WorldWideScience

Sample records for polarizable water systems

  1. Vibrational polarizabilities of hydrogen-bonded water

    International Nuclear Information System (INIS)

    Torii, Hajime

    2013-01-01

    Highlights: ► Vibrational polarizabilities of hydrogen-bonded water are analyzed theoretically. ► Total vibrational polarizability is (at least) comparable to the electronic one. ► Molecular translations contribute to the vibrational polarizability below 300 cm −1 . ► Intermolecular charge fluxes along H bonds are induced by molecular translations. ► The results are discussed in relation to the observed dielectric properties. - Abstract: The vibrational polarizabilities and the related molecular properties of hydrogen-bonded water are analyzed theoretically, taking the case of (water) 30 clusters as an example case. It is shown that some off-diagonal dipole derivatives are large for the translations of incompletely hydrogen-bonded molecules, and this is reasonably explained by the scheme of intermolecular charge fluxes induced along hydrogen bonds. In total, because of these intermolecular charge fluxes, molecular translations give rise to the vibrational polarizability of 2.8–3.3 a 0 3 per molecule, which is as large as about 40% of the electronic polarizability, mainly in the frequency region below 300 cm −1 . Adding the contributions of the molecular rotations (librations) and the translation–rotation cross term, the total polarizability (electronic + vibrational) at ∼100 cm −1 is slightly larger than the double of that at >4000 cm −1 . The relation of these results to some observed time- and frequency-dependent dielectric properties of liquid water is briefly discussed

  2. Transferability of polarizable models for ion-water electrostatic interaction

    International Nuclear Information System (INIS)

    Masia, Marco

    2009-01-01

    Studies of ion-water systems at condensed phase and at interfaces have pointed out that molecular and ionic polarization plays an important role for many phenomena ranging from hydrogen bond dynamics to water interfaces' structure. Classical and ab initio Molecular Dynamics simulations reveal that induced dipole moments at interfaces (e.g. air-water and water-protein) are usually high, hinting that polarizable models to be implemented in classical force fields should be very accurate in reproducing the electrostatic properties of the system. In this paper the electrostatic properties of three classical polarizable models for ion-water interaction are compared with ab initio results both at gas and condensed phase. For Li + - water and Cl - -water dimers the reproducibility of total dipole moments obtained with high level quantum chemical calculations is studied; for the same ions in liquid water, Car-Parrinello Molecular Dynamics simulations are used to compute the time evolution of ionic and molecular dipole moments, which are compared with the classical models. The PD2-H2O model developed by the author and coworkers [Masia et al. J. Chem. Phys. 2004, 121, 7362] together with the gaussian intermolecular damping for ion-water interaction [Masia et al. J. Chem. Phys. 2005, 123, 164505] showed to be the fittest in reproducing the ab initio results from gas to condensed phase, allowing for force field transferability.

  3. Ion Transfer Voltammetry Associated with Two Polarizable Interfaces Within Water and Moderately Hydrophobic Ionic Liquid Systems

    DEFF Research Database (Denmark)

    Gan, Shiyu; Zhou, Min; Zhang, Jingdong

    2013-01-01

    An electrochemical system composed of two polarizable interfaces (the metallic electrode|water and water|ionic liquid interfaces), namely two‐polarized‐interface (TPI) technique, has been proposed to explore the ion transfer processes between water and moderately hydrophobic ionic liquids (W...... to an extremely narrow polarized potential window (ppw) caused by these moderately hydrophobic ionic components. In this article, we show that TPI technique has virtually eliminated the ppw limitation based on a controlling step of concentration polarization at the electrode|water interface. With the aid...

  4. On a relationship between molecular polarizability and partial molar volume in water.

    Science.gov (United States)

    Ratkova, Ekaterina L; Fedorov, Maxim V

    2011-12-28

    We reveal a universal relationship between molecular polarizability (a single-molecule property) and partial molar volume in water that is an ensemble property characterizing solute-solvent systems. Since both of these quantities are of the key importance to describe solvation behavior of dissolved molecular species in aqueous solutions, the obtained relationship should have a high impact in chemistry, pharmaceutical, and life sciences as well as in environments. We demonstrated that the obtained relationship between the partial molar volume in water and the molecular polarizability has in general a non-homogeneous character. We performed a detailed analysis of this relationship on a set of ~200 organic molecules from various chemical classes and revealed its fine well-organized structure. We found that this structure strongly depends on the chemical nature of the solutes and can be rationalized in terms of specific solute-solvent interactions. Efficiency and universality of the proposed approach was demonstrated on an external test set containing several dozens of polyfunctional and druglike molecules.

  5. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model

    Science.gov (United States)

    Pande, Vijay S.; Head-Gordon, Teresa; Ponder, Jay W.

    2016-01-01

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. The protocol uses an automated procedure, ForceBalance, to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimentally obtained data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The new AMOEBA14 water model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures ranging from 249 K to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to a variety of experimental properties as a function of temperature, including the 2nd virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient and dielectric constant. The viscosity, self-diffusion constant and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2 to 20 water molecules, the AMOEBA14 model yields results similar to the AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model. PMID:25683601

  6. Adaptive resolution simulation of polarizable supramolecular coarse-grained water models

    International Nuclear Information System (INIS)

    Zavadlav, Julija; Praprotnik, Matej; Melo, Manuel N.; Marrink, Siewert J.

    2015-01-01

    Multiscale simulations methods, such as adaptive resolution scheme, are becoming increasingly popular due to their significant computational advantages with respect to conventional atomistic simulations. For these kind of simulations, it is essential to develop accurate multiscale water models that can be used to solvate biophysical systems of interest. Recently, a 4-to-1 mapping was used to couple the bundled-simple point charge water with the MARTINI model. Here, we extend the supramolecular mapping to coarse-grained models with explicit charges. In particular, the two tested models are the polarizable water and big multiple water models associated with the MARTINI force field. As corresponding coarse-grained representations consist of several interaction sites, we couple orientational degrees of freedom of the atomistic and coarse-grained representations via a harmonic energy penalty term. This additional energy term aligns the dipole moments of both representations. We test this coupling by studying the system under applied static external electric field. We show that our approach leads to the correct reproduction of the relevant structural and dynamical properties

  7. Measurement of molecular polarizability on Rayleigh light scattering

    International Nuclear Information System (INIS)

    Nerushev, O.A.; Novopashin, S.A.

    1994-01-01

    The installation for measuring the polarizability of atoms and molecules on Rayleigh light scattering is described. The measurements in gases with the known polarizability are used for a calibration. Test measurements are carried out on nitrogen, argon, carbon dioxide, vapours of water and acetone. The results of measurements are compared with the table data. The technique is used for measuring the polarizability of fullerene molecules. 6 refs., 2 figs

  8. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Steinmann, Casper; Ruud, Kenneth

    2015-01-01

    We present a new QM/QM/MM-based model for calculating molecular properties and excited states of solute-solvent systems. We denote this new approach the polarizable density embedding (PDE) model and it represents an extension of our previously developed polarizable embedding (PE) strategy. The PDE...... model is a focused computational approach in which a core region of the system studied is represented by a quantum-chemical method, whereas the environment is divided into two other regions: an inner and an outer region. Molecules belonging to the inner region are described by their exact densities...

  9. Polarizability of the Nitrate Anion and Its Solvation at the Air/Water Interface

    Czech Academy of Sciences Publication Activity Database

    Salvador, P.; Curtis, J. E.; Tobias, D. J.; Jungwirth, Pavel

    2003-01-01

    Roč. 5, - (2003), s. 3752-3757 ISSN 1463-9076 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : polarizability * nitrate anion * air/water Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.959, year: 2003

  10. Size-scaling behaviour of the electronic polarizability of one-dimensional interacting systems

    Science.gov (United States)

    Chiappe, G.; Louis, E.; Vergés, J. A.

    2018-05-01

    Electronic polarizability of finite chains is accurately calculated from the total energy variation of the system produced by small but finite static electric fields applied along the chain direction. Normalized polarizability, that is, polarizability divided by chain length, diverges as the second power of length for metallic systems but approaches a constant value for insulating systems. This behaviour provides a very convenient way to characterize the wave-function malleability of finite systems as it avoids the need of attaching infinite contacts to the chain ends. Hubbard model calculations at half filling show that the method works for a small U  =  1 interaction value that corresponds to a really small spectral gap of 0.005 (hopping t  =  ‑1 is assumed). Once successfully checked, the method has been applied to the long-range hopping model of Gebhard and Ruckenstein showing 1/r hopping decay (Gebhard and Ruckenstein 1992 Phys. Rev. Lett. 68 244; Gebhard et al 1994 Phys. Rev. B 49 10926). Metallicity for U values below the reported metal-insulator transition is obtained but the surprise comes for U values larger than the critical one (when a gap appears in the spectral density of states) because a steady increase of the normalized polarizability with size is obtained. This critical size-scaling behaviour can be understood as corresponding to a molecule which polarizability is unbounded. We have checked that a real transfer of charge from one chain end to the opposite occurs as a response to very small electric fields in spite of the existence of a large gap of the order of U for one-particle excitations. Finally, ab initio quantum chemistry calculations of realistic poly-acetylene chains prove that the occurrence of such critical behaviour in real systems is unlikely.

  11. The effective χ parameter in polarizable polymeric systems: One-loop perturbation theory and field-theoretic simulations.

    Science.gov (United States)

    Grzetic, Douglas J; Delaney, Kris T; Fredrickson, Glenn H

    2018-05-28

    We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ̃) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor Sk and the dielectric function ϵ^(k) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters B AA , B AB , and B BB , which then determine χ̃. The one-loop theory not only enables the quantitative prediction of χ̃ but also provides useful insight into the dependence of χ̃ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ϵ^(k) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ̃N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.

  12. Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields.

    Science.gov (United States)

    Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F; Harger, Matthew; Torabifard, Hedieh; Cisneros, G Andrés; Schnieders, Michael J; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y; Ponder, Jay W; Piquemal, Jean-Philip

    2018-01-28

    We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over

  13. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  14. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  15. One-Photon Absorption Properties from a Hybrid Polarizable Density Embedding/Complex Polarization Propagator Approach for Polarizable Solutions

    DEFF Research Database (Denmark)

    Hršak, Dalibor; Nørby, Morten Steen; Coriani, Sonia

    2018-01-01

    We present a formulation of the polarizable density embedding (PDE) method in combination with the complex polarization propagator (CPP) method for the calculation of absorption spectra of molecules in solutions. The method is particularly useful for the calculation of near-edge X-ray absorption...... fine structure (NEXAFS) spectra. We compare the performance of PDE-CPP with the previously formulated polarizable embedding (PE)-CPP model for the calculation of the NEXAFS spectra of adenine, formamide, glycine, and adenosine triphosphate (ATP) in water at the carbon and nitrogen K-edges, as well...

  16. Electronic Polarizability and the Effective Pair Potentials of Water

    Science.gov (United States)

    Leontyev, I. V.; Stuchebrukhov, A. A.

    2014-01-01

    Employing the continuum dielectric model for electronic polarizability, we have developed a new consistent procedure for parameterization of the effective nonpolarizable potential of liquid water. The model explains the striking difference between the value of water dipole moment μ~3D reported in recent ab initio and experimental studies with the value μeff~2.3D typically used in the empirical potentials, such as TIP3P or SPC/E. It is shown that the consistency of the parameterization scheme can be achieved if the magnitude of the effective dipole of water is understood as a scaled value μeff=μ∕εel, where εel =1.78 is the electronic (high-frequency) dielectric constant of water, and a new electronic polarization energy term, missing in the previous theories, is included. The new term is evaluated by using Kirkwood - Onsager theory. The new scheme is fully consistent with experimental data on enthalpy of vaporization, density, diffusion coefficient, and static dielectric constant. The new theoretical framework provides important insights into the nature of the effective parameters, which is crucial when the computational models of liquid water are used for simulations in different environments, such as proteins, or for interaction with solutes. PMID:25383062

  17. Electric dipole polarizability: from few- to many-body systems

    Directory of Open Access Journals (Sweden)

    Miorelli Mirko

    2016-01-01

    Full Text Available We review the Lorentz integral transform coupled-cluster method for the calculation of the electric dipole polarizability. We benchmark our results with exact hyperspherical harmonics calculations for 4He and then we move to a heavier nucleus studying 16O. We observe that the implemented chiral nucleon-nucleon interaction at next-to-next-to-next-to-leading order underestimates the electric dipole polarizability.

  18. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Reinholdt, Peter; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard

    2017-01-01

    We analyze the performance of the polarizable density embedding (PDE) model-a new multiscale computational approach designed for prediction and rationalization of general molecular properties of large and complex systems. We showcase how the PDE model very effectively handles the use of large...

  19. Cooperative effects in the structuring of fluoride water clusters: Ab initio hybrid quantum mechanical/molecular mechanical model incorporating polarizable fluctuating charge solvent

    Science.gov (United States)

    Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.

    1998-08-01

    A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.

  20. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model.

    Science.gov (United States)

    Bauer, Brad A; Patel, Sandeep

    2009-08-28

    We present an extension of the TIP4P-QDP model, TIP4P-QDP-LJ, that is designed to couple changes in repulsive and dispersive nonbond interactions to changes in polarizability. Polarizability is intimately related to the dispersion component of classical force field models of interactions, and we explore the effect of incorporating this connection explicitly on properties along the liquid-vapor coexistence curve of pure water. Parametrized to reproduce condensed-phase liquid water properties at 298 K, the TIP4P-QDP-LJ model predicts density, enthalpy of vaporization, self-diffusion constant, and the dielectric constant at ambient conditions to about the same accuracy as TIP4P-QDP but shows remarkable improvement in reproducing the liquid-vapor coexistence curve. TIP4P-QDP-LJ predicts critical constants of T(c)=623 K, rho(c)=0.351 g/cm(3), and P(c)=250.9 atm, which are in good agreement with experimental values of T(c)=647.1 K, rho(c)=0.322 g/cm(3), and P(c)=218 atm, respectively. Applying a scaling factor correction (obtained by fitting the experimental vapor-liquid equilibrium data to the law of rectilinear diameters using a three-term Wegner expansion) the model predicts critical constants (T(c)=631 K and rho(c)=0.308 g/cm(3)). Dependence of enthalpy of vaporization, self-diffusion constant, surface tension, and dielectric constant on temperature are shown to reproduce experimental trends. We also explore the interfacial potential drop across the liquid-vapor interface for the temperatures studied. The interfacial potential demonstrates little temperature dependence at lower temperatures (300-450 K) and significantly enhanced (exponential) dependence at elevated temperatures. Terms arising from the decomposition of the interfacial potential into dipole and quadrupole contributions are shown to monotonically approach zero as the temperature approaches the critical temperature. Results of this study suggest that self-consistently treating the coupling of phase

  1. Static polarizabilities of dielectric nanoclusters

    International Nuclear Information System (INIS)

    Kim, Hye-Young; Sofo, Jorge O.; Cole, Milton W.; Velegol, Darrell; Mukhopadhyay, Gautam

    2005-01-01

    A cluster consisting of many atoms or molecules may be considered, in some circumstances, to be a single large molecule with a well-defined polarizability. Once the polarizability of such a cluster is known, one can evaluate certain properties--e.g. the cluster's van der Waals interactions, using expressions derived for atoms or molecules. In the present work, we evaluate the static polarizability of a cluster using a microscopic method that is exact within the linear and dipolar approximations. Numerical examples are presented for various shapes and sizes of clusters composed of identical atoms, where the term 'atom' actually refers to a generic constituent, which could be any polarizable entity. The results for the clusters' polarizabilities are compared with those obtained by assuming simple additivity of the constituents' atomic polarizabilities; in many cases, the difference is large, demonstrating the inadequacy of the additivity approximation. Comparison is made (for symmetrical geometries) with results obtained from continuum models of the polarizability. Also, the surface effects due to the nonuniform local field near a surface or edge are shown to be significant

  2. Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field

    OpenAIRE

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and...

  3. Electromagnetic polarizabilities of hadrons

    International Nuclear Information System (INIS)

    Friar, J.L.

    1988-01-01

    Electromagnetic polarizabilities of hadrons are reviewed, after a discussion of classical analogues. Differences between relativistic and non-relativistic approaches can lead to conflicts with conventional nuclear physics sum rules and calculational techniques. The nucleon polarizabilities are discussed in the context of the non-relativistic valence quark model, which provides a good qualitative description. The recently measured pion polarizabilities are discussed in the context of chiral symmetry and quark-loop models. 58 refs., 5 figs

  4. Collision-induced polarizabilities of inert gas atoms

    International Nuclear Information System (INIS)

    Clarke, K.L.; Madden, P.A.; Buckingham, A.D.

    1978-01-01

    The use of polarizability densities to calculate collision-induced polarizabilities is investigated. One method for computing polarizabilities of inert gas diatoms employs atomic polarizability densities from finite-field Hartree-Fock calculations, together with classical equations for the polarization of dielectrics. It is shown that this model gives inaccurate values for both the local fields and the local response to non-uniform fields. An alternative method incorporating the same physical effects is used to compute the pair polarizabilities to first order in the interatomic interaction. To first order the pair contribution to the trace of the polarizability is negative at short range. The calculated anisotropy does not differ significantly from the DID value, whereas the polarizability density calculation gives a substantial reduction in the anisotropy. (author)

  5. Shining light on polarizable dark particles

    Energy Technology Data Exchange (ETDEWEB)

    Fichet, Sylvain [ICTP South American Institute for Fundamental Research, Instituto de Fisica Teorica, Sao Paulo State University,Rua Dr. Bento Teobaldo Ferraz 271, Bloco 2, Barra Funda (Brazil)

    2017-04-14

    We investigate the possibilities of searching for a self-conjugate polarizable particle in the self-interactions of light. We first observe that polarizability can arise either from the exchange of mediator states or as a consequence of the inner structure of the particle. To exemplify this second possibility we calculate the polarizability of a neutral bosonic open string, and find it is described only by dimension-8 operators. Focussing on the spin-0 case, we calculate the light-by-light scattering amplitudes induced by the dimension-6 and 8 polarizability operators. Performing a simulation of exclusive diphoton production with proton tagging at the LHC, we find that the imprint of the polarizable dark particle can be potentially detected at 5σ significance for mass and cutoff reaching values above the TeV scale, for √s=13 TeV and 300 fb{sup −1} of integrated luminosity. If the polarizable dark particle is stable, it can be a dark matter candidate, in which case we argue this exclusive diphoton search may complement the existing LHC searches for polarizable dark matter.

  6. Pion polarizabilities measurement at COMPASS

    CERN Document Server

    Guskov, Alexey

    2008-01-01

    The electromagnetic structure of pions is probed in $\\pi^{−} + (A,Z)\\rightarrow\\pi^{−} + (A,Z) +\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric $(\\bar{\\alpha_{\\pi}})$ and the magnetic $(\\bar{\\beta_{\\pi}})$ polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of pointlike pions with the measured cross section. The pion polarizability measurement was performed with $a \\pi^{−}$ beam of 190 GeV. The high beam intensity, the good spectrometer resolution, the high rate capability, the high acceptance and the possibility to use pion and muon beams, unique to the COMPASS experiment, provide the tools to measure precisely the pion polarizabilities in the Primakoff reaction. The preliminary result for pion polarizabilities under the assumption of $\\bar{\\alpha_{\\pi}} + \\bar{\\beta_{\\pi}} =$ 0 is $\\ba...

  7. Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms

    International Nuclear Information System (INIS)

    Kharchenko, V.F.

    2015-01-01

    The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of the bound system formed by the Coulomb interaction the corresponding inhomogeneous integral equation determining an off-shell scattering function, which consistently describes virtual multiple scattering, can be solved exactly analytically for all electric multipole polarizabilities. Our method allows to reproduce the known Dalgarno–Lewis formula for electric multipole polarizabilities of the hydrogen atom in the ground state and can also be applied to determine the polarizability of the atom in excited bound states. - Highlights: • A new description for electric polarization of hydrogen-like atoms. • Expression for multipole polarizabilities in terms of off-shell scattering functions. • Derivation of integral equation determining the off-shell scattering function. • Rigorous analytic solving the integral equations both for ground and excited states. • Study of contributions of virtual multiple scattering to electric polarizabilities

  8. Enhanced polarizability of aromatic molecules placed in the vicinity of silver clusters

    International Nuclear Information System (INIS)

    Mayer, A; Schatz, G C

    2009-01-01

    We use a charge-dipole interaction model to study the polarizability of aromatic molecules that are placed between two silver clusters. In particular we examine the enhancement in polarizability induced by the clusters at plasmon-like resonant frequencies of the cluster-molecule-cluster system. The model used for these simulations relies on representation of the atoms by both a net electric charge and a dipole. By relating the time variation of the atomic charges to the currents that flow through the bonds of the structures considered, a least-action principle can be formulated that enables the atomic charges and dipoles to be determined. We consider benzene, naphthalene and anthracene for this study, comparing the polarizability of these aromatic molecules when placed in the middle between two Ag 120 clusters, with their polarizability as isolated molecules. We find that the polarizability of these molecules is enhanced by the clusters, and this increases the electromagnetic coupling between the two clusters. This results in significant red-shifting (by up to 0.8 eV) of the lowest energy optical transition in the cluster-molecule-cluster system compared to plasmon-like excitation in the cluster-cluster system. The resulting resonant polarizability enhancement leads to an electromagnetic enhancement in surface-enhanced Raman scattering of over 10 6 .

  9. Revisiting a many-body model for water based on a single polarizable site: from gas phase clusters to liquid and air/liquid water systems.

    Science.gov (United States)

    Réal, Florent; Vallet, Valérie; Flament, Jean-Pierre; Masella, Michel

    2013-09-21

    We present a revised version of the water many-body model TCPE [M. Masella and J.-P. Flament, J. Chem. Phys. 107, 9105 (1997)], which is based on a static three charge sites and a single polarizable site to model the molecular electrostatic properties of water, and on an anisotropic short range many-body energy term specially designed to accurately model hydrogen bonding in water. The parameters of the revised model, denoted TCPE/2013, are here developed to reproduce the ab initio energetic and geometrical properties of small water clusters (up to hexamers) and the repulsive water interactions occurring in cation first hydration shells. The model parameters have also been refined to reproduce two liquid water properties at ambient conditions, the density and the vaporization enthalpy. Thanks to its computational efficiency, the new model range of applicability was validated by performing simulations of liquid water over a wide range of temperatures and pressures, as well as by investigating water liquid/vapor interfaces over a large range of temperatures. It is shown to reproduce several important water properties at an accurate enough level of precision, such as the existence liquid water density maxima up to a pressure of 1000 atm, the water boiling temperature, the properties of the water critical point (temperature, pressure, and density), and the existence of a "singularity" temperature at about 225 K in the supercooled regime. This model appears thus to be particularly well-suited for characterizing ion hydration properties under different temperature and pressure conditions, as well as in different phases and interfaces.

  10. Pion polarizabilities measurement at COMPASS

    CERN Document Server

    Guskov, Alexey

    2008-01-01

    The electromagnetic structure of pions is probed in $\\pi^{−}+(A,Z) \\rightarrow\\pi^{−}+(A,Z)+\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric ($\\bar{\\alpha_{\\pi}}$) and the magnetic ($\\bar{\\beta_{\\pi}}$) polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of pointlike pions with the measured cross section. The pion polarizability measurement was performed with a $\\pi^{-}$ beam of 190 GeV. The high beam intensity, the good spectrometer resolution, the high rate capability, the high acceptance and the possibility to use pion and muon beams, unique to the COMPASS experiment, provide the tools to measure precisely the pion polarizabilities in the Primakoff reaction.

  11. Polarizability of Fluid Droplets and the Kerr Effect on Microemulsions

    CERN Document Server

    Lisy, V

    2001-01-01

    Spheroidal fluid droplets immersed in another fluid and thermally fluctuating in the shape are considered. The polarizability of the droplet is evaluated up to the second order in the fluctuation amplitudes. The correlation functions of the polarizability tensor components are found and used to describe the polarized and depolarized scattering of light, and the Kerr effect on microemulsions. By comparison of the theoretical results with the Kerr constant measurements from the literature, we estimate the bending rigidity of the surfactant monolayer that separates the oil and water phases in droplet microemulsions.

  12. Atomic polarizability in negative-ion photodetachment

    International Nuclear Information System (INIS)

    Watanabe, S.; Greene, C.H.

    1980-01-01

    The influence of a strong atomic polarizability on photodetachment processes is isolated. In a model study of K - photodetachment near the 4p/sub 1/2/, 4p/sub 3/2/ levels of K, the polarizability (α/sub 4p/ approx. = 600a 3 0 ) is shown to cause a striking energy dependence of the parameters which determine the cross section. This study extends the effective range theory of O'Malley, Spruch, and Rosenberg to a broader energy range and to multichannel systems. An appendix provides a derivation of the polarization potential (and correction terms) starting from the electron-atom close-coupling equations, showing some new features

  13. Partial Molar Volume of Methanol in Water: Effect of Polarizability

    Czech Academy of Sciences Publication Activity Database

    Moučka, F.; Nezbeda, Ivo

    2009-01-01

    Roč. 74, č. 4 (2009), s. 559-563 ISSN 0010-0765 R&D Projects: GA AV ČR IAA400720802 Institutional research plan: CEZ:AV0Z40720504 Keywords : water–methanol mixtures * partial molar volume * polarizability Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.856, year: 2009

  14. Pion electromagnetic polarizabilities and quarks

    International Nuclear Information System (INIS)

    Llanta, E.; Tarrach, R.

    1980-01-01

    The electric and magnetic polarizabilities of the neutral and charged pion are calculated in a coloured quark field theory at the one-loop level. The theory has as free parameter the quark mass but our results do not depend on it. We have found that the electric polarizabilities are αsub(π+-) = -0.04 α/m 3 sub(π), αsub(π 0 ) = -0.4 α/m 3 sub(π). These values are compared with calculations in other models and some comments are made about the polarizability sum rules. (orig.)

  15. Polarizability of KC60: Evidence for Potassium Skating on the C60 Surface

    Science.gov (United States)

    Rayane, D.; Antoine, R.; Dugourd, Ph.; Benichou, E.; Allouche, A. R.; Aubert-Frécon, M.; Broyer, M.

    2000-02-01

    We present the first measurement of the polarizability and the permanent dipole moment of isolated KC60 molecules by molecular beam deflection technique. We have obtained a value of 2506+/-250 Å3 for the polarizability at room temperature. The addition of a potassium atom enhances by more than a factor of 20 the polarizability of a pure C60 molecule. This very high polarizability and the lack of observed permanent dipole show that the apparent polarizability of KC60 is induced by the free skating of the potassium atom on the C60 surface, resulting in a statistical orientation of the dipole. The results are interpreted with a simple model similar to the Langevin theory for paramagnetic systems.

  16. Electro-optical parameters of bond polarizability model for aluminosilicates.

    Science.gov (United States)

    Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam

    2006-04-06

    Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.

  17. Parity nonconservation and nuclear polarizabilities

    International Nuclear Information System (INIS)

    Haxton, W.

    1990-01-01

    The hadronic weak interaction contributes to parity nonconserving observables in semileptonic interactions. Weak nuclear polarizabilities are frequently important in such interactions. Some of the interesting physics is illustrated by 18 F, a nucleus that provides an important constraint on the neutral weak hadronic current. One observable where the nuclear polarizability is expected to dominate is the nuclear anapole moment. The long-range pion contribution to this weak radiative correction is explored for both nucleons and nuclei. Similar polarizabilities that arise for time-reversal-odd hadronic interactions that conserve or violate parity are discussed in connection with atomic electric dipole moments. 20 refs., 4 figs

  18. Solvation of actinide salts in water using a polarizable continuum model.

    Science.gov (United States)

    Kumar, Narendra; Seminario, Jorge M

    2015-01-29

    In order to determine how actinide atoms are dressed when solvated in water, density functional theory calculations have been carried out to study the equilibrium structure of uranium plutonium and thorium salts (UO2(2+), PuO2(2+), Pu(4+), and Th(4+)) both in vacuum as well as in solution represented by a conductor-like polarizable continuum model. This information is of paramount importance for the development of sensitive nanosensors. Both UO2(2+) and PuO2(2+) ions show coordination number of 4-5 with counterions replacing one or two water molecules from the first coordination shell. On the other hand, Pu(4+), has a coordination number of 8 both when completely solvated and also in the presence of chloride and nitrate ions with counterions replacing water molecules in the first shell. Nitrates were found to bind more strongly to Pu(IV) than chloride anions. In the case of the Th(IV) ion, the coordination number was found to be 9 or 10 in the presence of chlorides. Moreover, the Pu(IV) ion shows greater affinity for chlorides than the Th(IV) ion. Adding dispersion and ZPE corrections to the binding energy does not alter the trends in relative stability of several conformers because of error cancelations. All structures and energetics of these complexes are reported.

  19. Open-ended response theory with polarizable embedding: multiphoton absorption in biomolecular systems.

    Science.gov (United States)

    Steindal, Arnfinn Hykkerud; Beerepoot, Maarten T P; Ringholm, Magnus; List, Nanna Holmgaard; Ruud, Kenneth; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard

    2016-10-12

    We present the theory and implementation of an open-ended framework for electric response properties at the level of Hartree-Fock and Kohn-Sham density functional theory that includes effects from the molecular environment modeled by the polarizable embedding (PE) model. With this new state-of-the-art multiscale functionality, electric response properties to any order can be calculated for molecules embedded in polarizable atomistic molecular environments ranging from solvents to complex heterogeneous macromolecules such as proteins. In addition, environmental effects on multiphoton absorption (MPA) properties can be studied by evaluating single residues of the response functions. The PE approach includes mutual polarization effects between the quantum and classical parts of the system through induced dipoles that are determined self-consistently with respect to the electronic density. The applicability of our approach is demonstrated by calculating MPA strengths up to four-photon absorption for the green fluorescent protein. We show how the size of the quantum region, as well as the treatment of the border between the quantum and classical regions, is crucial in order to obtain reliable MPA predictions.

  20. Dinamical polarizability of highly excited hydrogen-like states

    International Nuclear Information System (INIS)

    Delone, N.B.; Krajnov, V.P.

    1982-01-01

    Analytic expressions are derived for the dynamic polarizability of highly excited hydrogen-like atomic states. It is shown that in the composite matrix element which determines the dynamic polarizability there is a strong compensation of the terms as a result of which the resulting magnitude of the dynamic polarizability is quasiclasically small compared to the individual terms of the composite matrix. It is concluded that the resonance behaviour of the dynamic polarizability of highly excited states differs significantly from the resonance behaviour of the polarizability for the ground and low-lying atomic states. The static limit and high-frequency limit of on electromagnetic field are considered

  1. Static dipole polarizabilities of Scn (n ≤ 15) clusters

    International Nuclear Information System (INIS)

    Xi-Bo, Li; Jiang-Shan, Luo; Wei-Dong, Wu; Yong-Jian, Tang; Hong-Yan, Wang; Yun-Dong, Guo

    2009-01-01

    The static dipole polarizabilities of scandium clusters with up to 15 atoms are determined by using the numerically finite field method in the framework of density functional theory. The electronic effects on the polarizabilities are investigated for the scandium clusters. We examine a large highest occupied molecular orbital — the lowest occupied molecular orbital (HOMO–LUMO) gap of a scandium cluster usually corresponds to a large dipole moment. The static polarizability per atom decreases slowly and exhibits local minimum with increasing cluster size. The polarizability anisotropy and the ratio of mean static polarizability to the HOMO–LUMO gap can also reflect the cluster stability. The polarizability of the scandium cluster is partially related to the HOMO–LUMO gap and is also dependent on geometrical characteristics. A strong correlation between the polarizability and ionization energy is observed. (atomic and molecular physics)

  2. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    International Nuclear Information System (INIS)

    Zope, Rajendra R.; Baruah, Tunna; Bhusal, Shusil; Basurto, Luis; Jackson, Koblar

    2015-01-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C 60 @C 240 and C 60 @C 180 onions shows that, compared to the polarizability of isolated C 60 fullerene, the encapsulation of the C 60 in C 240 and C 180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C 60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability

  3. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Science.gov (United States)

    Zope, Rajendra R.; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  4. Polarizability sum rules in QED

    International Nuclear Information System (INIS)

    Llanta, E.; Tarrach, R.

    1978-01-01

    The well founded total photoproduction and the, assumed subtraction free, longitudinal photoproduction polarizability sum rules are checked in QED at the lowest non-trivial order. The first one is shown to hold, whereas the second one turns out to need a subtraction, which makes its usefulness for determining the electromagnetic polarizabilities of the nucleons quite doubtful. (Auth.)

  5. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Energy Technology Data Exchange (ETDEWEB)

    Zope, Rajendra R., E-mail: rzope@utep.edu; Baruah, Tunna [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Bhusal, Shusil; Basurto, Luis [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Jackson, Koblar [Physics Department and Science of Advanced Materials Ph.D. Program, Central Michigan University, Mt. Pleasant, Michigan 48859 (United States)

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolated C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  6. Double-polarizating scanning radiometer

    International Nuclear Information System (INIS)

    Mishev, D.N.; Nazyrski, T.G.

    1986-01-01

    The double-polarizating single-channel scanning radiometer comprises the following serial connected parts: a scanning double-polarizating aerial, a block for polarization separation, a radiometer receiver, an analog-to-digit converter and an information flow forming block. The low frequency input of the radiometer receiver is connected with a control block, which is also connected with a first bus of a microprocessor, the second bus of which is connected with the A-D converter. The control input of the scanning double-polarizating aerial is connected with the first microprocessor bus. The control inputs of the block for polarization separation are linked by an electronic switch with the output of the forming block, the input of which is connected to the first input of the control block. The control inputs of the block for polarization separation are connected with the second and the third input of the information flow forming block. 2 cls

  7. Fabricating off-diagonal components of frequency-dependent linear and nonlinear polarizabilities of doped quantum dots by Gaussian white noise

    International Nuclear Information System (INIS)

    Saha, Surajit; Ganguly, Jayanta; Ghosh, Manas

    2015-01-01

    We make a rigorous exploration of the profiles of off-diagonal components of frequency-dependent linear (α xy , α yx ), first nonlinear (β xyy , β yxx ), and second nonlinear (γ xxyy , γ yyxx ) polarizabilities of quantum dots driven by Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been applied additively and multiplicatively to the system. An external oscillatory electric field has also been applied to the system. Gradual variations of external frequency, dopant location, and noise strength give rise to interesting features of polarizability components. The observations reveal intricate interplay between noise strength and dopant location which designs the polarizability profiles. Moreover, the mode of application of noise also modulates the polarizability components. Interestingly, in case of additive noise the noise strength has no role on polarizabilities whereas multiplicative noise invites greater delicacy in them. The said interplay provides a rather involved framework to attain stable, enhanced, and often maximized output of linear and nonlinear polarizabilities. - Highlights: • Linear and nonlinear polarizabilities of quantum dot are studied. • The polarizability components are off-diagonal and frequency-dependent. • Quantum dot is doped with a repulsive impurity. • Doped system is subject to Gaussian white noise. • Mode of noise application affects polarizabilities

  8. Quantum mechanical determination of atomic polarizabilities of ionic liquids.

    Science.gov (United States)

    Heid, Esther; Szabadi, András; Schröder, Christian

    2018-04-25

    The distribution of a molecule's polarizability to individual atomic sites is inevitable to develop accurate polarizable force fields. We present the direct quantum mechanical calculation of atomic polarizabilities of 27 common ionic liquids. The method is superior to previously published distribution routines based on large databases of the molecular polarizability, and enables the correct description of any ionic liquid and its peculiarities within the quantum mechanical framework.

  9. Electric dipole polarizability from first principles calculations

    International Nuclear Information System (INIS)

    Miorelli, M.; University of British Columbia, Vancouver, BC; Bacca, S.; University of Manitoba; Barnea, N.

    2016-01-01

    The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for the 4 He, 40 Ca, and 16 O nuclei, and predict the dipole polarizability for the rare nucleus 22 O.

  10. Hadron electric polarizability from lattice QCD

    Science.gov (United States)

    Alexandru, Andrei

    2017-09-01

    Electromagnetic polarizabilities are important parameters for hadron structure, describing the response of the charge and current distributions inside the hadron to an external electromagnetic field. For most hadrons these quantities are poorly constrained experimentally since they can only be measured indirectly. Lattice QCD can be used to compute these quantities directly in terms of quark and gluons degrees of freedom, using the background field method. We present results for the neutron electric polarizability for two different quark masses, light enough to connect to chiral perturbation theory. These are currently the lightest quark masses used in polarizability studies. For each pion mass we compute the polarizability at four different volumes and perform an infinite volume extrapolation. We also discuss the effect of turning on the coupling between the background field and the sea quarks. A.A. is supported in part by the National Science Foundation CAREER Grant PHY-1151648 and by U.S. DOE Grant No. DE-FG02-95ER40907.

  11. A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water

    Energy Technology Data Exchange (ETDEWEB)

    Schwörer, Magnus; Wichmann, Christoph; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)

    2016-03-21

    The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). For the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a “first-principles” DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.

  12. Model-independent effects of Δ excitation in nucleon polarizabilities

    International Nuclear Information System (INIS)

    Pascalutsa, Vladimir; Phillips, Daniel R.

    2003-01-01

    Model-independent effects of Δ(1232) excitation on nucleon polarizabilities are computed in a Lorentz-invariant fashion. We find a large effect of relative order (M Δ -M)/M in some of the spin polarizabilities, with the backward spin polarizability receiving the largest contribution. Similar subleading effects are found to be important in the fourth-order spin-independent polarizabilities α Eν , α E2 , β Mν , and β M2 . Combining our results with those for the model-independent effects of pion loops we obtain predictions for spin and fourth-order polarizabilities which compare favorably with the results of a recent dispersion-relation analysis of data

  13. The influence of polarizability and charge transfer on specific ion effects in the dynamics of aqueous salt solutions

    Science.gov (United States)

    Nguyen, Mary; Rick, Steven W.

    2018-06-01

    The diffusion rates for water molecules in salt solutions depend on the identity of the ions, as well as their concentration. Among the alkali metal ions, cesium and potassium increase and sodium strongly decreases the diffusion constant of water. The origin of the difference can be understood by examining the simulation results using different potential models. In this work, aqueous solutions of salts are simulated with a variety of models. Commonly used non-polarizable models, which otherwise reproduce many experimental properties, do not capture the trend in the diffusion constant, while models which include polarization and/or charge transfer interactions do. For the non-polarizable models, the diffusion constant decreases too strongly with salt concentration. The changes in the water diffusion constant with increasing salt concentration match the diffusion constant of the ion. The ion diffusion constant is dependent on the residence time for water in the ion solvation shell. The non-polarizable models over-estimate the residence time, relative to the translational diffusion constant and so tend to under-estimate the ion and water diffusion constants.

  14. Molecular Properties through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2011-01-01

    We review the theory related to the calculation of electric and magnetic molecular properties through polarizable embedding. In particular, we derive the expressions for the response functions up to the level of cubic response within the density functional theory-based polarizable embedding (PE......-DFT) formalism. In addition, we discuss some illustrative applications related to the calculation of nuclear magnetic resonance parameters, nonlinear optical properties, and electronic excited states in solution....

  15. Hyperfine-mediated static polarizabilities of monovalent atoms and ions

    International Nuclear Information System (INIS)

    Dzuba, V. A.; Flambaum, V. V.; Beloy, K.; Derevianko, A.

    2010-01-01

    We apply relativistic many-body methods to compute static differential polarizabilities for transitions inside the ground-state hyperfine manifolds of monovalent atoms and ions. Knowledge of this transition polarizability is required in a number of high-precision experiments, such as microwave atomic clocks and searches for CP-violating permanent electric dipole moments. While the traditional polarizability arises in the second order of interaction with the externally applied electric field, the differential polarizability involves an additional contribution from the hyperfine interaction of atomic electrons with nuclear moments. We derive formulas for the scalar and tensor polarizabilities including contributions from magnetic dipole and electric quadrupole hyperfine interactions. Numerical results are presented for Al, Rb, Cs, Yb + , Hg + , and Fr.

  16. On the polarizability dyadics of electrically small, convex objects

    Science.gov (United States)

    Lakhtakia, Akhlesh

    1993-11-01

    This communication on the polarizability dyadics of electrically small objects of convex shapes has been prompted by a recent paper published by Sihvola and Lindell on the polarizability dyadic of an electrically gyrotropic sphere. A mini-review of recent work on polarizability dyadics is appended.

  17. Dynamical polarizability of atoms

    International Nuclear Information System (INIS)

    Mukhopadhyay, G.; Lundqvist, S.

    1980-07-01

    The frequency-dependent polarizability of a closed-shell atom is considered in an RPA type approximation. This is usually done using many-body perturbation theory but can also be recast into the form of equations for the density oscillations as previously shown by the authors. The latter approach is known to lead to a non-hermitian problem because of the structure of the interaction kernel. This note shows that this is also true if using the reaction matrix method. The main result is to derive the expression for the polarizability function taking into account the non-hermitian nature of the problem. (author)

  18. Excited States in Solution through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus; Aidas, Kestutis; Kongsted, Jacob

    2010-01-01

    mechanical calculation. The polarizable embedding potential is described by an atomistic representation including terms up to localized octupoles and anisotropic polarizabilities. It is generally applicable to any quantum chemical description but is here implemented for the case of Kohn−Sham density...

  19. Dielectric constant of atomic fluids with variable polarizability

    OpenAIRE

    Alder, B. J.; Beers, J. C.; Strauss, H. L.; Weis, J. J.

    1980-01-01

    The Clausius-Mossotti function for the dielectric constant is expanded in terms of single atom and pair polarizabilities, leading to contributions that depend on both the trace and the anisotropy of the pair-polarizability tensor. The short-range contribution of the anisotropic part to the pair polarizabilities has previously been obtained empirically from light scattering experiments, whereas the trace contribution is now empirically determined by comparison to dielectric experiments. For he...

  20. Polarizable protein packing

    KAUST Repository

    Ng, Albert H.

    2011-01-24

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol -1] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 Copyright © 2011 Wiley Periodicals, Inc.

  1. Charged pions polarizability measurement at COMPASS

    CERN Document Server

    Guskov, A

    2010-01-01

    The pion electromagnetic structure can be probed in $\\pi^{−}+(A,Z)\\rightarrow\\pi^{-}+(A,Z)+\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric $(\\alpha_{\\pi})$ and the magnetic $(\\beta_{\\pi})$ polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of point-like pions with the measured cross section. The opportunity to measure pion polarizability via the Primakoff reaction at the COMPASS experiment was studied with $a$ $\\pi^{-}$ beam of 190 GeV during pilot run 2004. The obtained results were used for preparation of the new data taking which was performed in 2009.

  2. Polarizable protein packing

    KAUST Repository

    Ng, Albert H.; Snow, Christopher D.

    2011-01-01

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full

  3. Static and dynamic polarizabilities of Na- within a variationally stable coupled-channel hyperspherical method

    International Nuclear Information System (INIS)

    Masili, Mauro; Groote, J.J. de

    2004-01-01

    Using a model potential representation combined with a variationally stable method, we present a precise calculation of the electric dipole polarizabilities of the sodium negative ion (Na - ). The effective two-electron eigensolutions for Na - are obtained from a hyperspherical coupled-channel calculation. This approach allows efficient error control and insight into the system's properties through one-dimensional potential curves. Our result of 1018.3 a.u. for the static dipole polarizability is in agreement with previous calculations and supports our results for the dynamic polarizability, which has scarcely been investigated hitherto

  4. Microscopic evaluation of the nuclear dipole polarizability

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E; Orlandini, G; Stringari, S; Traini, M [Trento Univ. (Italy). Dept. di Matematica e Fisica

    1977-12-01

    The dipole polarizability sum rule has been evaluated by means of a restricted Hartree-Fock approach. The method leads to a simple and analytical expression for the dipole polarizability. Explicit calculations have been performed in /sup 16/O and /sup 40/Ca with different types of interaction.

  5. Phase coexistence properties of polarizable Stockmayer fluids

    International Nuclear Information System (INIS)

    Kiyohara, K.; Gubbins, K.E.; Panagiotopoulos, A.Z.

    1997-01-01

    We report the phase coexistence properties of polarizable Stockmayer fluids of reduced permanent dipoles |m 0 * |= 1.0 and 2.0 and reduced polarizabilities α * = 0.00, 0.03, and 0.06, calculated by a series of grand canonical Monte Carlo simulations with the histogram reweighting method. In the histogram reweighting method, the distributions of density and energy calculated in Grand Canonical Monte Carlo simulations are stored in histograms and analyzed to construct the grand canonical partition function of the system. All thermodynamic properties are calculated from the grand partition function. The results are compared with Wertheim close-quote s renormalization perturbation theory. Deviations between theory and simulation results for the coexistence envelope are near 2% for the lower dipole moment and 10% for the higher dipole moment we studied. copyright 1997 American Institute of Physics

  6. Simulations of Coulomb systems confined by polarizable surfaces using periodic Green functions.

    Science.gov (United States)

    Dos Santos, Alexandre P; Girotto, Matheus; Levin, Yan

    2017-11-14

    We present an efficient approach for simulating Coulomb systems confined by planar polarizable surfaces. The method is based on the solution of the Poisson equation using periodic Green functions. It is shown that the electrostatic energy arising from the surface polarization can be decoupled from the energy due to the direct Coulomb interaction between the ions. This allows us to combine an efficient Ewald summation method, or any other fast method for summing over the replicas, with the polarization contribution calculated using Green function techniques. We apply the method to calculate density profiles of ions confined between the charged dielectric and metal surfaces.

  7. Gravitational polarizability of black holes

    International Nuclear Information System (INIS)

    Damour, Thibault; Lecian, Orchidea Maria

    2009-01-01

    The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h l of a black hole are defined and computed. They are then compared to their electromagnetic analogs h l EM . The Love numbers h l give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.

  8. Coupled influence of noise and damped propagation of impurity on linear and nonlinear polarizabilities of doped quantum dots

    International Nuclear Information System (INIS)

    Ganguly, Jayanta; Ghosh, Manas

    2015-01-01

    Highlights: • Linear and nonlinear polarizabilities of quantum dot are studied. • Quantum dot is doped with a repulsive impurity. • Doped system is subject to Gaussian white noise. • Dopant migrates under damped condition. • Noise-damping coupling affects polarizabilities. - Abstract: We investigate the profiles of diagonal components of static and frequency-dependent linear, first, and second nonlinear polarizabilities of repulsive impurity doped quantum dot. We have considered propagation of dopant within an environment that damps the motion. Simultaneous presence of noise inherent to the system has also been considered. The dopant has a Gaussian potential and noise considered is a Gaussian white noise. The doped system is exposed to an external electric field which could be static or time-dependent. Noise undergoes direct coupling with damping and the noise-damping coupling strength appears to be a crucial parameter that designs the profiles of polarizability components. This happens because the coupling strength modulates the dispersive and asymmetric character of the system. The frequency of external field brings about additional features in the profiles of polarizability components. The present investigation highlights some useful features in the optical properties of doped quantum dots

  9. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform.

    Science.gov (United States)

    Peng, Xiangda; Zhang, Yuebin; Chu, Huiying; Li, Guohui

    2016-03-05

    The free energy calculation library PLUMED has been incorporated into the OpenMM simulation toolkit, with the purpose to perform enhanced sampling MD simulations using the AMOEBA polarizable force field on GPU platform. Two examples, (I) the free energy profile of water pair separation (II) alanine dipeptide dihedral angle free energy surface in explicit solvent, are provided here to demonstrate the accuracy and efficiency of our implementation. The converged free energy profiles could be obtained within an affordable MD simulation time when the AMOEBA polarizable force field is employed. Moreover, the free energy surfaces estimated using the AMOEBA polarizable force field are in agreement with those calculated from experimental data and ab initio methods. Hence, the implementation in this work is reliable and would be utilized to study more complicated biological phenomena in both an accurate and efficient way. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  10. Polarizabilities and hyperpolarizabilities of the alkali metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fuentealba, P. (Chile Univ., Santiago (Chile). Departamento de Fisica and Centro de Mecanica Cuantica Aplicada (CMCA)); Reyes, O. (Chile Univ., Santiago (Chile). Dept. de Fisica)

    1993-08-14

    The electric static dipole polarizability [alpha], quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability [gamma] have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability [gamma]. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author).

