resolved circumstellar shells. High resolution images of the BN-KL region of Orion at four wavelengths between 1.65 and 4.7 μm were also obtained. At 1.65 μm a large trough is seen in the overall nebulosity; it is suggested that the observed trough is due to the doughnut of material around IRc2 as it obscures the background nebulosity

  20. Method and apparatus of a portable imaging-based measurement with self calibration (United States)

    Chang, Tzyy-Shuh [Ann Arbor, MI; Huang, Hsun-Hau [Ann Arbor, MI


    A portable imaging-based measurement device is developed to perform 2D projection based measurements on an object that is difficult or dangerous to access. This device is equipped with self calibration capability and built-in operating procedures to ensure proper imaging based measurement.

  1. Nuclear magnetic resonance apparatus having semitoroidal RF coil for use in topical NMR and NMR imaging

    International Nuclear Information System (INIS)

    Fukushima, E.; Assink, R.A.; Roeder, S.B.W.; Gibson, A.A.V.


    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, to enable NMR measurements to be taken from selected regions inside an object, particularly human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other electric field interactions. The coil may be combined with a like orthogonal coil and suitably driven to provide a circularly polarised field; or it may be used in conjunction with a concentrically nested smaller semitoroidal coil to move the maximum field further from the coil assembly. (author)


    Energy Technology Data Exchange (ETDEWEB)

    Rao, A. R.; Chand, Vikas; Hingar, M. K.; Iyyani, S.; Khanna, Rakesh; Kutty, A. P. K.; Malkar, J. P.; Paul, D. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai (India); Bhalerao, V. B.; Bhattacharya, D.; Dewangan, G. C.; Pawar, Pramod; Vibhute, A. M. [Inter University Center for Astronomy and Astrophysics, Pune (India); Chattopadhyay, T.; Mithun, N. P. S.; Vadawale, S. V.; Vagshette, N. [Physical Research Laboratory, Ahmedabad (India); Basak, R. [Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw (Poland); Pradeep, P.; Samuel, Essy, E-mail: [Vikram Sarabhai Space Centre, Thiruvananthapuram (India); and others


    AstroSat is a multi-wavelength satellite launched on 2015 September 28. The CZT Imager of AstroSat on its very first day of operation detected a long duration gamma-ray burst (GRB), namely GRB 151006A. Using the off-axis imaging and spectral response of the instrument, we demonstrate that the CZT Imager can localize this GRB correctly to about a few degrees, and it can provide, in conjunction with Swift , spectral parameters similar to those obtained from Fermi /GBM. Hence, the CZT Imager would be a useful addition to the currently operating GRB instruments ( Swift and Fermi ). Specifically, we argue that the CZT Imager will be most useful for the short hard GRBs by providing localization for those detected by Fermi and spectral information for those detected only by Swift . We also provide preliminary results on a new exciting capability of this instrument: the CZT Imager is able to identify Compton scattered events thereby providing polarization information for bright GRBs. GRB 151006A, in spite of being relatively faint, shows hints of a polarization signal at 100–300 keV (though at a low significance level). We point out that the CZT Imager should provide significant time resolved polarization measurements for GRBs that have fluence three times higher than that of GRB 151006A. We estimate that the number of such bright GRBs detectable by the CZT Imager is five to six per year. The CZT Imager can also act as a good hard X-ray monitoring device for possible electromagnetic counterparts of gravitational wave events.

  3. Apparatus and method using a holographic optical element for converting a spectral distribution to image points (United States)

    McGill, Matthew J. (Inventor); Scott, Vibart S. (Inventor); Marzouk, Marzouk (Inventor)


    A holographic optical element transforms a spectral distribution of light to image points. The element comprises areas, each of which acts as a separate lens to image the light incident in its area to an image point. Each area contains the recorded hologram of a point source object. The image points can be made to lie in a line in the same focal plane so as to align with a linear array detector. A version of the element has been developed that has concentric equal areas to match the circular fringe pattern of a Fabry-Perot interferometer. The element has high transmission efficiency, and when coupled with high quantum efficiency solid state detectors, provides an efficient photon-collecting detection system. The element may be used as part of the detection system in a direct detection Doppler lidar system or multiple field of view lidar system.

  4. Stokes vector based interpolation method to improve the efficiency of bio-inspired polarization-difference imaging in turbid media (United States)

    Guan, Jinge; Ren, Wei; Cheng, Yaoyu


    We demonstrate an efficient polarization-difference imaging system in turbid conditions by using the Stokes vector of light. The interaction of scattered light with the polarizer is analyzed by the Stokes-Mueller formalism. An interpolation method is proposed to replace the mechanical rotation of the polarization axis of the analyzer theoretically, and its performance is verified by the experiment at different turbidity levels. We show that compared with direct imaging, the Stokes vector based imaging method can effectively reduce the effect of light scattering and enhance the image contrast.

  5. Medical radiological apparatus

    International Nuclear Information System (INIS)


    With the apparatus described, images can be obtained by rotation scanning and the image formation from a three dimensional image matrix is converted into an overall picture. Detectors for both X-ray radiation and γ radiation are present and these consist of a row of detector elements, from each of which a separate read-out can be obtained. Therefore both X-ray and γ ray images emitted from the examined object can be obtained. (Th.P.)

  6. Integrating image processing and classification technology into automated polarizing film defect inspection (United States)

    Kuo, Chung-Feng Jeffrey; Lai, Chun-Yu; Kao, Chih-Hsiang; Chiu, Chin-Hsun


    In order to improve the current manual inspection and classification process for polarizing film on production lines, this study proposes a high precision automated inspection and classification system for polarizing film, which is used for recognition and classification of four common defects: dent, foreign material, bright spot, and scratch. First, the median filter is used to remove the impulse noise in the defect image of polarizing film. The random noise in the background is smoothed by the improved anisotropic diffusion, while the edge detail of the defect region is sharpened. Next, the defect image is transformed by Fourier transform to the frequency domain, combined with a Butterworth high pass filter to sharpen the edge detail of the defect region, and brought back by inverse Fourier transform to the spatial domain to complete the image enhancement process. For image segmentation, the edge of the defect region is found by Canny edge detector, and then the complete defect region is obtained by two-stage morphology processing. For defect classification, the feature values, including maximum gray level, eccentricity, the contrast, and homogeneity of gray level co-occurrence matrix (GLCM) extracted from the images, are used as the input of the radial basis function neural network (RBFNN) and back-propagation neural network (BPNN) classifier, 96 defect images are then used as training samples, and 84 defect images are used as testing samples to validate the classification effect. The result shows that the classification accuracy by using RBFNN is 98.9%. Thus, our proposed system can be used by manufacturing companies for a higher yield rate and lower cost. The processing time of one single image is 2.57 seconds, thus meeting the practical application requirement of an industrial production line.

  7. Garnet film rotator applied in polarizing microscope for domain image modulation (abstract) (United States)

    Wakabayashi, K.; Numata, T.; Inokuchi, S.


    A garnet film polarization rotator placed before the analyzer in a polarizing microscope was investigated to obtain the difference image of a positive and a negative one of magnetic domain in real time along with an image processor. In the difference image, a nonmagnetic image can be reduced and hence the weak magnetic contrast enhanced. Theoretical calculation of S/N and contrast C of the domain image as a function of the rotation shows they take maxima at the rotation angle of 2.6° and 0.1°, respectively, with the extinction ratio of e=4×10-6 of a polarizing microscope. Thus, since the thickness of the garnet film required is 1 μm or so, the absorption by the garnet rotator does not bring a serious problem even in a visible region for the domain observation. The optimum rotation of the rotator for a high quality observation was obtained by a quantitative study of images obtained experimentally as well as by a visual evaluation. A magnetically unsaturated garnet film with perpendicular magnetization (i.e., multidomain) was employed as a rotator, in which the polarization rotation angle θm of the undeflected beam with respect to the light diffraction could be continuously varied by an applied magnetic field. The dependences of S/N and C on θm were measured, resulting in a well agreement between the measured and the calculated. The visually best image was obtained at θm=0.5° which made the product of S/N and C maximum. The domain image of the Kerr rotation angle of θk=0.22° was observed in S/N=47 dB and C=0.4 when Ar+ laser (λ=515 nm) of tenths of a watt was employed as a light source. Since the domain image with 47 dB S/N does not need an image summation for a noise reduction, a garnet film rotator makes it possible to invert the contrast of a domain image in a real time for an improved domain observation.

  8. Method and Apparatus for Virtual Interactive Medical Imaging by Multiple Remotely-Located Users (United States)

    Ross, Muriel D. (Inventor); Twombly, Ian Alexander (Inventor); Senger, Steven O. (Inventor)


    A virtual interactive imaging system allows the displaying of high-resolution, three-dimensional images of medical data to a user and allows the user to manipulate the images, including rotation of images in any of various axes. The system includes a mesh component that generates a mesh to represent a surface of an anatomical object, based on a set of data of the object, such as from a CT or MRI scan or the like. The mesh is generated so as to avoid tears, or holes, in the mesh, providing very high-quality representations of topographical features of the object, particularly at high- resolution. The system further includes a virtual surgical cutting tool that enables the user to simulate the removal of a piece or layer of a displayed object, such as a piece of skin or bone, view the interior of the object, manipulate the removed piece, and reattach the removed piece if desired. The system further includes a virtual collaborative clinic component, which allows the users of multiple, remotely-located computer systems to collaboratively and simultaneously view and manipulate the high-resolution, three-dimensional images of the object in real-time.

  9. Research on Copy-Move Image Forgery Detection Using Features of Discrete Polar Complex Exponential Transform (United States)

    Gan, Yanfen; Zhong, Junliu


    With the aid of sophisticated photo-editing software, such as Photoshop, copy-move image forgery operation has been widely applied and has become a major concern in the field of information security in the modern society. A lot of work on detecting this kind of forgery has gained great achievements, but the detection results of geometrical transformations of copy-move regions are not so satisfactory. In this paper, a new method based on the Polar Complex Exponential Transform is proposed. This method addresses issues in image geometric moment, focusing on constructing rotation invariant moment and extracting features of the rotation invariant moment. In order to reduce rounding errors of the transform from the Polar coordinate system to the Cartesian coordinate system, a new transformation method is presented and discussed in detail at the same time. The new method constructs a 9 × 9 shrunk template to transform the Cartesian coordinate system back to the Polar coordinate system. It can reduce transform errors to a much greater degree. Forgery detection, such as copy-move image forgery detection, is a difficult procedure, but experiments prove our method is a great improvement in detecting and identifying forgery images affected by the rotated transform.

  10. Spectroscopic imaging studies of nanoscale polarity and mass transport phenomena in self-assembled organic nanotubes. (United States)

    Xu, Hao; Nagasaka, Shinobu; Kameta, Naohiro; Masuda, Mitsutoshi; Ito, Takashi; Higgins, Daniel A


    Synthetic organic nanotubes self-assembled from bolaamphiphile surfactants are now being explored for use as drug delivery vehicles. In this work, several factors important to their implementation in drug delivery are explored. All experiments are performed with the nanotubes immersed in ethanol. First, Nile Red (NR) and a hydroxylated Nile Red derivative (NR-OH) are loaded into the nanotubes and spectroscopic fluorescence imaging methods are used to determine the apparent dielectric constant of their local environment. Both are found in relatively nonpolar environments, with the NR-OH molecules preferring regions of relatively higher dielectric constant compared to NR. Unique two-color imaging fluorescence correlation spectroscopy (imaging FCS) measurements are then used along with the spectroscopic imaging results to deduce the dielectric properties of the environments sensed by mobile and immobile populations of probe molecules. The results reveal that mobile NR molecules pass through less polar regions, likely within the nanotube walls, while immobile NR molecules are found in more polar regions, possibly near the nanotube surfaces. In contrast, mobile and immobile NR-OH molecules are found to locate in environments of similar polarity. The imaging FCS results also provide quantitative data on the apparent diffusion coefficient for each dye. The mean diffusion coefficient for the NR dye was approximately two-fold larger than that of NR-OH. Slower diffusion by the latter could result from its additional hydrogen bonding interactions with polar triglycine, amine, and glucose moieties near the nanotube surfaces. The knowledge gained in these studies will allow for the development of nanotubes that are better engineered for applications in the controlled transport and release of uncharged, dipolar drug molecules.

  11. Method and apparatus from imaging target components in a biological sample using permanent magnets

    NARCIS (Netherlands)

    Tibbe, Arjan G.J.; Terstappen, Leonardus Wendelinus Mathias Marie


    The present invention is a method and means for positive selecting and imaging target entities. This includes a coated permanent magnetic device for magnetic manipulation in the system of the present invention. The system immunomagnetically concentrates the target entity, fluorescently labels,

  12. Method and apparatus for imaging substances in biological samples by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Shaw, D.


    A method of determining the distribution of non-proton nuclei having a magnetic moment in a biological sample is described. It comprises subjecting the sample to a magnetic field, irradiating the sample with RF radiation at a proton magnetic resonance frequency and deriving a first NMR signal, indicative of electromagnetic absorption of the sample at the proton magnetic resonance frequency. A second such NMR signal at the proton resonance frequency is then derived from the sample in the presence of RF radiation at the nuclear magnetic resonance frequency of the non-proton nuclei so as to decouple protons in the sample from the non-proton nuclei. By applying an imaging technique, an image indicative of the spatial variation of the difference between the first and second signals can be produced. Imaging may be performed on the difference between the two NMR signals, or on each NMR signal followed by subtraction of the images. The method can be used to trace how a 13 C-labelled material introduced into a patient, and its breakdown products, become distributed. (author)

  13. Adaptive polarimetric image representation for contrast optimization of a polarized beacon through fog

    International Nuclear Information System (INIS)

    Panigrahi, Swapnesh; Fade, Julien; Alouini, Mehdi


    We present a contrast-maximizing optimal linear representation of polarimetric images obtained from a snapshot polarimetric camera for enhanced vision of a polarized light source in obscured weather conditions (fog, haze, cloud) over long distances (above 1 km). We quantitatively compare the gain in contrast obtained by different linear representations of the experimental polarimetric images taken during rapidly varying foggy conditions. It is shown that the adaptive image representation that depends on the correlation in background noise fluctuations in the two polarimetric images provides an optimal contrast enhancement over all weather conditions as opposed to a simple difference image which underperforms during low visibility conditions. Finally, we derive the analytic expression of the gain in contrast obtained with this optimal representation and show that the experimental results are in agreement with the assumed correlated Gaussian noise model. (paper)

  14. Imaging and modeling of collagen architecture in living tissue with polarized light transfer (Conference Presentation) (United States)

    Ramella-Roman, Jessica C.; Stoff, Susan; Chue-Sang, Joseph; Bai, Yuqiang


    The extra-cellular space in connective tissue of animals and humans alike is comprised in large part of collagen. Monitoring of collagen arrangement and cross-linking has been utilized to diagnose a variety of medical conditions and guide surgical intervention. For example, collagen monitoring is useful in the assessment and treatment of cervical cancer, skin cancer, myocardial infarction, and non-arteritic anterior ischemic optic neuropathy. We have developed a suite of tools and models based on polarized light transfer for the assessment of collagen presence, cross-linking, and orientation in living tissue. Here we will present some example of such approach applied to the human cervix. We will illustrate a novel Mueller Matrix (MM) imaging system for the study of cervical tissue; furthermore we will show how our model of polarized light transfer through cervical tissue compares to the experimental findings. Finally we will show validation of the methodology through histological results and Second Harmonic imaging microscopy.

  15. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology (United States)

    Walsworth, Ronald L.


    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.


    DEFF Research Database (Denmark)


    The invention relates to a method of recording an image of an object (103) using an electronic camera (102), one or more light sources (104), and means for light distribution (105), where light emitted from the light sources (104) is distributed to illuminate the object (103), light being reflected...... to the camera (102). In the light distribution, an integrating cavity (106) is used to whose inner side (107) a light reflecting coating has been applied, and which is provided with first and second openings (109, 110). The camera (102) is placed in alignment with the first opening (109) so that the optical...

  17. Lagrangian displacement tracking using a polar grid between endocardial and epicardial contours for cardiac strain imaging. (United States)

    Ma, Chi; Varghese, Tomy


    Accurate cardiac deformation analysis for cardiac displacement and strain imaging over time requires Lagrangian description of deformation of myocardial tissue structures. Failure to couple the estimated displacement and strain information with the correct myocardial tissue structures will lead to erroneous result in the displacement and strain distribution over time. Lagrangian based tracking in this paper divides the tissue structure into a fixed number of pixels whose deformation is tracked over the cardiac cycle. An algorithm that utilizes a polar-grid generated between the estimated endocardial and epicardial contours for cardiac short axis images is proposed to ensure Lagrangian description of the pixels. Displacement estimates from consecutive radiofrequency frames were then mapped onto the polar grid to obtain a distribution of the actual displacement that is mapped to the polar grid over time. A finite element based canine heart model coupled with an ultrasound simulation program was used to verify this approach. Segmental analysis of the accumulated displacement and strain over a cardiac cycle demonstrate excellent agreement between the ideal result obtained directly from the finite element model and our Lagrangian approach to strain estimation. Traditional Eulerian based estimation results, on the other hand, show significant deviation from the ideal result. An in vivo comparison of the displacement and strain estimated using parasternal short axis views is also presented. Lagrangian displacement tracking using a polar grid provides accurate tracking of myocardial deformation demonstrated using both finite element and in vivo radiofrequency data acquired on a volunteer. In addition to the cardiac application, this approach can also be utilized for transverse scans of arteries, where a polar grid can be generated between the contours delineating the outer and inner wall of the vessels from the blood flowing though the vessel.

  18. Electrostatic force microscopy: imaging DNA and protein polarizations one by one

    International Nuclear Information System (INIS)

    Mikamo-Satoh, Eriko; Yamada, Fumihiko; Takagi, Akihiko; Matsumoto, Takuya; Kawai, Tomoji


    We present electrostatic force microscopy images of double-stranded DNA and transcription complex on an insulating mica substrate obtained with molecular resolution using a frequency-mode noncontact atomic force microscope. The electrostatic potential images show that both DNA and transcription complexes are polarized with an upward dipole moment. Potential differences of these molecules from the mica substrate enabled us to estimate dipole moments of isolated DNA and transcription complex in zero external field to be 0.027 D/base and 0.16 D/molecule, respectively. Scanning capacitance microscopy demonstrates characteristic contrast inversion between DNA and transcription complex images, indicating the difference in electric polarizability of these molecules. These findings indicate that the electrostatic properties of individual biological molecules can be imaged on an insulator substrate while retaining complex formation.

  19. Analysis of dual polarization images of precipitating clouds collected by the COSMO SkyMed constellation (United States)

    Baldini, Luca; Roberto, Nicoletta; Gorgucci, Eugenio; Fritz, Jason; Chandrasekar, V.


    Currently, several satellite missions are employing X-band synthetic aperture radars (SAR) with polarimetric capabilities. In images collected over land by X-band SAR, precipitation results mainly in evident attenuation of the surface returns. Effects of precipitation in polarimetric SAR images and how to exploit them for precipitation studies are emerging topics of interest. This paper investigates polarimetric signatures of precipitation in images collected by the X-band SARs of the Italian Space Agency COSMO SkyMed constellation using the HH-VV alternate polarimetric mode. Analyzed images were collected in 2010 when the constellation was composed of three satellites and operated in the “tandem like” interferometric configuration, which allowed acquisition of the same scene with the same viewing geometry and a minimum decorrelation time of one day. Observations collected in Piedmont (Italy) and Tampa Bay (Florida, US) have been analyzed along with coincident observations collected by operational weather radars, used to reconstruct the component of SAR returns due to precipitation at horizontal and vertical polarization states. Different techniques are used depending on the different characteristics of terrestrial radars. SAR observations reconstructed from terrestrial measurements are in fairly good agreement with actual SAR observations. Results confirm that the attenuation signature in SAR images collected over land is particularly pronounced in the presence of precipitation cells and can be related to the radar reflectivity integrated along the same path. The difference between copolar HH and VV power measurements reveals a differential attenuation due to anisotropy of precipitation, whose range is limited when the SAR incidence angle is low. A specific feature observed in the CosmoSkyMed alternate polarization implementation is the presence of the scalloping effect, a periodic effect along the azimuth direction that cannot always be removed by standard de

  20. Apparatus for minimizing radiation exposure and improving resolution in radiation imaging devices

    International Nuclear Information System (INIS)

    Ashe, J.B.; Williams, G.H.; Sypal, K.L.


    A collimator is disclosed for minimizing radiation exposure and improving resolution in radiation imaging devices. The collimator provides a penetrating beam of radiation from a source thereof, which beam is substantially non-diverging in at least one direction. In the preferred embodiment, the collimator comprises an elongated sandwich assembly of a plurality of layers of material exhibiting relatively high radiation attenuation characteristics, which attenuating layers are spaced apart and separated from one another by interleaved layers of material exhibiting relatively low radiation attenuation characteristics. The sandwich assembly is adapted for lengthwise disposition and orientation between a radiation source and a target or receiver such that the attenuating layers are parallel to the desired direction of the beam with the interleaved spacing layers providing direct paths for the radiation

  1. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging (United States)

    Hu, Jian Zhi [Richland, WA; Sears, Jr., Jesse A.; Hoyt, David W [Richland, WA; Wind, Robert A [Kennewick, WA


    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.


    International Nuclear Information System (INIS)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z.; Perrin, Marshall; Hines, Dean C.; Millar-Blanchaer, Maxwell A.; Nielsen, Eric L.; Wang, Jason; Dong, Ruobing; Duchêne, Gaspard; Graham, James R.; Kalas, Paul; Cardwell, Andrew; Chilcote, Jeffrey; Draper, Zachary H.; Fitzgerald, Michael P.; Hung, Li-Wei; Goodsell, Stephen J.; Grady, Carol A.; Hartung, Markus; Hibon, Pascale


    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging


    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Perrin, Marshall; Hines, Dean C. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Nielsen, Eric L. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Wang, Jason; Dong, Ruobing; Duchêne, Gaspard; Graham, James R.; Kalas, Paul [Astronomy Department, University of California, Berkeley, Berkeley, CA 94720 (United States); Cardwell, Andrew [LBT Observatory, University of Arizona, 933 N. Cherry Avenue, Room 552, Tucson, AZ 85721 (United States); Chilcote, Jeffrey [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Fitzgerald, Michael P.; Hung, Li-Wei [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Goodsell, Stephen J. [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hartung, Markus; Hibon, Pascale, E-mail: [Gemini Observatory, Casilla 603, La Serena (Chile); and others


    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.

  4. The use of the multiple-gradient array for geoelectrical resistivity and induced polarization imaging (United States)

    Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.


    The use of most conventional electrode configurations in electrical resistivity survey is often time consuming and labour intensive, especially when using manual data acquisition systems. Often, data acquisition teams tend to reduce data density so as to speed up field operation thereby reducing the survey cost; but this could significantly degrade the quality and resolution of the inverse models. In the present work, the potential of using the multiple-gradient array, a non-conventional electrode configuration, for practical cost effective and rapid subsurface resistivity and induced polarization mapping was evaluated. The array was used to conduct 2D resistivity and time-domain induced polarization imaging along two traverses in a study site at Ota, southwestern Nigeria. The subsurface was characterised and the main aquifer delineated using the inverse resistivity and chargeability images obtained. The performance of the multiple-gradient array was evaluated by correlating the 2D resistivity and chargeability images with those of the conventional Wenner array as well as the result of some soundings conducted along the same traverses using Schlumberger array. The multiple-gradient array has been found to have the advantage of measurement logistics and improved image resolution over the Wenner array.

  5. Restoration of s-polarized evanescent waves and subwavelength imaging by a single dielectric slab

    International Nuclear Information System (INIS)

    El Gawhary, Omar; Schilder, Nick J; Costa Assafrao, Alberto da; Pereira, Silvania F; Paul Urbach, H


    It was predicted a few years ago that a medium with negative index of refraction would allow for perfect imaging. Although no material has been found so far that behaves as a perfect lens, some experiments confirmed the theoretical predictions in the near-field, or quasi-static, regime where the behaviour of a negative index medium can be mimicked by a thin layer of noble metal, such as silver. These results are normally attributed to the excitation of surface plasmons in the metal, which only leads to the restoration of p-polarized evanescent waves. In this work, we show that the restoration of s-polarized evanescent waves and, correspondingly, sub-wavelength imaging by a single dielectric slab are possible. Specifically, we show that at λ = 632 nm a thin layer of GaAs behaves as a superlens for s-polarized waves. Replacing the single-metal slab by a dielectric is not only convenient from a technical point of view, it being much easier to deposit and control the thickness and flatness of dielectric films than metal ones, but also invites us to re-think the connection between surface plasmon excitation and the theory of negative refraction. (paper)


    Energy Technology Data Exchange (ETDEWEB)

    Muleri, Fabio; Campana, Riccardo, E-mail: [INAF-IAPS, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)


    The development of multi-layer optics which allow to focus photons up to 100 keV and more promises an enormous jump in sensitivity in the hard X-ray energy band. This technology is already planned to be exploited by future missions dedicated to spectroscopy and imaging at energies >10 keV, e.g., Astro-H and NuSTAR. Nevertheless, our understanding of the hard X-ray sky would greatly benefit from carrying out contemporaneous polarimetric measurements, because the study of hard spectral tails and of polarized emission are often two complementary diagnostics of the same non-thermal and acceleration processes. At energies above a few tens of keV, the preferred technique to detect polarization involves the determination of photon directions after a Compton scattering. Many authors have asserted that stacked detectors with imaging capabilities can be exploited for this purpose. If it is possible to discriminate those events which initially interact in the first detector by Compton scattering and are subsequently absorbed by the second layer, then the direction of scattering is singled out from the hit pixels in the two detectors. In this paper, we give the first detailed discussion of the sensitivity of such a generic design to the X-ray polarization. The efficiency and the modulation factor are calculated analytically from the geometry of the instruments and then compared with the performance as derived by means of Geant4 Monte Carlo simulations.

  7. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging (United States)

    Parker, Sherwood


    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.

  8. Wavelet analysis of polarization azimuths maps for laser images of myocardial tissue for the purpose of diagnosing acute coronary insufficiency (United States)

    Wanchuliak, O. Ya.; Peresunko, A. P.; Bakko, Bouzan Adel; Kushnerick, L. Ya.


    This paper presents the foundations of a large scale - localized wavelet - polarization analysis - inhomogeneous laser images of histological sections of myocardial tissue. Opportunities were identified defining relations between the structures of wavelet coefficients and causes of death. The optical model of polycrystalline networks of myocardium protein fibrils is presented. The technique of determining the coordinate distribution of polarization azimuth of the points of laser images of myocardium histological sections is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order) parameters are presented which characterize distributions of wavelet - coefficients polarization maps of myocardium layers and death reasons.

  9. Optical image security using Stokes polarimetry of spatially variant polarized beam (United States)

    Fatima, Areeba; Nishchal, Naveen K.


    We propose a novel security scheme that uses vector beam characterized by the spatially variant polarization distribution. A vector beam is so generated that its helical components carry tailored phases corresponding to the image/images that is/are to be encrypted. The tailoring of phase has been done by employing the modified Gerchberg-Saxton algorithm for phase retrieval. Stokes parameters for the final vector beam is evaluated and is used to construct the ciphertext and one of the keys. The advantage of the proposed scheme is that it generates real ciphertext and keys which are easier to transmit and store than complex quantities. Moreover, the known plaintext attack is not applicable to this system. As a proof-of-concept, simulation results have been presented for securing single and double gray-scale images.

  10. Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF. (United States)

    Zheng, Cheng; Zhao, Guangyuan; Liu, Wenjie; Chen, Youhua; Zhang, Zhimin; Jin, Luhong; Xu, Yingke; Kuang, Cuifang; Liu, Xu


    Measuring three-dimensional nanoscale cellular structures is challenging, especially when the structure is dynamic. Owing to the informative total internal reflection fluorescence (TIRF) imaging under varied illumination angles, multi-angle (MA) TIRF has been examined to offer a nanoscale axial and a subsecond temporal resolution. However, conventional MA-TIRF still performs badly in lateral resolution and fails to characterize the depth image in densely distributed regions. Here, we emphasize the lateral super-resolution in the MA-TIRF, exampled by simply introducing polarization modulation into the illumination procedure. Equipped with a sparsity and accelerated proximal algorithm, we examine a more precise 3D sample structure compared with previous methods, enabling live cell imaging with a temporal resolution of 2 s and recovering high-resolution mitochondria fission and fusion processes. We also shared the recovery program, which is the first open-source recovery code for MA-TIRF, to the best of our knowledge.

  11. An investigation of polarized atomic photofragments using the ion imaging technique

    Energy Technology Data Exchange (ETDEWEB)

    Bracker, A.S.


    This thesis describes measurement and analysis of the recoil angle dependence of atomic photofragment polarization (atomic v-J correlation). This property provides information on the electronic rearrangement which occurs during molecular photodissociation. Chapter 1 introduces concepts of photofragment vector correlations and reviews experimental and theoretical progress in this area. Chapter 2 described the photofragment ion imaging technique, which the author has used to study the atomic v-J correlation in chlorine and ozone dissociation. Chapter 3 outlines a method for isolating and describing the contribution to the image signal which is due exclusively to angular momentum alignment. Ion imaging results are presented and discussed in Chapter 4. Chapter 5 discusses a different set of experiments on the three-fragment dissociation of azomethane. 122 refs.

  12. NIRS report of investigations for the development of the next generation PET apparatus. FY 2002

    International Nuclear Information System (INIS)


    The present status of studies conducted by representative technology fields for the development of the next generation PET apparatus, and the summary of opinions given by investigators of nuclear medicine are reported. The former involves chapters of: Summary of representative technologies for the development of the next generation PET apparatus; Count rate analysis of PET apparatuses for the whole body and small animals by PET simulator; Scintillator; DOI (depth of interaction) detector-evaluation of the detector with 256-ch fluorescence polarization-photomultiplier tubes (FP-PMT) trial apparatus etc; Examination of multi-slice DOI-MR compatible detector for PET; Development of application specific integrated circuit (ASIC) for processing the front-end signals; Detector simulation; Circuit for processing PET detector signals; Signal processing-coincidence circuit; Data collection system; Signal processing technology for the next generation PET; Reconstruction of statistical PET image using DOI signals; Monte Carlo simulation and Unique directions-PET for infants and for the whole body autonomic nervous systems and mental activity; and Actual design and evaluation of image reconstruction by statistical means. Opinions are: Progress of clinical PET apparatus; Desirable PET drugs and apparatuses; From clinical practice for the development of the next generation PET apparatus; From clinical psychiatric studies for the development; From application of drug development and basic researches; From brain PET practice; From clinical PET practice; and The role of National Institute of Radiological Sciences (NIRS) in PET development. Also involved is the publication list. (N.I.)

  13. Polarization-dependent Imaging Contrast (PIC) mapping reveals nanocrystal orientation patterns in carbonate biominerals

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Pupa U.P.A., E-mail: [University of Wisconsin-Madison, Departments of Physics and Chemistry, Madison, WI 53706 (United States)


    Highlights: Black-Right-Pointing-Pointer Nanocrystal orientation shown by Polarization-dependent Imaging Contrast (PIC) maps. Black-Right-Pointing-Pointer PIC-mapping of carbonate biominerals reveals their ultrastructure at the nanoscale. Black-Right-Pointing-Pointer The formation mechanisms of biominerals is discovered by PIC-mapping using PEEM. -- Abstract: Carbonate biominerals are one of the most interesting systems a physicist can study. They play a major role in the CO{sub 2} cycle, they master templation, self-assembly, nanofabrication, phase transitions, space filling, crystal nucleation and growth mechanisms. A new imaging modality was introduced in the last 5 years that enables direct observation of the orientation of carbonate single crystals, at the nano- and micro-scale. This is Polarization-dependent Imaging Contrast (PIC) mapping, which is based on X-ray linear dichroism, and uses PhotoElectron Emission spectroMicroscopy (PEEM). Here we present PIC-mapping results from biominerals, including the nacre and prismatic layers of mollusk shells, and sea urchin teeth. We describe various PIC-mapping approaches, and show that these lead to fundamental discoveries on the formation mechanisms of biominerals.

  14. Assessment of tissue polarimetric properties using Stokes polarimetric imaging with circularly polarized illumination. (United States)

    Qi, Ji; He, Honghui; Lin, Jianyu; Dong, Yang; Chen, Dongsheng; Ma, Hui; Elson, Daniel S


    Tissue-depolarization and linear-retardance are the main polarization characteristics of interest for bulk tissue characterization, and are normally interpreted from Mueller polarimetry. Stokes polarimetry can be conducted using simpler instrumentation and in a shorter time. Here, we use Stokes polarimetric imaging with circularly polarized illumination to assess the circular-depolarization and linear-retardance properties of tissue. Results obtained were compared with Mueller polarimetry in transmission and reflection geometry, respectively. It is found that circular-depolarization obtained from these 2 methods is very similar in both geometries, and that linear-retardance is highly quantitatively similar for transmission geometry and qualitatively similar for reflection geometry. The majority of tissue circular-depolarization and linear-retardance image information (represented by local image contrast features) obtained from Mueller polarimetry is well preserved from Stokes polarimetry in both geometries. These findings can be referred to for further understanding tissue Stokes polarimetric data, and for further application of Stokes polarimetry under the circumstances where short acquisition time or low optical system complexity is a priority, such as polarimetric endoscopy and microscopy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The EUMETSAT Polar System - Second Generation (EPS-SG) micro-wave imaging (MWI) mission (United States)

    Bojkov, B. R.; Accadia, C.; Klaes, D.; Canestri, A.; Cohen, M.


    The EUMETSAT Polar System (EPS) will be followed by a second generation system called EPS-SG. This new family of missions will contribute to the Joint Polar System being jointly set up with NOAA in the timeframe 2020-2040. These satellites will fly, like Metop (EPS), in a sun synchronous, low earth orbit at 830 km altitude and 09:30 local time descending node, providing observations over the full globe with revisit times of 12 hours. EPS-SG consists of two different satellites configurations, the EPS-SGa series dedicated to IR and MW sounding, and the EPS-SGb series dedicated to microwave imaging and scatterometry. The EPS-SG family will consist of three successive launches of each satellite-type. The Microwave Imager (MWI) will be hosted on Metop-SGb series of satellites, with the primary objective of supporting Numerical Weather Prediction (NWP) at regional and global scales. Other applications will be observation of surface parameters such as sea ice concentration and hydrology applications. The 18 MWI instrument frequencies range from 18.7 GHz to 183 GHz. All MWI channels up to 89 GHz will measure V- and H polarizations. The MWI was also designed to provide continuity of measurements for select heritage microwave imager channels (e.g. SSM/I, AMSR-E). The additional sounding channels such as the 50-55 and 118 GHz bands will provide additional cloud and precipitation information over sea and land. This combination of channels was successfully tested on the NPOESS Aircraft Sounder Testbed - Microwave Sounder (NAST-M) airborne radiometer, and it is the first time that will be implemented in a conical scanning configuration in a single instrument. An overview of the EPS-SG programme and the MWI instrument will be presented.

  16. Retrieve polarization aberration from image degradation: a new measurement method in DUV lithography (United States)

    Xiang, Zhongbo; Li, Yanqiu


    Detailed knowledge of polarization aberration (PA) of projection lens in higher-NA DUV lithographic imaging is necessary due to its impact to imaging degradations, and precise measurement of PA is conductive to computational lithography techniques such as RET and OPC. Current in situ measurement method of PA thorough the detection of degradations of aerial images need to do linear approximation and apply the assumption of 3-beam/2-beam interference condition. The former approximation neglects the coupling effect of the PA coefficients, which would significantly influence the accuracy of PA retrieving. The latter assumption restricts the feasible pitch of test masks in higher-NA system, conflicts with the Kirhhoff diffraction model of test mask used in retrieving model, and introduces 3D mask effect as a source of retrieving error. In this paper, a new in situ measurement method of PA is proposed. It establishes the analytical quadratic relation between the PA coefficients and the degradations of aerial images of one-dimensional dense lines in coherent illumination through vector aerial imaging, which does not rely on the assumption of 3-beam/2- beam interference and linear approximation. In this case, the retrieval of PA from image degradation can be convert from the nonlinear system of m-quadratic equations to a multi-objective quadratic optimization problem, and finally be solved by nonlinear least square method. Some preliminary simulation results are given to demonstrate the correctness and accuracy of the new PA retrieving model.

  17. Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging (United States)

    Flores Orozco, Adrián; Kemna, Andreas; Oberdörster, Christoph; Zschornack, Ludwig; Leven, Carsten; Dietrich, Peter; Weiss, Holger


    Broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz (NE Germany) to investigate the potential of SIP imaging to delineate areas with different BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations. Conductivity images reveal a poor correlation with the distribution of contaminants; whereas phase images exhibit two main anomalies: low phase shift values (product (BTEX concentrations > 1.7 g/l), and higher phase values for lower BTEX concentrations. Moreover, the spectral response of the areas with high BTEX concentration and free-phase products reveals a flattened spectrum in the low frequencies (< 40 Hz), while areas with lower BTEX concentrations exhibit a response characterized by a frequency peak. The SIP response was modelled using a Debye decomposition to compute images of the median relaxation-time. Consistent with laboratory studies, we observed an increase in the relaxation-time associated with an increase in BTEX concentrations. Measurements were also collected in the time domain (TDIP), revealing imaging results consistent with those obtained for frequency domain (SIP) measurements. Results presented here demonstrate the potential of the SIP imaging method to discriminate source and plume of dissolved contaminants at BTEX contaminated sites.

  18. Imaging of human breast tissue using polarization sensitive optical coherence tomography (United States)

    Verma, Y.; Gautam, M.; Divakar Rao, K.; Swami, M. K.; Gupta, P. K.


