WorldWideScience

Sample records for polarizable force fields

  1. Accounting for electronic polarization in non-polarizable force fields.

    Science.gov (United States)

    Leontyev, Igor; Stuchebrukhov, Alexei

    2011-02-21

    The issues of electronic polarizability in molecular dynamics simulations are discussed. We argue that the charges of ionized groups in proteins, and charges of ions in conventional non-polarizable force fields such as CHARMM, AMBER, GROMOS, etc should be scaled by a factor about 0.7. Our model explains why a neglect of electronic solvation energy, which typically amounts to about a half of total solvation energy, in non-polarizable simulations with un-scaled charges can produce a correct result; however, the correct solvation energy of ions does not guarantee the correctness of ion-ion pair interactions in many non-polarizable simulations. The inclusion of electronic screening for charged moieties is shown to result in significant changes in protein dynamics and can give rise to new qualitative results compared with the traditional non-polarizable force field simulations. The model also explains the striking difference between the value of water dipole μ∼ 3D reported in recent ab initio and experimental studies with the value μ(eff)∼ 2.3D typically used in the empirical potentials, such as TIP3P or SPC/E. It is shown that the effective dipole of water can be understood as a scaled value μ(eff) = μ/√ε(el), where ε(el) = 1.78 is the electronic (high-frequency) dielectric constant of water. This simple theoretical framework provides important insights into the nature of the effective parameters, which is crucial when the computational models of liquid water are used for simulations in different environments, such as proteins, or for interaction with solutes.

  2. AUTOMATED FORCE FIELD PARAMETERIZATION FOR NON-POLARIZABLE AND POLARIZABLE ATOMIC MODELS BASED ONAB INITIOTARGET DATA.

    Science.gov (United States)

    Huang, Lei; Roux, Benoît

    2013-08-13

    Classical molecular dynamics (MD) simulations based on atomistic models are increasingly used to study a wide range of biological systems. A prerequisite for meaningful results from such simulations is an accurate molecular mechanical force field. Most biomolecular simulations are currently based on the widely used AMBER and CHARMM force fields, which were parameterized and optimized to cover a small set of basic compounds corresponding to the natural amino acids and nucleic acid bases. Atomic models of additional compounds are commonly generated by analogy to the parameter set of a given force field. While this procedure yields models that are internally consistent, the accuracy of the resulting models can be limited. In this work, we propose a method, General Automated Atomic Model Parameterization (GAAMP), for generating automatically the parameters of atomic models of small molecules using the results from ab initio quantum mechanical (QM) calculations as target data. Force fields that were previously developed for a wide range of model compounds serve as initial guess, although any of the final parameter can be optimized. The electrostatic parameters (partial charges, polarizabilities and shielding) are optimized on the basis of QM electrostatic potential (ESP) and, if applicable, the interaction energies between the compound and water molecules. The soft dihedrals are automatically identified and parameterized by targeting QM dihedral scans as well as the energies of stable conformers. To validate the approach, the solvation free energy is calculated for more than 200 small molecules and MD simulations of 3 different proteins are carried out.

  3. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform.

    Science.gov (United States)

    Peng, Xiangda; Zhang, Yuebin; Chu, Huiying; Li, Guohui

    2016-03-05

    The free energy calculation library PLUMED has been incorporated into the OpenMM simulation toolkit, with the purpose to perform enhanced sampling MD simulations using the AMOEBA polarizable force field on GPU platform. Two examples, (I) the free energy profile of water pair separation (II) alanine dipeptide dihedral angle free energy surface in explicit solvent, are provided here to demonstrate the accuracy and efficiency of our implementation. The converged free energy profiles could be obtained within an affordable MD simulation time when the AMOEBA polarizable force field is employed. Moreover, the free energy surfaces estimated using the AMOEBA polarizable force field are in agreement with those calculated from experimental data and ab initio methods. Hence, the implementation in this work is reliable and would be utilized to study more complicated biological phenomena in both an accurate and efficient way. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  4. Polarizable Empirical Force Field for Halogen-Containing Compounds Based on the Classical Drude Oscillator.

    Science.gov (United States)

    Lin, Fang-Yu; MacKerell, Alexander D

    2018-02-13

    The quality of the force field is crucial to ensure the accuracy of simulations used in molecular modeling, including computer-aided drug design (CADD). To perform more accurate modeling and simulations of halogenated molecules, in this study the polarizable force field based on the classical Drude oscillator model was extended to both aliphatic and aromatic systems using halogenated ethane and benzene model compounds for the halogens F, Cl, Br, and I. The force field parameters were optimized targeting quantum mechanical dipole moments, water interactions, and molecular polarizabilities as well as experimental observables, including enthalpies of vaporization, molecular volumes, hydration free energies, and dielectric constants. The developed halogenated polarizable force field is capable of reproducing QM relative energies and geometries of both halogen bonds and halogen-hydrogen bond donor interactions at an unprecedented level due to the inclusion of a virtual particle and anisotropic atomic polarizability on the halogen and, notably, the inclusion of Lennard-Jones parameters on the halogen Drude particle. The model was validated on the basis of its ability to accurately reproduce pure solvent properties for halogenated naphthalenes and alkanes, including species analogous to those used as refrigerants. Accordingly, it is anticipated that the model will be applicable for the study of halogenated derivatives in CADD as well as in other chemical and biophysical studies.

  5. A Polarizable Atomic Multipole-Based Force Field for Molecular Dynamics Simulations of Anionic Lipids.

    Science.gov (United States)

    Chu, Huiying; Peng, Xiangda; Li, Yan; Zhang, Yuebin; Li, Guohui

    2017-12-31

    In all of the classical force fields, electrostatic interaction is simply treated and explicit electronic polarizability is neglected. The condensed-phase polarization, relative to the gas-phase charge distributions, is commonly accounted for in an average way by increasing the atomic charges, which remain fixed throughout simulations. Based on the lipid polarizable force field DMPC and following the same framework as Atomic Multipole Optimized Energetics for BiomoleculAr (AMOEBA) simulation, the present effort expands the force field to new anionic lipid models, in which the new lipids contain DMPG and POPS. The parameters are compatible with the AMOEBA force field, which includes water, ions, proteins, etc. The charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments, which are derived from the ab initio gas phase calculations. Many-body polarization including the inter- and intramolecular polarization is modeled in a consistent manner with distributed atomic polarizabilities. Molecular dynamics simulations of the two aqueous DMPG and POPS membrane bilayer systems, consisting of 72 lipids with water molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, electrostatic potential difference between the center of the bilayer and water are all calculated, and compared with limited experimental data.

  6. Solvation structure and dynamics of Ni{sup 2+}(aq) from a polarizable force field

    Energy Technology Data Exchange (ETDEWEB)

    Mareš, Jiří, E-mail: jiri.mares@oulu.fi; Vaara, Juha

    2014-10-31

    Highlights: • We parameterize the Ni{sup 2+} ion within the AMOEBA polarizable forcefield. • Besides vdW parameters, we fit also polarizability, Thole damping and charge. • We use an empirical adjustment to account for the transition into condensed phase. • Very good structural and dynamical properties of Ni{sup 2+}(aq) are demonstrated. - Abstract: An aqueous solution of Ni{sup 2+} has often been used as a prototypic transition-metal system for experimental and theoretical studies in nuclear and electron-spin magnetic resonance (NMR and ESR). Molecular dynamics (MD) simulation of Ni{sup 2+}(aq) has been a part of many of these studies. As a transition metal complex, its MD simulation is particularly difficult using common force fields. In this work, we parameterize the Ni{sup 2+} ion for a simulation of the aqueous solution within the modern polarizable force field AMOEBA. We show that a successful parameterization is possible for this specific case when releasing the physical interpretation of the electrostatic and polarization parameters of the force field. In doing so, particularly the Thole damping parameter and also the ion charge and polarizability were used as fitting parameters. The resulting parameterizations give in a MD simulation good structural and dynamical properties of the [Ni(H{sub 2}O){sub 6}]{sup 2+} complex, along with the expected excellent performance of AMOEBA for the water solvent. The presented parameterization is appropriate for high-accuracy simulations of both structural and dynamic properties of Ni{sup 2+}(aq). This work documents possible approaches of parameterization of a transition metal within the AMOEBA force field.

  7. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates

    Science.gov (United States)

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.

    2017-04-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars ( d-allose and d-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars d-allose and d-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  8. Polarizable water model for the coarse-grained MARTINI force field.

    Directory of Open Access Journals (Sweden)

    Semen O Yesylevskyy

    2010-06-01

    Full Text Available Coarse-grained (CG simulations have become an essential tool to study a large variety of biomolecular processes, exploring temporal and spatial scales inaccessible to traditional models of atomistic resolution. One of the major simplifications of CG models is the representation of the solvent, which is either implicit or modeled explicitly as a van der Waals particle. The effect of polarization, and thus a proper screening of interactions depending on the local environment, is absent. Given the important role of water as a ubiquitous solvent in biological systems, its treatment is crucial to the properties derived from simulation studies. Here, we parameterize a polarizable coarse-grained water model to be used in combination with the CG MARTINI force field. Using a three-bead model to represent four water molecules, we show that the orientational polarizability of real water can be effectively accounted for. This has the consequence that the dielectric screening of bulk water is reproduced. At the same time, we parameterized our new water model such that bulk water density and oil/water partitioning data remain at the same level of accuracy as for the standard MARTINI force field. We apply the new model to two cases for which current CG force fields are inadequate. First, we address the transport of ions across a lipid membrane. The computed potential of mean force shows that the ions now naturally feel the change in dielectric medium when moving from the high dielectric aqueous phase toward the low dielectric membrane interior. In the second application we consider the electroporation process of both an oil slab and a lipid bilayer. The electrostatic field drives the formation of water filled pores in both cases, following a similar mechanism as seen with atomistically detailed models.

  9. Molecular dynamics study of response of liquid N,N-dimethylformamide to externally applied electric field using a polarizable force field

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Weimin; Niu, Haitao; Lin, Tong; Wang, Xungai; Kong, Lingxue [Institute for Frontier Materials, Deakin University, Waurn Ponds VIC 3216 (Australia)

    2014-01-28

    The behavior of Liquid N,N-dimethylformamide subjected to a wide range of externally applied electric fields (from 0.001 V/nm to 1 V/nm) has been investigated through molecular dynamics simulation. To approach the objective the AMOEBA polarizable force field was extended to include the interaction of the external electric field with atomic partial charges and the contribution to the atomic polarization. The simulation results were evaluated with quantum mechanical calculations. The results from the present force field for the liquid at normal conditions were compared with the experimental and molecular dynamics results with non-polarizable and other polarizable force fields. The uniform external electric fields of higher than 0.01 V/nm have a significant effect on the structure of the liquid, which exhibits a variation in numerous properties, including molecular polarization, local cluster structure, rotation, alignment, energetics, and bulk thermodynamic and structural properties.

  10. Molecular dynamics simulations of the d(CCAACGTTGG)2 decamer in crystal environment: comparison of atom-centered charge, extra-point and polarizable force fields.

    Science.gov (United States)

    Baucom, Jason; Transue, Thomas; Fuentes-Cabrera, Miguel; Krahn, Joseph; Darden, Thomas; Sagui, Celeste

    2004-03-01

    Molecular dynamics simulations of the DNA duplex d(CCAACGTTGG)2 were used to study the relationship between DNA sequence and structure. Three different force fields were used: a traditional description based on atomic point charges, a polarizable force field and an ``extra-point" force field (with additional charges on extra-nuclear sites). It is found that in crystal environment all the force fields reproduce fairly well the sequence-dependent features of the experimental structure. The polarizable force fields, however, outperforms the other two, pointing out to the need of the inclusion of polarization for accurate descriptions of DNA.

  11. Simulating the physicochemical properties of borosilicate and lanthanum borosilicate glasses using a polarizable force field

    International Nuclear Information System (INIS)

    Pacaud, Fabien

    2016-01-01

    as result of the nuclear waste vitrification, the knowledge and understanding of the dynamic and structural properties of glasses, including the behavior of radionuclides, is important (in liquid and solid phases). It can influence the glass waste properties, the lifetime of the vitrification process and the amount of radionuclides introduced in the glass matrix. Molecular dynamic simulations have been done to study the influence of the glass matrix composition into the structural and dynamic properties of the glass. a simplified glass, with 3 major oxides of the R7T7 glass such as SiO 2 , B 2 O 3 and Na 2 O, have been used to simulate the R7T7 industrial nuclear glass (a 30 oxides glass). The inclusion of La 2 O 3 allows us to simulate the impact of fission products and minor actinides into the properties of the glass matrix. Both systems, the SiO 2 -B 2 O 3 -Na 2 O and SiO 2 -B 2 O 3 -Na 2 O-La 2 O 3 , allow us to study the sodium and lanthanum effect on the properties of the glass. During this work, a polarizable force field has been developed to do these simulations. The results obtained at room temperature let us reproduce the experimental results of the structure, the distribution of BIII/BIV and the density. a study has been done on the viscosity and electrical conductivity of the liquid. The distribution BIV/BIII and the influence of the structural changes on the density along with the temperature have also been observed with thermal quenching. The current limits of this approach are also described. (author) [fr

  12. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof

    2015-01-01

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities

  13. Quantum Gravitational Force Between Polarizable Objects

    Science.gov (United States)

    Ford, L. H.; Hertzberg, Mark P.; Karouby, J.

    2016-04-01

    Since general relativity is a consistent low energy effective field theory, it is possible to compute quantum corrections to classical forces. Here we compute a quantum correction to the gravitational potential between a pair of polarizable objects. We study two distant bodies and compute a quantum force from their induced quadrupole moments due to two-graviton exchange. The effect is in close analogy to the Casimir-Polder and London-van der Waals forces between a pair of atoms from their induced dipole moments due to two photon exchange. The new effect is computed from the shift in vacuum energy of metric fluctuations due to the polarizability of the objects. We compute the potential energy at arbitrary distances compared to the wavelengths in the system, including the far and near regimes. In the far distance, or retarded, regime, the potential energy takes on a particularly simple form: V (r )=-3987 ℏc G2α1 Sα2 S/(4 π r11) , where α1 S , α2 S are the static gravitational quadrupole polarizabilities of each object. We provide estimates of this effect.

  14. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational Energetics.

    Science.gov (United States)

    Lemkul, Justin A; MacKerell, Alexander D

    2017-05-09

    Empirical force fields seek to relate the configuration of a set of atoms to its energy, thus yielding the forces governing its dynamics, using classical physics rather than more expensive quantum mechanical calculations that are computationally intractable for large systems. Most force fields used to simulate biomolecular systems use fixed atomic partial charges, neglecting the influence of electronic polarization, instead making use of a mean-field approximation that may not be transferable across environments. Recent hardware and software developments make polarizable simulations feasible, and to this end, polarizable force fields represent the next generation of molecular dynamics simulation technology. In this work, we describe the refinement of a polarizable force field for DNA based on the classical Drude oscillator model by targeting quantum mechanical interaction energies and conformational energy profiles of model compounds necessary to build a complete DNA force field. The parametrization strategy employed in the present work seeks to correct weak base stacking in A- and B-DNA and the unwinding of Z-DNA observed in the previous version of the force field, called Drude-2013. Refinement of base nonbonded terms and reparametrization of dihedral terms in the glycosidic linkage, deoxyribofuranose rings, and important backbone torsions resulted in improved agreement with quantum mechanical potential energy surfaces. Notably, we expand on previous efforts by explicitly including Z-DNA conformational energetics in the refinement.

  15. Structural study of Na2O-B2O3-SiO2 glasses from molecular simulations using a polarizable force field

    Science.gov (United States)

    Pacaud, Fabien; Delaye, Jean-Marc; Charpentier, Thibault; Cormier, Laurent; Salanne, Mathieu

    2017-10-01

    Sodium borosilicate glasses Na2O-B2O3-SiO2 (NBS) are complex systems from a structural point of view. Three main building units are present: tetrahedral SiO4 and BO4 (BIV) and triangular BO3 (BIII). One of the salient features of these compounds is the change of the BIII/BIV ratio with the alkali concentration, which is very difficult to capture in force fields-based molecular dynamics simulations. In this work, we develop a polarizable force field that is able to reproduce the boron coordination and more generally the structure of several NBS systems in the glass and in the melt. The parameters of the potential are fitted from density functional theory calculations only, in contrast with the existing empirical potentials for NBS systems. This ensures a strong improvement on the transferability of the parameters from one composition to another. Using this new force field, the structure of NBS systems is validated against neutron diffraction and nuclear magnetic resonance experiments. A special focus is given to the distribution of BIII/BIV with respect to the composition and the temperature.

  16. Dynamic polarizability of a complex atom in strong laser fields

    International Nuclear Information System (INIS)

    Rapoport, L.P.; Klinskikh, A.F.; Mordvinov, V.V.

    1997-01-01

    An asymptotic expansion of the dynamic polarizability of a complex atom in a strong circularly polarized light field is found for the case of high frequencies. The self-consistent approximation of the Hartree-Fock type for the ''atom+field'' system is developed, within the framework of which a numerical calculation of the dynamic polarizability of Ne, Kr, and Ar atoms in a strong radiation field is performed. The strong field effect is shown to manifest itself not only in a change of the energy spectrum and the character of behavior of the wave functions of atomic electrons, but also in a modification of the one-electron self-consistent potential for the atom in the field

  17. Statistical field theory description of inhomogeneous polarizable soft matter.

    Science.gov (United States)

    Martin, Jonathan M; Li, Wei; Delaney, Kris T; Fredrickson, Glenn H

    2016-10-21

    We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.

  18. Evaluating excited state atomic polarizabilities of chromophores.

    Science.gov (United States)

    Heid, Esther; Hunt, Patricia A; Schröder, Christian

    2018-03-28

    Ground and excited state dipoles and polarizabilities of the chromophores N-methyl-6-oxyquinolinium betaine (MQ) and coumarin 153 (C153) in solution have been evaluated using time-dependent density functional theory (TD-DFT). A method for determining the atomic polarizabilities has been developed; the molecular dipole has been decomposed into atomic charge transfer and polarizability terms, and variation in the presence of an electric field has been used to evaluate atomic polarizabilities. On excitation, MQ undergoes very site-specific changes in polarizability while C153 shows significantly less variation. We also conclude that MQ cannot be adequately described by standard atomic polarizabilities based on atomic number and hybridization state. Changes in the molecular polarizability of MQ (on excitation) are not representative of the local site-specific changes in atomic polarizability, thus the overall molecular polarizability ratio does not provide a good approximation for local atom-specific polarizability changes on excitation. Accurate excited state force fields are needed for computer simulation of solvation dynamics. The chromophores considered in this study are often used as molecular probes. The methods and data reported here can be used for the construction of polarizable ground and excited state force fields. Atomic and molecular polarizabilities (ground and excited states) have been evaluated over a range of functionals and basis sets. Different mechanisms for including solvation effects have been examined; using a polarizable continuum model, explicit solvation and via sampling of clusters extracted from a MD simulation. A range of different solvents have also been considered.