  11. Polarizabilities and hyperpolarizabilities of the alkali metal atoms

    International Nuclear Information System (INIS)

    Fuentealba, P.; Reyes, O.

    1993-01-01

    The electric static dipole polarizability α, quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability γ have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability γ. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author)

  12. Effect of impurities on the two-dimensional electron gas polarizability

    International Nuclear Information System (INIS)

    Nkoma, J.S.

    1980-06-01

    The polarizability for a two-dimensional electron gas is calculated in the presence of impurities by a Green function formalism. This leads to a system with finite mean free path due to electrons scattering off impurities. The calculated polarizability is found to be strongly dependent on the mean free path. The main feature is the suppression of the sharp corner at wave vector 2ksub(F) for finite mean free paths, and the pure metal result is recovered for the infinite mean free path. A possible application of the results to the transport properties of semiconductor inversion layers is discussed. (author)

  13. Dielectric constant of atomic fluids with variable polarizability.

    Science.gov (United States)

    Alder, B J; Beers, J C; Strauss, H L; Weis, J J

    1980-06-01

    The Clausius-Mossotti function for the dielectric constant is expanded in terms of single atom and pair polarizabilities, leading to contributions that depend on both the trace and the anisotropy of the pair-polarizability tensor. The short-range contribution of the anisotropic part to the pair polarizabilities has previously been obtained empirically from light scattering experiments, whereas the trace contribution is now empirically determined by comparison to dielectric experiments. For helium, the short-range trace part agrees well with electronic structure calculations, whereas for argon qualitative agreement is achieved.

  14. Computational analysis of electronic polarizabilities in Thomas ...

    African Journals Online (AJOL)

    The electric polarizability,α, of a molecule is a measure of its ability to respond to an electric field and acquire an electric dipole moment, μ. The electric polarizability, α has been calculated for several ions and atoms by obtaining the perturbation of wave functions by an external field from a numerical solution of differential ...

  15. Molecular Polarizability of Sc and C (Fullerene and Graphite Clusters

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2001-05-01

    Full Text Available A method (POLAR for the calculation of the molecular polarizability is presented. It uses the interacting induced dipoles polarization model. As an example, the method is applied to Scn and Cn (fullerene and one-shell graphite model clusters. On varying the number of atoms, the clusters show numbers indicative of particularly polarizable structures. The are compared with reference calculations (PAPID. In general, the Scn calculated (POLAR and Cn computed (POLAR and PAPID are less polarizable than what is inferred from the bulk. However, the Scn calculated (PAPID are more polarizable than what is inferred. Moreover, previous theoretical work yielded the same trend for Sin, Gen and GanAsm small clusters. The high polarizability of the Scn clusters (PAPID is attributed to arise from dangling bonds at the surface of the cluster.

  16. The polarizability of diatomic helium. Ph.D. Thesis

    Science.gov (United States)

    Fortune, P. J.

    1974-01-01

    The calculation of the electric dipole polarizability tensor of the He 2 dimer is described, and the results are used in the computation of several dielectric and optical properties of helium gas, at both high (322 K) and low (4 K) temperatures. The properties considered are the second dielectric virial coefficient, the second Kerr virial coefficient, and the depolarization ratio of the integrated intensities for the Raman scattering experiments. The thesis consists of five parts: the polarizability and various properties are defined; the calculation of the polarizability in the long-range region in terms of a quantum mechanical multipole expansion is described; the calculation of the He2 polarizability in the overlap region via coupled Hartree-Fock perturbation theory is described; the calculation of the quantum pair distribution function for both the He-3 and He-4 isotopes at 4 K is discussed; and the calculated values of the properties of helium gas are given.

  17. Optimization and transferability of non-electrostatic repulsion in the polarizable density embedding model

    DEFF Research Database (Denmark)

    Hrsak, Dalibor; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2017-01-01

    Embedding techniques in combination with response theory represent a successful approach to calculate molecular properties and excited states in large molecular systems such as solutions and proteins. Recently, the polarizable embedding model has been extended by introducing explicit electronic...... densities of the molecules in the nearest environment, resulting in the polarizable density embedding (PDE) model. This improvement provides a better description of the intermolecular interactions at short distances. However, the electronic densities of the environment molecules are calculated in isolation...... interaction energies calculated on the basis of full quantum-mechanical calculations. The obtained optimal factors are used in PDE calculations of various ground- and excited-state properties of molecules embedded in solvents described as polarizable environments. © 2017 Wiley Periodicals, Inc....

  18. Density Functional Studies of Molecular Polarizabilities. 7. Anthracene and Phenanthrene

    Directory of Open Access Journals (Sweden)

    Humberto J. Soscun Machado

    2000-03-01

    Full Text Available We report accurate Ab Initio studies of the static dipole polarizabilities of anthracene and phenanthrene. Geometries were optimized at the HF/6-311G(3d,2p level of theory. Dipole polarizabilities were calculated at the HF/6-311++G(3d,2p and BLYP/6-311++G(3d,2p levels of theory, using HF/6-311G(3d,2p geometries. The calculated dipole polarizabilities for anthracene are compared with experiment. Inclusion of electron correlation using the BLYP procedure increases the L and M components of the dipole polarizability, but not the perpendicular (N component. Examination of corresponding BLYP results for the polyacene series benzene, naphthalene and anthracene shows that the normal component of the dipole polarizability scales linearly with the number of benzene ring units, with an increment of 20.8 au. The medium component also scales linearly with an increment of 42.8 atomic units. The long component does not scale linearly. Semi-emiprical AM1 calculations are also given for comparison; the normal component of the dipole polarizability tensor is poorly represented by such calculations.

  19. Electric field enhanced hydrogen storage on polarizable materials substrates

    Science.gov (United States)

    Zhou, J.; Wang, Q.; Sun, Q.; Jena, P.; Chen, X. S.

    2010-01-01

    Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H2 molecules is adsorbed on a BN sheet, the binding energy per H2 molecule increases from 0.03 eV/H2 in the field-free case to 0.14 eV/H2 in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H2 can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H2 molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials. PMID:20133647

  20. Dynamic dipole polarizabilities of the Li atom and the Be+ ion

    International Nuclear Information System (INIS)

    Tang Liyan; Yan Zongchao; Shi Tingyun; Mitroy, J.

    2010-01-01

    The dynamic dipole polarizabilities for Li atoms and Be + ions in the 2 2 S and 2 2 P states are calculated using the variational method with a Hylleraas basis. The present polarizabilities represent the definitive values in the nonrelativistic limit. Corrections due to relativistic effects are also estimated. Analytic representations of the polarizabilities for frequency ranges encompassing the n=3 excitations are presented. The recommended polarizabilities for 7 Li and 9 Be + are 164.11±0.03 a 0 3 and 24.489±0.004 a 0 3 , respectively.

  1. Hadron polarizability data analysis: GoAT

    Energy Technology Data Exchange (ETDEWEB)

    Stegen, H., E-mail: hkstegen@mta.ca; Hornidge, D. [Mount Allison University, Sackville (Canada); Collicott, C. [Dalhousie University, Halifax (Canada); Martel, P. [Mount Allison University, Sackville (Canada); Johannes Gutenberg University, Mainz (Germany); Ott, P. [Johannes Gutenberg University, Mainz (Germany)

    2015-12-31

    The A2 Collaboration at the Institute for Nuclear Physics in Mainz, Germany, is working towards determining the polarizabilities of hadrons from nonperturbative quantum chromodynamics through Compton scattering experiments at low energies. The asymmetry observables are directly related to the scalar and spin polarizabilities of the hadrons. Online analysis software, which will give real-time feedback on asymmetries, efficiencies, energies, and angle distributions, has been developed. The new software is a big improvement over the existing online code and will greatly develop the quality of the acquired data.

  2. Hadron polarizability data analysis: GoAT

    Science.gov (United States)

    Stegen, H.; Collicott, C.; Hornidge, D.; Martel, P.; Ott, P.

    2015-12-01

    The A2 Collaboration at the Institute for Nuclear Physics in Mainz, Germany, is working towards determining the polarizabilities of hadrons from nonperturbative quantum chromodynamics through Compton scattering experiments at low energies. The asymmetry observables are directly related to the scalar and spin polarizabilities of the hadrons. Online analysis software, which will give real-time feedback on asymmetries, efficiencies, energies, and angle distributions, has been developed. The new software is a big improvement over the existing online code and will greatly develop the quality of the acquired data.

  3. Electric polarizability of pions in the semirelativistic quark model; Ehlektricheskaya polyarizuemost' pionov v polurelyativistskoj kvarkovoj modeli

    Energy Technology Data Exchange (ETDEWEB)

    Maksimenko, N V [Gomel& #x27; skij Gosudarstvennyj Univ. im. F.Skoriny, Gomel (Belarus); Kuchin, S M [Filial Bryanskogo Gosudarstvennogo Univ. im. akademika I.G.Petrovskogo, Novozybkov (Russian Federation)

    2012-07-01

    In the paper the calculation is performed of the generalized and static polarizability of charged pions, which are considered as a relativistic system of two point spinor quarks with the linear interaction potential. The question of the relationship between static electricity and generalized polarizabilities of pions in the framework of this approach is studied.

  4. Dynamic polarizability of a complex atom in strong laser fields

    International Nuclear Information System (INIS)

    Rapoport, L.P.; Klinskikh, A.F.; Mordvinov, V.V.

    1997-01-01

    An asymptotic expansion of the dynamic polarizability of a complex atom in a strong circularly polarized light field is found for the case of high frequencies. The self-consistent approximation of the Hartree-Fock type for the ''atom+field'' system is developed, within the framework of which a numerical calculation of the dynamic polarizability of Ne, Kr, and Ar atoms in a strong radiation field is performed. The strong field effect is shown to manifest itself not only in a change of the energy spectrum and the character of behavior of the wave functions of atomic electrons, but also in a modification of the one-electron self-consistent potential for the atom in the field

  5. Physical Principles of Development of the State Standard of Biological Cell Polarizability

    Science.gov (United States)

    Shuvalov, G. V.; Generalov, K. V.; Generalov, V. M.; Kruchinina, M. V.; Koptev, E. S.; Minin, O. V.; Minin, I. V.

    2018-03-01

    A new state standard of biological cell polarizability based on micron-size latex particles has been developed. As a standard material, it is suggested to use polystyrene. Values of the polarizability calculated for erythrocytes and values of the polarizability of micron-size spherical latex particles measured with measuring-computing complexes agree within the limits of satisfactory relative error. The Standard allows one the unit of polarizability measurements [m3] to be assigned to cells and erythrocytes for the needs of medicine.

  6. Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities

    International Nuclear Information System (INIS)

    Stuyver, T.; Fias, S.; De Proft, F.; Geerlings, P.; Fowler, P. W.

    2015-01-01

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability

  7. Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Stuyver, T.; Fias, S., E-mail: sfias@vub.ac.be; De Proft, F.; Geerlings, P. [ALGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium); Fowler, P. W. [Department of Chemistry, University of Sheffield, Sheffield S3 7HF (United Kingdom)

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  8. Conduction of molecular electronic devices: qualitative insights through atom-atom polarizabilities.

    Science.gov (United States)

    Stuyver, T; Fias, S; De Proft, F; Fowler, P W; Geerlings, P

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  9. Polarizability properties of bianisotropic spheres with noncomplete magnetoelectric dyadics

    Science.gov (United States)

    Sihvola, A. H.

    1994-02-01

    The polarizability expressions for bianisotropic scatterers are often complicated expressions of the material parameters. The communication treats the question how the dyadic inversion operations needed in the expressions can be carried out in a well-behaving way. Also, the particular polarizabilities of biaxial chiral spheres are studied in detail.

  10. Electric and magnetic polarizabilities of hadrons via elastic Compton scattering at KAON

    International Nuclear Information System (INIS)

    Moinester, M.A.; Blecher, M.

    1990-08-01

    The study of dynamic properties of hadrons presents a challenge. Among the most basic of these are the electric and magnetic polarizabilities describing the electromagnetic structure of hadrons. They characterize the induced transient dipole moments of hadrons in an external electromagnetic field. During gamma-hadron Compton scattering the lowest order scattering is determined by the charge and magnetic moment. The next order scattering is determined by the induced dipole moments. The dipole polarizabilities probe the rigidity of the internal structure of baryons and mesons, the dipole moments being induced by the rearrangement of the hadron constituents driven by the presence of the electric and magnetic fields of the photon during scattering. A sophisticated understanding of hadrons within the framework of QCD will be tested, in part, by the prediction of these quantities. For the light charged pion, chiral symmetry leads to a precise prediction for the polarizabilities. For the heavier charged kaon, chiral perturbation theory can be applied to predict the polarizabilities. For these cases, the experimental polarizabilities subject the underlying chiral symmetry and chiral perturbation techniques of QCD to new and serious tests. Here the physics of electromagnetic polarizabilities is first described, followed by a review of previous experimental and theoretical polarizability results for the proton, neutron, pion, and kaon. A brief description is then given of how polarizabilities for these hadrons can be studied at the proposed TRIUMF KAON facility. (36 refs., 4 figs.)

  11. Relativity, nuclear polarizability, and screening in sub-Coulomb elastic scattering

    International Nuclear Information System (INIS)

    Lynch, W.G.; Tsang, M.B.; Bhang, H.C.; Cramer, J.G.; Puigh, R.J.

    Elastic scattering of p-shell nuclear projectiles from 208 Pb has been examined for deviations from Rutherford scattering. Four effects can be important: atomic screening, vacuum polarization, nuclear polarizability and a relativistic effect of dynamical origin. The presence of atomic screening, nuclear polarizability and the relativistic effect was observed thus constituting the first measurement of this relativistic effect using complex nuclei and the first measurement of this relativistic effect using complex nuclei and the first measurement of nuclear polarizability in an external Coulomb field

  12. Polarizability of acetanilide and RDX in the crystal: effect of molecular geometry

    Science.gov (United States)

    Tsiaousis, D.; Munn, R. W.; Smith, P. J.; Popelier, P. L. A.

    2004-10-01

    Density-functional theory with the B3LYP functional at the 6-311++G** level is used to calculate the dipole moment and the static polarizability for acetanilide and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) in their in-crystal structures. For acetanilide the dipole moment is 2{1}/{2}% larger than for the gas-phase structure and for RDX (where there is a gross geometry change) it is 15% larger. The polarizability for the in-crystal structure is smaller than for the gas-phase structure by 3% for both species, whereas the in-crystal effective optical polarizability is larger than the gas-phase static polarizability for both crystals. Hence, effects in addition to the molecular geometry change in the crystal must be considered in order to interpret the effective polarizability completely.

  13. Open-ended response theory with polarizable embedding

    DEFF Research Database (Denmark)

    Steindal, Arnfinn Hykkerud; Beerepoot, Maarten T P; Ringholm, Magnus

    2016-01-01

    We present the theory and implementation of an open-ended framework for electric response properties at the level of Hartree-Fock and Kohn-Sham density functional theory that includes effects from the molecular environment modeled by the polarizable embedding (PE) model. With this new state......-of-the-art multiscale functionality, electric response properties to any order can be calculated for molecules embedded in polarizable atomistic molecular environments ranging from solvents to complex heterogeneous macromolecules such as proteins. In addition, environmental effects on multiphoton absorption (MPA...

  14. The possibility for a pion polarizability measurement at COMPASS

    CERN Document Server

    Guskov, A

    2010-01-01

    The pion electromagnetic structure can be probed in $\\pi^{−}+(A,Z)\\rightarrow\\pi^{-}+(A,Z) + \\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric $(\\alpha_{\\pi})$ and the magnetic $(\\beta_{\\pi})$ polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of point-like pions with the measured cross section. The opportunity to measure pion polarizability via the Primakoff reaction at the COMPASS experiment was studied with a $\\pi^{−}$ beam of 190 GeV. The obtained results are used for preparation of the new measurement.

  15. Theory and applications of atomic and ionic polarizabilities

    International Nuclear Information System (INIS)

    Mitroy, J; Safronova, M S; Clark, Charles W

    2010-01-01

    Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wavefunctions, interferometry with atom beams and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards. (topical review)

  16. Theory and applications of atomic and ionic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Mitroy, J [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Safronova, M S [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Clark, Charles W, E-mail: jxm107@rsphysse.anu.edu.a, E-mail: msafrono@udel.ed, E-mail: charles.clark@nist.go [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, MD 20899-8410 (United States)

    2010-10-28

    Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wavefunctions, interferometry with atom beams and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards. (topical review)

  17. Spin polarizability of hyperons

    Indian Academy of Sciences (India)

    K B VIJAYA KUMAR. Department of Physics, Mangalore University, Mangalagangothri 574 199, India. E-mail: kbvijayakumar@yahoo.com. DOI: 10.1007/s12043-014-0869-4; ePublication: 4 November 2014. Abstract. We review the recent progress of the theoretical understanding of spin polarizabilities of the hyperon in the ...

  18. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding.

    Science.gov (United States)

    Krause, Katharina; Klopper, Wim

    2016-01-28

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.

  19. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding

    International Nuclear Information System (INIS)

    Krause, Katharina; Klopper, Wim

    2016-01-01

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian

  20. Polarizable Embedded RI-CC2 Method for Two-Photon Absorption Calculations

    DEFF Research Database (Denmark)

    Hršak, Dalibor; Khah, Alireza Marefat; Christiansen, Ove

    2015-01-01

    We present a novel polarizable embedded resolution-of-identity coupled cluster singles and approximate doubles (PERI-CC2) method for calculation of two-photon absorption (TPA) spectra of large molecular systems. The method was benchmarked for three types of systems: a water-solvated molecule...... of formamide, a uracil molecule in aqueous solution, and a set of mutants of the channelrhodopsin (ChR) protein. The first test case shows that the PERI-CC2 method is in excellent agreement with the PE-CC2 method and in good agreement with the PE-CCSD method. The uracil test case indicates that the effects...... of hydrogen bonding on the TPA of a chromophore with the nearest environment is well-described with the PERI-CC2 method. Finally, the ChR calculation shows that the PERI-CC2 method is well-suited and efficient for calculations on proteins with medium-sized chromophores....

  1. Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions

    Directory of Open Access Journals (Sweden)

    M.K. Halimah

    Full Text Available Zinc borotellurite glasses doped with lanthanum oxide were successfully prepared through melt-quenching technique. The amorphous nature of the glass system was validated by the presence of a broad hump in the XRD result. The refractive index of the prepared glass samples was calculated by using the equation proposed by Dimitrov and Sakka. The theoretical value of molar refraction, electronic polarizability, oxide ion polarizability and metallization criterion were calculated by using Lorentz-Lorenz equation. Meanwhile, expression proposed by Duffy and Ingram for the theoretical value of optical basicity of multi-component glasses were applied to obtain energy band gap based optical basicity and refractive index based optical basicity. The optical basicity of prepared glasses decreased with the increasing concentration of lanthanum oxide. Metallization criterion on the basis of refractive index showed an increasing trend while energy band gap based metallization criterion showed a decreasing trend. The small metallization criterion values of the glass samples represent that the width of the conduction band becomes larger which increase the tendency for metallization of the glasses. The results obtained indicates that the fabricated glasses have high potential to be applied on optical limiting devices in photonic field. Keywords: Borotellurite glasses, Refractive index, Electronic polarizability, Oxide ion polarizability, Optical basicity, Metallization criterion

  2. An averaged polarizable potential for multiscale modeling in phospholipid membranes

    DEFF Research Database (Denmark)

    Witzke, Sarah; List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard

    2017-01-01

    A set of average atom-centered charges and polarizabilities has been developed for three types of phospholipids for use in polarizable embedding calculations. The lipids investigated are 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1-palmitoyl...

  3. Polarizabilities of the beryllium clock transition

    International Nuclear Information System (INIS)

    Mitroy, J.

    2010-01-01

    The polarizabilities of the three lowest states of the beryllium atom are determined from a large basis configuration interaction calculation. The polarizabilities of the 2s 2 1 S e ground state (37.73a 0 3 ) and the 2s2p 3 P 0 o metastable state (39.04a 0 3 ) are found to be very similar in size and magnitude. This leads to an anomalously small blackbody radiation shift at 300 K of -0.018(4) Hz for the 2s 2 1 S e -2s2p 3 P 0 o clock transition. Magic wavelengths for simultaneous trapping of the ground and metastable states are also computed.

  4. A quantum-mechanical perspective on linear response theory within polarizable embedding

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Norman, Patrick; Kongsted, Jacob

    2017-01-01

    We present a derivation of linear response theory within polarizable embedding starting from a rigorous quantum-mechanical treatment of a composite system. To this aim, two different subsystem decompositions (symmetric and nonsymmetric) of the linear response function are introduced and the pole...

  5. Chiral model predictions for electromagnetic polarizabilities of the nucleon: A 'consumer report'

    International Nuclear Information System (INIS)

    Broniowski, W.

    1992-01-01

    This contribution has two parts: (1) The author critically discusses predictions for the electromagnetic polarizabilities of the nucleon obtained in two different approaches: (a) hedgehog models (HM), such as Skyrmions, chiral quark models, hybrid bags, NJL etc., and (b) chiral perturbation theory (χPT). (2) The author shows new results obtained in HM: N c -counting of polarizabilities, splitting of the neutron and proton polarizabilities (he argues that α n > α p in models with pionic clouds), relevance of dispersive terms in the magnetic polarizability β, important role of the Δ resonance in pionic loops, and the effects of non-minimal substitution terms in the effective lagrangian. 3 refs

  6. Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide

    DEFF Research Database (Denmark)

    Kjær, Hanna; Nielsen, Monia R.; Pagola, Gabriel I.

    2012-01-01

    In this paper we present the so far most extended investigation of the calculation of the coupling constant polarizability of a molecule. The components of the coupling constant polarizability are derivatives of the NMR indirect nuclear spin-spin coupling constant with respect to an external elec...

  7. Effect of core polarizability on photoionization cross-section calculations.

    Science.gov (United States)

    Kirkpatrick, R. C.

    1972-01-01

    Demonstration of the importance of core polarizability in a case where cancellation is only moderate, with suggestion of an improvement to the scaled Thomas-Fermi (STF) wave functions of Stewart and Rotenberg (1965). The inclusion of dipole polarizability of the core for argon is shown to substantially improve the agreement between the theoretical and experimental photoionization cross sections for the ground-state configuration.

  8. Electrode redox reactions with polarizable molecules

    Science.gov (United States)

    Matyushov, Dmitry V.

    2018-04-01

    A theory of redox reactions involving electron transfer between a metal electrode and a polarizable molecule in solution is formulated. Both the existence of molecular polarizability and its ability to change due to electron transfer distinguish this problem from classical theories of interfacial electrochemistry. When the polarizability is different between the oxidized and reduced states, the statistics of thermal fluctuations driving the reactant over the activation barrier becomes non-Gaussian. The problem of electron transfer is formulated as crossing of two non-parabolic free energy surfaces. An analytical solution for these free energy surfaces is provided and the activation barrier of electrode electron transfer is given in terms of two reorganization energies corresponding to the oxidized and reduced states of the molecule in solution. The new non-Gaussian theory is, therefore, based on two theory parameters in contrast to one-parameter Marcus formulation for electrode reactions. The theory, which is consistent with the Nernst equation, predicts asymmetry between the cathodic and anodic branches of the electrode current. They show different slopes at small electrode overpotentials and become curved at larger overpotentials. However, the curvature of the Tafel plot is reduced compared to the Marcus-Hush model and approaches the empirical Butler-Volmer form with different transfer coefficients for the anodic and cathodic currents.

  9. Coupled cluster calculations for static and dynamic polarizabilities of C60

    Science.gov (United States)

    Kowalski, Karol; Hammond, Jeff R.; de Jong, Wibe A.; Sadlej, Andrzej J.

    2008-12-01

    New theoretical predictions for the static and frequency dependent polarizabilities of C60 are reported. Using the linear response coupled cluster approach with singles and doubles and a basis set especially designed to treat the molecular properties in external electric field, we obtained 82.20 and 83.62 Å3 for static and dynamic (λ =1064 nm) polarizabilities. These numbers are in a good agreement with experimentally inferred data of 76.5±8 and 79±4 Å3 [R. Antoine et al., J. Chem. Phys.110, 9771 (1999); A. Ballard et al., J. Chem. Phys.113, 5732 (2000)]. The reported results were obtained with the highest wave function-based level of theory ever applied to the C60 system.

  10. Metal-organic materials (MOMs) for adsorption of polarizable gases and methods of using MOMs

    Science.gov (United States)

    Zaworotko, Michael; Mohamed, Mona H.; Elsaidi, Sameh

    2017-06-14

    Embodiments of the present disclosure provide for multi-component metal-organic materials (MOMs), systems including the MOM, systems for separating components in a gas, methods of separating polarizable gases from a gas mixture, and the like.

  11. Magnetic polarizability of pion

    Energy Technology Data Exchange (ETDEWEB)

    Luschevskaya, E.V., E-mail: luschevskaya@itep.ru [Institute for Theoretical and Experimental Physics, Bolshaia Cheremushkinskaia 25, 117218 Moscow (Russian Federation); School of Biomedicine, Far Eastern Federal University, 690950 Vladivostok (Russian Federation); Solovjeva, O.E., E-mail: olga.solovjeva@itep.ru [Institute for Theoretical and Experimental Physics, Bolshaia Cheremushkinskaia 25, 117218 Moscow (Russian Federation); Teryaev, O.V., E-mail: teryaev@theor.jinr.ru [Joint Institute for Nuclear Research, Dubna, 141980 (Russian Federation); National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute), Kashirskoe highway, 31, 115409 Moscow (Russian Federation)

    2016-10-10

    We explore the energy dependence of π mesons off the background Abelian magnetic field on the base of quenched SU(3) lattice gauge theory and calculate the magnetic dipole polarizability of charged and neutral pions for various lattice volumes and lattice spacings. The contribution of the magnetic hyperpolarizability to the neutral pion energy has been also found.

  12. Solvent Boundary Potentials for Hybrid QM/MM Computations Using Classical Drude Oscillators: A Fully Polarizable Model.

    Science.gov (United States)

    Boulanger, Eliot; Thiel, Walter

    2012-11-13

    Accurate quantum mechanical/molecular mechanical (QM/MM) treatments should account for MM polarization and properly include long-range electrostatic interactions. We report on a development that covers both these aspects. Our approach combines the classical Drude oscillator (DO) model for the electronic polarizability of the MM atoms with the generalized solvent boundary Potential (GSBP) and the solvated macromolecule boundary potential (SMBP). These boundary potentials (BP) are designed to capture the long-range effects of the outer region of a large system on its interior. They employ a finite difference approximation to the Poisson-Boltzmann equation for computing electrostatic interactions and take into account outer-region bulk solvent through a polarizable dielectric continuum (PDC). This approach thus leads to fully polarizable three-layer QM/MM-DO/BP methods. As the mutual responses of each of the subsystems have to be taken into account, we propose efficient schemes to converge the polarization of each layer simultaneously. For molecular dynamics (MD) simulations using GSBP, this is achieved by considering the MM polarizable model as a dynamical degree of freedom, and hence contributions from the boundary potential can be evaluated for a frozen state of polarization at every time step. For geometry optimizations using SMBP, we propose a dual self-consistent field approach for relaxing the Drude oscillators to their ideal positions and converging the QM wave function with the proper boundary potential. The chosen coupling schemes are evaluated with a test system consisting of a glycine molecule in a water ball. Both boundary potentials are capable of properly reproducing the gradients at the inner-region atoms and the Drude oscillators. We show that the effect of the Drude oscillators must be included in all terms of the boundary potentials to obtain accurate results and that the use of a high dielectric constant for the PDC does not lead to a polarization

  13. Effective electric and magnetic polarizabilities of pointlike spin-1/2 particles

    OpenAIRE

    Silenko, A. J.

    2014-01-01

    Effective electric and magnetic polarizabilities of pointlike spin-1/2 particles possesing an anomalous magnetic moment are calculated with the transformation of an initial Hamiltonian to the Foldy-Wouthuysen representation. Polarizabilities of spin-1/2 and spin-1 particles are compared.

  14. Dynamic polarizabilities for the low lying states of Ca+

    International Nuclear Information System (INIS)

    Tang, Yong-Bo; Shi, Ting-Yun; Qiao, Hao-Xue; Mitroy, J

    2014-01-01

    The dynamic polarizabilities of the 4s, 3d and 4p states of Ca + are calculated using a relativistic structure model. The wavelengths at which the Stark shifts between different pairs of transitions are zero are calculated. Experimental determination of the magic wavelengths could prove useful in developing better atomic structure models and in particular lead to improved values of the polarizabilities for the Ca + (3d) states

  15. Polarizability effects on the structure and dynamics of ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcante, Ary de Oliveira, E-mail: arycavalcante@ufam.edu.br [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil); Departamento de Química, Universidade Federal do Amazonas, Av. Rodrigo Octávio, 6200, Coroado, Manaus, AM (Brazil); Ribeiro, Mauro C. C. [Laboratório de Espectroscopia Molecular, Instituto de Química, Universidade de São Paulo, São Paulo, SP C.P. 26077, 05513 970 São Paulo, SP (Brazil); Skaf, Munir S. [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil)

    2014-04-14

    Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup −} and PF{sub 6}{sup −}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (χ) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibrium structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.

  16. Analytic behavior of the QED polarizability function at finite temperature

    International Nuclear Information System (INIS)

    Bernal, A.; Perez, A.

    2012-01-01

    We revisit the analytical properties of the static quasi-photon polarizability function for an electron gas at finite temperature, in connection with the existence of Friedel oscillations in the potential created by an impurity. In contrast with the zero temperature case, where the polarizability is an analytical function, except for the two branch cuts which are responsible for Friedel oscillations, at finite temperature the corresponding function is non analytical, in spite of becoming continuous everywhere on the complex plane. This effect produces, as a result, the survival of the oscillatory behavior of the potential. We calculate the potential at large distances, and relate the calculation to the non-analytical properties of the polarizability.

  17. Black-Body Radiation Correction to the Polarizability of Helium

    OpenAIRE

    Puchalski, M.; Jentschura, U. D.; Mohr, P. J.

    2011-01-01

    The correction to the polarizability of helium due to black-body radiation is calculated near room temperature. A precise theoretical determination of the black-body radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ord...

  18. A coarse-grained polarizable force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate

    Science.gov (United States)

    Zeman, Johannes; Uhlig, Frank; Smiatek, Jens; Holm, Christian

    2017-12-01

    We present a coarse-grained polarizable molecular dynamics force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]). For the treatment of electronic polarizability, we employ the Drude model. Our results show that the new explicitly polarizable force field reproduces important static and dynamic properties such as mass density, enthalpy of vaporization, diffusion coefficients, or electrical conductivity in the relevant temperature range. In situations where an explicit treatment of electronic polarizability might be crucial, we expect the force field to be an improvement over non-polarizable models, while still profiting from the reduction of computational cost due to the coarse-grained representation.

  19. Ab initio folding of mixed-fold FSD-EY protein using formula-based polarizable hydrogen bond (PHB) charge model

    Science.gov (United States)

    Zhang, Dawei; Lazim, Raudah; Mun Yip, Yew

    2017-09-01

    We conducted an all-atom ab initio folding of FSD-EY, a protein with a ββα configuration using non-polarizable (AMBER) and polarizable force fields (PHB designed by Gao et al.) in implicit solvent. The effect of reducing the polarization effect integrated into the force field by the PHB model, termed the PHB0.7 was also examined in the folding of FSD-EY. This model incorporates into the force field 70% of the original polarization effect to minimize the likelihood of over-stabilizing the backbone hydrogen bonds. Precise folding of the β-sheet of FSD-EY was further achieved by relaxing the REMD structure obtained in explicit water.

  20. Average electronegativity, electronic polarizability and optical basicity of lanthanide oxides for different coordination numbers

    International Nuclear Information System (INIS)

    Zhao Xinyu; Wang Xiaoli; Lin Hai; Wang Zhiqiang

    2008-01-01

    On the basis of new electronegativity values, electronic polarizability and optical basicity of lanthanide oxides are calculated from the concept of average electronegativity given by Asokamani and Manjula. The estimated values are in close agreement with our previous conclusion. Particularly, we attempt to obtain new data of electronic polarizability and optical basicity of lanthanide sesquioxides for different coordination numbers (6-12). The present investigation suggests that both electronic polarizability and optical basicity increase gradually with increasing coordination number. We also looked for another double peak effect, that is, electronic polarizability and optical basicity of trivalent lanthanide oxides show a gradual decrease and then an abrupt increase at the Europia and Ytterbia. Furthermore, close correlations are investigated among average electronegativity, optical basicity, electronic polarizability and coordination number in this paper

  1. Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability.

    Science.gov (United States)

    Appelquist, T; Berkowitz, E; Brower, R C; Buchoff, M I; Fleming, G T; Jin, X-Y; Kiskis, J; Kribs, G D; Neil, E T; Osborn, J C; Rebbi, C; Rinaldi, E; Schaich, D; Schroeder, C; Syritsyn, S; Vranas, P; Weinberg, E; Witzel, O

    2015-10-23

    We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar "stealth baryon" dark matter candidate, arising from a dark SU(4) confining gauge theory-"stealth dark matter." In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest "baryon" states in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m(B)(6), suggests the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.

  2. Theoretical studies of the global minima and polarizabilities of small lithium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hanshi; Zhao, Ya-Fan; Hammond, Jeffrey R.; Bylaska, Eric J.; Apra, Edoardo; van Dam, Hubertus JJ; Li, Jun; Govind, Niranjan; Kowalski, Karol

    2016-01-16

    Lithium clusters Lin (n=1-20) have been investigated with density functional theory (DFT) and coupled—cluster (CC) methods. The global-minimum structures are located via an improved basin---hopping algorithm and the lowest energy Lin isomers are confirmed with DFT geometry optimizations, CCSD(T) energy calculations, and by comparing simulated and experimental polarizabilities. The tetrahedral Li4 structure is found to be the basic building block of lithium clusters Lin (n=6-20). Simulated polarizabilities, including thermal effects at room temperature, are in good agreement with measured isotropic polarizabilities.

  3. Some measurements of H/D polarizability isotope effects using differential refractometry

    Energy Technology Data Exchange (ETDEWEB)

    Foster Smith, M; Van Hook, W A [Tennessee Univ., Knoxville (USA). Dept. of Chemistry

    1989-05-01

    Refractive index differences between the H and D isomers of some common molecules in the liquid phase were measured between 404.7 and 690.0 nm. The data are combined with information on molar volume isotope effects to yield values for H/D isotope effects on the static polarizability, the vibrational contribution to the static and frequency dependent parts of the polarizability, and the H/D isotope effect on the second moment of the electronic charge distribution. The present results suffice to demonstrate the practicability of this technique to measure the components of the polarizability listed above. However for accurate resolution of the vibrational and second moment contributions, refractive index data of still greater precision will be required. (orig.).

  4. Some measurements of H/D polarizability isotope effects using differential refractometry

    International Nuclear Information System (INIS)

    Foster Smith, M.; Van Hook, W.A.

    1989-01-01

    Refractive index differences between the H and D isomers of some common molecules in the liquid phase were measured between 404.7 and 690.0 nm. The data are combined with information on molar volume isotope effects to yield values for H/D isotope effects on the static polarizability, the vibrational contribution to the static and frequency dependent parts of the polarizability, and the H/D isotope effect on the second moment of the electronic charge distribution. The present results suffice to demonstrate the practicability of this technique to measure the components of the polarizability listed above. However for accurate resolution of the vibrational and second moment contributions, refractive index data of still greater precision will be required. (orig.)

  5. The determination of accurate dipole polarizabilities alpha and gamma for the noble gases

    Science.gov (United States)

    Rice, Julia E.; Taylor, Peter R.; Lee, Timothy J.; Almloef, Jan

    1989-01-01

    The static dipole polarizabilities alpha and gamma for the noble gases helium through xenon were determined using large flexible one-particle basis sets in conjunction with high-level treatments of electron correlation. The electron correlation methods include single and double excitation coupled-cluster theory (CCSD), an extension of CCSD that includes a perturbational estimate of connected triple excitations, CCSD(T), and second order perturbation theory (MP2). The computed alpha and gamma values are estimated to be accurate to within a few percent. Agreement with experimental data for the static hyperpolarizability gamma is good for neon and xenon, but for argon and krypton the differences are larger than the combined theoretical and experimental uncertainties. Based on our calculations, we suggest that the experimental value of gamma for argon is too low; adjusting this value would bring the experimental value of gamma for krypton into better agreement with our computed result. The MP2 values for the polarizabilities of neon, argon, krypton and zenon are in reasonabe agreement with the CCSD and CCSD(T) values, suggesting that this less expensive method may be useful in studies of polarizabilities for larger systems.

  6. Polarizability tensor and Kramers-Heisenberg induction

    NARCIS (Netherlands)

    Wijers, Christianus M.J.

    2004-01-01

    A general expression for the semiclassical, nonrelativistic linear polarizability of an arbitrary volume element V has been derived in the long wavelength approximation. The derivation starts from the expectation value of the dipole strength, as in the original Kramers-Heisenberg paper about optical

  7. Polarizability of a crystal with impurities

    International Nuclear Information System (INIS)

    Goettig, S.

    1985-09-01

    The expression for the complex frequency- and wavevector-dependent longitudinal electronic polarizability due to the presence of a weak static disorder (e.g. impurities) in a crystal with an arbitrary band structure is derived. The quantum kinetic equation in the self-consistent-field approximation is solved, expanding the one-particle density operator in powers of the screened static imperfection field and a weak perturbing electric field. The polarizability is determined by the induced electronic charge density quadratic in the imperfection field and linear in the perturbing field, averaged over the statistical distribution of imperfections. The obtained expression, which accounts properly for the collective effects in the electronic plasma, takes also into account the polar coupling of the plasma with longitudinal optical phonons. The conductivity in the optical limit (q-vector→O) is calculated, and the correspondence with one-band effective-mass approximation is established. (author)

  8. Computational Study of Geometry, Solvation Free Energy, Dipole Moment, Polarizability, Hyperpolarizability and Molecular Properties of 2-Methylimidazole

    Directory of Open Access Journals (Sweden)

    Mohammad Firoz Khan

    2016-12-01

    Full Text Available Ab initio calculations were carried out to study the geometry, solvation free energy, dipole moment, molecular electrostatic potential (MESP, Mulliken and Natural charge distribution, polarizability, hyperpolarizability, Natural Bond Orbital (NBO energetic and different molecular properties like global reactivity descriptors (chemical hardness, softness, chemical potential, electronegativity, electrophilicity index of 2-methylimidazole. B3LYP/6-31G(d,p level of theory was used to optimize the structure both in the gas phase and in solution. The solvation free energy, dipole moment and molecular properties were calculated by applying the Solvation Model on Density (SMD in four solvent systems, namely water, dimethylsulfoxide (DMSO, n-octanol and chloroform. The computed bond distances, bond angles and dihedral angles of 2-methylimidazole agreed reasonably well with the experimental data except for C(2-N(1, C(4-C(5 and N(1-H(7 bond lengths and N(1-C(5-C(4 bond angle. The solvation free energy, dipole moment, polarizability, first order hyperpolarizability, chemical potential, electronegativity and electrophilicity index of 2-methylimidazole increased on going from non-polar to polar solvents. Chemical hardness also increased with increasing polarity of the solvent and the opposite relation was found in the case of softness. These results provide better understanding of the stability and reactivity of 2-methylimidazole in different solvent systems.

  9. Lithium photoionization cross-section and dynamic polarizability using square integrable basis sets and correlated wave functions

    International Nuclear Information System (INIS)

    Hollauer, E.; Nascimento, M.A.C.

    1985-01-01

    The photoionization cross-section and dynamic polarizability for lithium atom are calculated using a discrete basis set to represent both the bound and the continuum-states of the atom, to construct an approximation to the dynamic polarizability. From the imaginary part of the complex dynamic polarizability one extracts the photoionization cross-section and from its real part the dynamic polarizability. The results are in good agreement with the experiments and other more elaborate calculations (Author) [pt

  10. Influence of Gaussian white noise on the frequency-dependent linear polarizability of doped quantum dot

    International Nuclear Information System (INIS)

    Ganguly, Jayanta; Ghosh, Manas

    2014-01-01

    Highlights: • Linear polarizability of quantum dot has been studied. • Quantum dot is doped with a repulsive impurity. • The polarizabilities are frequency-dependent. • Influence of Gaussian white noise has been monitored. • Noise exploited is of additive and multiplicative nature. - Abstract: We investigate the profiles of diagonal components of frequency-dependent linear (α xx and α yy ) optical response of repulsive impurity doped quantum dots. The dopant impurity potential chosen assumes Gaussian form. The study principally puts emphasis on investigating the role of noise on the polarizability components. In view of this we have exploited Gaussian white noise containing additive and multiplicative characteristics (in Stratonovich sense). The frequency-dependent polarizabilities are studied by exposing the doped dot to a periodically oscillating external electric field of given intensity. The oscillation frequency, confinement potentials, dopant location, and above all, the noise characteristics tune the linear polarizability components in a subtle manner. Whereas the additive noise fails to have any impact on the polarizabilities, the multiplicative noise influences them delicately and gives rise to additional interesting features

  11. Blackbody-radiation correction to the polarizability of helium

    International Nuclear Information System (INIS)

    Puchalski, M.; Jentschura, U. D.; Mohr, P. J.

    2011-01-01

    The correction to the polarizability of helium due to blackbody radiation is calculated near room temperature. A precise theoretical determination of the blackbody radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ordinary hyperpolarizability of helium. Our explicit calculations provide a definite numerical result for the effect and indicate that the effect of blackbody radiation can be excluded as a limiting factor for dielectric gas thermometry using helium or argon.

  12. The polarizable embedding coupled cluster method

    DEFF Research Database (Denmark)

    Sneskov, Kristian; Schwabe, Tobias; Kongsted, Jacob

    2011-01-01

    We formulate a new combined quantum mechanics/molecular mechanics (QM/MM) method based on a self-consistent polarizable embedding (PE) scheme. For the description of the QM region, we apply the popular coupled cluster (CC) method detailing the inclusion of electrostatic and polarization effects...

  13. Static electric dipole polarizabilities of tri- and tetravalent U, Np, and Pu ions.

    Science.gov (United States)

    Parmar, Payal; Peterson, Kirk A; Clark, Aurora E

    2013-11-21

    High-quality static electric dipole polarizabilities have been determined for the ground states of the hard-sphere cations of U, Np, and Pu in the III and IV oxidation states. The polarizabilities have been calculated using the numerical finite field technique in a four-component relativistic framework. Methods including Fock-space coupled cluster (FSCC) and Kramers-restricted configuration interaction (KRCI) have been performed in order to account for electron correlation effects. Comparisons between polarizabilities calculated using Dirac-Hartree-Fock (DHF), FSCC, and KRCI methods have been made using both triple- and quadruple-ζ basis sets for U(4+). In addition to the ground state, this study also reports the polarizability data for the first two excited states of U(3+/4+), Np(3+/4+), and Pu(3+/4+) ions at different levels of theory. The values reported in this work are the most accurate to date calculations for the dipole polarizabilities of the hard-sphere tri- and tetravalent actinide ions and may serve as reference values, aiding in the calculation of various electronic and response properties (for example, intermolecular forces, optical properties, etc.) relevant to the nuclear fuel cycle and material science applications.

  14. Polarizable Density Embedding Coupled Cluster Method

    DEFF Research Database (Denmark)

    Hršak, Dalibor; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2018-01-01

    by an embedding potential consisting of a set of fragment densities obtained from calculations on isolated fragments with a quantum-chemistry method such as Hartree-Fock (HF) or Kohn-Sham density functional theory (KS-DFT) and dressed with a set of atom-centered anisotropic dipole-dipole polarizabilities...

  15. Influence of Gaussian white noise on the frequency-dependent first nonlinear polarizability of doped quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731215, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2014-05-07

    We investigate the profiles of diagonal components of frequency-dependent first nonlinear (β{sub xxx} and β{sub yyy}) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. In case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.

  16. On the theory of electric double layer with explicit account of a polarizable co-solvent

    Energy Technology Data Exchange (ETDEWEB)

    Budkov, Yu. A., E-mail: urabudkov@rambler.ru [Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Department of Applied Mathematics, National Research University Higher School of Economics, Moscow (Russian Federation); Kolesnikov, A. L. [Institut für Nichtklassische Chemie e.V., Universität Leipzig, Leipzig (Germany); Kiselev, M. G. [Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation)

    2016-05-14

    We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On

  17. On the theory of electric double layer with explicit account of a polarizable co-solvent

    International Nuclear Information System (INIS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Kiselev, M. G.

    2016-01-01

    We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On

  18. Investigation of Compton effect on π-meson and charged pion polarizability

    International Nuclear Information System (INIS)

    Antipov, Yu.M.; Batarin, V.A.; Bezzubov, V.A.

    1986-01-01

    The results of an experiment aimed at the study of the 40 GeV/c pion radiative scattering on nuclei at small momentum transfers are presented. Compton effect on the pion was investigated and the charged pion polarizability was measured. The pion Compton-effect cross section dependence on the incident photon energy ω' 1 (rest pion frame) was measured in the 100 - 600 MeV range. The polarizability of charged pion from the analysis of Compton-effect events has been found to be β π =-α π =(-6.9 ± 1.4 stat. ± 1.2 syst. )x10 -43 cm 3 and the sun of pion electrical α π and magnetic β π polarizability has been estimated to be in agreement with theoretical predictions: α π +β π ≅ 0

  19. Do the seagull terms really survive for the electric polarizability of the nucleon?

    International Nuclear Information System (INIS)

    Saito, S.

    1998-01-01

    The seagull terms for the electric polarizability of the nucleon are shown indeed to vanish, if one introduces fluctuations around the Skyrmion configuration, and the origin of the electric polarizability cannot after all be attributed to the seagull terms in the Skyrme model. (orig.)

  20. Polarizability tensor invariants of H2, HD, and D2

    Science.gov (United States)

    Raj, Ankit; Hamaguchi, Hiro-o.; Witek, Henryk A.

    2018-03-01

    We report an exhaustive compilation of wavelength-dependent matrix elements over the mean polarizability (α ¯ ) and polarizability anisotropy (γ) operators for the rovibrational states of the H2, HD, and D2 molecules together with an accompanying computer program for their evaluation. The matrix elements can be readily evaluated using the provided codes for rovibrational states with J = 0-15 and v = 0-4 and for any laser wavelengths in the interval 182.25-1320.6 nm corresponding to popular, commercially available lasers. The presented results substantially extend the scope of the data available in the literature, both in respect of the rovibrational transitions analyzed and the range of covered laser frequencies. The presented detailed tabulation of accurate polarizability tensor invariants is essential for successful realization of our main long-term goal: developing a universal standard for determining absolute Raman cross sections and absolute Raman intensities in experimental Rayleigh and Raman scattering studies of molecules.

  1. Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Diniz, Ginetom S.; Ulloa, Sergio E.

    2014-01-01

    We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.

  2. Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Ginetom S., E-mail: ginetom@gmail.com; Ulloa, Sergio E. [Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701-2979 (United States)

    2014-07-14

    We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.

  3. Finite volume effects on the electric polarizability of neutral hadrons in lattice QCD

    Science.gov (United States)

    Lujan, M.; Alexandru, A.; Freeman, W.; Lee, F. X.

    2016-10-01

    We study the finite volume effects on the electric polarizability for the neutron, neutral pion, and neutral kaon using eight dynamically generated two-flavor nHYP-clover ensembles at two different pion masses: 306(1) and 227(2) MeV. An infinite volume extrapolation is performed for each hadron at both pion masses. For the neutral kaon, finite volume effects are relatively mild. The dependence on the quark mass is also mild, and a reliable chiral extrapolation can be performed along with the infinite volume extrapolation. Our result is αK0 phys=0.356 (74 )(46 )×10-4 fm3 . In contrast, for neutron, the electric polarizability depends strongly on the volume. After removing the finite volume corrections, our neutron polarizability results are in good agreement with chiral perturbation theory. For the connected part of the neutral pion polarizability, the negative trend persists, and it is not due to finite volume effects but likely sea quark charging effects.