    We report a study on the use of polarization sensitive optical coherence tomography (PSOCT) for discriminating malignant (invasive ductal carcinoma), benign (fibroadenoma) and normal (adipocytes) breast tissue sites. The results show that while conventional OCT, that utilizes only the intensity of light back-scattered from tissue microstructures, is able to discriminate breast tissues as normal (adipocytes) and abnormal (malignant and benign) tissues, PS-OCT helps in discriminating between malignant and benign tissue sites also. The estimated values of birefringence obtained from the PSOCT imaging show that benign breast tissue samples have significantly higher birefringence as compared to the malignant tissue samples.

  19. Imaging Polarized Secretory Traffic at the Immune Synapse in Living T Lymphocytes. (United States)

    Calvo, Víctor; Izquierdo, Manuel


    Immune synapse (IS) formation by T lymphocytes constitutes a crucial event involved in antigen-specific, cellular and humoral immune responses. After IS formation by T lymphocytes and antigen-presenting cells, the convergence of secretory vesicles toward the microtubule-organizing center (MTOC) and MTOC polarization to the IS are involved in polarized secretion at the synaptic cleft. This specialized mechanism appears to specifically provide the immune system with a fine strategy to increase the efficiency of crucial secretory effector functions of T lymphocytes, while minimizing non-specific, cytokine-mediated stimulation of bystander cells, target cell killing and activation-induced cell death. The molecular bases involved in the polarized secretory traffic toward the IS in T lymphocytes have been the focus of interest, thus different models and several imaging strategies have been developed to gain insights into the mechanisms governing directional secretory traffic. In this review, we deal with the most widely used, state-of-the-art approaches to address the molecular mechanisms underlying this crucial, immune secretory response.

  20. Knockin' on pollen's door: live cell imaging of early polarization events in germinating Arabidopsis pollen (United States)

    Vogler, Frank; Konrad, Sebastian S. A.; Sprunck, Stefanie


    Pollen tubes are an excellent system for studying the cellular dynamics and complex signaling pathways that coordinate polarized tip growth. Although several signaling mechanisms acting in the tip-growing pollen tube have been described, our knowledge on the subcellular and molecular events during pollen germination and growth site selection at the pollen plasma membrane is rather scarce. To simultaneously track germinating pollen from up to 12 genetically different plants we developed an inexpensive and easy mounting technique, suitable for every standard microscope setup. We performed high magnification live-cell imaging during Arabidopsis pollen activation, germination, and the establishment of pollen tube tip growth by using fluorescent marker lines labeling either the pollen cytoplasm, vesicles, the actin cytoskeleton or the sperm cell nuclei and membranes. Our studies revealed distinctive vesicle and F-actin polarization during pollen activation and characteristic growth kinetics during pollen germination and pollen tube formation. Initially, the germinating Arabidopsis pollen tube grows slowly and forms a uniform roundish bulge, followed by a transition phase with vesicles heavily accumulating at the growth site before switching to rapid tip growth. Furthermore, we found the two sperm cells to be transported into the pollen tube after the phase of rapid tip growth has been initiated. The method presented here is suitable to quantitatively study subcellular events during Arabidopsis pollen germination and growth, and for the detailed analysis of pollen mutants with respect to pollen polarization, bulging, or growth site selection at the pollen plasma membrane. PMID:25954283

  1. Polarization effect of CdZnTe imaging detector based on high energy γ source

    International Nuclear Information System (INIS)

    Li Miao; Xiao Shali; Wang Xi; Shen Min; Zhang Liuqiang; Cao Yulin; Chen Yuxiao


    The inner electric potential distribution of CdZnTe detector was derived by applying poisson equation with the first type boundary condition, and the polarization effect of CdZnTe pixellated detector for imaging 137 Cs γ source was investigated. The results of numerical calculation and experiment indicate that electric potential distribution is mainly influenced by applied bias for low charge density in CdZnTe crystal and, in turn, there is linear relationship between electric potential distribution and applied bias that induces uniform electric field under low irradiated flux. However, the electric potential appears polarization phenomenon, and the electric field in CdZnTe crystal is distorted when CdZnTe detector is under high irradiated flux. Consequently, charge carriers in CdZnTe crystal drift towards the edge pixels of irradiated region, and hence, the shut-off central pixels are surrounded by a ring of low counting pixels. The polarization effect indeed deteriorates the performance of CdZnTe detector severely and the event counts of edge pixels for irradiated region reduce about 70%. (authors)

  2. Sensing Noncollinear Magnetism at the Atomic Scale Combining Magnetic Exchange and Spin-Polarized Imaging. (United States)

    Hauptmann, Nadine; Gerritsen, Jan W; Wegner, Daniel; Khajetoorians, Alexander A


    Storing and accessing information in atomic-scale magnets requires magnetic imaging techniques with single-atom resolution. Here, we show simultaneous detection of the spin-polarization and exchange force with or without the flow of current with a new method, which combines scanning tunneling microscopy and noncontact atomic force microscopy. To demonstrate the application of this new method, we characterize the prototypical nanoskyrmion lattice formed on a monolayer of Fe/Ir(111). We resolve the square magnetic lattice by employing magnetic exchange force microscopy, demonstrating its applicability to noncollinear magnetic structures for the first time. Utilizing distance-dependent force and current spectroscopy, we quantify the exchange forces in comparison to the spin-polarization. For strongly spin-polarized tips, we distinguish different signs of the exchange force that we suggest arises from a change in exchange mechanisms between the probe and a skyrmion. This new approach may enable both nonperturbative readout combined with writing by current-driven reversal of atomic-scale magnets.

  3. Training apparatus

    International Nuclear Information System (INIS)

    Monteith, W.D.


    Training apparatus for use in contamination surveillance uses a mathematical model of a hypothetical contamination source (e.g. nuclear, bacteriological or chemical explosion or leak) to determine from input data defining the contamination source, the contamination level at any location within a defined exercise area. The contamination level to be displayed by the apparatus is corrected to real time from a real time clock or may be displayed in response to a time input from a keyboard. In a preferred embodiment the location is defined by entering UTM grid reference coordinates using the keyboard. The mathematical model used by a microprocessor of the apparatus for simulation of contamination levels in the event of a nuclear explosion is described. (author)

  4. Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI. (United States)

    Utsumi, Hideo; Hyodo, Fuminori


    Redox reactions that generate free radical intermediates are essential to metabolic processes, and their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. The development of an in vivo electron spin resonance (ESR) spectrometer and its imaging enables us noninvasive and direct measurement of in vivo free radical reactions in living organisms. The dynamic nuclear polarization magnetic resonance imaging (DNP-MRI), also called PEDRI or OMRI, is also a new imaging method for observing free radical species in vivo. The spatiotemporal resolution of free radical imaging with DNP-MRI is comparable with that in MRI, and each of the radical species can be distinguished in the spectroscopic images by changing the frequency or magnetic field of ESR irradiation. Several kinds of stable nitroxyl radicals were used as spin probes to detect in vivo redox reactions. The signal decay of nitroxyl probes, which is determined with in vivo DNP-MRI, reflects the redox status under oxidative stress, and the signal decay is suppressed by prior administration of antioxidants. In addition, DNP-MRI can also visualize various intermediate free radicals from the intrinsic redox molecules. This noninvasive method, in vivo DNP-MRI, could become a useful tool for investigating the mechanism of oxidative injuries in animal disease models and the in vivo effects of antioxidant drugs. © 2015 Elsevier Inc. All rights reserved.

  5. Polarization-based and specular-reflection-based noncontact latent fingerprint imaging and lifting (United States)

    Lin, Shih-Schön; Yemelyanov, Konstantin M.; Pugh, Edward N., Jr.; Engheta, Nader


    In forensic science the finger marks left unintentionally by people at a crime scene are referred to as latent fingerprints. Most existing techniques to detect and lift latent fingerprints require application of a certain material directly onto the exhibit. The chemical and physical processing applied to the fingerprint potentially degrades or prevents further forensic testing on the same evidence sample. Many existing methods also have deleterious side effects. We introduce a method to detect and extract latent fingerprint images without applying any powder or chemicals on the object. Our method is based on the optical phenomena of polarization and specular reflection together with the physiology of fingerprint formation. The recovered image quality is comparable to existing methods. In some cases, such as the sticky side of tape, our method shows unique advantages.

  6. Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis (United States)

    Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf B.; Durkin, Anthony J.; Chave, Robert; Lindsley, Erik H.; Farkas, Daniel L.


    Attempts to understand the changes in the structure and physiology of human skin abnormalities by non-invasive optical imaging are aided by spectroscopic methods that quantify, at the molecular level, variations in tissue oxygenation and melanin distribution. However, current commercial and research systems to map hemoglobin and melanin do not correlate well with pathology for pigmented lesions or darker skin. We developed a multimode dermoscope that combines polarization and hyperspectral imaging with an efficient analytical model to map the distribution of specific skin bio-molecules. This corrects for the melanin-hemoglobin misestimation common to other systems, without resorting to complex and computationally intensive tissue optical models. For this system's proof of concept, human skin measurements on melanocytic nevus, vitiligo, and venous occlusion conditions were performed in volunteers. The resulting molecular distribution maps matched physiological and anatomical expectations, confirming a technologic approach that can be applied to next generation dermoscopes and having biological plausibility that is likely to appeal to dermatologists.

  7. The Particle Habit Imaging and Polar Scattering probe PHIPS: First Stereo-Imaging and Polar Scattering Function Measurements of Ice Particles (United States)

    Abdelmonem, A.; Schnaiter, M.; Schön, R.; Leisner, T.


    Cirrus clouds impact climate by their influence on the water vapour distribution in the upper troposphere. Moreover, they directly affect the radiative balance of the Earth's atmosphere by the scattering of incoming solar radiation and the absorption of outgoing thermal emission. The link between the microphysical properties of ice cloud particles and the radiative forcing of the clouds is not as yet well understood and the influence of the shapes of ice crystals on the radiative budget of cirrus clouds is currently under debate. PHIPS is a new experimental device for the stereo-imaging of individual cloud particles and the simultaneous measurement of the polar scattering function of the same particle. PHIPS uses an automated particle event triggering system that ensures that only those particles are captured which are located in the field of view - depth of field volume of the microscope unit. Efforts were made to improve the resolution power of the microscope unit down to about 3 µm and to facilitate a 3D morphology impression of the ice crystals. This is realised by a stereo-imaging set up composed of two identical microscopes which image the same particle under an angular viewing distance of 30°. The scattering part of PHIPS enables the measurement of the polar light scattering function of cloud particles with an angular resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). For each particle the light scattering pulse per channel is stored either as integrated intensity or as time resolved intensity function which opens a new category of data analysis concerning details of the particle movement. PHIPS is the first step to PHIPS-HALO which is one of the in situ ice particle and water vapour instruments that are currently under development for the new German research aircraft HALO. The instrument was tested in the ice cloud characterisation campaign HALO-02 which was conducted

  8. Radioimmunoassay apparatus

    International Nuclear Information System (INIS)


    Apparatus for performing a quantitative radioimmunoassay comprising: a substantially spherical bead for carrying an antibody and a gripper for gripping said bead, said gripper comprising an integrally formed unit having a single elongate handle portion and a plurality of resilient fingers arranged at the base of the handle so that when said bead is secured within said fingers, said bead may be freely rotated about any diametric axis of the bead. In particular the invention relates to an apparatus for a two site immunoradiometric assay for serum ferritin in human blood samples. (author)


    Wolfgang, F.; Nicol, J.


    Transformer apparatus is designed for measuring the amount of a paramagnetic substance dissolved or suspended in a diamagnetic liquid. The apparatus consists of a cluster of tubes, some of which are closed and have sealed within the diamagnetic substance without any of the paramagnetic material. The remaining tubes are open to flow of the mix- ture. Primary and secondary conductors are wrapped around the tubes in such a way as to cancel noise components and also to produce a differential signal on the secondaries based upon variations of the content of the paramagnetic material. (AEC)

  10. Radiotherapy apparatus

    International Nuclear Information System (INIS)

    Leung, P.M.; Webb, H.P.J.


    This invention relates to apparatus for applying intracavitary radiotherapy. In previously-known systems radioactive material is conveyed to a desired location within a patient by transporting a chain of balls pneumatically to and from an appropriately inserted applicator. According to this invention a ball chain for such a purpose comprises several radioactive balls separated by non-radioactive tracer balls of radiographically transparent material of lower density and surface hardness than the radioactive balls. The invention also extends to radiotherapy treatment apparatus comprising a storage, sorting and assembly system

  11. Microstructural analysis of human white matter architecture using Polarized Light Imaging (PLI: Views from neuroanatomy

    Directory of Open Access Journals (Sweden)

    Hubertus eAxer


    Full Text Available To date, there are several methods for mapping connectivity, ranging from the macroscopic to molecular scales. However, it is difficult to integrate this multiply-scaled data into one concept. Polarized light imaging (PLI is a method to quantify fiber orientation in gross histological brain sections based on the birefringent properties of the myelin sheaths. The method is capable of imaging fiber orientation of larger-scale architectural patterns with higher detail than diffusion MRI of the human brain. PLI analyses light transmission through a gross histological section of a human brain under rotation of a polarization filter combination. Estimates of the angle of fiber direction and the angle of fiber inclination are automatically calculated at every point of the imaged section. Multiple sections can be assembled into a 3D volume. We describe the principles of PLI and present several studies of fiber anatomy in the human brain: 6 brainstems were serially sectioned, imaged with PLI, and 3D reconstructed. Pyramidal tract and lemniscus medialis were segmented in the PLI datasets. PLI data from the internal capsule was related to results from confocal laser scanning microscopy, which is a method of smaller scale fiber anatomy. PLI fiber architecture of the extreme capsule was compared to macroscopical dissection, which represents a method of larger scale anatomy. The microstructure of the anterior human cingulum bundle was analyzed in serial sections of 6 human brains. PLI can generate highly-resolved 3D datsets of fiber orientation of the human brain and has, therefore, a high comparability to diffusion MR. To get additional information regarding axon structure and density, PLI can also be combined with classical histological stains. It brings the directional aspects of diffusion MRI into the range of histology and may represent a promising tool to close the gap between larger scale diffusion orientation and microstructural histological analysis

  12. Coordinated measurements made by the Sondrestrom radar and the Polar Bear ultraviolet imager

    International Nuclear Information System (INIS)

    Robinson, R.; Vondrak, R.; Dabbs, T.; Vickrey, J.; Eastes, R.; Del Greco, F.; Huffman, R.; Meng, C.; Daniell, R.; Strickland, D.; Vondrak, R.


    In 1986 and 1987 the Sondrestrom incoherent scatter radar in Greenland was operated routinely in coordination with selected overpasses of the Polar Bear satellite. For these experiments the auroral ionospheric remote sensor on Polar Bear obtained images of auroral emissions in two far ultraviolet wavelength bands centered at approximately 136 and 160 nm and one visible band centered at 391.4 nm. Measurements at these three wavelengths were extracted from the images for comparison with the coincident radar measurements. Model calculations have shown that for Maxwellian incident electron distributions the ratio between the 136-nm luminosity and 391.4-nm luminosity can be used to estimate the mean energy of precipitating electrons. Once the mean energy is known, then either of the two emissions can be used to determine the total energy flux. This procedure is used to determine the properties of the incident electron distribution during three midnight sector auroral events over Sondre Stromfjord. The incident electron flux is then used to calculate the expected height profile of electron density which is compared with the simultaneous and coincident radar measurements. The results show that the derived profiles agree well with the measured profiles both in the peak electron density and the altitude of the peak. The accuracy with which the peak of the profile is predicted by this technique is such that many important ionospheric parameters can be reliably inferred from remote measurements, including, for example, the height-integrated electrical conductivities

  13. Tasmanian tigers and polar bears: The documentary moving image and (species loss

    Directory of Open Access Journals (Sweden)

    Belinda Smaill


    Full Text Available In this essay I explore how two divergent examples of the nonfiction moving image can be understood in relation to the problem of representing species loss. The species that provide the platform for this consideration are the thylacine, better known as the Tasmanian tiger, and the polar bear. They represent the two contingencies of species loss: endangerment and extinction. My analysis is structured around moving images from the 1930s of the last known thylacine and the very different example of Arctic Tale (Adam Ravetch, Sarah Robertson, 2007, a ‘Disneyfied’ film that dramatises climate change and its impact on the polar bear. Species loss is frequently perceived in a humanist sense, reflecting how we ‘imagine ourselves’ or anthropocentric charactersations of non-human others. I offer a close analysis of the two films, examining the problem of representing extinction through a consideration of the play of absence and presence, vitality and extinguishment, that characterises both the ontology of cinema and narratives about species loss.

  14. Galileo multispectral imaging of the north polar and eastern limb regions of the moon (United States)

    Belton, M.J.S.; Greeley, R.; Greenberg, R.; McEwen, A.; Klaasen, K.P.; Head, J. W.; Pieters, C.; Neukum, G.; Chapman, C.R.; Geissler, P.; Heffernan, C.; Breneman, H.; Anger, C.; Carr, M.H.; Davies, M.E.; Fanale, F.P.; Gierasch, P.J.; Ingersoll, A.P.; Johnson, T.V.; Pilcher, C.B.; Thompson, W.R.; Veverka, J.; Sagan, C.


    Multispectral images obtained during the Galileo probe's second encounter with the moon reveal the compositional nature of the north polar regions and the northeastern limb. Mare deposits in these regions are found to be primarily low to medium titanium lavas and, as on the western limb, show only slight spectral heterogeneity. The northern light plains are found to have the spectral characteristics of highlands materials, show little evidence for the presence of cryptomaria, and were most likely emplaced by impact processes regardless of their age.Multispectral images obtained during the Galileo probe's second encounter with the moon reveal the compositional nature of the north polar regions and the northeastern limb. Mare deposits in these regions are found to be primarily low to medium titanium lavas and, as on the western limb, show only slight spectral heterogeneity. The northern light plains are found to have the spectral characteristics of highlands materials, show little evidence for the presence of cryptomaria, and were most likely emplaced by impact processes regardless of their age.

  15. In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography (United States)

    Walther, Julia; Golde, Jonas; Kirsten, Lars; Tetschke, Florian; Hempel, Franz; Rosenauer, Tobias; Hannig, Christian; Koch, Edmund


    Since optical coherence tomography (OCT) provides three-dimensional high-resolution images of biological tissue, the benefit of polarization contrast in the field of dentistry is highlighted in this study. Polarization-sensitive OCT (PS OCT) with phase-sensitive recording is used for imaging dental and mucosal tissues in the human oral cavity in vivo. An enhanced polarization contrast of oral structures is reached by analyzing the signals of the co- and crosspolarized channels of the swept source PS OCT system quantitatively with respect to reflectivity, retardation, optic axis orientation, and depolarization. The calculation of these polarization parameters enables a high tissue-specific contrast imaging for the detailed physical interpretation of human oral hard and soft tissues. For the proof-of-principle, imaging of composite restorations and mineralization defects at premolars as well as gingival, lingual, and labial oral mucosa was performed in vivo within the anterior oral cavity. The achieved contrast-enhanced results of the investigated human oral tissues by means of polarization-sensitive imaging are evaluated by the comparison with conventional intensity-based OCT.

  16. Imaging through Fog Using Polarization Imaging in the Visible/NIR/SWIR Spectrum (United States)


    Atmosphere.” International Journal of Computer Vision 48, 2002 13. Tan , R. T. "Visibility in bad weather from a single image." IEEE Conference on Computer...34 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, 2011 26. Hautiere, Nicolas et al. “Blind contrast

  17. Monitoring apparatus

    International Nuclear Information System (INIS)

    Keats, A.B.


    An improved monitoring apparatus for use with process plants, such as nuclear reactors, is described. System failure in the acquisition of data from the plant, owing to stuck signals, is avoided by arranging input signals from transducers in the plant in a test pattern. (U.K.)

  18. Prehensile apparatus (United States)

    Smith, C.M.


    The present invention relates to an apparatus for handling a workpiece comprising a vessel that is longitudinally extensible and pressurizable, and a nonextensible and laterally flexible member on the vessel. The member constrains one side of the vessel to be nonextensible, causing the vessel to bend in the direction of the nonextensible member when pressurized. 8 figures.

  19. Dynamic Nuclear Polarization at low temperature and high magnetic eld for biomedical applications in Magnetic Resonance Spectroscopic Imaging

    International Nuclear Information System (INIS)

    Goutailler, Florent


    The aim of this thesis work was to design, build and optimize a large volume multi-samples DNP (Dynamic Nuclear Polarization) polarizer dedicated to Magnetic Resonance Spectroscopic Imaging applications. The experimental system is made up of a high magnetic field magnet (3,35 T) in which takes place a cryogenic system with a pumped bath of liquid helium ("4He) allowing temperatures lower than 1,2 K. A set of inserts is used for the different steps of DNP: irradiation of the sample by a microwave field (f=94 GHz and P=50 mW), polarization measurement by Nuclear Magnetic Resonance... With this system, up to three samples of 1 mL volume can be polarized to a rate of few per-cents. The system has a long autonomy of four hours, so it can be used for polarizing molecules with a long time constant of polarization. Finally, the possibility to get quasi-simultaneously, after dissolution, several samples with a high rate of polarization opens the way of new applications in biomedical imaging. (author) [fr

  20. Energetic neutral atom imaging with the Polar CEPPAD/IPS instrument: Initial forward modeling results

    International Nuclear Information System (INIS)

    Henderson, M.G.; Reeves, G.D.; Moore, K.R.; Spence, H.E.; Jorgensen, A.M.; Roelof, E.C.


    Although the primary function of the CEP-PAD/IPS instrument on Polar is the measurement of energetic ions in-situ, it has also proven to be a very capable Energetic neutral Atom (ENA) imager. Raw ENA images are currently being constructed on a routine basis with a temporal resolution of minutes during both active and quiet times. However, while analyses of these images by themselves provide much information on the spatial distribution and dynamics of the energetic ion population in the ring current, detailed modeling is required to extract the actual ion distributions. In this paper, the authors present the initial results of forward modeling an IPS ENA image obtained during a small geo-magnetic storm on June 9, 1997. The equatorial ion distribution inferred with this technique reproduces the expected large noon/midnight and dawn/dusk asymmetries. The limitations of the model are discussed and a number of modifications to the basic forward modeling technique are proposed which should significantly improve its performance in future studies

  1. Simultaneous observation of auroral substorm onset in Polar satellite global images and ground-based all-sky images (United States)

    Ieda, Akimasa; Kauristie, Kirsti; Nishimura, Yukitoshi; Miyashita, Yukinaga; Frey, Harald U.; Juusola, Liisa; Whiter, Daniel; Nosé, Masahito; Fillingim, Matthew O.; Honary, Farideh; Rogers, Neil C.; Miyoshi, Yoshizumi; Miura, Tsubasa; Kawashima, Takahiro; Machida, Shinobu


    Substorm onset has originally been defined as a longitudinally extended sudden auroral brightening (Akasofu initial brightening: AIB) followed a few minutes later by an auroral poleward expansion in ground-based all-sky images (ASIs). In contrast, such clearly marked two-stage development has not been evident in satellite-based global images (GIs). Instead, substorm onsets have been identified as localized sudden brightenings that expand immediately poleward. To resolve these differences, optical substorm onset signatures in GIs and ASIs are compared in this study for a substorm that occurred on December 7, 1999. For this substorm, the Polar satellite ultraviolet global imager was operated with a fixed-filter (170 nm) mode, enabling a higher time resolution (37 s) than usual to resolve the possible two-stage development. These data were compared with 20-s resolution green-line (557.7 nm) ASIs at Muonio in Finland. The ASIs revealed the AIB at 2124:50 UT and the subsequent poleward expansion at 2127:50 UT, whereas the GIs revealed only an onset brightening that started at 2127:49 UT. Thus, the onset in the GIs was delayed relative to the AIB and in fact agreed with the poleward expansion in the ASIs. The fact that the AIB was not evident in the GIs may be attributed to the limited spatial resolution of GIs for thin auroral arc brightenings. The implications of these results for the definition of substorm onset are discussed herein.[Figure not available: see fulltext.

  2. Polarization sensitive optical coherence tomography at 1060 nm for retinal imaging

    International Nuclear Information System (INIS)

    Torzicky, T.


    The aim of this thesis was to develop a Polarization Sensitive Optical Coherence Tomography (PS-OCT) device for ocular imaging in the 1 µm wavelength range and to explore its capabilities to image healthy subjects and patients with various retinal disorders. PS-OCT set-ups working in the 840 nm range have been used in several clinical studies, for examining different retinal pathologies. Especially the segmentation of the retinal pigment epithelium (RPE) based on PS-OCT data shows advantages in cases of age related macular degeneration (AMD) in comparison to segmentation based on intensity images from commercial OCT systems. OCT imaging in the 1 µm wavelength region has recently gained popularity for ophthalmic applications due to the fact that it is perfectly suitable for enhanced visualization of choroid and sclera. This is due to decreased scattering and absorption in the RPE with increasing wavelength and due to the local absorption minimum of water (the vitreous of the eye consists mainly of water) for wavelengths around 1060 nm. An additional advantage is that a higher imaging quality in patients with corneal haze or cataract can be achieved when using OCT systems working at 1 µm. In this work we combine the advantages of PS-OCT imaging with the enhanced penetration depth of the 1 µm wavelength range for acquiring intensity, retardation, axis orientation and degree of polarization uniformity (DOPU) images of choroid and sclera. As a first step different PS-OCT set-ups working at 1060 nm were developed and a comparison regarding set-up parameters and imaging performance was accomplished. The two different set-ups that were built and investigated were a spectrometer based Fourier Domain OCT set-up and a swept source Fourier Domain OCT set-up. The swept source set-up was tested with two different light sources, a commercially available swept source laser (A-Scan rate of 100 kHz) and a prototype of a Fourier Domain Mode Locked (FDML) laser (A-Scan rate of 350

  3. Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization (United States)

    Maurya, P. K.; Balbarini, N.; Møller, I.; Rønde, V.; Christiansen, A. V.; Bjerg, P. L.; Auken, E.; Fiandaca, G.


    At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In this study, we have developed a new approach for characterizing contaminated sites through time-domain spectral induced polarization. The new approach is based on: (1) spectral inversion of the induced polarization data through a reparametrization of the Cole-Cole model, which disentangles the electrolytic bulk conductivity from the surface conductivity for delineating the contamination plume; (2) estimation of hydraulic permeability directly from the inverted parameters using a laboratory-derived empirical equation without any calibration; (3) the use of the geophysical imaging results for supporting the geological modelling and planning of drilling campaigns. The new approach was tested on a data set from the Grindsted stream (Denmark), where contaminated groundwater from a factory site discharges to the stream. Two overlapping areas were covered with seven parallel 2-D profiles each, one large area of 410 m × 90 m (5 m electrode spacing) and one detailed area of 126 m × 42 m (2 m electrode spacing). The geophysical results were complemented and validated by an extensive set of hydrologic and geologic information, including 94 estimates of hydraulic permeability obtained from slug tests and grain size analyses, 89 measurements of water electrical conductivity in groundwater, and four geological logs. On average the IP-derived and measured permeability values agreed within one order of magnitude, except for those close to boundaries between lithological layers (e.g. between sand and clay), where mismatches occurred due to the lack of vertical resolution in the geophysical imaging. An average formation factor was estimated from the correlation between the imaged bulk conductivity values and the water conductivity values measured in groundwater, in order to

  4. The Slope Imaging Multi-Polarization Photon-Counting Lidar: Development and Performance Results (United States)

    Dabney, Phillip


    The Slope Imaging Multi-polarization Photon-counting Lidar is an airborne instrument developed to demonstrate laser altimetry measurement methods that will enable more efficient observations of topography and surface properties from space. The instrument was developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryosphere remote sensing. The SIMPL transmitter is an 11 KHz, 1064 nm, plane-polarized micropulse laser transmitter that is frequency doubled to 532 nm and split into four push-broom beams. The receiver employs single-photon, polarimetric ranging at 532 and 1064 nm using Single Photon Counting Modules in order to achieve simultaneous sampling of surface elevation, slope, roughness and depolarizing scattering properties, the latter used to differentiate surface types. Data acquired over ice-covered Lake Erie in February, 2009 are documenting SIMPL s measurement performance and capabilities, demonstrating differentiation of open water and several ice cover types. ICESat-2 will employ several of the technologies advanced by SIMPL, including micropulse, single photon ranging in a multi-beam, push-broom configuration operating at 532 nm.

  5. SuperDARN HF Scattering and Propagation in the Presence of Polar Patches Imaged Using RISR (United States)

    Gillies, R. G.; Perry, G. W.; Varney, R. H.; Gillies, D. M.; Donovan, E.


    The global array of High Frequency (HF) Super Dual Auroral Radar Network (SuperDARN) radars continuously monitors ionospheric convection in the middle-to-high latitude region. The radars measure coherent backscatter from decameter scale field-aligned irregularities. One of the main generation mechanisms for these field-aligned irregularities is the gradient drift instability (GDI). The edges of ionospheric density structures, such as polar cap patches, provide ideal locations for GDI growth. The geometry required for GDI growth results in irregularities forming on the trailing edge of polar patches. However, irregularities generated by the non-linear evolution of the GDI can become prevalent throughout the patch within minutes. Modelling the irregularity growth and measurements of backscatter within patches have both confirmed this. One aspect that has often been overlooked in studies of coherent backscatter within patches is the effect of HF propagation on echo location. This study examines HF echo locations in the vicinity of patches that were imaged using the Resolute Bay Incoherent Scatter Radars (RISR). The effect of both vertical and lateral refraction of the HF wave on echo location is examined.

  6. Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology. (United States)

    Sasagawa, Kiyotaka; Shishido, Sanshiro; Ando, Keisuke; Matsuoka, Hitoshi; Noda, Toshihiko; Tokuda, Takashi; Kakiuchi, Kiyomi; Ohta, Jun


    In this study, we demonstrate a polarization sensitive pixel for a complementary metal-oxide-semiconductor (CMOS) image sensor based on 65-nm standard CMOS technology. Using such a deep-submicron CMOS technology, it is possible to design fine metal patterns smaller than the wavelengths of visible light by using a metal wire layer. We designed and fabricated a metal wire grid polarizer on a 20 × 20 μm(2) pixel for image sensor. An extinction ratio of 19.7 dB was observed at a wavelength 750 nm.

  7. Proton magnetic resonance with parahydrogen induced polarization. Imaging strategies and continuous generation

    Energy Technology Data Exchange (ETDEWEB)

    Dechent, Jan Falk Frederik


    A major challenge in imaging is the detection of small amounts of molecules of interest. In the case of magnetic resonance imaging (MRI) their signals are typically concealed by the large background signal of e.g. the tissue of the body. This problem can be tackled by hyperpolarization which increases the NMR signals up to several orders of magnitude. However, this strategy is limited for {sup 1}H, the most widely used nucleus in NMR and MRI, because the enormous number of protons in the body screen the small amount of hyperpolarized ones. Here, I describe a method giving rise to high {sup 1}H MRI contrast for hyperpolarized molecules against a large background signal. The contrast is based on the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via parahydrogen induce polarization (PHIP) and it can easily be implemented in common pulse sequences. Hyperpolarization methods typically require expensive technical equipment (e.g. lasers or microwaves) and most techniques work only in batch mode, thus the limited lifetime of the hyperpolarization is limiting its applications. Therefore, the second part of my thesis deals with the simple and efficient generation of an hyperpolarization. These two achievements open up alternative opportunities to use the standard MRI nucleus {sup 1}H for e.g. metabolic imaging in the future.

  8. Proton magnetic resonance with parahydrogen induced polarization. Imaging strategies and continuous generation

    International Nuclear Information System (INIS)

    Dechent, Jan Falk Frederik


    A major challenge in imaging is the detection of small amounts of molecules of interest. In the case of magnetic resonance imaging (MRI) their signals are typically concealed by the large background signal of e.g. the tissue of the body. This problem can be tackled by hyperpolarization which increases the NMR signals up to several orders of magnitude. However, this strategy is limited for 1 H, the most widely used nucleus in NMR and MRI, because the enormous number of protons in the body screen the small amount of hyperpolarized ones. Here, I describe a method giving rise to high 1 H MRI contrast for hyperpolarized molecules against a large background signal. The contrast is based on the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via parahydrogen induce polarization (PHIP) and it can easily be implemented in common pulse sequences. Hyperpolarization methods typically require expensive technical equipment (e.g. lasers or microwaves) and most techniques work only in batch mode, thus the limited lifetime of the hyperpolarization is limiting its applications. Therefore, the second part of my thesis deals with the simple and efficient generation of an hyperpolarization. These two achievements open up alternative opportunities to use the standard MRI nucleus 1 H for e.g. metabolic imaging in the future.


    Ballard, A.E.; Brigham, H.R.


    An apparatus whereby relatlvely volatile solvents may be contacted with volatile or non-volatile material without certaln attendant hazards is described. A suitable apparatus for handling relatively volatlle liqulds may be constructed comprising a tank, and a closure covering the tank and adapted to be securely attached to an external suppont. The closure is provided with a rigidly mounted motor-driven agitator. This agitator is connected from the driving motor lnto the lnterlor of the tank through a gland adapted to be cooled witb inert gas thereby eliminating possible hazard due to frictional heat. The closure is arranged so that the tank may be removed from it without materially dlsturbing the closure which, as described, carrles the motor driven agitator and other parts.

  10. Centrifuge apparatus (United States)

    Sartory, Walter K.; Eveleigh, John W.


    A method and apparatus for operating a continuous flow blood separation centrifuge are provided. The hematocrit of the entrant whole blood is continuously maintained at an optimum constant value by the addition of plasma to the entrant blood. The hematocrit of the separated red cells is monitored to indicate the degree of separation taking place, thereby providing a basis for regulating the flow through the centrifuge.

  11. CASTING APPARATUS (United States)

    Gray, C.F.; Thompson, R.H.


    An apparatus is described for casting small quantities of uranlum. It consists of a crucible having a hole in the bottom with a mold positioned below. A vertical rcd passes through the hole in the crucible and has at its upper end a piercing head adapted to break the oxide skin encasing a molten uranium body. An air tight cylinder surrounds the crucible and mold, and is arranged to be evacuated.

  12. PRISM (Polarized Radiation Imaging and Spectroscopy Mission): an extended white paper

    Energy Technology Data Exchange (ETDEWEB)

    André, Philippe [Laboratoire d' Astrophysique de Paris-Saclay, Gif-sur-Yvette Cedex (France); Baccigalupi, Carlo; Bielewicz, Pawel [SISSA, Via Bonomea 265, 34136, Trieste (Italy); Banday, Anthony [Université de Toulouse, UPS-OMP, IRAP, F-31028 Toulouse cedex 4 (France); Barbosa, Domingos [Grupo de Radio Astronomia Basic Sciences and Enabling Technologies Instituto de Telecomunicações, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Barreiro, Belen [Instituto de Fìsica de Cantabria (CSIC-Universidad de Cantabria) Avda. de los Castros s/n, 39005 Santander (Spain); Bartlett, James [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/lrfu, Observatoire de Paris, Sorbonne Paris, Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France); Bartolo, Nicola [Dipartimento di Fisica e Astronomia ' ' G. Galilei" , Università degli studi di Padova, via Marzolo 8, I-35131, Padova (Italy); Battistelli, Elia [Dipartimento di Fisica, Università di Roma La Sapienza, P.le A. Moro 2, 00185 Roma (Italy); Battye, Richard; Bonaldi, Anna [Jordell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Bendo, George [U.K. ALMA Regional Centre Node, Jordell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Benoȋt, Alain [Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Bernard, Jean-Philippe [CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Bersanelli, Marco [Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria, 16, Milano (Italy); Béthermin, Matthieu, E-mail: [European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching (Germany); and others


    PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISM's main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequency bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude better than COBE FIRAS. The data obtained will allow us to precisely measure the absolute sky brightness and polarization of all the components of the sky emission in the observed frequency range, separating the primordial and extragalactic components cleanly from the galactic and zodiacal light emissions. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISM, which include: (1) the ultimate galaxy cluster survey using the Sunyaev-Zeldovich (SZ) effect, detecting approximately 10{sup 6} clusters extending to large redshift, including a characterization of the gas temperature of the brightest ones (through the relativistic corrections to the classic SZ template) as well as a peculiar velocity survey using the kinetic SZ effect that comprises our entire Hubble volume; (2) a detailed characterization of the properties and evolution of dusty galaxies, where the most of the star formation in the universe took place, the faintest population of which constitute the diffuse CIB (Cosmic Infrared Background); (3) a characterization of the B modes from primordial gravity waves generated during

  13. Reversing the polarity of a cochlear implant magnet after magnetic resonance imaging. (United States)

    Jeon, Ju Hyun; Bae, Mi Ran; Chang, Jae Won; Choi, Jae Young


    The number of patients with cochlear implant (CI) has been rapidly increasing in recent years, and these patients show a growing need of examination by magnetic resonance imaging (MRI). However, the use of MRI on patients with CI is restricted by the internal magnet of the CI. Many studies have investigated the safety of performing 1.5T MRI on patients with CI, which is now being practiced in a clinical setting. We experienced a case in which the polarity of the cochlear implant magnet was reversed after the patient was examined using 1.5T MRI. The external device was attached to the internal device oppositely. We could not find displacement of the internal device, magnet, or electrode upon radiological evaluation. We came up with two possible mechanisms by which the polarity of the magnet reversed. The first possibility was that the magnetic field of MRI reversed the polarity of the magnet. The second was that the internal magnet was physically realigned while interacting with the MRI. We believe the second hypothesis to be more reliable. A removable magnet and a loose magnet boundary of a CI device may have allowed for physical reorientation of the internal magnet. Therefore, in order to avoid these complications, first, the internal magnet must not be aligned anti-parallel with the magnetic polarity of MRI. In the Siemens MRI, the vector of the magnetic field is downward, so implant site should be placed in facing upwards to minimize demagnetization. In the GE Medical Systems MRI, the vector of the magnetic field is upward, so the implant site should be placed facing downwards. Second, wearing of a commercial mold which is fixed to the internal device before performing MRI can be helpful. In addition, any removable internal magnets in a CI device should be removed before MRI, especially in the trunk. However, to ultimately solve this problem, the pocket of the internal magnet should be redesigned for safety. Copyright © 2011. Published by Elsevier Ireland Ltd.