  19. Tailored long range forces on polarizable particles by collective scattering of broadband radiation

    International Nuclear Information System (INIS)

    Holzmann, D; Ritsch, H

    2016-01-01

    Collective coherent light scattering by polarizable particles creates surprisingly strong, long range inter-particle forces originating from interference of the light scattered by different particles. While for monochromatic laser beams this interaction decays with the inverse distance, we show here that in general the effective interaction range and geometry can be controlled by the illumination bandwidth and geometry. As generic example we study the modifications inter-particle forces within a 1D chain of atoms trapped in the field of a confined optical nanofiber mode. For two particles we find short range attraction as well as optical binding at multiple distances. The range of stable distances shrinks with increasing light bandwidth and for a very large bandwidth field as e.g. blackbody radiation. We find a strongly attractive potential up to a critical distance beyond which the force gets repulsive. Including multiple scattering can even lead to the appearance of a stable configuration at a large distance. Such broadband scattering forces should be observable contributions in ultra-cold atom interferometers or atomic clocks setups. They could be studied in detail in 1D geometries with ultra-cold atoms trapped along or within an optical nanofiber. Broadband radiation force interactions might also contribute in astrophysical scenarios as illuminated cold dust clouds. (paper)

  20. Polarizability and alignment of dielectric nanoparticles in an external electric field: bowls, dumbbells, and cuboids.

    Science.gov (United States)

    Kwaadgras, Bas W; Verdult, Maarten; Dijkstra, Marjolein; van Roij, René

    2011-10-07

    We employ the coupled dipole method to calculate the polarizability tensor of various anisotropic dielectric clusters of polarizable atoms, such as cuboid-, bowl-, and dumbbell-shaped nanoparticles. Starting from a Hamiltonian of a many-atom system, we investigate how this tensor depends on the size and shape of the cluster. We use the polarizability tensor to calculate the energy difference associated with turning a nanocluster from its least to its most favorable orientation in a homogeneous static electric field, and we determine the cluster dimension for which this energy difference exceeds the thermal energy such that particle alignment by the field is possible. Finally, we study in detail the (local) polarizability of a cubic-shaped cluster and present results indicating that, when retardation is ignored, a bulk polarizability cannot be reached by scaling up the system. © 2011 American Institute of Physics

  1. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  2. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  3. QM/MM based fitting of atomic polarizabilities for use in condensed-phase biomolecular simulation

    NARCIS (Netherlands)

    Vosmeer, C.R.; Rustenburg, A.S.; Rice, J.E.; Horn, H.W.; Swope, W.C.; Geerke, D.P.

    2012-01-01

    Accounting for electronic polarization effects in biomolecular simulation (by using a polarizable force field) can increase the accuracy of simulation results. However, the use of gas-phase estimates of atomic polarizabilities α

  4. Bulkiness versus anisotropy: The optimal shape of polarizable Brownian nanoparticles for alignment in electric fields

    NARCIS (Netherlands)

    Kwaadgras, B.W.; Dijkstra, M.; van Roij, R.H.H.G.

    2012-01-01

    Self-assembly and alignment of anisotropic colloidal particles are important processes that can be influenced by external electric fields. However, dielectric nanoparticles are generally hard to align this way because of their small size and low polarizability. In this work, we employ the coupled

  5. Nuclear dipole polarizability from mean-field modeling constrained by chiral effective field theory

    Science.gov (United States)

    Zhang, Zhen; Lim, Yeunhwan; Holt, Jeremy W.; Ko, Che Ming

    2018-02-01

    We construct a new Skyrme interaction Skχm* by fitting the equation of state and nucleon effective masses in asymmetric nuclear matter from chiral two- and three-body forces as well as the binding energies of finite nuclei. Employing this interaction to study the electric dipole polarizabilities of 48Ca, 68Ni, 120Sn, and 208Pb in the random-phase approximation, we find that the theoretical predictions are in good agreement with experimentally measured values without additional fine tuning of the Skyrme interaction, thus confirming the usefulness of the new Skyrme interaction in studying the properties of nuclei. We further use this interaction to study the neutron skin thicknesses of 48Ca and 208Pb, and they are found to be consistent with the experimental data.

  6. Communication: Polarizable polymer chain under external electric field in a dilute polymer solution

    International Nuclear Information System (INIS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Kiselev, M. G.

    2015-01-01

    We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such “field-induced” globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification

  7. Dynamical polarizability of graphene irradiated by circularly polarized ac electric fields

    DEFF Research Database (Denmark)

    Busl, Maria; Platero, Gloria; Jauho, Antti-Pekka

    2012-01-01

    We examine the low-energy physics of graphene in the presence of a circularly polarized electric field in the terahertz regime. Specifically, we derive a general expression for the dynamical polarizability of graphene irradiated by an ac electric field. Several approximations are developed...... that allow one to develop a semianalytical theory for the weak-field regime. The ac field changes qualitatively the single- and many-electron excitations of graphene: Undoped samples may exhibit collective excitations (in contrast to the equilibrium situation), and the properties of the excitations in doped...

  8. The multi-configuration self-consistent field method within a polarizable embedded framework

    Science.gov (United States)

    Hedegârd, Erik Donovan; List, Nanna H.; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob

    2013-07-01

    We present a detailed derivation of Multi-Configuration Self-Consistent Field (MCSCF) optimization and linear response equations within the polarizable embedding scheme: PE-MCSCF. The MCSCF model enables a proper description of multiconfigurational effects in reaction paths, spin systems, excited states, and other properties which cannot be described adequately with current implementations of polarizable embedding in density functional or coupled cluster theories. In the PE-MCSCF scheme the environment surrounding the central quantum mechanical system is represented by distributed multipole moments and anisotropic dipole-dipole polarizabilities. The PE-MCSCF model has been implemented in DALTON. As a preliminary application, the low lying valence states of acetone and uracil in water has been calculated using Complete Active Space Self-Consistent Field (CASSCF) wave functions. The dynamics of the water environment have been simulated using a series of snapshots generated from classical Molecular Dynamics. The calculated shifts from gas-phase to water display between good and excellent correlation with experiment and previous calculations. As an illustration of another area of potential applications we present calculations of electronic transitions in the transition metal complex, [Fe(NO)(CN)5]2 - in a micro-solvated environment. This system is highly multiconfigurational and the influence of solvation is significant.

  9. Polarizable protein packing

    KAUST Repository

    Ng, Albert H.

    2011-01-24

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol -1] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 Copyright © 2011 Wiley Periodicals, Inc.

  10. An averaged polarizable potential for multiscale modeling in phospholipid membranes

    DEFF Research Database (Denmark)

    Witzke, Sarah; List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard

    2017-01-01

    is underlined for the description of larger assemblies of lipids, that is, membranes. In conclusion, we find that specially developed polarizable parameters are needed for embedding calculations in membranes, while common non-polarizable point-charge force fields usually perform well enough for structural...

  11. Statistical theory of polarizable target compound impregnation into a polymer coil under the influence of an electric field.

    Science.gov (United States)

    Kolesnikov, A L; Budkov, Yu A; Basharova, E A; Kiselev, M G

    2017-06-21

    The paper presents a theoretical approach for describing the influence of an electric field on the conformation of an electrically neutral dielectric polymer chain dissolved in a dielectric solvent with an admixture of a target compound. Each monomer and each molecule of the target compound carries positive excess polarizability and the solvent is described as a continuous dielectric medium. The model is based on the Flory-type mean-field theory. We demonstrate non-monotonic dependences of the expansion factor and the concentration of the target compound on the strength of the electric field and molecular polarizability. Namely, the target compound concentration in the internal polymer volume as a function of electric field strength has pronounced maxima if the molecules are polarizable. In addition, the expansion factor of the non-polarizable polymer chain can be controlled by the electric field. The dependences of the expansion factor and target compound concentration on the monomer polarizability exhibit minima and intersection points. The intersection points correspond to the equality of dielectric permittivities in the bulk solution and in the internal polymer volume.

  12. The Electromagnetic Zero-Point Field and the Flat Polarizable Vacuum Representation

    CERN Document Server

    Desiato, J T

    2003-01-01

    There are several interpretations of the Polarizable Vacuum (PV). One is the variable speed of light (VSL) approach, that has been shown to be isomorphic to General Relativity (GR) within experimental limits. However, another interpretation is representative of flat geometry, in which intervals of time and distance are measured in local inertial reference frames where the speed of light remains constant. The Flat PV approach leads to variable impedance transformations, governed by the spectral energy content of the Quantum Vacuum’s Electromagnetic (EM) Zero-Point Field (ZPF). The EM ZPF consists of photons. An unlimited number of photons may occupy the same quantum state at an arbitrary set of coordinates. Therefore, the spectral energy of the ZPF may be varied smoothly, represented by a superposition of EM waves with a large number of photons per cubic wavelength. Utilizing the Flat PV representation, a family of frequency dependent solutions of Poisson’s equation are derived, that may be applied as tool...

  13. The cavity electromagnetic field within the polarizable continuum model of solvation

    Energy Technology Data Exchange (ETDEWEB)

    Pipolo, Silvio, E-mail: silvio.pipolo@nano.cnr.it [Center S3, CNR Institute of Nanoscience, Modena (Italy); Department of Physics, University of Modena and Reggio Emilia, Modena (Italy); Corni, Stefano, E-mail: stefano.corni@nano.cnr.it [Center S3, CNR Institute of Nanoscience, Modena (Italy); Cammi, Roberto, E-mail: roberto.cammi@unipr.it [Department of Chemistry, Università degli studi di Parma, Parma (Italy)

    2014-04-28

    Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles.

  14. Weak-field Hall effect and static polarizability of Bloch electrons

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel; Jonckheere, T.

    2009-01-01

    Roč. 79, č. 11 (2009), 115115/1-115115/8 ISSN 1098-0121 R&D Projects: GA ČR GA202/08/0551 Institutional research plan: CEZ:AV0Z10100521 Keywords : Hall effect * magnetization * Bloch electrons electron polarizability * electron polarizability Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009

  15. Polarizability and alignment of dielectric nanoparticles in an external electric field: Bowls, dumbbells, and cuboids

    NARCIS (Netherlands)

    Kwaadgras, B.W.; Verdult, M.; Dijkstra, M.; van Roij, R.H.H.G.

    2011-01-01

    We employ the coupled dipole method to calculate the polarizability tensor of various anisotropic dielectric clusters of polarizable atoms, such as cuboid-, bowl-, and dumbbell-shaped nanoparticles. Starting from a Hamiltonian of a many-atom system, we investigate how this tensor depends on the size

  16. Molecule-specific determination of atomic polarizabilities with the polarizable atomic multipole model.

    Science.gov (United States)

    Woo Kim, Hyun; Rhee, Young Min

    2012-07-30

    Recently, many polarizable force fields have been devised to describe induction effects between molecules. In popular polarizable models based on induced dipole moments, atomic polarizabilities are the essential parameters and should be derived carefully. Here, we present a parameterization scheme for atomic polarizabilities using a minimization target function containing both molecular and atomic information. The main idea is to adopt reference data only from quantum chemical calculations, to perform atomic polarizability parameterizations even when relevant experimental data are scarce as in the case of electronically excited molecules. Specifically, our scheme assigns the atomic polarizabilities of any given molecule in such a way that its molecular polarizability tensor is well reproduced. We show that our scheme successfully works for various molecules in mimicking dipole responses not only in ground states but also in valence excited states. The electrostatic potential around a molecule with an externally perturbing nearby charge also exhibits a near-quantitative agreement with the reference data from quantum chemical calculations. The limitation of the model with isotropic atoms is also discussed to examine the scope of its applicability. Copyright © 2012 Wiley Periodicals, Inc.

  17. Electron polarizability of crystalline solids in quantizing magnetic fields and topological gap numbers

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel; Jonckheere, T.; Martin, T.

    2008-01-01

    Roč. 100, - (2008), 146804/1-146804/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/05/0365 Institutional research plan: CEZ:AV0Z10100521 Keywords : electron polarizability * quantum Hall effect * topological numbers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.180, year: 2008

  18. Forces in electromagnetic field and gravitational field

    OpenAIRE

    Weng, Zihua

    2008-01-01

    The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in...

  19. Polarizability of DNA Block Copolymer Nanoparticles Observed by Electrostatic Force Microscopy

    NARCIS (Netherlands)

    Sowwan, Mukhles; Faroun, Maryam; Mentovich, Elad; Ibrahim, Imad; Haboush, Shayma; Alemdaroglu, Fikri Emrah; Kwak, Minseok; Richter, Shachar; Herrmann, Andreas

    2010-01-01

    In this study, DNA block copolymer (DBC) micelles with a polystyrene (PS) core and a single-stranded (ss) DNA shell were doped with ferrocene (Fc) molecules. Tapping mode atomic force microscopy (AFM) was used to study the morphology of the doped and undoped block copolymer aggregates. We show that

  20. Machine Learning Force Field Parameters from Ab Initio Data

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Argonne; Li, Hui [Department; Pickard, Frank C. [Laboratory; Narayanan, Badri [Center; Sen, Fatih G. [Center; Chan, Maria K. Y. [Center; Computational; Sankaranarayanan, Subramanian K. R. S. [Center; Computational; Brooks, Bernard R. [Laboratory; Roux, Benoît [Department; Center; Computational

    2017-08-11

    Machine learning (ML) techniques with the genetic algorithm (GA) have been applied to determine a polarizable force field parameters using only ab initio data from quantum mechanics (QM) calculations of molecular clusters at the MP2/6-31G(d,p), DFMP2(fc)/jul-cc-pVDZ, and DFMP2(fc)/jul-cc-pVTZ levels to predict experimental condensed phase properties (i.e., density and heat of vaporization). The performance of this ML/GA approach is demonstrated on 4943 dimer electrostatic potentials and 1250 cluster interaction energies for methanol. Excellent agreement between the training data set from QM calculations and the optimized force field model was achieved. The results were further improved by introducing an offset factor during the machine learning process to compensate for the discrepancy between the QM calculated energy and the energy reproduced by optimized force field, while maintaining the local “shape” of the QM energy surface. Throughout the machine learning process, experimental observables were not involved in the objective function, but were only used for model validation. The best model, optimized from the QM data at the DFMP2(fc)/jul-cc-pVTZ level, appears to perform even better than the original AMOEBA force field (amoeba09.prm), which was optimized empirically to match liquid properties. The present effort shows the possibility of using machine learning techniques to develop descriptive polarizable force field using only QM data. The ML/GA strategy to optimize force fields parameters described here could easily be extended to other molecular systems.

  1. Consistent force fields for saccharides

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld

    1999-01-01

    Consistent force fields for carbohydrates were hitherto developed by extensive optimization ofpotential energy function parameters on experimental data and on ab initio results. A wide range of experimental data is used: internal structures obtained from gas phase electron diffraction and from x......-anomeric effects are accounted for without addition of specific terms. The work is done in the framework of the Consistent Force Field which originatedin Israel and was further developed in Denmark. The actual methods and strategies employed havebeen described previously. Extensive testing of the force field...

  2. The memory effect of a pentacene field-effect transistor with a polarizable gate dielectric

    Science.gov (United States)

    Unni, K. N. N.; de Bettignies, Remi; Dabos-Seignon, Sylvie; Nunzi, Jean-Michel

    2004-06-01

    The nonvolatile transistor memory element is an interesting topic in organic electronics. In this case a memory cell consists of only one device where the stored information is written as a gate insulator polarization by a gate voltage pulse and read by the channel conductance control with channel voltage pulse without destruction of the stored information. Therefore such transistor could be the base of non-volatile non-destructively readable computer memory of extremely high density. Also devices with polarizable gate dielectrics can function more effectively in certain circuits. The effective threshold voltage Vt can be brought very close to zero, for applications where the available gate voltage is limited. Resonant and adaptive circuits can be tuned insitu by polarizing the gates. Poly(vinylidene fluoride), PVDF and its copolymer with trifluoroethylene P(VDF-TrFE) are among the best known and most widely used ferroelectric polymers. In this manuscript, we report new results of an organic FET, fabricated with pentacene as the active material and P(VDF-TrFE) as the gate insulator. Application of a writing voltage of -50 V for short duration results in significant change in the threshold voltage and remarkable increase in the drain current. The memory effect is retained over a period of 20 hours.

  3. Force acting on an atom and a classical oscillator in an electromagnetic field

    International Nuclear Information System (INIS)

    Makarov, V. P.; Rukhadze, A. A.

    2010-01-01

    The expression for the force exerted by the field on an atom and averaged over the field period is derived in quantum-mechanical perturbation theory, in which a quasi-monochromatic electromagnetic field plays the role of a perturbation. An approximate solution is obtained to the classical (Newton) equation of motion in the same field for a harmonic isotropic oscillator. In both problems, the expressions for the force acting on a particle are completely identical if they are written in terms of the polarizability (of the atom and the oscillator). These results conform with the data obtained in macroscopic electrodynamics for rarefied media.

  4. Radiation damping of a polarizable particle

    Science.gov (United States)

    Novotny, Lukas

    2017-09-01

    A polarizable body moving in an external electromagnetic field will slow down. This effect is referred to as radiation damping and is analogous to Doppler cooling in atomic physics. Using the principles of special relativity we derive an expression for the radiation damping force and find that it solely depends on the scattered power. The cooling of the particle's center-of-mass motion is balanced by heating due to radiation pressure shot noise, giving rise to an equilibrium that depends on the ratio of the field's frequency and the particle's mass. While damping is of relativistic nature, heating has its roots in quantum mechanics.

  5. Derivation of Distributed Models of Atomic Polarizability for Molecular Simulations.

    Science.gov (United States)

    Soteras, Ignacio; Curutchet, Carles; Bidon-Chanal, Axel; Dehez, François; Ángyán, János G; Orozco, Modesto; Chipot, Christophe; Luque, F Javier

    2007-11-01

    The main thrust of this investigation is the development of models of distributed atomic polarizabilities for the treatment of induction effects in molecular mechanics simulations. The models are obtained within the framework of the induced dipole theory by fitting the induction energies computed via a fast but accurate MP2/Sadlej-adjusted perturbational approach in a grid of points surrounding the molecule. Particular care is paid in the examination of the atomic quantities obtained from models of implicitly and explicitly interacting polarizabilities. Appropriateness and accuracy of the distributed models are assessed by comparing the molecular polarizabilities recovered from the models and those obtained experimentally and from MP2/Sadlej calculations. The behavior of the models is further explored by computing the polarization energy for aromatic compounds in the context of cation-π interactions and for selected neutral compounds in a TIP3P aqueous environment. The present results suggest that the computational strategy described here constitutes a very effective tool for the development of distributed models of atomic polarizabilities and can be used in the generation of new polarizable force fields.