  4. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ebert, D.

    1981-01-01

    It is shown that the pion polarizability calculated in a chiral model with quark loops agrees exactly with the analogous quantity found in a chiral meson-baryon model. The results of a paper by Llanta and Tarrach are discussed critically

  5. Molecular quantum mechanical gradients within the polarizable embedding approach—Application to the internal vibrational Stark shift of acetophenone

    International Nuclear Information System (INIS)

    List, Nanna Holmgaard; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob; Beerepoot, Maarten T. P.; Gao, Bin; Ruud, Kenneth; Olsen, Jógvan Magnus Haugaard

    2015-01-01

    We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange–repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters

  6. Molecular quantum mechanical gradients within the polarizable embedding approach—Application to the internal vibrational Stark shift of acetophenone

    Energy Technology Data Exchange (ETDEWEB)

    List, Nanna Holmgaard, E-mail: nhl@sdu.dk; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark (Denmark); Beerepoot, Maarten T. P.; Gao, Bin; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø–The Arctic University of Norway, N-9037 Tromsø (Norway); Olsen, Jógvan Magnus Haugaard [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark (Denmark); Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2015-01-21

    We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange–repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters.

  7. Empirical parameters for solvent acidity, basicity, dipolarity, and polarizability of the ionic liquids [BMIM][BF4] and [BMIM][PF6].

    Science.gov (United States)

    del Valle, J C; García Blanco, F; Catalán, J

    2015-04-02

    The empirical solvent scales for polarizability (SP), dipolarity (SdP), acidity (SA), and basicity (SB) have been successfully used to interpret the solvatochromism of compounds dissolved in organic solvents and their solvent mixtures. Providing that the published solvatochromic parameters for the ionic liquids 1-(1-butyl)-3-methylimidazolium tetrafluoroborate, [BMIM][BF4] and 1-(1-butyl)-3-methylimidazolium hexafluorophosphate, [BMIM][PF6], are excessively widespread, their SP, SdP, SA, and SB values are measured herein at temperatures from 293 to 353 K. Four key points are emphasized herein: (i) the origin of the solvatochromic solvent scales--the gas phase, that is the absence of any medium perturbation--; (ii) the separation of the polarizability and dipolarity effects; (iii) the simplification of the probing process in order to obtain the solvatochromic parameters; and (iv) the SP, SdP, SA, and SB solvent scales can probe the polarizability, dipolarity, acidity, and basicity of ionic liquids as well as of organic solvents and water-organic solvent mixtures. From the multiparameter approach using the four pure solvent scales one can draw the conclusion that (a) the solvent influence of [BMIM][BF4] parallels that of formamide at 293 K, both of them miscible with water; (b) [BMIM][PF6] shows a set of solvatochromic parameters similar to that of chloroacetonitrile, both of them water insoluble; and (c) that the corresponding solvent acidity and basicity of the ionic liquids can be explained to a great extent from the cation species by comparing the empirical parameters of [BMIM](+) with those of the solvent 1-methylimidazole. The insolubility of [BMIM][PF6] in water as compared to [BMIM][BF4] is tentatively connected to some extent to the larger molar volume of the anion [PF6](-), and to the difference in basicity of [PF6](-) and [BF4](-).

  8. Measurement of the charged pion polarizability at COMPASS

    International Nuclear Information System (INIS)

    Nagel, Thiemo Christian Ingo

    2012-01-01

    The reaction π - +Z→π - +γ+Z in which a photon is produced by a beam pion scattering off a quasi-real photon of the Coulomb field of the target nucleus is identified experimentally by the tiny magnitude of the momentum transfer to the nucleus. This process gives access to the charged pion polarizabilities α π and β π whose experimental determination constitutes an important test of Chiral Perturbation Theory. In this work, the pion polarizability is obtained as α π =(1.9±0.7 stat. ±0.8 syst. ) x 10 -4 fm 3 from data taken with 190 GeV/c hadron beam provided by SPS to the COMPASS experiment at CERN in November 2009 and under the assumption of α π +β π =0.

  9. The electric double layer at high surface potentials: The influence of excess ion polarizability

    NARCIS (Netherlands)

    Hatlo, M. M.; van Roij, R.H.H.G.; Lue, L.

    2012-01-01

    By including the excess ion polarizability into the Poisson-Boltzmann theory, we show that the decrease in differential capacitance with voltage, observed for metal electrodes above a threshold potential, can be understood in terms of thickening of the double layer due to ion-induced polarizability

  10. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1981-01-01

    The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given. (orig.)

  11. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ehbert, D.

    1981-01-01

    The pion polarizability is calculated in a chiral meson- quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given [ru

  12. Compton scattering, meson exchange, and the polarizabilities of bound nucleons

    International Nuclear Information System (INIS)

    Feldman, G.; Mellendorf, K.E.; Eisenstein, R.A.; Federspiel, F.J.; Garino, G.; Igarashi, R.; Kolb, N.R.; Lucas, M.A.; MacGibbon, B.E.; Mize, W.K.; Nathan, A.M.; Pywell, R.E.; Wells, D.P.

    1996-01-01

    Elastic photon scattering cross sections on 16 O have been measured in the energy range 27 endash 108 MeV. These data are inconsistent with a conventional interpretation in which the electric and magnetic polarizabilities of the bound nucleon are unchanged from the free values and the meson-exchange seagull amplitude is taken in the zero-energy limit. Agreement with the data can be achieved by invoking either strongly modified polarizabilities or a substantial energy dependence to the meson-exchange seagull amplitude. It is argued that these seemingly different explanations are experimentally indistinguishable and probably physically equivalent. copyright 1996 The American Physical Society

  13. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface.

    Science.gov (United States)

    Bauer, Brad A; Warren, G Lee; Patel, Sandeep

    2009-02-10

    We discuss a new classical water force field that explicitly accounts for differences in polarizability between liquid and vapor phases. The TIP4P-QDP (4-point transferable intermolecular potential with charge dependent-polarizability) force field is a modification of the original TIP4P-FQ fluctuating charge water force field of Rick et al.(1) that self-consistently adjusts its atomic hardness parameters via a scaling function dependent on the M-site charge. The electronegativity (χ) parameters are also scaled in order to reproduce condensed-phase dipole moments of comparable magnitude to TIP4P-FQ. TIP4P-QDP is parameterized to reproduce experimental gas-phase and select condensed-phase properties. The TIP4P-QDP water model possesses a gas phase polarizability of 1.40 Å(3) and gas-phase dipole moment of 1.85 Debye, in excellent agreement with experiment and high-level ab initio predictions. The liquid density of TIP4P-QDP is 0.9954(±0.0002) g/cm(3) at 298 K and 1 atmosphere, and the enthalpy of vaporization is 10.55(±0.12) kcal/mol. Other condensed-phase properties such as the isobaric heat capacity, isothermal compressibility, and diffusion constant are also calculated within reasonable accuracy of experiment and consistent with predictions of other current state-of-the-art water force fields. The average molecular dipole moment of TIP4P-QDP in the condensed phase is 2.641(±0.001) Debye, approximately 0.02 Debye higher than TIP4P-FQ and within the range of values currently surmised for the bulk liquid. The dielectric constant, ε = 85.8 ± 1.0, is 10% higher than experiment. This is reasoned to be due to the increase in the condensed phase dipole moment over TIP4P-FQ, which estimates ε remarkably well. Radial distribution functions for TIP4P-QDP and TIP4P-FQ show similar features, with TIP4P-QDP showing slightly reduced peak heights and subtle shifts towards larger distance interactions. Since the greatest effects of the phase-dependent polarizability are

  14. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface

    Science.gov (United States)

    Bauer, Brad A.; Warren, G. Lee; Patel, Sandeep

    2012-01-01

    We discuss a new classical water force field that explicitly accounts for differences in polarizability between liquid and vapor phases. The TIP4P-QDP (4-point transferable intermolecular potential with charge dependent-polarizability) force field is a modification of the original TIP4P-FQ fluctuating charge water force field of Rick et al.1 that self-consistently adjusts its atomic hardness parameters via a scaling function dependent on the M-site charge. The electronegativity (χ) parameters are also scaled in order to reproduce condensed-phase dipole moments of comparable magnitude to TIP4P-FQ. TIP4P-QDP is parameterized to reproduce experimental gas-phase and select condensed-phase properties. The TIP4P-QDP water model possesses a gas phase polarizability of 1.40 Å3 and gas-phase dipole moment of 1.85 Debye, in excellent agreement with experiment and high-level ab initio predictions. The liquid density of TIP4P-QDP is 0.9954(±0.0002) g/cm3 at 298 K and 1 atmosphere, and the enthalpy of vaporization is 10.55(±0.12) kcal/mol. Other condensed-phase properties such as the isobaric heat capacity, isothermal compressibility, and diffusion constant are also calculated within reasonable accuracy of experiment and consistent with predictions of other current state-of-the-art water force fields. The average molecular dipole moment of TIP4P-QDP in the condensed phase is 2.641(±0.001) Debye, approximately 0.02 Debye higher than TIP4P-FQ and within the range of values currently surmised for the bulk liquid. The dielectric constant, ε = 85.8 ± 1.0, is 10% higher than experiment. This is reasoned to be due to the increase in the condensed phase dipole moment over TIP4P-FQ, which estimates ε remarkably well. Radial distribution functions for TIP4P-QDP and TIP4P-FQ show similar features, with TIP4P-QDP showing slightly reduced peak heights and subtle shifts towards larger distance interactions. Since the greatest effects of the phase-dependent polarizability are

  15. K$_{-}$ and K$_{-}$ polarizability from kaonic atoms

    CERN Document Server

    Backenstoss, Gerhard; Bergström, I; Bunaciu, T; Egger, J; Hagelberg, R; Hultberg, S; Koch, H; Lynen, Y; Ritter, H G; Schwitter, A; Tauscher, L

    1973-01-01

    The K/sup -/ mass was determined from kaonic atomic X-rays from Au and Ba to be 493.691+or-0.040 MeV. An upper limit for the polarizability of the K/sup -/ was found to be 0.020 fm/sup 3/ at 90% confidence. (18 refs).

  16. Effect of substituents on polarizability and hyperpolarizability values of benzimidazole metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, P. A.; Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin films Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli - 620 024, Tamilnadu (India)

    2016-05-23

    In this report, the polarizability and first and second order hyperpolarizability values of bis benzimidazole Zn(II)-2R and bis benzimidazole Cd(II)-2R complexes, with different electron donating moieties R (R= Cl, Br, I, Acetate) were calculated using time dependent Hartree-Fock (TDHF) formalism embedded in MOPAC2012 package. Further the role of substituents on polarizability and hyperpolarizability values is investigated for the first time by analyzing the frontier molecular orbitals of the complexes with respect to the electronegativity of the substituents. It is found that the increase in electronegativity of the substituents correspondingly increases the energy gap of the molecules, which in turn reduces the polarizability values of both Zn and Cd benzimidazole complexes. Similarly, increase in electronegativity reduces the electric quadrupole moments of both the metal complexes, which in turn reduces the hyperpolarizability values.

  17. Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles.

    Science.gov (United States)

    Narth, Christophe; Lagardère, Louis; Polack, Étienne; Gresh, Nohad; Wang, Qiantao; Bell, David R; Rackers, Joshua A; Ponder, Jay W; Ren, Pengyu Y; Piquemal, Jean-Philip

    2016-02-15

    We propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono- and divalent cations with a water ligand are also provided. Transferability of the correction is adressed in the context of the implementation of the AMOEBA and SIBFA polarizable force fields in the TINKER-HP software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration-corrected polarizable force fields highlighting the mandatory need of non-spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally, scalability and parallelism of the short-range corrected SPME approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complex bio- or bioinorganic systems in periodic boundary conditions. Copyright © 2016 Wiley Periodicals, Inc.

  18. Measurement of the charged pion polarizability at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Thiemo Christian Ingo

    2012-09-26

    The reaction {pi}{sup -}+Z{yields}{pi}{sup -}+{gamma}+Z in which a photon is produced by a beam pion scattering off a quasi-real photon of the Coulomb field of the target nucleus is identified experimentally by the tiny magnitude of the momentum transfer to the nucleus. This process gives access to the charged pion polarizabilities {alpha}{sub {pi}} and {beta}{sub {pi}} whose experimental determination constitutes an important test of Chiral Perturbation Theory. In this work, the pion polarizability is obtained as {alpha}{sub {pi}}=(1.9{+-}0.7{sub stat.}{+-}0.8{sub syst.}) x 10{sup -4} fm{sup 3} from data taken with 190 GeV/c hadron beam provided by SPS to the COMPASS experiment at CERN in November 2009 and under the assumption of {alpha}{sub {pi}}+{beta}{sub {pi}}=0.

  19. Polarizable molecular mechanics studies of Cu(I)/Zn(II) superoxide dismutase: bimetallic binding site and structured waters.

    Science.gov (United States)

    Gresh, Nohad; El Hage, Krystel; Perahia, David; Piquemal, Jean-Philip; Berthomieu, Catherine; Berthomieu, Dorothée

    2014-11-05

    The existence of a network of structured waters in the vicinity of the bimetallic site of Cu/Zn-superoxide dismutase (SOD) has been inferred from high-resolution X-ray crystallography. Long-duration molecular dynamics (MD) simulations could enable to quantify the lifetimes and possible interchanges of these waters between themselves as well as with a ligand diffusing toward the bimetallic site. The presence of several charged or polar ligands makes it necessary to resort to second-generation polarizable potentials. As a first step toward such simulations, we benchmark in this article the accuracy of one such potential, sum of interactions between fragments Ab initio computed (SIBFA), by comparisons with quantum mechanics (QM) computations. We first consider the bimetallic binding site of a Cu/Zn-SOD, in which three histidines and a water molecule are bound to Cu(I) and three histidines and one aspartate are bound to Zn(II). The comparisons are made for different His6 complexes with either one or both cations, and either with or without Asp and water. The total net charges vary from zero to three. We subsequently perform preliminary short-duration MD simulations of 296 waters solvating Cu/Zn-SOD. Six representative geometries are selected and energy-minimized. Single-point SIBFA and QM computations are then performed in parallel on model binding sites extracted from these six structures, each of which totals 301 atoms including the closest 28 waters from the Cu metal site. The ranking of their relative stabilities as given by SIBFA is identical to the QM one, and the relative energy differences by both approaches are fully consistent. In addition, the lowest-energy structure, from SIBFA and QM, has a close overlap with the crystallographic one. The SIBFA calculations enable to quantify the impact of polarization and charge transfer in the ranking of the six structures. Five structural waters, which connect Arg141 and Glu131, are endowed with very high dipole moments

  20. Hyperon polarizabilities in the bound-state soliton model

    International Nuclear Information System (INIS)

    Gobbi, C.; Scoccola, N.N.

    1996-01-01

    A detailed calculation of electric and magnetic static polarizabilities of octet hyperons is presented in the framework of the bound-state soliton model. Both seagull and dispersive contributions are considered, and the results are compared with different model predictions. (orig.)

  1. Polarizable atomistic calculation of site energy disorder in amorphous Alq3.

    Science.gov (United States)

    Nagata, Yuki

    2010-02-01

    A polarizable molecular dynamics simulation and calculation scheme for site energy disorder is presented in amorphous tris(8-hydroxyquinolinato)aluminum (Alq(3)) by means of the charge response kernel (CRK) method. The CRK fit to the electrostatic potential and the tight-binding approximation are introduced, which enables modeling of the polarizable electrostatic interaction for a large molecule systematically from an ab initio calculation. The site energy disorder for electron and hole transfers is calculated in amorphous Alq(3) and the effect of the polarization on the site energy disorder is discussed.

  2. Variational principles for the static electric and magnetic polarizabilities of anisotropic media with perfect electric conductor inclusions

    International Nuclear Information System (INIS)

    Sjoeberg, Daniel

    2009-01-01

    We present four variational principles for the electric and magnetic polarizabilities for a structure consisting of anisotropic media with perfect electric conductor (PEC) inclusions. From these principles, we derive monotonicity results and upper and lower bounds on the electric and magnetic polarizabilities. When computing the polarizabilities numerically, the bounds can be used as error bounds. The variational principles demonstrate important differences between electrostatics and magnetostatics when PEC bodies are present.

  3. Comparison of self-consistent calculations of the static polarizability of atoms and molecules

    International Nuclear Information System (INIS)

    Moullet, I.; Martins, J.L.

    1990-01-01

    The static dipole polarizabilities and other ground-state properties of H, H 2 , He, Na, and Na 2 are calculated using five different self-consistent schemes: Hartree--Fock, local spin density approximation, Hartree--Fock plus local density correlation, self-interaction-corrected local spin density approximation, and Hartree--Fock plus self-interaction-corrected local density correlation. The inclusion of the self-interaction corrected local spin density approximation in the Hartree--Fock method improves dramatically the calculated dissociation energies of molecules but has a small effect on the calculated polarizabilities. Correcting the local spin density calculations for self-interaction effects improves the calculated polarizability in the cases where the local spin density results are mediocre, and has only a small effect in the cases where the local spin density values are in reasonable agreement with experiment

  4. Charged ion source with a polarizable probe and with a cyclotron electronic resonance

    International Nuclear Information System (INIS)

    Briand, P.

    1992-01-01

    This invention is about ion sources with a polarizable probe able to produce, from neutral atoms, highly charged ions. This source is composed of an hyperfrequency cavity, production means of an axial magnetic field in the cavity, production means of a multipolar radial magnetic field in this cavity, a high frequency inlet, gas input in the cavity, ion extraction means and a polarizable probe in tension to improve gas ionization

  5. Correlation among electronegativity, cation polarizability, optical basicity and single bond strength of simple oxides

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrov, Vesselin, E-mail: vesselin@uctm.edu [Department of Silicate Technology, University of Chemical Technology and Metallurgy, 8, Kl. Ohridski Blvd., Sofia 1756 (Bulgaria); Komatsu, Takayuki, E-mail: komatsu@mst.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan)

    2012-12-15

    A suitable relationship between free-cation polarizability and electronegativity of elements in different valence states and with the most common coordination numbers has been searched on the basis of the similarity in physical nature of both quantities. In general, the cation polarizability increases with decreasing element electronegativity. A systematic periodic change in the polarizability against the electronegativity has been observed in the isoelectronic series. It has been found that generally the optical basicity increases and the single bond strength of simple oxides decreases with decreasing the electronegativity. The observed trends have been discussed on the basis of electron donation ability of the oxide ions and type of chemical bonding in simple oxides. - Graphical abstract: This figure shows the single bond strength of simple oxides as a function of element electronegativity. A remarkable correlation exists between these independently obtained quantities. High values of electronegativity correspond to high values of single bond strength and vice versa. It is obvious that the observed trend in this figure is closely related to the type of chemical bonding in corresponding oxide. Highlights: Black-Right-Pointing-Pointer A suitable relationship between free-cation polarizability and electronegativity of elements was searched. Black-Right-Pointing-Pointer The cation polarizability increases with decreasing element electronegativity. Black-Right-Pointing-Pointer The single bond strength of simple oxides decreases with decreasing the electronegativity. Black-Right-Pointing-Pointer The observed trends were discussed on the basis of type of chemical bonding in simple oxides.

  6. Polarizability and Aqueous Solvation of the Sulfate Dianion

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Pavel; Curtis, J. E.; Tobias, D. J.

    2003-01-01

    Roč. 367, - (2003), s. 704-710 ISSN 0009-2614 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : polarizability * aqueous solvation * dianion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.438, year: 2003

  7. Quasi-free Compton scattering and the polarizabilities of the neutron

    International Nuclear Information System (INIS)

    Kossert, K.; Camen, M.; Wissmann, F.; Schumacher, M.; Seitz, B.; Ahrens, J.; Arends, H.J.; Beck, R.; Caselotti, G.; Jahn, O.; Jennewein, P.; Olmos de Leon, V.; Annand, J.R.M.; McGeorge, J.C.; Rosner, G.; Grabmayr, P.; Natter, A.; Levchuk, M.I.; L'vov, A.I.; Petrun'kin, V.A.; Smend, F.; Thomas, A.; Weihofen, W.; Zapadtka, F.

    2003-01-01

    Differential cross-sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz photon tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48cm diameter x 64cm NaI(Tl) photon detector and the Goettingen SENECA recoil detector. The data cover photon energies ranging from 200MeV to 400MeV at θ LAB γ =136.2 . Liquid deuterium and hydrogen targets allowed direct comparison of free and quasi-free scattering from the proton. The neutron detection efficiency of the SENECA detector was measured via the reaction p(γ,π + n). The ''free'' proton Compton scattering cross-sections extracted from the bound proton data are in reasonable agreement with those for the free proton which gives confidence in the method to extract the differential cross-section for free scattering from quasi-free data. Differential cross-sections on the free neutron have been extracted and the difference of the electromagnetic polarizabilities of the neutron has been determined to be α n -β n =9.8±3.6(stat) +2.1 -1.1 (syst)±2.2(model) in units of 10 -4 fm 3 . In combination with the polarizability sum α n +β n =15.2±0.5 deduced from photoabsorption data, the neutron electric and magnetic polarizabilities, α n =12.5±1.8(stat) + 1 .1 -0.6 (syst)±1.1(model) and β n =2.7±1.8(stat) +0.6 -1.1 (syst)±1.1(model) are obtained. The backward spin polarizability of the neutron was determined to be γ (n) π =(58.6±4.0) x 10 -4 fm 4 . (orig.)

  8. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ehbert, D.

    1980-01-01

    The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Lanta and Tarrach is given. The results of the paper give evidence to the nonlinear chiral Lagrangian favour

  9. The axial polarizability of nucleons and nuclei

    International Nuclear Information System (INIS)

    Ericson, M.; Figureau, A.

    1981-02-01

    The part of the static nuclear axial polarizability arising from the nucleonic excitations is derived from the low energy expansion of the πN amplitude. It is shown that the contribution of the Δ intermediate state, though dominant, does not saturate the nucleonic response. A similar effect, though more pronounced, is known to occur for the magnetic susceptibility

  10. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds

    International Nuclear Information System (INIS)

    Kaya, Savaş; Kaya, Cemal; Islam, Nazmul

    2016-01-01

    The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.

  11. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Savaş, E-mail: savaskaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey); Kaya, Cemal, E-mail: kaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey); Islam, Nazmul, E-mail: nazmul.islam786@gmail.com [Theoretical and Computational Chemistry Research Laboratory, Department of Basic Science and Humanities/Chemistry Techno Global-Balurghat, Balurghat, D. Dinajpur 733103 (India)

    2016-03-15

    The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.

  12. Exploring the Dipole Polarizability of $^{11}$Li at REX-ISOLDE

    CERN Multimedia

    2002-01-01

    Dipole polarizability refers to the effect of the excitation to negative parity states through the electric dipole interaction. In nuclear physics dipole polarizability has not yet played a major role. For nuclei close to the drip lines where the separation energies of neutrons (or protons) are small, a substantial part of the dipole strength function occurs at low excitation energies. We here propose to investigate this effect by measuring elastic scattering at energies close to the Coulomb barrier. REX-ISOLDE together with the new improved yields of $^{11}$Li provides the ideal setting for this experiment. We ask for a total of 24 shifts with proton beam plus 3 shifts of stable beam from a Ta-foil target.

  13. Finite-volume and partial quenching effects in the magnetic polarizability of the neutron

    Science.gov (United States)

    Hall, J. M. M.; Leinweber, D. B.; Young, R. D.

    2014-03-01

    There has been much progress in the experimental measurement of the electric and magnetic polarizabilities of the nucleon. Similarly, lattice QCD simulations have recently produced dynamical QCD results for the magnetic polarizability of the neutron approaching the chiral regime. In order to compare the lattice simulations with experiment, calculation of partial quenching and finite-volume effects is required prior to an extrapolation in quark mass to the physical point. These dependencies are described using chiral effective field theory. Corrections to the partial quenching effects associated with the sea-quark-loop electric charges are estimated by modeling corrections to the pion cloud. These are compared to the uncorrected lattice results. In addition, the behavior of the finite-volume corrections as a function of pion mass is explored. Box sizes of approximately 7 fm are required to achieve a result within 5% of the infinite-volume result at the physical pion mass. A variety of extrapolations are shown at different box sizes, providing a benchmark to guide future lattice QCD calculations of the magnetic polarizabilities. A relatively precise value for the physical magnetic polarizability of the neutron is presented, βn=1.93(11)stat(11)sys×10-4 fm3, which is in agreement with current experimental results.

  14. Measurement of the charged-pion polarizability.

    Science.gov (United States)

    Adolph, C; Akhunzyanov, R; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anosov, V; Austregesilo, A; Badełek, B; Balestra, F; Barth, J; Baum, G; Beck, R; Bedfer, Y; Berlin, A; Bernhard, J; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bodlak, M; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Büchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Colantoni, M; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dinkelbach, A M; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Gnesi, I; Gobbo, B; Goertz, S; Gorzellik, M; Grabmüller, S; Grasso, A; Grube, B; Grussenmeyer, T; Guskov, A; Guthörl, T; Haas, F; von Harrach, D; Hahne, D; Hashimoto, R; Heinsius, F H; Herrmann, F; Hinterberger, F; Höppner, Ch; Horikawa, N; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Jörg, P; Joosten, R; Kabuss, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Krämer, M; Kroumchtein, Z V; Kuchinski, N; Kuhn, R; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Marchand, C; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Miyachi, Y; Moinester, M A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Novy, J; Nowak, W-D; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Peshekhonov, D; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Rocco, E; Rossiyskaya, N S; Ryabchikov, D I; Rychter, A; Samoylenko, V D; Sandacz, A; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlüter, T; Schmidt, K; Schmieden, H; Schönning, K; Schopferer, S; Schott, M; Shevchenko, O Yu; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; ter Wolbeek, J; Tessaro, S; Tessarotto, F; Thibaud, F; Uhl, S; Uman, I; Virius, M; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zink, A

    2015-02-13

    The COMPASS collaboration at CERN has investigated pion Compton scattering, π(-)γ→π(-)γ, at center-of-mass energy below 3.5 pion masses. The process is embedded in the reaction π(-)Ni→π(-)γNi, which is initiated by 190 GeV pions impinging on a nickel target. The exchange of quasireal photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, Q(2)<0.0015  (GeV/c)(2). From a sample of 63,000 events, the pion electric polarizability is determined to be α(π)=(2.0±0.6(stat)±0.7(syst))×10(-4)  fm(3) under the assumption α(π)=-β(π), which relates the electric and magnetic dipole polarizabilities. It is the most precise measurement of this fundamental low-energy parameter of strong interaction that has been addressed since long by various methods with conflicting outcomes. While this result is in tension with previous dedicated measurements, it is found in agreement with the expectation from chiral perturbation theory. An additional measurement replacing pions by muons, for which the cross-section behavior is unambiguously known, was performed for an independent estimate of the systematic uncertainty.

  15. Implementation of extended Lagrangian dynamics in GROMACS for polarizable simulations using the classical Drude oscillator model.

    Science.gov (United States)

    Lemkul, Justin A; Roux, Benoît; van der Spoel, David; MacKerell, Alexander D

    2015-07-15

    Explicit treatment of electronic polarization in empirical force fields used for molecular dynamics simulations represents an important advancement in simulation methodology. A straightforward means of treating electronic polarization in these simulations is the inclusion of Drude oscillators, which are auxiliary, charge-carrying particles bonded to the cores of atoms in the system. The additional degrees of freedom make these simulations more computationally expensive relative to simulations using traditional fixed-charge (additive) force fields. Thus, efficient tools are needed for conducting these simulations. Here, we present the implementation of highly scalable algorithms in the GROMACS simulation package that allow for the simulation of polarizable systems using extended Lagrangian dynamics with a dual Nosé-Hoover thermostat as well as simulations using a full self-consistent field treatment of polarization. The performance of systems of varying size is evaluated, showing that the present code parallelizes efficiently and is the fastest implementation of the extended Lagrangian methods currently available for simulations using the Drude polarizable force field. © 2015 Wiley Periodicals, Inc.

  16. Time reversal violating nuclear polarizability and atomic electric dipole moment

    International Nuclear Information System (INIS)

    Ginges, J.S.M.; Flambaum, V.V.; Mititelu, G.

    2000-01-01

    Full text: We propose a nuclear mechanism which can induce an atomic electric dipole moment (EDM). The interaction of external electric E and magnetic H fields with nuclear electric and magnetic dipole moments, d and ,u, gives rise to an energy shift, U= -β ik E i H k , where β ik is the nuclear polarizability. Parity and time invariance violating (P,T-odd) nuclear forces generate a mixed P,T-odd nuclear polarizability, whereψ 0 and ψ n are P,T-odd perturbed ground and excited nuclear states, respectively. In the case of a heavy spherical nucleus with a single unpaired nucleon, the perturbed wavefunctions are U = -β ik E i H k , where ξis a constant proportional to the strength of the nuclear P,T-odd interaction, σ is the nuclear spin operator, and ψ n is an unperturbed wavefunction. There are both scalar and tensor contributions to the nuclear P,T-odd polarizability. An atomic EDM is induced by the interaction of the fields of an unpaired electron in an atom with the P,T-odd perturbed atomic nucleus. An estimate for the value of this EDM has been made. The measurements of atomic EDMs can provide information about P,T-odd nuclear forces and test models of CP-violation

  17. Measurement of the proton scalar polarizabilities at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Mornacchi, Edoardo [Institut fuer Kernphysik, Universitaet Mainz (Germany); Collaboration: A2-Collaboration

    2016-07-01

    The electric (α{sub E{sub 1}}) and magnetic (β{sub M1}) scalar polarizabilities are fundamental properties related to the internal structure of the nucleon. They play a crucial role not only in our understanding of the nucleon, but also in other areas such as atomic physics, where they provide e.g. corrections to the Lamb Shift. In order to determine the scalar polarizabilities of the proton, the beam asymmetry Σ{sub 3} was measured, for the first time for the Compton scattering, below the pion photoproduction threshold. The measurement was performed at the MAMI accelerator facility in Mainz. The linearly polarized primary photons impinged on a liquid hydrogen target and the outgoing particles were detected in a nearly 4π detector setup, composed by Crystall Ball and TAPS calorimeters. In this talk the results on the Compton scattering beam asymmetry Σ{sub 3} and their influence on the extraction of α{sub E{sub 1}} and β{sub M1} are discussed.

  18. Contributions of polarizabilities to four basis polarizations of electromagnetic media

    International Nuclear Information System (INIS)

    Bukina, E.N.; Dubovik, V.M.

    1999-01-01

    All contributions to four basis polarizations of an arbitrary electromagnetic medium at the expense of mixed polarizabilities up to fourth rank tensors are presented. Some concrete examples are considered

  19. Substituent effects of the alkyl groups: Polarity vs. polarizability

    Czech Academy of Sciences Publication Activity Database

    Exner, Otto; Böhm, S.

    -, č. 17 (2007), s. 2870-2876 ISSN 1434-193X Institutional research plan: CEZ:AV0Z40550506 Keywords : density functional calculations * hyperconjugation * inductive effect * polarizability Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.914, year: 2007

  20. Pion polarizability in nonlocal quark model

    International Nuclear Information System (INIS)

    Efimov, G.V.; Okhlopkova, V.A.

    1978-01-01

    The γγ→ππ amplitude was calculated in nonlocal quark model in the fourth order on the perturbation theory. The coefficients of electric[a) and magnetic polarizability (β) determined are equal in magnitude and opposite in sign αsub(π+-)=βsub(π+-)=+0.014α/msub(π)sup(3), αsub(πsup(0))=-βsub(πsup(0))=-0.07α/msub(π)sup(3). The results have been compared with calculations in other models

  1. On the dynamic polarizability of atoms

    International Nuclear Information System (INIS)

    Nuroh, K.; Zaremba, E.

    1989-04-01

    The positive frequency dependent polarizability of atoms is discussed in terms of the particle-hole polarization propagator. It is considered in the simplest approximation defined by the Bethe-Salpeter equation which includes a subset of particle-hole interactions to all orders in the Coulomb potential. Its solution is used to show the relationship between different formulations of atomic photoabsorption via the effective dipole matrix element (Fermi's 'golden rule'), the TDLDA and the reaction matrix. (author). 21 refs, 7 figs

  2. Electric dipole moments and polarizabilities of small Bi{sub n} (n = 2-24, 40, 80) clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Song; Yuan, Hong Kuan; Chen, Hong; Wu, Bo [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Kuang, An Long [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); School of Physical Science and Technology, Suzhou University, Suzhou 215006 (China)

    2012-01-15

    The electric dipole moments (EDMs) and polarizabilities of small Bi{sub n} (n = 2-24, 40, 80) clusters are investigated by the finite field method within density functional theory (DFT). The results show that both dipole moments and polarizabilities have even-odd oscillation behaviors, and they strongly depend on geometrical structures and electronic structures. High symmetry structure prohibits the occurrence of EDMs on Bi clusters. The increasing polarizabilities of Bi clusters are attributed to the inherent novel chain-like geometrical evolution, which is significantly different from the characters observed in metal clusters or semiconductor clusters. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Communication: Polarizable polymer chain under external electric field in a dilute polymer solution.

    Science.gov (United States)

    Budkov, Yu A; Kolesnikov, A L; Kiselev, M G

    2015-11-28

    We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such "field-induced" globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification.

  4. Polarizabilities of Ba and Ba2: Comparison of molecular beam experiments with relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Schaefer, Sascha; Mehring, Max; Schaefer, Rolf; Schwerdtfeger, Peter

    2007-01-01

    The dielectric response to an inhomogeneous electric field has been investigated for Ba and Ba 2 within a molecular beam experiment. The ratio of the polarizabilities per atom of Ba 2 and Ba is determined to be 1.30±0.13. The experimental result is compared to a high level ab initio quantum chemical coupled cluster calculation with an energy-consistent scalar relativistic small-core pseudopotential for Ba. For the barium atom a polarizability of 40.82 A 3 is obtained and the isotropic value of the polarizability calculated for Ba 2 is 97.88 A 3 , which is in good agreement with the experimental results, demonstrating that a quantitative understanding of the interaction between two closed-shell heavy element metal atoms has been achieved

  5. Raman polarizabilities of the ν2, ν5 bands of CD3Cl

    International Nuclear Information System (INIS)

    Escribano, R.; Hernandez, M.G.; Mejias, M.; Brodersen, S.

    1985-01-01

    The Raman spectrum of the Coriolis interacting ν 2 , ν 5 bands of CD 3 Cl was recorded with a resolution of ca 0.6 cm -1 . Using the vibrational-rotational parameters of Yamada and Hirota, a computer simulation of the Raman contour was performed, yielding relative values of Raman polarizability derivatives for these bands. By comparison with the absolute intensity measurement of Orza et al., absolute values of the Raman polarizabilities were obtained. The sign of the Raman intensity perturbation was found to be negative. (author)

  6. Effective oscillator strength distributions of spherically symmetric atoms for calculating polarizabilities and long-range atom–atom interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jun, E-mail: phyjiang@yeah.net [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Cheng, Yongjun, E-mail: cyj83mail@gmail.com [School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080 (China); Bromley, M.W.J., E-mail: brom@physics.uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4075 (Australia)

    2015-01-15

    Effective oscillator strength distributions are systematically generated and tabulated for the alkali atoms, the alkaline-earth atoms, the alkaline-earth ions, the rare gases and some miscellaneous atoms. These effective distributions are used to compute the dipole, quadrupole and octupole static polarizabilities, and are then applied to the calculation of the dynamic polarizabilities at imaginary frequencies. These polarizabilities can be used to determine the long-range C{sub 6}, C{sub 8} and C{sub 10} atom–atom interactions for the dimers formed from any of these atoms and ions, and we present tables covering all of these combinations.

  7. Effective oscillator strength distributions of spherically symmetric atoms for calculating polarizabilities and long-range atom–atom interactions

    International Nuclear Information System (INIS)

    Jiang, Jun; Mitroy, J.; Cheng, Yongjun; Bromley, M.W.J.

    2015-01-01

    Effective oscillator strength distributions are systematically generated and tabulated for the alkali atoms, the alkaline-earth atoms, the alkaline-earth ions, the rare gases and some miscellaneous atoms. These effective distributions are used to compute the dipole, quadrupole and octupole static polarizabilities, and are then applied to the calculation of the dynamic polarizabilities at imaginary frequencies. These polarizabilities can be used to determine the long-range C 6 , C 8 and C 10 atom–atom interactions for the dimers formed from any of these atoms and ions, and we present tables covering all of these combinations

  8. Molecular polarizabilities and susceptibilities from Frost-model wavefunctions

    International Nuclear Information System (INIS)

    Amos, A.T.; Yoffe, J.A.

    1975-01-01

    Average polarizabilities and susceptibilities of a number of molecules are computed from Frost-model wavefunctions using a form of symmetry-adapted double perturbation theory. The anisotropy of α and chi is found for a few molecules using the elliptical Gaussian form of the Frost model. The results obtained are in reasonable agreement with experiment and other calculated values

  9. Many-body calculations of molecular electric polarizabilities in asymptotically complete basis sets

    Science.gov (United States)

    Monten, Ruben; Hajgató, Balázs; Deleuze, Michael S.

    2011-10-01

    The static dipole polarizabilities of Ne, CO, N2, F2, HF, H2O, HCN, and C2H2 (acetylene) have been determined close to the Full-CI limit along with an asymptotically complete basis set (CBS), according to the principles of a Focal Point Analysis. For this purpose the results of Finite Field calculations up to the level of Coupled Cluster theory including Single, Double, Triple, Quadruple and perturbative Pentuple excitations [CCSDTQ(P)] were used, in conjunction with suited extrapolations of energies obtained using augmented and doubly-augmented Dunning's correlation consistent polarized valence basis sets of improving quality. The polarizability characteristics of C2H4 (ethylene) and C2H6 (ethane) have been determined on the same grounds at the CCSDTQ level in the CBS limit. Comparison is made with results obtained using lower levels in electronic correlation, or taking into account the relaxation of the molecular structure due to an adiabatic polarization process. Vibrational corrections to electronic polarizabilities have been empirically estimated according to Born-Oppenheimer Molecular Dynamical simulations employing Density Functional Theory. Confrontation with experiment ultimately indicates relative accuracies of the order of 1 to 2%.

  10. Polarizability of Kr6+ from high-L Kr5+ fine-structure measurements

    International Nuclear Information System (INIS)

    Lundeen, S. R.; Fehrenbach, C. W.

    2007-01-01

    The transition between n=55 and n=109 Rydberg levels of Kr 5+ has been studied at high resolution using the resonant excitation stark ionization spectroscopy method. Resolved excitation of L=6, 7, 8, and 9 levels in n=55 lead to a determination of the fine-structure energies of these levels. Interpreted with the long-range polarization model, this leads to a measurement of the dipole polarizabilities of Zn-like Kr 6+ , α d =2.69(4)a 0 3 . Obtaining a value of the quadrupole polarizability from the data will require additional theoretical input. Factors contributing to the signal and noise levels in measurements of this type are discussed

  11. Magnetic polarizabilities of light mesons in SU(3 lattice gauge theory

    Directory of Open Access Journals (Sweden)

    E.V. Luschevskaya

    2015-09-01

    Full Text Available We investigate the ground state energies of neutral pseudoscalar and vector meson in SU(3 lattice gauge theory in the strong abelian magnetic field. The energy of ρ0 meson with zero spin projection sz=0 on the axis of the external magnetic field decreases, while the energies with non-zero spins sz=−1 and +1 increase with the field. The energy of π0 meson decreases as a function of the magnetic field. We calculate the magnetic polarizabilities of pseudoscalar and vector mesons for lattice volume 184. For ρ0 with spin |sz|=1 and π0 meson the polarizabilities in the continuum limit have been evaluated. We do not observe any evidence in favour of tachyonic mode existence.

  12. Potential of mean force for ion pairs in non-aqueous solvents. Comparison of polarizable and non-polarizable MD simulations

    Science.gov (United States)

    Odinokov, A. V.; Leontyev, I. V.; Basilevsky, M. V.; Petrov, N. Ch.

    2011-01-01

    Potentials of mean force (PMF) are calculated for two model ion pairs in two non-aqueous solvents. Standard non-polarizable molecular dynamics simulation (NPMD) and approximate polarizable simulation (PMD) are implemented and compared as tools for monitoring PMF profiles. For the polar solvent (dimethylsulfoxide, DMSO) the PMF generated in terms of the NPMD reproduces fairly well the refined PMD-PMF profile. For the non-polar solvent (benzene) the conventional NPMD computation proves to be deficient. The validity of the correction found in terms of the approximate PMD approach is verified by its comparison with the result of the explicit PMD computation in benzene. The shapes of the PMF profiles in DMSO and in benzene are quite different. In DMSO, owing to dielectric screening, the PMF presents a flat plot with a shallow minimum positioned in the vicinity of the van der Waals contact of the ion pair. For the benzene case, the observed minimum proves to be unexpectedly deep, which manifests the formation of a tightly-binded contact ion pair. This remarkable effect arises owing to the strong electrostatic interaction that is incompletely screened by a non-polar medium. The PMFs for the binary benzene/DMSO mixtures display intermediate behaviour depending on the DMSO content.

  13. Electroabsorption spectra of carotenoid isomers: Conformational modulation of polarizability vs. induced dipole moments

    International Nuclear Information System (INIS)

    Krawczyk, Stanislaw; Jazurek, Beata; Luchowski, Rafal; Wiacek, Dariusz

    2006-01-01

    Electroabsorption spectra of all-trans, 13-cis and 15-cis isomers of carotenoids violaxanthin and β-carotene frozen in organic solvents were analysed in terms of changes in permanent dipole moment, Δμ, and in the linear polarizability, Δα, on electronic excitation. The spectral range investigated covered the two carotenoid absorption bands in the VIS and UV, known to originate from differently oriented transition dipole moments. In contrast with the collinearity of the apparent Δμ with Δα in the lowest-energy allowed (VIS) transition 1A g - ->1B u + , the axis of the largest polarizability change in the UV transition 1A g - ->1A g + (''cis band'') was found to make a large angle with the transition moment, while the direction of Δμ appears to be much closer to it. These data support the view that Δμ's inferred from electrochromic spectra of carotenoids are apparent and are not induced by the local matrix field in the solvent cavity, but merely result from conformational modulation of molecular polarizability

  14. Induced-Charge Enhancement of the Diffusion Potential in Membranes with Polarizable Nanopores.

    Science.gov (United States)

    Ryzhkov, I I; Lebedev, D V; Solodovnichenko, V S; Shiverskiy, A V; Simunin, M M

    2017-12-01

    When a charged membrane separates two salt solutions of different concentrations, a potential difference appears due to interfacial Donnan equilibrium and the diffusion junction. Here, we report a new mechanism for the generation of a membrane potential in polarizable conductive membranes via an induced surface charge. It results from an electric field generated by the diffusion of ions with different mobilities. For uncharged membranes, this effect strongly enhances the diffusion potential and makes it highly sensitive to the ion mobilities ratio, electrolyte concentration, and pore size. Theoretical predictions on the basis of the space-charge model extended to polarizable nanopores fully agree with experimental measurements in KCl and NaCl aqueous solutions.

  15. Dipole moment and polarizability of impurity doped quantum dots under anisotropy, spatially-varying effective mass and dielectric screening function: Interplay with noise

    Science.gov (United States)

    Ghosh, Anuja; Ghosh, Manas

    2018-01-01

    Present work explores the profiles of polarizability (αp) and electric dipole moment (μ) of impurity doped GaAs quantum dot (QD) under the aegis of spatially-varying effective mass, spatially-varying dielectric constant and anisotropy of the system. Presence of noise has also been invoked to examine how its intervention further tunes αp and μ. Noise term maintains a Gaussian white feature and it has been incorporated to the system through two different roadways; additive and multiplicative. The various facets of influence of spatially-varying effective mass, spatially-varying dielectric constant and anisotropy on αp and μ depend quite delicately on presence/absence of noise and also on the mode through which noise has been administered. The outcomes of the study manifest viable routes to harness the dipole moment and polarizability of doped QD system through the interplay between noise, anisotropy and variable effective mass and dielectric constant of the system.

  16. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational Energetics.

    Science.gov (United States)

    Lemkul, Justin A; MacKerell, Alexander D

    2017-05-09

    Empirical force fields seek to relate the configuration of a set of atoms to its energy, thus yielding the forces governing its dynamics, using classical physics rather than more expensive quantum mechanical calculations that are computationally intractable for large systems. Most force fields used to simulate biomolecular systems use fixed atomic partial charges, neglecting the influence of electronic polarization, instead making use of a mean-field approximation that may not be transferable across environments. Recent hardware and software developments make polarizable simulations feasible, and to this end, polarizable force fields represent the next generation of molecular dynamics simulation technology. In this work, we describe the refinement of a polarizable force field for DNA based on the classical Drude oscillator model by targeting quantum mechanical interaction energies and conformational energy profiles of model compounds necessary to build a complete DNA force field. The parametrization strategy employed in the present work seeks to correct weak base stacking in A- and B-DNA and the unwinding of Z-DNA observed in the previous version of the force field, called Drude-2013. Refinement of base nonbonded terms and reparametrization of dihedral terms in the glycosidic linkage, deoxyribofuranose rings, and important backbone torsions resulted in improved agreement with quantum mechanical potential energy surfaces. Notably, we expand on previous efforts by explicitly including Z-DNA conformational energetics in the refinement.

  17. Validation of PM6 & PM7 semiempirical methods on polarizability calculations

    Science.gov (United States)

    Praveen, P. A.; Babu, R. Ramesh; Ramamurthi, K.

    2015-06-01

    Modern semiempirical methods such as PM6 and PM7 are often used to explore the electronic structure dependent properties of molecules. In this work we report the evaluation of PM6 and PM7 methods towards linear and nonlinear optical polarizability calculations for different molecules and solid nanoclusters. The results are compared with reported experimental results as well as theoretical results from other high level theories for the same systems. It is found that both methods produce accurate results for small molecules and the accuracy increases with the increase in asymmetry of the medium sized organic molecules and accuracy reduces for solid nanoclusters.

  18. Validation of PM6 & PM7 semiempirical methods on polarizability calculations

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, P. A.; Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli-620024, Tamilnadu (India); Ramamurthi, K. [Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM University, Kattankulathur – 603 203, Tamil Nadu (India)

    2015-06-24

    Modern semiempirical methods such as PM6 and PM7 are often used to explore the electronic structure dependent properties of molecules. In this work we report the evaluation of PM6 and PM7 methods towards linear and nonlinear optical polarizability calculations for different molecules and solid nanoclusters. The results are compared with reported experimental results as well as theoretical results from other high level theories for the same systems. It is found that both methods produce accurate results for small molecules and the accuracy increases with the increase in asymmetry of the medium sized organic molecules and accuracy reduces for solid nanoclusters.

  19. Validation of PM6 & PM7 semiempirical methods on polarizability calculations

    International Nuclear Information System (INIS)

    Praveen, P. A.; Babu, R. Ramesh; Ramamurthi, K.

    2015-01-01

    Modern semiempirical methods such as PM6 and PM7 are often used to explore the electronic structure dependent properties of molecules. In this work we report the evaluation of PM6 and PM7 methods towards linear and nonlinear optical polarizability calculations for different molecules and solid nanoclusters. The results are compared with reported experimental results as well as theoretical results from other high level theories for the same systems. It is found that both methods produce accurate results for small molecules and the accuracy increases with the increase in asymmetry of the medium sized organic molecules and accuracy reduces for solid nanoclusters

  20. Bounds on complex polarizabilities and a new perspective on scattering by a lossy inclusion

    Science.gov (United States)

    Milton, Graeme W.