  14. Evaluation of the polarization properties of a Philips-type prism for the construction of imaging polarimeters (United States)

    Fernandez-Borda, R.; Waluschka, E.; Pellicori, S.; Martins, J. V.; Ramos-Izquierdo, L.; Cieslak, J. D.; Thompson, P.


    The design and construction of wide FOV imaging polarimeters for use in atmospheric remote sensing requires significant attention to the prevention of artificial polarization induced by the optical elements. Surface, coatings, and angles of incidence throughout the system must be carefully designed in order to minimize these artifacts because the remaining instrumental bias polarization is the main factor which drives the final polarimetric accuracy of the system. In this work, we present a detailed evaluation and analysis to explore the possibility of retrieving the initial polarization state of the light traveling through a generic system that has inherent instrumental polarization. Our case is a wide FOV lens and a splitter device. In particular, we chose as splitter device a Philips-type prism, because it is able to divide the signal in 3 independent channels that could be simultaneously analyze to retrieve the three first elements of the Stoke vector (in atmospheric applications the elliptical polarization can be neglected [1]). The Philips-type configuration is a versatile, compact and robust prism device that is typically used in three color camera systems. It has been used in some commercial polarimetric cameras which do not claim high accuracy polarization measurements [2]. With this work, we address the accuracy of our polarization inversion and measurements made with the Philips-type beam divider.

  15. Single input state, single–mode fiber–based polarization sensitive optical frequency domain imaging by eigenpolarization referencing (United States)

    Lippok, Norman; Villiger, Martin; Jun, Chang–Su; Bouma, Brett E.


    Fiber–based polarization sensitive OFDI is more challenging than free–space implementations. Using multiple input states, fiber–based systems provide sample birefringence information with the benefit of a flexible sample arm but come at the cost of increased system and acquisition complexity, and either reduce acquisition speed or require increased acquisition bandwidth. Here we show that with the calibration of a single polarization state, fiber–based configurations can approach the conceptual simplicity of traditional free–space configurations. We remotely control the polarization state of the light incident at the sample using the eigenpolarization states of a wave plate as a reference, and determine the Jones matrix of the output fiber. We demonstrate this method for polarization sensitive imaging of biological samples. PMID:25927775

  16. Diffuse reflectance spectroscopy and optical polarization imaging of in-vivo biological tissue (United States)

    Mora-Núñez, A.; Castillejos, Y.; García-Torales, G.; Martínez-Ponce, G.


    A number of optical techniques have been reported in the scientific literature as accomplishable methodologies to diagnose diseases in biological tissue, for instance, diffuse reflectance spectroscopy (DRS) and optical polarization imaging (OPI). The skin is the largest organ in the body and consists of three primary layers, namely, the epidermis (the outermost layer exposed to the world), the dermis, and the hypodermis. The epidermis changes from to site to site, mainly because of difference in hydration. A lower water content increase light scattering and reduce the penetration depth of radiation. In this work, two hairless mice have been selected to evaluate their skin features by using DRS and OPI. Four areas of the specimen body were chosen to realize the comparison: back, abdomen, tail, and head. From DRS, it was possible to distinguish the skin nature because of different blood irrigation at dermis. In the other hand, OPI shows pseudo-depolarizing regions in the measured Mueller images related to a spatially varying propagation of the scattered light. This provides information about the cell size in the irradiated skin.

  17. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Polar Winds from NDE (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains the Level 3 Polar Winds Northern and Southern Hemisphere datasets. The Level 3 Polar Winds data from VIIRS for the Arctic and Antarctic from 65...

  18. Biologically inspired autonomous agent navigation using an integrated polarization analyzing CMOS image sensor

    NARCIS (Netherlands)

    Sarkaer, M.; San Segundo Bello, D.; Van Hoof, C.; Theuwissen, A.


    The navigational strategies of insects using skylight polarization are interesting for applications in autonomous agent navigation because they rely on very little information for navigation. A polarization navigation sensor using the Stokes parameters to determine the orientation is presented. The

  19. Radiography apparatus

    International Nuclear Information System (INIS)

    Vasseur, J.P.


    A novel apparatus for radiographic examination purposes comprising an x-ray source emitting a flat beam is described. Detectors are arranged in the plane of the beam in order each to pick up part of the beam. To avoid the Compton effect, each detector has associated with it an auxiliary detector which only receives the rays emitted by the Compton effect. An electrical circuit forms a predetermined linear combination of the signals respectively picked up by each detector and the associated auxiliary detector, this in order to prevent the errors which are due to the Compton effect when the beam passes through the body being analyzed

  20. Polar Stratigraphy (United States)


    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  1. Mass balance of Mars' residual south polar cap from CTX images and other data (United States)

    Thomas, P. C.; Calvin, W.; Cantor, B.; Haberle, R.; James, P. B.; Lee, S. W.


    Erosion of pits in the residual south polar cap (RSPC) of Mars concurrent with deposition and fluctuating cap boundaries raises questions about the mass balance and long term stability of the cap. Determining a mass balance by measurement of a net gain or loss of atmospheric CO2 by direct pressure measurements (Haberle, R.M. et al. [2014]. Secular climate change on Mars: An update using one Mars year of MSL pressure data. American Geophysical Union (Fall). Abstract 3947), although perhaps the most direct method, has so far given ambiguous results. Estimating volume changes from imaging data faces challenges, and has previously been attempted only in isolated areas of the cap. In this study we use 6 m/pixel Context Imager (CTX) data from Mars year 31 to map all the morphologic units of the RSPC, expand the measurement record of pit erosion rates, and use high resolution images to place limits on vertical changes in the surface of the residual cap. We find the mass balance in Mars years 9-31 to be -6 to +4 km3/♂y, or roughly -0.039% to +0.026% of the mean atmospheric CO2 mass/♂y. The indeterminate sign results chiefly from uncertainty in the amounts of deposition or erosion on the upper surfaces of deposits (as opposed to scarp retreat). Erosion and net deposition in this period appear to be controlled by summertime planetary scale dust events, the largest occurring in MY 9, another, smaller one in MY 28. The rates of erosion and the deposition observed since MY 9 appear to be consistent with the types of deposits and erosional behavior found in most of the residual cap. However, small areas (100 ♂y) of depositional and/or erosional conditions different from those occurring in the period since MY 9, although these environmental differences could be subtle.

  2. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis (United States)

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan


    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings.

  3. Nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Lambert, R.


    In order to include the effect of a magnetic object in a subject under investigation, Nuclear Magnetic Resonance (NMR) apparatus is operable at more than one radio frequency (RF) frequency. The apparatus allows normal practice as far as obtaining an NMR response or image from a given nuclear species is concerned, but, in addition, interrogates the nuclear spin system at a frequency which is different from the resonance frequency normally used for the given nuclear species, as determined from the applied magnetic field. The magnetic field close to a magnetised or magnetisable object is modified and the given nuclear species gives a response at the different frequency. Thus detection of a signal at the frequency indicates the presence of the chosen nuclei close to the magnetised or magnetisable object. Applications include validation of an object detection or automatic shape inspection system in the presence of magnetic impurities, and the detection of magnetic particles which affect measurement of liquid flow in a pipe. (author)

  4. Assessment of mitral apparatus in patients with acute inferoposterior myocardial infarction and ischaemic mitral regurgitation with two-dimensional echocardiography from anatomically correct imaging planes. (United States)

    Mėlinytė, Karolina; Valuckiene, Živile; Jurkevičius, Renaldas


    Ischaemic mitral regurgitation (IMR) is associated with adverse prognosis after myocardial infarction (MI) as a result of left ventricular remodelling and geometric deformation of the mitral apparatus (MA). The aim of this study was to assess MA from anatomically correct imaging planes in acute inferoposterior MI and IMR. Ninety-three patients with no structural cardiac valve abnormalities and the first acute inferoposterior MI were prospectively enrolled into the study. Two-dimensional transthoracic echocardiography for MA assessment was performed within 48 h of presentation after reperfusion therapy. Based on the degree of mitral regurgitation (MR), patients were divided into either a no significant MR (NMR) group (n = 52 with no or mild, grade 0-I MR) or an IMR group (n = 41 with grade ≥ 2 MR). The control group consisted of 45 healthy individuals. Ischaemic MR was related with dilatation of the left ventricle chambers, decrease in ejection fraction, increase in mitral annulus diameter and area, and changes in subvalvular apparatus when compared with the NMR group or healthy individuals. Ischaemic MR in acute inferoposterior MI is related with worse lesions in MA geometry that cause insufficiency of mitral valve function.

  5. Laser-polarized xenon-129 magnetic resonance spectroscopy and imaging. The development of a method for in vivo perfusion measurement (United States)

    Rosen, Matthew Scot


    This thesis presents in vivo nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) studies with laser-polarized 129Xe delivered to living rats by inhalation and transported to tissue via blood flow. The results presented herein include the observation, assignment, and dynamic measurement of 129Xe resonances in the brain and body, the first one- and two-dimensional chemical-shift-resolved images of 129Xe in blood, tissue, and gas in the thorax, and the first images of 129Xe in brain tissue. These results establish that laser-polarized 129Xe can be used as a magnetic resonance tracer in vivo. NMR resonances at 0, 191, 198, and 209 ppm relative to the 129 Xe gas resonance are observed in the rat thorax and assigned to 129Xe in gas, fat, tissue, and blood respectively. Resonances at 189, 192, 195, 198, and 209 ppm are observed in the brain, and the 195 and 209 ppm resonances are assigned to 129Xe in grey matter, and blood, respectively. The design and construction of a laser-polarized 129Xe production and delivery system is described. This system produces liter-volumes of laser- polarized 129Xe by spin-exchange optical- pumping. It represented an order of magnitude increase over previously reported production volumes of polarized 129Xe. At approximately 3-7% polarization, 157 cc-atm of xenon is produced and stored as ice every 5 minutes. This reliable, effective, and simple production method for large volumes of 129Xe can be applied to other areas of research involving the use of laser-polarized noble gases. A model of the in vivo transport of laser polarized 129Xe to tissue under realistic experimental NMR conditions is described. Appropriate control of the NMR parameters is shown to allow tissue perfasion and 129Xe tissue T1 to be extracted from measurement of the steady-state 129Xe tissue signal. In vivo rodent 129Xe NMR results are used to estimate the signal-to-noise ratio of this technique, and an inhaled 30% xenon/70% O2 mixture polarized to 5

  6. High-contrast fluorescence imaging based on the polarization dependence of the fluorescence enhancement using an optical interference mirror slide. (United States)

    Yasuda, Mitsuru; Akimoto, Takuo


    High-contrast fluorescence imaging using an optical interference mirror (OIM) slide that enhances the fluorescence from a fluorophore located on top of the OIM surface is reported. To enhance the fluorescence and reduce the background light of the OIM, transverse-electric-polarized excitation light was used as incident light, and the transverse-magnetic-polarized fluorescence signal was detected. As a result, an approximate 100-fold improvement in the signal-to-noise ratio was achieved through a 13-fold enhancement of the fluorescence signal and an 8-fold reduction of the background light.

  7. Multichannel Thomson scattering apparatus

    International Nuclear Information System (INIS)

    Bretz, N.; Dimock, D.; Foote, V.; Johnson, D.; Long, D.; Tolnas, E.


    A Thomson scattering apparatus for measuring the electron temperature and density along a 90 cm diameter of the PLT plasma has been built. A wide angle objective images the 3 mm x 900 mm ruby laser beam onto an image dissector which rearranges the 300 : 1 image to 20 : 1 forming the input slit of a spectrometer. The stigmatic spectrometer provides 20 wavelength elements of approximately 70 A each. A micro-channel-plate image intensifier optically coupled to a cooled SIT tube provides detection with single frame linearity and 1000 : 1 dynamic range. Spatial profiles of N/sub e/ and T/sub e/ in the range 10 13 - 10 14 cm -3 and 0.05 - 3 keV have an accuracy of 30 √10 13 /N/sub e/ (cm -3 ) percent per 1.2 cm element

  8. Thermoforming apparatus

    International Nuclear Information System (INIS)

    Wallsten, H.I.


    Apparatus for manufacturing articles is disclosed in which a preheated sheet of thermoplastic material is intermittently fed to present successive preheated portions of the sheet in a work station having a forming tool for forming articles in each successive sheet portion and a stamping tool for co-operating with the forming tool to stamp the formed articles from the sheet. The forming tool has a plurality of forming dies which are movable successively and cyclically into the work station for forming articles in respective successive sheet portions. After each forming operation the stamping tool is brought into engagement with a resilient counter-surface on the forming die to stamp from the sheet the articles formed by that die

  9. Radiographic apparatus

    International Nuclear Information System (INIS)

    Dalton, B.L.


    This patent application describes a radiographic apparatus including an array of radiation sensors, a source of radiation for projecting a beam through a body and means for moving one of said source and array relative to the body and for producing an electrical signal representative of the movement of the other of said source and array needed to bring the array into register with the beam. Drive means are arranged to move the other of said source and array in response to the electrical signal. In one embodiment, the source is rotated by an amount measured by a grating and associated electronics. The required movement of the array to maintain registration is calculated and transmitted to a driver. Alternatively, a laser may be mounted with the same and the array driven so that the laser beam continuously impinges on a photocell mounted with the array. (author)

  10. Effect of birefringence of lens material on polarization status and optical imaging characteristics (United States)

    Kim, Wan-Chin; Park, No-Cheol


    In most cases of molding with glass or optical polymers, it is expected that there will be birefringence caused by the internal mechanical stresses remaining in the molding material. The distribution of the residual stress can be annealed by slow cooling, but this approach is disadvantageous with respect to the shape accuracy and manufacturing time. In this study, we propose an analytical model to calculate the diffracted field near the focal plane by considering two primary parameters, the orientation angle of the fast axis and the path difference. In order to verify the reliability of the analytical model, we compared the measured beam spot of the F-theta lens of the laser scanning unit (LSU) with the analytical result. In addition, we analyzed the calculated result from the perspective of the polarization status in the exit pupil. The proposed analysis method can be applied to enhance the image quality for cases in which birefringence occurs in a lens material by suitably modeling the amplitude and phase of the incident light flux.

  11. Design of the polar neutron-imaging aperture for use at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fatherley, V. E., E-mail:; Martinez, J. I.; Merrill, F. E.; Oertel, J. A.; Schmidt, D. W.; Volegov, P. L.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barker, D. A.; Fittinghoff, D. N.; Hibbard, R. L. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States)


    The installation of a neutron imaging diagnostic with a polar view at the National Ignition Facility (NIF) required design of a new aperture, an extended pinhole array (PHA). This PHA is different from the pinhole array for the existing equatorial system due to significant changes in the alignment and recording systems. The complex set of component requirements, as well as significant space constraints in its intended location, makes the design of this aperture challenging. In addition, lessons learned from development of prior apertures mandate careful aperture metrology prior to first use. This paper discusses the PHA requirements, constraints, and the final design. The PHA design is complex due to size constraints, machining precision, assembly tolerances, and design requirements. When fully assembled, the aperture is a 15 mm × 15 mm × 200 mm tungsten and gold assembly. The PHA body is made from 2 layers of tungsten and 11 layers of gold. The gold layers include 4 layers containing penumbral openings, 4 layers containing pinholes and 3 spacer layers. In total, there are 64 individual, triangular pinholes with a field of view (FOV) of 200 μm and 6 penumbral apertures. Each pinhole is pointed to a slightly different location in the target plane, making the effective FOV of this PHA a 700 μm square in the target plane. The large FOV of the PHA reduces the alignment requirements both for the PHA and the target, allowing for alignment with a laser tracking system at NIF.

  12. Atomic scale imaging of competing polar states in a Ruddlesden–Popper layered oxide (United States)

    Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J.; Schlom, Darrell G.; Alem, Nasim; Gopalan, Venkatraman


    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden–Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure. PMID:27578622

  13. Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide. (United States)

    Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J; Schlom, Darrell G; Alem, Nasim; Gopalan, Venkatraman


    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.

  14. Monitoring apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, Ph


    A device is patented for testing the position of an extracting machine relative to specific sections of a near wall mechanized support. A microwave and radio wave generator and receiver are positioned on the support, while a polarizational reflector in the form of a bent waveguide is positioned on the extracting machine so that the receiver can only receive those reflected waves which are polarized by the reflector.

  15. Optically controlled polarizer using a ladder transition for high speed Stokesmetric Imaging and Quantum Zeno Effect based optical logic. (United States)

    Krishnamurthy, Subramanian; Wang, Y; Tu, Y; Tseng, S; Shahriar, M S


    We demonstrate an optically controlled polarizer at ~1323 nm using a ladder transition in a Rb vapor cell. The lower leg of the 5S(1/2),F = 1->5P(1/2),F = 1,2->6S(1/2),F = 1,2 transitions is excited by a Ti:Sapphire laser locked to a saturated absorption signal, representing the control beam. A tunable fiber laser at ~1323 nm is used to excite the upper leg of the transitions, representing the signal beam. When the control beam is linearly polarized, it produces an excitation of the intermediate level with a particular orientation of the angular momentum. Under ideal conditions, this orientation is transparent to the signal beam if it has the same polarization as the control beam and is absorbed when it is polarized orthogonally. We also present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, and identify means to improve the performance of the polarizer. A novel algorithm to compute the evolution of large scale quantum system enabled us to perform this computation, which may have been considered too cumbersome to carry out previously. We describe how such a polarizer may serve as a key component for high-speed Stokesmetric imaging. We also show how such a polarizer, combined with an optically controlled waveplate, recently demonstrated by us, can be used to realize a high speed optical logic gate by making use of the Quantum Zeno Effect. Finally, we describe how such a logic gate can be realized at an ultra-low power level using a tapered nanofiber embedded in a vapor cell.

  16. Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer (United States)

    Little, John


    Advancements in common aperture antenna technology were employed to utilize its proprietary genetic algorithmbased modeling tools in an effort to develop, build, and test a dual-polarization array for Hurricane Imaging Radiometer (HIRAD) applications. Final program results demonstrate the ability to achieve a lightweight, thin, higher-gain aperture that covers the desired spectral band. NASA employs various passive microwave and millimeter-wave instruments, such as spectral radiometers, for a range of remote sensing applications, from measurements of the Earth's surface and atmosphere, to cosmic background emission. These instruments such as the HIRAD, SFMR (Stepped Frequency Microwave Radiometer), and LRR (Lightweight Rainfall Radiometer), provide unique data accumulation capabilities for observing sea surface wind, temperature, and rainfall, and significantly enhance the understanding and predictability of hurricane intensity. These microwave instruments require extremely efficient wideband or multiband antennas in order to conserve space on the airborne platform. In addition, the thickness and weight of the antenna arrays is of paramount importance in reducing platform drag, permitting greater time on station. Current sensors are often heavy, single- polarization, or limited in frequency coverage. The ideal wideband antenna will have reduced size, weight, and profile (a conformal construct) without sacrificing optimum performance. The technology applied to this new HIRAD array will allow NASA, NOAA, and other users to gather information related to hurricanes and other tropical storms more cost effectively without sacrificing sensor performance or the aircraft time on station. The results of the initial analysis and numerical design indicated strong potential for an antenna array that would satisfy all of the design requirements for a replacement HIRAD array. Multiple common aperture antenna methodologies were employed to achieve exceptional gain over the entire

  17. Mapping of Polar Areas Based on High-Resolution Satellite Images: The Example of the Henryk Arctowski Polish Antarctic Station (United States)

    Kurczyński, Zdzisław; Różycki, Sebastian; Bylina, Paweł


    To produce orthophotomaps or digital elevation models, the most commonly used method is photogrammetric measurement. However, the use of aerial images is not easy in polar regions for logistical reasons. In these areas, remote sensing data acquired from satellite systems is much more useful. This paper presents the basic technical requirements of different products which can be obtain (in particular orthoimages and digital elevation model (DEM)) using Very-High-Resolution Satellite (VHRS) images. The study area was situated in the vicinity of the Henryk Arctowski Polish Antarctic Station on the Western Shore of Admiralty Bay, King George Island, Western Antarctic. Image processing was applied on two triplets of images acquired by the Pléiades 1A and 1B in March 2013. The results of the generation of orthoimages from the Pléiades systems without control points showed that the proposed method can achieve Root Mean Squared Error (RMSE) of 3-9 m. The presented Pléiades images are useful for thematic remote sensing analysis and processing of measurements. Using satellite images to produce remote sensing products for polar regions is highly beneficial and reliable and compares well with more expensive airborne photographs or field surveys.

  18. Near infrared spectral polarization imaging of prostate cancer tissues using Cybesin: a receptor-targeted contrast agent (United States)

    Pu, Yang; Wang, W. B.; Tang, G. C.; Liang, Kexian; Achilefu, S.; Alfano, R. R.


    Cybesin, a smart contrast agent to target cancer cells, was investigated using a near infrared (NIR) spectral polarization imaging technique for prostate cancer detection. The approach relies on applying a contrast agent that can target cancer cells. Cybesin, as a small ICG-derivative dye-peptide, emit fluorescence between 750 nm and 900 nm, which is in the "tissue optical window". Cybesin was reported targeting the over-expressed bombesin receptors in cancer cells in animal model and the human prostate cancers over-expressing bombesin receptors. The NIR spectral polarization imaging study reported here demonstrated that Cybesin can be used as a smart optical biomarker and as a prostate cancer receptor targeted contrast agent.

  19. CT image reconstruction of steel pipe section from few projections using the method of rotating polar-coordinate

    International Nuclear Information System (INIS)

    Peng Shuaijun; Wu Zhifang


    Fast online inspection in steel pipe production is a big challenge. Radiographic CT imaging technology, a high performance non-destructive testing method, is quite appropriate for inspection and quality control of steel pipes. The method of rotating polar-coordinate is used to reconstruct the steel pipe section from few projections with the purpose of inspecting it online. It reduces the projection number needed and the data collection time, and accelerates the reconstruction algorithm and saves the inspection time evidently. The results of simulation experiment and actual experiment indicate that the image quality and reconstruction time of rotating polar-coordinate method meet the requirements of inspecting the steel tube section online basically. The study is of some theoretical significance and the method is expected to be widely used in practice. (authors)


    DEFF Research Database (Denmark)


    Disclosed is a scanning monitoring apparatus for medical imaging, the scanning monitoring apparatus comprising a controller unit and a display, wherein the controller unit during a scanning session is configured to obtain tracking data (102) of a subject in a medical scanner, obtain scanner data ...

  1. Purification apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Mortenson, C.W.


    An apparatus is provided for converting sea or other undrinkable waters to drinkable water without the use of driven or moving parts. Reliance upon gradient effects is made to effect the vaporization of, for example, sea water, followed by the condensation of the vapor to form distilled water. Gradient effects are achieved through the provision of differentials in the thermal conductivity, capillary activity, adsorptive, absorptive and/or pressure characteristics of particulate materials, or combinations of such physicals. For example, a column is packed with material graded as to its conductivity, the least thermally conductive material being nearest the cold or ambient water that is to be purified. In packing the column each successive layer of material has a greater thermal conductivity than the layer beneath it with the most conductive being at the top near the outlet arm of the column. The final outlet arm or tube is unheated or is at a temperature lower than that of the topmost conductive material so that vapor reaching the outlet tube gets condensed. This tube leads to a container kept in a cool place as, for example, buried in the ground, as, for instance, at the seashore deep enough to be cooled or to be surrounded by water, thus keeping the condensate cold. Pure water so collected is removed by such means as is desired. Other impure, volatile liquids may be similarly purified.

  2. MR-Imaging of teeth and periodontal apparatus: an experimental study comparing high-resolution MRI with MDCT and CBCT

    International Nuclear Information System (INIS)

    Gaudino, Chiara; Csernus, Reka; Pham, Mirko; Bendszus, Martin; Rohde, Stefan; Cosgarea, Raluca; Kim, Ti-Sun; Heiland, Sabine; Beomonte Zobel, Bruno


    The aim of this study was (1) to assess the ability of magnetic resonance imaging (MRI) to visualize dental and periodontal structures and (2) to compare findings with multidetector computed tomography (MDCT) and cone beam CT (CBCT). Four porcine mandibles were examined with (1) 3T-MRI, (2) MDCT and (3) CBCT. Two observers independently reviewed MR, MDCT and CBCT images and assessed image quality of different dental and periodontal structures. To assess quantitatively the accuracy of the different imaging technique, both observers measured burr holes, previously drilled in the mandibles. Dental structures, e.g. teeth roots, pulpa chamber and dentin, were imaged accurately with all imaging sources. Periodontal space and cortical/trabecular bone were better visualized by MRI (p < 0.001). MRI could excellently display the lamina dura, not detectable with MDCT and only inconstant visible with CBCT (p < 0.001). Burr hole measurements were highly precise with all imaging techniques. This experimental study shows the diagnostic feasibility of MRI in visualization of teeth and periodontal anatomy. Detection of periodontal structures was significantly better with MRI than with MDCT or CBCT. Prospective trials have to evaluate further the potential benefit of MRI in a clinical setting. (orig.)

  3. MR-Imaging of teeth and periodontal apparatus: an experimental study comparing high-resolution MRI with MDCT and CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Gaudino, Chiara; Csernus, Reka; Pham, Mirko; Bendszus, Martin; Rohde, Stefan [University Hospital Heidelberg, Department of Neuroradiology, Heidelberg (Germany); Cosgarea, Raluca; Kim, Ti-Sun [University Hospital Heidelberg, Department of Periodontology, Heidelberg (Germany); Heiland, Sabine [University Hospital Heidelberg, Section of Experimental Radiology, Heidelberg (Germany); Beomonte Zobel, Bruno [University Campus Bio-Medico of Rome, Department of Radiology, Interdisciplinary Center for Biomedical Research, Rome (Italy)


    The aim of this study was (1) to assess the ability of magnetic resonance imaging (MRI) to visualize dental and periodontal structures and (2) to compare findings with multidetector computed tomography (MDCT) and cone beam CT (CBCT). Four porcine mandibles were examined with (1) 3T-MRI, (2) MDCT and (3) CBCT. Two observers independently reviewed MR, MDCT and CBCT images and assessed image quality of different dental and periodontal structures. To assess quantitatively the accuracy of the different imaging technique, both observers measured burr holes, previously drilled in the mandibles. Dental structures, e.g. teeth roots, pulpa chamber and dentin, were imaged accurately with all imaging sources. Periodontal space and cortical/trabecular bone were better visualized by MRI (p < 0.001). MRI could excellently display the lamina dura, not detectable with MDCT and only inconstant visible with CBCT (p < 0.001). Burr hole measurements were highly precise with all imaging techniques. This experimental study shows the diagnostic feasibility of MRI in visualization of teeth and periodontal anatomy. Detection of periodontal structures was significantly better with MRI than with MDCT or CBCT. Prospective trials have to evaluate further the potential benefit of MRI in a clinical setting. (orig.)

  4. Resistivity and Induced Polarization Imaging at a Hydrocarbon Contaminated Site in Brazil (United States)

    Ustra, A.; Elis, V.; Hiodo, F.; Bondioli, A.; Miura, G.


    An area contaminated by accidental BTEX spills was investigated with resistivity and induced polarization methods. The main objective in this study was to relate the geophysical signature of the area with zones that were possibly undergoing microbial degradation of the contaminants. The spills took place over a decade ago; however, the exact location of these spills is unknown, as well as the amount of contaminant that was released into the subsurface. DC-resistivity identified a high contrast between the background (rho up to 2000 ohm.m) and a relatively conductive zone (rho 30 mV/V). Normalized chargeability is enhanced in this anomaly zone (mn > 0.1). Soil samples collected in the area were submitted to direct bacterial count, clay content estimation, X-ray diffraction and SEM analysis. The electrical properties of each samples was also measured. The samples collected from the "background" (high resistivity zone) presented total bacterial amounts much smaller (dozens of colony forming units) than the samples from the conductive zone (millions of colony forming units). This observation could lead us to interpret that the zone of higher bacteria amount is undergoing biodegradation that would explain the increased conductivity at that portion of the subsurface. However, the geophysical properties observed at this zone could also be related to the clay content distribution throughout the surveyed area (concentrations up to 30%). Moreover, despite the fact that more microbes were found in the area, SEM images did not find any biodegradation typical feature of the grains, which are for example, mineral corrosion and dissolution or even biomineralization. This study is still undergoing and we are searching for more evidence of biodegradation in the samples. This study shows the limitation of the use of geophysical methods to access contaminant presence and/or biodegradation zones when the exact location of the contamination is unknown.

  5. Universal power law of the gravity wave manifestation in the AIM CIPS polar mesospheric cloud images (United States)

    Rong, Pingping; Yue, Jia; Russell, James M., III; Siskind, David E.; Randall, Cora E.


    We aim to extract a universal law that governs the gravity wave manifestation in polar mesospheric clouds (PMCs). Gravity wave morphology and the clarity level of display vary throughout the wave population manifested by the PMC albedo data. Higher clarity refers to more distinct exhibition of the features, which often correspond to larger variances and a better-organized nature. A gravity wave tracking algorithm based on the continuous Morlet wavelet transform is applied to the PMC albedo data at 83 km altitude taken by the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument to obtain a large ensemble of the gravity wave detections. The horizontal wavelengths in the range of ˜ 20-60 km are the focus of the study. It shows that the albedo (wave) power statistically increases as the background gets brighter. We resample the wave detections to conform to a normal distribution to examine the wave morphology and display clarity beyond the cloud brightness impact. Sample cases are selected at the two tails and the peak of the normal distribution to represent the full set of wave detections. For these cases the albedo power spectra follow exponential decay toward smaller scales. The high-albedo-power category has the most rapid decay (i.e., exponent = -3.2) and corresponds to the most distinct wave display. The wave display becomes increasingly blurrier for the medium- and low-power categories, which hold the monotonically decreasing spectral exponents of -2.9 and -2.5, respectively. The majority of waves are straight waves whose clarity levels can collapse between the different brightness levels, but in the brighter background the wave signatures seem to exhibit mildly turbulent-like behavior.

  6. Potential applications of near infrared auto-fluorescence spectral polarized imaging for assessment of food quality (United States)

    Zhou, Kenneth J.; Chen, Jun


    The current growing of food industry for low production costs and high efficiency needs for maintenance of high-quality standards and assurance of food safety while avoiding liability issues. Quality and safety of food depend on physical (texture, color, tenderness etc.), chemical (fat content, moisture, protein content, pH, etc.), and biological (total bacterial count etc.) features. There is a need for a rapid (less than a few minutes) and accurate detection system in order to optimize quality and assure safety of food. However, the fluorescence ranges for known fluorophores are limited to ultraviolet emission bands, which are not in the tissue near infrared (NIR) "optical window". Biological tissues excited by far-red or NIR light would exhibit strong emission in spectral range of 650-1,100 nm although no characteristic peaks show the emission from which known fluorophores. The characteristics of the auto-fluorescence emission of different types of tissues were found to be different between different tissue components such as fat, high quality muscle food. In this paper, NIR auto-fluorescence emission from different types of muscle food and fat was measured. The differences of fluorescence intensities of the different types of muscle food and fat emissions were observed. These can be explained by the change of the microscopic structure of physical, chemical, and biological features in meat. The difference of emission intensities of fat and lean meat tissues was applied to monitor food quality and safety using spectral polarized imaging, which can be detect deep depth fat under the muscle food up to several centimeter.

  7. Power-scalable, polarization-stable, dual-colour DFB fibre laser system for CW terahertz imaging

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Pedersen, Jens Engholm; Jepsen, Peter Uhd

    Imaging with electromagnetic radiation in the terahertz (THz) range has received a large amount of attention during recent years. THz imaging systems have diverse potential application areas such as security screening, medical diagnostics and non-destructive testing. We will discuss a power......-scalable, dual-colour, polarization-maintaining distributed feedback (DFB) fibre laser system with an inherent narrow linewidth from the DFB fibre laser oscillators. The laser system can be used as source in CW THz systems employing photomixing (optical heterodyning) for generation and detection...

  8. Custom-designed Laser-based Heating Apparatus for Triggered Release of Cisplatin from Thermosensitive Liposomes with Magnetic Resonance Image Guidance. (United States)

    Dou, Yannan N; Weersink, Robert A; Foltz, Warren D; Zheng, Jinzi; Chaudary, Naz; Jaffray, David A; Allen, Christine


    Liposomes have been employed as drug delivery systems to target solid tumors through exploitation of the enhanced permeability and retention (EPR) effect resulting in significant reductions in systemic toxicity. Nonetheless, insufficient release of encapsulated drug from liposomes has limited their clinical efficacy. Temperature-sensitive liposomes have been engineered to provide site-specific release of drug in order to overcome the problem of limited tumor drug bioavailability. Our lab has designed and developed a heat-activated thermosensitive liposome formulation of cisplatin (CDDP), known as HTLC, to provide triggered release of CDDP at solid tumors. Heat-activated delivery in vivo was achieved in murine models using a custom-built laser-based heating apparatus that provides a conformal heating pattern at the tumor site as confirmed by MR thermometry (MRT). A fiber optic temperature monitoring device was used to measure the temperature in real-time during the entire heating period with online adjustment of heat delivery by alternating the laser power. Drug delivery was optimized under magnetic resonance (MR) image guidance by co-encapsulation of an MR contrast agent (i.e., gadoteridol) along with CDDP into the thermosensitive liposomes as a means to validate the heating protocol and to assess tumor accumulation. The heating protocol consisted of a preheating period of 5 min prior to administration of HTLC and 20 min heating post-injection. This heating protocol resulted in effective release of the encapsulated agents with the highest MR signal change observed in the heated tumor in comparison to the unheated tumor and muscle. This study demonstrated the successful application of the laser-based heating apparatus for preclinical thermosensitive liposome development and the importance of MR-guided validation of the heating protocol for optimization of drug delivery.

  9. A method for automatic grain segmentation of multi-angle cross-polarized microscopic images of sandstone (United States)

    Jiang, Feng; Gu, Qing; Hao, Huizhen; Li, Na; Wang, Bingqian; Hu, Xiumian


    Automatic grain segmentation of sandstone is to partition mineral grains into separate regions in the thin section, which is the first step for computer aided mineral identification and sandstone classification. The sandstone microscopic images contain a large number of mixed mineral grains where differences among adjacent grains, i.e., quartz, feldspar and lithic grains, are usually ambiguous, which make grain segmentation difficult. In this paper, we take advantage of multi-angle cross-polarized microscopic images and propose a method for grain segmentation with high accuracy. The method consists of two stages, in the first stage, we enhance the SLIC (Simple Linear Iterative Clustering) algorithm, named MSLIC, to make use of multi-angle images and segment the images as boundary adherent superpixels. In the second stage, we propose the region merging technique which combines the coarse merging and fine merging algorithms. The coarse merging merges the adjacent superpixels with less evident boundaries, and the fine merging merges the ambiguous superpixels using the spatial enhanced fuzzy clustering. Experiments are designed on 9 sets of multi-angle cross-polarized images taken from the three major types of sandstones. The results demonstrate both the effectiveness and potential of the proposed method, comparing to the available segmentation methods.

  10. X-ray examination apparatus

    International Nuclear Information System (INIS)

    Bernstein, S.; Griswa, P.J.; Halter, P. Jr.; Kidd, H.J.


    Apparatus for x-ray cardiovascular examination and which can also be used for general purpose examination is described. An advantage of the system is that there is no mechanical connection between the image intensifier and source to interfere with the medical examiner or emergency procedures. (U.K.)

  11. Bio-Inspired Sensing and Imaging of Polarization Information in Nature (United States)


    Neurobiology of polarization vision,” Trends Neu- rosci. 12, 353–359 (1989). 32. R. Wehner, “‘Matched filters’: neural models of the external world,” J...degrees of polarization,” J. Exp. Biol. 199, 1467–1475 (1996). 47. T. Labhart and E. P. Meyer, Neural mechanisms in insect navigation: by 0.3–0.5 in. 7.6–12.7 mm while a typical ight bulb is 3 in. 76 mm in diameter and needs to be laced at least 7 in. 177.8 mm from the

  12. Monitoring apparatus

    International Nuclear Information System (INIS)

    Keats, A.B.


    System failure in the acquisition of data from a process plant such as a nuclear reactor owing to stuck signals is avoided by arranging input signals from transducers in the plant in a test pattern. The signal inputs are physically wired in the test pattern which is then decoded by either or both of a computer based system which allows for the test pattern and/or a hard wired system which mimics the input connections. Transmission of the multiplexed signals is made dynamic by provision of a polarity reverser switch which alternates between signals or scans. A pattern recognition logic or a mimicing physical wiring decode the signals from the inputs or the computer system and the hard wired system respectively. (author)

  13. Polarization Calculation and Underwater Target Detection Inspired by Biological Visual Imaging

    Directory of Open Access Journals (Sweden)

    Jie Shen


    Full Text Available In challenging underwater environments, the polarization parameter maps calculated by the Stokes model are characterized by the high noise and error, harassing the underwater target detection tasks. In order to solve this problem, this paper proposes a novel bionic polarization calculation and underwater target detection method by modeling the visual system of mantis shrimps. This system includes many operators including a polarization-opposition calculation, a factor optimization and a visual neural network model. A calibration learning method is proposed to search the optimal value of the factors in the linear subtraction model. Finally, a six-channel visual neural network model is proposed to detect the underwater targets. Experimental results proved that the maps produced by the polarization-opposition parameter is more accurate and have lower noise than that produced by the Stokes parameter, achieving better performance in underwater target detection tasks.