  6. Reactive Force Fields via Explicit Valency

    Science.gov (United States)

    Kale, Seyit

    Computational simulations are invaluable in elucidating the dynamics of biological macromolecules. Unfortunately, reactions present a fundamental challenge. Calculations based on quantum mechanics can predict bond formation and rupture; however they suffer from severe length- and time-limitations. At the other extreme, classical approaches provide orders of magnitude faster simulations; however they regard chemical bonds as immutable entities. A few exceptions exist, but these are not always trivial to adopt for routine use. We bridge this gap by providing a novel, pseudo-classical approach, based on explicit valency. We unpack molecules into valence electron pairs and atomic cores. Particles bear ionic charges and interact via pairwise-only potentials. The potentials are informed of quantum effects in the short-range and obey dissociation limits in the long-range. They are trained against a small set of isolated species, including geometries and thermodynamics of small hydrides and of dimers formed by them. The resulting force field captures the essentials of reactivity, polarizability and flexibility in a simple, seamless setting. We call this model LEWIS, after the chemical theory that inspired the use of valence pairs. Following the introduction in Chapter 1, we initially focus on the properties of water. Chapter 2 considers gas phase clusters. To transition to the liquid phase, Chapter 3 describes a novel pairwise long-range compensation that performs comparably to infinite lattice summations. The approach is suited to ionic solutions in general. In Chapters 4 and 5, LEWIS is shown to correctly predict the dipolar and quadrupolar response in bulk liquid, and can accommodate proton transfers in both acid and base. Efficiency permits the study of proton defects at dilutions not accessible to experiment or quantum mechanics. Chapter 6 discusses explicit valency approaches in other hydrides, forming the basis of a reactive organic force field. Examples of simple

  7. Computational analysis of electronic polarizabilities in Thomas ...

    African Journals Online (AJOL)

    The electric polarizability,α, of a molecule is a measure of its ability to respond to an electric field and acquire an electric dipole moment, μ. The electric polarizability, α has been calculated for several ions and atoms by obtaining the perturbation of wave functions by an external field from a numerical solution of differential ...

  8. Local electric fields and molecular properties in heterogeneous environments through polarizable embedding

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob

    2016-01-01

    chemical reference calculations. For the lowest π → π∗ transition in DsRed, inclusion of effective external field effects gives rise to a 1.9- and 3.5-fold reduction in the 1PA and 2PA cross-sections, respectively. The effective external field is, however, strongly influenced by the heterogeneity...... (1PA and 2PA, respectively) properties of PRODAN-methanol clusters as well as the fluorescent protein DsRed. Our results demonstrate the necessity of accounting for both the dynamical reaction field and effective external field contributions to the local field in order to reproduce full quantum...

  9. Deriving force field parameters for coordination complexes

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Brandt, Peter

    2001-01-01

    The process of deriving molecular mechanics force fields for coordination complexes is outlined. Force field basics are introduced with an emphasis on special requirements for metal complexes. The review is then focused on how to set up the initial model, define the target, refine the parameters......, and validate the final force field, Alternatives to force field derivation are discussed briefly....

  10. Open-ended formulation of self-consistent field response theory with the polarizable continuum model for solvation.

    Science.gov (United States)

    Di Remigio, Roberto; Beerepoot, Maarten T P; Cornaton, Yann; Ringholm, Magnus; Steindal, Arnfinn Hykkerud; Ruud, Kenneth; Frediani, Luca

    2016-12-21

    The study of high-order absorption properties of molecules is a field of growing importance. Quantum-chemical studies can help design chromophores with desirable characteristics. Given that most experiments are performed in solution, it is important to devise a cost-effective strategy to include solvation effects in quantum-chemical studies of these properties. We here present an open-ended formulation of self-consistent field (SCF) response theory for a molecular solute coupled to a polarizable continuum model (PCM) description of the solvent. Our formulation relies on the open-ended, density matrix-based quasienergy formulation of SCF response theory of Thorvaldsen, et al., [J. Chem. Phys., 2008, 129, 214108] and the variational formulation of the PCM, as presented by Lipparini et al., [J. Chem. Phys., 2010, 133, 014106]. Within the PCM approach to solvation, the mutual solute-solvent polarization is represented by means of an apparent surface charge (ASC) spread over the molecular cavity defining the solute-solvent boundary. In the variational formulation, the ASC is an independent, variational degree of freedom. This allows us to formulate response theory for molecular solutes in the fixed-cavity approximation up to arbitrary order and with arbitrary perturbation operators. For electric dipole perturbations, pole and residue analyses of the response functions naturally lead to the identification of excitation energies and transition moments. We document the implementation of this approach in the Dalton program package using a recently developed open-ended response code and the PCMSolver libraries and present results for one-, two-, three-, four- and five-photon absorption processes of three small molecules in solution.

  11. Application of discrete solvent reaction field model with self-consistent atomic charges and atomic polarizabilities to calculate the χ(1) and χ(2) of organic molecular crystals

    Science.gov (United States)

    Lu, Shih-I.

    2018-01-01

    We use the discrete solvent reaction field model to evaluate the linear and second-order nonlinear optical susceptibilities of 3-methyl-4-nitropyridine-1-oxyde crystal. In this approach, crystal environment is created by supercell architecture. A self-consistent procedure is used to obtain charges and polarizabilities for environmental atoms. Impact of atomic polarizabilities on the properties of interest is highlighted. This approach is shown to give the second-order nonlinear optical susceptibilities within error bar of experiment as well as the linear optical susceptibilities in the same order as experiment. Similar quality of calculations are also applied to both 4-N,N-dimethylamino-3-acetamidonitrobenzene and 2-methyl-4-nitroaniline crystals.

  12. The continuous separation of molecules on the basis of their polarizability using optical electric fields

    DEFF Research Database (Denmark)

    Javier Alvarez, Nicolas; Jeppesen, Claus; Yvind, Kresten

    We introduce a new and revolutionary way to separate macromolecules. The principle is to use light to selectively retain some molecules over others depending on their differential interaction with optical fields. We call the method Photonic Waveguide Chromatography (PWC), as it combines photonic...... waveguides and a flow channel that constitutes a ”column” of conventional liquid chromatography. This presentation will focus on the underlying physics and our current theoretical efforts to characterize the parameter space of this process: considering both the design of the optical electric fields...

  13. Quantum mechanical force field for water with explicit electronic polarization.

    Science.gov (United States)

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  14. The scaled-charge additive force field for amino acid based ionic liquids

    DEFF Research Database (Denmark)

    Fileti, E. E.; Chaban, V. V.

    2014-01-01

    Ionic liquids (ILs) constitute an emerging research field. New ILs involve more and more organic and inorganic ions. Amino acid based ILs (AAILs) represent a specific interest due to their evolutional connection to proteins. We report a new non-polarizable force field (FF) for the eight AAILs...... comprising 1-ethyl-3-methylimidazolium cation and amino acid anions. The anions were obtained via deprotonation of carboxyl group. Specific cation-anion non-covalent interactions were taken into account by computing electrostatic potential for ion pairs. The van der Waals interactions were adopted from...

  15. Electromagnetic polarizabilities of hadrons

    International Nuclear Information System (INIS)

    Friar, J.L.

    1988-01-01

    Electromagnetic polarizabilities of hadrons are reviewed, after a discussion of classical analogues. Differences between relativistic and non-relativistic approaches can lead to conflicts with conventional nuclear physics sum rules and calculational techniques. The nucleon polarizabilities are discussed in the context of the non-relativistic valence quark model, which provides a good qualitative description. The recently measured pion polarizabilities are discussed in the context of chiral symmetry and quark-loop models. 58 refs., 5 figs

  16. Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model.

    Science.gov (United States)

    Mohebifar, Mohamad; Johnson, Erin R; Rowley, Christopher N

    2017-12-12

    London dispersion interactions play an integral role in materials science and biophysics. Force fields for atomistic molecular simulations typically represent dispersion interactions by the 12-6 Lennard-Jones potential using empirically determined parameters. These parameters are generally underdetermined, and there is no straightforward way to test if they are physically realistic. Alternatively, the exchange-hole dipole moment (XDM) model from density-functional theory predicts atomic and molecular London dispersion coefficients from first principles, providing an innovative strategy to validate the dispersion terms of molecular-mechanical force fields. In this work, the XDM model was used to obtain the London dispersion coefficients of 88 organic molecules relevant to biochemistry and pharmaceutical chemistry and the values compared with those derived from the Lennard-Jones parameters of the CGenFF, GAFF, OPLS, and Drude polarizable force fields. The molecular dispersion coefficients for the CGenFF, GAFF, and OPLS models are systematically higher than the XDM-calculated values by a factor of roughly 1.5, likely due to neglect of higher order dispersion terms and premature truncation of the dispersion-energy summation. The XDM dispersion coefficients span a large range for some molecular-mechanical atom types, suggesting an unrecognized source of error in force-field models, which assume that atoms of the same type have the same dispersion interactions. Agreement with the XDM dispersion coefficients is even poorer for the Drude polarizable force field. Popular water models were also examined, and TIP3P was found to have dispersion coefficients similar to the experimental and XDM references, although other models employ anomalously high values. Finally, XDM-derived dispersion coefficients were used to parametrize molecular-mechanical force fields for five liquids-benzene, toluene, cyclohexane, n-pentane, and n-hexane-which resulted in improved accuracy in the

  17. Ehrenfest force in inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Sisakyan, A.N.; Shevchenko, O.Yu.; Samojlov, V.N.

    2000-01-01

    The Ehrenfest force in an inhomogeneous magnetic field is calculated. It is shown that there exist such (very rare) topologically nontrivial physical situations when the Gauss theorem in its classic formulation fails and, as a consequence, apart from the usual Lorentz force an additional, purely imaginary force acts on the charged particle. This force arises only in inhomogeneous magnetic fields of special configurations, has a purely quantum origin, and disappears in the classical limit

  18. Time reversal violating nuclear polarizability and atomic electric dipole moment

    International Nuclear Information System (INIS)

    Ginges, J.S.M.; Flambaum, V.V.; Mititelu, G.

    2000-01-01

    Full text: We propose a nuclear mechanism which can induce an atomic electric dipole moment (EDM). The interaction of external electric E and magnetic H fields with nuclear electric and magnetic dipole moments, d and ,u, gives rise to an energy shift, U= -β ik E i H k , where β ik is the nuclear polarizability. Parity and time invariance violating (P,T-odd) nuclear forces generate a mixed P,T-odd nuclear polarizability, whereψ 0 and ψ n are P,T-odd perturbed ground and excited nuclear states, respectively. In the case of a heavy spherical nucleus with a single unpaired nucleon, the perturbed wavefunctions are U = -β ik E i H k , where ξis a constant proportional to the strength of the nuclear P,T-odd interaction, σ is the nuclear spin operator, and ψ n is an unperturbed wavefunction. There are both scalar and tensor contributions to the nuclear P,T-odd polarizability. An atomic EDM is induced by the interaction of the fields of an unpaired electron in an atom with the P,T-odd perturbed atomic nucleus. An estimate for the value of this EDM has been made. The measurements of atomic EDMs can provide information about P,T-odd nuclear forces and test models of CP-violation

  19. Polarizable Water Model for the Coarse-Grained MARTINI Force Field

    NARCIS (Netherlands)

    Yesylevskyy, Semen O.; Schafer, Lars V.; Sengupta, Durba; Marrink, Siewert J.

    Coarse-grained (CG) simulations have become an essential tool to study a large variety of biomolecular processes, exploring temporal and spatial scales inaccessible to traditional models of atomistic resolution. One of the major simplifications of CG models is the representation of the solvent,

  20. GROMOS polarizable charge-on-spring models for liquid urea: COS/U and COS/U2.

    Science.gov (United States)

    Lin, Zhixiong; Bachmann, Stephan J; van Gunsteren, Wilfred F

    2015-03-07

    Two one-site polarizable urea models, COS/U and COS/U2, based on the charge-on-spring model are proposed. The models are parametrized against thermodynamic properties of urea-water mixtures in combination with the polarizable COS/G2 and COS/D2 models for liquid water, respectively, and have the same functional form of the inter-atomic interaction function and are based on the same parameter calibration procedure and type of experimental data as used to develop the GROMOS biomolecular force field. Thermodynamic, dielectric, and dynamic properties of urea-water mixtures simulated using the polarizable models are closer to experimental data than using the non-polarizable models. The COS/U and COS/U2 models may be used in biomolecular simulations of protein denaturation.

  1. Pion Polarizability Status Report (2017)

    OpenAIRE

    Moinester, Murray

    2017-01-01

    The electric ${\\alpha}_{\\pi}$ and magnetic $\\beta_{\\pi}$ charged pion Compton polarizabilities are of fundamental interest in the low-energy sector of quantum chromodynamics (QCD).They are directly linked to the phenomenon of spontaneously broken chiral symmetry within QCD and to the dynamics of the pion-photon interaction.The combination (${\\alpha}_{\\pi}-\\beta_{\\pi}$) was measured by:(1) CERN COMPASS via radiative pion Primakoff scattering (Bremsstrahlung) in the nuclear Coulomb field, ${\\pi...

  2. Transition States from Empirical Force Fields

    DEFF Research Database (Denmark)

    Jensen, Frank; Norrby, Per-Ola

    2003-01-01

    This is an overview of the use of empirical force fields in the study of reaction mechanisms. EVB-type methods (including RFF and MCMM) produce full reaction surfaces by mixing, in the simplest case, known force fields describing reactants and products. The SEAM method instead locates approximate...

  3. Deriving force field parameters for coordination complexes

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Brandt, Peter

    2001-01-01

    The process of deriving molecular mechanics force fields for coordination complexes is outlined. Force field basics are introduced with an emphasis on special requirements for metal complexes. The review is then focused on how to set up the initial model, define the target, refine the parameters...

  4. Geometry Optimization in Polarizable QM/MM Models: The Induced Dipole Formulation.

    Science.gov (United States)

    Caprasecca, Stefano; Jurinovich, Sandro; Viani, Lucas; Curutchet, Carles; Mennucci, Benedetta

    2014-04-08

    We present the mathematical derivation and the computational implementation of the analytical geometry derivatives for a polarizable QM/MM model (QM/MMPol). In the adopted QM/MMPol model, the focused part is treated at QM level of theory, while the remaining part (the environment) is described classically as a set of fixed charges and induced dipoles. The implementation is performed within the ONIOM procedure, resulting in a polarizable embedding scheme, which can be applied to solvated and embedded systems and combined with different polarizable force fields available in the literature. Two test cases characterized by strong hydrogen-bond and dipole-dipole interactions, respectively, are used to validate the method with respect to the nonpolarizable one. Finally, an application to geometry optimization of the chromophore of Rhodopsin is presented to investigate the impact of including mutual polarization between the QM and the classical parts in conjugated systems.

  5. Static and dynamical Meissner force fields

    Science.gov (United States)

    Weinberger, B. R.; Lynds, L.; Hull, J. R.; Mulcahy, T. M.

    1991-01-01

    The coupling between copper-based high temperature superconductors (HTS) and magnets is represented by a force field. Zero-field cooled experiments were performed with several forms of superconductors: 1) cold-pressed sintered cylindrical disks; 2) small particles fixed in epoxy polymers; and 3) small particles suspended in hydrocarbon waxes. Using magnets with axial field symmetries, direct spatial force measurements in the range of 0.1 to 10(exp 4) dynes were performed with an analytical balance and force constants were obtained from mechanical vibrational resonances. Force constants increase dramatically with decreasing spatial displacement. The force field displays a strong temperature dependence between 20 and 90 K and decreases exponentially with increasing distance of separation. Distinct slope changes suggest the presence of B-field and temperature-activated processes that define the forces. Hysteresis measurements indicated that the magnitude of force scales roughly with the volume fraction of HTS in composite structures. Thus, the net force resulting from the field interaction appears to arise from regions as small or smaller than the grain size and does not depend on contiguous electron transport over large areas. Results of these experiments are discussed.

  6. Joyce and Ulysses: integrated and user-friendly tools for the parameterization of intramolecular force fields from quantum mechanical data.

    Science.gov (United States)

    Barone, Vincenzo; Cacelli, Ivo; De Mitri, Nicola; Licari, Daniele; Monti, Susanna; Prampolini, Giacomo

    2013-03-21

    The Joyce program is augmented with several new features, including the user friendly Ulysses GUI, the possibility of complete excited state parameterization and a more flexible treatment of the force field electrostatic terms. A first validation is achieved by successfully comparing results obtained with Joyce2.0 to literature ones, obtained for the same set of benchmark molecules. The parameterization protocol is also applied to two other larger molecules, namely nicotine and a coumarin based dye. In the former case, the parameterized force field is employed in molecular dynamics simulations of solvated nicotine, and the solute conformational distribution at room temperature is discussed. Force fields parameterized with Joyce2.0, for both the dye's ground and first excited electronic states, are validated through the calculation of absorption and emission vertical energies with molecular mechanics optimized structures. Finally, the newly implemented procedure to handle polarizable force fields is discussed and applied to the pyrimidine molecule as a test case.

  7. Solar Force-free Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Thomas Wiegelmann

    2012-09-01

    Full Text Available The structure and dynamics of the solar corona is dominated by the magnetic field. In most areas in the corona magnetic forces are so dominant that all non-magnetic forces like plasma pressure gradient and gravity can be neglected in the lowest order. This model assumption is called the force-free field assumption, as the Lorentz force vanishes. This can be obtained by either vanishing electric currents (leading to potential fields or the currents are co-aligned with the magnetic field lines. First we discuss a mathematically simpler approach that the magnetic field and currents are proportional with one global constant, the so-called linear force-free field approximation. In the generic case, however, the relation between magnetic fields and electric currents is nonlinear and analytic solutions have been only found for special cases, like 1D or 2D configurations. For constructing realistic nonlinear force-free coronal magnetic field models in 3D, sophisticated numerical computations are required and boundary conditions must be obtained from measurements of the magnetic field vector in the solar photosphere. This approach is currently of large interests, as accurate measurements of the photospheric field become available from ground-based (for example SOLIS and space-born (for example Hinode and SDO instruments. If we can obtain accurate force-free coronal magnetic field models we can calculate the free magnetic energy in the corona, a quantity which is important for the prediction of flares and coronal mass ejections. Knowledge of the 3D structure of magnetic field lines also help us to interpret other coronal observations, e.g., EUV images of the radiating coronal plasma.

  8. Software Process Improvement Using Force Field Analysis ...

    African Journals Online (AJOL)

    An improvement plan is then drawn and implemented. This paper studied the state of Nigerian software development organizations based on selected attributes. Force field analysis is used to partition the factors obtained into driving and restraining forces. An attempt was made to improve the software development process ...

  9. Charm production and the confining force field

    International Nuclear Information System (INIS)

    Andersson, B.; Bengtsson, H.-U.; Gustafson, G.