    2017-09-01

    Here, we obtain explicit formulas for bounds on the complex electrical polarizability at a given frequency of an inclusion with known volume that follow directly from the quasistatic bounds of Bergman and Milton on the effective complex dielectric constant of a two-phase medium. We also describe how analogous bounds on the orientationally averaged bulk and shear polarizabilities at a given frequency can be obtained from bounds on the effective complex bulk and shear moduli of a two-phase medium obtained by Milton, Gibiansky, and Berryman, using the quasistatic variational principles of Cherkaev and Gibiansky. We also show how the polarizability problem and the acoustic scattering problem can both be reformulated in an abstract setting as "Y problems." In the acoustic scattering context, to avoid explicit introduction of the Sommerfeld radiation condition, we introduce auxiliary fields at infinity and an appropriate "constitutive law" there, which forces the Sommerfeld radiation condition to hold. As a consequence, we obtain minimization variational principles for acoustic scattering that can be used to obtain bounds on the complex backwards scattering amplitude. Some explicit elementary bounds are given.

  1. AMOEBA Polarizable Force Field Parameters of the Heme Cofactor in Its Ferrous and Ferric Forms.

    Science.gov (United States)

    Wu, Xiaojing; Clavaguera, Carine; Lagardère, Louis; Piquemal, Jean-Philip; de la Lande, Aurélien

    2018-04-16

    We report the first parameters of the heme redox cofactors for the polarizable AMOEBA force field in both the ferric and ferrous forms. We consider two types of complexes, one with two histidine side chains as axial ligands and one with a histidine and a methionine side chain as ligands. We have derived permanent multipoles from second-order Møller-Plesset perturbation theory (MP2). The sets of parameters have been validated in a first step by comparison of AMOEBA interaction energies of heme and a collection of biologically relevant molecules with MP2 and Density Functional Theory (DFT) calculations. In a second validation step, we consider interaction energies with large aggregates comprising around 80 H 2 O molecules. These calculations are repeated for 30 structures extracted from semiempirical PM7 DM simulations. Very encouraging agreement is found between DFT and the AMOEBA force field, which results from an accurate treatment of electrostatic interactions. We finally report long (10 ns) MD simulations of cytochromes in two redox states with AMOEBA testing both the 2003 and 2014 AMOEBA water models. These simulations have been carried out with the TINKER-HP (High Performance) program. In conclusion, owing to their ubiquity in biology, we think the present work opens a wide array of applications of the polarizable AMOEBA force field on hemeproteins.

  2. Role of polarizability in the 3H(d,n)4He reaction

    International Nuclear Information System (INIS)

    Belyaev, V.B.; Kuzmichev, V.E.; Peresypkin, V.V.; Zepalova, M.L.

    1987-01-01

    The influence is investigated of the deuteron electric dipole polarizability on the cross section, astrophysical S-factor, and the yield of helium nuclei in the 3 H(d,n) 4 He reaction in the region of extremely low energies. Prediction is made of the existence of narrow maximum in the cross section at energies of an incident triton lower that 10 keV produced by the action of an attractive polarization potential in the d 3 H system. The growth of the cross section of d 3 H reaction increases the yield of 4 He nuclei at temperatures lower than keV

  3. A comparison of density functional theory and coupled cluster methods for the calculation of electric dipole polarizability gradients of methane

    DEFF Research Database (Denmark)

    Paidarová, Ivana; Sauer, Stephan P. A.

    2012-01-01

    We have compared the performance of density functional theory (DFT) using five different exchange-correlation functionals with four coupled cluster theory based wave function methods in the calculation of geometrical derivatives of the polarizability tensor of methane. The polarizability gradient...

  4. Method of the reduced-added Green function in the calculation of atomic polarizabilities

    International Nuclear Information System (INIS)

    Chernov, V.E.; Dorofeev, D.L.; Kretinin, I.Yu.; Zon, B.A.

    2005-01-01

    The Green function in the quantum defect theory provides an exact account for high-excited and continuum electronic states. We modify it by taking into account the ground and low-excited states using their wave functions calculated ab initio. As an application, we present a simple and efficient semianalytical method for the calculation of atomic electric frequency-dependent scalar dipole polarizability, for both real and imaginary frequencies. The polarizabilities calculated for some atoms (Li, Na, K, Be, Mg, Ca, Si, P, S, O, Al, Ge, C, N, F, He, Ne, Ar, Kr, and Xe) are compared with existing methods of computational quantum chemistry and with experiments; good accuracy of the proposed method is demonstrated

  5. Polarizability of Six-Helix Bundle and Triangle DNA Origami and Their Escape Characteristics from a Dielectrophoretic Trap.

    Science.gov (United States)

    Gan, Lin; Camacho-Alanis, Fernanda; Ros, Alexandra

    2015-12-15

    DNA nanoassemblies, such as DNA origamis, hold promise in biosensing, drug delivery, nanoelectronic circuits, and biological computing, which require suitable methods for migration and precision positioning. Insulator-based dielectrophoresis (iDEP) has been demonstrated as a powerful migration and trapping tool for μm- and nm-sized colloids as well as DNA origamis. However, little is known about the polarizability of origami species, which is responsible for their dielectrophoretic migration. Here, we report the experimentally determined polarizabilities of the six-helix bundle origami (6HxB) and triangle origami by measuring the migration times through a potential landscape exhibiting dielectrophoretic barriers. The resulting migration times correlate to the depth of the dielectrophoretic potential barrier and the escape characteristics of the origami according to an adapted Kramer's rate model, allowing their polarizabilities to be determined. We found that the 6HxB polarizability is larger than that of the triangle origami, which correlates with the variations in charge density of both origamis. Further, we discuss the orientation of both origami species in the dielectrophoretic trap and discuss the influence of diffusion during the escape process. Our study provides detailed insight into the factors contributing to the migration through dielectrophoretic potential landscapes, which can be exploited for applications with DNA and other nanoassemblies based on dielectrophoresis.

  6. Collision-induced absorption intensity redistribution and the atomic pair polarizabilities

    International Nuclear Information System (INIS)

    Bulanin, M. O.

    1997-01-01

    A modified relation between the trace polarizability of a diatom and the S(-2) dipole sum is proposed that accounts for the effect of atomic collisions on the dipole oscillator strength distribution. Contribution to the collision-induced trace due to redistribution in the ionization continuum of Ar is evaluated and is found to be significant

  7. Time dependence of X-ray polarizability of a crystal induced by an intense femtosecond X-ray pulse

    Directory of Open Access Journals (Sweden)

    A. Leonov

    2014-11-01

    Full Text Available The time evolution of the electron density and the resulting time dependence of Fourier components of the X-ray polarizability of a crystal irradiated by highly intense femtosecond pulses of an X-ray free-electron laser (XFEL is investigated theoretically on the basis of rate equations for bound electrons and the Boltzmann equation for the kinetics of the unbound electron gas. The photoionization, Auger process, electron-impact ionization, electron–electron scattering and three-body recombination have been implemented in the system of rate equations. An algorithm for the numerical solution of the rate equations was simplified by incorporating analytical expressions for the cross sections of all the electron configurations in ions within the framework of the effective charge model. Using this approach, the time dependence of the inner shell populations during the time of XFEL pulse propagation through the crystal was evaluated for photon energies between 4 and 12 keV and a pulse width of 40 fs considering a flux of 1012 photons pulse−1 (focusing on a spot size of ∼1 µm. This flux corresponds to a fluence ranging between 0.8 and 2.4 mJ µm−2. The time evolution of the X-ray polarizability caused by the change of the atomic scattering factor during the pulse propagation is numerically analyzed for the case of a silicon crystal. The time-integrated polarizability drops dramatically if the fluence of the X-ray pulse exceeds 1.6 mJ µm−2.

  8. Experimental Constraints on Polarizability Corrections to Hydrogen Hyperfine Structure

    International Nuclear Information System (INIS)

    Nazaryan, Vahagn; Carlson, Carl E.; Griffioen, Keith A.

    2006-01-01

    We present a state-of-the-art evaluation of the polarizability corrections--the inelastic nucleon corrections--to the hydrogen ground-state hyperfine splitting using analytic fits to the most recent data. We find a value Δ pol =1.3±0.3 ppm. This is 1-2 ppm smaller than the value of Δ pol deduced using hyperfine splitting data and elastic nucleon corrections obtained from modern form factor fits

  9. Natural Fe3O4 nanoparticles embedded zinc–tellurite glasses: Polarizability and optical properties

    International Nuclear Information System (INIS)

    Widanarto, W.; Sahar, M.R.; Ghoshal, S.K.; Arifin, R.; Rohani, M.S.; Hamzah, K.; Jandra, M.

    2013-01-01

    Modifying the optical behavior of zinc–tellurite glass by embedding magnetic nanoparticles has implication in nanophotonics. A series of zinc–tellurite glasses containing natural Fe 3 O 4 nanoparticles with composition (80 − x)TeO 2 ·xFe 3 O 4 ·20ZnO (0 ≤ x ≤ 2) in mol% are synthesized by melt quenching method and their optical properties are investigated using FTIR and UV–vis–NIR spectroscopies. Lorentz–Lorenz relations are exploited to determine the refractive index, molar refraction and electronic polarizability. The sharp absorption peaks of FTIR spectra show a shift from 667 cm −1 to 671 cm −1 in the presence of nanoparticles that increase the non-bridging oxygen, confirmed by the intensity change of the TeO 3 peak at 752 cm −1 . A new peak around 461 cm −1 is also observed which is attributed to the band characteristic of covalent Fe–O linkages. A decrease in the Urbach energy as much as 0.122 eV and the optical energy band gap with the increase of Fe 3 O 4 concentration (0.5–1.0 mol%) is evidenced. Electronic polarizability of the glasses increases with increasing Fe 3 O 4 nanoparticles concentration up to 1 mol%. Interestingly, the polarizability tends to decrease with the further increase of Fe 3 O 4 concentration at 2 mol%. The role of magnetic nanoparticles in influencing the structural and optical behavior are examined and understood. - Highlights: ► Incorporation of natural Fe 3 O 4 nanoparticles into the zinc–tellurite glass. ► Influence of magnetic nanoparticles in modifying structure and optical properties. ► Enhancement of refraction index and change in electronic polarizability

  10. Hybrid Quantum Mechanics/Molecular Mechanics/Coarse Grained Modeling: A Triple-Resolution Approach for Biomolecular Systems.

    Science.gov (United States)

    Sokkar, Pandian; Boulanger, Eliot; Thiel, Walter; Sanchez-Garcia, Elsa

    2015-04-14

    We present a hybrid quantum mechanics/molecular mechanics/coarse-grained (QM/MM/CG) multiresolution approach for solvated biomolecular systems. The chemically important active-site region is treated at the QM level. The biomolecular environment is described by an atomistic MM force field, and the solvent is modeled with the CG Martini force field using standard or polarizable (pol-CG) water. Interactions within the QM, MM, and CG regions, and between the QM and MM regions, are treated in the usual manner, whereas the CG-MM and CG-QM interactions are evaluated using the virtual sites approach. The accuracy and efficiency of our implementation is tested for two enzymes, chorismate mutase (CM) and p-hydroxybenzoate hydroxylase (PHBH). In CM, the QM/MM/CG potential energy scans along the reaction coordinate yield reaction energies that are too large, both for the standard and polarizable Martini CG water models, which can be attributed to adverse effects of using large CG water beads. The inclusion of an atomistic MM water layer (10 Å for uncharged CG water and 5 Å for polarizable CG water) around the QM region improves the energy profiles compared to the reference QM/MM calculations. In analogous QM/MM/CG calculations on PHBH, the use of the pol-CG description for the outer water does not affect the stabilization of the highly charged FADHOOH-pOHB transition state compared to the fully atomistic QM/MM calculations. Detailed performance analysis in a glycine-water model system indicates that computation times for QM energy and gradient evaluations at the density functional level are typically reduced by 40-70% for QM/MM/CG relative to fully atomistic QM/MM calculations.

  11. Excitations in opal photonic crystals infiltrated with polarizable media

    Science.gov (United States)

    Eradat, Nayer; Sivachenko, A. Y.; Raikh, Mikhail E.; Vardeny, Z. Valy; Zakhidov, Anvar A.; Li, S.; Baughman, Ray H.

    2002-12-01

    Photonic crystals (PC) are a class of artificial structures with a periodic dielectric function. PCs can be a laboratory for testing fundamental processes involving interactions of radiation with matter in novel conditions. We have studied the optical properties of opal PCs that are infiltrated with highly polarizable media such as j-aggregates of cyanine dyes. Opals are self-assembled structures of silica spheres. We report our studies on clarifying the relationship between a polaritonic gap and a photonic stop band (Bragg gap) when they resonantly coexist in the same structure. Infiltration of opal with polarizable molecules combines the polaritonic and Bragg diffractive effects. Both effects exist independently when the Bragg (at ω = ωB) and polaritonic (ω = ωT) resonances are well separated in frequency. A completely different situation occurs when ωT ~ωB. Such a condition was achieved in opals that were infiltrated with J-aggregates of cyanine dyes that have large Rabi frequency. Our measurements show some dramatic changes in the shape of the reflectivity plateaus, which are due to the interplay between the photonic band gap and the polaritonic gap. The experimental results on reflectivity and its dependence on the light propagation angle and concentration of the cyanie dyes are in agreement with the theoretical calculations.

  12. Lanczos-driven coupled-cluster damped linear response theory for molecules in polarizable environments

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Coriani, Sonia; Kongsted, Jacob

    2014-01-01

    are specifically motivated by a twofold aim: (i) computation of core excitations in realistic surroundings and (ii) examination of the effect of the differential response of the environment upon excitation solely related to the CC multipliers (herein denoted the J matrix) in computations of excitation energies......We present an extension of a previously reported implementation of a Lanczos-driven coupled-cluster (CC) damped linear response approach to molecules in condensed phases, where the effects of a surrounding environment are incorporated by means of the polarizable embedding formalism. We...... and transition moments of polarizable-embedded molecules. Numerical calculations demonstrate that the differential polarization of the environment due to the first-order CC multipliers provides only minor contributions to the solvatochromic shift for all transitions considered. We thus complement previous works...

  13. An introductory study using impedance spectroscopy technique with polarizable microelectrode for amino acids characterization

    Science.gov (United States)

    Chin, K. B.; Chi, I.; Pasalic, J.; Huang, C.-K.; Barge, Laura M.

    2018-04-01

    Portable, low power, yet ultra-sensitive life detection instrumentations are vital to future astrobiology flight programs at NASA. In this study, initial attempts to characterize amino acids in an aqueous environment by electrochemical impedance spectroscopy (EIS) using polarizable (blocking) electrodes in order to establish a means of detection via their electrical properties. Seven amino acids were chosen due to their scientific importance in demonstrating sensitivity levels in the range of part per billion concentration. Albeit more challenging in real systems of analyst mixtures, we found individual amino acids in aqueous environment do exhibit some degree of chemical and physical uniqueness to warrant characterization by EIS. The polar amino acids (Asp, Glu, and His) exhibited higher electrochemical activity than the non-polar amino acids (Ala, Gly, Val, and Leu). The non-polar amino acids (Gly and Ala) also exhibited unique electrical properties which appeared to be more dependent on physical characteristics such as molecular weight and structure. At concentrations above 1 mM where the amino acids play a more dominant transport role within the water, the conductivity was found to be more sensitive to concentrations. At lower concentrations activity with water. As revealed by equivalent circuit modeling, the relaxation times showed a 1-2 order of magnitude difference between polar and non-polar amino acids. The pseudo-capacitance from EIS measurements on sample mixtures containing salt water and individual amino acids revealed the possibility for improvement in amino acid selectivity using gold nanoporous surface enhanced electrodes. This work establishes important methodologies for characterizing amino acids using EIS combined with microscale electrodes, supporting the case for instrumentation development for life detection and origin of life programs.

  14. ''Atomic'' Bremsstrahlung or polarizational radiation in collision of many-electron ions

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Solov'yov, A.V.

    1991-01-01

    In this work the so-called ''Atomic'' bremsstrahlung (AB) or polarizational radiation, created in collisions of atoms or ions, is discussed. This kind of radiation arises due to the polarization of the electron shell of colliding particles. It is created by the structured projectiles and targets if the constituents are electrically charged. 6 refs, 2 figs

  15. Linear response coupled cluster theory with the polarizable continuum model within the singles approximation for the solvent response

    Science.gov (United States)

    Caricato, Marco

    2018-04-01

    We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.

  16. Casimir friction between polarizable particle and half-space with radiation damping at zero temperature

    International Nuclear Information System (INIS)

    Høye, J S; I Brevik; Milton, K A

    2015-01-01

    Casimir friction between a polarizable particle and a semi-infinite space is a delicate physical phenomenon, as it concerns the interaction between a microscopic quantum particle and a semi-infinite reservoir. Not unexpectedly, results obtained in the past about the friction force obtained via different routes are sometimes, at least apparently, wildly different from each other. Recently, we considered the Casimir friction force for two dielectric semi-infinite plates moving parallel to each other Høye and Brevik (2014 Eur. Phys. J. D 68 61), and managed to get essential agreement with results obtained by Pendry (1997 J. Phys.: Condens. Matter 9 10301), Volokitin and Persson (2007 Rev. Mod. Phys. 79 1291), and Barton (2011 New J. Phys. 13 043023; 2011 J. Phys.: Condens. Matter 23 335004). Our method was based upon use of the Kubo formalism. In the present paper we focus on the interaction between a polarizable particle and a dielectric half-space again, and calculate the friction force using the same basic method as before. The new ingredient in the present analysis is that we take into account radiative damping, and derive the modifications thereof. Some comparisons are also made with works from others. Essential agreement with the results of Intravaia, Behunin, and Dalvit can also be achieved using the modification of the atomic polarizability by the metallic plate. (paper)

  17. A thermodynamic derivation of equations for dielectric-relaxation phenomena in anisotropic polarizable media

    NARCIS (Netherlands)

    Ciancio, V.; Kluitenberg, G.A.

    1990-01-01

    Using the general methods of non-equilibrium thermodynamics, a theory for anisotropic polarizable media in which dielectric relaxation phenomena occur is developed. Assuming that ii microscopic phenomena give rise to dielectric relaxation, the contributions of these phenomena to the macroscopic

  18. Molecular hydrogen solvated in water – A computational study

    International Nuclear Information System (INIS)

    Śmiechowski, Maciej

    2015-01-01

    The aqueous hydrogen molecule is studied with molecular dynamics simulations at ambient temperature and pressure conditions, using a newly developed flexible and polarizable H 2 molecule model. The design and implementation of this model, compatible with an existing flexible and polarizable force field for water, is presented in detail. The structure of the hydration layer suggests that first-shell water molecules accommodate the H 2 molecule without major structural distortions and two-dimensional, radial-angular distribution functions indicate that as opposed to strictly tangential, the orientation of these water molecules is such that the solute is solvated with one of the free electron pairs of H 2 O. The calculated self-diffusion coefficient of H 2 (aq) agrees very well with experimental results and the time dependence of mean square displacement suggests the presence of caging on a time scale corresponding to hydrogen bond network vibrations in liquid water. Orientational correlation function of H 2 experiences an extremely short-scale decay, making the H 2 –H 2 O interaction potential essentially isotropic by virtue of rotational averaging. The inclusion of explicit polarizability in the model allows for the calculation of Raman spectra that agree very well with available experimental data on H 2 (aq) under differing pressure conditions, including accurate reproduction of the experimentally noted trends with solute pressure or concentration

  19. High Precision Measurement of the Neutron Polarizabilities via Compton Scattering on Deuterium at Eγ=65 MeV

    Science.gov (United States)

    Sikora, Mark; Compton@HIGS Team

    2017-01-01

    The electric (αn) and magnetic (βn) polarizabilities of the neutron are fundamental properties arising from its internal structure which describe the nucleon's response to applied electromagnetic fields. Precise measurements of the polarizabilities provide crucial constraints on models of Quantum Chromodynamics (QCD) in the low energy regime such as Chiral Effective Field Theories as well as emerging ab initio calculations from lattice-QCD. These values also contribute the most uncertainty to theoretical determinations of the proton-neutron mass difference. Historically, the experimental challenges to measuring αn and βn have been due to the difficulty in obtaining suitable targets and sufficiently intense beams, leading to significant statistical uncertainties. To address these issues, a program of Compton scattering experiments on the deuteron is underway at the High Intensity Gamma Source (HI γS) at Duke University with the aim of providing the world's most precise measurement of αn and βn. We report measurements of the Compton scattering differential cross section obtained at an incident photon energy of 65 MeV and discuss the sensitivity of these data to the polarizabilities.

  20. High Precision Measurement of the Neutron Polarizabilities via Compton Scattering on Deuterium at HI γS

    Science.gov (United States)

    Sikora, Mark

    2016-09-01

    The electric (αn) and magnetic (βn) polarizabilities of the neutron are fundamental properties arising from its internal structure which describe the nucleon's response to applied electromagnetic fields. Precise measurements of the polarizabilities provide crucial constraints on models of Quantum Chromodynamics (QCD) in the low energy regime such as Chiral Effective Field Theories as well as emerging ab initio calculations from lattice-QCD. These values also contribute the most uncertainty to theoretical determinations of the proton-neutron mass difference. Historically, the experimental challenges to measuring αn and βn have been due to the difficulty in obtaining suitable targets and sufficiently intense beams, leading to significant statistical uncertainties. To address these issues, a program of Compton scattering experiments on the deuteron is underway at the High Intensity Gamma Source (HI γS) at Duke University with the aim of providing the world's most precise measurement of αn and βn. We report measurements of the Compton scattering differential cross section obtained at incident photon energies of 65 and 85 MeV and discuss the sensitivity of these data to the polarizabilities.

  1. Polarizability and binding energy of a shallow donor in spherical quantum dot-quantum well (QD-QW)

    Science.gov (United States)

    Rahmani, K.; Chrafih, Y.; M’Zred, S.; Janati, S.; Zorkani, I.; Jorio, A.; Mmadi, A.

    2018-03-01

    The polarizability and the binding energy is estimated for a shallow donor confined to move in inhomogeneous quantum dots (CdS/HgS/CdS). In this work, the Hass variational method within the effective mass approximation in used in the case of an infinitely deep well. The polarizability and the binding energy depend on the inner and the outer radius of the QDQW, also it depends strongly on the donor position. It’s found that the stark effect is more important when the impurity is located at the center of the (QDQW) and becomes less important when the donor moves toward the extremities of the spherical layer. When the electric field increases, the binding energy and the polarizability decreases. Its effects is more pronounced when the impurity is placed on the center of the spherical layer and decrease when the donor move toward extremities of this spherical layer. We have demonstrated the existence of a critical value {≤ft( {{{{R_1}} \\over {{R_2}}}} \\right)cri} which can be used to distinguish the tree dimension confinement from the spherical surface confinement and it’s may be important for the nanofabrication techniques.

  2. Density and polarizability of liquid 4He

    International Nuclear Information System (INIS)

    Kempin'ski, V.; Zhuk, T.; Stankovski, Ya.; Sitarzh, S.

    1988-01-01

    The temperature changes in the density of liquid helium are measured in the temperature range of 1.63 to 4.2 K.; Unlike the conventional pycnometric technique, the changes in the hydrostatic displacement of the liquid were determined. The cirrectness of the method chosen and the appropriate equipment for its realization are substantiated. The results obtained are in good agreement with those of other authors. On the basis of temperature measurements of the dependence of density ρ and permittivity ε, the dependence of polarizability A of liquid 4 He on temperature and density was calculated. The results obtained show an alternating character of the dependences A(T) and A(ρ). These dependences are found to correlate

  3. Correlated, Static and Dynamic Polarizabilities of Small Molecules. Comparison of Four "Black Box" Methods

    DEFF Research Database (Denmark)

    Dalskov, Erik K.; Sauer, Stephan P. A.

    1998-01-01

    Molecular static and dynamic polarizabilities for thirteen small molecules have been calculated using four "black box" ab initio methods, the random phase approximation, RPA, the second-order polarization propagator approximation, SOPPA, the second-order polarization propagator approximation...

  4. Natural Fe{sub 3}O{sub 4} nanoparticles embedded zinc–tellurite glasses: Polarizability and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Widanarto, W. [Physics Study Program, Jenderal Soedirman University, Jl. Dr. Soeparno 61, Purwokerto 53123 (Indonesia); Sahar, M.R., E-mail: rahimsahar@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310 (Malaysia); Ghoshal, S.K.; Arifin, R.; Rohani, M.S.; Hamzah, K. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310 (Malaysia); Jandra, M. [FTI, University Teknologi Malaysia, Johor Bahru, Skudai 81310 (Malaysia)

    2013-02-15

    Modifying the optical behavior of zinc–tellurite glass by embedding magnetic nanoparticles has implication in nanophotonics. A series of zinc–tellurite glasses containing natural Fe{sub 3}O{sub 4} nanoparticles with composition (80 − x)TeO{sub 2}·xFe{sub 3}O{sub 4}·20ZnO (0 ≤ x ≤ 2) in mol% are synthesized by melt quenching method and their optical properties are investigated using FTIR and UV–vis–NIR spectroscopies. Lorentz–Lorenz relations are exploited to determine the refractive index, molar refraction and electronic polarizability. The sharp absorption peaks of FTIR spectra show a shift from 667 cm{sup −1} to 671 cm{sup −1} in the presence of nanoparticles that increase the non-bridging oxygen, confirmed by the intensity change of the TeO{sub 3} peak at 752 cm{sup −1}. A new peak around 461 cm{sup −1} is also observed which is attributed to the band characteristic of covalent Fe–O linkages. A decrease in the Urbach energy as much as 0.122 eV and the optical energy band gap with the increase of Fe{sub 3}O{sub 4} concentration (0.5–1.0 mol%) is evidenced. Electronic polarizability of the glasses increases with increasing Fe{sub 3}O{sub 4} nanoparticles concentration up to 1 mol%. Interestingly, the polarizability tends to decrease with the further increase of Fe{sub 3}O{sub 4} concentration at 2 mol%. The role of magnetic nanoparticles in influencing the structural and optical behavior are examined and understood. - Highlights: ► Incorporation of natural Fe{sub 3}O{sub 4} nanoparticles into the zinc–tellurite glass. ► Influence of magnetic nanoparticles in modifying structure and optical properties. ► Enhancement of refraction index and change in electronic polarizability.

  5. Exact-exchange time-dependent density-functional theory for static and dynamic polarizabilities

    International Nuclear Information System (INIS)

    Hirata, So; Ivanov, Stanislav; Bartlett, Rodney J.; Grabowski, Ireneusz

    2005-01-01

    Time-dependent density-functional theory (TDDFT) employing the exact-exchange functional has been formulated on the basis of the optimized-effective-potential (OEP) method of Talman and Shadwick for second-order molecular properties and implemented into a Gaussian-basis-set, trial-vector algorithm. The only approximation involved, apart from the lack of correlation effects and the use of Gaussian-type basis functions, was the consistent use of the adiabatic approximation in the exchange kernel and in the linear response function. The static and dynamic polarizabilities and their anisotropy predicted by the TDDFT with exact exchange (TDOEP) agree accurately with the corresponding values from time-dependent Hartree-Fock theory, the exact-exchange counterpart in the wave function theory. The TDOEP is free from the nonphysical asymptotic decay of the exchange potential of most conventional density functionals or from any other manifestations of the incomplete cancellation of the self-interaction energy. The systematic overestimation of the absolute values and dispersion of polarizabilities that plagues most conventional TDDFT cannot be seen in the TDOEP

  6. Assessing the high frequency behavior of non-polarizable electrodes for spectral induced polarization measurements

    Science.gov (United States)

    Abdulsamad, Feras; Florsch, Nicolas; Schmutz, Myriam; Camerlynck, Christian

    2016-12-01

    During the last decades, the usage of spectral induced polarization (SIP) measurements in hydrogeology and detecting environmental problems has been extensively increased. However, the physical mechanisms which are responsible for the induced polarization response over the usual frequency range (typically 1 mHz to 10-20 kHz) require better understanding. The phase shift observed at high frequencies is sometimes attributed to the so-called Maxwell-Wagner polarization which takes place when charges cross an interface. However, SIP measurements of tap water show a phase shift at frequencies higher than 1 kHz, where no Maxwell-Wagner polarization may occur. In this paper, we enlighten the possible origin of this phase shift and deduce its likely relationship with the types of the measuring electrodes. SIP Laboratory measurements of tap water using different types of measuring electrodes (polarizable and non-polarizable electrodes) are carried out to detect the origin of the phase shift at high frequencies and the influence of the measuring electrodes types on the observed complex resistivity. Sodium chloride is used to change the conductivity of the medium in order to quantify the solution conductivity role. The results of these measurements are clearly showing the impact of the measuring electrodes type on the measured phase spectrum while the influence on the amplitude spectrum is negligible. The phenomenon appearing on the phase spectrum at high frequency (> 1 kHz) whatever the electrode type is, the phase shows an increase compared to the theoretical response, and the discrepancy (at least in absolute value) increases with frequency, but it is less severe when medium conductivity is larger. Additionally, the frequency corner is shifted upward in frequency. The dependence of this phenomenon on the conductivity and the measuring electrodes type (electrode-electrolyte interface) seems to be due to some dielectric effects (as an electrical double layer of small

  7. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability

    International Nuclear Information System (INIS)

    Miffre, A.

    2005-06-01

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, α = (24.33 ± 0.16)*10 -30 m 3 , improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  8. Model Hamiltonian Calculations of the Nonlinear Polarizabilities of Conjugated Molecules.

    Science.gov (United States)

    Risser, Steven Michael

    This dissertation advances the theoretical knowledge of the nonlinear polarizabilities of conjugated molecules. The unifying feature of these molecules is an extended delocalized pi electron structure. The pi electrons dominate the electronic properties of the molecules, allowing prediction of molecular properties based on the treatment of just the pi electrons. Two separate pi electron Hamiltonians are used in the research. The principal Hamiltonian used is the non-interacting single-particle Huckel Hamiltonian, which replaces the Coulomb interaction among the pi electrons with a mean field interaction. The simplification allows for exact solution of the Hamiltonian for large molecules. The second Hamiltonian used for this research is the interacting multi-particle Pariser-Parr-Pople (PPP) Hamiltonian, which retains explicit Coulomb interactions. This limits exact solutions to molecules containing at most eight electrons. The molecular properties being investigated are the linear polarizability, and the second and third order hyperpolarizabilities. The hyperpolarizabilities determine the nonlinear optical response of materials. These molecular parameters are determined by two independent approaches. The results from the Huckel Hamiltonian are obtained through first, second and third order perturbation theory. The results from the PPP Hamiltonian are obtained by including the applied field directly in the Hamiltonian and determining the ground state energy at a series of field strengths. By fitting the energy to a polynomial in field strength, the polarizability and hyperpolarizabilities are determined. The Huckel Hamiltonian is used to calculate the third order hyperpolarizability of polyenes. These calculations were the first to show the average hyperpolarizability of the polyenes to be positive, and also to show the saturation of the hyperpolarizability. Comparison of these Huckel results to those from the PPP Hamiltonian shows the lack of explicit Coulomb

  9. Dipole polarizabilities and van der Waals coefficients for small molecular systems, from the atomic study to the crystal one

    International Nuclear Information System (INIS)

    Begue, D.

    1999-01-01

    Many criteria have been used to translate correctly the dynamical vectors of the electric properties: taking into account many spectroscopic states, the gauge and the quasi-spectral series to determine the analytical equation of the one order function. This approach is applied to two iso-electronic systems: CO and BF. The TDGI method allows to access the systems properties in their fundamental state and in their excited states. This work is illustrated by the beryllium atom study for the five first spectroscopic states. A theoretical study, based on the perturbations method, is presented for the determination of the interaction energy between two distant atoms. The formalism giving the general expression of the matrix elements of the dispersion energy needed to the Van der Waals, has been developed. Three examples illustrate this work: Be 2 , BeLi and K 2 . For this last one, the correlations between the calculation and the experimental observations are presented. Some theoretical results on the static and dynamic properties of beryllium clusters (Be N with N=2,3 and 4). The developed approach allowed to show the variations laws of polarizability with the cluster size and to show the asymptotical behavior of the property. (A.L.B.)

  10. Electronic Energy Transfer in Polarizable Heterogeneous Environments

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Kongsted, Jacob

    2015-01-01

    such couplings provide important insight into the strength of interaction between photo-active pigments in protein-pigment complexes. Recently, attention has been payed to how the environment modifies or even controls the electronic couplings. To enable such theoretical predictions, a fully polarizable embedding......-order multipole moments. We use this extended model to systematically examine three different ways of obtaining EET couplings in a heterogeneous medium ranging from use of the exact transition density to a point-dipole approximation. Several interesting observations are made including that explicit use...... of transition densities in the calculation of the electronic couplings - also when including the explicit environment contribution - can be replaced by a much simpler transition point charge description without comprising the quality of the model predictions....

  11. Accelerating GW calculations with optimal polarizability basis

    Energy Technology Data Exchange (ETDEWEB)

    Umari, P.; Stenuit, G. [CNR-IOM DEMOCRITOS Theory Elettra Group, Basovizza (Trieste) (Italy); Qian, X.; Marzari, N. [Department of Materials Science and Engineering, MIT, Cambridge, MA (United States); Giacomazzi, L.; Baroni, S. [CNR-IOM DEMOCRITOS Theory Elettra Group, Basovizza (Trieste) (Italy); SISSA - Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy)

    2011-03-15

    We present a method for accelerating GW quasi-particle (QP) calculations. This is achieved through the introduction of optimal basis sets for representing polarizability matrices. First the real-space products of Wannier like orbitals are constructed and then optimal basis sets are obtained through singular value decomposition. Our method is validated by calculating the vertical ionization energies of the benzene molecule and the band structure of crystalline silicon. Its potentialities are illustrated by calculating the QP spectrum of a model structure of vitreous silica. Finally, we apply our method for studying the electronic structure properties of a model of quasi-stoichiometric amorphous silicon nitride and of its point defects. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Automated property optimization via ab initio O(N) elongation method: Application to (hyper-)polarizability in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Orimoto, Yuuichi, E-mail: orimoto.yuuichi.888@m.kyushu-u.ac.jp [Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580 (Japan); Aoki, Yuriko [Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580 (Japan); Japan Science and Technology Agency, CREST, 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012 (Japan)

    2016-07-14

    An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method, and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between “choose-maximum” (choose a base pair giving the maximum β for each step) and “choose-minimum” (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account.

  13. Automated property optimization via ab initio O(N) elongation method: Application to (hyper-)polarizability in DNA

    International Nuclear Information System (INIS)

    Orimoto, Yuuichi; Aoki, Yuriko

    2016-01-01

    An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method, and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between “choose-maximum” (choose a base pair giving the maximum β for each step) and “choose-minimum” (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account.

  14. Electric dipole, polarizability and structure of cesium chloride clusters with one-excess electron

    International Nuclear Information System (INIS)

    Jraij, A.; Allouche, A.R.; Rabilloud, F.; Korek, M.; Aubert-Frecon, M.; Rayane, D.; Compagnon, I.; Antoine, R.; Broyer, M.; Dugourd, Ph.

    2006-01-01

    The measurement of the electric dipole of gas phase one-excess electron Cs n Cl n-1 clusters is reported together with a theoretical ab initio prediction of stable structures, dipole moments and electronic polarizabilities for these species in their ground state. Results are in agreement with NaCl cubic structures

  15. Electron polarizability of crystalline solids in quantizing magnetic fields and topological gap numbers

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel; Jonckheere, T.; Martin, T.

    2008-01-01

    Roč. 100, - (2008), 146804/1-146804/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/05/0365 Institutional research plan: CEZ:AV0Z10100521 Keywords : electron polarizability * quantum Hall effect * topological numbers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.180, year: 2008

  16. Self-consistent nonlinearly polarizable shell-model dynamics for ferroelectric materials

    International Nuclear Information System (INIS)

    Mkam Tchouobiap, S.E.; Kofane, T.C.; Ngabireng, C.M.

    2002-11-01

    We investigate the dynamical properties of the polarizable shellmodel with a symmetric double Morse-type electron-ion interaction in one ionic species. A variational calculation based on the Self-Consistent Einstein Model (SCEM) shows that a theoretical ferroelectric (FE) transition temperature can be derive which demonstrates the presence of a first-order phase transition for the potassium selenate (K 2 SeO 4 ) crystal around Tc 91.5 K. Comparison of the model calculation with the experimental critical temperature yields satisfactory agreement. (author)

  17. Calculation of dipole polarizability derivatives of adamantane and their use in electron scattering computations

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Paidarová, Ivana; Čársky, Petr

    2016-01-01

    In this paper we present calculations of the static polarizability and its derivatives for the adamantane molecule carried out at the density functional theory level using the B3LYP exchange correlation functional and Sadlej’s polarized valence triple zeta basis set. It is shown...

  18. A Polarizable and Transferable PHAST CO 2 Potential for Materials Simulation

    KAUST Repository

    Mullen, Ashley L.

    2013-12-10

    Reliable PHAST (Potentials with High Accuracy Speed and Transferability) intermolecular potential energy functions for CO2 have been developed from first principles for use in heterogeneous systems, including one with explicit polarization. The intermolecular potentials have been expressed in a transferable form and parametrized from nearly exact electronic structure calculations. Models with and without explicit many-body polarization effects, known to be important in simulation of interfacial processes, are constructed. The models have been validated on pressure-density isotherms of bulk CO 2 and adsorption in three metal-organic framework (MOF) materials. The present models appear to offer advantages over high quality fluid/liquid state potentials in describing CO2 interactions in interfacial environments where sorbates adopt orientations not commonly explored in bulk fluids. Thus, the nonpolar CO2-PHAST and polarizable CO 2-PHAST* potentials are recommended for materials/interfacial simulations. © 2013 American Chemical Society.

  19. 4fn-15d centroid shift in lanthanides and relation with anion polarizability, covalency, and cation electronegativity

    International Nuclear Information System (INIS)

    Dorenbos, P.; Andriessen, J.; Eijk, C.W.E. van

    2003-01-01

    Data collected on the centroid shift of the 5d-configuration of Ce 3+ in oxide and fluoride compounds were recently analyzed with a model involving the correlated motion between 5d-electron and ligand electrons. The correlation effects are proportional to the polarizability of the anion ligands and it leads, like covalency, to lowering of the 5d-orbital energies. By means of ab initio Hartree-Fock-LCAO calculations including configuration interaction the contribution from covalency and correlated motion to the centroid shift are determined separately for Ce 3+ in various compounds. It will be shown that in fluoride compounds, covalency provides an insignificant contribution. In oxides, polarizability appears to be of comparable importance as covalency

  20. Effect of the R dependence of laser-induced polarizability on molecular dynamic alignment in an intense femtosecond laser field

    International Nuclear Information System (INIS)

    Chen Jianxin; Cui Xiaomei; Huang Bomin; Wu Hongchun; Zhuo Shuangmu

    2006-01-01

    In the rotation equation of the angle θ between the molecular axis and the laser polarization direction, the dependence of laser-induced polarizability on the molecular internuclear distance R is considered. The effect of the R dependence of laser-induced polarizability on molecular dynamic alignment in an intense femtosecond laser field is investigated with 20 and 100 fs laser pulses for N 2 molecules and with 60 and 100 fs laser pulses for Br 2 molecules at intensities of 5x10 14 W cm -2 and 5x10 15 W cm -2 . This effect exists and only occurs during the dissociative process after the molecule is ionized. It enhances the degrees of molecular dynamic alignment and is more significant in reorienting the angular distributions of molecules towards the laser polarization direction in the conditions of high laser intensity and short pulse length. Compared with the N 2 molecule, the effect of the R dependence of laser-induced polarizability on molecular dynamic alignment for Br 2 is stronger. The reasons are presented and discussed

  1. A model with charges and polarizability for CS2 in an ionic liquid

    Indian Academy of Sciences (India)

    RUTH M LYNDEN-BELL

    the static electrostatic distribution in the CS2 molecule with 7 charged sites and anisotropic polarizability on the carbon site and isotropic .... the charges modified to reproduce the molecular quad- ... face at 1.5 times the van der Waals radii from the nuclei ..... shows the probability distribution of induced dipoles on the C site ...

  2. Dielectric constant of polarizable, nonpolar fluids and suspensions

    International Nuclear Information System (INIS)

    Cichocki, B.; Felderhof, B.U.

    1988-01-01

    We study the dielectric constant of a polarizable, nonpolar fluid or suspension of spherical particles by use of a renormalized cluster expansion.The particles may have induced multipole moments of any order. We show that the Clausius-Mossotti formula results from a virtual overlap contribution. The corrections to the Clausius-Mossotti formula are expressed with the aid of a cluster expansion. The integrands of the cluster integrals are expressed in terms of two-body nodal connectors which incorporate all reflections between a pair of particles. We study the two- and three-body cluster integrals in some detail and show how these are related to the dielectric virial expansion and to the first term of the Kirkwood-Yvon expansion

  3. Polarizable embedding with a multiconfiguration short-range density functional theory linear response method

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Olsen, Jógvan Magnus Haugaard; Knecht, Stefan

    2015-01-01

    . To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality......We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE......-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory...

  4. Impact of graphene on the polarizability of a neighbour nanoparticle: A dyadic green's function study

    DEFF Research Database (Denmark)

    Amorim, B.; Dias Gonçalves, Paulo André; Vasilevskiy, M. I.

    2017-01-01

    We discuss the renormalization of the polarizability of a nanoparticle in the presence of either: (1) a continuous graphene sheet; or (2) a plasmonic graphene grating, taking into account retardation effects. Our analysis demonstrates that the excitation of surface plasmon polaritons in graphene...

  5. Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method

    Science.gov (United States)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2016-11-01

    The analytical energy gradient and Hessian of the two-component Normalized Elimination of the Small Component (2c-NESC) method with regard to the components of the electric field are derived and used to calculate spin-orbit coupling (SOC) corrected dipole moments and dipole polarizabilities of molecules, which contain elements with high atomic number. Calculated 2c-NESC dipole moments and isotropic polarizabilities agree well with the corresponding four-component-Dirac Hartree-Fock or density functional theory values. SOC corrections for the electrical properties are in general small, but become relevant for the accurate prediction of these properties when the molecules in question contain sixth and/or seventh period elements (e.g., the SO effect for At2 is about 10% of the 2c-NESC polarizability). The 2c-NESC changes in the electric molecular properties are rationalized in terms of spin-orbit splitting and SOC-induced mixing of frontier orbitals with the same j = l + s quantum numbers.

  6. Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method.

    Science.gov (United States)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2016-11-14

    The analytical energy gradient and Hessian of the two-component Normalized Elimination of the Small Component (2c-NESC) method with regard to the components of the electric field are derived and used to calculate spin-orbit coupling (SOC) corrected dipole moments and dipole polarizabilities of molecules, which contain elements with high atomic number. Calculated 2c-NESC dipole moments and isotropic polarizabilities agree well with the corresponding four-component-Dirac Hartree-Fock or density functional theory values. SOC corrections for the electrical properties are in general small, but become relevant for the accurate prediction of these properties when the molecules in question contain sixth and/or seventh period elements (e.g., the SO effect for At 2 is about 10% of the 2c-NESC polarizability). The 2c-NESC changes in the electric molecular properties are rationalized in terms of spin-orbit splitting and SOC-induced mixing of frontier orbitals with the same j = l + s quantum numbers.

  7. Solvation Effects on Electronic Transitions: Exploring the Performance of Advanced Solvent Potentials in Polarizable Embedding Calculations

    DEFF Research Database (Denmark)

    Schwabe, Tobias; Olsen, Magnus; Sneskov, Kristian

    2011-01-01

    The polarizable embedding (PE) approach, which combines quantum mechanics (QM) and molecular mechanics (MM), is applied to predict solvatochromic effects on excitation energies of several representative molecules in aqueous, methanol, acetonitrile, and carbon tetrachloride solutions. Good agreement...

  8. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme.

    Science.gov (United States)

    Quillin, M L; Breyer, W A; Griswold, I J; Matthews, B W

    2000-09-29

    To investigate the relative importance of size and polarizability in ligand binding within proteins, we have determined the crystal structures of pseudo wild-type and cavity-containing mutant phage T4 lysozymes in the presence of argon, krypton, and xenon. These proteins provide a representative sample of predominantly apolar cavities of varying size and shape. Even though the volumes of these cavities range up to the equivalent of five xenon atoms, the noble gases bind preferentially at highly localized sites that appear to be defined by constrictions in the walls of the cavities, coupled with the relatively large radii of the noble gases. The cavities within pseudo wild-type and L121A lysozymes each bind only a single atom of noble gas, while the cavities within mutants L133A and F153A have two independent binding sites, and the L99A cavity has three interacting sites. The binding of noble gases within two double mutants was studied to characterize the additivity of binding at such sites. In general, when a cavity in a protein is created by a "large-to-small" substitution, the surrounding residues relax somewhat to reduce the volume of the cavity. The binding of xenon and, to a lesser degree, krypton and argon, tend to expand the volume of the cavity and to return it closer to what it would have been had no relaxation occurred. In nearly all cases, the extent of binding of the noble gases follows the trend xenon>krypton>argon. Pressure titrations of the L99A mutant have confirmed that the crystallographic occupancies accurately reflect fractional saturation of the binding sites. The trend in noble gas affinity can be understood in terms of the effects of size and polarizability on the intermolecular potential. The plasticity of the protein matrix permits repulsion due to increased ligand size to be more than compensated for by attraction due to increased ligand polarizability. These results have implications for the mechanism of general anesthesia, the migration

  9. Calculations of polarizabilities and hyperpolarizabilities for the Be+ ion

    International Nuclear Information System (INIS)

    Tang Liyan; Zhang Junyi; Mitroy, J.; Yan Zongchao; Shi Tingyun; Babb, James F.

    2009-01-01

    The polarizabilities and hyperpolarizabilities of the Be + ion in the 2 2 S state and the 2 2 P state are determined. Calculations are performed using two independent methods: (i) variationally determined wave functions using Hylleraas basis set expansions and (ii) single electron calculations utilizing a frozen-core Hamiltonian. The first few parameters in the long-range interaction potential between a Be + ion and a H, He, or Li atom, and the leading parameters of the effective potential for the high-L Rydberg states of beryllium were also computed. All the values reported are the results of calculations close to convergence. Comparisons are made with published results where available.

  10. Relativistic Quadrupole Polarizability for the Ground State of Hydrogen-Like Ions

    International Nuclear Information System (INIS)

    Zhang Yong-Hu; Zhang Xian-Zhou; Tang Li-Yan; Shi Ting-Yun; Mitroy Jim

    2012-01-01

    The static quadrupole polarizabilities for hydrogen-like ions from Z = 1 to Z = 100 in the 1S 1/2 ground state are calculated to high precision by solving the Dirac equation using the B-spline Galerkin method. The results are consistent with the expression of Kaneko [J. Phys. B 10 (1977) 3347] at low Z. The quadrupole oscillator strength sum Σ n f (2) gn is computed to be zero to a very high degree of precision. (atomic and molecular physics)

  11. Lowest-order corrections to the RPA polarizability and GW self-energy of a semiconducting wire

    NARCIS (Netherlands)

    Groot, de H.J.; Ummels, R.T.M.; Bobbert, P.A.; van Haeringen, W.

    1996-01-01

    We present the results of the addition of lowest-order vertex and self-consistency corrections to the RPA polarizability and the GW self-energy for a semiconducting wire. It is found that, when starting from a local density approximation zeroth-order Green function and systematically including these

  12. Calculation of dipole polarizability derivatives of adamantane and their use in electron scattering computations

    Czech Academy of Sciences Publication Activity Database

    Sauer, S. P. A.; Paidarová, Ivana; Čársky, Petr; Čurík, Roman

    2016-01-01

    Roč. 70, č. 5 (2016), č. článku 105. ISSN 1434-6060 R&D Projects: GA MŠk LD14088 Grant - others:COST(XE) CM1301 Institutional support: RVO:61388955 Keywords : DENSITY-FUNCTIONAL- THEORY * COUPLED-CLUSTER CALCULATIONS * FREQUENCY-DEPENDENT POLARIZABILITIES Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.288, year: 2016

  13. Nucleon electric polarizability in soliton models and the role of the seagull terms

    International Nuclear Information System (INIS)

    Scoccola, N.N.; Cohen, T.D.