  14. Anatomical Reconstruction and Functional Imaging Reveal an Ordered Array of Skylight Polarization Detectors in Drosophila. (United States)

    Weir, Peter T; Henze, Miriam J; Bleul, Christiane; Baumann-Klausener, Franziska; Labhart, Thomas; Dickinson, Michael H


    Many insects exploit skylight polarization as a compass cue for orientation and navigation. In the fruit fly, Drosophila melanogaster, photoreceptors R7 and R8 in the dorsal rim area (DRA) of the compound eye are specialized to detect the electric vector (e-vector) of linearly polarized light. These photoreceptors are arranged in stacked pairs with identical fields of view and spectral sensitivities, but mutually orthogonal microvillar orientations. As in larger flies, we found that the microvillar orientation of the distal photoreceptor R7 changes in a fan-like fashion along the DRA. This anatomical arrangement suggests that the DRA constitutes a detector for skylight polarization, in which different e-vectors maximally excite different positions in the array. To test our hypothesis, we measured responses to polarized light of varying e-vector angles in the terminals of R7/8 cells using genetically encoded calcium indicators. Our data confirm a progression of preferred e-vector angles from anterior to posterior in the DRA, and a strict orthogonality between the e-vector preferences of paired R7/8 cells. We observed decreased activity in photoreceptors in response to flashes of light polarized orthogonally to their preferred e-vector angle, suggesting reciprocal inhibition between photoreceptors in the same medullar column, which may serve to increase polarization contrast. Together, our results indicate that the polarization-vision system relies on a spatial map of preferred e-vector angles at the earliest stage of sensory processing. The fly's visual system is an influential model system for studying neural computation, and much is known about its anatomy, physiology, and development. The circuits underlying motion processing have received the most attention, but researchers are increasingly investigating other functions, such as color perception and object recognition. In this work, we investigate the early neural processing of a somewhat exotic sense, called

  15. Front lighted optical tooling method and apparatus

    International Nuclear Information System (INIS)

    Stone, W. J.


    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature

  16. Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry. (United States)

    Patty, C H Lucas; Luo, David A; Snik, Frans; Ariese, Freek; Buma, Wybren Jan; Ten Kate, Inge Loes; van Spanning, Rob J M; Sparks, William B; Germer, Thomas A; Garab, Győző; Kudenov, Michael W


    Spectropolarimetry of intact plant leaves allows to probe the molecular architecture of vegetation photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological information. In addition to the molecular signals due to the photosynthetic machinery, the cell structure and its arrangement within a leaf can create and modify polarization signals. Using Mueller matrix polarimetry with rotating retarder modulation, we have visualized spatial variations in polarization in transmission around the chlorophyll a absorbance band from 650 nm to 710 nm. We show linear and circular polarization measurements of maple leaves and cultivated maize leaves and discuss the corresponding Mueller matrices and the Mueller matrix decompositions, which show distinct features in diattenuation, polarizance, retardance and depolarization. Importantly, while normal leaf tissue shows a typical split signal with both a negative and a positive peak in the induced fractional circular polarization and circular dichroism, the signals close to the veins only display a negative band. The results are similar to the negative band as reported earlier for single macrodomains. We discuss the possible role of the chloroplast orientation around the veins as a cause of this phenomenon. Systematic artefacts are ruled out as three independent measurements by different instruments gave similar results. These results provide better insight into circular polarization measurements on whole leaves and options for vegetation remote sensing using circular polarization. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. Polarized proton spin density images the tyrosyl radical locations in bovine liver catalase

    Directory of Open Access Journals (Sweden)

    Oliver Zimmer


    Full Text Available A tyrosyl radical, as part of the amino acid chain of bovine liver catalase, supports dynamic proton spin polarization (DNP. Finding the position of the tyrosyl radical within the macromolecule relies on the accumulation of proton polarization close to it, which is readily observed by polarized neutron scattering. The nuclear scattering amplitude due to the polarization of protons less than 10 Å distant from the tyrosyl radical is ten times larger than the amplitude of magnetic neutron scattering from an unpaired polarized electron of the same radical. The direction of DNP was inverted every 5 s, and the initial evolution of the intensity of polarized neutron scattering after each inversion was used to identify those tyrosines which have assumed a radical state. Three radical sites, all of them close to the molecular centre and the haem, appear to be equally possible. Among these is tyr-369, the radical state of which had previously been proven by electron paramagnetic resonance.

  18. Apparatus and methods for controlling electron microscope stages (United States)

    Duden, Thomas


    Methods and apparatus for generating an image of a specimen with a microscope (e.g., TEM) are disclosed. In one aspect, the microscope may generally include a beam generator, a stage, a detector, and an image generator. A plurality of crystal parameters, which describe a plurality of properties of a crystal sample, are received. In a display associated with the microscope, an interactive control sphere based at least in part on the received crystal parameters and that is rotatable by a user to different sphere orientations is presented. The sphere includes a plurality of stage coordinates that correspond to a plurality of positions of the stage and a plurality of crystallographic pole coordinates that correspond to a plurality of polar orientations of the crystal sample. Movement of the sphere causes movement of the stage, wherein the stage coordinates move in conjunction with the crystallographic coordinates represented by pole positions so as to show a relationship between stage positions and the pole positions.

  19. Development and testing of a CW-EPR apparatus for imaging of short-lifetime nitroxyl radicals in mouse head (United States)

    Sato-Akaba, Hideo; Fujii, Hirotada; Hirata, Hiroshi


    This article describes a method for reducing the acquisition time in three-dimensional (3D) continuous-wave electron paramagnetic resonance (CW-EPR) imaging. To visualize nitroxyl spin probes, which have a short lifetime in living organisms, the acquisition time for a data set of spectral projections should be shorter than the lifetime of the spin probes. To decrease the total time required for data acquisition, the duration of magnetic field scanning was reduced to 0.5 s. Moreover, the number of projections was decreased by using the concept of a uniform distribution. To demonstrate this faster data acquisition, two kinds of nitroxyl radicals with different decay rates were measured in mice. 3D EPR imaging of 4-hydroxy-2,2,6,6-tetramethylpiperidine-d 17-1- 15N-1-oxyl in mouse head was successfully carried out. 3D EPR imaging of nitroxyl spin probes with a half-life of a few minutes was achieved for the first time in live animals.

  20. Development of a prototype apparatus visualizing on a screen the gamma sources superimposed on the image of the vision field

    Energy Technology Data Exchange (ETDEWEB)

    Imbard, G.; Lemaire, J.E. [CEA Centre d`Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. d`Exploitation du Retraitement et de Demantelement; Carcreff, H.; Marchand, L.; Thellier, G. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Reacteurs Experimentaux


    Mapping the gamma activity of irradiating zones is often an important prerequisite in dismantling nuclear facilities. The operation is necessary to define a suitable decommissioning strategy before any work begins; it is also required during the procedure to measure the residual activity wherever dose rates are too high to allow human intervention. This report summarizes the work carried out under CEC contract FIED-0055, covering a prototype imaging system designed to display radioactive sources superimposed in real time over a visible light image on a video monitor. This project was developed from an earlier off-line system. The gamma photons are collimated by a double cone system. The imaging system comprises a transparent scintillator bonded to the fiber-optic window of an ultrasensitive camera. The camera was miniaturized to meet specification requirements: with its radiological shielding, the gamma camera weighs 40 kg and is 120 mm in diameter. The processing system is compatible with a realtime camera, and small enough for use at any nuclear. The point-source angular resolution is 1.4 deg. for {sup 60} Co and 0.8 deg. for {sup 137} Cs. The dose rate sensitivity limit is approximately 0.01 mGy.h{sup -1}. Process reliability was confirmed by tests in a high-level radio-metallurgy cell at actual decommissioning site. (authors). 7 figs.

  1. In situ scanning tunneling microscope tip treatment device for spin polarization imaging (United States)

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN


    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (> C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  2. Nuclear magnetic resonance diagnostic apparatus

    International Nuclear Information System (INIS)

    Sugimoto, H.


    Nuclear magnetic resonance diagnostic apparatus including a coil for generating a gradient field in a plane perpendicular to a static magnetic field, means for controlling the operation of the coil to rotationally shift in angular steps the gradient direction of the gradient field at an angle pitch of some multiple of the unit index angle through a plurality of rotations to assume all the shift positions of the gradient direction, a rough image reconstructor for reconstructing a rough tomographic image on the basis of nuclear magnetic resonance signals acquired during a rotation of the second gradient magnetic field, a rough image display for depicting the rough tomographic image, a final image reconstructor for reconstructing a final tomographic image on the basis of all nuclear magnetic resonance signals corresponding to all of the expected rotation shift positions acquired during a plurality of rotations and a final image display for depicting the final tomographic image

  3. Correlation of collagen synthesis with polarization-sensitive optical coherence tomography imaging of in vitro human atherosclerosis (United States)

    Kuo, Wen-Chuan; Shyu, Jeou-Jong; Chou, Nai-Kuan; Lai, Chih-Ming; Tien, En-Kuang; Huang, Huan-Jang; Chou, Chien; Jan, Gwo-Jen


    Atherosclerosis is unquestionably the leading cause of morbidity and mortality in developed countries. In the mean time, the worldwide importance of acute vascular syndromes is increasing. Because collagen fiber is a critical component of atherosclerotic lesions; it constitutes up to 60% of the total atherosclerotic plaque protein. The uncontrolled collagen accumulation leads to arterial stenosis, whereas excessive collagen breakdown weakens plaques thereby making them prone to rupture finally. Thus, in this study, we present the first application, to our knowledge, of using polarization-sensitive optical coherence tomography (PS-OCT) in human atherosclerosis. We demonstrate this technique for imaging of intensity, birefringence, and fast-axis orientation simultaneously in atherosclerotic plaques. This in vitro study suggests that the birefringence change in plaque is due to the prominent deposition of collagen according to the correlation of PS-OCT images with histological counterpart. Moreover, we can acquire quantitative criteria based on the change of polarization of incident beam to estimate whether the collagen synthesized is "too much" or "not enough". Thus by combining of high resolution intensity imaging and birefringence detection makes PS-OCT could be a potentially powerful tool for early assessment of atherosclerosis appearance and the prediction of plaque rupture in clinic.

  4. Imaging of polarity during zygotic and somatic embryogenesis of carrot (Daucus carota L.)

    NARCIS (Netherlands)

    Timmers, A.C.J.


    In this thesis a study of the regulation of coordinated growth and the development of polarity during embryogenesis of carrot, Daucus carota L., is described. To this end, several microscopical techniques were used, such as light microscopy, fluorescence microscopy,

  5. Applying laser speckle images to skin science: skin lesion differentiation by polarization (United States)

    Lee, Tim K.; Tchvialeva, Lioudmila; Dhadwal, Gurbir; Sotoodian, Bahman; Kalai, Sunil; Zeng, Haishan; Lui, Harvey; McLean, David I.


    Skin cancer is a worldwide health problem. It is the most common cancer in the countries with a large white population; furthermore, the incidence of malignant melanoma, the most dangerous form of skin cancer, has been increasing steadily over the last three decades. There is an urgent need to develop in-vivo, noninvasive diagnostic tools for the disease. This paper attempts to response to the challenge by introducing a simple and fast method based on polarization and laser speckle. The degree of maintaining polarization estimates the fraction of linearly maintaining polarization in the backscattered speckle field. Clinical experiments of 214 skin lesions including malignant melanomas, squamous cell carcinomas, basal cell carcinomas, nevi, and seborrheic keratoses demonstrated that such a parameter can potentially diagnose different skin lesion types. ROC analyses showed that malignant melanoma and seborrheic keratosis could be differentiated by both the blue and red lasers with the area under the curve (AUC) = 0.8 and 0.7, respectively. Also malignant melanoma and squamous cell carcinoma could be separated by the blue laser (AUC = 0.9), while nevus and seborrheic keratosis could be identified using the red laser (AUC = 0.7). These experiments demonstrated that polarization could be a potential in-vivo diagnostic indicator for skin diseases.

  6. Large Rotor Test Apparatus (United States)

    Federal Laboratory Consortium — This test apparatus, when combined with the National Full-Scale Aerodynamics Complex, produces a thorough, full-scale test capability. The Large Rotor Test Apparatus...

  7. 1x3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Zhang, Min; Malureanu, Radu; Krüger, Asger Christian


    Based on inspiration from multi-mode interference self-imaging and theoretical FDTD simulations, a 1x3 beam splitter was designed, fabricated and characterized. Measurements show that for TE-polarized incident light the power is distributed equally between the output ports within 1dB in the range...... from 1541nm to 1552nm, and the total transmission of the 1x3 splitter is equal to the corresponding length of a single-line-defect PhCW within the measurement uncertainty....

  8. Spatiotemporal change of sky polarization during the total solar eclipse on 29 March 2006 in Turkey: polarization patterns of the eclipsed sky observed by full-sky imaging polarimetry. (United States)

    Sipocz, Brigitta; Hegedüs, Ramón; Kriska, György; Horváth, Gábor


    Using 180 degrees field-of-view (full-sky) imaging polarimetry, we measured the spatiotemporal change of the polarization of skylight during the total solar eclipse on 29 March 2006 in Turkey. We present our observations here on the temporal variation of the celestial patterns of the degree p and angle alpha of linear polarization of the eclipsed sky measured in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We also report on the temporal and spectral change of the positions of neutral (unpolarized, p = 0) points, and points with local minima or maxima of p of the eclipsed sky. Our results are compared with the observations performed by the same polarimetric technique during the total solar eclipse on 11 August 1999 in Hungary. Practically the same characteristics of celestial polarization were encountered during both eclipses. This shows that the observed polarization phenomena of the eclipsed sky may be general.


    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S. A.; Aguirre, J. E.; Moore, D. F. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Nunhokee, C. D.; Bernardi, G. [Department of Physics and Electronics, Rhodes University, Grahamstown (South Africa); Pober, J. C. [Department of Physics, Brown University, Providence, RI (United States); Ali, Z. S.; DeBoer, D. R.; Parsons, A. R. [Astronomy Department, University of California, Berkeley, CA (United States); Bradley, R. F. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Carilli, C. L. [National Radio Astronomy Observatory, Socorro, NM (United States); Gugliucci, N. E. [Saint Anselm College, Manchester, NH (United States); Jacobs, D. C. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Klima, P. [National Radio Astronomy Observatory, Charlottesville, VA (United States); MacMahon, D. H. E. [Radio Astronomy Laboratory, University of California, Berkeley, CA (United States); Manley, J. R.; Walbrugh, W. P. [SKA South Africa, Pinelands (South Africa); Stefan, I. I., E-mail: [Cavendish Laboratory, Cambridge (United Kingdom)


    Current generation low-frequency interferometers constructed with the objective of detecting the high-redshift 21 cm background aim to generate power spectra of the brightness temperature contrast of neutral hydrogen in primordial intergalactic medium. Two-dimensional (2D) power spectra (power in Fourier modes parallel and perpendicular to the line of sight) that formed from interferometric visibilities have been shown to delineate a boundary between spectrally smooth foregrounds (known as the wedge ) and spectrally structured 21 cm background emission (the EoR window ). However, polarized foregrounds are known to possess spectral structure due to Faraday rotation, which can leak into the EoR window. In this work we create and analyze 2D power spectra from the PAPER-32 imaging array in Stokes I, Q, U, and V. These allow us to observe and diagnose systematic effects in our calibration at high signal-to-noise within the Fourier space most relevant to EoR experiments. We observe well-defined windows in the Stokes visibilities, with Stokes Q, U, and V power spectra sharing a similar wedge shape to that seen in Stokes I. With modest polarization calibration, we see no evidence that polarization calibration errors move power outside the wedge in any Stokes visibility to the noise levels attained. Deeper integrations will be required to confirm that this behavior persists to the depth required for EoR detection.

  10. Knockin’ on pollen’s door: live cell imaging of early polarization events in germinating Arabidopsis pollen

    Directory of Open Access Journals (Sweden)

    Frank eVogler


    Full Text Available Pollen tubes are an excellent system for studying the cellular dynamics and complex signaling pathways that coordinate polarized tip growth. Although several signaling mechanisms acting in the tip-growing pollen tube have been described, our knowledge on the subcellular and molecular events during pollen germination and growth site selection at the pollen plasma membrane is rather scarce. To simultaneously track germinating pollen from up to 12 genetically different plants we developed an inexpensive and easy mounting technique, suitable for every standard microscope setup. We performed high magnification live-cell imaging during Arabidopsis pollen activation, germination, and the establishment of pollen tube tip growth by using fluorescent marker lines labeling either the pollen cytoplasm, vesicles, the actin cytoskeleton or the sperm cell nuclei and membranes. Our studies revealed distinctive vesicle and F-actin polarization during pollen activation and characteristic growth kinetics during pollen germination and pollen tube formation. Initially, the germinating Arabidopsis pollen tube grows slowly and forms a uniform roundish bulge, followed by a transition phase with vesicles heavily accumulating at the growth site before switching to rapid tip growth. Furthermore, we found the two sperm cells to be transported into the pollen tube after the phase of rapid tip growth has been initiated. The method presented here is suitable to quantitatively study subcellular events during Arabidopsis pollen germination and growth, and for the detailed analysis of pollen mutants with respect to pollen polarization, bulging, or growth site selection at the pollen plasma membrane.

  11. Gamma tomography apparatus

    International Nuclear Information System (INIS)

    Span, F.J.


    The patent concerns a gamma tomography apparatus for medical diagnosis. The apparatus comprises a gamma scintillation camera head and a suspension system for supporting and positioning the camera head with respect for the patient. Both total body scanning and single photon emission tomography can be carried out with the apparatus. (U.K.)


    DEFF Research Database (Denmark)


    The present invention relates to the field of filtering, more precisely the present invention concerns an apparatus and a method for the separation of dry matter from a medium and the use of said apparatus. One embodiment discloses an apparatus for the separation of dry matter and liquid from a m...

  13. Pore roller filtration apparatus

    DEFF Research Database (Denmark)


    The present invention relates to the field of filtering, more precisely the present invention concerns an apparatus and a method for the separation of dry matter from a medium and the use of said apparatus. One embodiment discloses an apparatus for the separation of dry matter from a medium, comp...

  14. Gamma apparatuses for radiotherapy

    International Nuclear Information System (INIS)

    Sul'kin, A.G.


    Scientific and technical achievements in development and application of gamma therapeutic apparatuses for external and intracavity irradiations are generalized. Radiation-physical parameters of apparatuses providing usability of progressive methods in radiotherapy of onclogical patients are given. Optimization of main apparatus elements, ensurance of its operation reliability, reduction of errors of irradiation plan reproduction are considered. Attention is paid to radiation safety

  15. Apparatus for stereotactic surgery

    International Nuclear Information System (INIS)

    Koslow, M.A.M.


    Apparatus for stereotactic surgery consisting of a probe and a computerized tomographic scanning system is described. The scanning system comprises a display and means for reconstructing cross-sectional images on the display using data from partial circumferential scans of source and detectors. It operates on the data with an algorithm that provides the difference between the local values of the linear attenuation coefficient and average of these values within a circle centered at each reconstruction point. The scanning system includes a means of maintaining the frames of reference of the probe and scanning system rigid with respect to one another. The position of the probe, which may be a cryogenic probe, with respect to the actual anatomical structure of the body, particularly a human head, may thus be viewed by the surgeon. (author)

  16. MR image enhancement as a function of tissue gadolinium concentration, measured with polarized X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Wang, S.C.; Morita, Y.; White, D.L.; Kaufman, L.; Brasch, R.C.


    MR imaging contrast agents alter intensities nonlinearly relative to their tissue concentrations. To extract Gd concentrations from image intensity data, a 13-tube phantom (Gd-DTPA dilutions, 0-10/sup -2/M) was imaged (2 T, 3 mm, spin echo, 300 = msec repetition time, 15 = msec echo time, 128 X 256, four excitations). Also, 18 rats were studied with Gd-DTPA or albumin-(Gd-DTPA)/sub 19/ (nine each, three doses). Liver and renal cortex were imaged before and 10 minutes after contrast material administration, with immediate killing and harvesting, and enhancement was calculated. These samples were assayed by x-ray fluorescent excitation analysis (150-kVp beam, B/sub 4/C ceramic polarizer, Mo-Cu-Ni filter, Si[Li] detector). Gd levels as low as 0.5 ppm (--3.18 x 10/sup -6/M) could be detected in liquid or solid samples. Enhancement increased with a nonlinear relationship to Gd in the range measured. This assay for Gd permits empiric assessment of the relationship between pulse variables, intensity, and paramagnet concentration, allowing Gd values to be estimated from image intensities

  17. Polarization ratio property and material classification method in passive millimeter wave polarimetric imaging (United States)

    Cheng, Yayun; Qi, Bo; Liu, Siyuan; Hu, Fei; Gui, Liangqi; Peng, Xiaohui


    Polarimetric measurements can provide additional information as compared to unpolarized ones. In this paper, linear polarization ratio (LPR) is created to be a feature discriminator. The LPR properties of several materials are investigated using Fresnel theory. The theoretical results show that LPR is sensitive to the material type (metal or dielectric). Then a linear polarization ratio-based (LPR-based) method is presented to distinguish between metal and dielectric materials. In order to apply this method to practical applications, the optimal range of incident angle have been discussed. The typical outdoor experiments including various objects such as aluminum plate, grass, concrete, soil and wood, have been conducted to validate the presented classification method.

  18. Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle SpectroPolarimetric Imager

    Directory of Open Access Journals (Sweden)

    David J. Diner


    Full Text Available Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF model. GroundMSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of outdoor landscapes. The camera uses a very accurate photoelastic-modulator-based polarimetric imaging technique to acquire Stokes vector measurements in three of the instrument’s bands (470, 660, and 865 nm. A description of the instrument is presented, and observations of selected targets within a scene acquired on 6 January 2010 are analyzed. Data collected during the course of the day as the Sun moved across the sky provided a range of illumination geometries that facilitated evaluation of the surface model, which is comprised of a volumetric reflection term represented by the modified Rahman-Pinty-Verstraete function plus a specular reflection term generated by a randomly oriented array of Fresnel-reflecting microfacets. While the model is fairly successful in predicting the polarized reflection from two grass targets in the scene, it does a poorer job for two manmade targets (a parking lot and a truck roof, possibly due to their greater degree of geometric organization. Several empirical adjustments to the model are explored and lead to improved fits to the data. For all targets, the data support the notion of spectral invariance in the angular shape of the unpolarized and polarized surface reflection. As noted by others, this behavior provides valuable constraints on the aerosol retrieval problem, and highlights the importance of multiangle observations.

  19. Determining the source region of auroral emissions in the prenoon oval using coordinated Polar BEAR UV-imaging and DMSP particle measurements (United States)

    Newell, Patrick T.; Meng, CHING-I.; Huffman, Robert E.


    The Polar Beacon Experiment and Auroral Research (Polar BEAR) satellite included the capability for imaging the dayside auroral oval in full sunlight at several wavelengths. Particle observations from the DMSP F7 satellite during dayside auroral oval crossings are compared with approximately simultaneous Polar BEAR 1356-A images to determine the magnetospheric source region of the dayside auroral oval. The source region is determined from the DMSP particle data, according to recent work concerning the classification and identification of precipitation source regions. The close DMSP/Polar BEAR coincidences all occur when the former satellite is located between 0945 and 1000 MLT. Instances of auroral arcs mapping to each of several different regions, including the boundary plasma sheet, the low-latitude boundary layer, and the plasma mantle were found. It was determined that about half the time the most prominent auroral arcs are located at the interfaces between distinct plasma regions, at least at the local time studied here.

  20. Polarization resolved imaging with a reflection near-field optical microscope

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Xiao, Mufei; Hvam, Jørn Märcher


    Using a rigorous microscopic point-dipole description of probe-sample interactions, we study imaging with a reflection scanning near-field optical microscope. Optical content, topographical artifacts, sensitivity window-i.e., the scale on which near-field optical images represent mainly optical...... configuration is preferable to the cross-linear one, since it ensures more isotropic (in the surface plane) near-field imaging of surface features. The numerical results are supported with experimental near-field images obtained by using a reflection microscope with an uncoated fiber tip....

  1. Optical Pumping Spin Exchange 3He Gas Cells for Magnetic Resonance Imaging (United States)

    Kim, W.; Stepanyan, S. S.; Kim, A.; Jung, Y.; Woo, S.; Yurov, M.; Jang, J.


    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping is used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the 3He-N2 mixture. The cells could be refilled. The 3He reaches around 50% polarization in 5-15 hours.

  2. Polarization-dependent Character of 1x3 Beam Splitter Using Self-Imaging Phenomena in Air-Slab PhCW

    DEFF Research Database (Denmark)

    Zhang, Min; Malureanu, Radu; Kristensen, Martin


    A 1x3 beam splitter in PhCWs using multi-mode interference (MMI) based on self-imaging principle is investigated. The 1x3 splitter is polarization-dependent. The total TE-polarized transmission of the 1x3 splitter is almost equal to the corresponding length of W1 PhCW. The TE-polarized input power...... is distributed equally be-tween the output ports within 1dB from 1541nm to 1552nm....

  3. Polarization Control with Plasmonic Antenna Tips: A Universal Approach to Optical Nanocrystallography and Vector-Field Imaging (United States)

    Park, Kyoung-Duck; Raschke, Markus B.


    Controlling the propagation and polarization vectors in linear and nonlinear optical spectroscopy enables to probe the anisotropy of optical responses providing structural symmetry selective contrast in optical imaging. Here we present a novel tilted antenna-tip approach to control the optical vector-field by breaking the axial symmetry of the nano-probe in tip-enhanced near-field microscopy. This gives rise to a localized plasmonic antenna effect with significantly enhanced optical field vectors with control of both \\textit{in-plane} and \\textit{out-of-plane} components. We use the resulting vector-field specificity in the symmetry selective nonlinear optical response of second-harmonic generation (SHG) for a generalized approach to optical nano-crystallography and -imaging. In tip-enhanced SHG imaging of monolayer MoS$_2$ films and single-crystalline ferroelectric YMnO$_3$, we reveal nano-crystallographic details of domain boundaries and domain topology with enhanced sensitivity and nanoscale spatial resolution. The approach is applicable to any anisotropic linear and nonlinear optical response, and provides for optical nano-crystallographic imaging of molecular or quantum materials.

  4. Scanning differential polarization microscope: Its use to image linear and circular differential scattering

    International Nuclear Information System (INIS)

    Mickols, W.; Maestre, M.F.


    A differential polarization microscope that couples the sensitivity of single-beam measurement of circular dichroism and circular differential scattering with the simultaneous measurement of linear dichroism and linear differential scattering has been developed. The microscope uses a scanning microscope stage and single-point illumination to give the very shallow depth of field found in confocal microscopy. This microscope can operate in the confocal mode as well as in the near confocal condition that can allow one to program the coherence and spatial resolution of the microscope. This microscope has been used to study the change in the structure of chromatin during the development of sperm in Drosophila

  5. Imaging and tuning polarity at SrTiO3 domain walls (United States)

    Frenkel, Yiftach; Haham, Noam; Shperber, Yishai; Bell, Christopher; Xie, Yanwu; Chen, Zhuoyu; Hikita, Yasuyuki; Hwang, Harold Y.; Salje, Ekhard K. H.; Kalisky, Beena


    Electrostatic fields tune the ground state of interfaces between complex oxide materials. Electronic properties, such as conductivity and superconductivity, can be tuned and then used to create and control circuit elements and gate-defined devices. Here we show that naturally occurring twin boundaries, with properties that are different from their surrounding bulk, can tune the LaAlO3/SrTiO3 interface 2DEG at the nanoscale. In particular, SrTiO3 domain boundaries have the unusual distinction of remaining highly mobile down to low temperatures, and were recently suggested to be polar. Here we apply localized pressure to an individual SrTiO3 twin boundary and detect a change in LaAlO3/SrTiO3 interface current distribution. Our data directly confirm the existence of polarity at the twin boundaries, and demonstrate that they can serve as effective tunable gates. As the location of SrTiO3 domain walls can be controlled using external field stimuli, our findings suggest a novel approach to manipulate SrTiO3-based devices on the nanoscale.

  6. Setup for polarized neutron imaging using in situ 3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline. (United States)

    Dhiman, I; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X; Jiang, C Y; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay


    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3 He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe 3 Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3 He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  7. Afterglow Imaging and Polarization of Misaligned Structured GRB Jets and Cocoons: Breaking the Degeneracy in GRB 170817A (United States)

    Gill, Ramandeep; Granot, Jonathan


    The X-ray to radio afterglow emission of GRB 170817A / GW 170817 so far scales as Fν∝ν-0.6t0.8 with observed frequency and time, consistent with a single power-law segment of the synchrotron spectrum from the external shock going into the ambient medium. This requires the effective isotropic equivalent afterglow shock energy in the visible region to increase as ˜t1.7. The two main channels for such an energy increase are (i) radial: more energy carried by slower material (in the visible region) gradually catches up with the afterglow shock and energizes it, and (ii) angular: more energy in relativistic outflow moving at different angles to our line of sight, whose radiation is initially beamed away from us but its beaming cone gradually reaches our line of sight as it decelerates. One cannot distinguish between these explanations (or combinations of them) using only the X-ray to radio Fν(t). Here we demonstrate that the most promising way to break this degeneracy is through afterglow imaging and polarization, by calculating the predicted evolution of the afterglow image (its size, shape and flux centroid) and linear polarization Π(t) for different angular and/or radial outflow structures that fit Fν(t). We consider two angular profiles - a Gaussian and a narrow core with power-law wings in energy per solid angle, as well as a (cocoon motivated) (quasi-) spherical flow with radial velocity profile. For a jet viewed off-axis (and a magnetic field produced in the afterglow shock) Π(t) peaks when the jet's core becomes visible, at ≈2tp where the lightcurve peaks at tp, and the image can be elongated with aspect ratios ≳ 2. A quasi-spherical flow has an almost circular image and a much lower Π(t) (peaking at ≈tp) and flux centroid displacement θfc (a spherical flow has Π(t) = θfc = 0 and a perfectly circular image).

  8. Induced Polarization with Electromagnetic Coupling: 3D Spectral Imaging Theory, EMSP Project No. 73836

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, F. Dale; Sogade, John


    This project was designed as a broad foundational study of spectral induced polarization (SIP) for characterization of contaminated sites. It encompassed laboratory studies of the effects of chemistry on induced polarization, development of 3D forward modeling and inversion codes, and investigations of inductive and capacitive coupling problems. In the laboratory part of the project a physico-chemical model developed in this project was used to invert laboratory IP spectra for the grain size and the effective grain size distribution of the sedimentary rocks as well as the formation factor, porosity, specific surface area, and the apparent fractal dimension. Furthermore, it was established that the IP response changed with the solution chemistry, the concentration of a given solution chemistry, valence of the constituent ions, and ionic radius. In the field part of the project, a 3D complex forward and inverse model was developed. It was used to process data acquired at two frequencies (1/16 Hz and 1/ 4Hz) in a cross-borehole configuration at the A-14 outfall area of the Savannah River Site (SRS) during March 2003 and June 2004. The chosen SRS site was contaminated with Tetrachloroethylene (TCE) and Trichloroethylene (PCE) that were disposed in this area for several decades till the 1980s. The imaginary conductivity produced from the inverted 2003 data correlated very well with the log10 (PCE) concentration derived from point sampling at 1 ft spacing in five ground-truth boreholes drilled after the data acquisition. The equivalent result for the 2004 data revealed that there were significant contaminant movements during the period March 2003 and June 2004, probably related to ground-truth activities and nearby remediation activities. Therefore SIP was successfully used to develop conceptual models of volume distributions of PCE/TCE contamination. In addition, the project developed non-polarizing electrodes that can be deployed in boreholes for years. A total of 28

  9. Dynamic nuclear polarization for magnetic resonance imaging. An in-bore approach

    Energy Technology Data Exchange (ETDEWEB)

    Krummenacker, Jan G.


    In this thesis, the development of an in-bore liquid state DNP polarizer for MRI applications operating in flow through mode at a magnetic field strength of 1.5 T was described. After an introductory chapter 1 and a chapter 2 on the theoretical background, chapter 3 dealt chiefly with the challenge of performing liquid state DNP at a high magnetic field of 9.2 T. The feasibility of performing liquid state DNP at this field was demonstrated for various solvents, as well as for metabolites in solution. Chapter 4 then moved to the aim of this work, the application of liquid state DNP for MRI experiments. It introduced the rationale of our approach, the hardware that was developed and demonstrated its performance in a clinical MRI tomograph.

  10. Dynamic nuclear polarization for magnetic resonance imaging. An in-bore approach

    International Nuclear Information System (INIS)

    Krummenacker, Jan G.


    In this thesis, the development of an in-bore liquid state DNP polarizer for MRI applications operating in flow through mode at a magnetic field strength of 1.5 T was described. After an introductory chapter 1 and a chapter 2 on the theoretical background, chapter 3 dealt chiefly with the challenge of performing liquid state DNP at a high magnetic field of 9.2 T. The feasibility of performing liquid state DNP at this field was demonstrated for various solvents, as well as for metabolites in solution. Chapter 4 then moved to the aim of this work, the application of liquid state DNP for MRI experiments. It introduced the rationale of our approach, the hardware that was developed and demonstrated its performance in a clinical MRI tomograph.

  11. An ultra-bright white LED based non-contact skin cancer imaging system with polarization control (United States)

    Günther, A.; Basu, C.; Roth, B.; Meinhardt-Wollweber, M.


    Early detection and excision of melanoma skin cancer is crucial for a successful therapy. Dermoscopy in direct contact with the skin is routinely used for inspection, but screening is time consuming for high-risk patients with a large number of nevi. Features like symmetry, border, color and most importantly changes like growth or depigmentation of a nevus may indicate malignancy. We present a non-contact remote imaging system for human melanocytic nevi with homogenous illumination by an ultra-bright white LED. The advantage compared to established dermoscopy systems requiring direct skin contact is that deformation of raised nevi is avoided and full-body scans of the patients may time-efficiently be obtained while they are in a lying, comfortable position. This will ultimately allow for automated screening in the future. In addition, calibration of true color rendering, which is essential for distinguishing between benign and malignant lesions and to ensure reproducibility and comparison between individual check-ups in order to follow nevi evolution is implemented as well as suppression of specular highlights on the skin surface by integration of polarizing filters. Important features of the system which will be crucial for future integration into automated systems are the possibility to record images without artifacts in combination with short exposure times which both reduce image blurring caused by patient motion.

  12. Multipactor discharge apparatus

    International Nuclear Information System (INIS)


    The invention deals with a multipactor discharge apparatus which can be used for tuning microwave organs such as magnetron oscillators and other cavity resonators. This apparatus is suitable for delivering an improved tuning effect in a resonation organ wherefrom the working frequency must be set. This apparatus is equipped with two multipactor discharge electrodes set in a configuration such to that a net current flows from one electrode to another. These electrodes are parallel and flat. The apparatus can be used in magnetron devices as well for continuous waves as for impulses

  13. Radiative Gasification Apparatus (United States)

    Federal Laboratory Consortium — This apparatus, developed at EL, determines gasification rate (mass loss rate) of a horizontally oriented specimen exposed in a nitrogen environment to a controlled...

  14. On the classification of mixed floating pollutants on the Yellow Sea of China by using a quad-polarized SAR image (United States)

    Wang, Xiaochen; Shao, Yun; Tian, Wei; Li, Kun


    This study explored different methodologies using a C-band RADARSAT-2 quad-polarized Synthetic Aperture Radar (SAR) image located over China's Yellow Sea to investigate polarization decomposition parameters for identifying mixed floating pollutants from a complex ocean background. It was found that solitary polarization decomposition did not meet the demand for detecting and classifying multiple floating pollutants, even after applying a polarized SAR image. Furthermore, considering that Yamaguchi decomposition is sensitive to vegetation and the algal variety Enteromorpha prolifera, while H/A/alpha decomposition is sensitive to oil spills, a combination of parameters which was deduced from these two decompositions was proposed for marine environmental monitoring of mixed floating sea surface pollutants. A combination of volume scattering, surface scattering, and scattering entropy was the best indicator for classifying mixed floating pollutants from a complex ocean background. The Kappa coefficients for Enteromorpha prolifera and oil spills were 0.7514 and 0.8470, respectively, evidence that the composite polarized parameters based on quad-polarized SAR imagery proposed in this research is an effective monitoring method for complex marine pollution.

  15. A System for Compressive Spectral and Polarization Imaging at Short Wave Infrared (SWIR) Wavelengths (United States)


    UV -­‐ VIS -­‐IR   60mm   Apo   Macro  lens   Jenoptik-­‐Inc   $5,817.36   IR... VIS /NIR Compressive Spectral Imager”, Proceedings of IEEE International Conference on Image Processing (ICIP ’15), Quebec City, Canada, (September...imaging   system   will   lead   to   a   wide-­‐band   VIS -­‐NIR-­‐SWIR   compressive  spectral  and  polarimetric

  16. Principles of nuclear magnetic resonance imaging using an inhomogeneous polarizing field

    International Nuclear Information System (INIS)

    Briguet, A.; Chaillout, J.; Goldman, M.


    In this paper, it is indicated how to reconstruct nuclear magnetic resonance images acquired in an inhomogeneous static magnetic field without the previous knowledge of its spatial distribution. The method provides also the map of the static magnetic field through the sample volume; furthermore it allows the use of non uniform but spatially controlled encoding gradients [fr

  17. Neural coding of image structure and contrast polarity of Cartesian, hyperbolic, and polar gratings in the primary and secondary visual cortex of the tree shrew. (United States)

    Poirot, Jordan; De Luna, Paolo; Rainer, Gregor


    We comprehensively characterize spiking and visual evoked potential (VEP) activity in tree shrew V1 and V2 using Cartesian, hyperbolic, and polar gratings. Neural selectivity to structure of Cartesian gratings was higher than other grating classes in both visual areas. From V1 to V2, structure selectivity of spiking activity increased, whereas corresponding VEP values tended to decrease, suggesting that single-neuron coding of Cartesian grating attributes improved while the cortical columnar organization of these neurons became less precise from V1 to V2. We observed that neurons in V2 generally exhibited similar selectivity for polar and Cartesian gratings, suggesting that structure of polar-like stimuli might be encoded as early as in V2. This hypothesis is supported by the preference shift from V1 to V2 toward polar gratings of higher spatial frequency, consistent with the notion that V2 neurons encode visual scene borders and contours. Neural sensitivity to modulations of polarity of hyperbolic gratings was highest among all grating classes and closely related to the visual receptive field (RF) organization of ON- and OFF-dominated subregions. We show that spatial RF reconstructions depend strongly on grating class, suggesting that intracortical contributions to RF structure are strongest for Cartesian and polar gratings. Hyperbolic gratings tend to recruit least cortical elaboration such that the RF maps are similar to those generated by sparse noise, which most closely approximate feedforward inputs. Our findings complement previous literature in primates, rodents, and carnivores and highlight novel aspects of shape representation and coding occurring in mammalian early visual cortex. Copyright © 2016 the American Physiological Society.