    1983-03-01

    We show that charm production at SPS energies can be understood simply from O(α 2 sub (s)) QCD processes when combined with fragmentation of the colour fields stretched by the final state partons. The tension of the confining force field responsible for particle production is found to pull the charmed particles away from the reaction centre, giving rise to a harder x sub (F)-spectrum than would be expected from the bare QCD matrix elements. (Authors)

  10. Transferability of polarizable models for ion-water electrostatic interaction

    International Nuclear Information System (INIS)

    Masia, Marco

    2009-01-01

    Studies of ion-water systems at condensed phase and at interfaces have pointed out that molecular and ionic polarization plays an important role for many phenomena ranging from hydrogen bond dynamics to water interfaces' structure. Classical and ab initio Molecular Dynamics simulations reveal that induced dipole moments at interfaces (e.g. air-water and water-protein) are usually high, hinting that polarizable models to be implemented in classical force fields should be very accurate in reproducing the electrostatic properties of the system. In this paper the electrostatic properties of three classical polarizable models for ion-water interaction are compared with ab initio results both at gas and condensed phase. For Li + - water and Cl - -water dimers the reproducibility of total dipole moments obtained with high level quantum chemical calculations is studied; for the same ions in liquid water, Car-Parrinello Molecular Dynamics simulations are used to compute the time evolution of ionic and molecular dipole moments, which are compared with the classical models. The PD2-H2O model developed by the author and coworkers [Masia et al. J. Chem. Phys. 2004, 121, 7362] together with the gaussian intermolecular damping for ion-water interaction [Masia et al. J. Chem. Phys. 2005, 123, 164505] showed to be the fittest in reproducing the ab initio results from gas to condensed phase, allowing for force field transferability.

  11. Harmonic force field for nitro compounds.

    Science.gov (United States)

    Bellido, Edson P; Seminario, Jorge M

    2012-06-01

    Molecular simulations leading to sensors for the detection of explosive compounds require force field parameters that can reproduce the mechanical and vibrational properties of energetic materials. We developed precise harmonic force fields for alanine polypeptides and glycine oligopeptides using the FUERZA procedure that uses the Hessian tensor (obtained from ab initio calculations) to calculate precise parameters. In this work, we used the same procedure to calculate generalized force field parameters of several nitro compounds. We found a linear relationship between force constant and bond distance. The average angle in the nitro compounds was 116°, excluding the 90° angle of the carbon atoms in the octanitrocubane. The calculated parameters permitted the accurate molecular modeling of nitro compounds containing many functional groups. Results were acceptable when compared with others obtained using methods that are specific for one type of molecule, and much better than others obtained using methods that are too general (these ignore the chemical effects of surrounding atoms on the bonding and therefore the bond strength, which affects the mechanical and vibrational properties of the whole molecule).

  12. Potassium bromide, KBr/ ε: New Force Field

    Science.gov (United States)

    Fuentes-Azcatl, Raúl; Barbosa, Marcia C.

    2018-02-01

    We propose a new force field for the Potassium Bromide, the KBr/ ε. The crystal density and structure, as well as, the density, the viscosity and the dielectric constant of the solution in water were computed and compared with the experiments and other atomistic models. Next, the transferability of the KBr/ ε and of the NaCl/ ε models is verified by creating the KCl/ ε and the NaBr/ ε models. The strategy was to employ the same parameters obtained for the NaCl/ ε and for the KBr/ ε force fields for the building up of the KCl/ ε and the NaBr/ ε models . The thermodynamic and dynamic properties of these two new models were compared with the experimental

  13. RNA force field with accuracy comparable to state-of-the-art protein force fields.

    Science.gov (United States)

    Tan, Dazhi; Piana, Stefano; Dirks, Robert M; Shaw, David E

    2018-02-13

    Molecular dynamics (MD) simulation has become a powerful tool for characterizing at an atomic level of detail the conformational changes undergone by proteins. The application of such simulations to RNA structures, however, has proven more challenging, due in large part to the fact that the physical models ("force fields") available for MD simulations of RNA molecules are substantially less accurate in many respects than those currently available for proteins. Here, we introduce an extensive revision of a widely used RNA force field in which the parameters have been modified, based on quantum mechanical calculations and existing experimental information, to more accurately reflect the fundamental forces that stabilize RNA structures. We evaluate these revised parameters through long-timescale MD simulations of a set of RNA molecules that covers a wide range of structural complexity, including single-stranded RNAs, RNA duplexes, RNA hairpins, and riboswitches. The structural and thermodynamic properties measured in these simulations exhibited dramatically improved agreement with experimentally determined values. Based on the comparisons we performed, this RNA force field appears to achieve a level of accuracy comparable to that of state-of-the-art protein force fields, thus significantly advancing the utility of MD simulation as a tool for elucidating the structural dynamics and function of RNA molecules and RNA-containing biological assemblies. Copyright © 2018 the Author(s). Published by PNAS.

  14. A polarizable embedding DFT study of one-photon absorption in fluorescent proteins

    DEFF Research Database (Denmark)

    Beerepoot, Maarten; Steindal, Arnfinn H.; Kongsted, Jacob

    2013-01-01

    A theoretical study of the one-photon absorption of five fluorescent proteins (FPs) is presented. The absorption properties are calculated using a polarizable embedding approach combined with density functional theory (PE-DFT) on the wild-type green fluorescent protein (wtGFP) and several of its...... shift from vacuum to protein. This is the first computational study of a range of fluorescent proteins using a polarizable embedding potential....... optimization of the chromophores within a frozen protein environment is needed in order to reproduce the experimental trends. Explicit account of polarization in the force field is not needed to yield the correct trend between the different FPs, but is necessary for reproducing the experimentally observed red...

  15. Axial polarizability and weak currents in nuclei

    International Nuclear Information System (INIS)

    Ericson, M.

    1977-01-01

    The weak interaction nucleonic coupling constants in nuclei are modified by the presence of the neighbouring nucleons. One type of modification is due to the virtual excitation of the isobars through meson exchange. The influence of the isobars is described by means of the nuclear axial polarizability coefficient. This polarizability is known; it is linked to the p-wave πN scattering volume. A relation is derived between the axial nuclear current and the pion field which incorporates the polarizability effects. This relation has an electromagnetic analogue. It is then possible to derive the axial and pseudoscalar coupling constants from a knowledge of the pion field. This field in turn obeys a Klein-Gordon equation which has to include the isobaric excitations. The propagation of the pion field is similar to that of an electromagnetic wave in a dielectric medium. The strong interaction coupling constant is shown to be renormalized in nuclei by the effect of the various types of correlations. (author)

  16. Refined OPLS all-atom force field for saturated phosphatidylcholine bilayers at full hydration.

    Science.gov (United States)

    Maciejewski, Arkadiusz; Pasenkiewicz-Gierula, Marta; Cramariuc, Oana; Vattulainen, Ilpo; Rog, Tomasz

    2014-05-01

    We report parametrization of dipalmitoyl-phosphatidylcholine (DPPC) in the framework of the Optimized Parameters for Liquid Simulations all-atom (OPLS-AA) force field. We chose DPPC as it is one of the most studied phospholipid species and thus has plenty of experimental data necessary for model validation, and it is also one of the highly important and abundant lipid types, e.g., in lung surfactant. Overall, PCs have not been previously parametrized in the OPLS-AA force field; thus, there is a need to derive its bonding and nonbonding parameters for both the polar and nonpolar parts of the molecule. In the present study, we determined the parameters for torsion angles in the phosphatidylcholine and glycerol moieties and in the acyl chains, as well the partial atomic charges. In these calculations, we used three methods: (1) Hartree-Fock (HF), (2) second order Møller-Plesset perturbation theory (MP2), and (3) density functional theory (DFT). We also tested the effect of the polar environment by using the polarizable continuum model (PCM), and for acyl chains the van der Waals parameters were also adjusted. In effect, six parameter sets were generated and tested on a DPPC bilayer. Out of these six sets, only one was found to be able to satisfactorily reproduce experimental data for the lipid bilayer. The successful DPPC model was obtained from MP2 calculations in an implicit polar environment (PCM).

  17. Minimal Basis Iterative Stockholder: Atoms in Molecules for Force-Field Development.

    Science.gov (United States)

    Verstraelen, Toon; Vandenbrande, Steven; Heidar-Zadeh, Farnaz; Vanduyfhuys, Louis; Van Speybroeck, Veronique; Waroquier, Michel; Ayers, Paul W

    2016-08-09

    Atomic partial charges appear in the Coulomb term of many force-field models and can be derived from electronic structure calculations with a myriad of atoms-in-molecules (AIM) methods. More advanced models have also been proposed, using the distributed nature of the electron cloud and atomic multipoles. In this work, an electrostatic force field is defined through a concise approximation of the electron density, for which the Coulomb interaction is trivially evaluated. This approximate "pro-density" is expanded in a minimal basis of atom-centered s-type Slater density functions, whose parameters are optimized by minimizing the Kullback-Leibler divergence of the pro-density from a reference electron density, e.g., obtained from an electronic structure calculation. The proposed method, Minimal Basis Iterative Stockholder (MBIS), is a variant of the Hirshfeld AIM method, but it can also be used as a density-fitting technique. An iterative algorithm to refine the pro-density is easily implemented with a linear-scaling computational cost, enabling applications to supramolecular systems. The benefits of the MBIS method are demonstrated with systematic applications to molecular databases and extended models of condensed phases. A comparison to 14 other AIM methods shows its effectiveness when modeling electrostatic interactions. MBIS is also suitable for rescaling atomic polarizabilities in the Tkatchenko-Scheffler scheme for dispersion interactions.

  18. Polarizabilities and hyperpolarizabilities of the alkali metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fuentealba, P. (Chile Univ., Santiago (Chile). Departamento de Fisica and Centro de Mecanica Cuantica Aplicada (CMCA)); Reyes, O. (Chile Univ., Santiago (Chile). Dept. de Fisica)

    1993-08-14

    The electric static dipole polarizability [alpha], quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability [gamma] have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability [gamma]. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author).

  19. Effect of the deuteron anisotropy: longitudinal and transverse components of the electric dipole polarizability

    International Nuclear Information System (INIS)

    Kharchenko, A.V.

    1997-01-01

    The anisotropy effect of the electric polarization (stretching) of the deuteron in the Coulomb field, caused by the tensor character of the nuclear force, is investigated. The values of the longitudinal (with the major axis, or the spin of the deuteron, directed along the electric field), and transverse components of the deuteron electric dipole polarizability that correspond to the low-energy n-p data, are predicted to be α parallel =0.669 fm 3 and α perpendicular to =0.555 fm 3 (the potential YYm). The values of the major and minor semi-axes of the deuteron are calculated. (orig.)

  20. Parity nonconservation and nuclear polarizabilities

    International Nuclear Information System (INIS)

    Haxton, W.

    1990-01-01

    The hadronic weak interaction contributes to parity nonconserving observables in semileptonic interactions. Weak nuclear polarizabilities are frequently important in such interactions. Some of the interesting physics is illustrated by 18 F, a nucleus that provides an important constraint on the neutral weak hadronic current. One observable where the nuclear polarizability is expected to dominate is the nuclear anapole moment. The long-range pion contribution to this weak radiative correction is explored for both nucleons and nuclei. Similar polarizabilities that arise for time-reversal-odd hadronic interactions that conserve or violate parity are discussed in connection with atomic electric dipole moments. 20 refs., 4 figs

  1. The critical role of force-fields in property prediction

    DEFF Research Database (Denmark)

    Jonsdottir, Svava Osk; Welsh, William J.; Rasmussen, Kjeld

    1999-01-01

    of conformational energydifferences and interaction energies vary significantly from one force-field to another. As a test for the reliability of the non-bonded interactions, vapor-liquid equilibrium (VLE) data have been calculated for a small number of systems using three different force-fields. The force...

  2. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields.

    Czech Academy of Sciences Publication Activity Database

    Moučka, F.; Nezbeda, Ivo; Smith, W.R.

    2016-01-01

    Roč. 11, č. 4 (2016), s. 1756-1764 ISSN 1549-9618 Grant - others:NSERC(CA) OGP1041 Institutional support: RVO:67985858 Keywords : monte-carlo simulations * molecular-dynamic simulations * free-energy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.245, year: 2016

  3. Pion polarizabilities measurement at COMPASS

    CERN Document Server

    Guskov, Alexey

    2008-01-01

    The electromagnetic structure of pions is probed in $\\pi^{−}+(A,Z) \\rightarrow\\pi^{−}+(A,Z)+\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric ($\\bar{\\alpha_{\\pi}}$) and the magnetic ($\\bar{\\beta_{\\pi}}$) polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of pointlike pions with the measured cross section. The pion polarizability measurement was performed with a $\\pi^{-}$ beam of 190 GeV. The high beam intensity, the good spectrometer resolution, the high rate capability, the high acceptance and the possibility to use pion and muon beams, unique to the COMPASS experiment, provide the tools to measure precisely the pion polarizabilities in the Primakoff reaction.

  4. Molecular Properties through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2011-01-01

    We review the theory related to the calculation of electric and magnetic molecular properties through polarizable embedding. In particular, we derive the expressions for the response functions up to the level of cubic response within the density functional theory-based polarizable embedding (PE......-DFT) formalism. In addition, we discuss some illustrative applications related to the calculation of nuclear magnetic resonance parameters, nonlinear optical properties, and electronic excited states in solution....

  5. Bounds on complex polarizabilities and a new perspective on scattering by a lossy inclusion

    Science.gov (United States)

    Milton, Graeme W.

    2017-09-01

    Here, we obtain explicit formulas for bounds on the complex electrical polarizability at a given frequency of an inclusion with known volume that follow directly from the quasistatic bounds of Bergman and Milton on the effective complex dielectric constant of a two-phase medium. We also describe how analogous bounds on the orientationally averaged bulk and shear polarizabilities at a given frequency can be obtained from bounds on the effective complex bulk and shear moduli of a two-phase medium obtained by Milton, Gibiansky, and Berryman, using the quasistatic variational principles of Cherkaev and Gibiansky. We also show how the polarizability problem and the acoustic scattering problem can both be reformulated in an abstract setting as "Y problems." In the acoustic scattering context, to avoid explicit introduction of the Sommerfeld radiation condition, we introduce auxiliary fields at infinity and an appropriate "constitutive law" there, which forces the Sommerfeld radiation condition to hold. As a consequence, we obtain minimization variational principles for acoustic scattering that can be used to obtain bounds on the complex backwards scattering amplitude. Some explicit elementary bounds are given.

  6. Pion polarizabilities measurement at COMPASS

    CERN Document Server

    Guskov, Alexey

    2008-01-01

    The electromagnetic structure of pions is probed in $\\pi^{−} + (A,Z)\\rightarrow\\pi^{−} + (A,Z) +\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric $(\\bar{\\alpha_{\\pi}})$ and the magnetic $(\\bar{\\beta_{\\pi}})$ polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of pointlike pions with the measured cross section. The pion polarizability measurement was performed with $a \\pi^{−}$ beam of 190 GeV. The high beam intensity, the good spectrometer resolution, the high rate capability, the high acceptance and the possibility to use pion and muon beams, unique to the COMPASS experiment, provide the tools to measure precisely the pion polarizabilities in the Primakoff reaction. The preliminary result for pion polarizabilities under the assumption of $\\bar{\\alpha_{\\pi}} + \\bar{\\beta_{\\pi}} =$ 0 is $\\ba...

  7. Thole's interacting polarizability model in computational chemistry practice

    NARCIS (Netherlands)

    deVries, AH; vanDuijnen, PT; Zijlstra, RWJ; Swart, M

    Thole's interacting polarizability model to calculate molecular polarizabilities from interacting atomic polarizabilities is reviewed and its major applications in computational chemistry are illustrated. The applications include prediction of molecular polarizabilities, use in classical expressions

  8. Gravitational polarizability of black holes

    International Nuclear Information System (INIS)

    Damour, Thibault; Lecian, Orchidea Maria

    2009-01-01

    The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h l of a black hole are defined and computed. They are then compared to their electromagnetic analogs h l EM . The Love numbers h l give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.

  9. Radiative corrections for pion polarizability experiments

    International Nuclear Information System (INIS)

    Akhundov, A.A.; Gerzon, S.; Kananov, S.; Moinester, M.A.

    1994-08-01

    We use the semi-analytical program RCFORGV to evaluate radiative corrections to one-photon radiative emission in the high-energy scattering of pions in the Coulomb field of a nucleus with atomic number Z. It is shown that radiative corrections can simulate a pion polarizability effect. The average effect is α rc π =-β rc π =(0.20±0.05) x 10 -43 cm 3 , for pion energies 40-600 GeV. We also study the range of applicability of the equivalent photon approximation in describing one-photon radiative emission. (author). 21 refs, 6 figs, 1 tab

  10. The Ice-Vapor Interface and the Melting Point of Ice I-h for the Polarizable POL3 Water Model

    Czech Academy of Sciences Publication Activity Database

    Muchová, E.; Gladich, Ivan; Picaud, S.; Hoang, P. N. M.; Roeselová, Martina

    2011-01-01

    Roč. 115, č. 23 (2011), s. 5973-5982 ISSN 1089-5639 R&D Projects: GA ČR(CZ) GAP208/10/1724; GA MŠk LC512; GA MŠk MEB020919; GA MŠk MEB020715 Institutional research plan: CEZ:AV0Z40550506 Keywords : polarizable water force field * ice surface * melting point * ice slab Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.946, year: 2011

  11. Approximate photochemical dynamics of azobenzene with reactive force fields

    Science.gov (United States)

    Li, Yan; Hartke, Bernd

    2013-12-01

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).

  12. The interoperability force in the ERP field

    Science.gov (United States)

    Boza, Andrés; Cuenca, Llanos; Poler, Raúl; Michaelides, Zenon

    2015-04-01

    Enterprise resource planning (ERP) systems participate in interoperability projects and this participation sometimes leads to new proposals for the ERP field. The aim of this paper is to identify the role that interoperability plays in the evolution of ERP systems. To go about this, ERP systems have been first identified within interoperability frameworks. Second, the initiatives in the ERP field driven by interoperability requirements have been identified from two perspectives: technological and business. The ERP field is evolving from classical ERP as information system integrators to a new generation of fully interoperable ERP. Interoperability is changing the way of running business, and ERP systems are changing to adapt to the current stream of interoperability.

  13. Variation of the electronic dipole polarizability on the reaction path.

    Science.gov (United States)

    Jędrzejewski, Mateusz; Ordon, Piotr; Komorowski, Ludwik

    2013-10-01

    The reaction force and the electronic flux, first proposed by Toro-Labbé et al. (J Phys Chem A 103:4398, 1999) have been expressed by the existing conceptual DFT apparatus. The critical points (extremes) of the chemical potential, global hardness and softness have been identified by means of the existing and computable energy derivatives: the Hellman-Feynman force, nuclear reactivity and nuclear stiffness. Specific role of atoms at the reaction center has been unveiled by indicating an alternative method of calculation of the reaction force and the reaction electronic flux. The electron dipole polarizability on the IRC has been analyzed for the model reaction HF + CO→HCOF. The electron polarizability determined on the IRC α e (ξ) was found to be reasonably parallel to the global softness curve S(ξ). The softest state on the IRC (not TS) coincides with zero electronic flux.

  14. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Augustsson, Per; Bruus, Henrik

    2016-01-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems...