    1996-01-01

    The full Hamiltonian of the soliton models contains no electric seagull terms. Here it is shown that if one restricts the fields to the collective subspace then electric seagull terms are induced in the effective Hamiltonian. These effective seagull contributions are consistent with gauge invariance. They also reproduce the leading non-analytic behavior of a large N c chiral perturbation theory calculation of the electric polarizability. (orig.)

  14. Deuteron polarizability and S-wave π+d scattering at energies below 1 keV

    International Nuclear Information System (INIS)

    Pupyshev, V.V.

    1987-01-01

    The influence of deuteron polarizability on the S-wave π + d-scattering in a low-energy limit is explored in the framework of the variable phase method. It is shown that the nonoscillating part of the S-wave cross section of π + d-scattering has a deep and sharp minimum in the energy region ∼ 0.4 keV

  15. Modeling Electronic Circular Dichroism within the Polarizable Embedding Approach

    DEFF Research Database (Denmark)

    Nørby, Morten S; Olsen, Jógvan Magnus Haugaard; Steinmann, Casper

    2017-01-01

    We present a systematic investigation of the key components needed to model single chromophore electronic circular dichroism (ECD) within the polarizable embedding (PE) approach. By relying on accurate forms of the embedding potential, where especially the inclusion of local field effects...... are in focus, we show that qualitative agreement between rotatory strength parameters calculated by full quantum mechanical calculations and the more efficient embedding calculations can be obtained. An important aspect in the computation of reliable absorption parameters is the need for conformational...... sampling. We show that a significant number of snapshots are needed to avoid artifacts in the calculated electronic circular dichroism parameters due to insufficient configurational sampling, thus highlighting the efficiency of the PE model....

  16. Correlation corrections to the Hartree-Fock perturbation theory of atomic and molecular properties. Dipole polarizabilities of He, Be and Ne

    International Nuclear Information System (INIS)

    Sadlej, A.J.

    1980-01-01

    The problem of the most efficient perturbation calculation of the correlation contributions to atomic and molecular properties is discussed. The method which is based on the coupled Hartree-Fock (CHF) perturbation theory appears to be the most promising one. The CHF-based perturbation theory of correlation effects is applied to the calculation of the second-order correlation contributions to the electric dipole polarizabilities of He, Be and Ne. The numerical approach employed in this paper consists in computing first the electric-field-dependent SCF functions. Then, the field dependent second-order correlation energy is calculated. The electric dipole polarizabilities, accurate through the second-order in correlation, are obtained via the numerical differentiation of the field-dependent energies with respect to the external electric field strength. In order to avoid the use of very large basis sets the so-called electric-field-variant (EFV) orbitals are employed in the present study. The CHF results obtained in this paper are of the same accuracy as the best literature data. In addition of the second-order correlation correction the final values of the electric dipole polarizability differ from the accurate or experimental results by less than a few per cent. (author)

  17. Electric dipole strength and dipole polarizability in 48Ca within a fully self-consistent second random–phase approximation

    Directory of Open Access Journals (Sweden)

    D. Gambacurta

    2018-02-01

    Full Text Available The second random–phase–approximation model corrected by a subtraction procedure designed to cure double counting, instabilities, and ultraviolet divergences, is employed for the first time to analyze the dipole strength and polarizability in 48Ca. All the terms of the residual interaction are included, leading to a fully self-consistent scheme. Results are illustrated with two Skyrme parametrizations, SGII and SLy4. Those obtained with the SGII interaction are particularly satisfactory. In this case, the low-lying strength below the neutron threshold is well reproduced and the giant dipole resonance is described in a very satisfactory way especially in its spreading and fragmentation. Spreading and fragmentation are produced in a natural way within such a theoretical model by the coupling of 1 particle-1 hole and 2 particle-2 hole configurations. Owing to this feature, we may provide for the electric polarizability as a function of the excitation energy a curve with a similar slope around the centroid energy of the giant resonance compared to the corresponding experimental results. This represents a considerable improvement with respect to previous theoretical predictions obtained with the random–phase approximation or with several ab-initio models. In such cases, the spreading width of the excitation cannot be reproduced and the polarizability as a function of the excitation energy displays a stiff increase around the predicted centroid energy of the giant resonance.

  18. Electric dipole strength and dipole polarizability in 48Ca within a fully self-consistent second random-phase approximation

    Science.gov (United States)

    Gambacurta, D.; Grasso, M.; Vasseur, O.

    2018-02-01

    The second random-phase-approximation model corrected by a subtraction procedure designed to cure double counting, instabilities, and ultraviolet divergences, is employed for the first time to analyze the dipole strength and polarizability in 48Ca. All the terms of the residual interaction are included, leading to a fully self-consistent scheme. Results are illustrated with two Skyrme parametrizations, SGII and SLy4. Those obtained with the SGII interaction are particularly satisfactory. In this case, the low-lying strength below the neutron threshold is well reproduced and the giant dipole resonance is described in a very satisfactory way especially in its spreading and fragmentation. Spreading and fragmentation are produced in a natural way within such a theoretical model by the coupling of 1 particle-1 hole and 2 particle-2 hole configurations. Owing to this feature, we may provide for the electric polarizability as a function of the excitation energy a curve with a similar slope around the centroid energy of the giant resonance compared to the corresponding experimental results. This represents a considerable improvement with respect to previous theoretical predictions obtained with the random-phase approximation or with several ab-initio models. In such cases, the spreading width of the excitation cannot be reproduced and the polarizability as a function of the excitation energy displays a stiff increase around the predicted centroid energy of the giant resonance.

  19. Molecular multipole moments of water molecules in ice Ih

    International Nuclear Information System (INIS)

    Batista, E.R.; Xantheas, S.S.; Jonsson, H.

    1998-01-01

    We have used an induction model including dipole, dipole endash quadrupole, quadrupole endash quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments to study the electric field in ice. The self-consistent induction calculations gave an average total dipole moment of 3.09 D, a 67% increase over the dipole moment of an isolated water molecule. A previous, more approximate induction model study by Coulson and Eisenberg [Proc. R. Soc. Lond. A 291, 445 (1966)] suggested a significantly smaller average value of 2.6 D. This value has been used extensively in recent years as a reference point in the development of various polarizable interaction potentials for water as well as for assessment of the convergence of water cluster properties to those of bulk. The reason for this difference is not due to approximations made in the computational scheme of Coulson and Eisenberg but rather due to the use of less accurate values for the molecular multipoles in these earlier calculations. copyright 1998 American Institute of Physics

  20. Polarizability of Helium, Neon, and Argon: New Perspectives for Gas Metrology

    Science.gov (United States)

    Gaiser, Christof; Fellmuth, Bernd

    2018-03-01

    With dielectric-constant gas thermometry, the molar polarizability of helium, neon, and argon has been determined with relative standard uncertainties of about 2 parts per million. A series of isotherms measured with the three noble gases and two different experimental setups led to this unprecedented level of uncertainty. These data are crucial for scientists in the field of gas metrology, working on pressure and temperature standards. Furthermore, with the new benchmark values for neon and argon, theoretical calculations, today about 3 orders of magnitude larger in uncertainty, can be checked and improved.

  1. Electronic structure and static dipole polarizability of C60-C240

    International Nuclear Information System (INIS)

    Zope, Rajendra R

    2008-01-01

    The electronic structure of C 60 -C 240 and its first-order response to a static electric field is studied by an all-electron density functional theory calculation using large polarized Gaussian basis sets. Our results show that the outer C 240 shell almost completely shields the inner C 60 as inferred from the practically identical values of dipole polarizability of the C 60 -C 240 onion (449 A 3 ) and that of the isolated C 240 fullerene (441 A 3 ). The C 60 -C 240 is thus a near-perfect Faraday cage

  2. Dynamical polarizability of graphene irradiated by circularly polarized ac electric fields

    DEFF Research Database (Denmark)

    Busl, Maria; Platero, Gloria; Jauho, Antti-Pekka

    2012-01-01

    We examine the low-energy physics of graphene in the presence of a circularly polarized electric field in the terahertz regime. Specifically, we derive a general expression for the dynamical polarizability of graphene irradiated by an ac electric field. Several approximations are developed...... that allow one to develop a semianalytical theory for the weak-field regime. The ac field changes qualitatively the single- and many-electron excitations of graphene: Undoped samples may exhibit collective excitations (in contrast to the equilibrium situation), and the properties of the excitations in doped...

  3. Band gap and polarizability of boro-tellurite glass: Influence of erbium ions

    Science.gov (United States)

    Said Mahraz, Zahra Ashur; Sahar, M. R.; Ghoshal, S. K.

    2014-08-01

    Understanding the influence of rare earth ions in improving the structural and optical properties of inorganic glasses are the key issues. Er3+-doped zinc boro-tellurite glasses with composition 30B2O3-10ZnO-(60-x) TeO2-xEr2O3 are prepared (x = 0, 0.5, 1, 1.5 and 2 mol%) using melt quenching technique. The physical and optical characterizations are measured by density and UV-Vis-IR absorption spectroscopy. The color of the glass changed from light yellow to deep pink due to the introduction of Er3+ ions. The maximum density is found to be ∼4.73 g cm-3 for 1 mol% of Er3+ doping. The variations in the polarizability (6.7-6.8 cm3) and the molar volume (27.987-28.827 cm3 mol-1) with dopant concentration are ascribed to the formation of non-bridging oxygen. This observation is consistent with the alteration of number of bonds per unit volume. The direct and indirect optical band gaps are increased while the phonon cut-off wavelength and Urbach energy decreased with the increase of erbium content. A high density and wide transparency range in VIS-IR area are achieved. Our results on high refractive index (∼2.416) and polarizability suggest that these glasses are potential for photonics, solid state lasers and communications devices.

  4. A calculation of internal kinetic energy and polarizability of compressed argon from the statistical atom model

    NARCIS (Netherlands)

    Seldam, C.A. ten; Groot, S.R. de

    1952-01-01

    From Jensen's and Gombás' modification of the statistical Thomas-Fermi atom model, a theory for compressed atoms is developed by changing the boundary conditions. Internal kinetic energy and polarizability of argon are calculated as functions of pressure. At 1000 atm. an internal kinetic energy of

  5. Determination of lifetimes and nonadiabatic correlations from measured dipole polarizabilities

    International Nuclear Information System (INIS)

    Curtis, Lorenzo J

    2007-01-01

    In atomic systems for which the total oscillator strength of excitations from the ground state is dominated by the transition to the lowest resonance level, the f-sum rule provides a bracketing inequality connecting the lifetime τ of that level to the dipole polarizability α d . This relationship has been used previously to deduce α d from τ. It is shown here that improved spectroscopic accuracies now permit this procedure to be inverted, with τ deduced from a value for α d obtained spectroscopically using the core polarization model. A similar quantitative relationship exists connecting the nonadiabatic correlation factor β to τ, and thus also to α d . The method is applied to a recent measurement of α d for Kr 6+ to obtain the values τ(4s4p 1 P 1 ) 0.096 ± 0.003 ns and β(Kr 6+ ) = 1.71 ± 0.03a 5 0 . It is shown that the use of this method to make precision lifetime determinations for a small number of ions in an isoelectronic sequence permits the exploitation of observed semiempirical regularities to specify the lifetimes of all ions in that sequence

  6. Calculations on the Nonlinear Second—Order Optical Polarizabilities for Series of Donor—C60 Molecules

    Institute of Scientific and Technical Information of China (English)

    刘孝娟; 封继康; 任爱民

    2003-01-01

    The equilibrium geometries and UV-visible spectra of a series of donor-C60 molecules were obtained by means of the AM1 and INDO/CI method,on the basis of accurate geometric and electronic structures.The nonlinear second-order optical polarizabilities were calculated using the method INDO/SDCI combined with the Sum-Over-States(SOS) expression.The calculatedβ(λ=1.34μm) values are 28.81,48.56,57.33,66.99,70.85,85.84,and 142.14(×10-30 esu) for the molecules A,B,C,D,E,F and G,respectively.The frontier orbitals were plot for the representative molecules in order to exhibit the intramolecular charge transfer.The results indicate the introduction of thienylethylene can enhance the NLO response and the dimethylaniline-substituted dithienyl-ethylene-C60 (molecule G) possesses the largest NLO second-order optical polarizability.The large β values can be attributed to the charge transfer between the substituents and C60,as well as within the three-dimensional conjugated sphere of C60.

  7. Polarizabilities and hyperpolarizabilities for the atoms Al, Si, P, S, Cl, and Ar: Coupled cluster calculations.

    Science.gov (United States)

    Lupinetti, Concetta; Thakkar, Ajit J

    2005-01-22

    Accurate static dipole polarizabilities and hyperpolarizabilities are calculated for the ground states of the Al, Si, P, S, Cl, and Ar atoms. The finite-field computations use energies obtained with various ab initio methods including Moller-Plesset perturbation theory and the coupled cluster approach. Excellent agreement with experiment is found for argon. The experimental alpha for Al is likely to be in error. Only limited comparisons are possible for the other atoms because hyperpolarizabilities have not been reported previously for most of these atoms. Our recommended values of the mean dipole polarizability (in the order Al-Ar) are alpha/e(2)a(0) (2)E(h) (-1)=57.74, 37.17, 24.93, 19.37, 14.57, and 11.085 with an error estimate of +/-0.5%. The recommended values of the mean second dipole hyperpolarizability (in the order Al-Ar) are gamma/e(4)a(0) (4)E(h) (-3)=2.02 x 10(5), 4.31 x 10(4), 1.14 x 10(4), 6.51 x 10(3), 2.73 x 10(3), and 1.18 x 10(3) with an error estimate of +/-2%. Our recommended polarizability anisotropy values are Deltaalpha/e(2)a(0) (2)E(h) (-1)=-25.60, 8.41, -3.63, and 1.71 for Al, Si, S, and Cl respectively, with an error estimate of +/-1%. The recommended hyperpolarizability anisotropies are Deltagamma/e(4)a(0) (4)E(h) (-3)=-3.88 x 10(5), 4.16 x 10(4), -7.00 x 10(3), and 1.65 x 10(3) for Al, Si, S, and Cl, respectively, with an error estimate of +/-4%. (c) 2005 American Institute of Physics.

  8. Integral-functional representation of mass operator of quasiparticles interacting with polarizational phonons at T = 0 K

    International Nuclear Information System (INIS)

    Tkach, M.V.

    2002-01-01

    The integral-functional representation of mass operator of spinless quasiparticles interacting with polarizational phonons at T = 0 K is obtained for the first time. This representation is equivalent to the infinite branched integral fraction. It does not depend on the binding force and effectively takes into account the many phonon processes

  9. Understanding the Origins of Dipolar Couplings and Correlated Motion in the Vibrational Spectrum of Water.

    Science.gov (United States)

    Heyden, Matthias; Sun, Jian; Forbert, Harald; Mathias, Gerald; Havenith, Martina; Marx, Dominik

    2012-08-16

    The combination of vibrational spectroscopy and molecular dynamics simulations provides a powerful tool to obtain insights into the molecular details of water structure and dynamics in the bulk and in aqueous solutions. Applying newly developed approaches to analyze correlations of charge currents, molecular dipole fluctuations, and vibrational motion in real and k-space, we compare results from nonpolarizable water models, widely used in biomolecular modeling, to ab initio molecular dynamics. For the first time, we unfold the infrared response of bulk water into contributions from correlated fluctuations in the three-dimensional, anisotropic environment of an average water molecule, from the OH-stretching region down to the THz regime. Our findings show that the absence of electronic polarizability in the force field model not only results in differences in dipolar couplings and infrared absorption but also induces artifacts into the correlated vibrational motion between hydrogen-bonded water molecules, specifically at the intramolecular bending frequency. Consequently, vibrational motion is partially ill-described with implications for the accuracy of non-self-consistent, a posteriori methods to add polarizability.

  10. To semi-centenary anniversary of discovering the Schwinger scattering and starting the first works on neutron polarizability

    International Nuclear Information System (INIS)

    Alexandrov, Yu.A.

    2006-01-01

    The theory of neutron Schwinger scattering was proposed and developed by Schwinger in 1948, but despite multiple efforts, the experimental discovery of this phenomenon was made eight years later. Currently, Schwinger scattering should be accounted for in many precise neutron experiments, for example, while studying the electromagnetic interaction of neutrons with nuclei. By means of Schwinger scattering it is possible to measure the degree of polarization of the initial beam even at particle energies of 1 GeV order. The concept of neutron polarizability was introduced as additional natural phenomenon indicating the nucleon space structure after the first Hofstadter's experiments (1953-1954). The neutron polarizability was detected in a small-angle neutron scattering experiment in 1957. However, the serious contradiction between the results obtained in megaelectronvolt and kiloelectronvolt neutron energy ranges was explained only in 2001. It is also shown that existent small-angle neutron experiments at megaelectronvolt energy by heavy nuclei do not confirm the idea of (n+3)-dimensional gravity

  11. Dynamic polarizabilities and Rydberg states of the argon isoelectronic sequence

    International Nuclear Information System (INIS)

    Ghosh, T.K.; Das, A.K.; Castro, M.; Canuto, S.; Mukherjee, P.K.

    1993-01-01

    Dynamic dipole polarizabilities α d (ω) have been calculated within and beyond the normal-dispersion region for the isoelectronic members of argon up to Mn 7+ using time-dependent coupled Hartree-Fock theory. Excitation energies, oscillator strengths, and quantum-defect values have been estimated for the dipole-allowed transitions 3p 6 1 Se→3p 5 ( 2 P)ns 1 Po (n=4,...,7) and 3p 6 1 Se→3p 5 ( 2 P)nd 1 Po (n=3,...,7). Analytic representations of the singly excited Rydberg orbitals have been obtained. The results compare favorably with the existing theoretical and experimental data. The oscillator strengths show an interesting trend of variation along the isoelectronic sequence

  12. Static electric dipole polarizabilities of An5+/6+ and AnO2+/2+ (An = U, Np, and Pu) ions

    International Nuclear Information System (INIS)

    Parmar, Payal; Peterson, Kirk A.; Clark, Aurora E.

    2014-01-01

    The parallel components of static electric dipole polarizabilities have been calculated for the lowest lying spin-orbit states of the penta- and hexavalent oxidation states of the actinides (An) U, Np, and Pu, in both their atomic and molecular diyl ion forms (An 5+/6+ and AnO 2 +/2+ ) using the numerical finite-field technique within a four-component relativistic framework. The four-component Dirac-Hartree-Fock method formed the reference for MP2 and CCSD(T) calculations, while multireference Fock space coupled-cluster (FSCC), intermediate Hamiltonian Fock space coupled-cluster (IH-FSCC) and Kramers restricted configuration interaction (KRCI) methods were used to incorporate additional electron correlation. It is observed that electron correlation has significant (∼5 a.u. 3 ) impact upon the parallel component of the polarizabilities of the diyls. To the best of our knowledge, these quantities have not been previously reported and they can serve as reference values in the determination of various electronic and response properties (for example intermolecular forces, optical properties, etc.) relevant to the nuclear fuel cycle and material science applications. The highest quality numbers for the parallel components (α zz ) of the polarizability for the lowest Ω levels corresponding to the ground electronic states are (in a.u. 3 ) 44.15 and 41.17 for UO 2 + and UO 2 2+ , respectively, 45.64 and 41.42 for NpO 2 + and NpO 2 2+ , respectively, and 47.15 for the PuO 2 + ion

  13. Static electric dipole polarizabilities of An(5+/6+) and AnO2 (+/2+) (An = U, Np, and Pu) ions.

    Science.gov (United States)

    Parmar, Payal; Peterson, Kirk A; Clark, Aurora E

    2014-12-21

    The parallel components of static electric dipole polarizabilities have been calculated for the lowest lying spin-orbit states of the penta- and hexavalent oxidation states of the actinides (An) U, Np, and Pu, in both their atomic and molecular diyl ion forms (An(5+/6+) and AnO2 (+/2+)) using the numerical finite-field technique within a four-component relativistic framework. The four-component Dirac-Hartree-Fock method formed the reference for MP2 and CCSD(T) calculations, while multireference Fock space coupled-cluster (FSCC), intermediate Hamiltonian Fock space coupled-cluster (IH-FSCC) and Kramers restricted configuration interaction (KRCI) methods were used to incorporate additional electron correlation. It is observed that electron correlation has significant (∼5 a.u.(3)) impact upon the parallel component of the polarizabilities of the diyls. To the best of our knowledge, these quantities have not been previously reported and they can serve as reference values in the determination of various electronic and response properties (for example intermolecular forces, optical properties, etc.) relevant to the nuclear fuel cycle and material science applications. The highest quality numbers for the parallel components (αzz) of the polarizability for the lowest Ω levels corresponding to the ground electronic states are (in a.u.(3)) 44.15 and 41.17 for UO2 (+) and UO2 (2+), respectively, 45.64 and 41.42 for NpO2 (+) and NpO2 (2+), respectively, and 47.15 for the PuO2 (+) ion.

  14. Quantum-chemistry based calibration of the alkali metal cation series (Li(+)-Cs(+)) for large-scale polarizable molecular mechanics/dynamics simulations.

    Science.gov (United States)

    Dudev, Todor; Devereux, Mike; Meuwly, Markus; Lim, Carmay; Piquemal, Jean-Philip; Gresh, Nohad

    2015-02-15

    The alkali metal cations in the series Li(+)-Cs(+) act as major partners in a diversity of biological processes and in bioinorganic chemistry. In this article, we present the results of their calibration in the context of the SIBFA polarizable molecular mechanics/dynamics procedure. It relies on quantum-chemistry (QC) energy-decomposition analyses of their monoligated complexes with representative O-, N-, S-, and Se- ligands, performed with the aug-cc-pVTZ(-f) basis set at the Hartree-Fock level. Close agreement with QC is obtained for each individual contribution, even though the calibration involves only a limited set of cation-specific parameters. This agreement is preserved in tests on polyligated complexes with four and six O- ligands, water and formamide, indicating the transferability of the procedure. Preliminary extensions to density functional theory calculations are reported. © 2014 Wiley Periodicals, Inc.

  15. Effects of polarons on static polarizabilities and second order hyperpolarizabilities of conjugated polymers

    International Nuclear Information System (INIS)

    Wang Ya-Dong; Meng Yan; Di Bing; Wang Shu-Ling; An Zhong

    2010-01-01

    According to the one-dimensional tight-binding Su—Schrieffer—Heeger model, we have investigated the effects of charged polarons on the static polarizability, α xx , and the second order hyperpolarizabilities, γ xxxx , of conjugated polymers. Our results are consistent qualitatively with previous ab initio and semi-empirical calculations. The origin of the universal growth is discussed using a local-view formalism that is based on the local atomic charge derivatives. Furthermore, combining the Su-Schrieffer-Heeger model and the extended Hubbard model, we have investigated systematically the effects of electron-electron interactions on α xx and γ xxxx of charged polymer chains. For a fixed value of the nearest-neighbour interaction V, the values of α xx and γ xxxx increase as the on-site Coulomb interaction U increases for U c and decrease with U for U > U c , where U c is a critical value of U at which the static polarizability or the second order hyperpolarizability reaches a maximal value of α max or γ max . It is found that the effect of the e-e interaction on the value of α xx is dependent on the ratio between U and V for either a short or a long charged polymer. Whereas, that effect on the value of γ xxxx is sensitive both to the ratio of U to V and to the size of the molecule. (rapid communication)

  16. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1980-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surfaces have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  17. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1981-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surface have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  18. Nucleon polarizabilities from deuteron Compton scattering within a Green's function hybrid approach

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, R.P.; Hemmert, T.R. [Technische Universitaet Muenchen, Institut fuer Theoretische Physik (T39), Physik-Department, Garching (Germany); Griesshammer, H.W. [Technische Universitaet Muenchen, Institut fuer Theoretische Physik (T39), Physik-Department, Garching (Germany); Universitaet Erlangen-Nuernberg, Institut fuer Theoretische Physik III, Naturwissenschaftliche Fakultaet I, Erlangen (Germany); The George Washington University, Center for Nuclear Studies, Department of Physics, Washington DC (United States)

    2010-10-15

    We examine elastic Compton scattering from the deuteron for photon energies ranging from zero to 100MeV, using state-of-the-art deuteron wave functions and NN potentials. Nucleon-nucleon rescattering between emission and absorption of the two photons is treated by Green's functions in order to ensure gauge invariance and the correct Thomson limit. With this Green's function hybrid approach, we fulfill the low-energy theorem of deuteron Compton scattering and there is no significant dependence on the deuteron wave function used. Concerning the nucleon structure, we use the chiral effective field theory with explicit {delta} (1232) degrees of freedom within the small-scale expansion up to leading-one-loop order. Agreement with available data is good at all energies. Our 2-parameter fit to all elastic {gamma} d data leads to values for the static isoscalar dipole polarizabilities which are in excellent agreement with the isoscalar Baldin sum rule. Taking this value as additional input, we find {alpha}{sub E}{sup s} = (11.3{+-}0.7(stat){+-}0.6(Baldin){+-}1(theory)){sup .}10{sup -4} fm{sup 3} and {beta}{sub M}{sup s} = (3.2{+-}0.7(stat){+-}0.6(Baldin){+-}1(theory)){sup .}10{sup -4} fm{sup 3} and conclude by comparison to the proton numbers that neutron and proton polarizabilities are the same within rather small errors. (orig.)

  19. Complexation reactions in pyridine and 2,6-dimethylpyridine-water system: The quantum-chemical description and the path to liquid phase separation

    Science.gov (United States)

    Chernia, Zelig; Tsori, Yoav

    2018-03-01

    Phase separation in substituted pyridines in water is usually described as an interplay between temperature-driven breakage of hydrogen bonds and the associating interaction of the van der Waals force. In previous quantum-chemical studies, the strength of hydrogen bonding between one water and one pyridine molecules (the 1:1 complex) was assigned a pivotal role. It was accepted that the disassembly of the 1:1 complex at a critical temperature leads to phase separation and formation of the miscibility gap. Yet, for over two decades, notable empirical data and theoretical arguments were presented against that view, thus revealing the need in a revised quantum-mechanical description. In the present study, pyridine-water and 2,6-dimethylpyridine-water systems at different complexation stages are calculated using high level Kohn-Sham theory. The hydrophobic-hydrophilic properties are accounted for by the polarizable continuum solvation model. Inclusion of solvation in free energy of formation calculations reveals that 1:1 complexes are abundant in the organically rich solvents but higher level oligomers (i.e., 2:1 dimers with two pyridines and one water molecule) are the only feasible stable products in the more polar media. At the critical temperature, the dissolution of the external hydrogen bonds between the 2:1 dimer and the surrounding water molecules induces the demixing process. The 1:1 complex acts as a precursor in the formation of the dimers but is not directly involved in the demixing mechanism. The existence of the miscibility gap in one pyridine-water system and the lack of it in another is explained by the ability of the former to maintain stable dimerization. Free energy of formation of several reaction paths producing the 2:1 dimers is calculated and critically analyzed.

  20. The cavity electromagnetic field within the polarizable continuum model of solvation

    Energy Technology Data Exchange (ETDEWEB)

    Pipolo, Silvio, E-mail: silvio.pipolo@nano.cnr.it [Center S3, CNR Institute of Nanoscience, Modena (Italy); Department of Physics, University of Modena and Reggio Emilia, Modena (Italy); Corni, Stefano, E-mail: stefano.corni@nano.cnr.it [Center S3, CNR Institute of Nanoscience, Modena (Italy); Cammi, Roberto, E-mail: roberto.cammi@unipr.it [Department of Chemistry, Università degli studi di Parma, Parma (Italy)

    2014-04-28

    Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles.

  1. Simultaneous effects of hydrostatic pressure and electric field on impurity binding energy and polarizability in coupled InAs/GaAs quantum wires

    International Nuclear Information System (INIS)

    Tangarife, E.; Duque, C.A.

    2011-01-01

    This work is concerned with the theoretical study of the combined effects of applied electric field and hydrostatic pressure on the binding energy and impurity polarizability of a donor impurity in laterally coupled double InAs/GaAs quantum-well wires. Calculations have been made in the effective mass and parabolic band approximations and using a variational method. The results are reported for different configurations of wire and barriers widths, impurity position, and electric field and hydrostatic pressure strengths. Our results show that for symmetrical structures the binding energy is an even function of the impurity position along the growth direction of the structure. Also, we found that for hydrostatic pressure strength up to 38 kbar, the binding energy increases linearly with hydrostatic pressure, while for larger values of hydrostatic pressure the binding energy has a non-linear behavior. Finally, we found that the hydrostatic pressure can increase the coupling between the two parallel quantum-well wires. -- Research highlights: → Binding energy for donor impurity in coupled wires strongly depends on the confinement potential. → Polarizability for donor impurity in coupled wires strongly depends on the confinement potential. → Binding energy strongly depends on the direction of the applied electric field. → Polarizability strongly depends on the direction of the applied electric field. → The coupling between the two parallel wires increases with the hydrostatic pressure.

  2. Exploratory conformational study of (+)-catechin. Modeling of the polarizability and electric dipole moment.

    Science.gov (United States)

    Bentz, Erika N; Pomilio, Alicia B; Lobayan, Rosana M

    2014-12-01

    The extension of the study of the conformational space of the structure of (+)-catechin at the B3LYP/6-31G(d,p) level of theory is presented in this paper. (+)-Catechin belongs to the family of the flavan-3-ols, which is one of the five largest phenolic groups widely distributed in nature, and whose biological activity and pharmaceutical utility are related to the antioxidant activity due to their ability to scavenge free radicals. The effects of free rotation around all C-O bonds of the OH substituents at different rings are taken into account, obtaining as the most stable conformer, one that had not been previously reported. One hundred seven structures, and a study of the effects of charge delocalization and stereoelectronic effects at the B3LYP/6-311++G(d,p) level are reported by natural bond orbital analysis, streamlining the order of these structures. For further analysis of the structural and molecular properties of this compound in a biological environment, the calculation of polarizabilities, and the study of the electric dipole moment are performed considering the whole conformational space described. The results are analyzed in terms of accumulated knowledge for (4α → 6″, 2α → O → 1″)-phenylflavans and (+)-catechin in previous works, enriching the study of both types of structures, and taking into account the importance of considering the whole conformational space in modeling both the polarizability and the electric dipole moment, also proposing to define a descriptive subspace of only 16 conformers.

  3. Infrared optical constants, dielectric constants, molar polarizabilities, transition moments, dipole moment derivatives and Raman spectrum of liquid cyclohexane

    Science.gov (United States)

    Keefe, C. Dale; Pickup, Janet E.

    2009-06-01

    Previous studies have been done in this laboratory focusing on the optical properties of several liquid aromatic and aliphatic hydrocarbons in the infrared. The current study reports the infrared and absorption Raman spectra of liquid cyclohexane. Infrared spectra were recorded at 25 °C over a wavenumber range of 7400-490 cm -1. Infrared measurements were taken using transmission cells with pathlengths ranging from 3 to 5000 μm. Raman spectra were recorded between 3700 and 100 cm -1 at 25 °C using a 180° reflection geometry. Ab initio calculations of the vibrational wavenumbers at the B3LYP/6311G level of theory were performed and used to help assign the observed IR and Raman spectra. Extensive assignments of the fundamentals and binary combinations observed in the infrared imaginary molar polarizability spectrum are reported. The imaginary molar polarizability spectrum was curve fitted to separate the intensity from the various transitions and used to determine the transition moments and magnitudes of the derivatives of the dipole moment with respect to the normal coordinates for the fundamentals.

  4. The muon anomalous magnetic moment and the pion polarizability

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Kevin T. [University of Maryland, College Park, MD 20742 (United States); Ramsey-Musolf, Michael J. [Physics Department, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-11-10

    We compute the charged pion loop contribution to the muon anomalous magnetic moment a{sub μ}, taking into account the previously omitted effect of the charged pion polarizability, (α{sub 1}−β{sub 1}){sub π{sup +}}. We evaluate this contribution using two different models that are consistent with the requirements of chiral symmetry in the low-momentum regime and perturbative quantum chromodynamics in the asymptotic region. The result may increase the disagreement between the present experimental value for a{sub μ} and the theoretical, Standard Model prediction by as much as ∼60×10{sup −11}, depending on the value of (α{sub 1}−β{sub 1}){sub π{sup +}} and the choice of the model. The planned determination of (α{sub 1}−β{sub 1}){sub π{sup +}} at Jefferson Laboratory will eliminate the dominant parametric error, leaving a theoretical model uncertainty commensurate with the error expected from planned Fermilab measurement of a{sub μ}.

  5. El Naschie's structures in the electrodynamics of polarizable media

    International Nuclear Information System (INIS)

    Agop, M.; Merches, I.; Enache, V.

    2005-01-01

    Using the concept of 'combined field', an electrodynamics of polarizable media on a fractal space-time is constructed. In this context, using the scale relativity theory, the permanent electric moment, the induced electric moment, the vacuum fluctuations, the paraelectrics, the diaelectrics, the electric Zeeman-type effect, the electric Einstein-de Haas-type effect, the electric Aharonov-Bohm-type effect, the superconductors in the 'combined field', the double layers as coherent structures, the magnetic Aharonov-Casher-type effect, are analyzed. Correspondence with the ε (∞) space-time is accomplished either by admitting an anomal electric Zeeman-type effect, or through a fractal string as in the case of a superconductor in 'combined field', or, by phase coherence of the electron-ion pairs from the electric double layers (El Naschie's coherence). Moreover, the electric double layer or multiple layer may be considered as two-dimensional projections of the same El Naschie's fractal strings (higher-dimensional strings in ε (∞) space-time)

  6. Dipole polarizability of 2 3S1 and 2 1S0 metastable helium measured by the electric deflection time-of-flight method

    International Nuclear Information System (INIS)

    Crosby, D.A.; Zorn, J.C.

    1977-01-01

    The static dipole polarizability of helium atoms in the metastable 2 3 S 1 and 2 1 S 0 states has been determined by measuring the deflection of a beam of excited helium atoms that is caused by an inhomogeneous electric field of known properties. The necessary velocity distribution information is obtained from time-of-flight measurements, and a resonance quenching technique made it possible to distinguish the singlet and triplet components of the beam. The results, α(2 3 S 1 ) = (44.6 +- 3) x 10 -24 cm 3 and α(2 1 S 0 ) = (108 +- 13) x 10 -24 cm 3 , agree with the theoretical value that has been used to calibrate earlier polarizability measurements of the alkali metals and the heavier noble gases

  7. Hartree-Fock limit values of multipole moments, polarizabilities, and hyperpolarizabilities for atoms and diatomic molecules

    Science.gov (United States)

    Kobus, Jacek

    2015-02-01

    Recently it has been demonstrated that the finite difference Hartree-Fock method can be used to deliver highly accurate values of electric multipole moments together with polarizabilities αz z,Az ,z z , and hyperpolarizabilities βz z z, γz z z,Bz z ,z z , for the ground states of various atomic and diatomic systems. Since these results can be regarded as de facto Hartree-Fock limit values their quality is of the utmost importance. This paper reexamines the use of the finite field method to calculate these electric properties, discusses its accuracy, and presents an updated list of the properties for the following atoms and diatomic molecules: H-, He, Li, Li+,Li2 +,Li-,Be2 + , Be, B+,C2 + , Ne, Mg2 +, Mg, Al+,Si2 + , Ar, K+,Ca2 +,Rb+,Sr2 +,Zr4 +,He2 , Be2,N2,F2,O2 , HeNe, LiH2 +, LiCl, LiBr, BH, CO, FH, NaCl, and KF. The potential energy curves and the dependence of the electric properties on the internuclear distance is also studied for He2,LiH+,Be2 , and HeNe systems.

  8. Molecular dynamics study of the solvation of calcium carbonate in water.

    Science.gov (United States)

    Bruneval, Fabien; Donadio, Davide; Parrinello, Michele

    2007-10-25

    We performed molecular dynamics simulations of diluted solutions of calcium carbonate in water. To this end, we combined and tested previous polarizable models. The carbonate anion forms long-living hydrogen bonds with water and shows an amphiphilic character, in which the water molecules are expelled in a region close to its C(3) symmetry axis. The calcium cation forms a strongly bound ion pair with the carbonate. The first hydration shell around the CaCO(3) pair is found to be very similar to the location of the water molecules surrounding CaCO(3) in ikaite, the hydrated mineral.

  9. Electron scattering in dense atomic and molecular gases: An empirical correlation of polarizability and electron scattering length

    International Nuclear Information System (INIS)

    Rupnik, K.; Asaf, U.; McGlynn, S.P.

    1990-01-01

    A linear correlation exists between the electron scattering length, as measured by a pressure shift method, and the polarizabilities for He, Ne, Ar, Kr, and Xe gases. The correlative algorithm has excellent predictive capability for the electron scattering lengths of mixtures of rare gases, simple molecular gases such as H 2 and N 2 and even complex molecular entities such as methane, CH 4

  10. Quantum master equation method based on the broken-symmetry time-dependent density functional theory: application to dynamic polarizability of open-shell molecular systems.

    Science.gov (United States)

    Kishi, Ryohei; Nakano, Masayoshi

    2011-04-21

    A novel method for the calculation of the dynamic polarizability (α) of open-shell molecular systems is developed based on the quantum master equation combined with the broken-symmetry (BS) time-dependent density functional theory within the Tamm-Dancoff approximation, referred to as the BS-DFTQME method. We investigate the dynamic α density distribution obtained from BS-DFTQME calculations in order to analyze the spatial contributions of electrons to the field-induced polarization and clarify the contributions of the frontier orbital pair to α and its density. To demonstrate the performance of this method, we examine the real part of dynamic α of singlet 1,3-dipole systems having a variety of diradical characters (y). The frequency dispersion of α, in particular in the resonant region, is shown to strongly depend on the exchange-correlation functional as well as on the diradical character. Under sufficiently off-resonant condition, the dynamic α is found to decrease with increasing y and/or the fraction of Hartree-Fock exchange in the exchange-correlation functional, which enhances the spin polarization, due to the decrease in the delocalization effects of π-diradical electrons in the frontier orbital pair. The BS-DFTQME method with the BHandHLYP exchange-correlation functional also turns out to semiquantitatively reproduce the α spectra calculated by a strongly correlated ab initio molecular orbital method, i.e., the spin-unrestricted coupled-cluster singles and doubles.

  11. C6 Coefficients and Dipole Polarizabilities for All Atoms and Many Ions in Rows 1-6 of the Periodic Table.

    Science.gov (United States)

    Gould, Tim; Bučko, Tomáš

    2016-08-09

    Using time-dependent density functional theory (TDDFT) with exchange kernels, we calculate and test imaginary frequency-dependent dipole polarizabilities for all atoms and many ions in rows 1-6 of the periodic table. These are then integrated over frequency to produce C6 coefficients. Results are presented under different models: straight TDDFT calculations using two different kernels; "benchmark" TDDFT calculations corrected by more accurate quantum chemical and experimental data; and "benchmark" TDDFT with frozen orbital anions. Parametrizations are presented for 411+ atoms and ions, allowing results to be easily used by other researchers. A curious relationship, C6,XY ∝ [αX(0)αY(0)](0.73), is found between C6 coefficients and static polarizabilities α(0). The relationship C6,XY = 2C6,XC6,Y/[(αX/αY)C6,Y + (αY/αX)C6,X] is tested and found to work well (30% errors) in a small fraction of cases.

  12. New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory

    International Nuclear Information System (INIS)

    Chung-Wen Kao; Barbara Pasquini; Marc Vanderhaeghen

    2004-01-01

    We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering (VCS) at Ο(p 4 ) in heavy baryon chiral perturbation theory. At this order, no unknown low energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the VCS amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double polarization experiments which allow to access these spin-flip GPs of the nucleon

  13. Thermodynamics of the Sorption of Benzimidazoles on Octadecyl Silica Gel from Water-Methanol Eluents

    Science.gov (United States)

    Shafigulin, R. V.; Bulanova, A. V.

    2018-02-01

    The standard enthalpy and entropy component of transferring benzimidazoles from water-methanol solutions to surfaces of octadecyl silica gel are determined using reversed-phase high-performance liquid chromatography (RP HPLC). The dependences between the enthalpy and polarizability of the molecules of the studied benzimidazoles, the enthalpy and the entropy factor are studied, and the influence of the quantitative composition of the water-methanol solution on the enthalpy are studied.

  14. Performance test of multicomponent quantum mechanical calculation with polarizable continuum model for proton chemical shift.

    Science.gov (United States)

    Kanematsu, Yusuke; Tachikawa, Masanori

    2015-05-21

    Multicomponent quantum mechanical (MC_QM) calculations with polarizable continuum model (PCM) have been tested against liquid (1)H NMR chemical shifts for a test set of 80 molecules. Improvement from conventional quantum mechanical calculations was achieved for MC_QM calculations. The advantage of the multicomponent scheme could be attributed to the geometrical change from the equilibrium geometry by the incorporation of the hydrogen nuclear quantum effect, while that of PCM can be attributed to the change of the electronic structure according to the polarization by solvent effects.

  15. Electronic structure and static dipole polarizability of C{sub 60}-C{sub 240}

    Energy Technology Data Exchange (ETDEWEB)

    Zope, Rajendra R [Department of Physics, University of Texas at El Paso, El Paso, TX 79958 (United States)

    2008-04-28

    The electronic structure of C{sub 60}-C{sub 240} and its first-order response to a static electric field is studied by an all-electron density functional theory calculation using large polarized Gaussian basis sets. Our results show that the outer C{sub 240} shell almost completely shields the inner C{sub 60} as inferred from the practically identical values of dipole polarizability of the C{sub 60}-C{sub 240} onion (449 A{sup 3}) and that of the isolated C{sub 240} fullerene (441 A{sup 3}). The C{sub 60}-C{sub 240} is thus a near-perfect Faraday cage.

  16. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory.

    Science.gov (United States)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M N; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes-in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  17. Frequency dependent polarizabilities for the ground state of H2, HD, and D2

    International Nuclear Information System (INIS)

    Rychlewski, J.

    1983-01-01

    A variation-perturbation method has been employed to calculate the dynamic dipole polarizability for the ground state of the hydrogen molecule. The explicit correlated electronic wave functions were used. The averaged values of α(#betta#) and #betta#(#betta#) for several vibration-rotation states of HD and D 2 are presented. Similar values for H 2 have also been calculated and were used to test the efficiency of the method and the validity of the assumption applied in the present calculation. The agreement of the present theoretical results with the existing experimental data is found to be satisfactory

  18. Electric Dipole Polarizability of ^{48}Ca and Implications for the Neutron Skin.

    Science.gov (United States)

    Birkhan, J; Miorelli, M; Bacca, S; Bassauer, S; Bertulani, C A; Hagen, G; Matsubara, H; von Neumann-Cosel, P; Papenbrock, T; Pietralla, N; Ponomarev, V Yu; Richter, A; Schwenk, A; Tamii, A

    2017-06-23

    The electric dipole strength distribution in ^{48}Ca between 5 and 25 MeV has been determined at RCNP, Osaka from proton inelastic scattering experiments at forward angles. Combined with photoabsorption data at higher excitation energy, this enables the first extraction of the electric dipole polarizability α_{D}(^{48}Ca)=2.07(22)  fm^{3}. Remarkably, the dipole response of ^{48}Ca is found to be very similar to that of ^{40}Ca, consistent with a small neutron skin in ^{48}Ca. The experimental results are in good agreement with ab initio calculations based on chiral effective field theory interactions and with state-of-the-art density-functional calculations, implying a neutron skin in ^{48}Ca of 0.14-0.20 fm.

  19. Static electric dipole polarizabilities of An{sup 5+/6+} and AnO{sub 2}{sup +/2+} (An = U, Np, and Pu) ions

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Payal, E-mail: payal.parmar@wsu.edu, E-mail: kipeters@wsu.edu, E-mail: auclark@wsu.edu; Peterson, Kirk A., E-mail: payal.parmar@wsu.edu, E-mail: kipeters@wsu.edu, E-mail: auclark@wsu.edu [Department of Chemistry, Washington State University, Pullman, Washington 99164 (United States); Clark, Aurora E., E-mail: payal.parmar@wsu.edu, E-mail: kipeters@wsu.edu, E-mail: auclark@wsu.edu [Department of Chemistry, Washington State University, Pullman, Washington 99164 (United States); Material Science and Engineering Program, Washington State University, Pullman, Washington 99164 (United States)

    2014-12-21

    The parallel components of static electric dipole polarizabilities have been calculated for the lowest lying spin-orbit states of the penta- and hexavalent oxidation states of the actinides (An) U, Np, and Pu, in both their atomic and molecular diyl ion forms (An{sup 5+/6+} and AnO{sub 2}{sup +/2+}) using the numerical finite-field technique within a four-component relativistic framework. The four-component Dirac-Hartree-Fock method formed the reference for MP2 and CCSD(T) calculations, while multireference Fock space coupled-cluster (FSCC), intermediate Hamiltonian Fock space coupled-cluster (IH-FSCC) and Kramers restricted configuration interaction (KRCI) methods were used to incorporate additional electron correlation. It is observed that electron correlation has significant (∼5 a.u.{sup 3}) impact upon the parallel component of the polarizabilities of the diyls. To the best of our knowledge, these quantities have not been previously reported and they can serve as reference values in the determination of various electronic and response properties (for example intermolecular forces, optical properties, etc.) relevant to the nuclear fuel cycle and material science applications. The highest quality numbers for the parallel components (α{sub zz}) of the polarizability for the lowest Ω levels corresponding to the ground electronic states are (in a.u.{sup 3}) 44.15 and 41.17 for UO{sub 2}{sup +} and UO{sub 2}{sup 2+}, respectively, 45.64 and 41.42 for NpO{sub 2}{sup +} and NpO{sub 2}{sup 2+}, respectively, and 47.15 for the PuO{sub 2}{sup +} ion.

  20. Generalized polarizabilities of the nucleon in baryon chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Lensky, Vadim [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Pascalutsa, Vladimir; Vanderhaeghen, Marc [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany)

    2017-02-15

    The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep → epγ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (BχPT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χPT (HBχPT) - and discuss the differences between BχPT and HBχPT responsible for these discrepancies. (orig.)

  1. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  2. Exploration of dynamic dipole polarizability of impurity doped quantum dots in presence of noise

    Science.gov (United States)

    Ghosh, Anuja; Bera, Aindrila; Saha, Surajit; Arif, Sk. Md.; Ghosh, Manas

    2018-02-01

    Present study strives to perform a rigorous exploration of dynamic dipole polarizability (DDP) of GaAs quantum dot (QD) containing dopant with special reference to influence of Gaussian white noise. Several physical quantities have been varied over a range to observe the modulations of the DDP profiles. Aforesaid physical quantities include magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for Alx Ga1 - x As alloy QD), position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The DDP profiles reveal noticeable characteristics governed by the particular physical quantity involved, presence/absence of noise, the manner (additive/multiplicative) noise is applied to the system and the incoming photon frequency. As a general observation we have found that additive noise causing greater deviation of the DDP profile from noise-free state than its multiplicative neighbor. The study highlights viable means of harnessing DDP of doped QD under the governance of noise by appropriate adjustment of several relevant factors. The study merits importance in the light of technological applications of QD-based devices where noise appears as an integral component.

  3. Application of discrete solvent reaction field model with self-consistent atomic charges and atomic polarizabilities to calculate the χ(1) and χ(2) of organic molecular crystals

    Science.gov (United States)

    Lu, Shih-I.

    2018-01-01

    We use the discrete solvent reaction field model to evaluate the linear and second-order nonlinear optical susceptibilities of 3-methyl-4-nitropyridine-1-oxyde crystal. In this approach, crystal environment is created by supercell architecture. A self-consistent procedure is used to obtain charges and polarizabilities for environmental atoms. Impact of atomic polarizabilities on the properties of interest is highlighted. This approach is shown to give the second-order nonlinear optical susceptibilities within error bar of experiment as well as the linear optical susceptibilities in the same order as experiment. Similar quality of calculations are also applied to both 4-N,N-dimethylamino-3-acetamidonitrobenzene and 2-methyl-4-nitroaniline crystals.