  18. Polar Polygons (United States)


    18 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-outlined polygons on a frost-covered surface in the south polar region of Mars. In summer, this surface would not be bright and the polygons would not have dark outlines--these are a product of the presence of seasonal frost. Location near: 77.2oS, 204.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  19. Apparatus for Teaching Physics. (United States)

    Gottlieb, Herbert H., Ed.


    Describes: (1) a variable inductor suitable for an inductance-capacitance bridge consisting of a fixed cylindrical solenoid and a moveable solenoid; (2) long-range apparatus for demonstrating falling bodies; and (3) an apparatus using two lasers to demonstrate ray optics. (SK)

  20. Pipework inspection apparatus

    International Nuclear Information System (INIS)

    Wrigglesworth, K.J.; Knowles, J.F.


    The patent concerns a pipework inspection apparatus, which is capable of negotiating bends in pipework. The apparatus comprises a TV camera system, which contains an optical section and an electronics section, which are connected by a flexible coupling. The system can be pulled or pushed along the bore of the pipework. (U.K.)

  1. Nuclear core baffling apparatus

    International Nuclear Information System (INIS)

    Cooper, F.W. Jr.; Silverblatt, B.L.; Knight, C.B.; Berringer, R.T.


    An apparatus for baffling the flow of reactor coolant fluid into and about the core of a nuclear reactor is described. The apparatus includes a plurality of longitudinally aligned baffle plates with mating surfaces that allow longitudinal growth with temperature increases while alleviating both leakage through the aligned plates and stresses on the components supporting the plates

  2. Fractionation and rectification apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Sauerwald, A


    Fractionation and rectifying apparatus with a distillation vessel and a stirring tube, drainage tubes leading from its coils to a central collecting tube, the drainage tubes being somewhat parallel and attached to the outer half of the stirring tube and partly on the inner half of the central collecting tube, whereby distillation and rectification can be effected in a single apparatus.

  3. Prospects for sub-micron solid state nuclear magnetic resonance imaging with low-temperature dynamic nuclear polarization. (United States)

    Thurber, Kent R; Tycko, Robert


    We evaluate the feasibility of (1)H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol-water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 microL sample yields a (1)H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that (1)H NMR signals from 1 microm(3) voxel volumes should be readily detectable, and voxels as small as 0.03 microm(3) may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz (1)H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension.

  4. Fluorescence life-time imaging and steady state polarization for examining binding of fluorophores to gold nanoparticles. (United States)

    Schwartz, Shmulik; Fixler, Dror; Popovtzer, Rachela; Shefi, Orit


    Nanocomposites as multifunctional agents are capable of combing imaging and cell biology technologies. The conventional methods used for validation of the conjugation process of nanoparticles (NPs) to fluorescent molecules such as spectroscopy analysis and surface potential measurements, are not sufficient. In this paper we present a new and highly sensitive procedure that uses the combination of (1) fluorescence spectrum, (2) fluorescence lifetime, and (3) steady state fluorescence polarization measurements. We characterize and analyze gold NPs with Lucifer yellow (LY) surface coating as a model. We demonstrate the ability to differentiate between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes. We suggest the approach for neuroscience applications where LY is used for detecting and labeling cells, studying morphology and intracellular communications. Histograms of Fluorescence lifetime imaging (FLIM) of free LY dye (Left) in comparison to the conjugated dye to gold nanoparticles, LY-GNP (Middle) enable the differentiation between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes (Right). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Computed tomography apparatus

    International Nuclear Information System (INIS)

    Fairbairn, I.A.


    In fan-beam computed tomography apparatus, timing reference pulses, normally occurring at intervals t, for data transfer and reset of approx. 500 integrators in the signal path from the detector array, are generated from the scan displacement, e.g. using a graticule and optical sensor to relate the measurement paths geometrically to the body section. Sometimes, a slow scan rate is required to provide a time-averaged density image, e.g. for planning irradiation therapy, and then the sensed impulses will occur at extended intervals and can cause integrator overload. An improvement is described which provides a pulse generator which responds to a reduced scan rate by generating a succession of further transfer and reset pulses at intervals approximately equal to t starting a time t after each timing reference pulse. Then, using an adding device and RAM, all the transferred signals integrated in the interval t' between two successive slow scan reference pulses are accumulated in order to form a corresponding measurement signal. (author)

  6. Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization

    DEFF Research Database (Denmark)

    Maurya, P. K.; Balbarini, Nicola; Møller, I.


    At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In this study, we have developed a new approach for characterizing contaminated sites through time...... geological logs. On average the IP-derived and measured permeability values agreed within one order of magnitude, except for those close to boundaries between lithological layers (e.g. between sand and clay), where mismatches occurred due to the lack of vertical resolution in the geophysical imaging...


    Directory of Open Access Journals (Sweden)

    F. Zakeri


    Full Text Available Oil spill surveillance is of great environmental and economical interest, directly contributing to improve environmental protection. Monitoring of oil spills using synthetic aperture radar (SAR has received a considerable attention over the past few years, notably because of SAR data abilities like all-weather and day-and-night capturing. The degree of polarization (DoP is a less computationally complex quantity characterizing a partially polarized electromagnetic field. The key to the proposed approach is making use of DoP as polarimetric information besides intensity ones to improve dark patches detection as the first step of oil spill monitoring. In the proposed approach first simple intensity threshold segmentation like Otsu method is applied to the image. Pixels with intensities below the threshold are regarded as potential dark spot pixels while the others are potential background pixels. Second, the DoP of potential dark spot pixels is estimated. Pixels with DoP below a certain threshold are the real dark-spot pixels. Choosing the threshold is a critical and challenging step. In order to solve choosing the appropriate threshold, we introduce a novel but simple method based on DoP of potential dark spot pixels. Finally, an area threshold is used to eliminate any remaining false targets. The proposed approach is tested on L band NASA/JPL UAVSAR data, covering the Deepwater Horizon oil spill in the Gulf of Mexico. Comparing the obtained results from the new method with conventional approaches like Otsu, K-means and GrowCut shows better achievement of the proposed algorithm. For instance, mean square error (MSE 65%, Overall Accuracy 20% and correlation 40% are improved.

  8. Dark SPOT Detection Using Intensity and the Degree of Polarization in Fully Polarimetric SAR Images for Oil Polution Monitoring (United States)

    Zakeri, F.; Amini, J.


    Oil spill surveillance is of great environmental and economical interest, directly contributing to improve environmental protection. Monitoring of oil spills using synthetic aperture radar (SAR) has received a considerable attention over the past few years, notably because of SAR data abilities like all-weather and day-and-night capturing. The degree of polarization (DoP) is a less computationally complex quantity characterizing a partially polarized electromagnetic field. The key to the proposed approach is making use of DoP as polarimetric information besides intensity ones to improve dark patches detection as the first step of oil spill monitoring. In the proposed approach first simple intensity threshold segmentation like Otsu method is applied to the image. Pixels with intensities below the threshold are regarded as potential dark spot pixels while the others are potential background pixels. Second, the DoP of potential dark spot pixels is estimated. Pixels with DoP below a certain threshold are the real dark-spot pixels. Choosing the threshold is a critical and challenging step. In order to solve choosing the appropriate threshold, we introduce a novel but simple method based on DoP of potential dark spot pixels. Finally, an area threshold is used to eliminate any remaining false targets. The proposed approach is tested on L band NASA/JPL UAVSAR data, covering the Deepwater Horizon oil spill in the Gulf of Mexico. Comparing the obtained results from the new method with conventional approaches like Otsu, K-means and GrowCut shows better achievement of the proposed algorithm. For instance, mean square error (MSE) 65%, Overall Accuracy 20% and correlation 40% are improved.

  9. Molecular separation method and apparatus

    International Nuclear Information System (INIS)

    Villa-Aleman, E.


    A method and apparatus are disclosed for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular sieve. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve. 2 figs


    Gray, C.F.; Thompson, R.H.


    An improved apparatus for the melting and casting of uranium is described. A vacuum chamber is positioned over the casting mold and connected thereto, and a rod to pierce the oxide skin of the molten uranium is fitted into the bottom of the melting chamber. The entire apparatus is surrounded by a jacket, and operations are conducted under a vacuum. The improvement in this apparatus lies in the fact that the top of the melting chamber is fitted with a plunger which allows squeezing of the oxide skin to force out any molten uranium remaining after the skin has been broken and the molten charge has been cast.

  11. Mirror plasma apparatus

    International Nuclear Information System (INIS)

    Moir, R.W.


    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma

  12. Conduit grinding apparatus (United States)

    Nachbar, Henry D.; Korytkowski, Alfred S.


    A grinding apparatus for grinding the interior portion of a valve stem receiving area of a valve. The apparatus comprises a faceplate, a plurality of cams mounted to an interior face of the faceplate, a locking bolt to lock the faceplate at a predetermined position on the valve, a movable grinder and a guide tube for positioning an optical viewer proximate the area to be grinded. The apparatus can either be rotated about the valve for grinding an area of the inner diameter of a valve stem receiving area or locked at a predetermined position to grind a specific point in the receiving area.

  13. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.


    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  14. Hygroscopic Swelling Determination of Cellulose Nanocrystal (CNC) Films by Polarized Light Microscopy Digital Image Correlation. (United States)

    Shrestha, Shikha; Diaz, Jairo A; Ghanbari, Siavash; Youngblood, Jeffrey P


    The coefficient of hygroscopic swelling (CHS) of self-organized and shear-oriented cellulose nanocrystal (CNC) films was determined by capturing hygroscopic strains produced as result of isothermal water vapor intake in equilibrium. Contrast enhanced microscopy digital image correlation enabled the characterization of dimensional changes induced by the hygroscopic swelling of the films. The distinct microstructure and birefringence of CNC films served in exploring the in-plane hygroscopic swelling at relative humidity values ranging from 0% to 97%. Water vapor intake in CNC films was measured using dynamic vapor sorption (DVS) at constant temperature. The obtained experimental moisture sorption and kinetic profiles were analyzed by fitting with Guggenheim, Anderson, and deBoer (GAB) and Parallel Exponential Kinetics (PEK) models, respectively. Self-organized CNC films showed isotropic swelling, CHS ∼0.040 %strain/%C. By contrast, shear-oriented CNC films exhibited an anisotropic swelling, resulting in CHS ∼0.02 and ∼0.30 %strain/%C, parallel and perpendicular to CNC alignment, respectively. Finite element analysis (FEA) further predicted moisture diffusion as the predominant mechanism for swelling of CNC films.

  15. Polarized Light Imaging of the HD 142527 Transition Disk with the Gemini Planet Imager: Dust around the Close-in Companion (United States)

    Rodigas, Timothy J.; Follette, Katherine B.; Weinberger, Alycia; Close, Laird; Hines, Dean C.


    When giant planets form, they grow by accreting gas and dust. HD 142527 is a young star that offers a scaled-up view of this process. It has a broad, asymmetric ring of gas and dust beyond ~100 AU and a wide inner gap. Within the gap, a low-mass stellar companion orbits the primary star at just ~12 AU, and both the primary and secondary are accreting gas. In an attempt to directly detect the dusty counterpart to this accreted gas, we have observed HD 142527 with the Gemini Planet Imager in polarized light at Y band (0.95-1.14 μm). We clearly detect the companion in total intensity and show that its position and photometry are generally consistent with the expected values. We also detect a point source in polarized light that may be spatially separated by ~ a few AU from the location of the companion in total intensity. This suggests that dust is likely falling onto or orbiting the companion. Given the possible contribution of scattered light from this dust to previously reported photometry of the companion, the current mass limits should be viewed as upper limits only. If the dust near the companion is eventually confirmed to be spatially separated, this system would resemble a scaled-up version of the young planetary system inside the gap of the transition disk around LkCa 15. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministrio da Cincia, Tecnologia e Inovao (Brazil), and Ministerio de Ciencia, Tecnologa e Innovacin Productiva (Argentina).

  16. Lesion size detection in geographic atrophy by polarization-sensitive optical coherence tomography and correlation to conventional imaging techniques. (United States)

    Schütze, Christopher; Bolz, Matthias; Sayegh, Ramzi; Baumann, Bernhard; Pircher, Michael; Götzinger, Erich; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula


    To investigate the reproducibility of automated lesion size detection in patients with geographic atrophy (GA) using polarization-sensitive spectral-domain optical coherence tomography (PS-OCT) and to compare findings with scanning laser ophthalmoscopy (SLO), fundus autofluorescence (FAF), and intensity-based spectral-domain OCT (SD-OCT). Twenty-nine eyes of 22 patients with GA were examined by PS-OCT, selectively identifying the retinal pigment epithelium (RPE). A novel segmentation algorithm was applied, automatically detecting and quantifying areas of RPE atrophy. The reproducibility of the algorithm was assessed, and lesion sizes were correlated with manually delineated SLO, FAF, and intensity-based SD-OCT images to validate the clinical applicability of PS-OCT in GA evaluation. Mean GA lesion size of all patients was 5.28 mm(2) (SD: 4.92) in PS-OCT. Mean variability of individual repeatability measurements was 0.83 mm(2) (minimum: 0.05; maximum: 3.65). Mean coefficient of variation was 0.07 (min: 0.01; max: 0.19). Mean GA area in SLO (Spectralis OCT) was 5.15 mm(2) (SD: 4.72) and 2.5% smaller than in PS-OCT (P = 0.9, Pearson correlation coefficient = 0.98, P < 0.01). Mean GA area in intensity-based SD-OCT pseudo-SLO images (Cirrus OCT) was 5.14 mm(2) (SD: 4.67) and 2.7% smaller than in PS-OCT (P = 0.9, Pearson correlation coefficient = 0.98, P < 0.01). Mean GA area of all eyes measured 5.41 mm(2) (SD: 4.75) in FAF, deviating by 2.4% from PS-OCT results (P = 0.89, Pearson correlation coefficient = 0.99, P < 0.01). PS-OCT demonstrated high reproducibility of GA lesion size determination. Results correlated well with SLO, FAF, and intensity-based SD-OCT fundus imaging. PS-OCT may therefore be a valuable and specific imaging modality for automated GA lesion size determination in scientific studies and clinical practice.

  17. Tomographic scanning apparatus

    International Nuclear Information System (INIS)


    Details are presented of a tomographic scanning apparatus, its rotational assembly, and the control and circuit elements, with particular reference to the amplifier and multiplexing circuits enabling detector signal calibration. (U.K.)

  18. Tomographic scanning apparatus

    International Nuclear Information System (INIS)


    This patent specification relates to a tomographic scanning apparatus using a fan beam and digital output signal, and particularly to the design of the gas-pressurized ionization detection system. (U.K.)

  19. Scintillation counting apparatus

    International Nuclear Information System (INIS)

    Noakes, J.E.


    Apparatus is described for the accurate measurement of radiation by means of scintillation counters and in particular for the liquid scintillation counting of both soft beta radiation and gamma radiation. Full constructional and operating details are given. (UK)

  20. Thermal Acoustic Fatigue Apparatus (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  1. Light shielding apparatus (United States)

    Miller, Richard Dean; Thom, Robert Anthony


    A light shielding apparatus for blocking light from reaching an electronic device, the light shielding apparatus including left and right support assemblies, a cross member, and an opaque shroud. The support assemblies each include primary support structure, a mounting element for removably connecting the apparatus to the electronic device, and a support member depending from the primary support structure for retaining the apparatus in an upright orientation. The cross member couples the left and right support assemblies together and spaces them apart according to the size and shape of the electronic device. The shroud may be removably and adjustably connectable to the left and right support assemblies and configured to take a cylindrical dome shape so as to form a central space covered from above. The opaque shroud prevents light from entering the central space and contacting sensitive elements of the electronic device.

  2. Tomographic scanning apparatus

    International Nuclear Information System (INIS)


    This patent specification describes a tomographic scanning apparatus, with particular reference to the adjustable fan beam and its collimator system, together with the facility for taking a conventional x-radiograph without moving the patient. (U.K.)

  3. Fuel pellet loading apparatus

    International Nuclear Information System (INIS)


    Apparatus is described for loading a predetermined amount of nuclear fuel pellets into nuclear fuel elements and particularly for the automatic loading of fuel pellets from within a sealed compartment. (author)

  4. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band (United States)

    Kelly, Kenneth C.; Huang, John


    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  5. Apparatus for drying sugar cubes

    NARCIS (Netherlands)

    Derckx, H.A.J.; Torringa, H.M.


    Device for drying sugar cubes containing a heating apparatus for heating and dehumidifying the sugar cubes, a conditioning apparatus for cooling off and possibly further dehumidifying the sugar cubes and a conveying apparatus for conveying the sugar cubes through the heating apparatus and the

  6. Test sample handling apparatus

    International Nuclear Information System (INIS)


    A test sample handling apparatus using automatic scintillation counting for gamma detection, for use in such fields as radioimmunoassay, is described. The apparatus automatically and continuously counts large numbers of samples rapidly and efficiently by the simultaneous counting of two samples. By means of sequential ordering of non-sequential counting data, it is possible to obtain precisely ordered data while utilizing sample carrier holders having a minimum length. (U.K.)

  7. X-ray apparatus

    International Nuclear Information System (INIS)

    Tomita, Chuji.


    A principal object of the present invention is to provide an X-ray apparatus which is such that the distance between the surface of the patient's table and the floor on which the apparatus is installed is sufficiently small in the horizontal position of the patient's table of the roentgenographical pedestal and that the rotation of the pedestal from the horizontal position to a tilted position and further to the vertical position of the table can be carried out smoothly. (auth)

  8. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.


    An improved design of a sludge recovery apparatus used in the fabrication of nuclear fuel is described. This apparatus provides for automatic separation of sludge from the grinder coolant, drying of the sludge into a flowable powder and transfer of the dry powder to a salvage container. It can be constructed to comply with criticality-safe-geometry requirements and to obviate need for operating personnel in its immediate vicinity. (UK)

  9. Infrared microscope inspection apparatus (United States)

    Forman, Steven E.; Caunt, James W.


    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  10. Atomically-resolved mapping of polarization and electric fields across ferroelectric-oxide interfaces by Z-contrast imaging (United States)

    Borisevich, Albina; Chang, Hye Jung; Kalinin, Sergei; Morozovska, Anna; Chu, Ying-Hao; Yu, Pu; Ramesh, Ramamoorthy; Pennycook, Stephen


    Polarization, electric field, charge and potential across ferroelectric-oxide interfaces are obtained from direct atomic position mapping by aberration corrected scanning transmission electron microscopy combined with Ginsburg-Landau-Devonshire theory. We compare two antiparallel polarization orientations, which allows separation of the polarization and intrinsic interface charge contributions. Using the Born effective charges, the complete interface electrostatics is obtained in real space, providing an alternative method to holography. The results provide new microscopic insight into the thermodynamics of polarization distribution at the atomic level. Research is sponsored by the of Materials Sciences and Engineering Division, U.S. DOE.

  11. Semi-automatic measures of activity in selected south polar regions of Mars using morphological image analysis (United States)

    Aye, Klaus-Michael; Portyankina, Ganna; Pommerol, Antoine; Thomas, Nicolas

    The High Resolution Imaging Science Experiment (HiRISE) onboard Mars Reconnaissance Orbiter (MRO) has been used to monitor the seasonal evolution of several regions at high southern latitudes. Of particular interest have been jet-like activities that may result from the process described by Kieffer (2007), involving translucent CO2 ice. These jets are assumed to create fan-shaped ground features, as studied e.g. in Hansen (2010) and Portyankina (2010). In Thomas (2009), a small region of interest (ROI) inside the south polar Inca City region (81° S, 296° E) was defined for which the seasonal change of the number of fans was determined. This ROI was chosen for its strong visual variability in ground features. The mostly manual counting work showed, that the number of apparent fans increases monotonously for a considerable amount of time from the beginning of the spring time observations at Ls of 178° until approx. 230° , following the increase of available solar energy for the aforementioned processes of the Kieffer model. This fact indicates that the number of visual fan features can be used as an activity measure for the seasonal evolution of this area, in addition to commonly used evolution studies of surface reflectance. Motivated by these results, we would like to determine the fan count evolution for more south polar areas like Ithaca, Manhattan, Giza and others. To increase the reproducibility of the results by avoiding potential variability in fan shape recognition by human eye and to increase the production efficiency, efforts are being undertaken to automise the fan counting procedure. The techniques used, cleanly separated in different stages of the procedure, the difficulties for each stage and an overview of the tools used at each step will be presented. After showing a proof of concept in Aye (2010), for a ROI that is comparable to the one previously used for manual counting in Thomas (2009), we now will show

  12. Distribution of Citations Received by Scientific Papers Published in the Imaging Literature From 2001 to 2010: Decreasing Inequality and Polarization. (United States)

    Yoon, Soo Jeong; Yoon, Dae Young; Lee, Hyung Jin; Baek, Sora; Lim, Kyoung Ja; Seo, Young Lan; Yun, Eun Joo


    The objective of this study was to assess the distribution of citations received by scientific papers published in the imaging literature between 2001 and 2010. We extracted the number of citations of all articles and reviews for 5 years after publication using the Scopus (Elsevier) citation database of imaging journals between 2001 and 2010. We quantitatively analyzed article and review citations from each journal and each year, including the number, proportion, and annual number of citations of the most- (≥ 20 citations) and least-cited (three or fewer citations) papers; ratio of most-cited to least-cited papers; 75/25 percentile citation ratio; 90/10 percentile citation ratio; Gini coefficient; and Kolkata index. Our analysis of 124,331 articles and 13,575 reviews from 121 journals showed that the proportion of most-cited articles (from 19.6% to 27.1%) and reviews (from 19.1% to 37.2%) increased from 2001 to 2010, whereas the proportion of least-cited articles (from 32.3% to 23.0%) and reviews (from 31.9% to 15.8%) declined over the same period. The annual numbers of citations of most-cited articles and reviews both reached a peak in the fourth year after publication, whereas those of least-cited articles and reviews reached a peak in the second and fist years, respectively, after publication and thereafter decreased. The 75/25 percentile ratio for articles declined from 41.1 to 27.5 between 2001 and 2010. Over the same time, the 75/25 percentile ratio for reviews declined from 47.4 to 22.9. The 90/10 percentile ratio for articles declined from 1730.8 to 188.7; for reviews, the 90/10 percentile ratio declined from 5788.0 to 100.7. The Gini coefficient of articles and reviews also declined from 0.6116 to 0.5721 for articles and from 0.6507 to 0.5649 for reviews; the k index, from 0.7260 to 0.7088 for articles from 0.7409 to 0.7072 for reviews. Inequality and polarization of citations consistently decreased in the imaging literature from 2001 to 2010.

  13. Determining the source region of auroral emissions in the prenoon oval using coordinated Polar BEAR UV-imaging and DMSP particle measurements

    International Nuclear Information System (INIS)

    Newell, P.T.; Meng, C.I.; Huffman, R.E.


    The Polar Beacon Experiment and Auroral Research (Polar BEAR) satellite included the capability for imaging the dayside auroral oval in full sunlight at several wavelengths. The authors compare particle observations from the DMSP F7 satellite during dayside auroral oval crossings with approximately simultaneous Polar BEAR 1,356-angstrom images to determine the magnetospheric source region of the dayside auroral oval. The source region is determined from the Defense Meteorological Satellite Program (DMSP) particle data, according to recent work concerning the classification and identification of precipitation source regions. The close DMSP/Polar BEAR coincidences all occur when the former satellite is located between 0945 and 1,000 MLT. The authors found instances of auroral arcs mapping to each of several different regions, including the boundary plasma sheet, the low-latitude boundary layer, and the plasma mantle. However, the results indicate that about half the time the most prominent auroral arcs are located at the interfaces between distinct plasma regions, at least at the local time studied here

  14. A novel apparatus for testing binocular function using the 'CyberDome' three-dimensional hemispherical visual display system. (United States)

    Handa, T; Ishikawa, H; Shimizu, K; Kawamura, R; Nakayama, H; Sawada, K


    Virtual reality has recently been highlighted as a promising medium for visual presentation and entertainment. A novel apparatus for testing binocular visual function using a hemispherical visual display system, 'CyberDome', has been developed and tested. Subjects comprised 40 volunteers (mean age, 21.63 years) with corrected visual acuity of -0.08 (LogMAR) or better, and stereoacuity better than 100 s of arc on the Titmus stereo test. Subjects were able to experience visual perception like being surrounded by visual images, a feature of the 'CyberDome' hemispherical visual display system. Visual images to the right and left eyes were projected and superimposed on the dome screen, allowing test images to be seen independently by each eye using polarizing glasses. The hemispherical visual display was 1.4 m in diameter. Three test parameters were evaluated: simultaneous perception (subjective angle of strabismus), motor fusion amplitude (convergence and divergence), and stereopsis (binocular disparity at 1260, 840, and 420 s of arc). Testing was performed in volunteer subjects with normal binocular vision, and results were compared with those using a major amblyoscope. Subjective angle of strabismus and motor fusion amplitude showed a significant correlation between our test and the major amblyoscope. All subjects could perceive the stereoscopic target with a binocular disparity of 480 s of arc. Our novel apparatus using the CyberDome, a hemispherical visual display system, was able to quantitatively evaluate binocular function. This apparatus offers clinical promise in the evaluation of binocular function.

  15. Realtime radiation exposure monitor and control apparatus

    International Nuclear Information System (INIS)

    Cowart, R.W.


    This patent application relates to an apparatus and methods used to obtain image information from modulation of a uniform flux. An exposure measuring apparatus is disclosed which comprises a multilayered detector structure having an external circuit connected to a transparent insulating layer and to a conductive plate a radiation source adapted to irradiate the detector structure with radiation capable of producing electron-hole pairs in a photoconductive layer of the detector wherein the flow of current within the external circuit is measured when the detector is irradiated by the radiation source. (author)

  16. Commissioning and modification of the low temperature scanning polarization microscope (TTSPM) and imaging of the local magnetic flux density distribution in superconducting niobium samples

    International Nuclear Information System (INIS)

    Gruenzweig, Matthias Sebastian Peter


    The dissertation is separated into two different parts, which will be presented in the following. Part I of the dissertation is about the commissioning and the modification of the ''low-temperature scanning polarization microscope'' which was designed in a previous dissertation of Stefan Guenon [1]. A scanning polarization microscope has certain advantages compared to conventional polarization microscopes. With a scanning polarization microscope it is easily possible to achieve a high illumination intensity, which is important to realize a high signal-to-noise ratio. Moreover, the confocal design of the scanning polarization microscope improves the resolution of the microscope by a factor of 1.4. Normally, it is not necessary to post-process the images by means of differential frame method to eliminate the contrast of non-magnetic origin. In contrast to conventional polarization microscopes the low-temperature scanning polarization microscope is able to image electronic transport properties via beam-induced voltage variation in addition to the magneto-optical effects. In this dissertation, it was possible to demonstrate the performance capability of the scanning polarization microscope at room temperature as well as at low temperatures. The investigation of the polar Kerr-effect has been carried out with a BaFe 12 O 19 -test sample whereas the measurements of the longitudinal Kerr-effect have been carried out with an in-plane magnetized acceleration sensor. Furthermore, an independent room temperature construction for out-of-plane measurements in a magnetic field up to 1 Tesla has been designed and implemented within the framework of a diploma thesis, supervised by the author of this dissertation. Using this construction, it was possible to gain experimental results regarding the interlayer exchange coupling between iron-terbium alloys (Fe 1-x Tb x ) and cobalt-platinum multilayers (vertical stroke Co/Pt vertical stroke n ). Indeed, it has been

  17. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K. (United States)

    Lange, M; Guénon, S; Lever, F; Kleiner, R; Koelle, D


    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4 He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO 3 . The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  18. Wide-field synovial fluid imaging using polarized lens-free on-chip microscopy for point-of-care diagnostics of gout (Conference Presentation) (United States)

    Zhang, Yibo; Lee, Seung Yoon; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan


    Gout and pseudogout are forms of crystal arthropathy caused by monosodium urate (MSU) and calcium pyrophosphate dehydrate (CPPD) crystals in the joint, respectively, that can result in painful joints. Detecting the unique-shaped, birefringent MSU/CPPD crystals in a synovial fluid sample using a compensated polarizing microscope has been the gold-standard for diagnosis since the 1960's. However, this can be time-consuming and inaccurate, especially if there are only few crystals in the fluid. The high-cost and bulkiness of conventional microscopes can also be limiting for point-of-care diagnosis. Lens-free on-chip microscopy based on digital holography routinely achieves high-throughput and high-resolution imaging in a cost-effective and field-portable design. Here we demonstrate, for the first time, polarized lens-free on-chip imaging of MSU and CPPD crystals over a wide field-of-view (FOV ~ 20.5 mm2, i.e., gout and pseudogout. Circularly polarizer partially-coherent light is used to illuminate the synovial fluid sample on a glass slide, after which a quarter-wave-plate and an angle-mismatched linear polarizer are used to analyze the transmitted light. Two lens-free holograms of the MSU/CPPD sample are taken, with the sample rotated by 90°, to rule out any non-birefringent objects within the specimen. A phase-recovery algorithm is also used to improve the reconstruction quality, and digital pseudo-coloring is utilized to match the color and contrast of the lens-free image to that of a gold-standard microscope image to ease the examination by a rheumatologist or a laboratory technician, and to facilitate computerized analysis.

  19. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K (United States)

    Lange, M.; Guénon, S.; Lever, F.; Kleiner, R.; Koelle, D.


    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO3. The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  20. Mid-Latitude versus Polar-Latitude Transitional Impact Craters: Geometric Properties from Mars Orbiter Laser Altimeter (MOLA) Observations and Viking Images (United States)

    Matias, A.; Garvin, J. B.; Sakimoto, S. E. H.


    One intriguing aspect of martian impact crater morphology is the change of crater cavity and ejecta characteristics from the mid-latitudes to the polar regions. This is thought to reflect differences in target properties such as an increasing presence of ice in the polar regions. Previous image-based efforts concerning martian crater morphology has documented some aspects of this, but has been hampered by the lack of adequate topography data. Recent Mars Orbiter Laser Altimeter (MOLA) topographic profiles provide a quantitative perspective for interpreting the detailed morphologies of martian crater cavities and ejecta morphology. This study is a preliminary effort to quantify the latitude-dependent differences in morphology with the goal of identifying target-dependent and crater modification effects from the combined of images and MOLA topography. We combine the available MOLA profiles and the corresponding Viking Mars Digital Image Mosaics (MDIMS), and high resolution Viking Orbiter images to focus on two transitional craters; one on the mid-latitudes, and one in the North Polar region. One MOLA pass (MGS Orbit 34) traverses the center of a 15.9 km diameter fresh complex crater located at 12.8degN 83.8degE on the Hesperian ridge plains unit (Hvr). Viking images, as well as MOLA data, show that this crater has well developed wall terraces and a central peak with 429 m of relative relief. Three MOLA passes have been acquired for a second impact crater, which is located at 69.5degN 41degE on the Vastitas Borealis Formation. This fresh rampart crater lacks terraces and central peak structures and it has a depth af 579 m. Correlation between images and MOLA topographic profiles allows us to construct basic facies maps of the craters. Eight main units were identified, four of which are common on both craters.

  1. Toward 3-D E-field visualization in laser-produced plasma by polarization-spectroscopic imaging

    International Nuclear Information System (INIS)

    Kim, Yong W.


    A 3-D volume radiator such as laser-produced plasma (LPP) plumes is observed in the form of a 2-D projection of its radiative structure. The traditional approach to 3-D structure reconstruction relies on multiple projections but is not suitable as a general method for unsteady radiating objects. We have developed a general method for 3-D structure reconstruction for LPP plumes in stages of increasing complexity. We have chosen neutral gas-confined LPP plumes from an aluminum target immersed in high-density argon because the plasma experiences Rayleigh-Taylor instability. We make use of two time-resolved, mutually orthogonal side views of a LPP plume and a front-view snapshot. No symmetry assumptions are needed. Two scaling relations are invoked that connects the plasma temperature and pressure to local specific intensity at selected wavelength(s). Two mutually-orthogonal lateral luminosity views of the plume at each known distance from the target surface are compared with those computed from the trial specific intensity profiles and the scaling relations. The luminosity error signals are minimized to find the structure. The front-view snapshot is used to select the initial trial profile and as a weighting function for allocation of the error signal into corrections for specific intensities from the plasma cells along the line of sight. Full Saha equilibrium for multiple stages of ionization is treated, together with the self-absorption, in the computation of the luminosity. We show the necessary optics for determination of local electric fields through polarization-resolved imaging. (author)

  2. An Imaging Polar Nephelometer (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This invention relates to measuring the light that is scattered from particulates (aerosols) in a gas or liquid. The sample typically flows into the instrument and...

  3. Apparatus for ultrasonic nebulization

    International Nuclear Information System (INIS)

    Olson, K.W.; Haas, W.J. Jr.; Fassel, V.A.


    An improved apparatus is described for ultrasonic nebulization of liquid samples or suspensions in which the piezoelectric transducer is protected from chemical attack and erosion. The transducer is protected by being bonded to the inner surface of a glass plate which forms one end wall of a first hollow body provided with apparatus for circulating a fluid for cooling and stabilizing the transducer. The glass plate, which is one-half wavelength in thickness to provide an acoustically coupled outer nebulizing surface, seals an opening in a second hollow body which encloses an aerosol mixing chamber. The second body includes apparatus for delivering the sample solution to the nebulizing surface, a gas inlet for providing a flow of carrier gas for transporting the aerosol of the nebulized sample and an aerosol outlet

  4. Uranium dioxide calcining apparatus

    International Nuclear Information System (INIS)

    Cole, E.A.; Peterson, R.S.


    This invention relates to an improved continuous calcining apparatus for consistently and controllably producing from calcinable reactive solid compounds of uranium, such as ammonium diuranate, uranium dioxide (UO 2 ) having an oxygen to uranium ratio of less than 2.2. The apparatus comprises means at the outlet end of a calciner kiln for receiving hot UO 2 , means for cooling the UO 2 to a temperature of below 100 deg C and conveying the cooled UO 2 to storage or to subsequent UO 2 processing apparatus where it finally comes into contact with air, the means for receiving cooling and conveying being sealed to the outlet end of the calciner and being maintained full of UO 2 and so operable as to exclude atmospheric oxygen from coming into contact with any UO 2 which is at elevated temperatures where it would readily oxidize, without the use of extra hydrogen gas in said means. (author)

  5. Electroplating method and apparatus

    International Nuclear Information System (INIS)

    Looney, R.B.; Smith, W.E.L.


    Disclosed is an apparatus for high speed electroplating or anodizing tubular members such as nuclear reactor fuel elements. A loading arm positions the member on a base for subsequent support by one of two sets of electrical contacts. A carriage assembly positions electrodes into and around the member. Electrolyte is pumped between the electrodes and the member while electric current is applied. Programmed controls sequentially employ each of the two sets of contacts to expose all surfaces of the member to the electrolyte. The member is removed from the apparatus by an unloading arm

  6. Electroplating method and apparatus (United States)

    Looney, Robert B.; Smith, William E. L.


    An apparatus for high speed electroplating or anodizing tubular members such as nuclear reactor fuel elements. A loading arm positions the member on a base for subsequent support by one of two sets of electrical contacts. A carriage assembly positions electrodes into and around the member. Electrolyte is pumped between the electrodes and the member while electric current is applied. Programmed controls sequentially employ each of the two sets of contacts to expose all surfaces of the member to the electrolyte. The member is removed from the apparatus by an unloading arm.

  7. Applications and limitations of micro-XCT imaging in the studies of Permian radiolarians: A new genus with bi-polar main spines

    Directory of Open Access Journals (Sweden)

    Yifan Xiao


    Full Text Available Microfocus X-ray Computed Tomography (micro-XCT has been employed recently in radiolarian studies, though so far primarily to generate high quality tomographic images. Although micro-XCT technique cannot always produce high-quality tomographic images, it frequently can provide valuable information on the internal structure of spongy polycystines. Here we employ micro-XCT to understand internal skeletal structures of several Permian specimens of polycystine radiolarians. Structural inferences from micro-XCT images are compared to images of the same specimens made with SEM and transmitted light microscopy (TLM. The utility of micro-XCT for imaging internal structures is first confirmed by examining the spongy, flat, four-spined species Tetraspongodiscus stauracanthus. Micro-XCT method is then used to examine the internal structures of a spherical to elliptical polycystine with two bi-polar main spines, Dalongicaepa bipolaris Xiao and Suzuki gen. et sp. nov., from the Dalong Formation (Changhsingian of South China. The new genus is characterized by four to seven densely concentric shells with a large spherical hollow in the center and two cylindrical spines at both poles of the cortical shell, and belongs to the family Spongotortilispinidae. Spherical to elliptical polycystines with bi-polar main spines are similar in external appearance, and their phylogenetic relationships are only determinable by examination of the internal structures. We therefore analyzed all Permian and Mesozoic spherical to elliptical polycystines with bi-polar main spines showing internal structures, using cluster analysis to measure similarity. The results show distinctive differences in internal structures and suggest that family level relationships should be revised in the future.

  8. Semiconductor apparatus and method of fabrication for a semiconductor apparatus

    NARCIS (Netherlands)


    The invention relates to a semiconductor apparatus (1) and a method of fabrication for a semiconductor apparatus (1), wherein the semiconductor apparatus (1) comprises a semiconductor layer (2) and a passivation layer (3), arranged on a surface of the semiconductor layer (2), for passivating the

  9. Diseases of the branquial apparatus

    International Nuclear Information System (INIS)

    Perez-Candela, V.; Wiehoff, A.; Avial, R.