  15. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    Science.gov (United States)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  16. Evaluating amber force fields using computed NMR chemical shifts.

    Science.gov (United States)

    Koes, David R; Vries, John K

    2017-10-01

    NMR chemical shifts can be computed from molecular dynamics (MD) simulations using a template matching approach and a library of conformers containing chemical shifts generated from ab initio quantum calculations. This approach has potential utility for evaluating the force fields that underlie these simulations. Imperfections in force fields generate flawed atomic coordinates. Chemical shifts obtained from flawed coordinates have errors that can be traced back to these imperfections. We use this approach to evaluate a series of AMBER force fields that have been refined over the course of two decades (ff94, ff96, ff99SB, ff14SB, ff14ipq, and ff15ipq). For each force field a series of MD simulations are carried out for eight model proteins. The calculated chemical shifts for the 1 H, 15 N, and 13 C a atoms are compared with experimental values. Initial evaluations are based on root mean squared (RMS) errors at the protein level. These results are further refined based on secondary structure and the types of atoms involved in nonbonded interactions. The best chemical shift for identifying force field differences is the shift associated with peptide protons. Examination of the model proteins on a residue by residue basis reveals that force field performance is highly dependent on residue position. Examination of the time course of nonbonded interactions at these sites provides explanations for chemical shift differences at the atomic coordinate level. Results show that the newer ff14ipq and ff15ipq force fields developed with the implicitly polarized charge method perform better than the older force fields. © 2017 Wiley Periodicals, Inc.

  17. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

    Science.gov (United States)

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689

  18. Mitigated-force carriage for high magnetic field environments

    Science.gov (United States)

    Ludtka, Gerard M.; Ludtka, Gail M.; Wilgen, John B.; Murphy, Bart L.

    2015-05-19

    A carriage for high magnetic field environments includes a plurality of work-piece separators disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla for supporting and separating a plurality of work-pieces by a preselected, essentially equal spacing, so that, as a first work-piece is inserted into the magnetic field, a second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  19. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers.

    Science.gov (United States)

    Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep

    2014-10-16

    Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide-water and peptide-membrane interactions allow prediction of free energy minima at the bilayer-water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are -2.51, -4.28, and -5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are -0.83, -3.33, and -3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of

  20. Polarizability effects on the structure and dynamics of ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcante, Ary de Oliveira, E-mail: arycavalcante@ufam.edu.br [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil); Departamento de Química, Universidade Federal do Amazonas, Av. Rodrigo Octávio, 6200, Coroado, Manaus, AM (Brazil); Ribeiro, Mauro C. C. [Laboratório de Espectroscopia Molecular, Instituto de Química, Universidade de São Paulo, São Paulo, SP C.P. 26077, 05513 970 São Paulo, SP (Brazil); Skaf, Munir S. [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil)

    2014-04-14

    Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup −} and PF{sub 6}{sup −}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (χ) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibrium structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.

  1. Perspective: Ab initio force field methods derived from quantum mechanics

    Science.gov (United States)

    Xu, Peng; Guidez, Emilie B.; Bertoni, Colleen; Gordon, Mark S.

    2018-03-01

    It is often desirable to accurately and efficiently model the behavior of large molecular systems in the condensed phase (thousands to tens of thousands of atoms) over long time scales (from nanoseconds to milliseconds). In these cases, ab initio methods are difficult due to the increasing computational cost with the number of electrons. A more computationally attractive alternative is to perform the simulations at the atomic level using a parameterized function to model the electronic energy. Many empirical force fields have been developed for this purpose. However, the functions that are used to model interatomic and intermolecular interactions contain many fitted parameters obtained from selected model systems, and such classical force fields cannot properly simulate important electronic effects. Furthermore, while such force fields are computationally affordable, they are not reliable when applied to systems that differ significantly from those used in their parameterization. They also cannot provide the information necessary to analyze the interactions that occur in the system, making the systematic improvement of the functional forms that are used difficult. Ab initio force field methods aim to combine the merits of both types of methods. The ideal ab initio force fields are built on first principles and require no fitted parameters. Ab initio force field methods surveyed in this perspective are based on fragmentation approaches and intermolecular perturbation theory. This perspective summarizes their theoretical foundation, key components in their formulation, and discusses key aspects of these methods such as accuracy and formal computational cost. The ab initio force fields considered here were developed for different targets, and this perspective also aims to provide a balanced presentation of their strengths and shortcomings. Finally, this perspective suggests some future directions for this actively developing area.

  2. Force-field compensation in a manual tracking task.

    Directory of Open Access Journals (Sweden)

    Valentina Squeri

    2010-06-01

    Full Text Available This study addresses force/movement control in a dynamic "hybrid" task: the master sub-task is continuous manual tracking of a target moving along an eight-shaped Lissajous figure, with the tracking error as the primary performance index; the slave sub-task is compensation of a disturbing curl viscous field, compatibly with the primary performance index. The two sub-tasks are correlated because the lateral force the subject must exert on the eight-shape must be proportional to the longitudinal movement speed in order to perform a good tracking. The results confirm that visuo-manual tracking is characterized by an intermittent control mechanism, in agreement with previous work; the novel finding is that the overall control patterns are not altered by the presence of a large deviating force field, if compared with the undisturbed condition. It is also found that the control of interaction-forces is achieved by a combination of arm stiffness properties and direct force control, as suggested by the systematic lateral deviation of the trajectories from the nominal path and the comparison between perturbed trials and catch trials. The coordination of the two sub-tasks is quickly learnt after the activation of the deviating force field and is achieved by a combination of force and the stiffness components (about 80% vs. 20%, which is a function of the implicit accuracy of the tracking task.

  3. Ohmic dissipation and relaxation of force-free magnetic fields

    International Nuclear Information System (INIS)

    Solov'ev, A.A.

    1985-01-01

    A study is made of the process of passive ohmic dissipation of a force-free magnetic field in a low-pressure plasma with inhomogeneous conductivity. It is shown that the force-free field (curl →H = α→H) preserves its geometrical shape in the process of the dissipation if the ratio α 2 /σ does not depend on the coordinates. The process of topological resistive relaxation of a force-free field in a twisted magnetic loop to the state with least magnetic energy is investigated. It is found that for fixed external pressure and given moment of the forces at the ends of the magnetic loop a uniformly twisted magnetic filament corresponds to this state. Taylor's relaxation model is analyzed critically. It is shown that a force-free field of variable sign with α = const corresponds to a minimum of only the ratio ε/K, where K is the spirality of the field, and not to a minimum of the total magnetic energy ε /sub m/ of the system

  4. Optical Near-field Interactions and Forces for Optoelectronic Devices

    Science.gov (United States)

    Kohoutek, John Michael

    Throughout history, as a particle view of the universe began to take shape, scientists began to realize that these particles were attracted to each other and hence came up with theories, both analytical and empirical in nature, to explain their interaction. The interaction pair potential (empirical) and electromagnetics (analytical) theories, both help to explain not only the interaction between the basic constituents of matter, such as atoms and molecules, but also between macroscopic objects, such as two surfaces in close proximity. The electrostatic force, optical force, and Casimir force can be categorized as such forces. A surface plasmon (SP) is a collective motion of electrons generated by light at the interface between two mediums of opposite signs of dielectric susceptibility (e.g. metal and dielectric). Recently, surface plasmon resonance (SPR) has been exploited in many areas through the use of tiny antennas that work on similar principles as radio frequency (RF) antennas in optoelectronic devices. These antennas can produce a very high gradient in the electric field thereby leading to an optical force, similar in concept to the surface forces discussed above. The Atomic Force Microscope (AFM) was introduced in the 1980s at IBM. Here we report on its uses in measuring these aforementioned forces and fields, as well as actively modulating and manipulating multiple optoelectronic devices. We have shown that it is possible to change the far field radiation pattern of an optical antenna-integrated device through modification of the near-field of the device. This modification is possible through change of the local refractive index or reflectivity of the "hot spot" of the device, either mechanically or optically. Finally, we have shown how a mechanically active device can be used to detect light with high gain and low noise at room temperature. It is the aim of several of these integrated and future devices to be used for applications in molecular sensing

  5. Force-free field model of ball lightning

    Science.gov (United States)

    Tsui, K. H.

    2001-03-01

    Due to the nature that the force-free magnetic field, whose current carried by the conducting plasma is everywhere parallel to the magnetic field it generates, is the minimum energy configuration under the constraint of magnetic helicity conservation, ball lightning is considered as a self-organized phenomenon with a plasma fireball immersed in a spherical force-free magnetic field. Since this field does not exert force on the plasma, the plasma pressure, by itself, is in equilibrium with the surrounding environment, and the force-free magnetic field can take on any value without affecting the plasma. Due to this second feature, singular solutions of the magnetic field that are otherwise excluded are allowed, which enable a large amount of energy to be stored to sustain the ball lightning. The singularity is truncated only by the physical limit of current density that a plasma can carry. Scaling the customary soccer-size fireball to larger dimensions could account for day and night sightings of luminous objects in the sky.

  6. Nonequilibrium forces between neutral atoms mediated by a quantum field

    International Nuclear Information System (INIS)

    Behunin, Ryan O.; Hu, Bei-Lok

    2010-01-01

    We study forces between two neutral atoms, modeled as three-dimensional harmonic oscillators, arising from mutual influences mediated by an electromagnetic field but not from their direct interactions. We allow as dynamical variables the center-of-mass motion of the atom, its internal degrees of freedom, and the quantum field treated relativistically. We adopt the method of nonequilibrium quantum field theory which can provide a first-principles, systematic, and unified description including the intrinsic and induced dipole fluctuations. The inclusion of self-consistent back-actions makes possible a fully dynamical description of these forces valid for general atom motion. In thermal equilibrium we recover the known forces--London, van der Waals, and Casimir-Polder--between neutral atoms in the long-time limit. We also reproduce a recently reported force between atoms when the system is out of thermal equilibrium at late times. More noteworthy is the discovery of the existence of a type of (or identification of the source of some known) interatomic force which we call the ''entanglement force,'' originating from the quantum correlations of the internal degrees of freedom of entangled atoms.

  7. Modeling Enzymatic Transition States by Force Field Methods

    DEFF Research Database (Denmark)

    Hansen, Mikkel Bo; Jensen, Hans Jørgen Aagaard; Jensen, Frank

    2009-01-01

    The SEAM method, which models a transition structure as a minimum on the seam of two diabatic surfaces represented by force field functions, has been used to generate 20 transition structures for the decarboxylation of orotidine by the orotidine-5'-monophosphate decarboxylase enzyme. The dependence...... by various electronic structure methods, where part of the enzyme is represented by a force field description and the effects of the solvent are represented by a continuum model. The relative energies vary by several hundreds of kJ/mol between the transition structures, and tests showed that a large part...

  8. Radiation reaction force and unification of electromagnetic and gravitational fields

    International Nuclear Information System (INIS)

    Lo, C.Y.; Goldstein, G.R.; Napier, A.

    1981-04-01

    A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics such that the radiation reaction force is accounted for. The analysis leads to a five-dimensional unified theory of five variables. The theory is supported by showing that, for the case of a charged particle moving in a constant magnetic field, the radiation reaction force is indeed included. Moreover, this example shows explicitly that physical changes are associated with the fifth variable. Thus, the notion of a physical five-dimensional space should be seriously taken into consideration

  9. Theory and applications of atomic and ionic polarizabilities

    International Nuclear Information System (INIS)

    Mitroy, J; Safronova, M S; Clark, Charles W

    2010-01-01

    Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wavefunctions, interferometry with atom beams and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards. (topical review)

  10. Theory and applications of atomic and ionic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Mitroy, J [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Safronova, M S [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Clark, Charles W, E-mail: jxm107@rsphysse.anu.edu.a, E-mail: msafrono@udel.ed, E-mail: charles.clark@nist.go [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, MD 20899-8410 (United States)

    2010-10-28

    Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wavefunctions, interferometry with atom beams and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards. (topical review)

  11. Mitigated-force carriage for high magnetic field environments

    Science.gov (United States)

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Murphy, Bart L

    2014-05-20

    A carriage for high magnetic field environments includes a first work-piece holding means for holding a first work-piece, the first work-piece holding means being disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla. The first work-piece holding means is further disposed in operable connection with a second work-piece holding means for holding a second work-piece so that, as the first work-piece is inserted into the magnetic field, the second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  12. Study of interactions between metal ions and protein model compounds by energy decomposition analyses and the AMOEBA force field

    Science.gov (United States)

    Jing, Zhifeng; Qi, Rui; Liu, Chengwen; Ren, Pengyu

    2017-10-01

    The interactions between metal ions and proteins are ubiquitous in biology. The selective binding of metal ions has a variety of regulatory functions. Therefore, there is a need to understand the mechanism of protein-ion binding. The interactions involving metal ions are complicated in nature, where short-range charge-penetration, charge transfer, polarization, and many-body effects all contribute significantly, and a quantitative description of all these interactions is lacking. In addition, it is unclear how well current polarizable force fields can capture these energy terms and whether these polarization models are good enough to describe the many-body effects. In this work, two energy decomposition methods, absolutely localized molecular orbitals and symmetry-adapted perturbation theory, were utilized to study the interactions between Mg2+/Ca2+ and model compounds for amino acids. Comparison of individual interaction components revealed that while there are significant charge-penetration and charge-transfer effects in Ca complexes, these effects can be captured by the van der Waals (vdW) term in the AMOEBA force field. The electrostatic interaction in Mg complexes is well described by AMOEBA since the charge penetration is small, but the distance-dependent polarization energy is problematic. Many-body effects were shown to be important for protein-ion binding. In the absence of many-body effects, highly charged binding pockets will be over-stabilized, and the pockets will always favor Mg and thus lose selectivity. Therefore, many-body effects must be incorporated in the force field in order to predict the structure and energetics of metalloproteins. Also, the many-body effects of charge transfer in Ca complexes were found to be non-negligible. The absorption of charge-transfer energy into the additive vdW term was a main source of error for the AMOEBA many-body interaction energies.

  13. Organic ion association in aqueous phase and ab initio-based force fields: The case of carboxylate/ammonium salts

    Science.gov (United States)

    Houriez, Céline; Vallet, Valérie; Réal, Florent; Meot-Ner Mautner, Michael; Masella, Michel

    2017-10-01

    We performed molecular dynamics simulations of carboxylate/methylated ammonium ion pairs solvated in bulk water and of carboxylate/methylated ammonium salt solutions at ambient conditions using an ab initio-based polarizable force field whose parameters are assigned to reproduce only high end quantum computations, at the Møller-Plesset second-order perturbation theory/complete basis set limit level, regarding single ions and ion pairs as isolated and micro-hydrated in gas phase. Our results agree with the available experimental results regarding carboxylate/ammonium salt solutions. For instance, our force field approach predicts the percentage of acetate associated with ammonium ions in CH3 COO-/CH3 NH3+ solutions at the 0.2-0.8M concentration scale to range from 14% to 35%, in line with the estimates computed from the experimental ion association constant in liquid water. Moreover our simulations predict the number of water molecules released from the ion first hydration shell to the bulk upon ion association to be about 2.0 ± 0.6 molecules for acetate/protonated amine ion pairs, 3.1 ± 1.5 molecules for the HCOO-/NH4+ pair and 3.3 ± 1.2 molecules for the CH3COO-/(CH3)4N+ pair. For protonated amine-based ion pairs, these values are in line with experiment for alkali/halide pairs solvated in bulk water. All these results demonstrate the promising feature of ab initio-based force fields, i.e., their capacity in accurately modeling chemical systems that cannot be readily investigated using available experimental techniques.

  14. Energy buildup in sheared force-free magnetic fields

    Science.gov (United States)

    Wolfson, Richard; Low, Boon C.

    1992-01-01

    Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.

  15. Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling

    Science.gov (United States)

    Pulido-Mancera, Laura; Bowen, Patrick T.; Imani, Mohammadreza F.; Kundtz, Nathan; Smith, David

    2017-12-01

    We consider the design and modeling of metasurfaces that couple energy from guided waves to propagating wave fronts. To this purpose, we develop a comprehensive, multiscale dipolar interpretation for large arrays of complementary metamaterial elements embedded in a waveguide structure. Within this modeling technique, the detailed electromagnetic response of each metamaterial element is replaced by a polarizable dipole, described by means of an effective polarizability. In this paper, we present two methods to extract this effective polarizability. The first method invokes surface equivalence principles, averaging over the effective surface currents and charges induced in the element's surface in order to obtain the effective dipole moments, from which the effective polarizability can be inferred. The second method is based in the coupled-mode theory, from which a direct relationship between the effective polarizability and the amplitude coefficients of the scattered waves can be deduced. We demonstrate these methods on several variants of waveguide-fed metasurface elements (both one- and two-dimensional waveguides), finding excellent agreement between the two, as well as with the analytical expressions derived for circular and elliptical irises. With the effective polarizabilities of the metamaterial elements accurately determined, the radiated fields generated by a waveguide-fed metasurface can be found self-consistently by including the interactions between polarizable dipoles. The dipole description provides an effective perspective and computational framework for engineering metasurface structures such as holograms, lenses, and beam-forming arrays, among others.

  16. The electric polarizability of a particle bound by a one-dimensional ionic crystal

    International Nuclear Information System (INIS)

    Balderas, Daniel; González, Gabriel

    2013-01-01

    We consider the problem of a particle confined to a one-dimensional ionic crystal of finite length modeled by repulsive and attractive delta functions and subject to the application of an external constant electric field. Exact expressions for the electric polarizability of the system via the Dalgarno–Lewis technique are obtained in second order perturbation theory. The study uncovers the behavior of the electric polarizability as a function of the number of ions in the system. (paper)

  17. Machine learning of accurate energy-conserving molecular force fields

    Science.gov (United States)

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.; Poltavsky, Igor; Schütt, Kristof T.; Müller, Klaus-Robert

    2017-01-01

    Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol−1 for energies and 1 kcal mol−1 Å̊−1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods. PMID:28508076

  18. Various aspects of magnetic field influence on forced convection

    Directory of Open Access Journals (Sweden)

    Pleskacz Lukasz

    2016-01-01

    Full Text Available Flows in the channels of various geometry can be found everywhere in industrial or daily life applications. They are used to deliver media to certain locations or they are the place where heat may be exchanged. For Authors both points of view are interesting. The enhancement methods for heat transfer during the forced convection are demanded due to a technological development and tendency to miniaturization. At the same time it is also worth to find mechanisms that would help to avoid negative effects like pressure losses or sedimentation in the channel flows. This paper shows and discuss various aspects of magnetic field influence on forced convection. A mathematical model consisted of the mass, momentum and energy conservation equations. In the momentum conservation equation magnetic force term was included. In order to calculate this magnetic force Biot-Savart’s law was utilized. Numerical analysis was performed with the usage of commonly applied software. However, userdefined functions were implemented. The results revealed that both temperature and velocity fields were influenced by the strong magnetic field.