  4. First Determination of Generalized Polarizabilities of the Proton by a Virtual Compton Scattering Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Roche, J. [CEA Saclay, DSM/DAPNIA/SPhN, 91191 Gif-sur-Yvette Cedex, (France); Friedrich, J. M. [Institut fuer Kernphysik, Universitaet Mainz, 55099 Mainz, (Germany); Lhuillier, D. [CEA Saclay, DSM/DAPNIA/SPhN, 91191 Gif-sur-Yvette Cedex, (France); Bartsch, P. [Institut fuer Kernphysik, Universitaet Mainz, 55099 Mainz, (Germany); Baumann, D. [Institut fuer Kernphysik, Universitaet Mainz, 55099 Mainz, (Germany); Berthot, J. [LPC de Clermont-Fd, IN2P3-CNRS, Universite Blaise Pascal, 63177 Aubiere Cedex, (France); Bertin, P. Y. [LPC de Clermont-Fd, IN2P3-CNRS, Universite Blaise Pascal, 63177 Aubiere Cedex, (France); Breton, V. [LPC de Clermont-Fd, IN2P3-CNRS, Universite Blaise Pascal, 63177 Aubiere Cedex, (France); Boeglin, W. U. [Institut fuer Kernphysik, Universitaet Mainz, 55099 Mainz, (Germany); Boehm, R. [Institut fuer Kernphysik, Universitaet Mainz, 55099 Mainz, (Germany)] (and others)

    2000-07-24

    Absolute differential cross sections for the reaction ep{yields}ep{gamma} have been measured at a four-momentum transfer with virtuality Q{sup 2}=0.33 GeV{sup 2} and polarization {epsilon}=0.62 in the range 33.6 to 111.5 MeV/c for the momentum of the outgoing photon in the photon-proton center of mass frame. The experiment has been performed with the high-resolution spectrometers at the Mainz Microtron MAMI. From the photon angular distributions, two structure functions which are a linear combination of the generalized polarizabilities have been determined for the first time. (c) 2000 The American Physical Society.

  5. Dielectric constant and low-frequency infrared spectra for liquid water and ice Ih within the E3B model

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Ni, Y.; Drews, S. E. P.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-08-28

    Two intrinsic difficulties in modeling condensed-phase water with conventional rigid non-polarizable water models are: reproducing the static dielectric constants for liquid water and ice Ih, and generating the peak at about 200 cm{sup −1} in the low-frequency infrared spectrum for liquid water. The primary physical reason for these failures is believed to be the missing polarization effect in these models, and consequently various sophisticated polarizable water models have been developed. However, in this work we pursue a different strategy and propose a simple empirical scheme to include the polarization effect only on the dipole surface (without modifying a model's intermolecular interaction potential). We implement this strategy for our explicit three-body (E3B) model. Our calculated static dielectric constants and low-frequency infrared spectra are in good agreement with experiment for both liquid water and ice Ih over wide temperature ranges, albeit with one fitting parameter for each phase. The success of our modeling also suggests that thermal fluctuations about local minima and the energy differences between different proton-disordered configurations play minor roles in the static dielectric constant of ice Ih. Our analysis shows that the polarization effect is important in resolving the two difficulties mentioned above and sheds some light on the origin of several features in the low-frequency infrared spectra for liquid water and ice Ih.

  6. Relativistic coupled-cluster calculations of 20Ne, 40Ar, 84Kr, and 129Xe: Correlation energies and dipole polarizabilities

    International Nuclear Information System (INIS)

    Mani, B. K.; Angom, D.; Latha, K. V. P.

    2009-01-01

    We have carried out a detailed and systematic study of the correlation energies of inert gas atoms Ne, Ar, Kr, and Xe using relativistic many-body perturbation theory and relativistic coupled-cluster theory. In the relativistic coupled-cluster calculations, we implement perturbative triples and include these in the correlation energy calculations. We then calculate the dipole polarizability of the ground states using perturbed coupled-cluster theory.

  7. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  8. Quantum mechanical study of pre-dissociation enhancement of linear and nonlinear polarizabilities of (TeO2)(n) oligomers as a key to understanding the remarkable dielectric properties of TeO2 glasses.

    Science.gov (United States)

    Smirnov, Mikhail; Mirgorodsky, Andrei; Masson, Olivier; Thomas, Philippe

    2012-09-20

    The effects of intermolecular interactions of TeO(2) molecules in the (TeO(2))(n) oligomers on the polarizability (α) and second hyperpolarizability (γ) are investigated by the use of a density functional method. A significant intermolecular distance dependence of both quantities is observed. The huge dissociation-induced polarizability enhancement is analyzed in terms of the molecular orbital evolution. It is shown that the obtained results can provide a new look at the microscopic origin of the extraordinary dielectric properties of TeO(2) glass.

  9. Relativistic many-body calculation of energies, transition rates, lifetimes, and multipole polarizabilities in Cs-like La iii

    Science.gov (United States)

    Safronova, U. I.; Safronova, M. S.

    2014-05-01

    Excitation energies of the [Xe]nd (n =5-9), [Xe]ns (n =6-10), [Xe]np (n =6-9), [Xe]nf (n =4-8), and [Xe]ng (n =5-8) states in La iii, where [Xe] = 1s22s22p63s23p63d104s24p64d105s25p6, are evaluated. Electric dipole matrix elements for the allowed transitions between the low-lying [Xe]nd, [Xe]ns, [Xe]np, [Xe]nf, and [Xe]ng states in the La iii ion are calculated using the high-precision relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Recommended values are provided for a large number of electric dipole matrix elements, oscillator strengths, transition rates, and lifetimes. Scalar and tensor polarizabilities of the states listed above are evaluated. The uncertainties of the recommended values are estimated. Electric quadrupole and magnetic dipole matrix elements are calculated to determine lifetimes of the 5d5/2 and 6s metastable levels. The ground-state E1, E2, and E3 static polarizabilities are calculated. This work provides recommended values critically evaluated for their accuracy for a number of La iii atomic properties for use in planning and analysis of various experiments as well as theoretical modeling.

  10. Quantum mechanical effects in zwitterionic amino acids: The case of proline, hydroxyproline, and alanine in water

    Science.gov (United States)

    Ulman, Kanchan; Busch, Sebastian; Hassanali, Ali A.

    2018-06-01

    In this work, we use ab initio molecular dynamics simulations to elucidate the electronic properties of three hydrated zwitterionic amino acids, namely proline, hydroxyproline, and alanine, the former two forming an important constituent of collagen. In all three systems, we find a substantial amount of charge transfer between the amino acids and surrounding solvent, which, rather surprisingly, also involves the reorganization of electron density near the hydrophobic non-polar groups. Water around proline appears to be slightly more polarized, as reflected by the enhanced water dipole moment in its hydration shell. This observation is also complemented by an examination of the IR spectra of the three systems where there is a subtle red and blue shift in the O-H stretch and bend regions, respectively, for proline. We show that polarizability of these amino acids as revealed by a dipole moment analysis involves a significant enhancement from the solvent and that this also involves non-polar groups. Our results suggest that quantum mechanical effects are likely to be important in understanding the coupling between biomolecules and water in general and in hydrophobic interactions.

  11. Infrared and Raman Spectroscopy of Liquid Water through "First-Principles" Many-Body Molecular Dynamics.

    Science.gov (United States)

    Medders, Gregory R; Paesani, Francesco

    2015-03-10

    Vibrational spectroscopy is a powerful technique to probe the structure and dynamics of water. However, deriving an unambiguous molecular-level interpretation of the experimental spectral features remains a challenge due to the complexity of the underlying hydrogen-bonding network. In this contribution, we present an integrated theoretical and computational framework (named many-body molecular dynamics or MB-MD) that, by systematically removing uncertainties associated with existing approaches, enables a rigorous modeling of vibrational spectra of water from quantum dynamical simulations. Specifically, we extend approaches used to model the many-body expansion of interaction energies to develop many-body representations of the dipole moment and polarizability of water. The combination of these "first-principles" representations with centroid molecular dynamics simulations enables the simulation of infrared and Raman spectra of liquid water under ambient conditions that, without relying on any ad hoc parameters, are in good agreement with the corresponding experimental results. Importantly, since the many-body energy, dipole, and polarizability surfaces employed in the simulations are derived independently from accurate fits to correlated electronic structure data, MB-MD allows for a systematic analysis of the calculated spectra in terms of both electronic and dynamical contributions. The present analysis suggests that, while MB-MD correctly reproduces both the shifts and the shapes of the main spectroscopic features, an improved description of quantum dynamical effects possibly combined with a dissociable water potential may be necessary for a quantitative representation of the OH stretch band.

  12. Operational Management System for Regulated Water Systems

    Science.gov (United States)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  13. New experimental method for investigation of the nucleon polarizabilities

    International Nuclear Information System (INIS)

    Yevetska, O.; Watzlawik, S.; Ahrens, J.; Alkhazov, G.D.; Chizhov, V.P.; Maev, E.M.; Neumann-Cosel, P. von; Orischin, E.M.; Petrov, G.E.; Porte, J.-M.; Richter, A.; Sarantsev, V.V.; Schrieder, G.; Smirenin, Yu.V.

    2010-01-01

    At the continuous wave (cw) Superconducting Darmstadt Electron Linear Accelerator S-DALINAC, a new method has been developed for the determination of the electric (α-bar) and magnetic (β-bar) polarizabilities of the proton and the deuteron. For that purpose the energy and angular dependence of the differential cross-section for elastic γp and γd scattering of bremsstrahlung photons in the energy range between 20 and 100 MeV is measured by detecting the recoiling proton (deuteron) in coincidence with the scattered bremsstrahlung photon. α-bar and β-bar are then found by means of a best fit to a theoretical description of the scattering cross-section with these quantities as open parameters. The experimental setup consists of a bremsstrahlung photon facility, two specially designed high pressure hydrogen (deuterium) ionization chambers which serve as targets and detectors of the recoil proton (deuteron), NaI gamma spectrometers and several additional detectors for beam diagnostics and normalization. The whole setup was tested using bremsstrahlung photon beams with endpoint energies of 60 and 79.3 MeV. The results of the test experiments show that future high-statistics measurements are feasible.

  14. Considerations on sample holder design and custom-made non-polarizable electrodes for Spectral Induced Polarization measurements on unsaturated soils

    Science.gov (United States)

    Kaouane, C.; Chouteau, M. C.; Fauchard, C.; Cote, P.

    2014-12-01

    Spectral Induced Polarization (SIP) is a geophysical method sensitive to water content, saturation and grain size distribution. It could be used as an alternative to nuclear probes to assess the compaction of soils in road works. To evaluate the potential of SIP as a practical tool, we designed an experiment for complex conductivity measurements on unsaturated soil samples.Literature presents a large variety of sample holders and designs, each depending on the context. Although we might find some precise description about the sample holder, exact replication is not always possible. Furthermore, the potential measurements are often done using custom-made Ag/AgCl electrodes and very few indications are given on their reliability with time and temperature. Our objective is to perform complex conductivity measurements on soil samples compacted in a PVC cylindrical mould (10 cm-long, 5 cm-diameter) according to geotechnical standards. To expect homogeneous current density, electrical current is transmitted through the sample via chambers filled with agar gel. Agar gel is a good non-polarizable conductor within the frequency range (1 mHz -20kHz). Its electrical properties are slightly known. We measured increasing of agar-agar electrical conductivity in time. We modelled the influence of this variation on the measurement. If the electrodes are located on the sample, it is minimized. Because of the dimensions at stake and the need for simple design, potential electrodes are located outside the sample, hence the gel contributes to the measurements. Since the gel is fairly conductive, we expect to overestimate the sample conductivity. Potential electrodes are non-polarizable Ag/AgCl electrodes. To avoid any leakage, the KCl solution in the electrodes is replaced by saturated KCl-agar gel. These electrodes are low cost and show a low, stable, self-potential (<1mV). In addition, the technique of making electrode can be easily reproduced and storage and maintenance are simple

  15. Water management - management actions applied to water resources system

    International Nuclear Information System (INIS)

    Petkovski, Ljupcho; Tanchev, Ljubomir

    2001-01-01

    In this paper are presented a general description of water resource systems, a systematisation of the management tasks and the approaches for solution, including a review of methods used for solution of water management tasks and the fundamental postulates in the management. The management of water resources is a synonym for the management actions applied to water resource systems. It is a general term that unites planning and exploitation of the systems. The modern planning assumes separating the water racecourse part from the hydro technical part of the project. The water resource study is concerned with the solution for the resource problem. This means the parameters of the system are determined in parallel with the definition of the water utilisation regime. The hydro-technical part of the project is the design of structures necessary for the water resource solution. (Original)

  16. Quantum Optimal Control of Single Harmonic Oscillator under Quadratic Controls together with Linear Dipole Polarizability: A Fluctuation Free Expectation Value Dynamical Perspective

    International Nuclear Information System (INIS)

    Ayvaz, Muzaffer; Demiralp, Metin

    2011-01-01

    In this study, the optimal control equations for one dimensional quantum harmonic oscillator under the quadratic control operators together with linear dipole polarizability effects are constructed in the sense of Heisenberg equation of motion. A numerical technique based on the approximation to the non-commuting quantum mechanical operators from the fluctuation free expectation value dynamics perspective in the classical limit is also proposed for the solution of optimal control equations which are ODEs with accompanying boundary conditions. The dipole interaction of the system is considered to be linear, and the observable whose expectation value will be suppressed during the control process is considered to be quadratic in terms of position operator x. The objective term operator is also assumed to be quadratic.

  17. Water Fluoridation Reporting System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  18. Accurate virial coefficients of gaseous krypton from state-of-the-art ab initio potential and polarizability of the krypton dimer

    Science.gov (United States)

    Song, Bo; Waldrop, Jonathan M.; Wang, Xiaopo; Patkowski, Konrad

    2018-01-01

    We have developed a new krypton-krypton interaction-induced isotropic dipole polarizability curve based on high-level ab initio methods. The determination was carried out using the coupled-cluster singles and doubles plus perturbative triples method with very large basis sets up to augmented correlation-consistent sextuple zeta as well as the corrections for core-core and core-valence correlation and relativistic effects. The analytical function of polarizability and our recently constructed reference interatomic potential [J. M. Waldrop et al., J. Chem. Phys. 142, 204307 (2015)] were used to predict the thermophysical and electromagnetic properties of krypton gas. The second pressure, acoustic, and dielectric virial coefficients were computed for the temperature range of 116 K-5000 K using classical statistical mechanics supplemented with high-order quantum corrections. The virial coefficients calculated were compared with the generally less precise available experimental data as well as with values computed from other potentials in the literature {in particular, the recent highly accurate potential of Jäger et al. [J. Chem. Phys. 144, 114304 (2016)]}. The detailed examination in this work suggests that the present theoretical prediction can be applied as reference values in disciplines involving thermophysical and electromagnetic properties of krypton gas.

  19. A polarizable embedding DFT study of one-photon absorption in fluorescent proteins

    DEFF Research Database (Denmark)

    Beerepoot, Maarten; Steindal, Arnfinn H.; Kongsted, Jacob

    2013-01-01

    mutants (BFP, eGFP, YFP and eCFP). The observed trends in excitation energies among the FPs are reproduced by our approach when performing calculations directly on the crystal structures or when using structures extracted from a molecular dynamics simulations. However, in the former case, QM/MM geometry......A theoretical study of the one-photon absorption of five fluorescent proteins (FPs) is presented. The absorption properties are calculated using a polarizable embedding approach combined with density functional theory (PE-DFT) on the wild-type green fluorescent protein (wtGFP) and several of its...... optimization of the chromophores within a frozen protein environment is needed in order to reproduce the experimental trends. Explicit account of polarization in the force field is not needed to yield the correct trend between the different FPs, but is necessary for reproducing the experimentally observed red...

  20. The Electromagnetic Zero-Point Field and the Flat Polarizable Vacuum Representation

    CERN Document Server

    Desiato, J T

    2003-01-01

    There are several interpretations of the Polarizable Vacuum (PV). One is the variable speed of light (VSL) approach, that has been shown to be isomorphic to General Relativity (GR) within experimental limits. However, another interpretation is representative of flat geometry, in which intervals of time and distance are measured in local inertial reference frames where the speed of light remains constant. The Flat PV approach leads to variable impedance transformations, governed by the spectral energy content of the Quantum Vacuum’s Electromagnetic (EM) Zero-Point Field (ZPF). The EM ZPF consists of photons. An unlimited number of photons may occupy the same quantum state at an arbitrary set of coordinates. Therefore, the spectral energy of the ZPF may be varied smoothly, represented by a superposition of EM waves with a large number of photons per cubic wavelength. Utilizing the Flat PV representation, a family of frequency dependent solutions of Poisson’s equation are derived, that may be applied as tool...

  1. Water Purification Systems

    Science.gov (United States)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  2. Sensitivity of the electric dipole polarizability to the neutron skin thickness in {sup 208}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Roca-Maza, X.; Agrawal, B. K.; Colo, G.; Nazarewicz, W.; Paar, N.; Piekarewicz, J.; Reinhard, P.-G.; Vretenar, D. [INFN, sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Saha Institute of Nuclear Physics, Kolkata 700064 (India); Dipartimento di Fisica, Universita degli Studi di Milano and INFN, Sezione di Milano, 20133 Milano (Italy); Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Institute of Theoretical Physics, University of Warsaw, Hoza 69, PL-00-681 Warsaw (Poland); Physics Department, Faculty of Science, University of Zagreb, Zagreb (Croatia); Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Institut fuer Theoretische Physik II, Universitaet Erlangen-Nuernberg, Staudtstrasse 7, D-91058 Erlangen (Germany); Physics Department, Faculty of Science, University of Zagreb, Zagreb (Croatia)

    2012-10-20

    The static dipole polarizability, {alpha}{sub D}, in {sup 208}Pb has been recently measured with highresolution via proton inelastic scattering at the Research Center for Nuclear Physics (RCNP) [1]. This observable is thought to be intimately connected with the neutron skin thickness, r{sub skin}, of the same nucleus and, more fundamentally, it is believed to be associated with the density dependence of the nuclear symmetry energy. The impact of r{sub skin} on {alpha}{sub D} in {sup 208}Pb is investigated and discussed on the basis of a large and representative set of relativistic and non-relativistic nuclear energy density functionals (EDF) [2].

  3. Studies on dielectric properties, opto-electrical parameters and electronic polarizability of thermally evaporated amorphous Cd{sub 50}S{sub 50−x}Se{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hassanien, Ahmed Saeed, E-mail: a.s.hassanien@gmail.com [Engineering Mathematics and Physics Department, Faculty of Engineering (Shoubra), Benha University (Egypt); Physics Department, Faculty of Science and Humanities in Ad-Dawadmi, Shaqra University, 11911 (Saudi Arabia)

    2016-06-25

    The objective of this work is to study the influence of the addition of more Se on dielectric properties, opto-electrical parameters and electronic polarizability of amorphous chalcogenide Cd{sub 50}S{sub 50−x}Se{sub x} thin films (30 ≤ x ≤ 50 at%). Thin films of thickness 200 nm were synthesized by vacuum deposition at ≈8.2 × 10{sup −4} Pa. Both refractive index and extinction coefficient were used to obtain all the studied parameters. The high frequency dielectric constant, real and imaginary parts of dielectric constant were discussed. Drude theory was applied to investigate opto-electrical parameters, like optical carrier concentration, optical mobility and optical resistivity. Moreover, other parameters were investigated and studied, e.g. Drude parameters, volume and surface energy loss functions, dielectric loss factor, dielectric relaxation time, complex optical conductivity and electronic polarizability as well as optical electronegativity and third-order nonlinear optical susceptibility. Values of electronic polarizability and nonlinear optical susceptibility were found to be decreased while optical electronegativity increased as Se-content was increased. Increment of Se-content in amorphous Cd{sub 50}S{sub 50−x}Se{sub x} thin films has also led to minimize the energy losses when electromagnetic waves propagate through films as well as optical conductivity and the speed of light increased. The other studied properties and parameters of Cd{sub 50}S{sub 50−x}Se{sub x} films were found to be strongly dependent upon Se-content. - Highlights: • Thermally evaporated amorphous Cd{sub 50}S{sub 50−x}Se{sub x} (30 ≤ x ≤ 50) thin films were deposited. • Refractive index and absorption index were used to determine almost all properties. • Dielectric properties, Drude parameters and electronic polarizability were studied. • Addition of more Se to CdSSe matrix led to improve the opto-electrical properties. • New data were obtained and

  4. Phase-Transfer Energetics of Small-Molecule Alcohols Across the Water-Hexane Interface: Molecular Dynamics Simulation Using Charge Equilibration Models

    Science.gov (United States)

    Bauer, Brad A.; Zhong, Yang; Meninger, David J.; Davis, Joseph E.; Patel, Sandeep

    2010-01-01

    We study the water-hexane interface using molecular dynamics (MD) and polarizable charge equilibration (CHEQ) force fields. Bulk densities for TIP4P-FQ water and hexane, 1.0086±0.0002 g/cm3 and 0.6378±0.0001 g/cm3, demonstrate excellent agreement with experiment. Interfacial width and interfacial tension are consistent with previously reported values. The in-plane component of the dielectric permittivity (ε∥) for water is shown to decrease from 81.7±0.04 to unity, transitioning longitudinally from bulk water to bulk hexane. ε∥ for hexane reaches a maximum in the interface, but this term represents only a small contribution to the total dielectric constant (as expected for a non-polar species). Structurally, net orientations of the molecules arise in the interfacial region such that hexane lies slightly parallel to the interface and water reorients to maximize hydrogen bonding. Interfacial potentials due to contributions of the water and hexane are calculated to be -567.9±0.13mV and 198.7±0.01mV, respectively, giving rise to a total potential in agreement with the range of values reported from previous simulations of similar systems. Potentials of mean force (PMF) calculated for methanol, ethanol, and 1-propanol for the transfer from water to hexane indicate an interfacial free energy minimum, corresponding to the amphiphilic nature of the molecules. The magnitudes of transfer free energies were further characterized from the solvation free energies of alcohols in water and hexane using thermodynamic integration. This analysis shows that solvation free energies for alcohols in hexane are 0.2-0.3 kcal/mol too unfavorable, whereas solvation of alcohols in water is approximately 1 kcal/mol too favorable. For the pure hexane-water interfacial simulations, we observe a monotonic decrease of the water dipole moment to near-vacuum values. This suggests that the electrostatic component of the desolvation free energy is not as severe for polarizable models than

  5. Basis set convergence on static electric dipole polarizability calculations of alkali-metal clusters

    International Nuclear Information System (INIS)

    Souza, Fabio A. L. de; Jorge, Francisco E.

    2013-01-01

    A hierarchical sequence of all-electron segmented contracted basis sets of double, triple and quadruple zeta valence qualities plus polarization functions augmented with diffuse functions for the atoms from H to Ar was constructed. A systematic study of basis sets required to obtain reliable and accurate values of static dipole polarizabilities of lithium and sodium clusters (n = 2, 4, 6 and 8) at their optimized equilibrium geometries is reported. Three methods are examined: Hartree-Fock (HF), second-order Moeller-Plesset perturbation theory (MP2), and density functional theory (DFT). By direct calculations or by fitting the directly calculated values through one extrapolation scheme, estimates of the HF, MP2 and DFT complete basis set limits were obtained. Comparison with experimental and theoretical data reported previously in the literature is done (author)

  6. Basis set convergence on static electric dipole polarizability calculations of alkali-metal clusters

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Fabio A. L. de; Jorge, Francisco E., E-mail: jorge@cce.ufes.br [Departamento de Fisica, Universidade Federal do Espirito Santo, 29060-900 Vitoria-ES (Brazil)

    2013-07-15

    A hierarchical sequence of all-electron segmented contracted basis sets of double, triple and quadruple zeta valence qualities plus polarization functions augmented with diffuse functions for the atoms from H to Ar was constructed. A systematic study of basis sets required to obtain reliable and accurate values of static dipole polarizabilities of lithium and sodium clusters (n = 2, 4, 6 and 8) at their optimized equilibrium geometries is reported. Three methods are examined: Hartree-Fock (HF), second-order Moeller-Plesset perturbation theory (MP2), and density functional theory (DFT). By direct calculations or by fitting the directly calculated values through one extrapolation scheme, estimates of the HF, MP2 and DFT complete basis set limits were obtained. Comparison with experimental and theoretical data reported previously in the literature is done (author)

  7. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  8. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  9. All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model

    Science.gov (United States)

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Presented is a first generation atomistic force field for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting QM data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude force field yields stable DNA duplexes on the 100 ns time scale and satisfactorily reproduces (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII sub-states of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive force field, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA. PMID:24752978

  10. Structure and lifetimes in ionic liquids and their mixtures.

    Science.gov (United States)

    Gehrke, Sascha; von Domaros, Michael; Clark, Ryan; Hollóczki, Oldamur; Brehm, Martin; Welton, Tom; Luzar, Alenka; Kirchner, Barbara

    2018-01-01

    With the aid of molecular dynamics simulations, we study the structure and dynamics of different ionic liquid systems, with focus on hydrogen bond, ion pair and ion cage formation. To do so, we report radial distribution functions, their number integrals, and various time-correlation functions, from which we extract well-defined lifetimes by means of the reactive flux formalism. We explore the influence of polarizable force fields vs. non-polarizable ones with downscaled charges (±0.8) for the example of 1-butyl-3-methylimidazolium bromide. Furthermore, we use 1-butyl-3-methylimidazolium trifluoromethanesulfonate to investigate the impact of temperature and mixing with water as well as with the chloride ionic liquid. Smaller coordination numbers, larger distances, and tremendously accelerated dynamics are observed when the polarizable force field is applied. The same trends are found with increasing temperature. Adding water decreases the ion-ion coordination numbers whereas the water-ion and water-water coordination is enhanced. A domain analysis reveals that the nonpolar parts of the ions are dispersed and when more water is added the water clusters increase in size. The dynamics accelerate in general upon addition of water. In the ionic liquid mixture, the coordination number around the cation changes between the two anions, but the number integrals of the cation around the anions remain constant and the dynamics slow down with increasing content of the chloride ionic liquid.

  11. Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium-zinc-phosphate glasses

    Science.gov (United States)

    Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.

    2017-08-01

    The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.

  12. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif; Arsalan, Muhammad

    2018-01-01

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground

  13. Computational Approach for Studying Optical Properties of DNA Systems in Solution

    DEFF Research Database (Denmark)

    Nørby, Morten Steen; Svendsen, Casper Steinmann; Olsen, Jógvan Magnus Haugaard

    2016-01-01

    In this paper we present a study of the methodological aspects regarding calculations of optical properties for DNA systems in solution. Our computational approach will be built upon a fully polarizable QM/MM/Continuum model within a damped linear response theory framework. In this approach...... the environment is given a highly advanced description in terms of the electrostatic potential through the polarizable embedding model. Furthermore, bulk solvent effects are included in an efficient manner through a conductor-like screening model. With the aim of reducing the computational cost we develop a set...... of averaged partial charges and distributed isotropic dipole-dipole polarizabilities for DNA suitable for describing the classical region in ground-state and excited-state calculations. Calculations of the UV-spectrum of the 2-aminopurine optical probe embedded in a DNA double helical structure are presented...

  14. Spin Sum Rules and Polarizabilities: Results from Jefferson Lab

    International Nuclear Information System (INIS)

    Jian-Ping Chen

    2006-01-01

    The nucleon spin structure has been an active, exciting and intriguing subject of interest for the last three decades. Recent experimental data on nucleon spin structure at low to intermediate momentum transfers provide new information in the confinement regime and the transition region from the confinement regime to the asymptotic freedom regime. New insight is gained by exploring moments of spin structure functions and their corresponding sum rules (i.e. the generalized Gerasimov-Drell-Hearn, Burkhardt-Cottingham and Bjorken). The Burkhardt-Cottingham sum rule is verified to good accuracy. The spin structure moments data are compared with Chiral Perturbation Theory calculations at low momentum transfers. It is found that chiral perturbation calculations agree reasonably well with the first moment of the spin structure function g 1 at momentum transfer of 0.05 to 0.1 GeV 2 but fail to reproduce the neutron data in the case of the generalized polarizability (delta) LT (the (delta) LT puzzle). New data have been taken on the neutron ( 3 He), the proton and the deuteron at very low Q 2 down to 0.02 GeV 2 . They will provide benchmark tests of Chiral dynamics in the kinematic region where the Chiral Perturbation theory is expected to work

  15. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  16. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  17. Water electrolysis system

    International Nuclear Information System (INIS)

    Mizoguchi, Tadao; Ikehara, Masahisa; Kataoka, Noboru; Ueno, Syuichi; Ishikawa, Nobuhide.

    1996-01-01

    Nissho Iwai Co. and Ebara Co. received an order for hydrogen and oxygen generating system (water electrolysis system) to be installed at Tokai-2 power station of The Japan Atomic Power Company, following the previous order at Tsuruga-1 where the gas injection from FY1996 is planned. Hydrogen gas generated by the system will be injected to coolant of boiling water reactors to improve corrosive environment. The system is being offered by a tripartite party, Nissho Iwai, Ebara, and Norsk Hydro Electrolysers of Norway (NHEL). NHEL provides a electrolyser unit, as a core of the system. Ebara provides procurement, installation, and inspection as well as total engineering work, under the basic design by NHEL which has over 60 years-experience in this field. (author)

  18. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  19. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  20. Computational modeling of Metal-Organic Frameworks

    Science.gov (United States)

    Sung, Jeffrey Chuen-Fai

    In this work, the metal-organic frameworks MIL-53(Cr), DMOF-2,3-NH 2Cl, DMOF-2,5-NH2Cl, and HKUST-1 were modeled using molecular mechanics and electronic structure. The effect of electronic polarization on the adsorption of water in MIL-53(Cr) was studied using molecular dynamics simulations of water-loaded MIL-53 systems with both polarizable and non-polarizable force fields. Molecular dynamics simulations of the full systems and DFT calculations on representative framework clusters were utilized to study the difference in nitrogen adsorption between DMOF-2,3-NH2Cl and DMOF-2,5-NH 2Cl. Finally, the control of proton conduction in HKUST-1 by complexation of molecules to the Cu open metal site was investigated using the MS-EVB methodology.

  1. Solubility of nicotinic acid in water, ethanol, acetone, diethyl ether, acetonitrile, and dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Gonçalves, Elsa M.; Minas da Piedade, Manuel E.

    2012-01-01

    Highlights: ► We determined the solubility of nicotinic acid in six solvents by the gravimetric method. ► We found that, regardless of the solvent, the same monoclinic solid phase was in equilibrium with the solution. ► We determined the activity coefficients of nicotinic acid in the six solvents. ► We found that the solubility trends seem to be determined by the polarity and polarizability of the solvent. - Abstract: The mole fraction equilibrium solubility of nicotinic acid in six solvents (water, ethanol, dimethyl sulfoxide, acetone, acetonitrile and diethyl ether) differing in polarity, polarizability, and hydrogen-bonding ability, was determined over the temperature range (283 to 333) K, using the gravimetric method. The results obtained led to the solubility order dimethyl sulfoxide (DMSO) ≫ ethanol > water > acetone > diethyl ether > acetonitrile. An analysis based on various solvent descriptors, indicated that this trend seems to be mainly determined by the polarity and polarizability of the solvent. The activity coefficients of nicotinic acid in the different solvents, under saturation conditions, were determined as a function of the temperature and it was found that DMSO exhibits enhanced solubility relative to an ideal solution while the opposite is observed for all other solvents. Both the solvent and the fact that nicotinic acid is primarily zwitterionic in aqueous solution and non-zwitterionic in non-aqueous media, did not affect the nature of the solid phases in equilibrium with the different solutions. Indeed, X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and differential scanning calorimetry analysis indicated that, despite some differences in particle size and morphology, the starting material and the solid products obtained at the end of the solubility studies in the six solvents used in this work were all crystalline and corresponded to the same monoclinic phase.

  2. Combining the GW formalism with the polarizable continuum model: A state-specific non-equilibrium approach

    Energy Technology Data Exchange (ETDEWEB)

    Duchemin, Ivan, E-mail: ivan.duchemin@cea.fr [INAC, SP2M/L-Sim, CEA/UJF Cedex 09, 38054 Grenoble (France); Jacquemin, Denis [Laboratoire CEISAM - UMR CNR 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 (France); Institut Universitaire de France, 1 rue Descartes, 75005 Paris Cedex 5 (France); Blase, Xavier [CNRS, Inst. NÉEL, F-38000 Grenoble (France); Univ. Grenoble Alpes, Inst. NÉEL, F-38000 Grenoble (France)

    2016-04-28

    We have implemented the polarizable continuum model within the framework of the many-body Green’s function GW formalism for the calculation of electron addition and removal energies in solution. The present formalism includes both ground-state and non-equilibrium polarization effects. In addition, the polarization energies are state-specific, allowing to obtain the bath-induced renormalisation energy of all occupied and virtual energy levels. Our implementation is validated by comparisons with ΔSCF calculations performed at both the density functional theory and coupled-cluster single and double levels for solvated nucleobases. The present study opens the way to GW and Bethe-Salpeter calculations in disordered condensed phases of interest in organic optoelectronics, wet chemistry, and biology.

  3. Dipole polarizability of neutron rich nuclei and the symmetry energy

    Energy Technology Data Exchange (ETDEWEB)

    Horvat, Andrea; Johansen, Jacob; Miki, Kenjiro; Schindler, Fabia; Schrock, Philipp [IKP, TU Darmstadt (Germany); Aumann, Thomas [IKP, TU Darmstadt (Germany); GSI, Darmstadt (Germany); Boretzky, Konstanze [GSI, Darmstadt (Germany); Collaboration: R3B-Collaboration

    2015-07-01

    As a part of a systematic investigation of the dipole response of stable up to very neutron rich tin isotopes, nuclear and electromagnetic excitation of {sup 124}Sn-{sup 134}Sn has been investigated at relativistic energies in inverse kinematics induced by carbon and lead targets at the LAND-R3B setup at GSI in Darmstadt. The electric dipole response and the nuclear reaction cross section, total and charge-changing, are obtained from the kinematically complete determination of momenta of all particles on an event by event basis. The dipole polarizability is extracted from the Coulomb excitation interaction channel, in order to make use of relevant correlations of this observable with nuclear matter properties such as the symmetry energy at saturation density (J) and it's slope (L). The systematics of the low-lying ''pygmy'' dipole strength, the giant dipole resonance (GDR) and the neutron skin thickness are determined with respect to increasing isospin asymmetry. This talk also discusses the correlations and sensitivities of these variables and observables obtained within the framework of nuclear energy density functional theory.

  4. Power System Operations With Water Constraints

    Science.gov (United States)

    Qiu, F.; Wang, J.

    2015-12-01

    The interdependency between water and energy, although known for many decades, has not received enough attention until recent events under extreme weather conditions (especially droughts). On one hand, water and several types of energy supplies have become increasingly scarce; the demand on water and energy continues to grow. On the other hand, the climate change has become more and more disruptive (i.e., intensity and frequency of extreme events), causing severe challenges to both systems simultaneously. Water and energy systems have become deeply coupled and challenges from extreme weather events must be addressed in a coordinated way across the two systems.In this work, we will build quantitative models to capture the interactions between water and energy systems. We will incorporate water constraints in power system operations and study the impact of water scarcity on power system resilience.

  5. Ab initio potential energy surface, electric-dipole moment, polarizability tensor, and theoretical rovibrational spectra in the electronic ground state of {sup 14}NH{sub 3}{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Yurchenko, Sergei N. [Technische Universitaet Dresden, Institut fuer Physikalische Chemie und Elektrochemie, D-01062 Dresden (Germany); Thiel, Walter [Max-Planck-Institut fuer Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Muelheim an der Ruhr (Germany); Carvajal, Miguel [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Avenida de las Fuerzas Armadas s/n, Universidad de Huelva, E-21071 Huelva (Spain); Jensen, Per [Theoretische Chemie, Bergische Universitaet, D-42097 Wuppertal (Germany)], E-mail: jensen@uni-wuppertal.de

    2008-05-04

    We report the calculation of a six-dimensional CCSD(T)/aug-cc-pVQZ potential energy surface for the electronic ground state of NH{sub 3}{sup +} together with the corresponding CCSD(T)/aug-cc-pVTZ dipole moment and polarizability surface of {sup 14}NH{sub 3}{sup +}. These electronic properties have been computed on a large grid of molecular geometries. A number of newly calculated band centers are presented along with the associated electric-dipole transition moments. We further report the first calculation of vibrational matrix elements of the polarizability tensor components for {sup 14}NH{sub 3}{sup +}; these matrix elements determine the intensities of Raman transitions. In addition, the rovibrational absorption spectra of the {nu}{sub 2}, {nu}{sub 3}, {nu}{sub 4}, 2{nu}{sub 2}-{nu}{sub 2}, and {nu}{sub 2}+{nu}{sub 3}-{nu}{sub 2} bands have been simulated.

  6. Structural study of Na2O-B2O3-SiO2 glasses from molecular simulations using a polarizable force field.

    Science.gov (United States)

    Pacaud, Fabien; Delaye, Jean-Marc; Charpentier, Thibault; Cormier, Laurent; Salanne, Mathieu

    2017-10-28

    Sodium borosilicate glasses Na 2 O-B 2 O 3 -SiO 2 (NBS) are complex systems from a structural point of view. Three main building units are present: tetrahedral SiO 4 and BO 4 (B IV ) and triangular BO 3 (B III ). One of the salient features of these compounds is the change of the B III /B IV ratio with the alkali concentration, which is very difficult to capture in force fields-based molecular dynamics simulations. In this work, we develop a polarizable force field that is able to reproduce the boron coordination and more generally the structure of several NBS systems in the glass and in the melt. The parameters of the potential are fitted from density functional theory calculations only, in contrast with the existing empirical potentials for NBS systems. This ensures a strong improvement on the transferability of the parameters from one composition to another. Using this new force field, the structure of NBS systems is validated against neutron diffraction and nuclear magnetic resonance experiments. A special focus is given to the distribution of B III /B IV with respect to the composition and the temperature.

  7. Heavy water upgrading system in the Fugen heavy water reactor

    International Nuclear Information System (INIS)

    Matsushita, T.; Susaki, S.

    1980-01-01

    The heavy water upgrading system, which is installed in the Fugen heavy water reactor (HWR) was designed to reuse degraded heavy water generated from the deuteration-dedeuteration of resin in the ion exchange column of the moderator purification system. The electrolysis method has been applied in this system on the basis of the predicted generation rate and concentration of degraded heavy water. The structural feature of the electrolytic cell is that it consists of dual cylindrical electrodes, instead of a diaphragm as in the case of conventional water electrolysis. 2 refs

  8. Molecular dynamics of polarizable point dipole models for molten NaI. Comparison with first principles simulations

    Directory of Open Access Journals (Sweden)

    Trullàs J.

    2011-05-01

    Full Text Available Molecular dynamics simulations of molten NaI at 995 K have been carried out using polarizable ion models based on rigid ion pair potentials to which the anion induced dipole polarization is added. The polarization is added in such a way that point dipoles are induced on the anions by both local electric field and deformation short-range damping interactions that oppose the electrically induced dipole moments. The structure and self-diffusion results are compared with those obtained by Galamba and Costa Cabral using first principles Hellmann-Feynman molecular dynamics simulations and using classical molecular dynamics of a shell model which allows only the iodide polarization

  9. Electronic polarizability of light crude oil from optical and dielectric studies

    Science.gov (United States)

    George, A. K.; Singh, R. N.

    2017-07-01

    In the present paper we report the temperature dependence of density, refractive indices and dielectric constant of three samples of crude oils. The API gravity number estimated from the temperature dependent density studies revealed that the three samples fall in the category of light oil. The measured data of refractive index and the density are used to evaluate the polarizability of these fluids. Molar refractive index and the molar volume are evaluated through Lorentz-Lorenz equation. The function of the refractive index, FRI , divided by the mass density ρ, is a constant approximately equal to one-third and is invariant with temperature for all the samples. The measured values of the dielectric constant decrease linearly with increasing temperature for all the samples. The dielectric constant estimated from the refractive index measurements using Lorentz-Lorentz equation agrees well with the measured values. The results are promising since all the three measured properties complement each other and offer a simple and reliable method for estimating crude oil properties, in the absence of sufficient data.

  10. Effect of dipole polarizability on positron binding by strongly polar molecules

    International Nuclear Information System (INIS)

    Gribakin, G F; Swann, A R

    2015-01-01

    A model for positron binding to polar molecules is considered by combining the dipole potential outside the molecule with a strongly repulsive core of a given radius. Using existing experimental data on binding energies leads to unphysically small core radii for all of the molecules studied. This suggests that electron–positron correlations neglected in the simple model play a large role in determining the binding energy. We account for these by including the polarization potential via perturbation theory and non-perturbatively. The perturbative model makes reliable predictions of binding energies for a range of polar organic molecules and hydrogen cyanide. The model also agrees with the linear dependence of the binding energies on the polarizability inferred from the experimental data (Danielson et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235203). The effective core radii, however, remain unphysically small for most molecules. Treating molecular polarization non-perturbatively leads to physically meaningful core radii for all of the molecules studied and enables even more accurate predictions of binding energies to be made for nearly all of the molecules considered. (paper)

  11. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-01-01

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  12. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  13. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches.

    Science.gov (United States)

    Huang, Jing; Mei, Ye; König, Gerhard; Simmonett, Andrew C; Pickard, Frank C; Wu, Qin; Wang, Lee-Ping; MacKerell, Alexander D; Brooks, Bernard R; Shao, Yihan

    2017-02-14

    In this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PAD energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R 2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other 11 solute molecules, while the PAD model has a much better performance with R 2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. This suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.

  14. Nonlinear Optical Properties of XPh4 (X = B-, C, N+, P+): A New Class of Molecules with a Negative Third-Order Polarizability

    KAUST Repository

    Gieseking, Rebecca L.; Ensley, Trenton R.; Hu, Honghua; Hagan, David J.; Risko, Chad; Van Stryland, Eric W.; Bredas, Jean-Luc

    2015-01-01

    Organic π-conjugated materials have been widely used for a variety of nonlinear optical (NLO) applications. Molecules with negative real components Re(γ) of the third-order polarizability, which leads to nonlinear refraction in macroscopic systems, have important benefits for several NLO applications. However, few organic systems studied to date have negative Re(γ) in the long wavelength limit, and all inorganic materials show positive nonlinear refraction in this limit. Here, we introduce a new class of molecules of the form X(C6H5)4, where X = B-, C, N+, and P+, that have negative Re(γ). The molecular mechanism for the NLO properties in these systems is very different from those in typical linear conjugated systems: these systems have a band of excited states involving single-electron excitations within the π-system, several of which have significant coupling to the ground state. Thus, Re(γ) cannot be understood in terms of a simplified essential-state model and must be analyzed in the context of the full sum-over-states expression. Although Re(γ) is significantly smaller than that of other commonly-studied NLO chromophores, the introduction of a new molecular architecture offering the potential for a negative Re(γ) introduces new avenues of molecular design for NLO applications.

  15. Nonlinear Optical Properties of XPh4 (X = B-, C, N+, P+): A New Class of Molecules with a Negative Third-Order Polarizability

    KAUST Repository

    Gieseking, Rebecca L.

    2015-06-22

    Organic π-conjugated materials have been widely used for a variety of nonlinear optical (NLO) applications. Molecules with negative real components Re(γ) of the third-order polarizability, which leads to nonlinear refraction in macroscopic systems, have important benefits for several NLO applications. However, few organic systems studied to date have negative Re(γ) in the long wavelength limit, and all inorganic materials show positive nonlinear refraction in this limit. Here, we introduce a new class of molecules of the form X(C6H5)4, where X = B-, C, N+, and P+, that have negative Re(γ). The molecular mechanism for the NLO properties in these systems is very different from those in typical linear conjugated systems: these systems have a band of excited states involving single-electron excitations within the π-system, several of which have significant coupling to the ground state. Thus, Re(γ) cannot be understood in terms of a simplified essential-state model and must be analyzed in the context of the full sum-over-states expression. Although Re(γ) is significantly smaller than that of other commonly-studied NLO chromophores, the introduction of a new molecular architecture offering the potential for a negative Re(γ) introduces new avenues of molecular design for NLO applications.

  16. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  17. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...

  18. Evaluation of Noninvasive Measurement Methods and Systems for Application in Vital Signs Detection. Part 1. Literature Review.

    Science.gov (United States)

    1986-03-01

    containing readily available ions, e.g., water with salts or acids , gels with salts, etc. On the other hand, perfectly polarizable electrodes are...disease. Med Instrum 13:87-91 (1979). Meldrum , S. J. The principles underlying Dinamap-a microprocessor based instrument for the automatic determination

  19. On the importance of excited state dynamic response electron correlation in polarizable embedding methods.

    Science.gov (United States)

    Eriksen, Janus J; Sauer, Stephan P A; Mikkelsen, Kurt V; Jensen, Hans J Aa; Kongsted, Jacob

    2012-09-30

    We investigate the effect of including a dynamic reaction field at the lowest possible ab inito wave function level of theory, namely the Hartree-Fock (HF) self-consistent field level within the polarizable embedding (PE) formalism. We formulate HF based PE within the linear response theory picture leading to the PE-random-phase approximation (PE-RPA) and bridge the expressions to a second-order polarization propagator approximation (SOPPA) frame such that dynamic reaction field contributions are included at the RPA level in addition to the static response described at the SOPPA level but with HF induced dipole moments. We conduct calculations on para-nitro-aniline and para-nitro-phenolate using said model in addition to dynamic PE-RPA and PE-CAM-B3LYP. We compare the results to recently published PE-CCSD data and demonstrate how the cost effective SOPPA-based model successfully recovers a great portion of the inherent PE-RPA error when the observable is the solvatochromic shift. We furthermore demonstrate that whenever the change in density resulting from the ground state-excited state electronic transition in the solute is not associated with a significant change in the electric field, dynamic response contributions formulated at the HF level of theory manage to capture the majority of the system response originating from derivative densities. Copyright © 2012 Wiley Periodicals, Inc.

  20. Water in micro- and nanofluidics systems described using the water potential

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    This Tutorial Review shows the behaviour of water in micro- and nanofluidic systems. The chemical potential of water (‘water potential’) conveniently describes the energy level of the water at different locations in and around the system, both in the liquid and gaseous state. Since water moves from

  1. Rotating Ceramic Water Filter Discs System for Water Filtration

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-04-01

    Full Text Available This work aimed to design, construct and operate a new laboratory scale water filtration system. This system was used to examine the efficiency of two ceramic filter discs as a medium for water filtration. These filters were made from two different ceramic mixtures of local red clay, sawdust, and water. The filtration system was designed with two rotating interfered modules of these filters. Rotating these modules generates shear force between water and the surfaces of filter discs of the filtration modules that works to reduce thickness of layer of rejected materials on the filters surfaces. Each module consists of seven filtration units and each unit consists of two ceramic filter discs. The average measured hydraulic conductivity of the first module was 13.7mm/day and that for the second module was 50mm/day. Results showed that the water filtration system can be operated continuously with a constant flow rate and the filtration process was controlled by a skin thin layer of rejected materials. The ceramic water filters of both filtration modules have high removal efficiency of total suspended solids up to 100% and of turbidity up to 99.94%.

  2. The effect of water purification systems on fluoride content of drinking water

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-03-01

    Full Text Available Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, borewell water and tap water, these being commonly used by the people of Davangere City, Karnataka. The samples were collected before and after purification, and fluoride analysis was done using fluoride ion-specific electrode. Results: The results showed that the systems based on reverse osmosis, viz, reverse osmosis system and Reviva ® showed maximum reduction in fluoride levels, the former proving to be more effective than the latter; followed by distillation and the activated carbon system, with the least reduction being brought about by candle filter. The amount of fluoride removed by the purification system varied between the system and from one source of water to the other. Interpretation and Conclusion: Considering the beneficial effects of fluoride on caries prevention; when drinking water is subjected to water purification systems that reduce fluoride significantly below the optimal level, fluoride supplementation may be necessary. The efficacy of systems based on reverse osmosis in reducing the fluoride content of water indicates their potential for use as defluoridation devices.