    To correlate ht embryologic and radiologic findings in the branchial apparatus or system with the anomalies that can occur. We reviewed the cases of branchial anomalies examined over the past 6 years, finding periparotid cysts at the first branchial cleft (n=2), cysts (n=13) and fistulas (n=4) at the second, and cysts (n=2) and thymopharyngeal cysts (n=3) at the third. The studies included ultrasound, computed tomography, magnetic resonance imaging and fistulography. All the patients underwent surgery, with histological confirmation. Knowledge of the embryology of the branchial apparatus or system helps in the understanding of anomalies, which appear as cervical cystic masses, mainly located along the anterior border of the sternocleidomastoid (SCM) muscle, or as fistulas running from the exterior to the pharyngeal lumen at the level of the tonsillar fossa, sometimes forming sinuses, that is fistulas that are blind at either the external or internal end. The most common anomalies arise from the second branchial cleft and are easily diagnosed in the presence of a cystic mass located to one side of the SCM muscle, behind the submandibular gland and occupying the carotid space. (Author) 14 refs

  10. The Bochum Polarized Target

    International Nuclear Information System (INIS)

    Reicherz, G.; Goertz, S.; Harmsen, J.; Heckmann, J.; Meier, A.; Meyer, W.; Radtke, E.


    The Bochum 'Polarized Target' group develops the target material 6 LiD for the COMPASS experiment at CERN. Several different materials like alcohols, alcanes and ammonia are under investigation. Solid State Targets are polarized in magnetic fields higher than B=2.5T and at temperatures below T=1K. For the Dynamic Nuclear Polarization process, paramagnetic centers are induced chemically or by irradiation with ionizing beams. The radical density is a critical factor for optimization of polarization and relaxation times at adequate magnetic fields and temperatures. In a high sensitive EPR--apparatus, an evaporator and a dilution cryostat with a continuous wave NMR--system, the materials are investigated and optimized. To improve the polarization measurement, the Liverpool NMR-box is modified by exchanging the fixed capacitor for a varicap diode which not only makes the tuning very easy but also provides a continuously tuned circuit. The dependence of the signal area upon the circuit current is measured and it is shown that it follows a linear function

  11. Instrumentation with polarized neutrons

    International Nuclear Information System (INIS)

    Boeni, P.; Muenzer, W.; Ostermann, A.


    Neutron scattering with polarization analysis is an indispensable tool for the investigation of novel materials exhibiting electronic, magnetic, and orbital degrees of freedom. In addition, polarized neutrons are necessary for neutron spin precession techniques that path the way to obtain extremely high resolution in space and time. Last but not least, polarized neutrons are being used for fundamental studies as well as very recently for neutron imaging. Many years ago, neutron beam lines were simply adapted for polarized beam applications by adding polarizing elements leading usually to unacceptable losses in neutron intensity. Recently, an increasing number of beam lines are designed such that an optimum use of polarized neutrons is facilitated. In addition, marked progress has been obtained in the technology of 3 He polarizers and the reflectivity of large-m supermirrors. Therefore, if properly designed, only factors of approximately 2-3 in neutron intensity are lost. It is shown that S-benders provide neutron beams with an almost wavelength independent polarization. Using twin cavities, polarized beams with a homogeneous phase space and P>0.99 can be produced without significantly sacrificing intensity. It is argued that elliptic guides, which are coated with large m polarizing supermirrors, provide the highest flux.

  12. Tomographic scanning apparatus

    International Nuclear Information System (INIS)


    Details are given of a tomographic scanning apparatus, with particular reference to the means of adjusting the apparent gain of the signal processing means for receiving output signals from the detectors, to compensate for drift in the gain characteristics, including means for passing a reference signal. (U.K.)

  13. Positioning and locking apparatus (United States)

    Hayward, M.L.; Harper, W.H.


    A positioning and locking apparatus including a fixture having a rotatable torque ring provided with a plurality of cam segments for automatically guiding a container into a desired location within the fixture. Rotation of the ring turns the container into a final position in pressure sealing relation against a hatch member.

  14. Electrolysis apparatus and method

    International Nuclear Information System (INIS)


    A procedure in which electrolysis is combined with radiolysis to improve the reaction yield is proposed for the production of hydrogen and oxygen from water. An apparatus for this procedure is disclosed. High-energy electric pulses are applied between the anode and kathode of an electrolytical cell in such a way that short-wave electromagnetic radiation is generated at the same time

  15. Mobile lighting apparatus (United States)

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl


    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  16. Apparatus for decomposing shale

    Energy Technology Data Exchange (ETDEWEB)

    Gislain, M


    The apparatus is designed to fulfill the three following conditions: (1) complete extraction of the mineral oil, by avoiding partial decomposition; (2) purification of the said oil from products formed in the decomposition of the shale; (3) breaking down of the said oil into more products of different density. The separation of the heavy and bituminous products is claimed.

  17. Building scientific apparatus

    National Research Council Canada - National Science Library

    Moore, John H; Davis, Christopher C; Coplan, Michael A; Greer, Sandra C


    ... specification of the components of apparatus, many new to this edition. Data on the properties of materials and components used by manufacturers are included. Mechanical, optical, and electronic construction techniques carried out in the laboratory, as well as those let out to specialized shops, are also described. Step-by-step instruc...

  18. Cellular mechanisms within the juxtaglomerular apparatus

    DEFF Research Database (Denmark)

    Briggs, J P; Skøtt, O; Schnermann, J


    Cl concentration at the macular densa. This change also results in inhibition of secretion of renin. The macula densa has a unique location near the terminal end of the thick ascending limb, where NaCl concentration is highly flow dependent. The cellular mechanisms by which changes in tubular fluid NaCl produce...... vasoconstriction and inhibition of renin secretion are unknown, but the anatomy of the juxtaglomerular apparatus strongly suggests that such responses may be mediated by the extraglomerular mesangial cells located in the polar cushion underlying the macula densa. Recent evidence suggests that interstitial chloride...

  19. Far field photoluminescence imaging of single AlGaN nanowire in the sub-wavelength scale using confinement of polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Sivadasan, A.K.; Dhara, Sandip [Nanomaterials and Sensors Section, Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam (India); Sardar, Manas [Theoretical Studies Section, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)


    Till now the nanoscale focusing and imaging in the sub-diffraction limit is achieved mainly with the help of plasmonic field enhancement by confining the light assisted with noble metal nanostructures. Using far field imaging technique, we have recorded polarized spectroscopic photoluminescence (PL) imaging of a single AlGaN nanowire (NW) of diameter ∝100 nm using confinement of polarized light. It is found that the PL from a single NW is influenced by the proximity to other NWs. The PL intensity is proportional to 1/(l x d), where l and d are the average NW length and separation between the NWs, respectively. We suggest that the proximity induced PL intensity enhancement can be understood by assuming the existence of reasonably long lived photons in the intervening space between the NWs. A nonzero non-equilibrium population of such photons may cause stimulated emission leading to the enhancement of PL emission with the intensity proportional to 1/(l x d). The enhancement of PL emission facilitates far field spectroscopic imaging of a single semiconductor AlGaN NW of sub-wavelength dimension. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Radioactive waste processing apparatus (United States)

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.


    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  1. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.


    Intra-oral dental X-ray apparatus for panoramic dental radiography is described in detail. It comprises an electron gun having an elongated tubular target carrier extending into the patient's mouth. The carrier supports an inclined target for direction of an X-ray pattern towards a film positioned externally of the patient's mouth. Image definition is improved by a focusing anode which focuses the electron beam into a sharp spot (0.05 to 0.10 mm diameter) on the target. The potential on the focusing anode is adjustable to vary the size of the spot. An X-ray transmitting ceramic (oxides of Be, Al and Si) window is positioned adjacent to the front face of the target. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  2. Detection of polar vapours

    International Nuclear Information System (INIS)

    Blyth, D.A.


    Apparatus for monitoring for polar vapours in a gas consists of (i) a body member defining a passage through which a continuous stream of the gas passes; (ii) an ionising source associated with a region of the passage such that ionization of the gas stream takes place substantially only within the region and also any polar vapour molecules present therein will react with the gas formed to generate ion clusters; and (iii) an electrode for collecting ions carried by the gas stream, the electrode being positioned in the passage downstream of the region and separated from the region by a sufficient distance to ensure that no substantial number of the gas ions formed in said region remains in the gas stream at the collector electrode whilst ensuring that a substantial proportion of the ion clusters formed in the region does remain in the gas stream at the collector electrode. (author)

  3. Perspectives for polarized antiprotons

    International Nuclear Information System (INIS)

    Lenisa, Paolo


    Polarized antiprotons would open a new window in hadron physics providing access to a wealth of single and double spin observables in proton-antiproton interactions. The PAX Collaboration aims to perform the first ever measurement of the spin-dependence of the proton-antiproton cross section at the AD ring at CERN. The spin-dependence of the cross section could in principle be exploited by the spin-filtering technique for the production of a polarized antiproton beam. As a preparatory phase to the experimentation at AD, the PAX Collaboration has initiated a series of dedicated studies with protons at the COSY-ring in Juelich (Germany), aimed at the commissioning of the experimental apparatus and confirmation of the predictions for spin-filtering with protons.

  4. Fluorescence confocal polarizing microscopy

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  5. Ion implantation apparatus

    International Nuclear Information System (INIS)

    Forneris, J.L.; Hicks, W.W.; Keller, J.H.; McKenna, C.M.; Siermarco, J.A.; Mueller, W.F.


    The invention relates to ion bombardment or implantation apparatus. It comprises an apparatus for bombarding a target with a beam of ions, including an arrangement for measuring the ion beam current and controlling the surface potential of the target. This comprises a Faraday cage formed, at least in part, by the target and by walls adjacent to, and electrically insulated from, the target and surrounding the beam. There is at least one electron source for supplying electrons to the interior of the Faraday cage and means within the cage for blocking direct rectilinear radiation from the source to the target. The target current is measured and combined with the wall currents to provide a measurement of the ion beam current. The quantity of electrons supplied to the interior of the cage can be varied to control the target current and thereby the target surface potential. (U.K.)

  6. Improvements in measuring apparatus

    International Nuclear Information System (INIS)

    Casey, W.


    Measuring apparatus is described that is suitable for gauging the wall profiles of downwardly extending channels in nuclear reactors, but which is equally applicable to channels such as pipe bores and conduits in other types of plant. The apparatus comprises a probe carrying a measuring transducer giving an electrical output. The probe support may be moved stepwise along the channel along a track between end members. An electrical conductor is provided for transmitting the electrical output of the transducer to an indicator located remote from the probe. The probe support may consist of a cable attached at one end to a winding drum, and incorporating an electrical conductor connected to the transducer. Channel engaging means are provided on the probe that permits free upward movement of the probe when the latter is suspended by the cable and moves into gripping engagement with the channel wall when the tension in the cable is relaxed. (U.K.)

  7. Rotational Raman scattering using molecular nitrogen gas for calibration of Thomson-scattering apparatus

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Nakazawa, Ichiro


    Anti-Stokes rotational Raman lines in molecular nitrogen gas were used for the calibration of Thomson-scattering apparatus. It was found that molecular nitrogen gas is suitable for a vessel having strong stray light. The polarization ratio was 0.16 using linear-polarized laser light. (author)

  8. Bi-planal angiographic apparatus

    International Nuclear Information System (INIS)


    Angiography apparatus has an L-arm rotatable about a vertical axis and a U-arm mounted on the upstanding section of the L-arm for rotation about a horizontal axis. An x-ray source is at one end of the U-arm and image receptors including an image intensifier and a first film changer are at the other end to enable making posterior-anterior and anterior-posterior x-ray views at various angles relative to a patient who is located on the isocenter which is the intersection of the horizontal, vertical and x-ray beam axis. A second film changer for making lateral generally isocentric views is mounted within the U-arm on a stand that is movable along the horizontal U-arm axis to allow obtaining various distances between the image plane of the film and another x-ray source. The lateral changer is on a mechanism for shifting it vertically and longitudinally a limited amount and for rotating it with a motor so this changer will stay level until the U-arm has been tilted through a pre-determined angle. After this angle is reached motorized rotation is discontinued and the lateral changer is allowed to rotate with the U-arm. (Auth.)

  9. Wave disc engine apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Norbert; Piechna, Janusz; Sun, Guangwei; Parraga, Pablo-Francisco


    A wave disc engine apparatus is provided. A further aspect employs a constricted nozzle in a wave rotor channel. A further aspect provides a sharp bend between an inlet and an outlet in a fluid pathway of a wave rotor, with the bend being spaced away from a peripheral edge of the wave rotor. A radial wave rotor for generating electricity in an automotive vehicle is disclosed in yet another aspect.

  10. Multicusp plasma containment apparatus

    International Nuclear Information System (INIS)

    Limpaecher, R.


    It has been discovered that plasma containment by a chamber having multi-pole magnetic cusp reflecting walls in combination with electronic injection for electrostatic containment provides the means for generating magnetic field free quiescent plasmas for practical application in ion-pumps, electronic switches, and the like. 1250 ''alnico v'' magnets 1/2 '' X 1/2 '' X 1 1/2 '' provide containment in one embodiment. Electromagnets embodying toroidal funneling extend the principle to fusion apparatus

  11. Apparatus for obtaining radiographs

    International Nuclear Information System (INIS)

    Frank, L.F.


    An apparatus for making x-ray pictures by imagewise exposing a cloud chamber containing a high atomic number gas mixed with a condensate vapor is described. The gas is under sufficiently high pressure to assure substantially complete absorption of the incident x-rays. Optical means are provided so that visible x-ray tracks are viewed from a direction aligned with the tracks

  12. Pyrolysis process and apparatus (United States)

    Lee, Chang-Kuei


    This invention discloses a process and apparatus for pyrolyzing particulate coal by heating with a particulate solid heating media in a transport reactor. The invention tends to dampen fluctuations in the flow of heating media upstream of the pyrolysis zone, and by so doing forms a substantially continuous and substantially uniform annular column of heating media flowing downwardly along the inside diameter of the reactor. The invention is particularly useful for bituminous or agglomerative type coals.

  13. Thermal power measurement apparatus

    International Nuclear Information System (INIS)


    Thermal power measurements are important in nuclear power plants, fossil-fuel plants and other closed loop systems such as heat exchangers and chemical reactors. The main object of this invention is to determine the enthalpy of a fluid using only acoustically determined sound speed and correlating the speed with enthalpy. An enthalpy change is measured between two points in the fluid flow: the apparatus is described in detail. (U.K.)

  14. Development of the spectrometric imaging apparatus of laser induced fluorescence from plants and estimation of chlorophyll contents of rice leaves; Laser reiki keiko sokutei sochi no kaihatsu to inehanai no chlorophyll ganryo no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, K.; Shoji, K.; Hanyu, H.


    Photosynthetic activity of plants is an important factor to assess the micrometeorological effect of plant canopy or to estimate the influence of circumstances such as water stress. Light illumination induces fluorescence from a leaf or suspension of chloroplasts. The red chlorophyll fluorescence had been used to determine the process of the electron transportation in photosynthetic reaction. The fluorescence source other than chlorophyll is not announced sufficiently, but is supposed to be useful to determine the contents of the substance corresponding to physiological response of plants. We developed a fluorescence imaging apparatus to observe spectrum and distribution of laser induced fluorescence from a leaf. Pulsed UV-laser (Nd:YAG) induced blue-green fluorescence and red chlorophyll fluorescence from a green leaf. The pulse modulated measuring light and CCD with image-intensifier (ICCD) enable to detect the fluorescence from plants under illumination. The laser induced fluorescence (LIF) spectra were investigated to estimate the chlorophyll contents in leaves of rice. During the greening course of dark grown etiolated rice leaves, chlorophyll contents were determined using the extraction of leaves and steady state LIF spectra were measured. As a result, the ratio of fluorescent intensity between blue-green and red peaks (F460/F740 and F510/F740) decreased in proportion to alteration of chlorophyll contents respectively. These fluorescence intensity ratios perform more precise estimation of higher chlorophyll contents of leaves than reported red chlorophyll fluorescence intensity ratio (F690/E740). (author)

  15. Air-cleaning apparatus

    International Nuclear Information System (INIS)

    Howard, A.G.


    An air-cleaning, heat-exchange apparatus includes a main housing portion connected by means of an air inlet fan to the kitchen exhaust stack of a restaurant. The apparatus includes a plurality of heat exchangers through which a heat-absorptive fluid is circulated, simultaneously, by means of a suitable fluid pump. These heat exchangers absorb heat from the hot exhaust gas, out of the exhaust stack of the restaurant, which flows over and through these heat exchangers and transfers this heat to the circulating fluid which communicates with remote heat exchangers. These remote heat exchangers further transfer this heat to a stream of air, such as that from a cold-air return duct for supplementing the conventional heating system of the restaurant. Due to the fact that such hot exhaust gas is heavily grease laden , grease will be deposited on virtually all internal surfaces of the apparatus which this exhaust gas contacts. Consequently, means are provided for spraying these contacted internal surfaces , as well as the hot exhaust gas itself, with a detergent solution in which the grease is soluble, thereby removing grease buildup from these internal surfaces

  16. Dosimeter charging apparatus

    International Nuclear Information System (INIS)

    Reuter, F.A.; Moorman, Ch.J.


    An apparatus for charging a dosimeter which has a capacitor connected between first and second electrodes and a movable electrode in a chamber electrically connected to the first electrode. The movable electrode deflects varying amounts depending upon the charge present on said capacitor. The charger apparatus includes first and second charger electrodes couplable to the first and second dosimeter electrodes. To charge the dosimeter, it is urged downwardly into a charging socket on the charger apparatus. The second dosimeter electrode, which is the dosimeter housing, is electrically coupled to the second charger electrode through a conductive ring which is urged upwardly by a spring. As the dosimeter is urged into the socket, the ring moves downwardly, in contact with the second charger electrode. As the dosimeter is further urged downwardly, the first dosimeter electrode and first charger electrode contact one another, and an insulator post carrying the first and second charger electrodes is urged downwardly. Downward movement of the post effects the application of a charging potential between the first and second charger electrodes. After the charging potential has been applied, the dosimeter is moved further into the charging socket against the force of a relatively heavy biasing spring until the dosimeter reaches a mechanical stop in the charging socket

  17. Parallel Polarization State Generation. (United States)

    She, Alan; Capasso, Federico


    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  18. Evidence of excited state localization and static disorder in LH2 investigated by 2D-polarization single-molecule imaging at room temperature. (United States)

    Tubasum, Sumera; Camacho, Rafael; Meyer, Matthias; Yadav, Dheerendra; Cogdell, Richard J; Pullerits, Tõnu; Scheblykin, Ivan G


    Two-dimensional polarization fluorescence imaging of single light harvesting complexes 2 (LH2) of Rps. acidophila was carried out to investigate the polarization properties of excitation and fluorescence emission simultaneously, at room temperature. In two separate experiments we excited LH2 with a spectrally narrow laser line matched to the absorption bands of the two chromophore rings, B800 and B850, thereby indirectly and directly triggering fluorescence of the B850 exciton state. A correlation analysis of the polarization modulation depths in excitation and emission for a large number of single complexes was performed. Our results show, in comparison to B800, that the B850 ring is a more isotropic absorber due to the excitonic nature of its excited states. At the same time, we observed a strong tendency for LH2 to emit with dipolar character, from which preferential localization of the emissive exciton, stable for minutes, is inferred. We argue that the observed effects can consistently be explained by static energetic disorder and/or deformation of the complex, with possible involvement of exciton self-trapping.

  19. Comparison study for multiple ionization of carbonyl sulfide by linearly and circularly polarized intense femtosecond laser fields using Coulomb explosion imaging (United States)

    Ma, Pan; Wang, Chuncheng; Luo, Sizuo; Yu, Xitao; Li, Xiaokai; Wang, Zhenzhen; Hu, Wenhui; Yu, Jiaqi; Yang, Yizhang; Tian, Xu; Cui, Zhonghua; Ding, Dajun


    We studied the relative yields and dissociation dynamics for two- and three-body Coulomb explosion (CE) channels from highly charged carbonyl sulfide molecules in intense laser fields using the CE imaging technique. The electron recollision contributions are evaluated by comparing the relative yields for the multiple ionization process in linearly polarized and circularly polarized (LP and CP) laser fields. The nonsequential multiple ionization is only confirmed for the charge states of 2 to 4 because the energy for further ionization from the inner orbital is much larger than the maximum recollision energy, 3.2U p . The novel deviations of kinetic energy releases distributions between LP and CP pulses are observed for the charge states higher than 4. It can be attributed to the stronger molecular bending in highly charged states before three-body CE with CP light, in which the bending wave packet is initialed by the triple or quartic ionization and spread along their potential curves. Compared to LP light, CP light ionizes a larger fraction of bending molecules in the polarization plane.

  20. Water intake fish diversion apparatus

    International Nuclear Information System (INIS)

    Taft, E.P. III; Cook, T.C.


    A fish diversion apparatus uses a plane screen to divert fish for variety of types of water intakes in order to protect fish from injury and death. The apparatus permits selection of a relatively small screen angle, for example ten degrees, to minimize fish injury. The apparatus permits selection of a high water velocity, for example ten feet per second, to maximize power generation efficiency. The apparatus is especially suitable retrofit to existing water intakes. The apparatus is modular to allow use plural modules in parallel to adjust for water flow conditions. The apparatus has a floor, two opposite side walls, and a roof which define a water flow passage and a plane screen within the passage. The screen is oriented to divert fish into a fish bypass which carries fish to a safe discharge location. The dimensions of the floor, walls, and roof are selected to define the dimensions of the passage and to permit selection of the screen angle. The floor is bi-level with a level upstream of the screen and a level beneath screen selected to provide a uniform flow distribution through the screen. The apparatus may include separation walls to provide a water flow channel between the apparatus and the water intake. Lead walls may be used to adjust water flow conditions into the apparatus. The apparatus features stoplog guides near its upstream and downstream ends to permit the water flow passage to be dewatered. 3 figs

  1. FRET structure with non-radiative acceptor provided by dye-linker-glass surface complex and single-molecule photodynamics by TIRFM-polarized imaging

    International Nuclear Information System (INIS)

    Tani, Toshiro; Mashimo, Kei; Suzuki, Tetsu; Horiuchi, Hiromi; Oda, Masaru


    We present our recent study of microscopic single-molecule imaging on the artificial complex of tetramethylrhodamine linked with a propyl chain onto silica glass surface, i.e. an asymmetric fluorescence resonance energy transfer (FRET) structure with non-radiative acceptor. In the synthesis of the complex, we used a mixture of two kinds of isomers to introduce rather small photodynamic difference among them. This isomeric structure change will provide more or less a distinctive photophysical change in e.g. non-radiative relaxation rate. Our recent observation at room temperatures, so far, shows that such contributions can be discriminated in the histograms of the fluorescent spot intensities; broad but distinctive multi-components appear. To identify the isomeric difference as a cause of structures, some configurational assumptions are necessary. One such basic prerequisite is that the transition dipoles of the chromophores should be oriented almost parallel to the glass surface. In order to make clear the modeling, we also provide preliminary experiments on the polarization dependence of the imaging under rotating polarization in epi-illumination

  2. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.


    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  3. Method and apparatus to monitor a beam of ionizing radiation (United States)

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.


    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  4. System and apparatus for neutron radiography

    International Nuclear Information System (INIS)

    Whittemore, W.L.


    This patent describes a neutron radiography apparatus. It comprises an imaging plane; a neutron moderator having a cavity defining a convergent collimator, the cavity having a base and converging walls of neutron moderating material terminating at an aperture; a divergent collimator coaxially joined to the cavity at the aperture, the divergent collimator having diverging walls of radiation- absorbing material extending from the aperture to an expanded distal opening for irradiating the imaging plane; sources of neutrons disposed symmetrically about the base of the cavity; a neutron moderating material disposed for maximum neutron thermalization between the sources and the base of the cavity; and means for substantially shielding the plane from electromagnetic energy

  5. Control of an X-ray cine radiography apparatus

    International Nuclear Information System (INIS)

    Nishio, K.


    This patent application describes an X-ray cine radiography apparatus comprising an X-ray tube, an image intensifier for converting the X-rays transmitted through an object into a visual image and a cine camera for picking up the visual image, a photomultiplier detects the brightness of the visual image to produce a brightness signal and a potentiometer detects the actual tube voltage of said X-ray tube. (author)

  6. Informationization nuclear apparatus communication technique

    International Nuclear Information System (INIS)

    Yu Tiqi; Fang Zongliang; Wen Qilin


    The paper explains the request of communication ability in nuclear technique application area. Based on the actuality of nuclear apparatus communication ability, and mainly combining with the development of communication technique, the authors analyzes the application trend of communication technique applying in nuclear apparatus, for the apparatus and system needing communication ability, they need selecting suitable communication means to make them accomplish the task immediately and effectively. (authors)

  7. Thermal stir welding apparatus (United States)

    Ding, R. Jeffrey (Inventor)


    A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  8. Improvements in radiological apparatus

    International Nuclear Information System (INIS)

    Grady, J.K.


    Improvements in radiological apparatus are described which allow better unilateral access to the patient. A base mounts ring supports for rotation about an axis and a table for supporting a subject is fitted to the ring support. An X-ray tube and receptor are held on opposite ends of a two-limbed carriage and radiation axis. The carriage is mounted on a sliding arm carried on the ring support and extending parallel to the rotational axis of the support. The carriage also pivots on the arm about an axis perpendicular to the rotational axis and to the radiation axis. (author)

  9. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    Abele, M.


    A computerized tomographic scanning apparatus suitable for diagnosis and for improving target identification in stereotactic neurosurgery is described. It consists of a base, a source of penetrating energy, a detector which produces scanning signals and detector positioning means. A frame with top and bottom arms secures the detector and source to the top and bottom arms respectively. A drive mechanism rotates the frame about an axis along which the frame may also be moved. Finally, the detector may be moved relative to the bottom arm in a direction contrary to the rotation of the frame. (U.K.)

  10. Control rod testing apparatus

    International Nuclear Information System (INIS)

    Gaunt, R.R.; Ashman, C.M.


    A control rod testing apparatus is described comprising: a first guide means having a vertical cylindrical opening for grossly guiding a control rod; a second guide means having a vertical cylindrical opening for grossly guiding a control rod. The first and second guide means are supported at axially spaced locations with the openings coaxial; and a substantially cylindrical subassembly having a vertical cylindrical opening therethrough. The subassembly is trapped coaxial with and between the first and second guide means, and the subassembly radially floats with respect to the first and second guide means

  11. Apparatus for chemical synthesis (United States)

    Kong, Peter C [Idaho Falls, ID; Herring, J Stephen [Idaho Falls, ID; Grandy, Jon D [Idaho Falls, ID


    A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

  12. The ATHENA Antihydrogen Apparatus

    CERN Document Server

    Amoretti, M; Bonomi, G; Bouchta, A; Bowe, P; Carraro, C; Charlton, M; Collier, M; Doser, Michael; Filippini, V; Fine, K S; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Glauser, A; Grögler, D; Hangst, Jeffrey S; Hayano, R S; Higaki, H; Holzscheiter, Michael H; Joffrain, W; Jørgensen, L V; Lagomarsino, V; Landua, Rolf; Cesar, C L; Lindelöf, D; Lodi-Rizzini, E; Macri, M; Madsen, N; Manuzio, D; Manuzio, G; Marchesotti, M; Montagna, P; Pruys, H S; Regenfus, C; Riedler, P; Rochet, J; Rotondi, A; Rouleau, G; Testera, G; Van der Werf, D P; Variola, A; Watson, T L; Yamazaki, T; Yamazaki, Y


    The ATHENA apparatus that recently produced and detected the first cold antihydrogen atoms is described. Its main features, which are described herein, are: an external positron accumulator, making it possible to accumulate large numbers of positrons; a separate antiproton catching trap, optimizing the catching, colling and handling of antiprotons: a unique high resolution antihydrogen annihilation detector, allowing a clear determination that antihydrogen has been produced; an open, modular design making variations in the experimental approach possible and a "nested" Penning trap situated in a cryogenic, 3T magnetic field environment used for the mixing of the antiprotons and positrons.

  13. Isotope diagnostics apparatus

    International Nuclear Information System (INIS)

    Herrschaft, H.


    The invention relates to a measuring probe for an isotope diagnostics apparatus to determine the distribution of radioactive substances in a body by measuring the radiation emanating from this body by means of a multiplicity of measuring probes directed simultaneously towards areas of measuring surfae and carried in guidances of a holding block. The measuring results of the individual probes are recorded separately, thus allowing the possibility of being evaluated separately, too. Measuring probes of this kind are used in multi-channel measuring objects and are useful particularly for determining the regional cerebral blood flow. (orig./ORU) [de

  14. X-ray apparatus

    International Nuclear Information System (INIS)

    Grady, J.K.


    X-ray apparatus is described which has a shutter between the X-ray source and the patient. The shutter controls the level of radiation to which the patient is exposed instead of merely discontinuing the electric power supplied to the source. When the shutter is opened a radiation sensor senses the level of X-radiation. When a preset quantity of X-radiation has been measured an exposure control closes the shutter. Instead of using the radiation sensor, the integrated power supplied to the anode of the X-ray source may be measured. (author)

  15. Remote docking apparatus

    International Nuclear Information System (INIS)

    Dent, T.H.; Sumpman, W.C.; Wilhelm, J.J.


    The remote docking apparatus comprises a support plate with locking devices mounted thereon. The locking devices are capable of being inserted into tubular members for suspending the support plate therefrom. A vertical member is attached to the support plate with an attachment mechanism attached to the vertical member. A remote access manipulator is capable of being attached to the attachment mechanism so that the vertical member can position the remote access manipulator so that the remote access manipulator can be initially attached to the tubular members in a well defined manner

  16. Borehole sealing method and apparatus

    International Nuclear Information System (INIS)

    Hartley, J.N.; Jansen, G. Jr.


    A method and apparatus is described for sealing boreholes in the earth. The borehole is blocked at the sealing level, and a sealing apparatus capable of melting rock and earth is positioned in the borehole just above seal level. The apparatus is heated to rock-melting temperature and powdered rock or other sealing material is transported down the borehole to the apparatus where it is melted, pooling on the mechanical block and allowed to cool and solidify, sealing the hole. Any length of the borehole can be sealed by slowly raising the apparatus in the borehole while continuously supplying powdered rock to the apparatus to be melted and added to the top of the column of molten and cooling rock, forming a continuous borehole seal. The sealing apparatus consists of a heater capable of melting rock, including means for supplying power to the heater, means for transporting powdered rock down the borehole to the heater, means for cooling the apparatus and means for positioning the apparatus in the borehole. 5 claims, 1 figure

  17. Apparatus for gamma ray radiography

    International Nuclear Information System (INIS)

    Kobayashi, Masatoshi; Enomoto, Shigemasa; Oga, Hiroshi


    This is the standard of Japan Non-Destructive Inspection Society, NDIS 1101-79, which stipulates on the design, construction and testing method of the apparatuses for gamma ray radiography used for taking industrial radiograms. The gamma ray apparatuses stipulated in this standard are those containing sealed radioactive isotopes exceeding 100 μCi, which emit gamma ray. The gamma ray apparatuses are classified into three groups according to their movability. The general design conditions, the irradiation dose rate and the sealed radiation sources for the gamma ray apparatuses are stipulated. The construction of the gamma ray apparatuses must be in accordance with the notification No. 52 of the Ministry of Labor, and safety devices and collimators must be equipped. The main bodies of the gamma ray apparatuses must pass the vibration test, penetration test, impact test and shielding efficiency test. The method of each test is described. The attached equipments must be also tested. The tests according to this standard are carried out by the makers of the apparatuses. The test records must be made when the apparatuses have passed the tests, and the test certificates are attached. The limit of guarantee by the endurance test must be clearly shown. The items to be shown on the apparatuses are stipulated. (Kako, I.)

  18. In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Bagnaninchi, P O; Yang, Y; Maffulli, G; El Haj, A; Maffulli, N; Bonesi, M; Meglinski, I; Phelan, C


    The objective of this study was to develop a method based on polarization-sensitive optical coherent tomography (PSOCT) for the imaging and quantification of degenerative changes associated with Achilles tendon rupture. Ex vivo PSOCT examinations were performed in 24 patients. The study involved samples from 14 ruptured Achilles tendons, 4 tendinopathic Achilles tendons and 6 patellar tendons (collected during total knee replacement) as non-ruptured controls. The samples were imaged in both intensity and phase retardation modes within 24 h after surgery, and birefringence was quantified. The samples were fixed and processed for histology immediately after imaging. Slides were assessed twice in a blind manner to provide a semi-quantitative histological score of degeneration. In-depth micro structural imaging was demonstrated. Collagen disorganization and high cellularity were observable by PSOCT as the main markers associated with pathological features. Quantitative assessment of birefringence and penetration depth found significant differences between non-ruptured and ruptured tendons. Microstructure abnormalities were observed in the microstructure of two out of four tendinopathic samples. PSOCT has the potential to explore in situ and in-depth pathological change associated with Achilles tendon rupture, and could help to delineate abnormalities in tendinopathic samples in vivo.

  19. Achievement of transportable polarized D, in solid HD, with a one day passively maintained polarization

    International Nuclear Information System (INIS)

    Honig, A.; Alexander, N.; Fan, Q.; Wei, X.; Yu, Y.Y.


    At a previous workshop, we discussed evaporating solid HD with spin-polarized deuterons to produce a high density polarized deuteron gaseous internal target. Since then, we have achieved in solid HD 38% polarized D, whose spin-lattice relaxation time at 1.5 K in a field of 0.1 T is of the order of a day. Optimization of the procedure with the present apparatus should result in 60% D polarization, and longer polarization holding times. The polarized sample of approximately 0.2 cm 3 volume used here is extractable from the dilution refrigerator with a cold-transfer apparatus which maintains the sample at or below 5 K, insuring retention of the high polarization. It is subsequently insertable into a variety of systems, and employable as a polarized solid, liquid, or gas. We are exploring the possibility of extending the polarization maintenance time to about a month (with a matched 1 month preparation time), of polarizing metastably H as well as D, and of producing much larger samples, of the order of 100 cm 3

  20. Sources of polarized negative ions: progress and prospects

    International Nuclear Information System (INIS)

    Haeberli, W.


    A summary of recent progress in the art of producing beams of polarized ions is given. In all sources of polarized ions, one first produces (or selects) neutral atoms which are polarized in electron spin. Those types of sources which use a beam of thermal polarized hydrogen atoms are discussed. Progress made in the preparation of the atomic beam and the methods used to convert the neutral atoms to polarized ions is summarized. The second type of source discussed is based on fast (keV) polarized hydrogen atoms. Conversion to negative ions is very simple because one only needs to pass the fast atoms through a suitable charge exchange medium (gas or vapor). However, the production of the polarized atoms is more difficult in this case. The proposal to employ polarized alkali vapor to form a beam of polarized fast H atoms, where the polarized alkali atoms are produced either by an atomic beam apparatus or by optical pumping is discussed

  1. Isotope separation apparatus

    International Nuclear Information System (INIS)

    Lyon, R.K.; Eisner, P.N.; Thomas, W.R.I.


    This application discloses a method for and an apparatus in which isotopes of an element in a compared are separated from each other while that compound, i.e., including a mixture of such isotopes, flows along a predetermined path. The apparatus includes a flow tube having a beginning and an end. The mixture of isotopes is introduced into the flow tube at a first introduction point between the beginning and the end thereof to flow the mixture toward the end thereof. A laser irradiates the flow tube dissociating compounds of a preselected one of said isotopes thereby converting the mixture in an isotopically selective manner. The dissociation products are removed from the tube at a first removal point between the first introduction point and the end. The dissociation product removed at the the first removal point are reconverted back into the comound thereby providing a first stage enriched compound. This first stage enriched compound is reintroduced into the flow tube at a second introduction point between the beginning thereof and the first introduction point. Further product is removed from the flow tube at a second removal point between the second introduction point and the first introduction point. The second introduction point is chosen so that the isotope composition of the first stage enriched compound is approximately the same as that of the compound in the flow tube

  2. Apparatus for fuel replacement

    International Nuclear Information System (INIS)

    Imada, Takahiko.


    Object: To support a telescope mast such that no deforming load is applied to it even during massive vibration, it is held fixed at the time of fuel replacement to permit satisfactory remote control operation by automatic operation. Structure: The body of the fuel replacement apparatus is provided with telescope mast fixing means comprising a slide base supported for reciprocal movement with respect to a telescope mast, an operating arm pivoted at the slide base, a wrist member mounted on the free end of the operating arm and an engagement member for restricting the slide base and operating arm at the time of loading and unloading the fuel. When loading and unloading the fuel, the slide base and operating arm are restrained by the engagement member to reliably restrict the vibration of the telescope mast. When the fuel replacement apparatus is moved, the means provided on the operating arm is smoothly displaced to follow the swing (vibration) of the telescope mast to prevent the deforming load from being applied to the support portion or other areas. The wrist member supports the telescope mast such that it can be rotated while restraining movement in the axial direction, and it is provided with revolution drive means for rotating the telescope mast under remote control. (Kamimura, M.)

  3. Radiographic scanner apparatus

    International Nuclear Information System (INIS)

    Wake, R.H.


    The preferred embodiment of this invention includes a hardware system, or processing means, which operates faster than software. Moreover the computer needed is less expensive and smaller. Radiographic scanner apparatus is described for measuring the intensity of radiation after passage through a planar region and for reconstructing a representation of the attenuation of radiation by the medium. There is a source which can be rotated, and detectors, the output from which forms a data line. The detectors are disposed opposite the planar region from the source to produce a succession of data lines corresponding to the succession of angular orientations of the source. There is a convolver means for convolving each of these data lines, with a filter function, and a means of processing the convolved data lines to create the representation of the radiation attenuation in the planar region. There is also apparatus to generate a succession of data lines indicating radiation attenuation along a determinable path with convolver means. (U.K.)