  19. Machine learning of accurate energy-conserving molecular force fields.

    Science.gov (United States)

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E; Poltavsky, Igor; Schütt, Kristof T; Müller, Klaus-Robert

    2017-05-01

    Using conservation of energy-a fundamental property of closed classical and quantum mechanical systems-we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol -1 for energies and 1 kcal mol -1 Å̊ -1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods.

  20. Spatial Confinement of Ultrasonic Force Fields in Microfluidic Channels

    DEFF Research Database (Denmark)

    Manneberg, O; Hagsäter, Melker; Svennebring, J

    2009-01-01

    of the microfluidic channel. The channel segments are remotely actuated by the use of frequency-specific external transducers with refracting wedges placed on top of the chips. The force field in each channel segment is characterized by the use of micrometer-resolution particle image velocimetry ( micro......-PIV). The confinement of the ultrasonic fields during single-or dual-segment actuation, as well as the cross-talk between two adjacent. fields, is characterized and quantified. Our results show that the field confinement typically scales with the acoustic wavelength, and that the cross-talk is insignificant between...... adjacent. fields. The goal is to define design strategies for implementing several spatially separated ultrasonic manipulation functions in series for use in advanced particle or cell handling and processing applications. One such proof-of-concept application is demonstrated, where. flow...

  1. Force fields and scoring functions for carbohydrate simulation.

    Science.gov (United States)

    Xiong, Xiuming; Chen, Zhaoqiang; Cossins, Benjamin P; Xu, Zhijian; Shao, Qiang; Ding, Kai; Zhu, Weiliang; Shi, Jiye

    2015-01-12

    Carbohydrate dynamics plays a vital role in many biological processes, but we are not currently able to probe this with experimental approaches. The highly flexible nature of carbohydrate structures differs in many aspects from other biomolecules, posing significant challenges for studies employing computational simulation. Over past decades, computational study of carbohydrates has been focused on the development of structure prediction methods, force field optimization, molecular dynamics simulation, and scoring functions for carbohydrate-protein interactions. Advances in carbohydrate force fields and scoring functions can be largely attributed to enhanced computational algorithms, application of quantum mechanics, and the increasing number of experimental structures determined by X-ray and NMR techniques. The conformational analysis of carbohydrates is challengeable and has gone into intensive study in elucidating the anomeric, the exo-anomeric, and the gauche effects. Here, we review the issues associated with carbohydrate force fields and scoring functions, which will have a broad application in the field of carbohydrate-based drug design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Real and virtual Compton scattering: The nucleon polarizabilities

    International Nuclear Information System (INIS)

    Downie, E.J.; Fonvieille, H.

    2011-01-01

    We give an overview of low-energy Compton scattering γ (*) p → γp with a real or virtual incoming photon. These processes allow the investigation of one of the fundamental properties of the nucleon, i.e. how its internal structure deforms under an applied static electromagnetic field. Our knowledge of nucleon polarizabilities and their generalization to non-zero four-momentum transfer will be reviewed, including the presently ongoing experiments and future perspectives. (authors)

  3. Modeling Electronic Circular Dichroism within the Polarizable Embedding Approach

    DEFF Research Database (Denmark)

    Nørby, Morten S; Olsen, Jógvan Magnus Haugaard; Steinmann, Casper

    2017-01-01

    We present a systematic investigation of the key components needed to model single chromophore electronic circular dichroism (ECD) within the polarizable embedding (PE) approach. By relying on accurate forms of the embedding potential, where especially the inclusion of local field effects...... are in focus, we show that qualitative agreement between rotatory strength parameters calculated by full quantum mechanical calculations and the more efficient embedding calculations can be obtained. An important aspect in the computation of reliable absorption parameters is the need for conformational...

  4. Field measurement of basal forces generated by erosive debris flows

    Science.gov (United States)

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  5. Systematic Parameterization of Lignin for the CHARMM Force Field

    Energy Technology Data Exchange (ETDEWEB)

    Vermaas, Joshua; Petridis, Loukas; Beckham, Gregg; Crowley, Michael

    2017-07-06

    Plant cell walls have three primary components, cellulose, hemicellulose, and lignin, the latter of which is a recalcitrant, aromatic heteropolymer that provides structure to plants, water and nutrient transport through plant tissues, and a highly effective defense against pathogens. Overcoming the recalcitrance of lignin is key to effective biomass deconstruction, which would in turn enable the use of biomass as a feedstock for industrial processes. Our understanding of lignin structure in the plant cell wall is hampered by the limitations of the available lignin forcefields, which currently only account for a single linkage between lignins and lack explicit parameterization for emerging lignin structures both from natural variants and engineered lignin structures. Since polymerization of lignin occurs via radical intermediates, multiple C-O and C-C linkages have been isolated , and the current force field only represents a small subset of lignin the diverse lignin structures found in plants. In order to take into account the wide range of lignin polymerization chemistries, monomers and dimer combinations of C-, H-, G-, and S-lignins as well as with hydroxycinnamic acid linkages were subjected to extensive quantum mechanical calculations to establish target data from which to build a complete molecular mechanics force field tuned specifically for diverse lignins. This was carried out in a GPU-accelerated global optimization process, whereby all molecules were parameterized simultaneously using the same internal parameter set. By parameterizing lignin specifically, we are able to more accurately represent the interactions and conformations of lignin monomers and dimers relative to a general force field. This new force field will enables computational researchers to study the effects of different linkages on the structure of lignin, as well as construct more accurate plant cell wall models based on observed statistical distributions of lignin that differ between

  6. Force Fields and Point Charges for Crystal Structure Modeling

    OpenAIRE

    Svärd, Michael; Rasmuson, Åke C.

    2009-01-01

    Molecular simulation is increasingly used by chemical engineers and industrial chemists in process and product development. In particular, the possibility to predict the structure and stability of potential polymorphs of a substance is of tremendous interest to the pharmaceutical and specialty chemicals industry. Molecular mechanics modeling relies on the use of parametrized force fields and methods of assigning point charges to the atoms in the molecules. In commercial molecular simulation s...

  7. Tuning the Mass of Chameleon Fields in Casimir Force Experiments

    CERN Document Server

    Brax, Ph; Davis, A C; Shaw, D J; Iannuzzi, D

    2010-01-01

    We have calculated the chameleon pressure between two parallel plates in the presence of an intervening medium that affects the mass of the chameleon field. As intuitively expected, the gas in the gap weakens the chameleon interaction mechanism with a screening effect that increases with the plate separation and with the density of the intervening medium. This phenomenon might open up new directions in the search of chameleon particles with future long range Casimir force experiments.

  8. Classification of Simple Oxides: A Polarizability Approach

    Science.gov (United States)

    Dimitrov, Vesselin; Komatsu, Takayuki

    2002-01-01

    A simple oxide classification has been proposed on the basis of correlation between electronic polarizabilities of the ions and their binding energies determined by XPS. Three groups of oxides have been considered taking into account the values obtained on refractive-index- or energy-gap-based oxide ion polarizability, cation polarizability, optical basicity, O 1s binding energy, metal (or nonmetal) binding energy, and Yamashita-Kurosawa's interaction parameter of the oxides. The group of semicovalent predominantly acidic oxides includes BeO, B2O3, P2O5, SiO2, Al2O3, GeO2, and Ga2O3 with low oxide ion polarizability, high O 1s binding energy, low cation polarizability, high metal (or nonmetal) outermost binding energy, comparatively low optical basicity, and strong interionic interaction, leading to the formation of strong covalent bonds. Some main group oxides so-called ionic or basic such as CaO, In2O3, SnO2, and TeO2 and most transition metal oxides show relatively high oxide ion polarizability, O 1s binding energy in a very narrow medium range, high cation polarizability, and low metal (or nonmetal) binding energy. Their optical basicity varies in a narrow range and it is close to that of CaO. The group of very ionic or very basic oxides includes CdO, SrO, and BaO as well as PbO, Sb2O3, and Bi2O3, which possess very high oxide ion polarizability, low O 1s binding energy, very high cation polarizability, and very low metal (or nonmetal) binding energy. Their optical basicity is higher than that of CaO and the interionic interaction is very weak, giving rise to the formation of very ionic chemical bonds.

  9. Implications of confining force field structures in hard hadronic processes

    International Nuclear Information System (INIS)

    Bengtsson, H.-U.

    1983-04-01

    This thesis is centered on the study of confining force field structures in hard scattering processes. Perturbative QCD provides the means of calculating any process on the parton level, but to be able accurately to describe the actual outcome of an event, one still needs a phenomenological model for how quarks and gluons transform into observable hadrons. One such model is based on the assumption that the particles are produced by the confining fields stretched between the partons. The actual particle distributions will then depend on the topology of the confining fields. We have developed a Monte Carlo program to simulate complete events in hard scattering, and we use this to study the properties of the confining field in different trigger situations. We further look at the amount of hard processes that can be expected in experiments that trigger on transverse energy sum (calorimeter experiments). Finally, we investigate charm production within our model. (author)

  10. Molecular mechanics force-field development for amino acid zwitterions.

    Science.gov (United States)

    Kirschner, K N; Lewin, A H; Bowen, J P

    2003-01-15

    Understanding the conformational flexibility of amino acid zwitterions (ZWs) and their associated conformational energies is crucial for predicting their interactions in biological systems. Gas-phase ab initio calculations of ZWs are intractable. Molecular mechanics (MM), on the other hand, is able to handle large systems but lacks the necessary force field parameters to model ZWs. To develop force field parameters that are able to correctly model ZW geometries and energetics we used a novel combinatorial approach: amino acid ZWs were broken down structurally into key functional components, which were parameterized separately. Møller-Plesset second-order perturbation calculations on small carboxylates, on the glycine cation, and on novel hydrogen bonded systems, coupled with available experimental data, were used to generate MM3(2000) ZW parameters (Allinger N. L.; Yuh, Y. H.; Lii, J.-H. J Am Chem Soc 1989, 111, 8551). The MM3 results from this combinatorial approach gave geometries that are in good agreement with neutron diffraction experiments, plus their frequencies and energies appear to be reasonably modeled. Current limitations and future development of MM force fields are discussed briefly. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 24: 111-128, 2003

  11. Protein-Ligand Informatics Force Field (PLIff): Toward a Fully Knowledge Driven "Force Field" for Biomolecular Interactions.

    Science.gov (United States)

    Verdonk, Marcel L; Ludlow, R Frederick; Giangreco, Ilenia; Rathi, Prakash Chandra

    2016-07-28

    The Protein Data Bank (PDB) contains a wealth of data on nonbonded biomolecular interactions. If this information could be distilled down to nonbonded interaction potentials, these would have some key advantages over standard force fields. However, there are some important outstanding issues to address in order to do this successfully. This paper introduces the protein-ligand informatics "force field", PLIff, which begins to address these key challenges ( https://bitbucket.org/AstexUK/pli ). As a result of their knowledge-based nature, the next-generation nonbonded potentials that make up PLIff automatically capture a wide range of interaction types, including special interactions that are often poorly described by standard force fields. We illustrate how PLIff may be used in structure-based design applications, including interaction fields, fragment mapping, and protein-ligand docking. PLIff performs at least as well as state-of-the art scoring functions in terms of pose predictions and ranking compounds in a virtual screening context.

  12. Excited States in Solution through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus; Aidas, Kestutis; Kongsted, Jacob

    2010-01-01

    We present theory and implementation of an advanced quantum mechanics/molecular mechanics (QM/MM) approach using a fully self-consistent polarizable embedding (PE) scheme. It is a polarizable layered model designed for effective yet accurate inclusion of an anisotropic medium in a quantum...... a nonequilibrium formulation of the environmental response. In our formulation of polarizable embedding we explicitly take into account the full self-consistent many-body environmental response from both ground and excited states. The PE-DFT method can be applied to any molecular system, e.g., proteins...

  13. The effect of electric field geometry on the performance of electromembrane extraction systems: Footprints of a third driving force along with migration and diffusion

    International Nuclear Information System (INIS)

    Moazami, Hamid Reza; Hosseiny Davarani, Saied Saeed; Mohammadi, Jamil; Nojavan, Saeed; Abrari, Masoud

    2015-01-01

    The distribution of electric field vectors was first calculated for electromembrane extraction (EME) systems in classical and cylindrical electrode geometries. The results showed that supported liquid membrane (SLM) has a general field amplifying effect due to its lower dielectric constant in comparison with aqueous donor/acceptor solutions. The calculated norms of the electric field vector showed that a DC voltage of 50 V can create huge electric field strengths up to 64 kV m −1 and 111 kV m −1 in classical and cylindrical geometries respectively. In both cases, the electric field strength reached its peak value on the inner wall of the SLM. In the case of classical geometry, the field strength was a function of the polar position of the SLM whereas the field strength in cylindrical geometry was angularly uniform. In order to investigate the effect of the electrode geometry on the performance of real EME systems, the analysis was carried out in three different geometries including classical, helical and cylindrical arrangements using naproxen and sodium diclofenac as the model analytes. Despite higher field strength and extended cross sectional area, the helical and cylindrical geometries gave lower recoveries with respect to the classical EME. The observed decline of the signal was proved to be against the relations governing migration and diffusion processes, which means that a third driving force is involved in EME. The third driving force is the interaction between the radially inhomogeneous electric field and the analyte in its neutral form. - Highlights: • Electric field vectors have been calculated in EME systems. • A new driving force has been proposed in EME systems. • EME can be theoretically applied to nonionic polarizable analytes.

  14. The effect of electric field geometry on the performance of electromembrane extraction systems: Footprints of a third driving force along with migration and diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Moazami, Hamid Reza [School of Physics and Accelerators, NSTRI, P. O. Box, 11365-8486, Tehran (Iran, Islamic Republic of); Hosseiny Davarani, Saied Saeed, E-mail: ss-hosseiny@sbu.ac.ir [Faculty of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran (Iran, Islamic Republic of); Mohammadi, Jamil; Nojavan, Saeed [Faculty of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran (Iran, Islamic Republic of); Abrari, Masoud [Laser and Plasma Research Institute, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran (Iran, Islamic Republic of)

    2015-09-03

    The distribution of electric field vectors was first calculated for electromembrane extraction (EME) systems in classical and cylindrical electrode geometries. The results showed that supported liquid membrane (SLM) has a general field amplifying effect due to its lower dielectric constant in comparison with aqueous donor/acceptor solutions. The calculated norms of the electric field vector showed that a DC voltage of 50 V can create huge electric field strengths up to 64 kV m{sup −1} and 111 kV m{sup −1} in classical and cylindrical geometries respectively. In both cases, the electric field strength reached its peak value on the inner wall of the SLM. In the case of classical geometry, the field strength was a function of the polar position of the SLM whereas the field strength in cylindrical geometry was angularly uniform. In order to investigate the effect of the electrode geometry on the performance of real EME systems, the analysis was carried out in three different geometries including classical, helical and cylindrical arrangements using naproxen and sodium diclofenac as the model analytes. Despite higher field strength and extended cross sectional area, the helical and cylindrical geometries gave lower recoveries with respect to the classical EME. The observed decline of the signal was proved to be against the relations governing migration and diffusion processes, which means that a third driving force is involved in EME. The third driving force is the interaction between the radially inhomogeneous electric field and the analyte in its neutral form. - Highlights: • Electric field vectors have been calculated in EME systems. • A new driving force has been proposed in EME systems. • EME can be theoretically applied to nonionic polarizable analytes.

  15. Measurement of the charged pion polarizability at COMPASS

    International Nuclear Information System (INIS)

    Nagel, Thiemo Christian Ingo

    2012-01-01

    The reaction π - +Z→π - +γ+Z in which a photon is produced by a beam pion scattering off a quasi-real photon of the Coulomb field of the target nucleus is identified experimentally by the tiny magnitude of the momentum transfer to the nucleus. This process gives access to the charged pion polarizabilities α π and β π whose experimental determination constitutes an important test of Chiral Perturbation Theory. In this work, the pion polarizability is obtained as α π =(1.9±0.7 stat. ±0.8 syst. ) x 10 -4 fm 3 from data taken with 190 GeV/c hadron beam provided by SPS to the COMPASS experiment at CERN in November 2009 and under the assumption of α π +β π =0.

  16. Measurement of the charged pion polarizability at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Thiemo Christian Ingo

    2012-09-26

    The reaction {pi}{sup -}+Z{yields}{pi}{sup -}+{gamma}+Z in which a photon is produced by a beam pion scattering off a quasi-real photon of the Coulomb field of the target nucleus is identified experimentally by the tiny magnitude of the momentum transfer to the nucleus. This process gives access to the charged pion polarizabilities {alpha}{sub {pi}} and {beta}{sub {pi}} whose experimental determination constitutes an important test of Chiral Perturbation Theory. In this work, the pion polarizability is obtained as {alpha}{sub {pi}}=(1.9{+-}0.7{sub stat.}{+-}0.8{sub syst.}) x 10{sup -4} fm{sup 3} from data taken with 190 GeV/c hadron beam provided by SPS to the COMPASS experiment at CERN in November 2009 and under the assumption of {alpha}{sub {pi}}+{beta}{sub {pi}}=0.

  17. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field.

    Science.gov (United States)

    Heinz, Hendrik; Lin, Tzu-Jen; Mishra, Ratan Kishore; Emami, Fateme S

    2013-02-12

    The complexity of the molecular recognition and assembly of biotic-abiotic interfaces on a scale of 1 to 1000 nm can be understood more effectively using simulation tools along with laboratory instrumentation. We discuss the current capabilities and limitations of atomistic force fields and explain a strategy to obtain dependable parameters for inorganic compounds that has been developed and tested over the past decade. Parameter developments include several silicates, aluminates, metals, oxides, sulfates, and apatites that are summarized in what we call the INTERFACE force field. The INTERFACE force field operates as an extension of common harmonic force fields (PCFF, COMPASS, CHARMM, AMBER, GROMACS, and OPLS-AA) by employing the same functional form and combination rules to enable simulations of inorganic-organic and inorganic-biomolecular interfaces. The parametrization builds on an in-depth understanding of physical-chemical properties on the atomic scale to assign each parameter, especially atomic charges and van der Waals constants, as well as on the validation of macroscale physical-chemical properties for each compound in comparison to measurements. The approach eliminates large discrepancies between computed and measured bulk and surface properties of up to 2 orders of magnitude using other parametrization protocols and increases the transferability of the parameters by introducing thermodynamic consistency. As a result, a wide range of properties can be computed in quantitative agreement with experiment, including densities, surface energies, solid-water interface tensions, anisotropies of interfacial energies of different crystal facets, adsorption energies of biomolecules, and thermal and mechanical properties. Applications include insight into the assembly of inorganic-organic multiphase materials, the recognition of inorganic facets by biomolecules, growth and shape preferences of nanocrystals and nanoparticles, as well as thermal transitions and

  18. Casimir force for a scalar field in warped brane worlds

    International Nuclear Information System (INIS)

    Linares, Roman; Morales-Tecotl, Hugo A.; Pedraza, Omar

    2008-01-01

    In looking for imprints of extra dimensions in braneworld models one usually builds these so that they are compatible with known low energy physics and thus focuses on high energy effects. Nevertheless, just as submillimeter Newton's law tests probe the mode structure of gravity other low energy tests might apply to matter. As a model example, in this work we determine the 4D Casimir force corresponding to a scalar field subject to Dirichlet boundary conditions on two parallel planes lying within the single brane of a Randall-Sundrum scenario extended by one compact extra dimension. Using the Green's function method such a force picks the contribution of each field mode as if it acted individually but with a weight given by the square of the mode wave functions on the brane. In the low energy regime one regains the standard 4D Casimir force that is associated to a zero mode in the massless case or to a quasilocalized or resonant mode in the massive one while the effect of the extra dimensions gets encoded as an additional term.