  3. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  4. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  5. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  6. Sustainable Water Use System of Artesian Water in Alluvial Fan

    Science.gov (United States)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher

  7. Energy-Water System Solutions | Energy Analysis | NREL

    Science.gov (United States)

    System Solutions Energy-Water System Solutions NREL has been a pioneer in the development of energy -water system solutions that explicitly address and optimize energy-water tradeoffs. NREL has evaluated energy-water system solutions for Department of Defense bases, islands, communities recovering from

  8. State and National Water Fluoridation System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  9. Automated Water-Purification System

    Science.gov (United States)

    Ahlstrom, Harlow G.; Hames, Peter S.; Menninger, Fredrick J.

    1988-01-01

    Reverse-osmosis system operates and maintains itself with minimal human attention, using programmable controller. In purifier, membranes surround hollow cores through which clean product water flows out of reverse-osmosis unit. No chemical reactions or phase changes involved. Reject water, in which dissolved solids concentrated, emerges from outer membrane material on same side water entered. Flow controls maintain ratio of 50 percent product water and 50 percent reject water. Membranes expected to last from 3 to 15 years.

  10. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  11. Screening reactor steam/water piping systems for water hammer

    International Nuclear Information System (INIS)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made

  12. Water hammer analysis in a water distribution system

    Directory of Open Access Journals (Sweden)

    John Twyman

    2017-04-01

    Full Text Available The solution to water hammer in a water distribution system (WDS is shown by applying three hybrid methods (HM based on the Box’s scheme, McCormack's method and Diffusive Scheme. Each HM formulation in conjunction with their relative advantages and disadvantages are reviewed. The analyzed WDS has pipes with different lengths, diameters and wave speeds, being the Courant number different in each pipe according to the adopted discretization. The HM results are compared with the results obtained by the Method of Characteristics (MOC. In reviewing the numerical attenuation, second order schemes based on Box and McCormack are more conservative from a numerical point of view, being recommendable their application in the analysis of water hammer in water distribution systems.

  13. Virtual Compton scattering and the generalized polarizabilities of the proton at Q²=0.92 and 1.76 GeV²

    OpenAIRE

    Fonvieille, H; Laveissiere, G; Degrande, N; Jaminion, S; Jutier, C; Todor, L; Di Salvo, R; Van Hoorebeke, Luc; Alexa, LC; Anderson, BD; Aniol, KA; Arundell, K; Audit, G; Auerbach, L; Baker, FT

    2012-01-01

    Virtual Compton scattering (VCS) on the proton has been studied at the Jefferson Laboratory using the exclusive photon electroproduction reaction ep -> ep gamma. This paper gives a detailed account of the analysis which has led to the determination of the structure functions P-LL - P-TT/epsilon and P-LT and the electric and magnetic generalized polarizabilities (GPs) alpha(E) (Q(2)) and beta(M) (Q(2)) at values of the four-momentum transfer squared Q(2) = 0.92 and 1.76 GeV2. These data, toget...

  14. Linear response at the 4-component relativistic density-functional level: application to the frequency-dependent dipole polarizability of Hg, AuH and PtH2

    International Nuclear Information System (INIS)

    Salek, Pawel; Helgaker, Trygve; Saue, Trond

    2005-01-01

    We report the implementation and application of linear response density-functional theory (DFT) based on the 4-component relativistic Dirac-Coulomb Hamiltonian. The theory is cast in the language of second quantization and is based on the quasienergy formalism (Floquet theory), replacing the initial state dependence of the Runge-Gross theorem by periodic boundary conditions. Contradictions in causality and symmetry of the time arguments are thereby avoided and the exchange-correlation potential and kernel can be expressed as functional derivatives of the quasienergy. We critically review the derivation of the quasienergy analogues of the Hohenberg-Kohn theorem and the Kohn-Sham formalism and discuss the nature of the quasienergy exchange-correlation functional. Structure is imposed on the response equations in terms of Hermiticity and time-reversal symmetry. It is observed that functionals of spin and current densities, corresponding to time-antisymmetric operators, contribute to frequency-dependent and not static electric properties. Physically, this follows from the fact that only a time-dependent electric field creates a magnetic field. It is furthermore observed that hybrid functionals enhance spin polarization since only exact exchange contributes to anti-Hermitian trial vectors. We apply 4-component relativistic linear response DFT to the calculation of the frequency-dependent polarizability of the isoelectronic series Hg, AuH and PtH 2 . Unlike for the molecules, the effect of electron correlation on the polarizability of the mercury atom is very large, about 25%. We observe a remarkable performance of the local-density approximation (LDA) functional in reproducing the experimental frequency-dependent polarizability of this atom, clearly superior to that of the BLYP and B3LYP functionals. This allows us to extract Cauchy moments (S(-4) = 382.82 and S(-6) = 6090.89 a.u.) that we believe are superior to experiment since we go to higher order in the Cauchy

  15. Inherent optical properties of Zamzam water in the visible spectrum: Dispersion analysis

    International Nuclear Information System (INIS)

    El-Zaiat, S.Y.

    2007-01-01

    Water samples have been taken from Zamzam well that is located in the holy city of Makkah in the Kingdom of Saudi Arabia. Refractive indices of Zamzam water samples have been measured by an Abbe refractometer at six discrete wavelengths across the visible spectrum. Some related optical parameters such as: group refractive index; permittivity; specific refraction; polarizability; reflectance and transmittance have been deduced. Dispersion of these optical parameters across the visible spectrum has been calculated. For comparison, these optical parameters have been determined for two samples of bottled drinking and distilled waters. Also the Abbe number and the single oscillator constants for the three waters have been calculated. Error analyses of the measured and calculated optical parameters have been given. It has been concluded that Zamzam water has special optical parameters that are different than those of bottled bottled drinking and distilled waters. (author)

  16. Behavior of hydroxide at the water/vapor interface

    Science.gov (United States)

    Winter, Bernd; Faubel, Manfred; Vácha, Robert; Jungwirth, Pavel

    2009-06-01

    Hydroxide and hydronium, which represent the ionic products of water autolysis, exhibit a peculiar surface behavior. While consensus has been established that the concentration of hydronium cations is enhanced at the surface with respect to the bulk, the affinity of hydroxide anions for the water/vapor interface has been a subject of an ongoing controversy. On the one hand, electrophoretic and titration measurements of air bubbles or oil droplets in water have been interpreted in terms of a dramatic interfacial accumulation of OH -. On the other hand, surface-selective non-linear spectroscopies, surface tension measurements, and molecular simulations show no or at most a weak surface affinity of hydroxide ions. Here, we summarize the current situation and provide new evidence for the lack of appreciable surface enhancement of OH -, based on photoelectron spectroscopy from a liquid jet and on molecular dynamics simulations with polarizable potentials at varying hydroxide concentrations.

  17. Electronic polarizability, optical basicity and interaction parameter for Nd{sub 2}O{sub 3} doped lithium-zinc-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Algradee, M.A.; Sultan, M.; Samir, O.M.; Alwany, A.E.B. [Ibb University, Department of Physics, Faculty of Science, Ibb (Yemen)

    2017-08-15

    The Nd{sup 3+}-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd{sub 2}O{sub 3} content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system. (orig.)

  18. Size dependence of the polarizability and Haynes rule for an exciton bound to an ionized donor in a single spherical quantum dot

    International Nuclear Information System (INIS)

    Feddi, E.; Zouitine, A.; Oukerroum, A.; Zazoui, M.; Dujardin, F.; Assaid, E.

    2015-01-01

    We study the effect of an external electric field on an exciton bound to an ionized donor (D + , X) confined in a spherical quantum dot using a perturbative-variational method where the wave function and energy are developed in series of powers of the electric field strength. After testing this new approach in the determination of the band gap for some semiconductor materials, we generalize it to the case of (D + , X) in the presence of the electric field and for several materials ZnO, PbSe, and InAs, with significant values of the mass ratio. Three interesting results can be deduced: First, we show that the present method allows to determine the ground state energy in the presence of a weak electric field in a simple way (E = E 0  − αf 2 ) using the energy without electric field E 0 and the polarizability α. The second point is that our theoretical predictions show that the polarizability of (D + , X) varies proportionally to R 3.5 and follows an ordering α D 0 <α X <α (D + ,X) . The last point to highlight is that the Haynes rule remains valid even in the presence of a weak electric field

  19. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    King, V.

    2000-01-01

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  20. Drinking-water monitoring systems

    International Nuclear Information System (INIS)

    1994-01-01

    A new measuring system was developed by the Austrian Research Centre Seibersdorf for monitoring the quality of drinking-water. It is based on the experience made with the installation of UWEDAT (registered trademark) environmental monitoring networks in several Austrian provinces and regions. The standard version of the drinking-water monitoring system comprises sensors for measuring chemical parameters in water, radioactivity in water and air, and meteorological values of the environment. Further measuring gauges, e.g. for air pollutants, can be connected at any time, according to customers' requirements. For integration into regional and supraregional networks, station computers take over the following tasks: Collection of data and status signals transmitted by the subsystem, object protection, intermediate storage and communication of data to the host or several subcentres via Datex-P postal service, permanent lines or radiotransmission

  1. Prototype water reuse system

    Science.gov (United States)

    Lucchetti, G.; Gray, G.A.

    1988-01-01

    A small-scale water reuse system (150 L/min) was developed to create an environment for observing fish under a variety of temperature regimes. Key concerns of disease control, water quality, temperature control, and efficiency and case of operation were addressed. Northern squawfish (Ptychocheilus oregonensis) were held at loading densities ranging from 0.11 to 0.97 kg/L per minute and at temperatures from 10 to 20°C for 6 months with no disease problems or degradation ofwater quality in the system. The system required little maintenance during 2 years of operation.

  2. Quantum mechanical force field for water with explicit electronic polarization.

    Science.gov (United States)

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  3. Public Water Supply Systems (PWS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  4. The linear and nonlinear response of infinite periodic systems to static and/or dynamic electric fields. Implementation in CRYSTAL code

    Energy Technology Data Exchange (ETDEWEB)

    Kirtman, Bernard [Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States); Springborg, Michael [Physical and Theoretical Chemistry, University of Saarland, 66123 Saarbrücken (Germany); Rérat, Michel [Equipe de Chimie Physique, IPREM UMR5254, Université de Pau et des Pays de l' Adour, 64000 Pau (France); Ferrero, Mauro; Lacivita, Valentina; Dovesi, Roberto [Departimeno di Chimica, IFM, Università di Torino and NIS - Nanostructure Interfaces and Surfaces - Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); Orlando, Roberto [Departimento di Scienze e Tecnologie Avanzati, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria (Italy)

    2015-01-22

    An implementation of the vector potential approach (VPA) for treating the response of infinite periodic systems to static and dynamic electric fields has been initiated within the CRYSTAL code. The VPA method is based on the solution of a time-dependent Hartree-Fock or Kohn-Sham equation for the crystal orbitals wherein the usual scalar potential, that describes interaction with the field, is replaced by the vector potential. This equation may be solved either by perturbation theory or by finite field methods. With some modification all the computational procedures of molecular ab initio quantum chemistry can be adapted for periodic systems. Accessible properties include the linear and nonlinear responses of both the nuclei and the electrons. The programming of static field pure electronic (hyper)polarizabilities has been successfully tested. Dynamic electronic (hyper)polarizabilities, as well as infrared and Raman intensities, are in progress while the addition of finite fields for calculation of vibrational (hyper)polarizabilities, through nuclear relaxation procedures, will begin shortly.

  5. Water sample-collection and distribution system

    Science.gov (United States)

    Brooks, R. R.

    1978-01-01

    Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.

  6. Water sensors with cellular system eliminate tail water drainage in alfalfa irrigation

    Directory of Open Access Journals (Sweden)

    Rajat Saha

    2011-10-01

    Full Text Available Alfalfa is the largest consumer of water among all crops in California. It is generally flood-irrigated, so any system that decreases runoff can improve irrigation efficiency and conserve water. To more accurately manage the water flow at the tail (bottom end of the field in surface-irrigated alfalfa crops, we developed a system that consists of wetting-front sensors, a cellular communication system and a water advance model. This system detects the wetting front, determines its advance rate and generates a cell-phone alert to the irrigator when the water supply needs to be cut off, so that tail water drainage is minimized. To test its feasibility, we conducted field tests during the 2008 and 2009 alfalfa growing seasons. The field experiments successfully validated the methodology, producing zero tail water drainage.

  7. Household pasteurization of drinking-water: the chulli water-treatment system.

    Science.gov (United States)

    Islam, Mohammad Fakhrul; Johnston, Richard B

    2006-09-01

    A simple flow-through system has been developed which makes use of wasted heat generated in traditional clay ovens (chullis) to pasteurize surface water. A hollow aluminium coil is built into the clay chulli, and water is passed through the coil during normal cooking events. By adjusting the flow rate, effluent temperature can be maintained at approximately 70 degrees C. Laboratory testing, along with over 400 field tests on chulli systems deployed in six pilot villages, showed that the treatment completely inactivated thermotolerant coliforms. The chulli system produces up to 90 litres per day of treated water at the household level, without any additional time or fuel requirement. The technology has been developed to provide a safe alternative source of drinking-water in arsenic-contaminated areas, but can also have wide application wherever people consume microbiologically-contaminated water.

  8. MUWS (Microbiology in Urban Water Systems – an interdisciplinary approach to study microbial communities in urban water systems

    Directory of Open Access Journals (Sweden)

    P. Deines

    2010-07-01

    Full Text Available Microbiology in Urban Water Systems (MUWS is an integrated project, which aims to characterize the microorganisms found in both potable water distribution systems and sewer networks. These large infrastructure systems have a major impact on our quality of life, and despite the importance of these systems as major components of the water cycle, little is known about their microbial ecology. Potable water distribution systems and sewer networks are both large, highly interconnected, dynamic, subject to time and varying inputs and demands, and difficult to control. Their performance also faces increasing loading due to increasing urbanization and longer-term environmental changes. Therefore, understanding the link between microbial ecology and any potential impacts on short or long-term engineering performance within urban water infrastructure systems is important. By combining the strengths and research expertise of civil-, biochemical engineers and molecular microbial ecologists, we ultimately aim to link microbial community abundance, diversity and function to physical and engineering variables so that novel insights into the performance and management of both water distribution systems and sewer networks can be explored. By presenting the details and principals behind the molecular microbiological techniques that we use, this paper demonstrates the potential of an integrated approach to better understand how urban water system function, and so meet future challenges.

  9. 21 CFR 1250.82 - Potable water systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...

  10. Near-threshold deuteron photodisintegration: An indirect determination of the Gerasimov-Drell-Hearn sum rule and forward spin polarizability (γ0) for the deuteron at low energies

    International Nuclear Information System (INIS)

    Ahmed, M. W.; Blackston, M. A.; Perdue, B. A.; Tornow, W.; Weller, H. R.; Norum, B.; Sawatzky, B.; Prior, R. M.; Spraker, M. C.

    2008-01-01

    It is shown that a measurement of the analyzing power obtained with linearly polarized γ-rays and an unpolarized target can provide an indirect determination of two physical quantities. These are the Gerasimov-Drell-Hearn (GDH) sum rule integrand for the deuteron and the sum rule integrand for the forward spin polarizability (γ 0 ) near photodisintegration threshold. An analysis of data for the d(γ-vector,n)p reaction and other experiments is presented. A fit to the world data analyzed in this manner gives a GDH integral value of -603±43μb between the photodisintegration threshold and 6 MeV. This result is the first confirmation of the large contribution of the 1 S 0 (M1) transition predicted for the deuteron near photodisintegration threshold. In addition, a sum rule value of 3.75±0.18 fm 4 for γ 0 is obtained between photodisintegration threshold and 6 MeV. This is a first indirect confirmation of the leading-order effective field theory prediction for the forward spin-polarizability of the deuteron

  11. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  12. Steam generation: fossil-fired systems: utility boilers; industrial boilers; boiler auxillaries; nuclear systems: boiling water; pressurized water; in-core fuel management; steam-cycle systems: condensate/feedwater; circulating water; water treatment

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A survey of development in steam generation is presented. First, fossil-fired systems are described. Progress in the design of utility and industrial boilers as well as in boiler auxiliaries is traced. Improvements in coal pulverizers, burners that cut pollution and improve efficiency, fans, air heaters and economisers are noted. Nuclear systems are then described, including the BWR and PWR reactors, in-core fuel management techniques are described. Finally, steam-cycle systems for fossil-fired and nuclear power plants are reviewed. Condensate/feedwater systems, circulating water systems, cooling towers, and water treatment systems are discussed

  13. Deuterium isotope effects on the dipole moment and polarizability of HCl and NH3

    International Nuclear Information System (INIS)

    Scher, C.; Ravid, B.; Halevi, E.A.

    1982-01-01

    A previously described adaptation of the conventional Debye procedure for the direct determination of small dipole moment and polarizability differences between two polar gases is applied to the isotopic pairs DCl-HCl and ND 3 -NH 3 . The dipole moment difference obtained for the first isotopic pair, by using the Debye-Van Vleck equation for electric susceptibility, μ(DCl) - μ(HCl) = 0.005 5 +/- 0.0002 D, is consistent with published spectroscopically determined values of μ 00 (DCl) and μ 00 (HCl), while that obtained by using the classical Debye equation is not. For the second pair, use of the Debye-Van Vleck equation, along with a correction for thermal population of vibrationally excited levels, is shown to be essential and yields μ(ND) 3 - μ(NH 3 ) = +0.013 5 +/- 0.001 D and α(ND 3 ) - α(NH 3 ) = -(2.2 +/- 1.7) x 10 -26 cm 3

  14. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    Science.gov (United States)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water

  15. Total Water Management, the New Paradigm for Urban Water Systems

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  16. Structural and energetic properties of La3+ in water/DMSO mixtures

    Science.gov (United States)

    Montagna, Maria; Spezia, Riccardo; Bodo, Enrico

    2017-11-01

    By using molecular dynamics based on a custom polarizable force field, we have studied the solvation of La3+ in an equimolar mixture of dimethylsulfoxide (DMSO) with water. An extended structural analysis has been performed to provide a complete picture of the physical properties at the basis of the interaction of La3+ with both solvents. Through our simulations we found that, very likely, the first solvation shell in the mixture is not unlike the one found in pure water or pure DMSO and contains 9 solvent molecules. We have also found that the solvation is preferentially due to DMSO molecules with the water initially present in first shell quickly leaving to the bulk. The dehydration process of the first shell has been analyzed by both plain MD simulations and a constrained dynamics approach; the free energy profiles for the extraction of water from first shell have also been computed.

  17. Dynamic polarizabilities and Van der Waals coefficients for alkali atoms Li, Na and alkali dimer molecules Li2, Na2 and NaLi

    Science.gov (United States)

    Mérawa, M.; Dargelos, A.

    1998-07-01

    The present paper gives an account of investigations of the polarizability of the alkali atoms Li, Na, diatomics homonuclear and heteronuclear Li2, Na2 and NaLi at SCF (Self Consistent Field) level of approximation and at correlated level, using a time Time-Dependent Gauge Invariant method (TDGI). Our static polarizability values agree with the best experimental and theoretical determinations. The Van der Waals C6 coefficients for the atom-atom, atom-dimer and dimer-dimer interactions have been evaluated. Les polarisabilités des atomes alcalins Li, Na, et des molécules diatomiques homonucléaires et hétéronucléaire Li2, Na2 et NaLi, ont été calculées au niveau SCF (Self Consistent Field) et au niveau corrélé à partir d'une méthode invariante de jauge dépendante du temps(TDGI). Nos valeurs des polarisabilités statiques sont en accord avec les meilleurs déterminations expérimentales et théoriques. Les coefficients C6 de Van de Waals pour les interactions atome-atome, atome-dimère et dimère-dimère ont également été évalués.

  18. Can effective atomic polarizability {alpha}{sub d} determine the ionization of {sup 99}tc{sup m} - diaminedithiol alkylamine radioligand derivatives?; Polarizabilidade atomica efetiva {alpha}{sub d} pode ditar a ionizacao de radioligantes {sup 99}Tc{sup m} - diaminoditiol alquilaminicos?

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Marcos Moises; Fraceto, Leonardo Fernandes; Vila, Marta Maria Duarte Carvalho; Oliveira, Robson Vicente Machado de [Universidade de Sorocaba, SP (Brazil). Curso de Farmacia]. E-mail: marcos.goncalves@uniso.br

    2006-09-15

    Polarizability correlates well with organic ion stabilization in solution and can be defined as a measure of the relative ease of the distortion of the electronic cloud of a dipolar system exposed to an external electric field. The effective atomic polarizability, {alpha}{sub d}, has a fundamental influence on chemical reactivity in the gas phase and in solution. In terms of chemical reactivity the charge is generated within the molecule as a positive charge due to protonation, ionization or resulting from the attack of a nucleophilic anion. In this paper, lipoidal diaminedithiol (DADT) perfusion radioligands based on {sup 99}Tc{sup m} and possessing an alkylamine side chain have been used to check the influence of {alpha}{sub d} on their brain uptake. Some new DADT derivatives, respectively DADT-DIPA (diaminedithiol-diisopropylamine), DADT DIBA (diaminedithiol - diisobutylamine), DADT-PR (diaminedithiol-branched piperidine), have been designed to have high nitrogen alkylamine {alpha}{sub d} values. In spite of the fact of higher {alpha}{sub d} values having been correlated to higher brain uptakes, there is not a clear mechanism able to trap these radioligands into the brain space. (author)

  19. Description of the Charge Transfer States at the Pentacene/C60 Interface: Combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model

    KAUST Repository

    Zheng, Zilong

    2016-06-24

    Density functional theory (DFT) approaches based on range-separated hybrid functionals are currently methods of choice for the description of the charge-transfer (CT) states in organic donor/acceptor solar cells. However, these calculations are usually performed on small-size donor/acceptor complexes and as result do not account for electronic polarization effects. Here, using a pentacene/C60 complex as a model system, we discuss the ability of long-range corrected (LCR) hybrid functionals in combination with the polarizable continuum model (PCM) to determine the impact of the solid-state environment on the CT states. The CT energies are found to be insensitive to the interactions with the dielectric medium when a conventional time-dependent DFT/PCM (TDDFT/PCM) approach is used. However, a decrease in the energy of the CT state in the framework of LRC functionals can be obtained by using a smaller range-separated parameter when going from an isolated donor/acceptor complex to the solid-state case.

  20. [Water-saving mechanisms of intercropping system in improving cropland water use efficiency].

    Science.gov (United States)

    Zhang, Feng-Yun; Wu, Pu-Te; Zhao, Xi-Ning; Cheng, Xue-Feng

    2012-05-01

    Based on the multi-disciplinary researches, and in terms of the transformation efficiency of surface water to soil water, availability of cropland soil water, crop canopy structure, total irrigation volume needed on a given area, and crop yield, this paper discussed the water-saving mechanisms of intercropping system in improving cropland water use efficiency. Intercropping system could promote the full use of cropland water by plant roots, increase the water storage in root zone, reduce the inter-row evaporation and control excessive transpiration, and create a special microclimate advantageous to the plant growth and development. In addition, intercropping system could optimize source-sink relationship, provide a sound foundation for intensively utilizing resources temporally and spatially, and increase the crop yield per unit area greatly without increase of water consumption, so as to promote the crop water use efficiency effectively.

  1. Preoperational test report, raw water system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  2. Preoperational test report, raw water system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  3. Integrated management of water resources in urban water system: Water Sensitive Urban Development as a strategic approach

    Directory of Open Access Journals (Sweden)

    Juan Joaquín Suárez López

    2014-08-01

    Full Text Available The urban environment has to be concerned with the integrated water resources management, which necessarily includes the concept of basin unity and governance.  The traditional urban water cycle framework, which includes water supply, sewerage and wastewater treatment services, is being replaced by a holistic and systemic concept, where water is associated with urbanism and sustainability policies. This global point of view cannot be ignored as new regulations demand systemic and environmental approaches to the administrations, for instance, in the management of urban drainage and sewerage systems. The practical expression of this whole cluster interactions is beginning to take shape in several countries, with the definition of Low Impact Development and Water Sensitivity Urban Design concepts. Intends to integrate this new strategic approach under the name: “Water Sensitive Urban Development” (WSUD. With WSUD approach, the current urban water systems (originally conceived under the traditional concept of urban water cycle can be transformed, conceptual and physically, for an integrated management of the urban water system in new models of sustainable urban development. A WSUD implementing new approach to the management of pollution associated with stormwater in the urban water system is also presented, including advances in environmental regulations and incorporation of several techniques in Spain.

  4. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    Science.gov (United States)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  5. Water chemistry diagnosis system for nuclear power plants

    International Nuclear Information System (INIS)

    Igarashi, Hiroo; Koya, Hiroshi; Osumi, Katsumi.

    1990-01-01

    The water quality control for the BWRs in Japan has advanced rapidly recently, and as to the dose reduction due to the decrease of radioactivity, Japan takes the position leading the world. In the background of the advanced water quality control like this and the increase of nuclear power plants in operation, the automation of arranging a large quantity of water quality control information and the heightening of its reliability have been demanded. Hitachi group developed the water quality synthetic control system which comprises the water quality data management system to process a large quantity of water quality data with a computer and the water quality diagnosis system to evaluate the state of operation of the plants by the minute change of water quality and to carry out the operational guide in the aspect of water quality control. To this water quality diagnosis system, high speed fuzzy inference is applied in order to do rapid diagnosis with fuzzy data. The trend of development of water quality control system, the construction of the water quality synthetic control system, the configuration of the water quality diagnosis system and the development of algorithm and the improvement of the reliability of maintenance are reported. (K.I.)

  6. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  7. Size dependence of the polarizability and Haynes rule for an exciton bound to an ionized donor in a single spherical quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Feddi, E., E-mail: e.feddi@um5s.net.ma; Zouitine, A. [Université Mohamed V Souissi, Ecole Normale Supérieure de l' Enseignement Technique (ENSET), Rabat (Morocco); Oukerroum, A.; Zazoui, M. [Laboratory of Condensed Matter, Faculty of Sciences and Techniques, University of Hassan II-Mohammedia, B.P. 146, 20800 Mohammedia (Morocco); Dujardin, F. [LCP-A2MC, Université de Lorraine, ICPM, 1 Bd Arago, 57070 Metz (France); Assaid, E. [Laboratoire d' Électronique et Optique des Nanostructures de Semiconducteurs, Faculté des Sciences, B. P. 20, El Jadida (Morocco)

    2015-02-14

    We study the effect of an external electric field on an exciton bound to an ionized donor (D{sup +}, X) confined in a spherical quantum dot using a perturbative-variational method where the wave function and energy are developed in series of powers of the electric field strength. After testing this new approach in the determination of the band gap for some semiconductor materials, we generalize it to the case of (D{sup +}, X) in the presence of the electric field and for several materials ZnO, PbSe, and InAs, with significant values of the mass ratio. Three interesting results can be deduced: First, we show that the present method allows to determine the ground state energy in the presence of a weak electric field in a simple way (E = E{sub 0} − αf{sup 2}) using the energy without electric field E{sub 0} and the polarizability α. The second point is that our theoretical predictions show that the polarizability of (D{sup +}, X) varies proportionally to R{sup 3.5} and follows an ordering α{sub D{sup 0}}<α{sub X}<α{sub (D{sup +},X)}. The last point to highlight is that the Haynes rule remains valid even in the presence of a weak electric field.

  8. Silver disinfection in water distribution systems

    Science.gov (United States)

    Silvestry Rodriguez, Nadia

    Silver was evaluated as disinfectant to maintain water quality in water distribution system. It was used to inhibit growth of two opportunistic bacteria in planktonik form and in biofilm formation in Robbins devices with stainless steel and PVC surfaces. The results of this work show that silver is a potential secondary disinfectant to be used in water distribution systems.

  9. Defect and Innovation of Water Rights System

    Institute of Scientific and Technical Information of China (English)

    Zhou Bin

    2008-01-01

    The rare deposition of water resources conflicts with its limitless demand. This determined the existence of the water rights transaction system. The implementation of the water rights transaction system requires clarifying the definition of water re-source fight above all distinctly. At present, it is a kind of common right system arrangement which needs the Chinese government to dispose of water resources. Though a series of management sys-tems guaranteed the government's supply of water resource, it hindered the development of the water market seriously and caused the utilization of water resources to stay in the inefficient or low efficient state for a long time. Thus, we should change the government's leading role in the resource distribution and really rely on the market to carry on the water rights trade and transac-tion. In this way, the water rights could become a kind of private property right relatively, and circulate freely in the market. As a result of this, we should overcome the defects of common right, make its external performance internalized maximally and achieve the optimized water resource disposition and use it more effec-tively.

  10. Water Hammer Mitigation on Postulated Pipe Break of Feed Water System

    International Nuclear Information System (INIS)

    Seong, Ho Je; Woo, Kab Koo; Cho, Keon Taek

    2008-01-01

    The Feed Water (FW) system supplies feedwater from the deaerator storage tank to the Steam Generators(S/G) at the required pressure, temperature, flow rate, and water chemistry. The part of FW system, from the S/G to Main Steam Valve House just outside the containment building wall, is designed as safety grade because of its safety function. According to design code the safety related system shall be designed to protect against dynamic effects that may results from a pipe break on high energy lines such as FW system. And the FW system should be designed to minimize blowdown volume of S/G secondary side during the postulated pipe break. Also the FW system should be designed to prevent the initiation or to minimize the effects of water hammer transients which may be induced by the pipe break. This paper shows the results of the hydrodynamic loads induced by the pipe break and the optimized design parameters to mitigate water hammer loads of FW system for Shin-Kori Nuclear Power Plant Unit 3 and 4 (SKN 3 and 4)

  11. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  12. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability; Experiences d'interferometrie atomique avec le lithium. Mesure de precision de la polarisabilite electrique

    Energy Technology Data Exchange (ETDEWEB)

    Miffre, A

    2005-06-15

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, {alpha} = (24.33 {+-} 0.16)*10{sup -30} m{sup 3}, improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  13. Water system integration of a chemical plant

    International Nuclear Information System (INIS)

    Zheng Pingyou; Feng Xiao; Qian Feng; Cao Dianliang

    2006-01-01

    Water system integration can minimize both the freshwater consumption and the wastewater discharge of a plant. In industrial applications, it is the key to determine reasonably the contaminants and the limiting concentrations, which will decide the freshwater consumption and wastewater discharge of the system. In this paper, some rules to determine the contaminants and the limiting concentrations are proposed. As a case study, the water system in a chemical plant that produces sodium hydroxide and PVC (polyvinyl chloride) is integrated. The plant consumes a large amount of freshwater and discharges a large amount of wastewater, so minimization of both the freshwater consumption and the wastewater discharge is very important to it. According to the requirements of each water using process on the water used in it, the contaminants and the limiting concentrations are determined. Then, the optimal water reuse scheme is firstly studied based on the water network with internal water mains. To reduce the freshwater consumption and the wastewater discharge further, decentralized regeneration recycling is considered. The water using network is simplified by mixing some of the used water. After the water system integration, the freshwater consumption is reduced 25.5%, and the wastewater discharge is reduced 48%

  14. Measurement of pion polarizability and chiral anomaly in Primakoff reactions at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Thiemo; Friedrich, Jan Michael; Gerassimov, Sergei; Grabmueller, Stefanie; Haas, Florian; Ketzer, Bernhard; Konorov, Igor; Kuhn, Roland; Neubert, Sebastian; Paul, Stephan; Weitzel, Quirin [TU Muenchen, Physik-Department E18 (Germany); Dinkelbach, Anna-Maria [Prueftechnik Alignment Systems, Ismaning (Germany)

    2008-07-01

    In a pilot run in 2004, the COMPASS experiment at CERN observed the scattering of negative pions of 190 GeV/c off various nuclear targets, measuring soft processes. Primakoff reactions, i.e. interactions between the beam particle and a quasi-real photon from the Coulomb field of the nucleus, are used to study the physics of strong interaction at small momentum transfer. The inverse Compton scattering reaction {pi}{sup -}+Z{yields}{pi}{sup -}+{gamma}+Z gives access to the polarizabilities anti {alpha}{sub {pi}} and anti {beta}{sub {pi}} of the beam pion, which may be used to test chiral pertubation theory. Under the assumption of anti {alpha}{sub {pi}}+ anti {beta}{sub {pi}}=0 a preliminary result has been extracted which is in agreement with calculations of {chi}PT. The {pi}{sup 0} production reaction {pi}{sup -}+Z{yields}{pi}{sup -}+{pi}{sup 0}+Z permits determination of the F{sup 3{pi}} coupling constant of the {gamma}{yields}3{pi} vertex, a measurement crucial for the confirmation of the chiral anomaly hypothesis. Here, the current status of analysis will be shown.

  15. Electric dipole (hyper)polarizabilities of selected X2Y2 and X3Y3 (X = Al, Ga, In and Y = P, As): III-V semiconductor clusters. An ab initio comparative study.

    Science.gov (United States)

    Karamanis, Panaghiotis; Pouchan, Claude; Leszczynski, Jerzy

    2008-12-25

    A systematic ab initio comparative study of the (hyper)polarizabilities of selected III-V stoichiometric semiconductor clusters has been carried out. Our investigation focuses on the ground state structures of the dimers and on two dissimilar trimer configurations of aluminum, gallium, indium phosphide and arsenide. The basis set effect on both the polarizabilities and hyperpolarizabilities of the studied systems has been explicitly taken into account relying on the augmented correlation consistent aug-cc-pVnZ (n = D, T, Q, and 5) basis sets series. In addition, a rough estimation of the effects of the relativistic effects on the investigated properties is provided by extension of the study to include calculations performed with relativistic electron core potentials (or pseudopotentials). Electron correlation effects have been estimated utilizing methods of increasing predictive reliability, e.g., the Møller-Plesset many body perturbation theory and the couple cluster approach. Our results reveal that in the considered semiconductor species the Group III elements (Al, Ga, In) play a vital role on the values of their relative (hyper)polarizability. At all levels of theory employed the most hyperpolarizable clusters are the indium derivatives while the aluminum arsenide clusters also exhibit high, comparable hyperpolarizabilities. The less hyperpolarizable species are those composed of gallium and this is associated with the strong influence of the nuclear charge on the valence electrons of Ga due to the poor shielding that is provided by the semicore d electrons. In addition, the analysis of the electronic structure and the hyperpolarizability magnitudes reveals that clusters, in which their bonding is characterized by strong electron transfer from the electropositive to the electronegative atoms, are less hyperpolarizable than species in which the corresponding electron transfer is weaker. Lastly, from the methodological point of view our results point out that

  16. Corrosion evaluation of service water system materials

    International Nuclear Information System (INIS)

    Stein, A.A.; Felder, C.M.; Martin, R.L.

    1994-01-01

    The availability and reliability of the service water system is critical for safe operation of a nuclear power plant. Degradation of the system piping and components has forced utilities to re-evaluate the corrosion behavior of current and alternative system materials, to support assessments of the remaining service life of the service water system, selection of replacement materials, implementation of corrosion protection methods and corrosion monitoring programs, and identification of maintenance and operational constraints consistent with the materials used. TU Electric and Stone and Webster developed a service water materials evaluation program for the Comanche Peak Steam Electric Station. Because of the length of exposure and the generic interest in this program by the nuclear power industry, EPRI joined TU to co-sponsor the test program. The program was designed to evaluate the corrosion behavior of current system materials and candidate replacement materials and to determine the operational and design changes which could improve the corrosion performance of the system. Although the test program was designed to be representative of service water system materials and environments targeted to conditions at Comanche Peak, these conditions are typical of and relevant to other fresh water cooled nuclear service water systems. Testing was performed in raw water and water treated with biocide under typical service water operating conditions including continuous flow, intermittent flow, and stagnant conditions. The test program evaluated the 300 Series and 6% molybdenum stainless steels, copper-nickel, titanium, carbon steel, and a formed-in-place nonmetallic pipe lining to determine susceptibility to general, crevice, and microbiologically influenced corrosion and pitting attack. This report presents the results of the test program after 4 years of exposure

  17. Comammox in drinking water systems.

    Science.gov (United States)

    Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong

    2017-06-01

    The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Application of vertical electrical sounding combined with induced polarization method in ground water exploration; IP koka wo koryoshita hiteikoho suichoku tansa no chikasui chosa eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, M; Sakurada, H [Sumiko Consultants Co. Ltd., Tokyo (Japan); Suzuki, T [Hokkaido Development Bureau, Hokkaido Development Agency, Sapporo (Japan)

    1996-10-01

    For ground water exploration using vertical Schlumberger exploration method, measurement and analysis combined with induced polarization (IP) effect were conducted as trial. For the Schlumberger method, potential is measured at the center between potential electrodes during flow of dc current between current electrodes. In the case of vertical exploration, measurements are repeated with fixed potential electrodes by extending the distance between current electrodes. Ground water exploration was conducted using this method at Otaki village, Hokkaido. Geology of surveyed plateau consists of a basement of Pliocene tuffs and Quaternary Pleistocene sediments covering on the surface. For the results of analysis, four to seven beds were detected from the resistivity. The depth up to the lowest bed was between 25 and 85 m, the resistivity of each bed was between 9 and 8,000 ohm{times}m, and the polarizability was between 1 and 15 mV/V. Among these resistivity zones, it was judged that zones satisfying following three conditions correspond to coarse grain sediments saturated with ground water, and can be expected as aquifers; having resistivity ranging between 100 and 1,000 ohm{times}m, polarizability higher than 10 mV/V, and relatively large thickness. 11 refs., 6 figs.

  19. PWR secondary water chemistry diagnostic system

    International Nuclear Information System (INIS)

    Miyazaki, S.; Hattori, T.; Yamauchi, S.; Kato, A.; Suganuma, S.; Yoshikawa, T.

    1989-01-01

    Water chemistry control is one of the most important tasks in order to maintain the reliability of plant equipments and extend operating life of the plant. We developed an advanced water chemistry management system which is able to monitor and diagnose secondary water chemistry. A prototype system had been installed at one plant in Japan since Nov. 1986 in order to evaluate system performance and man-machine interface. The diagnosis system has been successfully tested off line using synthesized plant data for various cases. We are continuing to improve the applicability and develop new technology which make it evaluate steam generator crevice chemistry. (author)

  20. Water quality diagnosis system

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu

    1989-01-01

    By using a model representing a relationship between the water quality parameter and the dose rate in primary coolant circuits of a water cooled reactor, forecasting for the feature dose rate and abnormality diagnosis for the water quality are conducted. The analysis model for forecasting the reactor water activity or the dose rate receives, as the input, estimated curves for the forecast Fe, Ni, Co concentration in feedwater or reactor water pH, etc. from the water quality data in the post and forecasts the future radioactivity or dose rate in the reactor water. By comparing the result of the forecast and the setting value such as an aimed value, it can be seen whether the water quality at present or estimated to be changed is satisfactory or not. If the quality is not satisfactory, it is possible to take an early countermeasure. Accordingly, the reactor water activity and the dose rate can be kept low. Further, the basic system constitution, diagnosis algorithm, indication, etc. are identical between BWR and PWR reactors, except for only the difference in the mass balance. (K.M.)

  1. Cold Vacuum Drying (CVD) Facility Vacuum Purge System Chilled Water System Design Description. System 47-4

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    2000-01-01

    This system design description (SDD) addresses the Vacuum Purge System Chilled Water (VPSCHW) system. The discussion that follows is limited to the VPSCHW system and its interfaces with associated systems. The reader's attention is directed to Drawings H-1-82162, Cold Vacuum Drying Facility Process Equipment Skid PandID Vacuum System, and H-1-82224, Cold Vacuum Drying Facility Mechanical Utilities Process Chilled Water PandID. Figure 1-1 shows the location and equipment arrangement for the VPSCHW system. The VPSCHW system provides chilled water to the Vacuum Purge System (VPS). The chilled water provides the ability to condense water from the multi-canister overpack (MCO) outlet gases during the MCO vacuum and purge cycles. By condensing water from the MCO purge gas, the VPS can assist in drying the contents of the MCO

  2. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  3. Small Drinking Water Systems Communication and Outreach ...

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop

  4. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  5. Cold Vacuum Drying facility potable water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) potable water (PW) system. The PW system provides potable water to the CVDF for supply to sinks, water closets, urinals, showers, custodial service sinks, drinking fountains, the decontamination shower, supply water to the non-PW systems, and makeup water for the de-ionized water system

  6. A simple high efficiency solar water purification system

    Energy Technology Data Exchange (ETDEWEB)

    Duff, W.S.; Hodgson, D.A. [Colorado State University, Fort Collins, CO (United States). Dept. of Mechanical Engineering

    2005-07-01

    A new passive solar water pasteurization system based on density difference flow principles has been designed, built and tested. The system contains no valves and regulates flow based on the density difference between two columns of water. The new system eliminates boiling problems encountered in previous designs. Boiling is undesirable because it may contaminate treated water. The system with a total absorber area of 0.45 m2 has achieved a peak flow rate of 19.3 kg/h of treated water. Experiments with the prototype systems presented in this paper show that density driven systems are an attractive option to existing solar water pasteurization approaches. (author)

  7. Identification and characterization of steady and occluded water in drinking water distribution systems.

    Science.gov (United States)

    Tong, Huiyan; Zhao, Peng; Zhang, Hongwei; Tian, Yimei; Chen, Xi; Zhao, Weigao; Li, Mei

    2015-01-01

    Deterioration and leakage of drinking water in distribution systems have been a major issue in the water industry for years, which are associated with corrosion. This paper discovers that occluded water in the scales of the pipes has an acidic environment and high concentration of iron, manganese, chloride, sulfate and nitrate, which aggravates many pipeline leakage accidents. Six types of water samples have been analyzed under the flowing and stagnant periods. Both the water in the exterior of the tubercles and stagnant water carry suspended iron particles, which explains the occurrence of "red water" when the system hydraulic conditions change. Nitrate is more concentrated in occluded water under flowing condition in comparison with that in flowing water. However, the concentration of nitrate in occluded water under stagnant condition is found to be less than that in stagnant water. A high concentration of manganese is found to exist in steady water, occluded water and stagnant water. These findings impact secondary pollution and the corrosion of pipes and containers used in drinking water distribution systems. The unique method that taking occluded water from tiny holes which were drilled from the pipes' exteriors carefully according to the positions of corrosion scales has an important contribution to research on corrosion in distribution systems. And this paper furthers our understanding and contributes to the growing body of knowledge regarding occluded environments in corrosion scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Assessment of water supply system and water quality of Lighvan village using water safety plan

    Directory of Open Access Journals (Sweden)

    Mojtaba Pourakbar

    2015-12-01

    Full Text Available Background: Continuous expansion of potable water pollution sources is one of the main concerns of water suppliers, therefore measures such as water safety plan (WSP, have been taken into account to control these sources of pollution. The aim of this study was to identify probable risks and threatening hazards to drinking water quality in Lighvan village along with assessment of bank filtration of the village. Methods: In the present study all risks and probable hazards were identified and ranked. For each of these cases, practical suggestions for removing or controlling them were given. To assess potable water quality in Lighvan village, sampling was done from different parts of the village and physicochemical parameters were measured. To assess the efficiency of bank filtration system of the village, independent t test was used to compare average values of parameters in river and treated water. Results: One of the probable sources of pollution in this study was domestic wastewater which threatens water quality. The results of this study show that bank filtration efficiency in water supply of the village is acceptable. Conclusion: Although Bank filtration imposes fewer expenses on governments, it provides suitable water for drinking and other uses. However, it should be noted that application of these systems should be done after a thorough study of water pollution level, types of water pollutants, soil properties of the area, soil percolation and system distance from pollutant sources.

  9. Application of expert system to evaluating reactor water cleanup system performance

    International Nuclear Information System (INIS)

    Maeda, Katsuji; Nakamura, Masahiro; Nagasawa, Katsumi; Fushiki, Sumiyuki.

    1991-01-01

    Expert systems employing artificial intelligence (AI) have been developed for finding and elucidating causes of anomalies and malfunctions, presenting pertinent recommendation for countermeasures and for making precautionary diagnosis. On the other hand, further improvements in reliabilities for chemical control are required to promote BWR plant reliability and advancement. Especially, it is necessary to maintain the reactor water purity in high quality to minimize stress corrosion cracking (SCC) in primary cooling system, fuel performance degradation and radiation buildup. The reactor water quality is controlled by the reactor water cleanup (RWCU) system. So, it is very important to maintain the RWCU performance, in order to keep good reactor water quality. This paper describes an expert system used for evaluating RWCU system performance in BWR plants. (author)

  10. The Pluralistic Water Research Concept: A New Human-Water System Research Approach

    Directory of Open Access Journals (Sweden)

    Mariele Evers

    2017-11-01

    Full Text Available The use and management of water systems is influenced by a number of factors, such as economic growth, global change (e.g., urbanization, hydrological-climatic changes, politics, history and culture. Despite noteworthy efforts to develop integrative approaches to analyze water-related problems, human-water research remains a major challenge for scholars and decision makers due to the increasing complexity of human and water systems interactions. Although existing concepts try to integrate the social and water dimensions, they usually have a disciplinary starting point and perspective, which can represent an obstacle to true integration in human-water research. Hence, a pluralistic approach is required to better understand the interactions between human and water systems. This paper discusses prominent human-water concepts (Integrated Water Resources Management (IWRM, socio-hydrology, and political ecology/hydrosocial approach and presents a newly developed concept termed pluralistic water research (PWR. This is not only a pluralistic but also an integrative and interdisciplinary approach which aims to coherently and comprehensively integrate human-water dimensions. The different concepts are illustrated in a synopsis, and diverse framing of research questions are exemplified. The PWR concept integrates physical and social sciences, which enables a comprehensive analysis of human-water interactions and relations. This can lead to a better understanding of water-related issues and potentially sustainable trajectories.

  11. Wide-area service water information management system; Koiki suido joho kanri system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-10

    A wide-area service water system is required to be more resistant to emergency situations, e.g., drought and hazards, and meet consumers' diversifying needs in each area, while stably supplying water at ordinary times by utilizing purification plants located in places within its system and piping networks in the water area. Fuji Electric is providing information management systems for wide-area service water systems, developed based on the company's abundant system know-hows accumulated for a long time and latest techniques. They are characterized by (1) Web monitoring, aided by an intranet system, (2) high-speed data transmission by a digital transmission system, (3) open network environments, and (4) emergency calling of the staff, and management of stock materials. The system allows to monitor operating conditions within the area on real time, needless to say, and business administration with civil minimum taken into consideration, e.g., stabilizing water quality by coordinating the purification plants within the system. (translated by NEDO)

  12. The optimisation of a water distribution system using Bentley WaterGEMS software

    Directory of Open Access Journals (Sweden)

    Świtnicka Karolina

    2017-01-01

    Full Text Available The proper maintenance of water distribution systems (WDSs requires from operators multiple actions in order to ensure optimal functioning. Usually, all requirements should be adjusted simultaneously. Therefore, the decision-making process is often supported by multi-criteria optimisation methods. Significant improvements of exploitation conditions of WDSs functioning can be achieved by connecting small water supply networks into group systems. Among many potential tools supporting advanced maintenance and management of WDSs, significant improvements have tools that can find the optimal solution by the implemented mechanism of metaheuristic methods, such as the genetic algorithm. In this paper, an exemplary WDS functioning optimisation is presented, in relevance to a group water supply system. The action range of optimised parameters included: maximisation of water flow velocity, regulation of pressure head, minimisation of water retention time in a network (water age and minimisation of pump energy consumption. All simulations were performed in Bentley WaterGEMS software.

  13. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability; Experiences d'interferometrie atomique avec le lithium. Mesure de precision de la polarisabilite electrique

    Energy Technology Data Exchange (ETDEWEB)

    Miffre, A

    2005-06-15

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, {alpha} = (24.33 {+-} 0.16)*10{sup -30} m{sup 3}, improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  14. A fuzzy recommendation system for daily water intake

    Directory of Open Access Journals (Sweden)

    Bin Dai

    2016-05-01

    Full Text Available Water is one of the most important constituents of the human body. Daily consumption of water is thus necessary to protect human health. Daily water consumption is related to several factors such as age, ambient temperature, and degree of physical activity. These factors are generally difficult to express with exact numerical values. The main objective of this article is to build a daily water intake recommendation system using fuzzy methods. This system will use age, physical activity, and ambient temperature as the input factors and daily water intake values as the output factor. The reasoning mechanism of the fuzzy system can calculate the recommended value of daily water intake. Finally, the system will compare the actual recommended values with our system to determine the usefulness. The experimental results show that this recommendation system is effective in actual application.