  4. Apparatus for gamma radiography

    International Nuclear Information System (INIS)


    The aim of the present standard is to fix the rules for the construction of gamma radiography instrumentation without prejudice to the present regulations. These apparatus have to be fitted with only sealed sources conformable to the experimental standard M 61-002. The present standard agrees with the international standard ISO 3999 of 1977 dealing with the same subject. Nevertheless, it is different on the three main following points: it does not accept the same limits of absorbed dose rates in the air calculated on the external surface of projectors; it precribes tightness, bending, crushing and tensile tests for some components of the gamma radiography it prescribes tests of endurance and resistance to breaking for the locking systems of the gamma radiography apparatus. The present standard also specifies the following points: symbols and indications to put on projectors and on the source-holder; identification of the source contained in the projector; and, accompanying documents. The regulation references are given in annexe [fr

  5. Fuel exchanging apparatus

    International Nuclear Information System (INIS)

    Imada, Takahiko; Sato, Hideo.


    Object: To provide a centripetal device, which has an initial spring force greater than a frictional force in an oscillating direction of a telescope mast, on a mast fixing device mounted on a body of fuel exchanging apparatus so that the telescope mast may be secured quickly returning to a predetermined initial position. Structure: When the body of fuel exchanging apparatus is stopped at a predetermined position, a tension spring, which has an initial spring force greater than a frictional force in an oscillating direction of the telescope mast, causes a lug to be forced by means of a push rod to position a sliding base plate to its original position. At the same time, a device of similar structure causes an operating arm to be positioned to the original position, and a lock pin urged by a cylinder is inserted into a through hole in the sliding base plate and operating arm so that the telescope mast may be fixed and retained. (Hanada, M.)

  6. PHIPS-HALO: the airborne particle habit imaging and polar scattering probe - Part 2: Characterization and first results (United States)

    Schnaiter, Martin; Järvinen, Emma; Abdelmonem, Ahmed; Leisner, Thomas


    The novel aircraft optical cloud probe PHIPS-HALO has been developed to establish clarity regarding the fundamental link between the microphysical properties of single atmospheric ice particles and their appropriated angular light scattering function. After final improvements were implemented in the polar nephelometer part and the acquisition software of PHIPS-HALO, the instrument was comprehensively characterized in the laboratory and was deployed in two aircraft missions targeting cirrus and Arctic mixed-phase clouds. This work demonstrates the proper function of the instrument under aircraft conditions and highlights the uniqueness, quality, and limitations of the data that can be expected from PHIPS-HALO in cloud-related aircraft missions.

  7. Polarization recovery through scattering media. (United States)

    de Aguiar, Hilton B; Gigan, Sylvain; Brasselet, Sophie


    The control and use of light polarization in optical sciences and engineering are widespread. Despite remarkable developments in polarization-resolved imaging for life sciences, their transposition to strongly scattering media is currently not possible, because of the inherent depolarization effects arising from multiple scattering. We show an unprecedented phenomenon that opens new possibilities for polarization-resolved microscopy in strongly scattering media: polarization recovery via broadband wavefront shaping. We demonstrate focusing and recovery of the original injected polarization state without using any polarizing optics at the detection. To enable molecular-level structural imaging, an arbitrary rotation of the input polarization does not degrade the quality of the focus. We further exploit the robustness of polarization recovery for structural imaging of biological tissues through scattering media. We retrieve molecular-level organization information of collagen fibers by polarization-resolved second harmonic generation, a topic of wide interest for diagnosis in biomedical optics. Ultimately, the observation of this new phenomenon paves the way for extending current polarization-based methods to strongly scattering environments.

  8. First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS probe

    Directory of Open Access Journals (Sweden)

    A. Abdelmonem


    Full Text Available Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10° and 8° for side and backscattering directions (from 18° to 170°. The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.

  9. First correlated measurements of the shape and scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe (United States)

    Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.


    Studying the radiative impact of cirrus clouds requires the knowledge of the link between their microphysics and the single scattering properties of the cloud particles. Usually, this link is created by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles, simultaneously. Clouds containing particles ranging in size from a few micrometers to about 800 μm diameter can be systematically characterized with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns which were conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced comparable size distributions and images to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is candidate to be a novel air borne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurements instruments.

  10. First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe (United States)

    Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.


    Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.

  11. [Application of polarized light in purulent-septic surgery]. (United States)

    Desiateryk, V I; Mikhno, S P; Kryvyts'kyĭ, Iu M; Kostiuk, S O


    Influence of polarized light on general state and healing of wounds and trophic ulcers in 57 patients with obliterating atherosclerosis of lower extremities, chronic venous insufficiency of extremities, purulent postoperative complications, purulent-septic complications in patients with diabetes mellitus was analyzed. Main mechanisms of the polarized light action in "Bioptron" apparatus were enlighted, effective schemes of its usage were determined.


    Directory of Open Access Journals (Sweden)

    V. A. Dlugunovich


    Full Text Available During photometric measurements involving the use of photometric lamps it is necessary that the filament of lamp takes a strictly predetermined position with respect to the photodetector and the optical axis of the photometric setup. The errors in positioning of alignment filament with respect to the optical axis of the measuring system lead to increase the uncertainty of measurement of the photometric characteristics of the light sources. A typical method for alignment of filament of photometric lamps is based on the use a diopter tubes (telescopes. Using this method, the mounting of filament to the required position is carried out by successive approximations, which requires special concentration and a lot of time. The aim of this work is to develop an apparatus for alignment which allows simultaneous alignment of the filament of lamps in two mutually perpendicular planes. The method and apparatus for alignment of the photometric lamp filament during measurements of the photometric characteristics of light sources based on two digital video cameras is described in this paper. The apparatus allows to simultaneously displaying the image of lamps filament on the computer screen in two mutually perpendicular planes. The apparatus eliminates a large number of functional units requiring elementwise alignment and reduces the time required to carry out the alignment. The apparatus also provides the imaging of lamps filament with opaque coated on the bulb. The apparatus is used at the National standard of light intensity and illuminance units of the Republic of Belarus. 

  13. Coronal Polarization of Pseudostreamers and the Solar Polar Field Reversal (United States)

    Rachmeler, L. A.; Guennou, C.; Seaton, D. B.; Gibson, S. E.; Auchere, F.


    The reversal of the solar polar magnetic field is notoriously hard to pin down due to the extreme viewing angle of the pole. In Cycle 24, the southern polar field reversal can be pinpointed with high accuracy due to a large-scale pseudostreamer that formed over the pole and persisted for approximately a year. We tracked the size and shape of this structure with multiple observations and analysis techniques including PROBA2/SWAP EUV images, AIA EUV images, CoMP polarization data, and 3D tomographic reconstructions. We find that the heliospheric field reversed polarity in February 2014, whereas in the photosphere, the last vestiges of the previous polar field polarity remained until March 2015. We present here the evolution of the structure and describe its identification in the Fe XII 1074nm coronal emission line, sensitive to the Hanle effect in the corona.

  14. Method And Apparatus For Evaluatin Of High Temperature Superconductors (United States)

    Fishman, Ilya M.; Kino, Gordon S.


    A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.

  15. Faraday rotation measurement method and apparatus (United States)

    Brockman, M. H. (Inventor)


    A method and device for measuring Faraday rotation of a received RF signal is described. A simultaneous orthogonal polarization receiver compensates for a 3 db loss due to splitting of a received signal into left circular and right circular polarization channels. The compensation is achieved by RF and modulation arraying utilizing a specific receiver array which also detects and measures Faraday rotation in the presence or absence of spin stabilization effects on a linear polarization vector. Either up-link or down-link measurement of Faraday rotation is possible. Specifically, the Faraday measurement apparatus utilized in conjunction with the specific receiver array provides a means for comparing the phase of a reference signal in the receiver array to the phase of a tracking loop signal related to the incoming signal, and comparing the phase of the reference signal to the phase of the tracking signal shifted in phase by 90 degrees. The averaged and unaveraged signals, are compared, the phase changes between the two signals being related to Faraday rotation.

  16. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.


    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  17. Multiple-algorithm parallel fusion of infrared polarization and intensity images based on algorithmic complementarity and synergy (United States)

    Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng


    Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.

  18. Microelectromechanical acceleration-sensing apparatus (United States)

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM


    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  19. Displaced dual-mode imaging with desorption electrospray ionization for simultaneous mass spectrometry imaging in both polarities and with several scan modes

    DEFF Research Database (Denmark)

    Janfelt, Christian; Wellner, Niels; Hansen, Harald S


    only. Simultaneous full-scan and MS/MS imaging was demonstrated on the same mouse kidney, as the mouse had been given a relatively low dose of the antidepressive drug amitriptyline. While the full-scan data allowed imaging of the endogenous phospholipids, the drug and its metabolites were only visible...

  20. Quantitative cell polarity imaging defines leader-to-follower transitions during collective migration and the key role of microtubule-dependent adherens junction formation. (United States)

    Revenu, Céline; Streichan, Sebastian; Donà, Erika; Lecaudey, Virginie; Hufnagel, Lars; Gilmour, Darren


    The directed migration of cell collectives drives the formation of complex organ systems. A characteristic feature of many migrating collectives is a 'tissue-scale' polarity, whereby 'leader' cells at the edge of the tissue guide trailing 'followers' that become assembled into polarised epithelial tissues en route. Here, we combine quantitative imaging and perturbation approaches to investigate epithelial cell state transitions during collective migration and organogenesis, using the zebrafish lateral line primordium as an in vivo model. A readout of three-dimensional cell polarity, based on centrosomal-nucleus axes, allows the transition from migrating leaders to assembled followers to be quantitatively resolved for the first time in vivo. Using live reporters and a novel fluorescent protein timer approach, we investigate changes in cell-cell adhesion underlying this transition by monitoring cadherin receptor localisation and stability. This reveals that while cadherin 2 is expressed across the entire tissue, functional apical junctions are first assembled in the transition zone and become progressively more stable across the leader-follower axis of the tissue. Perturbation experiments demonstrate that the formation of these apical adherens junctions requires dynamic microtubules. However, once stabilised, adherens junction maintenance is microtubule independent. Combined, these data identify a mechanism for regulating leader-to-follower transitions within migrating collectives, based on the relocation and stabilisation of cadherins, and reveal a key role for dynamic microtubules in this process.

  1. Nuclear reactor control apparatus

    International Nuclear Information System (INIS)

    Sridhar, B.N.


    Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod

  2. Radiation measuring apparatus

    International Nuclear Information System (INIS)

    Schmid, C.J.


    A colorimeter in which a light source, a collimating lens and a band pass filter are supported by a housing that is movable with respect to a stationary beam dividing assembly in a direction at least substantially transverse to the optical axis of the light from the source. The assembly separates the incoming collimated and filtered light into a sample beam and a reference beam which are directed back toward the housing in directions parallel to the optical axis. The movement of the housing toward or away from the sample produces an increase or decrease in the intensity of the light illuminating the sample and a corresponding decrease or increase in the intensity of the light at the reference detector. The arrangement is such that the apparatus may be readily adjusted to obtain accurate colorimeter readings even for samples having abnormally high or low density characteristics

  3. Apparatus for extracting petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Coogan, J


    An apparatus for extracting petroleum from petroleum bearing sand or shale is described comprising a container for liquids, the container being divided into a plurality of compartments, an agitator mounted within the container and below the liquid level and having its forward end opening into one of the compartments, means for delivering sand or shale to the forward end of the agitator, means for subjecting the sand or shale to the action of a solvent for the petroleum while the sand or shale is being agitated and is submerged, the first-mentioned compartment being adapted to receive the extracted petroleum and means for removing the treated sand or shale from adjacent the rear end of the agitator.

  4. Radiation shielding apparatus

    International Nuclear Information System (INIS)

    McCullagh, R.J.


    The disclosure pertains to a clamping apparatus having a stud capturing portion and a stud facing portion bolted together so as to compressively support a radiation-proof sheet material, such as lead sheeting, there-in-between. The interior wall covering material, such as panelling or wall board, is secured to the external surface of the stud facing portion. No nails are required to support the radiation-proof sheeting material, thereby minimizing accidental leakage due to harmful radiation passing through openings inadvertently disposed in the radiation-proof sheeting in the conventional nail securing supporting thereof. A pair of radiation-proof tracks capture the free ends of the stud capturing portion and the stud facing portion

  5. Radioactive waste treatment apparatus

    International Nuclear Information System (INIS)

    Abrams, R.F.; Chellis, J.G.


    Radioactive waste treatment apparatus is disclosed in which the waste is burned in a controlled combustion process, the ash residue from the combustion process is removed and buried, the gaseous effluent is treated in a scrubbing solution the pH of which is maintained constant by adding an alkaline compound to the solution while concurrently extracting a portion of the scrubbing solution, called the blowdown stream. The blowdown stream is fed to the incinerator where it is evaporated and the combustibles in the blowdown stream burned and the gaseous residue sent to the scrubbing solution. Gases left after the scrubbing process are treated to remove iodides and are filtered and passed into the atmosphere

  6. Capacitive gauging apparatus

    International Nuclear Information System (INIS)

    Walton, H.


    Apparatus for gauging physical dimensions of solid or tubular bodies (e.g. a nuclear fuel pellet) comprises a capacitive transducer having electrodes forming diametrically arranged pairs of capacitors and means for connecting the pairs, preferably sequentially, in an arm of a four arm electrical network. For circumferential scanning of a solid body along its length, the body is moved along a path of travel through head assembly including the transducer by means of plungers with the axis of the body being coincident with the axis of the transducer. As the body moves through the transducer the diametrically arranged pairs of capacitors scan the surface to result in a surface profile of the body. For scanning the bore of a pipe or tube the transducer is inserted as a probe and moved along the bore of the pipe or tube, means being provided for maintaining the probe coaxial with the pipe or tube. (author)

  7. Nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Takizawa, Teruhiro.


    Object: To provide a nuclear fusion apparatus which can make a disorderly magnetic field due to shell current as small as possible, thereby enhancing efficiency. Structure: On each divided end of each shell is integrally projected an auxiliary shell which has thick greater than the other portion of shell. These auxiliary shells are made of a material of high electric conductivity, and the shape of the auxiliary shells may properly be selected so that electric resistance of the auxiliary shell at the divided end of the shell to the shell current may be made smaller than the electric resistance of intermediate of the shell to the shell current. With this, the shell current is concentrated on the auxiliary shell at the divided end of the shell to form an adjacent reciprocating current between it and the shell current opposite the auxiliary shell, thus reducing the disorderly magnetic field. (Yoshihara, H.)

  8. Reactor head shielding apparatus

    International Nuclear Information System (INIS)

    Schukei, G.E.; Roebelen, G.J.


    This patent describes a nuclear reactor head shielding apparatus for mounting on spaced reactor head lifting members radially inwardly of the head bolts. It comprises a frame of sections for mounting on the lifting members and extending around the top central area of the head, mounting means for so mounting the frame sections, including downwardly projecting members on the frame sections and complementary upwardly open recessed members for fastening to the lifting members for receiving the downwardly projecting members when the frame sections are lowered thereto with lead shielding supported thereby on means for hanging lead shielding on the frame to minimize radiation exposure or personnel working with the head bolts or in the vicinity thereof

  9. Foil changing apparatus

    International Nuclear Information System (INIS)

    Crist, C.E.; Ives, H.C.; Leifeste, G.T.; Miller, R.B.


    A self-contained foil changer apparatus for replenishing foil material across the path of a high energy particle beam is described comprising: a cylindrical hermetically sealed housing comprising an end plate having an aperture defining a beam passageway therethrough; foil supply means disposed inside the housing for storing a foil web and supporting a portion of the web across the beam passageway to form a plane perpendicular to the beam path; a barrel assembly disposed inside the housing; web control means extending through the housing and operably connected to the foil supply means for selectively advancing the foil web to replenish a portion across the beam passageway; and barrel control means extending through the housing and operably connected to the barrel assembly for selectively moving the barrel to and from the advanced and retracted positions

  10. Spine immobilization apparatus (United States)

    Lambson, K. H.; Vykukal, H. C. (Inventor)


    The apparatus makes use of a normally flat, flexible bladder filled with beads or micro-balloons that form a rigid mass when the pressure within the bladder is decreased below ambient through the use of a suction pump so that the bladder can be conformed to the torso of the victim and provide the desired restraint. The bladder is strapped to the victim prior to being rigidified by an arrangement of straps which avoid the stomach area. The bladder is adapted to be secured to a rigid support, i.e., a rescue chair, so as to enable removal of a victim after the bladder has been made rigid. A double sealing connector is used to connect the bladder to the suction pump and a control valve is employed to vary the pressure within the bladder so as to soften and harden the bladder as desired.

  11. Apparatus for proton radiography

    International Nuclear Information System (INIS)

    Martin, R.L.


    An apparatus for effecting diagnostic proton radiography of patients in hospitals comprises a source of negative hydrogen ions, a synchrotron for accelerating the negative hydrogen ions to a predetermined energy, a plurality of stations for stripping extraction of a radiography beam of protons, means for sweeping the extracted beam to cover a target, and means for measuring the residual range, residual energy, or percentage transmission of protons that pass through the target. The combination of information identifying the position of the beam with information about particles traversing the subject and the back absorber is performed with the aid of a computer to provide a proton radiograph of the subject. In an alternate embodiment of the invention, a back absorber comprises a plurality of scintillators which are coupled to detectors. 10 claims, 7 drawing figures

  12. Radioactive gas solidification apparatus

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Seki, Eiji; Yabu, Tomohiko; Matsunaga, Hiroyuki.


    Handling of a solidification container from the completion for the solidifying processing to the storage of radioactive gases by a remote control equipment such as a manipulator requires a great cost and is difficult to realize. In a radioactive gas solidification device for injection and solidification in accumulated layers of sputtered metals by glow discharge, radiation shieldings are disposed surrounding the entire container, and cooling water is supplied to a cooling vessel formed between the container and the shielding materials. The shielding materials are divided into upper and lower shielding materials, so that solidification container can be taken out from the shielding materials. As a result, the solidification container after the solidification of radioactive gases can be handled with ease. Further, after-heat can be removed effectively from the ion injection electrode upon solidifying treatment upon storage, to attain a radioactive gas solidifying processing apparatus which is safe, economical and highly reliable. (N.H.)

  13. Induction melter apparatus (United States)

    Roach, Jay A [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID; Raivo, Brian D [Idaho Falls, ID; Soelberg, Nicholas R [Idaho Falls, ID


    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  14. Images of Polar Bears and Penguins, Storms, Deforestation and More - Middle School Students Perceptions of Climate Change (United States)

    Gopal, S.; Melaas, E. K.; Malmrose, M.; Mullokandov, A.


    Global change studies aim to foster a deeper understanding of the causes and consequences of global change on planet Earth. The study of global change presents a rich domain of inquiry, exploration, and discovery at all grade levels. The main objective of this exploratory study was to assess middle school students' perceptions of global change as part of their participation in the NSF GK12 program called GLACIER (Global Change Initiative - Education and Research) during the academic year 2012-13. The middle schools are located in the Metro Boston area. As part of the program, participating students were asked to draw pictures of their perceptions and ideas on global change. The drawings of 150 children, ages 11 to 13, were qualitatively analyzed. The analysis focused on (a) the type of concepts children chose to convey, (b) the specific context of the global change described (polar bears in floating glaciers), (c) students direct representation of anthropocentric impacts (such as pollution or deforestation), and (d) the match between students concepts and the recent IPCC reports. About 20% of the students focused on the iconic imagery of the melting glaciers and impact on animals such as penguins and polar bears, more than 25% focused on natural disasters (such as storms, sea level changes) while 30% focused on urban problems. These concepts are matched with the recent IPCC report. These results are notable and suggest students in middle schools understand the varied dimensions of global change and the role of human activities in bringing about change. Students' perspectives may help in developing a suitable curriculum using existing science standards to discuss this significant topic in middle school classrooms. In addition, students' drawings illustrate their perception of the coupled human and natural systems.

  15. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.


    Intra-oral dental X-ray apparatus for panoramic radiography is described in detail. It comprises a tubular target carrier supporting at its distal end a target with an inclined forward face. Image definition is improved by positioning in the path of the X-rays a window of X-ray transmitting ceramic material, e.g. 90% oxide of Be, or Al, 7% Si0 2 . The target carrier forms a probe which can be positioned in the patient's mouth. X-rays are directed forwardly and laterally of the target to an X-ray film positioned externally. The probe is provided with a detachable sleeve having V-form arms of X-ray opaque material which serve to depress the tongue out of the radiation path and also shield the roof of the mouth and other regions of the head from the X-ray pattern. A cylindrical lead shield defines the X-ray beam angle. (author)

  16. Polarized Disk Emission from Herbig Ae/Be Stars Observed Using Gemini Planet Imager: HD 144432, HD 150193, HD 163296, and HD 169142

    Energy Technology Data Exchange (ETDEWEB)

    Monnier, John D.; Aarnio, Alicia; Adams, Fred C.; Calvet, Nuria; Hartmann, Lee [Astronomy Department, University of Michigan, Ann Arbor, MI 48109 (United States); Harries, Tim J.; Hinkley, Sasha; Kraus, Stefan [University of Exeter, Exeter (United Kingdom); Andrews, Sean; Wilner, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 91023 (United States); Espaillat, Catherine [Boston University, Boston, MA (United States); McClure, Melissa [European Southern Observatory, Garching (Germany); Oppenheimer, Rebecca [American Museum of Natural History, New York (United States); Perrin, Marshall [Space Telescope Science Institute, Baltimore, MD (United States)


    In order to look for signs of ongoing planet formation in young disks, we carried out the first J -band polarized emission imaging of the Herbig Ae/Be stars HD 150193, HD 163296, and HD 169142 using the Gemini Planet Imager, along with new H band observations of HD 144432. We confirm the complex “double ring” structure for the nearly face-on system HD 169142 first seen in H -band, finding the outer ring to be substantially redder than the inner one in polarized intensity. Using radiative transfer modeling, we developed a physical model that explains the full spectral energy distribution and J - and H -band surface brightness profiles, suggesting that the differential color of the two rings could come from reddened starlight traversing the inner wall and may not require differences in grain properties. In addition, we clearly detect an elongated, off-center ring in HD 163296 (MWC 275), locating the scattering surface to be 18 au above the midplane at a radial distance of 77 au, co-spatial with a ring seen at 1.3 mm by ALMA linked to the CO snow line. Lastly, we report a weak tentative detection of scattered light for HD 150193 (MWC 863) and a non-detection for HD 144432; the stellar companion known for each of these targets has likely disrupted the material in the outer disk of the primary star. For HD 163296 and HD 169142, the prominent outer rings we detect could be evidence for giant planet formation in the outer disk or a manifestation of large-scale dust growth processes possibly related to snow-line chemistry.

  17. Polarized Disk Emission from Herbig Ae/Be Stars Observed Using Gemini Planet Imager: HD 144432, HD 150193, HD 163296, and HD 169142

    International Nuclear Information System (INIS)

    Monnier, John D.; Aarnio, Alicia; Adams, Fred C.; Calvet, Nuria; Hartmann, Lee; Harries, Tim J.; Hinkley, Sasha; Kraus, Stefan; Andrews, Sean; Wilner, David; Espaillat, Catherine; McClure, Melissa; Oppenheimer, Rebecca; Perrin, Marshall


    In order to look for signs of ongoing planet formation in young disks, we carried out the first J -band polarized emission imaging of the Herbig Ae/Be stars HD 150193, HD 163296, and HD 169142 using the Gemini Planet Imager, along with new H band observations of HD 144432. We confirm the complex “double ring” structure for the nearly face-on system HD 169142 first seen in H -band, finding the outer ring to be substantially redder than the inner one in polarized intensity. Using radiative transfer modeling, we developed a physical model that explains the full spectral energy distribution and J - and H -band surface brightness profiles, suggesting that the differential color of the two rings could come from reddened starlight traversing the inner wall and may not require differences in grain properties. In addition, we clearly detect an elongated, off-center ring in HD 163296 (MWC 275), locating the scattering surface to be 18 au above the midplane at a radial distance of 77 au, co-spatial with a ring seen at 1.3 mm by ALMA linked to the CO snow line. Lastly, we report a weak tentative detection of scattered light for HD 150193 (MWC 863) and a non-detection for HD 144432; the stellar companion known for each of these targets has likely disrupted the material in the outer disk of the primary star. For HD 163296 and HD 169142, the prominent outer rings we detect could be evidence for giant planet formation in the outer disk or a manifestation of large-scale dust growth processes possibly related to snow-line chemistry.

  18. South Polar Polygons (United States)


    4 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a polgyon-cracked surface, into which deep, somewhat kidney-bean-shaped pits have formed. These are landscapes of the martian south polar residual cap. This view was captured during May 2005. Location near: 86.9oS, 5.1oW Image width: 1.5 km (0.9 mi) Illumination from: upper left Season Southern Spring

  19. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.


    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  20. Method and apparatus for analyzing ionizable materials

    International Nuclear Information System (INIS)

    Ehrlich, B.J.; Hall, R.C.; Thiede, P.W.


    An apparatus and method are described for analyzing a solution of ionizable compounds in a liquid. The solution is irradiated with electromagnetic radiation to ionize the compounds and the electrical conductivity of the solution is measured. The radiation may be X-rays, ultra-violet, infra-red or microwaves. The solution may be split into two streams, only one of which is irradiated, the other being used as a reference by comparing conductivities of the two streams. The liquid must be nonionizable and is preferably a polar solvent. The invention provides an analysis technique useful in liquid chromatography and in gas chromatography after dissolving the eluted gases in a suitable solvent. Electrical conductivity measurements performed on the irradiated eluent provide a quantitative indication of the ionizable materials existing within the eluent stream and a qualitative indication of the purity of the eluent stream. (author)

  1. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  2. UV Coatings, Polarization, and Coronagraphy (United States)

    Bolcar, Matthew R.; Quijada, Manuel; West, Garrett; Balasubramanian, Bala; Krist, John; Martin, Stefan; Sabatke, Derek


    Presenation for the Large UltraViolet Optical Infrared (LUVOIR) and Habitable Exoplanet Imager (HabEx) Science and Technology Definition Teams (STDT) on technical considerations regarding ultraviolet coatings, polarization, and coronagraphy. The presentations review the state-of-the-art in ultraviolet coatings, how those coatings generate polarization aberrations, and recent study results from both the LUVOIR and HabEx teams.

  3. Characterization of highly scattering media by measurement of diffusely backscattered polarized light (United States)

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.


    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  4. Optimising the measurement of bruises in children across conventional and cross polarized images using segmentation analysis techniques in Image J, Photoshop and circle diameter measurements. (United States)

    Harris, C; Alcock, A; Trefan, L; Nuttall, D; Evans, S T; Maguire, S; Kemp, A M


    Bruising is a common abusive injury in children, and it is standard practice to image and measure them, yet there is no current standard for measuring bruise size consistently. We aim to identify the optimal method of measuring photographic images of bruises, including computerised measurement techniques. 24 children aged Photoshop 'ruler' software (Photoshop diameter)). Inter and intra-observer effects were determined by two individuals repeating 11 electronic measurements, and relevant Intraclass Correlation Coefficient's (ICC's) were used to establish reliability. Spearman's rank correlation was used to compare in vivo with computerised measurements; a comparison of measurement techniques across imaging modalities was conducted using Kolmogorov-Smirnov tests. Significance was set at p 0.5 for all techniques, with maximum Feret diameter and maximum Photoshop diameter on conventional images having the strongest correlation with in vivo measurements. There were significant differences between in vivo and computer-aided measurements, but none between different computer-aided measurement techniques. Overall, computer aided measurements appeared larger than in vivo. Inter- and intra-observer agreement was high for all maximum diameter measurements (ICC's > 0.7). Whilst there are minimal differences between measurements of images obtained, the most consistent results were obtained when conventional images, segmented by Image J Software, were measured with a Feret diameter. This is therefore proposed as a standard for future research, and forensic practice, with the proviso that all computer aided measurements appear larger than in vivo. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.


    Directory of Open Access Journals (Sweden)

    L. Moser


    Full Text Available Water scarcity is one of the main challenges posed by the changing climate. Especially in semi-arid regions where water reservoirs are filled during the very short rainy season, but have to store enough water for the extremely long dry season, the intelligent handling of water resources is vital. This study focusses on Lac Bam in Burkina Faso, which is the largest natural lake of the country and of high importance for the local inhabitants for irrigated farming, animal watering, and extraction of water for drinking and sanitation. With respect to the competition for water resources an independent area-wide monitoring system is essential for the acceptance of any decision maker. The following contribution introduces a weather and illumination independent monitoring system for the automated wetland delineation with a high temporal (about two weeks and a high spatial sampling (about five meters. The similarities of the multispectral and multi-polarized SAR acquisitions by RADARSAT-2 and TerraSAR-X are studied as well as the differences. The results indicate that even basic approaches without pre-classification time series analysis or post-classification filtering are already enough to establish a monitoring system of prime importance for a whole region.

  6. Submersible energy storage apparatus

    International Nuclear Information System (INIS)

    Mccartney, J.F.; Rowe, R.A.


    A submersible energy storage apparatus for an electrical power source is provided which includes an electrolysis unit feed water gas collection assembly and a fuel cell. The electrolysis unit feed water gas collection assembly includes a hydrogen container and an oxygen container wherein each container has a gas outlet and is capable of containing feed water as well as hydrogen and oxygen gases respectively. An electrolysis cell is provided which has a hydrogen outlet, an oxygen outlet and a feed water inlet. The hydrogen outlet is located in the hydrogen container, the oxygen outlet is located in the oxygen container, and the feed water inlet is located in one of the containers. Each of the containers has an opening to the submersible environment so as to be pressure responsive thereto. A barrier device is provided in association with the opening in each container for isolating the feed water in the container from water in the submersible environment. The fuel cell is operatively connected to the hydrogen and oxygen containers, and the electrical power source is operatively connected to the electrolysis cell. With this arrangement the electrolysis cell is capable of utilizing power from the power source during low electrical energy demand, and the fuel cell is capable of utilizing the hydrogen and oxygen gases for generating electricity during high demand periods

  7. Belt conveyor apparatus (United States)

    Oakley, David J.; Bogart, Rex L.


    A belt conveyor apparatus according to this invention defines a conveyance path including a first pulley and at least a second pulley. An endless belt member is adapted for continuous travel about the pulleys and comprises a lower portion which engages the pulleys and an integral upper portion adapted to receive objects therein at a first location on said conveyance path and transport the objects to a second location for discharge. The upper belt portion includes an opposed pair of longitudinally disposed crest-like members, biased towards each other in a substantially abutting relationship. The crest-like members define therebetween a continuous, normally biased closed, channel along the upper belt portion. Means are disposed at the first and second locations and operatively associated with the belt member for urging the normally biased together crest-like members apart in order to provide access to the continuous channel whereby objects can be received into, or discharged from the channel. Motors are in communication with the conveyance path for effecting the travel of the endless belt member about the conveyance path. The conveyance path can be configured to include travel through two or more elevations and one or more directional changes in order to convey objects above, below and/or around existing structures.

  8. Nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Nagata, Daizaburo; Yamada, Masao.


    Object: To provide a nuclear fusion apparatus in which a magnetic limiter is disposed within a vacuum vessel, said magnetic limiter being supported in such a manner so as to not to exert mechanical action upon said vacuum vessel, thereby minimizing a force applied to the vacuum vessel to easily manufacture the vacuum vessel. Structure: The magnetic limiter disposed within the vacuum vessel is connected to one end of a supporting post which extends through the wall of the vacuum vessel through a seal portion, the other end of the supporting post being secured to a structure such as a house outside the vacuum vessel. The seal portion comprises a bellows of high spring elasticity mounted on the vacuum vessel and a seal element comprised of an electric insulator such as ceramic for connecting the bellows to the supporting post, the supporting post extending through the wall of the vacuum vessel in vacuum-tight fashion, the force applied to the magnetic limiter exerting no influence upon the vacuum vessel. (Kamimura, M.)

  9. Apparatus for diffusion separation

    International Nuclear Information System (INIS)

    Nierenberg, W.A.


    A diffuser separator apparatus is described which comprises a plurality of flow channels in a single stage. Each of said channels has an inlet port and an outlet port and a constant cross sectional area between said ports. At least a portion of the defining surface of each of said channels is a diffusion separation membrane, and each of said channels is a different cross sectional area. Means are provided for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series. Also provided are a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area

  10. Plastic waste disposal apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kito, S


    A test plant plastic incinerator was constructed by the Takuma Boiler Manufacturing Co. for Sekisui Chemical Industries, and the use of a continuous feed spreader was found to be most effective for prevention of black smoke, and the use of a venturi scrubber proved to be effective for elimination of hydrogen chloride gas. The incinerator was designed for combustion of polyvinyl chloride exclusively, but it is also applicable for combustion of other plastics. When burning polyethylene, polypropylene, or polystyrene, (those plastics which do not produce toxic gases), the incinerator requires no scrubber for the combustion gas. The system may or may not have a pretreatment apparatus. For an incinerator with a pretreatment system, the flow chart comprises a pit, a supply crane, a vibration feeder, a metal eliminator, a rotation shredder, a continuous screw feeder with a quantitative supply hopper, a pretreatment chamber (300 C dry distillation), a quantitative supply hopper, and the incinerator. The incinerator is a flat non-grid type combustion chamber with an oil burner and many air nozzles. From the incinerator, ashes are sent by an ash conveyor to an ash bunker. The combustion gas goes to the boiler, and the water supplied the boiler water pump creates steam. The heat from the gas is sent back to the pretreatment system through a heat exchanger. The gas then goes to a venturi scrubber and goes out from a stack.

  11. Radiographic examination apparatus

    International Nuclear Information System (INIS)

    Beetham, S.; Hogg, J.


    Tube examination apparatus has a head actuated by fluid pressure, for centralising a radioactive source. Preferably the source is shielded during transport from its storage unit to the head. A body attached to a drive-wire has hollow shield-parts which define a radiation window therebetween, and closure shield-parts which have the source located therebetween and which are a sliding fit. A spring biases the closure shields towards a first position relative to the body in which the source is enclosed. When the body moves along a guide in the head, the closure shield engages an abutment surface which arrests the closure shields. Further movement of the body to engage an abutment surface causes relative movement between the shield parts to a second position relative to the body in which the source is exposed at the window. Retraction of the body along the guide allows the spring to restore the closure shield parts to the first position. (U.K.)

  12. Sample-taking apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Tanov, Y I; Ismailov, R A; Orazov, A


    The invention refers to the equipment for testing water-bearing levels in loose rocks. Its purpose is to simultaneously remove with the rock sample a separate fluid sample from the assigned interval. The sample-taking apparatus contains a core lifter which can be submerged into the casting string with housing and front endpiece in the form of a rod with a piston which covers the cavity of the core lifter, as well as mechanism for fixing and moving the endpiece within the core lifter cavity. The device differs from the known similar devices because the upper part of the housing of the core lifter is equipped with a filter and mobile casting which covers the filter. In this case the casing is connected to the endpiece rod and the endpiece is installed with the possibility of movement which is limited with fixing in the upper position and in the extreme upper position it divides the core lifter cavity into two parts, filter settling tank and core-receiving cavity.

  13. Medical radiographic apparatus

    International Nuclear Information System (INIS)

    Fetter, R.W.


    An invention is described which relates to computer-assisted tomography. The apparatus provides for investigating a cross-section slice of a patient's body and includes a source of fan-shaped distribution of penetrating radiation and a means for locating the source, in relation to the patient's body so that the radiation is directed towards a slice of the body. The source can be rotated about the patient's body and radiation detected by a number of detectors situated in an arc around the body. The number, and thus the cost, of detectors can be reduced by putting the ring of detectors between the x-ray source and the patient's body. This presents a problem in that if the detectors are on the same side of the body as the source and if no steps are taken to the contrary, the detectors will interupt the radiation so that it does not pass through the patient's body. This invention overcomes that problem. (OT)

  14. Controlled nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, B.


    A fusion power generating device is disclosed having a relatively small and inexpensive core region which may be contained within an energy absorbing blanket region. The fusion power core region contains apparatus of the toroidal type for confining a high density plasma. The fusion power core is removable from the blanket region and may be disposed and/or recycled for subsequent use within the same blanket region. Thermonuclear ignition of the plasma is obtained by feeding neutral fusible gas into the plasma in a controlled manner such that charged particle heating produced by the fusion reaction is utilized to bootstrap the device to a region of high temperatures and high densities wherein charged particle heating is sufficient to overcome radiation and thermal conductivity losses. The high density plasma produces a large radiation and particle flux on the first wall of the plasma core region thereby necessitating replacement of the core from the blanket region from time to time. A series of potentially disposable and replaceable central core regions are disclosed for a large-scale economical electrical power generating plant

  15. High performance volume-of-intersection projectors for 3D-PET image reconstruction based on polar symmetries and SIMD vectorisation

    International Nuclear Information System (INIS)

    Scheins, J J; Vahedipour, K; Pietrzyk, U; Shah, N J


    For high-resolution, iterative 3D PET image reconstruction the efficient implementation of forward-backward projectors is essential to minimise the calculation time. Mathematically, the projectors are summarised as a system response matrix (SRM) whose elements define the contribution of image voxels to lines-of-response (LORs). In fact, the SRM easily comprises billions of non-zero matrix elements to evaluate the tremendous number of LORs as provided by state-of-the-art PET scanners. Hence, the performance of iterative algorithms, e.g. maximum-likelihood-expectation-maximisation (MLEM), suffers from severe computational problems due to the intensive memory access and huge number of floating point operations.Here, symmetries occupy a key role in terms of efficient implementation. They reduce the amount of independent SRM elements, thus allowing for a significant matrix compression according to the number of exploitable symmetries. With our previous work, the PET REconstruction Software TOolkit (PRESTO), very high compression factors (>300) are demonstrated by using specific non-Cartesian voxel patterns involving discrete polar symmetries. In this way, a pre-calculated memory-resident SRM using complex volume-of-intersection calculations can be achieved. However, our original ray-driven implementation suffers from addressing voxels, projection data and SRM elements in disfavoured memory access patterns. As a consequence, a rather limited numerical throughput is observed due to the massive waste of memory bandwidth and inefficient usage of cache respectively.In this work, an advantageous symmetry-driven evaluation of the forward-backward projectors is proposed to overcome these inefficiencies. The polar symmetries applied in PRESTO suggest a novel organisation of image data and LOR projection data in memory to enable an efficient single instruction multiple data vectorisation, i.e. simultaneous use of any SRM element for symmetric LORs. In addition, the calculation

  16. Radioactive waste material melter apparatus (United States)

    Newman, D.F.; Ross, W.A.