  19. Influence of Gaussian white noise on the frequency-dependent linear polarizability of doped quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731 215, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2014-06-25

    Highlights: • Linear polarizability of quantum dot has been studied. • Quantum dot is doped with a repulsive impurity. • The polarizabilities are frequency-dependent. • Influence of Gaussian white noise has been monitored. • Noise exploited is of additive and multiplicative nature. - Abstract: We investigate the profiles of diagonal components of frequency-dependent linear (α{sub xx} and α{sub yy}) optical response of repulsive impurity doped quantum dots. The dopant impurity potential chosen assumes Gaussian form. The study principally puts emphasis on investigating the role of noise on the polarizability components. In view of this we have exploited Gaussian white noise containing additive and multiplicative characteristics (in Stratonovich sense). The frequency-dependent polarizabilities are studied by exposing the doped dot to a periodically oscillating external electric field of given intensity. The oscillation frequency, confinement potentials, dopant location, and above all, the noise characteristics tune the linear polarizability components in a subtle manner. Whereas the additive noise fails to have any impact on the polarizabilities, the multiplicative noise influences them delicately and gives rise to additional interesting features.

  20. Influence of Gaussian white noise on the frequency-dependent linear polarizability of doped quantum dot

    International Nuclear Information System (INIS)

    Ganguly, Jayanta; Ghosh, Manas

    2014-01-01

    Highlights: • Linear polarizability of quantum dot has been studied. • Quantum dot is doped with a repulsive impurity. • The polarizabilities are frequency-dependent. • Influence of Gaussian white noise has been monitored. • Noise exploited is of additive and multiplicative nature. - Abstract: We investigate the profiles of diagonal components of frequency-dependent linear (α xx and α yy ) optical response of repulsive impurity doped quantum dots. The dopant impurity potential chosen assumes Gaussian form. The study principally puts emphasis on investigating the role of noise on the polarizability components. In view of this we have exploited Gaussian white noise containing additive and multiplicative characteristics (in Stratonovich sense). The frequency-dependent polarizabilities are studied by exposing the doped dot to a periodically oscillating external electric field of given intensity. The oscillation frequency, confinement potentials, dopant location, and above all, the noise characteristics tune the linear polarizability components in a subtle manner. Whereas the additive noise fails to have any impact on the polarizabilities, the multiplicative noise influences them delicately and gives rise to additional interesting features

  1. Vector field statistical analysis of kinematic and force trajectories.

    Science.gov (United States)

    Pataky, Todd C; Robinson, Mark A; Vanrenterghem, Jos

    2013-09-27

    When investigating the dynamics of three-dimensional multi-body biomechanical systems it is often difficult to derive spatiotemporally directed predictions regarding experimentally induced effects. A paradigm of 'non-directed' hypothesis testing has emerged in the literature as a result. Non-directed analyses typically consist of ad hoc scalar extraction, an approach which substantially simplifies the original, highly multivariate datasets (many time points, many vector components). This paper describes a commensurately multivariate method as an alternative to scalar extraction. The method, called 'statistical parametric mapping' (SPM), uses random field theory to objectively identify field regions which co-vary significantly with the experimental design. We compared SPM to scalar extraction by re-analyzing three publicly available datasets: 3D knee kinematics, a ten-muscle force system, and 3D ground reaction forces. Scalar extraction was found to bias the analyses of all three datasets by failing to consider sufficient portions of the dataset, and/or by failing to consider covariance amongst vector components. SPM overcame both problems by conducting hypothesis testing at the (massively multivariate) vector trajectory level, with random field corrections simultaneously accounting for temporal correlation and vector covariance. While SPM has been widely demonstrated to be effective for analyzing 3D scalar fields, the current results are the first to demonstrate its effectiveness for 1D vector field analysis. It was concluded that SPM offers a generalized, statistically comprehensive solution to scalar extraction's over-simplification of vector trajectories, thereby making it useful for objectively guiding analyses of complex biomechanical systems. © 2013 Published by Elsevier Ltd. All rights reserved.

  2. Parametrization of a reactive force field for aluminum hydride

    OpenAIRE

    Ojwang, J. G. O.; van Santen, Rutger A.; Kramer, Gert Jan; van Duin, Adri C. T.; Goddard, William A., III

    2009-01-01

    A reactive force field, REAXFF, for aluminum hydride has been developed based on density functional theory (DFT) derived data. REAXFF_(AlH_3) is used to study the dynamics governing hydrogen desorption in AlH_3. During the abstraction process of surface molecular hydrogen charge transfer is found to be well described by REAXFF_(AlH_3). Results on heat of desorption versus cluster size show that there is a strong dependence of the heat of desorption on the particle size, which implies that nan...

  3. On the use of quartic force fields in variational calculations

    Science.gov (United States)

    Fortenberry, Ryan C.; Huang, Xinchuan; Yachmenev, Andrey; Thiel, Walter; Lee, Timothy J.

    2013-06-01

    Quartic force fields (QFFs) have been shown to be one of the most effective ways to efficiently compute vibrational frequencies for small molecules. In this letter we discuss how the simple-internal or bond-length bond-angle (BLBA) coordinates can be transformed into Morse-cosine (-sine) coordinates which produce potential energy surfaces from QFFs that possess proper limiting behavior and can describe the vibrational (or rovibrational) energy levels of an arbitrary molecular system to 5 cm-1 or better compared to experiment. We investigate parameter scaling in the Morse coordinate, symmetry considerations, and examples of transformed QFFs making use of the MULTIMODE, TROVE, and VTET variational vibrational methods.

  4. Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability.

    Science.gov (United States)

    Appelquist, T; Berkowitz, E; Brower, R C; Buchoff, M I; Fleming, G T; Jin, X-Y; Kiskis, J; Kribs, G D; Neil, E T; Osborn, J C; Rebbi, C; Rinaldi, E; Schaich, D; Schroeder, C; Syritsyn, S; Vranas, P; Weinberg, E; Witzel, O

    2015-10-23

    We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar "stealth baryon" dark matter candidate, arising from a dark SU(4) confining gauge theory-"stealth dark matter." In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest "baryon" states in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m(B)(6), suggests the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.

  5. Response of Magnetic Force Microscopy Probes under AC Magnetic Field

    Science.gov (United States)

    Sungthong, A.; Ruksasakchai, P.; Saengkaew, K.; Cheowanish, I.; Damrongsak, B.

    2017-09-01

    In this paper, magnetic force microscopy (MFM) probes with different coating materials were characterized under AC magnetic field. A perpendicular magnetic write head similar to those used in hard disk drives was employed as the AC magnetic field generator. In order to measure a response of MFM probes to AC magnetic field, a MFM probe under test was scanned, at a scan height of 10 nm, across the surface of the magnetic write head. During MFM imaging, the write head was biased by a sufficient magnitude of AC current, approximately 30 mA. A spectral analysis for a frequency sweep from 1 kHz to 100 MHz was extracted from post-processing MFM images. As expected, a MFM probe coated with hard magnetic alloys, i.e. FePt, has the lowest response to AC magnetic fields. MFM probes coated with soft magnetic alloys, i.e. NiFe and NiCoCr, have a relatively high and flat response across the frequency range. Ni coated MFM probe has the highest response to AC magnetic fields. In addition, CoCr and NiCo coated MFM probes show lower response than NiFe and NiCoCr probes at low frequencies; however, theirs response to AC magnetic field increase for the AC magnetic field with a frequency above 50 kHz. This can be implied that those MFM probes are a good candidate for being used to study the high-frequency performance of perpendicular magnetic write heads. Noting that response of all MFM probes significantly decreased when driven frequencies above 1 MHz due to the limitation of the hardware, i.e. response of quadrant photodiode and op-amp in a pre-amplifier.

  6. The Quantum Space Phase Transitions for Particles and Force Fields

    Directory of Open Access Journals (Sweden)

    Chung D.-Y.

    2006-07-01

    Full Text Available We introduce a phenomenological formalism in which the space structure is treated in terms of attachment space and detachment space. Attachment space attaches to an object, while detachment space detaches from the object. The combination of these spaces results in three quantum space phases: binary partition space, miscible space and binary lattice space. Binary lattice space consists of repetitive units of alternative attachment space and detachment space. In miscible space, attachment space is miscible to detachment space, and there is no separation between attachment space and detachment spaces. In binary partition space, detachment space and attachment space are in two separat continuous regions. The transition from wavefunction to the collapse of wavefuction under interference becomes the quantum space phase transition from binary lattice space to miscible space. At extremely conditions, the gauge boson force field undergoes a quantum space phase transition to a "hedge boson force field", consisting of a "vacuum" core surrounded by a hedge boson shell, like a bubble with boundary.

  7. Scalar meson field and many-body forces. Chapter 23

    International Nuclear Information System (INIS)

    Nyman, E.M.

    1979-01-01

    In applications of field theory to the theory of the nuclear forces, one has frequently assumed that there is a scalar meson. It will then be responsible for most of the medium-range attraction between the nucleons. According to current ideas, however, it is possible to account for the medium-range attraction without an elementary sigma meson. This approach requires a careful treatment of the exchange of interacting pairs of π mesons, such as to include those ππ interactions which are responsible for the formation and decay of the sigma meson. Recently, the scalar field in the nuclear many-body problem has begun to receive more attention. There are two reasons for this change of philosophy. One reason is the discovery of neutron stars. In neutron stars, the nucleon number density can be much higher than in nuclei. One therefore wants to derive the equation of state from a relativistic many-body theory. This forces one to deal explicitly with a set of mesons, such that in the non-relativistic limit one recovers the one-boson-exchange potential. (Auth.)

  8. Links between the charge model and bonded parameter force constants in biomolecular force fields

    Science.gov (United States)

    Cerutti, David S.; Debiec, Karl T.; Case, David A.; Chong, Lillian T.

    2017-10-01

    The ff15ipq protein force field is a fixed charge model built by automated tools based on the two charge sets of the implicitly polarized charge method: one set (appropriate for vacuum) for deriving bonded parameters and the other (appropriate for aqueous solution) for running simulations. The duality is intended to treat water-induced electronic polarization with an understanding that fitting data for bonded parameters will come from quantum mechanical calculations in the gas phase. In this study, we compare ff15ipq to two alternatives produced with the same fitting software and a further expanded data set but following more conventional methods for tailoring bonded parameters (harmonic angle terms and torsion potentials) to the charge model. First, ff15ipq-Qsolv derives bonded parameters in the context of the ff15ipq solution phase charge set. Second, ff15ipq-Vac takes ff15ipq's bonded parameters and runs simulations with the vacuum phase charge set used to derive those parameters. The IPolQ charge model and associated protocol for deriving bonded parameters are shown to be an incremental improvement over protocols that do not account for the material phases of each source of their fitting data. Both force fields incorporating the polarized charge set depict stable globular proteins and have varying degrees of success modeling the metastability of short (5-19 residues) peptides. In this particular case, ff15ipq-Qsolv increases stability in a number of α -helices, correctly obtaining 70% helical character in the K19 system at 275 K and showing appropriately diminishing content up to 325 K, but overestimating the helical fraction of AAQAA3 by 50% or more, forming long-lived α -helices in simulations of a β -hairpin, and increasing the likelihood that the disordered p53 N-terminal peptide will also form a helix. This may indicate a systematic bias imparted by the ff15ipq-Qsolv parameter development strategy, which has the hallmarks of strategies used to develop

  9. Measuring Single-Bond Rupture Forces Using High Electric Fields in Microfluidic Channels and DNA Oligomers as Force Tags

    OpenAIRE

    Breisch, Stefanie; Gonska, Julian; Deissler, Helmut; Stelzle, Martin

    2005-01-01

    The disruption force of specific biotin-streptavidin bonds was determined using DNA oligomers as force tags. Forces were generated by an electric field acting on a biotinylated fluorescently labeled DNA oligomer. DNA oligomers were immobilized via biotin-streptavidin bonds on the walls of microfluidic channels. Channel layout and fluid-based deposition process were designed to enable well-defined localized deposition of the oligomers in a narrow gap of the microchannel. Electric fields of up ...

  10. Evaluation of carbohydrate molecular mechanical force fields by quantum mechanical calculations

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Madsen, D.E.; Esbensen, A.L.

    2004-01-01

    -generation carbohydrate force fields. No single force field is consistently better than the others for all the test cases. A statistical assessment of the performance of the force fields indicates that CHEAT(95), CFF, certain versions of Amber and of MM3 have the best overall performance, for these gas phase...

  11. Parametrization of a reactive force field for aluminum hydride.

    Science.gov (United States)

    Ojwang, J G O; van Santen, Rutger A; Kramer, Gert Jan; van Duin, Adri C T; Goddard, William A

    2009-07-28

    A reactive force field, REAXFF, for aluminum hydride has been developed based on density functional theory (DFT) derived data. REAXFF(AlH(3)) is used to study the dynamics governing hydrogen desorption in AlH(3). During the abstraction process of surface molecular hydrogen charge transfer is found to be well described by REAXFF(AlH(3)). Results on heat of desorption versus cluster size show that there is a strong dependence of the heat of desorption on the particle size, which implies that nanostructuring enhances desorption process. In the gas phase, it was observed that small alane clusters agglomerated into a bigger cluster. After agglomeration molecular hydrogen was desorbed from the structure. This thermodynamically driven spontaneous agglomeration followed by desorption of molecular hydrogen provides a mechanism on how mobile alane clusters can facilitate the mass transport of aluminum atoms during the thermal decomposition of NaAlH(4).

  12. Modification of the CHARMM force field for DMPC lipid bilayer.

    Science.gov (United States)

    Högberg, Carl-Johan; Nikitin, Alexei M; Lyubartsev, Alexander P

    2008-11-15

    The CHARMM force field for DMPC lipids was modified in order to improve agreement with experiment for a number of important properties of hydrated lipid bilayer. The modification consists in introduction of a scaling factor 0.83 for 1-4 electrostatic interactions (between atoms separated by three covalent bonds), which provides correct transgauche ratio in the alkane tails, and recalculation of the headgroup charges on the basis of HF/6-311(d,p) ab-initio computations. Both rigid TIP3P and flexible SPC water models were used with the new lipid model, showing similar results. The new model in a 75 ns simulation has shown a correct value of the area per lipid at zero surface tension, as well as good agreement with the experiment for the electron density, structure factor, and order parameters, including those in the headgroup part of lipids. 2008 Wiley Periodicals, Inc.

  13. New arrangements in force in the field of transport

    CERN Multimedia

    Tom Wegelius

    2006-01-01

    Please take note of the following information concerning new arrangements in force in the field of transport: China: Regulations applying to wooden packaging materials as of 1st January 2006 As scheduled, China introduced standard ISPM No. 15 on 1st January 2006. This was officially confirmed in a letter from the Federal Minister for Consumer Protection, Food and Agriculture. Henceforth, China will apply the same conditions to the importation of wooden packaging materials as various other countries, including the United States, Mexico and Brazil. This means that items shipped to China in wooden packaging will no longer need to be accompanied by a certificate relating to the protection of plant species or other phytosanitary documents (such as heat treatment certificates). However, a guarantee that the wooden packaging complies with standard ISPM No. 15 will be required. Phase II of US regulations concerning wooden packaging material Phase II of regulations concerning the importation of wooden packaging ma...

  14. A Multiposture Locomotor Training Device with Force-Field Control

    Directory of Open Access Journals (Sweden)

    Jianfeng Sui

    2014-11-01

    Full Text Available This paper introduces a multiposture locomotor training device (MPLTD with a closed-loop control scheme based on joint angle feedback, which is able to overcome various difficulties resulting from mechanical vibration and the weight of trainer to achieve higher accuracy trajectory. By introducing the force-field control scheme used in the closed-loop control, the device can obtain the active-constrained mode including the passive one. The MPLTD is mainly composed of three systems: posture adjusting and weight support system, lower limb exoskeleton system, and control system, of which the lower limb exoskeleton system mainly includes the indifferent equilibrium mechanism with two degrees of freedom (DOF and the driving torque is calculated by the Lagrangian function. In addition, a series of experiments, the weight support and the trajectory accuracy experiment, demonstrate a good performance of mechanical structure and the closed-loop control.

  15. Molecular dynamics simulations of nonpolarizable inorganic salt solution interfaces: NaCl, NaBr, and NaI in transferable intermolecular potential 4-point with charge dependent polarizability (TIP4P-QDP) water

    Science.gov (United States)

    Bauer, Brad A.; Patel, Sandeep

    2010-01-01

    calculations of the condensed-phase polarizability reduction in liquid water, the present simulations highlight the role of water polarizability in inducing water molecular dipole moments parallel to the interface normal (and within the interfacial region) so as to favorably oppose the macrodipole generated by the separation of anion and cation charge. Since the TIP4P-QDP water polarizability approaches that of the experimental vapor phase value for water, the present results suggest a fundamental role of solvent polarizability in accommodating the large spatial dipole generated by the separation of ion charges. The present results draw further attention to the question of what exact value of condensed phase water polarizability to incorporate in classical polarizable water force fields.

  16. Charged pions polarizability measurement at COMPASS

    CERN Document Server

    Guskov, A

    2010-01-01

    The pion electromagnetic structure can be probed in $\\pi^{−}+(A,Z)\\rightarrow\\pi^{-}+(A,Z)+\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric $(\\alpha_{\\pi})$ and the magnetic $(\\beta_{\\pi})$ polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of point-like pions with the measured cross section. The opportunity to measure pion polarizability via the Primakoff reaction at the COMPASS experiment was studied with $a$ $\\pi^{-}$ beam of 190 GeV during pilot run 2004. The obtained results were used for preparation of the new data taking which was performed in 2009.

  17. Measurement of the pion polarizabilities at COMPASS

    CERN Document Server

    Guskov, A V

    2006-01-01

    The electromagnetic structure of pions is probed in $\\pi\\gamma$ Compton scattering in inverse kinematics (Primakoff effect) and described by the electric ($\\alpha_{\\pi}$) and magnetic ($\\beta_{\\pi}$) polarizabilities, that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the theoretically predicted (under approximation of unstructured pion) cross section of Primakoff scattering and the measured cross section. The high beam intensity, good spectrometer resolution, the high rate capability, the high acceptance and possibility to use pion and muon beams, that are unique to the COMPASS experiment provide the tools to measure precisely the pion polarizabilities in the $\\pi^{-} + (A,Z)\\rightarrow\\pi^{-} + (A,Z) + \\gamma$ Primakoff reaction. This cross section is related to the cross section of Compton scattering on pion. A precise tracking system, electromagnetic and hadron calorimeters provide good conditions for...