  15. Performance Monitoring of Residential Hot Water Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  16. Non-conventional screening of the Coulomb interaction in low-dimensional and finite-size systems

    NARCIS (Netherlands)

    van den Brink, J.; Sawatzky, G.A.

    2000-01-01

    We study the screening of the Coulomb interaction in non-polar systems by polarizable atoms. We show that in low dimensions and small finite-size systems this screening deviates strongly from that conventionally assumed. In fact in one dimension the short-range interaction is strongly screened and

  17. Mycobacteria in water and loose deposits of drinking water distribution systems in Finland.

    Science.gov (United States)

    Torvinen, Eila; Suomalainen, Sini; Lehtola, Markku J; Miettinen, Ilkka T; Zacheus, Outi; Paulin, Lars; Katila, Marja-Leena; Martikainen, Pertti J

    2004-04-01

    Drinking water distribution systems were analyzed for viable counts of mycobacteria by sampling water from waterworks and in different parts of the systems. In addition, loose deposits collected during mechanical cleaning of the main pipelines were similarly analyzed. The study covered 16 systems at eight localities in Finland. In an experimental study, mycobacterial colonization of biofilms on polyvinyl chloride tubes in a system was studied. The isolation frequency of mycobacteria increased from 35% at the waterworks to 80% in the system, and the number of mycobacteria in the positive samples increased from 15 to 140 CFU/liter, respectively. Mycobacteria were isolated from all 11 deposits with an accumulation time of tens of years and from all 4 deposits which had accumulated during a 1-year follow-up time. The numbers of mycobacteria were high in both old and young deposits (medians, 1.8 x 10(5) and 3.9 x 10(5) CFU/g [dry weight], respectively). Both water and deposit samples yielded the highest numbers of mycobacteria in the systems using surface water and applying ozonation as an intermediate treatment or posttreatment. The number and growth of mycobacteria in system waters correlated strongly with the concentration of assimilable organic carbon in the water leaving the waterworks. The densities of mycobacteria in the developing biofilms were highest at the distal sites of the systems. Over 90% of the mycobacteria isolated from water and deposits belonged to Mycobacterium lentiflavum, M. tusciae, M. gordonae, and a previously unclassified group of mycobacteria. Our results indicate that drinking water systems may be a source for recently discovered new mycobacterial species.

  18. Joint optimization of regional water-power systems

    Science.gov (United States)

    Pereira-Cardenal, Silvio J.; Mo, Birger; Gjelsvik, Anders; Riegels, Niels D.; Arnbjerg-Nielsen, Karsten; Bauer-Gottwein, Peter

    2016-06-01

    Energy and water resources systems are tightly coupled; energy is needed to deliver water and water is needed to extract or produce energy. Growing pressure on these resources has raised concerns about their long-term management and highlights the need to develop integrated solutions. A method for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost of power production and maximizes the benefits of water allocation, subject to constraints from the power and hydrological systems. The method was tested on the Iberian Peninsula using simplified models of the seven major river basins and the power market. The optimization problem was successfully solved using stochastic dual dynamic programming. The results showed that current water allocation to hydropower producers in basins with high irrigation productivity, and to irrigation users in basins with high hydropower productivity was sub-optimal. Optimal allocation was achieved by managing reservoirs in very distinct ways, according to the local inflow, storage capacity, hydropower productivity, and irrigation demand and productivity. This highlights the importance of appropriately representing the water users' spatial distribution and marginal benefits and costs when allocating water resources optimally. The method can handle further spatial disaggregation and can be extended to include other aspects of the water-energy nexus.

  19. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  20. Monitoring Performance of a combined water recycling system

    OpenAIRE

    Castleton, H.F.; Hathway, E.A.; Murphy, E.; Beck, S.B.M.

    2014-01-01

    Global water demand is expected to outstrip supply dramatically by 2030, making water recycling an important tool for future water security. A large combined grey water and rainwater recycling system has been monitored in response to an identified knowledge gap of the in-use performance of such systems. The water saving efficiency of the system was calculated at −8ṡ5% in 2011 and –10% in 2012 compared to the predicted 36%. This was due to a lower quantity of grey water and rainwater being col...

  1. 33 CFR 149.419 - Can the water supply for the helicopter deck fire protection system be part of a fire water system?

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Can the water supply for the... § 149.419 Can the water supply for the helicopter deck fire protection system be part of a fire water system? (a) The water supply for the helicopter deck fire protection system required under § 149.420 or...

  2. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  3. TORR system polishes oily water clean

    International Nuclear Information System (INIS)

    Mowers, J.

    2002-01-01

    The TORR (total oil recovery and remediation) system utilizes a specially patented polymer material, similar to styrofoam, which is used to get rid of non-soluble hydrocarbons from water. An application in Fort Smith, Northwest Territories, is described where it was used to recover diesel oil, which had been seeping into the groundwater over a period of 20 years. About 100,000 gallons of heating oil had leached into the water; TORR removed the non-soluble hydrocarbons, while another piece of equipment removed the soluble portions. After treatment the water tested consistently at non-detectable levels and was clean enough to be discharged into the town's sewer system. The system is considered ideal for oil spills clean-up underground, onshore, or the open sea, but it also has many potentially useful applications in industrial and oilfield applications. Water used in steam injection and water floods to produce heavy oil and SAGD applications are some of the obvious ones that come to mind. Cleaning up the huge tailings ponds at the mining and processing of oil sands, and removing diluent from water that is used to thin out bitumen in pipelines so that it can be transported to processing plants, are other promising areas of application. Several field trials to test the effectiveness of the system in these type of applications are scheduled for the summer and fall of 2002

  4. Sustainable application of renewable sources in water pumping systems: Optimized energy system configuration

    International Nuclear Information System (INIS)

    Ramos, J.S.; Ramos, H.M.

    2009-01-01

    Eighteen years ago, in Portugal, the expenses in a water supply system associated with energy consumption were quite low. However, with the successive crises of energy fuel and the increase of the energy tariff as well as the water demand, the energy consumption is becoming a larger and a more important part of the total budget of water supply pumping systems. Also, new governmental policies, essentially in developed countries, are trying to implement renewable energies. For these reasons, a case-study in Portugal of a water pumping system was analysed to operate connected to solar and wind energy sources. A stand-alone and a grid-connected systems were tested. The stand alone was compared with the cost of extending the national electric grid. In the grid-connected system two solutions were analysed, one with a water turbine and another without. To be able to implement a water turbine, a larger water pump was needed to pump the necessary water as for consumption as for energy production. For the case analysed the system without a water turbine proved to be more cost-effective because the energy tariff is not yet so competitive as well as the cost of water turbines

  5. Hanford 200 area (sanitary) waste water system

    International Nuclear Information System (INIS)

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system

  6. Submersible purification system for radioactive water

    Science.gov (United States)

    Abbott, Michael L.; Lewis, Donald R.

    1989-01-01

    A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

  7. Space Station Freedom regenerative water recovery system configuration selection

    Science.gov (United States)

    Reysa, R.; Edwards, J.

    1991-01-01

    The Space Station Freedom (SSF) must recover water from various waste water sources to reduce 90 day water resupply demands for a four/eight person crew. The water recovery system options considered are summarized together with system configuration merits and demerits, resource advantages and disadvantages, and water quality considerations used to select the SSF water recovery system.

  8. Water turbine system and method of operation

    Science.gov (United States)

    Costin, Daniel P.

    2010-06-15

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  9. Integrating Product Water Quality Effects In Holistic Assessments Of Water Systems

    OpenAIRE

    Rygaard, Martin

    2011-01-01

    While integrated assessments of sustainability of water systems are largely focused on quantity issues, chemical use, and energy consumption, effects of the supplied water quality are often overlooked. Drinking water quality affects corrosion rates, human health, applicability of water and aesthetics. Even small changes in the chemical composition of water may accumulate large impacts on city scale. Here, a method for integrated assessment of water quality is presented. Based on dose-response...

  10. Instrumentation for NBI SST-1 cooling water system

    International Nuclear Information System (INIS)

    Qureshi, Karishma; Patel, Paresh; Jana, M.R.

    2015-01-01

    Neutral Beam Injector (NBI) System is one of the heating systems for Steady state Superconducting Tokamak (SST-1). It is capable of generating a neutral hydrogen beam of power 0.5 MW at 30 kV. NBI system consists of following sub-systems: Ion source, Neutralizer, Deflection Magnet and Magnet Liner (ML), Ion Dump (ID), V-Target (VT), Pre Duct Scraper (PDS), Beam Transmission Duct (BTD) and Shine Through (ST). For better heat removal management purpose all the above sub-systems shall be equipped with Heat Transfer Elements (THE). During beam operation these sub-systems gets heated due to the received heat load which requires to be removed by efficient supplying water. The cooling water system along with the other systems (External Vacuum System, Gas Feed System, Cryogenics System, etc.) will be controlled by NBI Programmable Logic Control (PLC). In this paper instrumentation and its related design for cooling water system is discussed. The work involves flow control valves, transmitters (pressure, temperature and water flow), pH and conductivity meter signals and its interface with the NBI PLC. All the analog input, analog output, digital input and digital output signals from the cooling water system will be isolated and then fed to the NBI PLC. Graphical Users Interface (GUI) needed in the Wonderware SCADA for the cooling water system shall also be discussed. (author)

  11. Time-dependent density functional theory/discrete reaction field spectra of open shell systems : The visual spectrum of [Fe-III(PyPepS)(2)](-) in aqueous solution

    NARCIS (Netherlands)

    van Duijnen, Piet Th.; Greene, Shannon N.; Richards, Nigel G. J.

    2007-01-01

    We report the calculated visible spectrum of [Fe-III(PyPepS)(2)](-) in aqueous solution. From all-classical molecular dynamics simulations on the solute and 200 water molecules with a polarizable force field, 25 solute/solvent configurations were chosen at random from a 50 ps production run and

  12. Study on measuring social cost of water pollution: concentrated on Han River water system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im; Min, Dong Gee; Chung, Hoe Seong; Lim, Hyun Jeong; Kim, Mee Sook [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    Following the economic development and the progress of urbanization, the damage on water pollution has been more serious but a social cost caused by water pollution cannot be measured. Although the need of water quality preservation is emphasized, a base material for public investment on enhancing water quality preservation is not equipped yet due to the absence of economic values of water resource. Therefore it measured a cost generated by leaving pollution not treated water quality in this study. To measure the usable value of water resource or the cost of water pollution all over the country should include a national water system, but this study is limited on the mainstream of Han River water system from North Han River through Paldang to Chamsil sluice gates. Further study on Nakdong River and Keum River water systems should be done. 74 refs., 4 figs., 51 tabs.

  13. Structure-retention and mobile phase-retention relationships for reversed-phase high-performance liquid chromatography of several hydroxythioxanthone derivatives in binary acetonitrile-water mixtures

    International Nuclear Information System (INIS)

    Amiri, Ali Asghar; Hemmateenejad, Bahram; Safavi, Afsaneh; Sharghi, Hashem; Beni, Ali Reza Salimi; Shamsipur, Mojtaba

    2007-01-01

    The reversed-phase high-performance liquid chromatographic (RP-HPLC) behavior of some newly synthesized hydroxythioxanthone derivatives using binary acetonitrile-water mixtures as mobile phase has been examined. First, the variation in the retention time of each molecule as a function of mobile phase properties was studied by Kamlet-Taft solvatochromic equations. Then, the influences of molecular structure of the hydroxythioxanthone derivatives on their retention time in various mobile phase mixtures were investigated by quantitative structure-property relationship (QSPR) analysis. Finally, a unified model containing both the molecular structure parameters and mobile phase properties was developed to describe the chromatographic behavior of the systems studied. Among the solvent properties, polarity/polarizability parameter (π * ) and hydrogen-bond basicity (β), and among the solute properties, the most positive local charge (MPC), the sum of positive charges on hydrogen atoms contributing in hydrogen bonding (SPCH) and lipophilicity index (log P) were identified as controlling factors in the RP-HPLC behavior of hydroxythioxanthone derivatives in actonitrile-water binary solvents

  14. A study of Cirus heavy water system isotopic purity

    International Nuclear Information System (INIS)

    Thomas, Shibu; Sahu, A.K.; Unni, V.K.P.; Pant, R.C.

    2000-01-01

    Cirus uses heavy water as moderator and helium as cover gas. Approximately one tonne of heavy water was added to the system every year for routine make up. Isotopic purity (IP) of this water used for addition was always higher than that of the system. Though this should increase IP of heavy water in the system, it has remained almost at the same level, over the years. A study was carried out to estimate the extent of improvement in IP of heavy water in the system that should have occurred because of this and other factors in last 30 years. Reasons for non-occurrence of such an improvement were explored. Ion exchange resins used for purification of heavy water and air ingress into helium cover gas system appear to be the principal sources of entry of light water into heavy water system. (author)

  15. Leaks in the internal water supply piping systems

    OpenAIRE

    Orlov Evgeniy Vladimirovich; Komarov Anatoliy Sergeevich; Mel’nikov Fedor Alekseevich; Serov Aleksandr Evgen’evich

    2015-01-01

    Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold) as a result of impaired integrity, complicating the operation of a system and leading to high costs of ...

  16. A transportable system for radioactivity contaminated water treatment

    International Nuclear Information System (INIS)

    2013-01-01

    Contaminated water treatment system called SARRY for retrieval and recovery of water in operation at the site of Fukushima Daiichi Nuclear Power Plant since August 2011 has been modified by compacting the system size to develop a mobile system SARRY-Aqua that can process Cs-contaminated water (one ton/hour) to the level of 10 Bq/kg. Installing the system in a small container with dimensions conforming to the international standards facilitates transportation by truck and enables the contaminated water treatment occurring in a variety of locations. (S. Ohno)

  17. Joint optimization of regional water-power systems

    DEFF Research Database (Denmark)

    Cardenal, Silvio Javier Pereira; Mo, Birger; Gjelsvik, Anders

    2016-01-01

    using stochastic dual dynamic programming. The results showed that current water allocation to hydropower producers in basins with high irrigation productivity, and to irrigation users in basins with high hydropower productivity was sub-optimal. Optimal allocation was achieved by managing reservoirs...... for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost...... of power production and maximizes the benefits of water allocation, subject to constraints from the power and hydrological systems. The method was tested on the Iberian Peninsula using simplified models of the seven major river basins and the power market. The optimization problem was successfully solved...

  18. Life Support Systems: Wastewater Processing and Water Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Wastewater Processing and Water Management task: Within an integrated life support system, water...

  19. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2015-01-01

    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  20. Grey water treatment systems: A review

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2011-01-01

    This review aims to discern a treatment for grey water by examining grey water characteristics, reuse standards, technology performance and costs. The review reveals that the systems for treating grey water, whatever its quality, should consist of processes that are able to trap pollutants with a

  1. Drying of heavy water system and works of charging heavy water in Fugen

    International Nuclear Information System (INIS)

    Matsushita, Tadashi; Iijima, Setsuo

    1980-01-01

    The advanced thermal reactor ''Fugen'' is the first heavy water-moderated, boiling light water-cooled nuclear reactor for power generation in Japan. It is a large heavy water reactor having about 130 m 3 of heavy water inventory and about 300 m 3 of helium space as the cover gas of the heavy water system. The heavy water required was purchased from FRG, which had been used for the power output test in the KKN, and the quality was 99.82 mol % mean heavy water concentration. The concentration of heavy water for Fugen used for the nuclear design is 99.70 mol%, and it was investigated how heavy water can be charged without lowering the concentration. The matters of investigation include the method of bringing the heavy water and helium system to perfect dryness after washing and light water test, the method of confirming the sufficient dryness to prevent the deterioration, and the method of charging heavy water safely from its containers. On the basis of the results of investigation, the actual works were started. The works of drying the heavy water and helium system by vacuum drying, the works of sampling heavy water and the result of the degree of deterioration, and the works of charging heavy water and the measures to the heavy water remaing in the containers are described. All the works were completed safely and smoothly. (J.P.N.)

  2. Influences of water quality and climate on the water-energy nexus: A spatial comparison of two water systems.

    Science.gov (United States)

    Stang, Shannon; Wang, Haiying; Gardner, Kevin H; Mo, Weiwei

    2018-07-15

    As drinking water supply systems plan for sustainable management practices, impacts from future water quality and climate changes are a major concern. This study aims to understand the intraannual changes of energy consumption for water treatment, investigate the relative importance of water quality and climate indicators on energy consumption for water treatment, and predict the effects of climate change on the embodied energy of treated, potable water at two municipal drinking water systems located in the northeast and southeast US. To achieve this goal, a life cycle assessment was first performed to quantify the monthly energy consumption in the two drinking water systems. Regression and relative importance analyses were then performed between climate indicators, raw water quality indicators, and chemical and energy usages in the treatment processes to determine their correlations. These relationships were then used to project changes in embodied energy associated with the plants' processes, and the results were compared between the two regions. The projections of the southeastern US water plant were for an increase in energy demand resulted from an increase of treatment chemical usages. The northeastern US plant was projected to decrease its energy demand due to a reduced demand for heating the plant's infrastructure. The findings indicate that geographic location and treatment process may determine the way climate change affects drinking water systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Comprehensive study of electronic polarizability and band gap of B2O3–Bi2O3–ZnO–SiO2 glass network

    Directory of Open Access Journals (Sweden)

    Iskandar Shahrim Mustafa

    2017-10-01

    Full Text Available Quaternary glasses were successfully fabricated using melt quenching technique based on the chemical compound composition (xBi2O3–(0.5−x ZnO–(0.2B2O3–(0.3SiO2, where (x=0.1, 0.2, 0.3, 0.4, 0.45 mole. The sources of SiO2 was produced from rice husk ash (RHA at 99.36% of SiO2. The Urbach energy was increased from 0.16eV to the 0.29eV as the mole of Bi2O3 increased in the glass structure. The indirect energy band gap is indicated in decrement pattern with 3.15eV towards 2.51eV. The results of Urbach energy and band gap energy that were obtained are due to the increment of Bi3+ ion in the glass network. The refractive indexes for the prepared glasses were evaluated at 2.36 to 2.54 based on the Lorentz–Lorentz formulation which correlated to the energy band gap. The calculated of molar polarizability, electronic polarizability and optical basicity exemplify fine complement to the Bi2O3 addition in the glass network. The glass sample was indicated in amorphous state.

  4. Energy costs and Portland water supply system

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, W.M.; Hawley, R.P.

    1981-10-01

    The changing role of electrical energy on the Portland, Oregon, municipal-water-supply system is presented. Portland's actions in energy conservation include improved operating procedures, pump modifications, and modifications to the water system to eliminate pumping. Portland is implementing a small hydroelectric project at existing water-supply dams to produce an additional source of power for the area. Special precautions in construction and operation are necessary to protect the high quality of the water supply. 2 references, 7 figures.

  5. Leaks in the internal water supply piping systems

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2015-03-01

    Full Text Available Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold as a result of impaired integrity, complicating the operation of a system and leading to high costs of repair and equipment restoration. A large number of leaks occur in old buildings, where the regulatory service life of pipelines has come to an end, and the scheduled repair for some reason has not been conducted. Steel pipelines are used in the systems without any protection from corrosion and they get out of order. Leakages in new houses are also not uncommon. They usually occur as a result of low-quality adjustment of the system by workers. It also important to note the absence of certain skills of plumbers, who don’t conduct the inspections of in-house systems in time. Sometimes also the residents themselves forget to keep their pipeline systems and water fittings in their apartment in good condition. Plumbers are not systematically invited for preventive examinations to detect possible leaks in the domestic plumbing. The amount of unproductive losses increases while simultaneous use of valve tenants, and at the increase of the number of residents in the building. Water leaks in the system depend on the amount of water system piping damages, and damages of other elements, for example, water valves, connections, etc. The pressure in the leak area also plays an important role.

  6. Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

    Science.gov (United States)

    Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George

    2017-10-01

    The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.

  7. Solar Powered Automated Pipe Water Management System, Water Footprint and Carbon Footprint in Soybean Production

    Science.gov (United States)

    Satyanto, K. S.; Abang, Z. E.; Arif, C.; Yanuar, J. P. M.

    2018-05-01

    An automatic water management system for agriculture land was developed based on mini PC as controller to manage irrigation and drainage. The system was integrated with perforated pipe network installed below the soil surface to enable water flow in and out through the network, and so water table of the land can be set at a certain level. The system was operated by using solar power electricity supply to power up water level and soil moisture sensors, Raspberry Pi controller and motorized valve actuator. This study aims to implement the system in controlling water level at a soybean production land, and further to observe water footprint and carbon footprint contribution of the soybean production process with application of the automated system. The water level of the field can be controlled around 19 cm from the base. Crop water requirement was calculated using Penman-Monteith approach, with the productivity of soybean 3.57t/ha, total water footprint in soybean production is 872.01 m3/t. Carbon footprint was calculated due to the use of solar power electric supply system and during the soybean production emission was estimated equal to 1.85 kg of CO2.

  8. Amoxicillin in a biological water recovery system

    International Nuclear Information System (INIS)

    Morse, A.; Jackson, A.; Rainwater, K.; Pickering, K.

    2002-01-01

    Pharmaceuticals are new contaminants of concern in the aquatic environment, having been identified in groundwater, surface water, and residential tap water. Possible sources of pharmaceuticals include household wastewaters, runoff from feedlots, or waste discharges from pharmaceutical manufacturing plants. When surface water or groundwater supplies impacted by pharmaceuticals are used in drinking water production, the contaminants may reduce drinking water quality. Many pharmaceuticals, such as amoxicillin, pass through the body largely unmetabolized and directly enter wastewater collection systems. Pharmaceuticals are designed to persist in the body long enough to have the desired therapeutic effect. Therefore, they may also have the ability to persist in the environment (Seiler et al, 1999). The purpose of this work is to determine the overall transformation potential of a candidate pharmaceutical in wastewater treatment with specific emphasis on recycle systems. Amoxicillin is the selected pharmaceutical agent, an orally absorbed broad-spectrum antibiotic with a variety of clinical uses including ear, nose, and throat infections and lower respiratory tract infections. Experiments were conducted using an anaerobic reactor (with NO 3 - and NO 2 - as the e - acceptors) followed by a two-phase nitrifying tubular reactor. Influent composed of water, urine and surfactant was spiked with amoxicillin and fed into the wastewater recycle system. The concentration of amoxicillin in the feed and effluent was quantified using an HPLC. Results from this study include potential for long-term buildup in recycled systems, accumulation of breakdown products and possible transfer of antibiotic resistance to microorganisms in the system effluent. In addition, the results of this study may provide information on contamination potential for communities that are considering supplementing drinking water supplies with recovered wastewater or for entities considering a closed loop

  9. Competition among Li+, Na+, K+ and Rb+ Monovalent Ions for DNA in Molecular Dynamics Simulations using the Additive CHARMM36 and Drude Polarizable Force Fields

    OpenAIRE

    Savelyev, Alexey; MacKerell, Alexander D.

    2015-01-01

    In the present study we report on interactions of and competition between monovalent ions for two DNA sequences in MD simulations. Efforts included the development and validation of parameters for interactions among the first-group monovalent cations, Li+, Na+, K+ and Rb+, and DNA in the Drude polarizable and additive CHARMM36 force fields (FF). The optimization process targeted gas-phase QM interaction energies of various model compounds with ions and osmotic pressures of bulk electrolyte so...

  10. Design optimization of photovoltaic powered water pumping systems

    International Nuclear Information System (INIS)

    Ghoneim, A.A.

    2006-01-01

    The use of photovoltaics as the power source for pumping water is one of the most promising areas in photovoltaic applications. With the increased use of water pumping systems, more attention has been paid to their design and optimum utilization in order to achieve the most reliable and economical operation. This paper presents the results of performance optimization of a photovoltaic powered water pumping system in the Kuwait climate. The direct coupled photovoltaic water pumping system studied consists of the PV array, DC motor, centrifugal pump, a storage tank that serves a similar purpose to battery storage and a maximum power point tracker to improve the efficiency of the system. The pumped water is desired to satisfy the domestic needs of 300 persons in a remote area in Kuwait. Assuming a figure of 40 l/person/day for water consumption, a volume of 12 m 3 should be pumped daily from a deep well throughout the year. A computer simulation program is developed to determine the performance of the proposed system in the Kuwait climate. The simulation program consists of a component model for the PV array with maximum power point tracker and component models for both the DC motor and the centrifugal pump. The five parameter model is adapted to simulate the performance of amorphous silicon solar cell modules. The size of the PV array, PV array orientation and the pump-motor-hydraulic system characteristics are varied to achieve the optimum performance for the proposed system. The life cycle cost method is implemented to evaluate the economic feasibility of the optimized photovoltaic powered water pumping system. At the current prices of PV modules, the cost of the proposed photovoltaic powered water pumping system is found to be less expensive than the cost of the conventional fuel system. In addition, the expected reduction in the prices of photovoltaic modules in the near future will make photovoltaic powered water pumping systems more feasible

  11. Neutral sodium/bicarbonate/sulfate hot waters in geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahon, W.A.J. (Dept. of Industrial and Scientific Research, Wairakei, New Zealand); Klyen, L.E.; Rhode, M.

    1980-03-01

    The least understood thermal water is a near neutral water which contains varying amounts of bicarbonate and sulfate as the major anions, low concentrations of chloride (< 30 ppM) and sodium as the major cation. In the past this water has been referred to as a sodium bicarbonate water but present studies suggest that the quantities of bicarbonate and sulfate in this water type are frequently of the same order. Of particular interest is the distribution and position of the sodium/bicarbonate/sulfate water in the same and different systems. Many hot springs in Indonesia, for example, discharge water of this composition. Present studies indicate that this water type can originate from high temperature reservoirs which form the secondary steam heated part of a normal high temperature geothermal system. The hydrological conditions producing these waters in geothermal systems are investigated and the relationship between the water type and vapor dominated systems is discussed. It is suggested that the major water type occurring in the so called vapor dominated parts of geothermal systems is this water. The water does not simply represent steam condensate, rather it consists essentially of meteoric water which has been steam heated. The water composition results from the interaction of carbon dioxide and hydrogen sulfide with meteoric water and the rocks confining this water in the aquifer.

  12. Cold Vacuum Drying facility deionized water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) de-ionized water system. The de-ionized water system is used to provide clean, conditioned water, free from contaminants, chlorides and iron for the CVD Facility. Potable water is supplied to the deionized water system, isolated by a backflow prevention device. After the de-ionization process is complete, via a packaged de-ionization unit, de-ionized water is supplied to the process deionization unit

  13. A Generally Applicable Computer Algorithm Based on the Group Additivity Method for the Calculation of Seven Molecular Descriptors: Heat of Combustion, LogPO/W, LogS, Refractivity, Polarizability, Toxicity and LogBB of Organic Compounds; Scope and Limits of Applicability

    Directory of Open Access Journals (Sweden)

    Rudolf Naef

    2015-10-01

    Full Text Available A generally applicable computer algorithm for the calculation of the seven molecular descriptors heat of combustion, logPoctanol/water, logS (water solubility, molar refractivity, molecular polarizability, aqueous toxicity (protozoan growth inhibition and logBB (log (cblood/cbrain is presented. The method, an extendable form of the group-additivity method, is based on the complete break-down of the molecules into their constituting atoms and their immediate neighbourhood. The contribution of the resulting atom groups to the descriptor values is calculated using the Gauss-Seidel fitting method, based on experimental data gathered from literature. The plausibility of the method was tested for each descriptor by means of a k-fold cross-validation procedure demonstrating good to excellent predictive power for the former six descriptors and low reliability of logBB predictions. The goodness of fit (Q2 and the standard deviation of the 10-fold cross-validation calculation was >0.9999 and 25.2 kJ/mol, respectively, (based on N = 1965 test compounds for the heat of combustion, 0.9451 and 0.51 (N = 2640 for logP, 0.8838 and 0.74 (N = 1419 for logS, 0.9987 and 0.74 (N = 4045 for the molar refractivity, 0.9897 and 0.77 (N = 308 for the molecular polarizability, 0.8404 and 0.42 (N = 810 for the toxicity and 0.4709 and 0.53 (N = 383 for logBB. The latter descriptor revealing a very low Q2 for the test molecules (R2 was 0.7068 and standard deviation 0.38 for N = 413 training molecules is included as an example to show the limits of the group-additivity method. An eighth molecular descriptor, the heat of formation, was indirectly calculated from the heat of combustion data and correlated with published experimental heat of formation data with a correlation coefficient R2 of 0.9974 (N = 2031.

  14. Designing and visualizing the water-energy-food nexus system

    Science.gov (United States)

    Endo, A.; Kumazawa, T.; Yamada, M.; Kato, T.

    2017-12-01

    The objective of this study is to design and visualize a water-energy-food nexus system to identify the interrelationships between water-energy-food (WEF) resources and to understand the subsequent complexity of WEF nexus systems holistically, taking an interdisciplinary approach. Object-oriented concepts and ontology engineering methods were applied according to the hypothesis that the chains of changes in linkages between water, energy, and food resources holistically affect the water-energy-food nexus system, including natural and social systems, both temporally and spatially. The water-energy-food nexus system that is developed is significant because it allows us to: 1) visualize linkages between water, energy, and food resources in social and natural systems; 2) identify tradeoffs between these resources; 3) find a way of using resources efficiently or enhancing the synergy between the utilization of different resources; and 4) aid scenario planning using economic tools. The paper also discusses future challenges for applying the developed water-energy-food nexus system in other areas.

  15. Water maser emission from exoplanetary systems

    Science.gov (United States)

    Cosmovici, C. B.; Pogrebenko, S.

    2018-01-01

    Since the first discovery of a Jupiter-mass planet in 1995 more than 2000 exo-planets have been found to exist around main sequence stars. The detection techniques are based on the radial velocity method (which involves the measurement of the star's wobbling induced by the gravitational field of the orbiting giant planets) or on transit photometry by using space telescopes (Kepler, Corot, Hubble and Spitzer) outside the absorbing Earth atmosphere. From the ground, as infrared observations are strongly limited by atmospheric absorption, radioastronomy offers almost the only possible way to search for water presence and abundance in the planetary atmospheres of terrestrial-type planets where life may evolve. Following the discovery in 1994 of the first water maser emission in the atmosphere of Jupiter induced by a cometary impact, our measurements have shown that the water maser line at 22 GHz (1.35 cm) can be used as a powerful diagnostic tool for water search outside the solar system, as comets are able to deliver considerable amounts of water to planets raising the fascinating possibility of extraterrestrial life evolution. Thus in 1999 we started the systematic search for water on 35 different targets up to 50 light years away from the Sun. Here we report the first detection of the water maser emission from the exoplanetary systems Epsilon Eridani, Lalande 21185 and Gliese 581. We have shown the peculiar feasibility of water detection and its importance in the search for exoplanetary systems especially for the Astrobiology programs, given the possibility of long period observations using powerful radiotelescopes equipped with adequate spectrometers.

  16. Solar-Based Fuzzy Intelligent Water Sprinkle System

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2012-03-01

    Full Text Available A solar-based intelligent water sprinkler system project that has been developed to ensure the effectiveness in watering the plant is improved by making the system automated. The control system consists of an electrical capacitance soil moisture sensor installed into the ground which is interfaced to a controller unit of Motorola 68HC11 Handy board microcontroller. The microcontroller was programmed based on the decision rules made using fuzzy logic approach on when to water the lawn. The whole system is powered up by the solar energy which is then interfaced to a particular type of irrigation timer for plant fertilizing schedule and rain detector through a simple design of rain dual-collector tipping bucket. The controller unit automatically disrupted voltage signals sent to the control valves whenever irrigation was not needed. Using this system we combined the logic implementation in the area of irrigation and weather sensing equipment, and more efficient water delivery can be made possible. 

  17. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  18. Innovated feed water distributing system of VVER steam generators

    International Nuclear Information System (INIS)

    Matal, O.; Sousek, P.; Simo, T.; Lehota, M.; Lipka, J.; Slugen, V.

    2000-01-01

    Defects in feed water distributing system due to corrosion-erosion effects have been observed at many VVER 440 steam generators (SG). Therefore analysis of defects origin and consequently design development and testing of a new feed water distributing system were performed. System tests in-situ supported by calculations and comparison of measured and calculated data were focused on demonstration of long term reliable operation, definition of water flow and water chemical characteristics at the SG secondary side and their measurements and study of dynamic characteristics needed for the innovated feed water distributing system seismic features approval. The innovated feed water distributing system was installed in the SGs of two VVER units already. (author)

  19. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  20. Significance of losses in water distribution systems in India.

    Science.gov (United States)

    Raman, V

    1983-01-01

    Effective management of water supply systems consists in supplying adequate quantities of clean water to the population. Detailed pilot studies of water distribution systems were carried out in 9 cities in India during 1971-81 to establish the feasibility of a programme of assessment, detection, and control of water losses from supply systems. A cost-benefit analysis was carried out. Water losses from mains and service pipes in the areas studied amounted to 20-35% of the total flow in the system. At a conservative estimate, the national loss of processed water through leaks in the water distribution systems amounts to 10(12) litres per year, which is equivalent to 500 million rupees.It is possible to bring down the water losses in the pipe mains to 3-5% of the total flow, and the cost incurred on the control programme can be recovered in 6-18 months. Appropriate conservation measures will help in achieving the goals of the International Water Supply and Sanitation Decade to provide clean water for all.

  1. The Utilisation of Solar System in Combined Heating System of Water

    Directory of Open Access Journals (Sweden)

    Ján Jobbágy

    2017-01-01

    Full Text Available The paper assessed the topicality and returns of solar system utilization to heating of water. Practical measurements were conducted after reconstruction of the family house. (in Nesvady, Slovak republic, on which the solar system were assembled. The system consists of the gas heater, solar panels, distributions and circulation pump. The solar system was assembled due to decreasing of operation costs and connected with conventional already used gas heating system by boiler Quantum (V = 115 L. The conventional system was used for 21 days to gather basic values for evaluation. At this point it was observed that 11.93 m3 of gas is needed to heat up 1 m3 of water. Used water in this case was heated from initial 16.14 °C to 52.04 °C of output temperature. Stand by regime of boiler was characterized by 0.012 m3.h-1 consumption of gas. The rest of the measurements represent the annual (from 03/2013 to 02/2014 operation process of boiler Tatramat VTS 200L (trivalent with 200 litres of volume (as a part of Thermosolar solar system. The solar collectors TS 300 are also part of the solar system. An input and output temperatures of heating water we observed along with water and gas consumption, intensity of solar radiation and actual weather conditions. The amount of heat produced by solar system was then calculated. Total investment on solar system were 2,187.7 € (1,475.7 € with subsidy. Therefore, return on investment for the construction of the solar system was set at 23 years even with subsidy.

  2. Accuracy limit of rigid 3-point water models

    Science.gov (United States)

    Izadi, Saeed; Onufriev, Alexey V.

    2016-08-01

    Classical 3-point rigid water models are most widely used due to their computational efficiency. Recently, we introduced a new approach to constructing classical rigid water models [S. Izadi et al., J. Phys. Chem. Lett. 5, 3863 (2014)], which permits a virtually exhaustive search for globally optimal model parameters in the sub-space that is most relevant to the electrostatic properties of the water molecule in liquid phase. Here we apply the approach to develop a 3-point Optimal Point Charge (OPC3) water model. OPC3 is significantly more accurate than the commonly used water models of same class (TIP3P and SPCE) in reproducing a comprehensive set of liquid bulk properties, over a wide range of temperatures. Beyond bulk properties, we show that OPC3 predicts the intrinsic charge hydration asymmetry (CHA) of water — a characteristic dependence of hydration free energy on the sign of the solute charge — in very close agreement with experiment. Two other recent 3-point rigid water models, TIP3PFB and H2ODC, each developed by its own, completely different optimization method, approach the global accuracy optimum represented by OPC3 in both the parameter space and accuracy of bulk properties. Thus, we argue that an accuracy limit of practical 3-point rigid non-polarizable models has effectively been reached; remaining accuracy issues are discussed.

  3. California community water systems inventory dataset, 2010

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains information about all Community Water Systems in California. Data are derived from California Office of Drinking Water (ODW) Water Quality...

  4. Solar PV energy for water pumping system

    International Nuclear Information System (INIS)

    Mahar, F.

    1997-01-01

    The paper provides an introduction into understanding the relative merits, characteristics, including economics, of photovoltically powered water pumping systems. Although more than 10,000 photovoltaic pumping systems are known to be operating through out the world, many potential users do not know how to decide weather feasibility assessment, and system procurement so that the reader can made an informed decision about water pumping systems, especially those powered with photovoltaics. (author)

  5. Dynamics of Chemical Degradation in Water Using Photocatalytic Reactions in an Ultraviolet Light Emitting Diode Reactor

    Science.gov (United States)

    2017-09-14

    polarizabilities scaled on Carbon-SP3 190 D152 mean atomic polarizability scaled on Carbon-SP3 D153 Zagreb order-1 index D154 Zagreb order-1 index with...value of valence vertex degrees D155 Zagreb order-2 index D156 Vertex degree topological index D157 second Zagreb order-2 index with value of

  6. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  7. Urban Water Innovation Network (UWIN): Transitioning Toward Sustainbale Urban Water Systems

    Science.gov (United States)

    Arabi, M.

    2015-12-01

    City water systems are at risk of disruption from global social and environmental hazards, which could have deleterious effects on human health, property, and loss of critical infrastructure. The Urban Water Innovation Network (UWIN), a consortium of 14 academic institutions and other key partners across the U.S., is working to address challenges that threaten urban water systems across the nation. UWIN's mission is to create technological, institutional and management solutions to help communities increase the resilience of their water systems and enhance their preparedness for responding to water crisis. The network seeks solutions that achieve widespread adoption consistent with inclusive, equitable and sustainable urban development. The integrative and adaptive analysis framework of UWIN is presented. The framework identifies a toolbox of sustainable solutions by simultaneously minimizing pressures, enhancing resilience to extreme events, and maximizing cobenefits. The benefits of sustainable urban water solutions for linked urban ecosystems, economies, and arrangements for environmental justice and social equity, will be discussed. The network encompasses six U.S. regions with varying ecohydrologic and climatic regimes ranging from the coastal moist mid-latitude climates of the Mid-Atlantic to the subtropical semi-arid deserts of the Southwest. These regions also represent a wide spectrum of demographic, cultural, and policy settings. The opportunities for cross-site assessments that facilitate the exploration of locally appropriate solutions across regions undergoing various development trajectories will be discussed.

  8. Information Theory for Risk-based Water System Operation

    NARCIS (Netherlands)

    Weijs, S.V.

    2011-01-01

    Operational management of water resources needs predictions of future behavior of water systems, to anticipate shortage or excess of water in a timely manner. Because the natural systems that are part of the hydrological cycle are complex, the predictions inevitably are subject to considerable

  9. WaterOnto: Ontology of Context-Aware Grid-Based Riverine Water Management System

    Directory of Open Access Journals (Sweden)

    Muhammad Hussain Mughal

    2017-06-01

    Full Text Available The management of riverine water always remains a big challenge, because the volatility of water flow creates hurdles to determine the exact time and quantity of water flowing in rivers and available for daily use. The volatile water caused by various water sources and irregular flow pattern generates different kinds of challenges for management. Distribution of flow of water in irrigation network affects the relevant community in either way. In the monsoon seasons, river belt community high risk of flood, while far living community suffering drought. Contemplating this situation, we have developed an ontology for context-aware information representation of riverine water management system abetting the visualization and proactive planning for the complex real-time situation. The purpose of this WaterOnto is to improve river water management and enable for efficient use of this precious natural resource. This would also be helpful to save the extra water being discharged in sea & non-irrigational areas, and magnitude and location of water leakage. We conceptualized stakeholder and relevant entities. We developed a taxonomy of irrigation system concepts in machine process able structure. Being woven these hierarchies together we developed a detailed conceptualization of river flow that helps us to manage the flow of water and enable to extract danger situation.

  10. A completely passive continuous flow solar water purification system

    Energy Technology Data Exchange (ETDEWEB)

    Duff, William S.; Hodgson, David A. [Dept. of Mechanical Enginnering, Colorado State Univ., Fort Collins, CO (United States)

    2008-07-01

    Water-borne pathogens in developing countries cause several billion cases of disease and up to 10 million deaths each year, at least half of which are children. Solar water pasteurization is a potentially cost-effective, robust and reliable solution to these problems. A completely passively controlled solar water pasteurization system with a total collector area of 0.45 m{sup 2} has been constructed. The system most recently tested produced 337 litres per m{sup 2} of collector area of treated water on a sunny day. We developed our completely passive density-driven solar water pasteurization system over a five year span so that it now achieves reliable control for all possible variations in solar conditions. We have also substantially increased its daily pure water production efficiency over the same period. We will discuss the performance of our water purification system and provide an analyses that demonstrates that the system insures safe purified water production at all times. (orig.)

  11. Two-loop feed water control system in BWR plants

    International Nuclear Information System (INIS)

    Omori, Takashi; Watanabe, Takao; Hirose, Masao.

    1982-01-01

    In the process of the start-up and shutdown of BWR plants, the operation of changing over feed pumps corresponding to plant output is performed. Therefore, it is necessary to develop the automatic changeover system for feed pumps, which minimizes the variation of water level in reactors and is easy to operate. The three-element control system with the water level in reactors, the flow rate of main steam and the flow rate of feed water as the input is mainly applied, but long time is required for the changeover of feed pumps. The two-loop feed control system can control simultaneously two pumps being changed over, therefore it is suitable to the automatic changeover control system for feed pumps. Also it is excellent for the control of the recirculating valves of feed pumps. The control characteristics of the two-loop feed water control system against the external disturbance which causes the variation of water level in reactors were examined. The results of analysis by simulation are reported. The features of the two-loop feed water control system, the method of simulation and the evaluation of the two-loop feed water control system are described. Its connection with a digital feed water recirculation control system is expected. (Kako, I.)

  12. Seismic Fragility of the LANL Fire Water Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mertz

    2007-03-30

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10{sup -3} that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  13. Seismic Fragility of the LANL Fire Water Distribution System

    International Nuclear Information System (INIS)

    Greg Mertz Jason Cardon Mike Salmon

    2007-01-01

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10 -3 that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  14. Free energy functionals for polarization fluctuations: Pekar factor revisited.

    Science.gov (United States)

    Dinpajooh, Mohammadhasan; Newton, Marshall D; Matyushov, Dmitry V

    2017-02-14

    The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar's perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parameter accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from the simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found in the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).

  15. Free energy functionals for polarization fluctuations: Pekar factor revisited

    International Nuclear Information System (INIS)

    Dinpajooh, Mohammadhasan; Newton, Marshall D.; Matyushov, Dmitry V.

    2017-01-01

    The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. This separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom, within dielectric continuum models. The main qualitative prediction of Pekar’s perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parameter accounting for the solvent effect on electron transfer. We study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from the simulations is numerically close to the Pekar factor. But, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found in the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).

  16. Greenlandic water and sanitation systems-identifying system constellation and challenges

    DEFF Research Database (Denmark)

    Hendriksen, Kåre; Hoffmann, Birgitte

    2017-01-01

    " (United Nations 2015). This obviously raises the question of how this can be achieved considering the very different conditions and cultures around the globe. This article presents the Greenlandic context and elucidates the current Greenland water supply system and wastewater management system from......A good water supply and wastewater management is essential for a local sustainable community development. This is emphasized in the new global goals of the UN Sustainable Development, where the sixth objective is to: "Ensure availability and sustainable management of water and sanitation for all...... a socio-technical approach, focusing on the geographic, climatic and cultural challenges. The article identifies a diverse set of system constellations in different parts of Greenland and concludes with a discussion of health and quality of life implications....

  17. Fungal contaminants in man-made water systems connected to municipal water.

    Science.gov (United States)

    Kadaifciler, Duygu Göksay; Demirel, Rasime

    2018-04-01

    Water-related fungi are known to cause taste and odor problems, as well as negative health effects, and can lead to water-pipeline clogging. There is no legal regulation on the occurrence of fungi in water environments. However, much research has been performed, but further studies are needed. The main objectives of this study were to evaluate the fungal load and the presence of mycotoxigenic fungi in man-made water systems (for homes, hospitals, and shopping centers) connected to municipal water in Istanbul, Turkey. The mean fungal concentrations found in the different water samples were 98 colony-forming units (CFU)/100 mL in shopping centers, 51 CFU/100 mL in hospitals, and 23 CFU/100 mL in homes. The dominant fungal species were identified as Aureobasidium pullulans and Fusarium oxysporum. Aflatoxigenic Aspergillus flavus and ochratoxigenic Aspergillus westerdijkiae were only detected in the hospital water samples. Alternaria alternata, Aspergillus clavatus, Aspergillus fumigatus, and Cladosporium cladosporioides were also detected in the samples. The study reveals that the municipal water supplies, available for different purposes, could thus contain mycotoxigenic fungi. It was concluded that current disinfection procedures may be insufficient, and the presence of the above-mentioned fungi is important for people with suppressed immune systems.

  18. Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization

    Science.gov (United States)

    Newman, J. P.; Dandy, G. C.; Maier, H. R.

    2014-10-01

    In many regions, conventional water supplies are unable to meet projected consumer demand. Consequently, interest has arisen in integrated urban water systems, which involve the reclamation or harvesting of alternative, localized water sources. However, this makes the planning and design of water infrastructure more difficult, as multiple objectives need to be considered, water sources need to be selected from a number of alternatives, and end uses of these sources need to be specified. In addition, the scale at which each treatment, collection, and distribution network should operate needs to be investigated. In order to deal with this complexity, a framework for planning and designing water infrastructure taking into account integrated urban water management principles is presented in this paper and applied to a rural greenfield development. Various options for water supply, and the scale at which they operate were investigated in order to determine the life-cycle trade-offs between water savings, cost, and GHG emissions as calculated from models calibrated using Australian data. The decision space includes the choice of water sources, storage tanks, treatment facilities, and pipes for water conveyance. For each water system analyzed, infrastructure components were sized using multiobjective genetic algorithms. The results indicate that local water sources are competitive in terms of cost and GHG emissions, and can reduce demand on the potable system by as much as 54%. Economies of scale in treatment dominated the diseconomies of scale in collection and distribution of water. Therefore, water systems that connect large clusters of households tend to be more cost efficient and have lower GHG emissions. In addition, water systems that recycle wastewater tended to perform better than systems that captured roof-runoff. Through these results, the framework was shown to be effective at identifying near optimal trade-offs between competing objectives, thereby enabling

  19. Service water system aging assessment - Phase I

    International Nuclear Information System (INIS)

    Jarrell, D.B.; Zimmerman, P.W.; Gore, M.L.

    1988-01-01

    The Service Water System (SWS) represents the final heat transfer loop between decay heat generated in the nuclear core and the safe dispersal of that heat energy in the environment. It is the objective of this investigation to demonstrate that aging phenomena can be identified and quantified such that aging degradation of system components can be detected and mitigated prior to the reduction of system availability to below an acceptable threshold. The approach used during the Phase I task was to (1) perform a literature search of government and private sector reports which relate to service water, aging related degradation, and potential methodologies for analysis; (2) assemble a data base which contains all the commercial power plants in the US, their Service Water System configuration, characteristics, and water source; (3) obtain and examine the available service water data from large generic data bases, i.e. NPRDS, LER, NPE, inspection reports, and other relevant plant reference data; (4) perform a fault tree analysis of a typical plant service water systems to examine failure propagation and understand specific input requirements of probabilistic risk analyses; (5) develop an in-depth questionnaire protocol for examining the information resource at a power plant which is not available through data base query and visit a central station power plant and solicit the required information; (6) analyze the information obtained from the in-depth plant interrogation and draw contrasts and conclusions with the data base information; (7) utilize the plant information to perform an interim assessment of service water system degradation mechanisms and focus future investigations. This paper addresses the elements of this task plan numbered 1, 3, 6, and 7. The remaining items are detailed in the phase-I report

  20. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.