    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  17. Radiographic film cassette unloading apparatus

    International Nuclear Information System (INIS)

    Stievenart, E.F.; Plessers, H.S.; Neujens, G.J.


    Apparatus for unloading cassettes, containing exposed radiographic films, has means for unfastening the cassettes, an inclined pathway for gravity feeding and rotating feed members (rollers or belts) to propel the films into the processor. (UK)

  18. INFLATE: INFlate Landing Apparatus Technology (United States)

    Koryanov, V. V. K.; Da-Poian, V. D. P.


    Our project, named INFLATE (INFlatable Landing Apparatus Technology), aims at reducing space landing risks and constraints and so optimizing space missions (reducing cost, mass, and risk and in the same time improving performance).

  19. Tandem mirror plasma confinement apparatus

    International Nuclear Information System (INIS)

    Fowler, T.K.


    Apparatus and method are described for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell

  20. Tandem mirror plasma confinement apparatus (United States)

    Fowler, T. Kenneth


    Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

  1. Radioactive waste material melter apparatus

    International Nuclear Information System (INIS)

    Newman, D.F.; Ross, W.A.


    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs

  2. Apparatus for washing out halogens

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M; Hahn, J; Kroenig, W


    An apparatus is described for washing out of halogens and the like or liquid halogen compounds from the products, which are formed on pressure hydrogenation or splitting of carbon-containing material in the presence of halogens or halogen compounds, consisting of a washing apparatus installed between the reaction vessel and the hot separator, which is inclined in relatively small space for steam regulation and contains, with the steam, arranged baffles, especially spirals.

  3. Ionic polarization

    International Nuclear Information System (INIS)

    Mahan, G.D.


    Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory

  4. Polarization experiments

    International Nuclear Information System (INIS)

    Halzen, F.


    In a theoretical review of polarization experiments two important points are emphasized: (a) their versatility and their relevance to a large variety of aspects of hadron physics (tests of basic symmetries; a probe of strong interaction dynamics; a tool for hadron spectroscopy); (b) the wealth of experimental data on polarization parameters in pp and np scattering in the Regge language and in the diffraction language. (author)

  5. X-ray apparatus

    International Nuclear Information System (INIS)

    Sell, L.J.


    A diagnostic x-ray device, readily convertible between conventional radiographic and tomographic operating modes, is described. An improved drive system interconnects and drives the x-ray source and the imaging device through coordinated movements for tomography

  6. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun


    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  7. Apparatus Development In Maros

    Directory of Open Access Journals (Sweden)

    H. Aras Solong


    Full Text Available ABSTRACT This study aims to identify and describe 1 Development of Administrative through education and training training promotion transfer and rotation and the application of demotion system non-title under Law No. 43 of 1999 on the development of career civil servants based merit system and work performance and Government Regulation No. 101 of 2000 on Education and Training Training for Civil Servants. 2 Revealing differences in work motivation based on the intensity of the education or training training using Herzbergs Two Factor Theory of extrinsic factors hygiene and intrinsic factors motivator that influence employees motivation Maros regency government in carrying out its duties and functions as members civil in public service. This study uses a quantitative approach to date collection techniques through a questionnaire Questionnaire. Informant are civil servants who occupied echelon II III. And IV while the analysis of the date used quantitative analysis to uncover the implementation of personnel development and employees motivation difference Maros region based on the intensity of the education or training training to get job satisfaction in the public service. The results of this study will reveal that 1 Development of Apparatus for improving the knowledge ability professionalism competence skills can work as a reformer change attitude eager to work motivated to do the work get satisfaction in work and getting justice in employment. 2 The difference in work motivation Maros local government employees affected by extrinsic factors hygiene and intrinsic factor motivator is the variable gain high salary H occupies the first ranking while serving the community satisfaction variables M occupy the last ranking. That is that the satisfaction of serving the people affected by the high salaries earned by the employees to do the job.

  8. Transverse scan-field imaging apparatus

    International Nuclear Information System (INIS)

    Lyons, F.T.


    A description is given of an array of opposed pairs of radiation detectors which could be used in tomography or scintiscanning. The opposed detectors scan in opposite tangential directions in a pre-programmed fashion. The associated control system receives the detector outputs into a buffer store and also provides an address for each element of information detected. The addresses are such that information from one buffer store is read into the RAM of a central processing unit in the opposite direction to that from the store associated with the opposite detector, thus effectively reversing the scan direction of one detector of each pair. Also described are the detectors themselves with focussed collimators, the scan drive mechanism, and the method of calculating radioactive emission intensity at discrete points throughout the scan-field. (author)

  9. North Polar Cap (United States)


    [figure removed for brevity, see original site] This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour. In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime. The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap. Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen

  10. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.


    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  11. Overview of calibration and validation activities for the EUMETSAT polar system: second generation (EPS-SG) visible/infrared imager (METimage) (United States)

    Phillips, P.; Bonsignori, R.; Schlüssel, P.; Schmülling, F.; Spezzi, L.; Watts, P.; Zerfowski, I.


    The EPS-SG Visible/Infrared Imaging (VII) mission is dedicated to supporting the optical imagery user needs for Numerical Weather Prediction (NWP), Nowcasting (NWC) and climate in the timeframe beyond 2020. The VII mission is fulfilled by the METimage instrument, developed by the German Space Agency (DLR) and funded by the German government and EUMETSAT. Following on from an important list of predecessors such as the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate resolution Imaging Spectro-radiometer (MODIS), METimage will fly in the mid-morning orbit of the Joint Polar System, whilst the early-afternoon orbits are served by the JPSS (U.S. Joint Polar Satellite System) Visible Infrared Imager Radiometer Suite (VIIRS). METimage itself is a cross-purpose medium resolution, multi-spectral optical imager, measuring the optical spectrum of radiation emitted and reflected by the Earth from a low-altitude sun synchronous orbit over a minimum swath width of 2700 km. The top of the atmosphere outgoing radiance will be sampled every 500 m (at nadir) with measurements made in 20 spectral channels ranging from 443 nm in the visible up to 13.345 μm in the thermal infrared. The three major objectives of the EPS-SG METimage calibration and validation activities are: • Verification of the instrument performances through continuous in-flight calibration and characterisation, including monitoring of long term stability. • Provision of validated level 1 and level 2 METimage products. • Revision of product processing facilities, i.e. algorithms and auxiliary data sets, to assure that products conform with user requirements, and then, if possible, exceed user expectations. This paper will describe the overall Calibration and Validation (Cal/Val) logic and the methods adopted to ensure that the METimage data products meet performance specifications for the lifetime of the mission. Such methods include inter-comparisons with other missions through simultaneous

  12. Apparatus and method for mapping an area of interest (United States)

    Staab, Torsten A. Cohen, Daniel L.; Feller, Samuel [Fairfax, VA


    An apparatus and method are provided for mapping an area of interest using polar coordinates or Cartesian coordinates. The apparatus includes a range finder, an azimuth angle measuring device to provide a heading and an inclinometer to provide an angle of inclination of the range finder as it relates to primary reference points and points of interest. A computer is provided to receive signals from the range finder, inclinometer and azimuth angle measurer to record location data and calculate relative locations between one or more points of interest and one or more primary reference points. The method includes mapping of an area of interest to locate points of interest relative to one or more primary reference points and to store the information in the desired manner. The device may optionally also include an illuminator which can be utilized to paint the area of interest to indicate both points of interest and primary points of reference during and/or after data acquisition.

  13. Tomographic method and apparatus

    International Nuclear Information System (INIS)

    Moore, R.M.


    A tomographic x-ray machine has a camera and film-plane section which move about a primary axis for imaging a selected cross-section of an anatomical member onto the film. A ''scout image'' of the member is taken at right angles to the plane of the desired cross-section to indicate the cross-section's angle with respect to the primary axis. The film plane is then located at the same angle with respect to a film cassette axis as the selected cross-section makes with the primary axis. The film plane and the cross-section are then maintained in parallel planes throughout motion of the camera and film plane during tomographic radiography. (author)

  14. Optical fiber stripper positioning apparatus (United States)

    Fyfe, Richard W.; Sanchez, Jr., Amadeo


    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  15. The Conservation Ideological State Apparatus

    Directory of Open Access Journals (Sweden)

    Jared D Margulies


    Full Text Available This article considers Louis Althusser's theory of the ideological state apparatuses (ISAs for advancing political ecology scholarship on the functioning of the state in violent environments. I reflect on a series of events in which a state forest department in South India attempted to recast violent conflicts between themselves and local communities over access to natural resources and a protected area as a debate over human-wildlife conflicts. Through the example of conservation as ideology in Wayanad, Kerala, I show how the ISAs articulate the functioning of ideology within the state apparatuses in order for us to understand the larger mechanics of the state apparatus and the reproduction of the relations of production necessary for the reproduction of capitalism. Revisiting the ISAs as a theoretical framework for studies in political ecology and conservation is timely given the resurgence of militarised conservation tactics, the emancipatory aims of Althusser's theory, and political ecology's turn towards praxis.

  16. Apparatus for filtering radioactive fluids

    International Nuclear Information System (INIS)

    Gischel, E.H.


    Apparatus is provided for filtering radioactive particles from the cooling and/or auxiliary process water of a nuclear reactor, or nuclear fuel processing plant, or other installations wherein radioactive fluid systems are known to exist. The apparatus affords disposal of the captured particles in a manner which minimizes the exposure of operating personnel to radioactivity. The apparatus comprises a housing adapted to contain a removable filter cartridge assembly, a valve normally closing the lower end of the housing, an upwardly-open shipping cask located below the valve, and an elongated operating rod assembly projecting upwardly from the filter cartridge assembly and through the upper end of the housing to enable a workman to dismount the filter cartridge assembly from its housing and to lower the filter cartridge assembly through the valve and into the cask from a remote location above the housing. (U.S.)

  17. Imaging polarimetry of forest canopies: how the azimuth direction of the sun, occluded by vegetation, can be assessed from the polarization pattern of the sunlit foliage (United States)

    Hegedüs, Ramón; Barta, András; Bernáth, Balázs; Benno Meyer-Rochow, Victor; Horváth, Gábor


    Radiance, color, and polarization of the light in forests combine to create complex optical patterns. Earlier sporadic polarimetric studies in forests were limited by the narrow fields of view of the polarimeters used in such studies. Since polarization patterns in the entire upper hemisphere of the visual environment of forests could be important for forest-inhabiting animals that make use of linearly polarized light for orientation, we measured 180° field-of-view polarization distributions in Finnish forests. From a hot air balloon we also measured the polarization patterns of Hungarian grasslands lit by the rising sun. We found that the pattern of the angle of polarization α of sunlit grasslands and sunlit tree canopies was qualitatively the same as that of the sky. We show here that contrary to an earlier assumption, the α-pattern characteristic of the sky always remains visible underneath overhead vegetation, independently of the solar elevation and the sky conditions (clear or partly cloudy with visible sun's disc), provided the foliage is sunlit and not only when large patches of the clear sky are visible through the vegetation. Since the mirror symmetry axis of the α-pattern of the sunlit foliage is the solar-antisolar meridian, the azimuth direction of the sun, occluded by vegetation, can be assessed in forests from this polarization pattern. Possible consequences of this robust polarization feature of the optical environment in forests are briefly discussed with regard to polarization-based animal navigation.

  18. Polarization study

    International Nuclear Information System (INIS)

    Nurushev, S.B.


    Brief review is presented of the high energy polarization study including experimental data and the theoretical descriptions. The mostimportant proposals at the biggest accelerators and the crucial technical developments are also listed which may become a main-line of spin physics. 35 refs.; 10 figs.; 4 tabs

  19. Research on generating various polarization-modes in polarized illumination system (United States)

    Huang, Jinping; Lin, Wumei; Fan, Zhenjie


    With the increase of the numerical aperture (NA), the polarization of light affects the imaging quality of projection lens more significantly. On the contrary, according to the mask pattern, the resolution of projection lens can be improved by using the polarized illumination. That is to say, using the corresponding polarized beam (or polarization-mode) along with the off-axis illumination will improve the resolution and the imaging quality of the of projection lens. Therefore, the research on the generation of various polarization modes and its conversion methods become more and more important. In order to realize various polarization modes in polarized illumination system, after read a lot of references, we provide a way that fitting for the illumination system with the wavelength of 193nm.Six polarization-modes and a depolarized mode are probably considered. Wave-plate stack is used to generate linearly polarization-mode, which have a higher degree polarization. In order to generate X-Y and Y-X polarization mode, the equipment consisting of four sectors of λ/2 wave plate was used. We combined 16 sectors of λ/2 wave plate which have different orientations of the "slow" axis to generate radial and azimuthal polarization. Finally, a multi-polarization control device was designed. Using the kind of multi-polarization control device which applying this method could help to choose the polarization modes conveniently and flexibility for the illumination system.

  20. Apparatus for control of mercury (United States)

    Downs, William; Bailey, Ralph T.


    A method and apparatus for reducing mercury in industrial gases such as the flue gas produced by the combustion of fossil fuels such as coal adds hydrogen sulfide to the flue gas in or just before a scrubber of the industrial process which contains the wet scrubber. The method and apparatus of the present invention is applicable to installations employing either wet or dry scrubber flue gas desulfurization systems. The present invention uses kraft green liquor as a source for hydrogen sulfide and/or the injection of mineral acids into the green liquor to release vaporous hydrogen sulfide in order to form mercury sulfide solids.

  1. Apparatus for blending small particles

    International Nuclear Information System (INIS)

    Bradley, R.A.; Reese, C.R.; Sease, J.D.


    An apparatus is described for blending small particles and uniformly loading the blended particles in a receptacle. Measured volumes of various particles are simultaneously fed into a funnel to accomplish radial blending and then directed onto the apex of a conical splitter which collects the blended particles in a multiplicity of equal subvolumes. Thereafter the apparatus sequentially discharges the subvolumes for loading in a receptacle. A system for blending nuclear fuel particles and loading them into fuel rod molds is described in a preferred embodiment

  2. Apparatus for controlling fluidized beds (United States)

    Rehmat, A.G.; Patel, J.G.


    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  3. Nuclear fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    Gerkey, K.S.


    An automatic apparatus for loading a predetermined amount of nuclear fuel pellets into a nuclear fuel element to be used in a nuclear reactor is described. The apparatus consists of a vibratory bed capable of supporting corrugated trays containing rows of nuclear fuel pellets and arranged in alignment with the open ends of several nuclear fuel elements. A sweep mechanism is arranged above the trays and serves to sweep the rows of fuel pellets onto the vibratory bed and into the fuel element. A length detecting system, in conjunction with a pellet stopping mechanism, is also provided to assure that a predetermined amount of nuclear fuel pellets are loaded into each fuel element

  4. X-ray apparatus

    International Nuclear Information System (INIS)

    Bernstein, S.; Stagg, L.; Lambert, T.W.; Griswa, P.J.


    A patient support system for X-ray equipment in arteriographic studies of the heart is described in detail. The support system has been designed to overcome many of the practical problems encountered in using previous types of arteriographic X-ray equipment. The support system is capable of horizontal movement and, by a series of shafts attached to the main support system, the X-ray source and image intensifier or detector may be rotated through the same angle. The system is highly flexible and details are given of several possible operational modes. (U.K.)

  5. New investigations of polarized solid HD targets

    International Nuclear Information System (INIS)

    Honig, A.; Whisnant, C.S.


    Polarized solid HD targets in a frozen-spin mode, with superior nuclear physics characteristics and simple operational configurations, have previously been restricted in their deployment due to a disproportionate target production time with respect to utilization time. Recent investigations have yielded frozen-spin polarization lifetimes, at a convenient target temperature of 1.5 K, of nearly a year for both H and D at high holding fields, and of more than a week at sub-Tesla holding fields. These results, taken together with the advent of new interesting spin-physics using relatively weakly ionizing beams, such as polarized photon beams, remove the above impediment and open up the use of polarized solid HD to long duration nuclear spin-physics experiments. Large, multiple targets can be produced, retrieved from the polarization-production apparatus with a cold-transport (4 K) device, stored for very long times in inexpensive (1.5 K, 7 T) cryostats, and introduced 'off-the-shelf' into in-beam cryostats via the portable cold-transport apparatus. Various modes for achieving polarized H and/or D, as well as already achieved and expected polarization values, are reported. Experimental results are given on Kapitza resistance between the solid HD and the cooling wires necessary to obtain low temperatures during the heat-evolving polarization process. 15 mK is achievable using gold-plated aluminum wires, which constitute 15% extraneous nucleons over the number of polarizable H or D nucleons. Application to more highly ionizing beams is also given consideration. ((orig.))

  6. VIIRS-J1 Polarization Narrative (United States)

    Waluschka, Eugene; McCorkel, Joel; McIntire, Jeff; Moyer, David; McAndrew, Brendan; Brown, Steven W.; Lykke, Keith; Butler, James; Meister, Gerhard; Thome, Kurtis J.


    The VIS/NIR bands polarization sensitivity of Joint Polar Satellite Sensor 1 (JPSS1) Visible/Infrared Imaging Radiometer Suite (VIIRS) instrument was measured using a broadband source. While polarization sensitivity for bands M5-M7, I1, and I2 was less than 2.5%, the maximum polarization sensitivity for bands M1, M2, M3, and M4 was measured to be 6.4%, 4.4%, 3.1%, and 4.3%, respectively with a polarization characterization uncertainty of less than 0.3%. A detailed polarization model indicated that the large polarization sensitivity observed in the M1 to M4 bands was mainly due to the large polarization sensitivity introduced at the leading and trailing edges of the newly manufactured VISNIR bandpass focal plane filters installed in front of the VISNIR detectors. This was confirmed by polarization measurements of bands M1 and M4 bands using monochromatic light. Discussed are the activities leading up to and including the instruments two polarization tests, some discussion of the polarization model and the model results, the role of the focal plane filters, the polarization testing of the Aft-Optics-Assembly, the testing of the polarizers at Goddard and NIST and the use of NIST's T-SIRCUS for polarization testing and associated analyses and results.


    Jones, W.H.; Reece, J.B.


    An improved electron beam welding or melting apparatus is designed which utilizes a high voltage rectifier operating below its temperature saturation region to decrease variations in electron beam current which normally result from the gas generated in such apparatus. (AEC)

  8. Waste Water Treatment Apparatus and Methods (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)


    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  9. Cluster Implantation and Deposition Apparatus

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir


    In the current report, a design and capabilities of a cluster implantation and deposition apparatus (CIDA) involving two different cluster sources are described. The clusters produced from gas precursors (Ar, N etc.) by PuCluS-2 can be used to study cluster ion implantation in order to develop...

  10. X-ray examination apparatus

    NARCIS (Netherlands)


    The invention relates to an X-ray apparatus which includes an adjustable X-ray filter. In order to adjust an intensity profile of the X-ray beam, an X-ray absorbing liquid is transported to filter elements of the X-ray filter. Such transport is susceptible to gravitational forces which lead to an

  11. The ALPHA antihydrogen trapping apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C. [Department of Physics and Astronomy, York University, Toronto ON Canada, M3J 1P3 (Canada); Andresen, G.B. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Ashkezari, M.D. [Department of Physics, Simon Fraser University, Burnaby, BC Canada, V5A 1S6 (Canada); Baquero-Ruiz, M. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Bertsche, W. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); The Cockcroft Institute, Warrington WA4 4AD (United Kingdom); Bowe, P.D. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Capra, A. [Department of Physics and Astronomy, York University, Toronto ON Canada, M3J 1P3 (Canada); Carpenter, P.T. [Department of Physics, Auburn University, Auburn, AL 36849-5311 (United States); Cesar, C.L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Chapman, S. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Charlton, M.; Deller, A.; Eriksson, S. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Escallier, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Fajans, J. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Friesen, T. [Department of Physics and Astronomy, University of Calgary, Calgary AB, Canada, T2N 1N4 (Canada); Fujiwara, M.C.; Gill, D.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver BC, Canada V6T 2A3 (Canada); Gutierrez, A. [Department of Physics and Astronomy, University of British Columbia, Vancouver BC, Canada V6T 1Z4 (Canada); and others


    The ALPHA collaboration, based at CERN, has recently succeeded in confining cold antihydrogen atoms in a magnetic minimum neutral atom trap and has performed the first study of a resonant transition of the anti-atoms. The ALPHA apparatus will be described herein, with emphasis on the structural aspects, diagnostic methods and techniques that have enabled antihydrogen trapping and experimentation to be achieved.


    DEFF Research Database (Denmark)


    The present invention concerns a method and an apparatus for separating dry matter from liquid, comprising providing an enclosed separation environment capable of being pressure regulated, and in said enclosed separation environment contacting at least one filter with a suspension accumulating dr...

  13. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.


    A nuclear fuel loading apparatus, incorporating a microprocessor control unit, is described which automatically loads nuclear fuel pellets into dual fuel rods with a minimum of manual involvement and in a manner and sequence to ensure quality control and accuracy. (U.K.)

  14. Apparatus for measuring fluid flow (United States)

    Smith, J.E.; Thomas, D.G.

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  15. Support of nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Watarai, Tetsuo; Ito, Yutaka.


    Object: To integrally form a bed for a body for supporting a vacuum container, coil and the like and a bed for a current transformer for supporting the current transformer prior to installation thereof on the floor thereby facilitating assembly and installation. Structure: To provide a base common to a current transformer bed and a body bed without direct installation thereof on the floor. Prior to installation of the current transformer bed and body bed, they are fastened to the base by means of bolts and welded integrally, and the thus formed base is fixed to the floor by means of anchor bolts. Since the current transformer bed and the body bed are formed integrally through the common base, apparatus may easily be carried in and disassembling and re-assembling of apparatus become unnecessary when installed. Further, since the positional relation of the current transformer bed and body bed does not depend on accuracy at the time of installation but depends on accuracy when apparatus manufactured, the toroidal type nuclear fusion apparatus of good accuracy may be obtained. (Yoshihara, H.)

  16. High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging (3D-PLI

    Directory of Open Access Journals (Sweden)

    Markus eAxer


    Full Text Available Functional interactions between different brain regions require connecting fiber tracts, the structural basis of the human connectome. To assemble a comprehensive structural understanding of neural network elements from the microscopic to the macroscopic dimensions, a multimodal and multiscale approach has to be envisaged. However, the integration of results from complementary neuroimaging techniques poses a particular challenge. In this paper, we describe a steadily evolving neuroimaging technique referred to as three-dimensional polarized light imaging (3D-PLI. It is based on the birefringence of the myelin sheaths surrounding axons, and enables the high-resolution analysis of myelinated axons constituting the fiber tracts. 3D-PLI provides the mapping of spatial fiber architecture in the postmortem human brain at a sub-millimeter resolution, i.e. at the mesoscale. The fundamental data structure gained by 3D-PLI is a comprehensive 3D vector field description of fibers and fiber tract orientations – the basis for subsequent tractography. To demonstrate how 3D-PLI can contribute to unravel and assemble the human connectome, a multiscale approach with the same technology was pursued. Two complementary state-of-the-art polarimeters providing different sampling grids (pixel sizes of 100 μm and 1.6 μm were used. To exemplarily highlight the potential of this approach, fiber orientation maps and 3D fiber models were reconstructed in selected regions of the brain (e.g., Corpus callosum, Internal capsule, Pons. The results demonstrate that 3D-PLI is an ideal tool to serve as an interface between the microscopic and macroscopic levels of organization of the human connectome.

  17. Titan Polar Landscape Evolution (United States)

    Moore, Jeffrey M.


    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  18. X-Ray Polarization Imaging (United States)


    diagnosis of abnormal nipple discharge. The contrast agent is generally intro- duced via the orifice in the nipple that has been iden- tified as the...galactography intends to introduce contrast material only into the ductal lu- men . In this context, it is noteworthy that Cabioglu et al (25), in a study of the...differential diagnosis of nipple discharge, reported that one patient had “an unusual communication between the ductal system and a large mammary

  19. High-frequency signal paths in the TMR-86.1 experimental tomography apparatus

    International Nuclear Information System (INIS)

    Obrcian, J.; Jellus, V.; Weis, J.; Frollo, I.


    The NMR-based TMR-86.1 tomography apparatus, developed at the Institute of Measurement and Measuring Instrumentation, Slovak Academy of Sciences in Bratislava, Czechoslovakia, enables imaging of the inner structure of biological samples and human limbs no more than 110 mm in diameter, using a measuring matrix containing at most 128x128 elements. The imaged matrix can possess a maximum of 256x256 image elements with 256 brightness steps. The signal paths of the high-frequency excitation-imaging complex of the apparatus are described. Some functional blocks of the apparatus can be used without substantial modifications for the imaging of larger objects such as the human body. From the point of view of the high-frequency pulses for nonselective excitation (so-called 180deg-pulses), the excitation pulse power will have to be increased to at least 1 kW. (author). 5 figs, 7 refs

  20. Measurement of $\\Lambda$ polarization from Z decays

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Nicod, D; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Rankin, C; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Aleppo, M; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G


    The polarization of \\Lambda baryons from Z decays is studied with the {\\sc Aleph} apparatus. Evidence of longitudinal polarization of s quarks from Z decay is observed for the first time. The measured longitudinal \\Lambda polarization is P^{\\Lambda}_{L} = -0.32 \\pm 0.07 for z = p/p_{\\mathrm{beam}} > 0.3. This agrees with the prediction of -0.39 \\pm 0.08 from the standard model and the constituent quark model, where the error is due to uncertainties in the mechanism for \\Lambda production. The observed \\Lambda polarization is diluted with respect to the primary s quark polarization by \\Lambda baryons without a primary s quark. Measurements of the \\Lambda forward-backward asymmetry and of the correlation between back-to-back \\Lambda \\bar{\\Lambda} pairs are used to check this dilution. In addition the transverse \\Lambda polarization is measured. An indication of transverse polarization, more than two standard deviations away from zero, is found along the normal to the plane defined by the thrust axis and the \\La...

  1. Measurement of Λ polarization from Z decays (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajlatouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Aleppo, M.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration


    The polarization of Λ baryons from Z decays is studied with the ALEPH apparatus. Evidence of longitudinal polarization of s quarks from Z decay is observed for the first time. The measured longitudinal Λ polarization is PLΛ = -0.32 ± 0.07 for z = {p}/{p beam} > 0.3 . This agrees with the prediction of -0.39 ± 0.08 from the standard model and the constituent quark model, where the error is due to uncertainties in the mechanism for Λ production. The observed Λ polarization is diluted with respect to the primary s quark polarization by Λ baryons without a primary s quark. Measurements of the Λ forward-backward asymmetry and of the correlation between back-to-back Λ overlineΛ pairs are used to check this dilution. In addition the transverse Λ polarization is measured. An indication of transverse polarization, more than two standard deviations away from zero, is found along the normal to the plane defined by the thrust axis and the Λ direction.

  2. Construction of shallow land simulation apparatuses

    International Nuclear Information System (INIS)

    Yamamoto, Tadatoshi; Ohtsuka, Yoshiro; Takebe, Shinichi; Ohnuki, Toshihiko; Ogawa, Hiromichi; Harada, Yoshikane; Saitoh, Kazuaki; Wadachi, Yoshiki


    Shallow land simulation apparatuses in which natural soil can be used as testing soil have been constructed to investigate the migration characteristics of radionuclides in a disposal site. These apparatuses consist of aerated zone apparatus and aquifer zone one. In the aerated zone apparatus, aerated soil upon ground water level is contained in the soil column (d: 30cm x h: 120cm). In the aquifer zone apparatus, aquifer soil laying ground water level is contained in the soil vessel (b: 90cm x l: 270cm x h: 45cm). This report describes the outline of shallow land simulation apparatuses : function of apparatuses and specification of devices, analysis of obstructions, safety rules, analysis of accidents and operation manual. (author)

  3. Variable frequency microwave heating apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Bible, D.W.; Lauf, R.J.; Johnson, A.C.; Thigpen, L.T.


    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  4. Radiation scatter apparatus and method

    International Nuclear Information System (INIS)

    Molbert, J. L.; Riddle, E. R.


    A radiation scatter gauge includes multiple detector locations for developing separate and independent sets of data from which multiple physical characteristics of a thin material and underlying substrate may be determined. In an illustrated embodiment, the apparatus and method of the invention are directed to determining characteristics of resurfaced pavement by nondestructive testing. More particularly, the density and thickness of a thin asphalt overlay and the density of the underlying pavement may be determined

  5. Torque application technique and apparatus (United States)

    Pineault, Raymond P.


    A tool which produces a measured torque is coupled to a bolt head or nut, located in a relatively inaccessible area, by apparatus which includes a wrench member affixed to an adaptor. The wrench member is sized and shaped to engage the fastener to be operated upon and the adaptor has a tubular construction with a tool engaging socket at one end. The adaptor is provided with an elongated slot which accommodates any wires which may pass through the fastener.

  6. Nuclear reactor vessel inspection apparatus

    International Nuclear Information System (INIS)

    Blackstone, E.G.; Lofy, R.A.; Williams, L.P.


    Apparatus for the in situ inspection of a nuclear reactor vessel to detect the location and character of flaws in the walls of the vessel, in the welds joining the various sections of the vessel, in the welds joining attachments such as nozzles, elbows and the like to the reactor vessel and in such attachments wherein an inspection head carrying one or more ultrasonic transducers follows predetermined paths in scanning the various reactor sections, welds and attachments

  7. Vibration damping method and apparatus (United States)

    Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.


    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.

  8. Apparatus for making molten silicon (United States)

    Levin, Harry (Inventor)


    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  9. The Apparatus of Digital Archaeology

    Directory of Open Access Journals (Sweden)

    Jeremy Huggett


    Full Text Available Digital Archaeology is predicated upon an ever-changing set of apparatuses – technological, methodological, software, hardware, material, immaterial – which in their own ways and to varying degrees shape the nature of Digital Archaeology. Our attention, however, is perhaps inevitably more closely focused on research questions, choice of data, and the kinds of analyses and outputs. In the process we tend to overlook the effects the tools themselves have on the archaeology we do beyond the immediate consequences of the digital. This article introduces cognitive artefacts as a means of addressing the apparatus more directly within the context of the developing archaeological digital ecosystem. It argues that a critical appreciation of our computational cognitive artefacts is key to understanding their effects on both our own cognition and on the creation of archaeological knowledge. In the process, it defines a form of cognitive digital archaeology in terms of four distinct methods for extracting cognition from the digital apparatus layer by layer.

  10. Strategic Polarization. (United States)

    Kalai, Adam; Kalai, Ehud


    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  11. Polarization of Coronal Forbidden Lines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao; Qu, Zhongquan [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China); Landi Degl’Innocenti, Egidio, E-mail: [Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy)


    Since the magnetic field is responsible for most manifestations of solar activity, one of the most challenging problems in solar physics is the diagnostics of solar magnetic fields, particularly in the outer atmosphere. To this end, it is important to develop rigorous diagnostic tools to interpret polarimetric observations in suitable spectral lines. This paper is devoted to analyzing the diagnostic content of linear polarization imaging observations in coronal forbidden lines. Although this technique is restricted to off-limb observations, it represents a significant tool to diagnose the magnetic field structure in the solar corona, where the magnetic field is intrinsically weak and still poorly known. We adopt the quantum theory of polarized line formation developed in the framework of the density matrix formalism, and synthesize images of the emergent linear polarization signal in coronal forbidden lines using potential-field source-surface magnetic field models. The influence of electronic collisions, active regions, and Thomson scattering on the linear polarization of coronal forbidden lines is also examined. It is found that active regions and Thomson scattering are capable of conspicuously influencing the orientation of the linear polarization. These effects have to be carefully taken into account to increase the accuracy of the field diagnostics. We also found that linear polarization observation in suitable lines can give valuable information on the long-term evolution of the magnetic field in the solar corona.

  12. Advancements on Radar Polarization Information Acquisition and Processing

    Directory of Open Access Journals (Sweden)

    Dai Dahai


    Full Text Available The study on radar polarization information acquisition and processing has currently been one important part of radar techniques. The development of the polarization theory is simply reviewed firstly. Subsequently, some key techniques which include polarization measurement, polarization anti-jamming, polarization recognition, imaging and parameters inversion using radar polarimetry are emphatically analyzed in this paper. The basic theories, the present states and the development trends of these key techniques are presented and some meaningful conclusions are derived.

  13. Spin-polarized SEM

    International Nuclear Information System (INIS)

    Konoto, Makoto


    Development of highly effective evaluation technology of magnetic structures on a nanometric scale is a key to understanding spintronics and related phenomena. A high-resolution spin-polarized scanning electron microscope (spin SEM) developed recently is quite suitable for probing such nanostructures because of the capability of analyzing local magnetization vectors in three dimensions. Utilizing the spin SEM, a layered antiferromagnetic structure with the 1nm-alternation of bilayer-sheet magnetization has been successfully resolved. The real-space imaging with full analysis of the temperature-dependent magnetization vectors will be demonstrated. (author)

  14. Polarized secondary radioactive beams

    International Nuclear Information System (INIS)

    Zaika, N.I.


    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  15. Polar crane

    International Nuclear Information System (INIS)

    Makosinski, S.


    In many applications polar cranes have to be repeatedly positioned with high accuracy. A guidance system is disclosed which has two pairs of guides. Each guide consists of two rollers carried by a sheave rotatable mounted on the crane bridge, the rollers being locatable one on each side of a guideway, e.g. the circular track on which the bridge runs. The pairs of guides are interconnected by respective rope loops which pass around and are locked to the respective pairs of sheaves in such a manner that movement of one guide results in equal movement of the other guide in a sense to maintain the repeatability of positioning of the centre of the bridge. A hydraulically-linked guide system is also described. (author)

  16. Apparatus for generating x-ray holograms (United States)

    Rhodes, Charles K.; Boyer, Keith; Solem, Johndale C.; Haddad, Waleed S.


    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced.

  17. Adapting the HSV polarization-color mapping for regions with low irradiance and high polarization. (United States)

    Scott Tyo, J; Ratliff, Bradley M; Alenin, Andrey S


    Many mappings from polarization into color have been developed so that polarization information can be displayed. One of the most common of these maps the angle of linear polarization into color hue and degree of linear polarization into color saturation, while preserving the irradiance information from the polarization data. While this strategy enjoys wide popularity, there is a large class of polarization images for which it is not ideal. It is common to have images where the strongest polarization signatures (in terms of degree of polarization) occur in regions of relatively low irradiance: either in shadow in reflective bands or in cold regions in emissive bands. Since the irradiance is low, the chromatic properties of the resulting images are generally not apparent. Here we present an alternate mapping that uses the statistics of the angle of polarization as a measure of confidence in the polarization signature, then amplifies the irradiance in regions of high confidence, and leaves it unchanged in regions of low confidence. Results are shown from an LWIR and a visible spectrum imager.

  18. Quantitative comparison of X-ray fluorescence microtomography setups: Standard and confocal collimator apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Chukalina, M. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka, Moscow District (Russian Federation)], E-mail:; Simionovici, A. [Laboratoire de Geophysique Interne et Tectonophysique, University of Grenoble, BP 53, 38041, Grenoble (France)], E-mail:; Zaitsev, S. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka, Moscow District (Russian Federation)], E-mail:; Vanegas, C.J. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka, Moscow District (Russian Federation)], E-mail:


    Recently, there has been a renewed interest for fluorescence spectroscopy, as provided by modern setups which allow 2D and 3D imaging of elemental distributions. Two directions are currently under development: the SR-based fluorescence tomography in polar scanning geometry, provided by the new generation of X-ray microprobes and the confocal scanning geometry, which can be fielded in both SR and laboratory environments. The new probes bring forth a new age in fluorescence spectrometry: high resolution, high intensity and high sensitivity which allow 3D elemental mapping of volumes. The major task now is the development of these complex tools into fully quantitative probes, reproducible and straightforward for general use. In this work we analyze two X-ray fluorescence microtomography techniques: an apparatus tomography using a confocal collimator for the data collection and a standard first generation Computed Tomography (CT) in the parallel scanning scheme. We calculate the deposited dose (amount of energy deposited and distributed in the sample during the data collection time) and find the conditions for the choice of the tomography scheme.

  19. Ortho-Babinet polarization-interrogating filter: an interferometric approach to polarization measurement. (United States)

    Van Delden, Jay S


    A novel, interferometric, polarization-interrogating filter assembly and method for the simultaneous measurement of all four Stokes parameters across a partially polarized irradiance image in a no-moving-parts, instantaneous, highly sensitive manner is described. In the reported embodiment of the filter, two spatially varying linear retarders and a linear polarizer comprise an ortho-Babinet, polarization-interrogating (OBPI) filter. The OBPI filter uniquely encodes the incident ensemble of electromagnetic wave fronts comprising a partially polarized irradiance image in a controlled, deterministic, spatially varying manner to map the complete state of polarization across the image to local variations in a superposed interference pattern. Experimental interferograms are reported along with a numerical simulation of the method.

  20. PolarTrack: Optical Outside-In Device Tracking that Exploits Display Polarization

    DEFF Research Database (Denmark)

    Rädle, Roman; Jetter, Hans-Christian; Fischer, Jonathan


    PolarTrack is a novel camera-based approach to detecting and tracking mobile devices inside the capture volume. In PolarTrack, a polarization filter continuously rotates in front of an off-the-shelf color camera, which causes the displays of observed devices to periodically blink in the camera feed....... The periodic blinking results from the physical characteristics of current displays, which shine polarized light either through an LC overlay to produce images or through a polarizer to reduce light reflections on OLED displays. PolarTrack runs a simple detection algorithm on the camera feed to segment...... displays and track their locations and orientations, which makes PolarTrack particularly suitable as a tracking system for cross-device interaction with mobile devices. Our evaluation of PolarTrack's tracking quality and comparison with state-of-the-art camera-based multi-device tracking showed a better...