  18. Polarizable Density Embedding Coupled Cluster Method

    DEFF Research Database (Denmark)

    Hršak, Dalibor; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2018-01-01

    by an embedding potential consisting of a set of fragment densities obtained from calculations on isolated fragments with a quantum-chemistry method such as Hartree-Fock (HF) or Kohn-Sham density functional theory (KS-DFT) and dressed with a set of atom-centered anisotropic dipole-dipole polarizabilities......). In the PDE-CC method, the smaller, but chemically important core region is described with a high-level CC method. The environment surrounding the core region can be separated into two levels of description: an inner and an outer region. The effect of the inner region on the core region is described......We present the theory and implementation of the polarizable density embedding (PDE) model in combination with coupled cluster (CC) theory (PDE-CC). This model has been implemented in the Dalton quantum chemistry program by adapting the CC code to the polarizable embedding library (PElib...

  19. Fabricating off-diagonal components of frequency-dependent linear and nonlinear polarizabilities of doped quantum dots by Gaussian white noise

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Surajit [Department of Chemistry, Bishnupur Ramananda College, Bishnupur, Bankura 722122, West Bengal (India); Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731215, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2015-07-15

    We make a rigorous exploration of the profiles of off-diagonal components of frequency-dependent linear (α{sub xy}, α{sub yx}), first nonlinear (β{sub xyy}, β{sub yxx}), and second nonlinear (γ{sub xxyy}, γ{sub yyxx}) polarizabilities of quantum dots driven by Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been applied additively and multiplicatively to the system. An external oscillatory electric field has also been applied to the system. Gradual variations of external frequency, dopant location, and noise strength give rise to interesting features of polarizability components. The observations reveal intricate interplay between noise strength and dopant location which designs the polarizability profiles. Moreover, the mode of application of noise also modulates the polarizability components. Interestingly, in case of additive noise the noise strength has no role on polarizabilities whereas multiplicative noise invites greater delicacy in them. The said interplay provides a rather involved framework to attain stable, enhanced, and often maximized output of linear and nonlinear polarizabilities. - Highlights: • Linear and nonlinear polarizabilities of quantum dot are studied. • The polarizability components are off-diagonal and frequency-dependent. • Quantum dot is doped with a repulsive impurity. • Doped system is subject to Gaussian white noise. • Mode of noise application affects polarizabilities.

  20. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.

    Science.gov (United States)

    Bryce, Richard A

    2011-04-01

    The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.

  1. A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water

    Energy Technology Data Exchange (ETDEWEB)

    Schwörer, Magnus; Wichmann, Christoph; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)

    2016-03-21

    The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). For the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a “first-principles” DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.

  2. A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water.

    Science.gov (United States)

    Schwörer, Magnus; Wichmann, Christoph; Tavan, Paul

    2016-03-21

    The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). For the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a "first-principles" DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.

  3. ForceFit: a code to fit classical force fields to ab-initio potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Henson, Neil Jon [Los Alamos National Laboratory; Waldher, Benjamin [WSU; Kuta, Jadwiga [WSU; Clark, Aurora [WSU; Clark, Aurora E [NON LANL

    2009-01-01

    The ForceFit program package has been developed for fitting classical force field parameters based upon a force matching algorithm to quantum mechanical gradients of configurations that span the potential energy surface of the system. The program, which runs under Unix and is written in C++, is an easy to use, nonproprietary platform that enables gradient fitting of a wide variety of functional force field forms to quantum mechanical information obtained from an array of common electronic structure codes. All aspects of the fitting process are run from a graphical user interface, from the parsing of quantum mechanical data, assembling of a potential energy surface database, setting the force field and variables to be optimized, choosing a molecular mechanics code for comparison to the reference data, and finally, the initiation of a least squares minimization algorithm. Furthermore, the code is based on a modular templated code design that enables the facile addition of new functionality to the program.

  4. K$_{-}$ and K$_{-}$ polarizability from kaonic atoms

    CERN Document Server

    Backenstoss, Gerhard; Bergström, I; Bunaciu, T; Egger, J; Hagelberg, R; Hultberg, S; Koch, H; Lynen, Y; Ritter, H G; Schwitter, A; Tauscher, L

    1973-01-01

    The K/sup -/ mass was determined from kaonic atomic X-rays from Au and Ba to be 493.691+or-0.040 MeV. An upper limit for the polarizability of the K/sup -/ was found to be 0.020 fm/sup 3/ at 90% confidence. (18 refs).

  5. The axial polarizability of nucleons and nuclei

    International Nuclear Information System (INIS)

    Ericson, M.; Figureau, A.

    1981-02-01

    The part of the static nuclear axial polarizability arising from the nucleonic excitations is derived from the low energy expansion of the πN amplitude. It is shown that the contribution of the Δ intermediate state, though dominant, does not saturate the nucleonic response. A similar effect, though more pronounced, is known to occur for the magnetic susceptibility

  6. Enhancement of polarizabilities of cylinders with cylinder-slab resonances.

    Science.gov (United States)

    Xiao, Meng; Huang, Xueqin; Liu, H; Chan, C T

    2015-02-02

    If an object is very small in size compared with the wavelength of light, it does not scatter light efficiently. It is hence difficult to detect a very small object with light. We show using analytic theory as well as full wave numerical calculation that the effective polarizability of a small cylinder can be greatly enhanced by coupling it with a superlens type metamaterial slab. This kind of enhancement is not due to the individual resonance effect of the metamaterial slab, nor due to that of the object, but is caused by a collective resonant mode between the cylinder and the slab. We show that this type of particle-slab resonance which makes a small two-dimensional object much "brighter" is actually closely related to the reverse effect known in the literature as "cloaking by anomalous resonance" which can make a small cylinder undetectable. We also show that the enhancement of polarizability can lead to strongly enhanced electromagnetic forces that can be attractive or repulsive, depending on the material properties of the cylinder.

  7. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model.

    Science.gov (United States)

    Laury, Marie L; Wang, Lee-Ping; Pande, Vijay S; Head-Gordon, Teresa; Ponder, Jay W

    2015-07-23

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. An automated procedure, ForceBalance, is used to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimental data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The AMOEBA14 model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures from 249 to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to experimental properties as a function of temperature, including the second virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, and dielectric constant. The viscosity, self-diffusion constant, and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2-20 water molecules, the AMOEBA14 model yields results similar to AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model.

  8. Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles.

    Science.gov (United States)

    Narth, Christophe; Lagardère, Louis; Polack, Étienne; Gresh, Nohad; Wang, Qiantao; Bell, David R; Rackers, Joshua A; Ponder, Jay W; Ren, Pengyu Y; Piquemal, Jean-Philip

    2016-02-15

    We propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono- and divalent cations with a water ligand are also provided. Transferability of the correction is adressed in the context of the implementation of the AMOEBA and SIBFA polarizable force fields in the TINKER-HP software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration-corrected polarizable force fields highlighting the mandatory need of non-spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally, scalability and parallelism of the short-range corrected SPME approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complex bio- or bioinorganic systems in periodic boundary conditions. Copyright © 2016 Wiley Periodicals, Inc.

  9. A model with charges and polarizability for CS₂ in an ionic liquid

    Indian Academy of Sciences (India)

    The environment of a solute molecule in an ionic liquid is likely to have large fluctuating electrostatic fields, and so the electrostatic properties of such a solute including its charge distribution and its polarizability may make a difference to both its static and dynamic properties. We have developed a new model forthe static ...

  10. Scalar self-force on a static particle in Schwarzschild using the massive field approach

    OpenAIRE

    Rosenthal, Eran

    2004-01-01

    We use the recently developed massive field approach to calculate the scalar self-force on a static particle in a Schwarzschild spacetime. In this approach the scalar self-force is obtained from the difference between the (massless) scalar field, and an auxiliary massive scalar field combined with a certain limiting process. By applying this approach to a static particle in Schwarzschild we show that the scalar self-force vanishes in this case. This result conforms with a previous analysis by...

  11. The influence of catch trials on the consolidation of motor memory in force field adaptation tasks

    Directory of Open Access Journals (Sweden)

    Anne eFocke

    2013-07-01

    Full Text Available In computational neuroscience it is generally accepted that human motor memory contains neural representations of the physics of the musculoskeletal system and the objects in the environment. These representations are called internal models. Force field studies, in which subjects have to adapt to dynamic perturbations induced by a robotic manipulandum, are an established tool to analyze the characteristics of such internal models. The aim of the current study was to investigate whether catch trials during force field learning could influence the consolidation of motor memory in more complex tasks. Thereby, the force field was more than double the force field of previous studies (35 Ns/m. Moreover, the arm of the subjects was not supported. A total of forty-six subjects participated in this study and performed center-out movements at a robotic manipulandum in two different force fields. Two control groups learned force field A on day 1 and were retested in the same force field on day 3 (AA. Two test groups additionally learned an interfering force field B (=-A on day 2 (ABA. The difference between the two test and control groups, respectively, was the absence (0% or presence (19% of catch trials, in which the force field was turned off suddenly. The results showed consolidation of force field A on day 3 for both control groups. Test groups showed no consolidation of force field A (19% catch trials and even poorer performance on day 3 (0% catch trials. In conclusion, it can be stated that catch trials seem to have a positive effect on the performance on day 3 but do not trigger a consolidation process as shown in previous studies that used a lower force field viscosity with supported arm. These findings indicate that the results of previous studies in which less complex tasks were analyzed, cannot be fully transferred to more complex tasks. Moreover, the effects of catch trials in these situations are insufficiently understood and further research

  12. Evaluating Force Fields for the Computational Prediction of Ionized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol.

    Science.gov (United States)

    Sun, Delin; Forsman, Jan; Woodward, Clifford E

    2015-04-14

    Abundant peptides and proteins containing arginine (Arg) and lysine (Lys) amino acids can apparently permeate cell membranes with ease. However, the mechanisms by which these peptides and proteins succeed in traversing the free energy barrier imposed by cell membranes remain largely unestablished. Precise thermodynamic studies (both theoretical and experimental) on the interactions of Arg and Lys residues with model lipid bilayers can provide valuable clues to the efficacy of these cationic peptides and proteins. We have carried out molecular dynamics simulations to calculate the interactions of ionized Arg and Lys side-chains with the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayer for 10 widely used lipid/protein force fields: CHARMM36/CHARMM36, SLIPID/AMBER99SB-ILDN, OPLS-AA/OPLS-AA, Berger/OPLS-AA, Berger/GROMOS87, Berger/GROMOS53A6, GROMOS53A6/GROMOS53A6, nonpolarizable MARTINI, polarizable MARTINI, and BMW MARTINI. We performed umbrella sampling simulations to obtain the potential of mean force for Arg and Lys side-chains partitioning from water to the bilayer interior. We found significant differences between the force fields, both for the interactions between side-chains and bilayer surface, as well as the free energy cost for placing the side-chain at the center of the bilayer. These simulation results were compared with the Wimley-White interfacial scale. We also calculated the free energy cost for transferring ionized Arg and Lys side-chains from water to both dry and wet octanol. Our simulations reveal rapid diffusion of water molecules into octanol whereby the equilibrium mole fraction of water in the wet octanol phase was ∼25%. Surprisingly, our free energy calculations found that the high water content in wet octanol lowered the water-to-octanol partitioning free energies for cationic residues by only 0.6 to 0.7 kcal/mol.

  13. Polarizabilities of the beryllium clock transition

    International Nuclear Information System (INIS)

    Mitroy, J.

    2010-01-01

    The polarizabilities of the three lowest states of the beryllium atom are determined from a large basis configuration interaction calculation. The polarizabilities of the 2s 2 1 S e ground state (37.73a 0 3 ) and the 2s2p 3 P 0 o metastable state (39.04a 0 3 ) are found to be very similar in size and magnitude. This leads to an anomalously small blackbody radiation shift at 300 K of -0.018(4) Hz for the 2s 2 1 S e -2s2p 3 P 0 o clock transition. Magic wavelengths for simultaneous trapping of the ground and metastable states are also computed.

  14. Vibrations of a molecule in an external force field.

    Science.gov (United States)

    Okabayashi, Norio; Peronio, Angelo; Paulsson, Magnus; Arai, Toyoko; Giessibl, Franz J

    2018-05-01

    The oscillation frequencies of a molecule on a surface are determined by the mass distribution in the molecule and the restoring forces that occur when the molecule bends. The restoring force originates from the atomic-scale interaction within the molecule and with the surface, which plays an essential role in the dynamics and reactivity of the molecule. In 1998, a combination of scanning tunneling microscopy with inelastic tunneling spectroscopy revealed the vibrational frequencies of single molecules adsorbed on a surface. However, the probe tip itself exerts forces on the molecule, changing its oscillation frequencies. Here, we combine atomic force microscopy with inelastic tunneling spectroscopy and measure the influence of the forces exerted by the tip on the lateral vibrational modes of a carbon monoxide molecule on a copper surface. Comparing the experimental data to a mechanical model of the vibrating molecule shows that the bonds within the molecule and with the surface are weakened by the proximity of the tip. This combination of techniques can be applied to analyze complex molecular vibrations and the mechanics of forming and loosening chemical bonds, as well as to study the mechanics of bond breaking in chemical reactions and atomic manipulation.

  15. Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field

    NARCIS (Netherlands)

    García-Pérez, E.; Serra-Crespo, P.; Hamad, S.; Kapteijn, F.; Gascon, J.

    2014-01-01

    Simulation of gas adsorption in flexible porous materials is still limited by the slow progress in the development of flexible force fields. Moreover, the high computational cost of such flexible force fields may be a drawback even when they are fully developed. In this work, molecular simulations

  16. Artificial force fields for multi-agent simulations of maritime traffic and risk estimation

    NARCIS (Netherlands)

    Xiao, F.; Ligteringen, H.; Van Gulijk, C.; Ale, B.J.M.

    2012-01-01

    A probabilistic risk model is designed to estimate probabilities of collisions for shipping accidents in busy waterways. We propose a method based on multi-agent simulation that uses an artificial force field to model ship maneuvers. The artificial force field is calibrated by AIS data (Automatic

  17. Forces in a 3D magnetic field of conducting current contours

    Directory of Open Access Journals (Sweden)

    Stancheva Rumena

    2008-01-01

    Full Text Available The present paper deals with 3D magnetic field analysis of conducting current contours. The magnetic field and forces were calculated analytically and by FEM applying the Comsol Multiphysics package. Forces were calculated by the Maxwell stress tensor and by volume force density. Numerical results for real and ideal contours with the same linear dimensions are discussed. Comparison between analytical and numerical data shows satisfactory agreement.

  18. Rapid changes in corticospinal excitability during force field adaptation of human walking

    DEFF Research Database (Denmark)

    Barthélemy, Dorothy; Alain, S; Grey, Michael James

    2012-01-01

    Force field adaptation of locomotor muscle activity is one way of studying the ability of the motor control networks in the brain and spinal cord to adapt in a flexible way to changes in the environment. Here, we investigate whether the corticospinal tract is involved in this adaptation. We...... measured changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) in the tibialis anterior (TA) muscle before, during, and after subjects adapted to a force field applied to the ankle joint during treadmill walking. When the force field assisted dorsiflexion during...... the swing phase of the step cycle, subjects adapted by decreasing TA EMG activity. In contrast, when the force field resisted dorsiflexion, they increased TA EMG activity. After the force field was removed, normal EMG activity gradually returned over the next 5 min of walking. TA MEPs elicited in the early...

  19. Energy of Force-Free Magnetic Fields in Relation to Coronal Mass Ejections; TOPICAL

    International Nuclear Information System (INIS)

    G.S. Choe; C.Z. Cheng

    2002-01-01

    In typical observations of coronal mass ejections (CMEs), a magnetic structure of a helmet-shaped closed configuration bulges out and eventually opens up. However, a spontaneous transition between these field configurations has been regarded to be energetically impossible in force-free fields according to the Aly-Sturrock theorem. The theorem states that the maximum energy state of force-free fields with a given boundary normal field distribution is the open field. The theorem implicitly assumes the existence of the maximum energy state, which may not be taken for granted. In this study, we have constructed force-free fields containing tangential discontinuities in multiple flux systems. These force-free fields can be generated from a potential field by footpoint motions that do not conserve the boundary normal field distribution. Some of these force-free fields are found to have more magnetic energy than the corresponding open fields. The constructed force-free configurations are compared with observational features of CME-bearing active regions. Possible mechanisms of CMEs are also discussed

  20. Axial acoustic radiation force on a sphere in Gaussian field

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Rongrong; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-10-28

    Based on the finite series method, the acoustical radiation force resulting from a Gaussian beam incident on a spherical object is investigated analytically. When the position of the particles deviating from the center of the beam, the Gaussian beam is expanded as a spherical function at the center of the particles and the expanded coefficients of the Gaussian beam is calculated. The analytical expression of the acoustic radiation force on spherical particles deviating from the Gaussian beam center is deduced. The acoustic radiation force affected by the acoustic frequency and the offset distance from the Gaussian beam center is investigated. Results have been presented for Gaussian beams with different wavelengths and it has been shown that the interaction of a Gaussian beam with a sphere can result in attractive axial force under specific operational conditions. Results indicate the capability of manipulating and separating spherical spheres based on their mechanical and acoustical properties, the results provided here may provide a theoretical basis for development of single-beam acoustical tweezers.

  1. Optical forces acting on Rayleigh particle placed into interference field

    Czech Academy of Sciences Publication Activity Database

    Zemánek, Pavel; Karásek, Vítězslav; Sasso, A.

    2004-01-01

    Roč. 240, 4-6 (2004), s. 401-415 ISSN 0030-4018 R&D Projects: GA AV ČR KSK2067107 Keywords : optical force * Rayleigh particle * colloidal particle Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.581, year: 2004

  2. Integral-functional representation of mass operator of quasiparticles interacting with polarizational phonons at T = 0 K

    International Nuclear Information System (INIS)

    Tkach, M.V.

    2002-01-01

    The integral-functional representation of mass operator of spinless quasiparticles interacting with polarizational phonons at T = 0 K is obtained for the first time. This representation is equivalent to the infinite branched integral fraction. It does not depend on the binding force and effectively takes into account the many phonon processes

  3. Polarizational radiation or 'atomic' bremsstrahlung

    International Nuclear Information System (INIS)

    Ya Amusia, M.

    1992-01-01

    It is demonstrated that a new kind of continuum spectrum radiation exists, where the mechanism of formation is quite different from that of ordinary bremsstrahlung. The latter originates due to slowing down of the charged projectile in the target field, while the former, called polarization radiation or 'atomic' bremsstrahlung, is a result of radiation either of the target or the projectile particles dipolarly polarized during the collision process. Not only general formulae, but also results of concrete calculations are presented. These demonstrate, that for electron-atom collisions the atomic contribution to the total bremsstrahlung spectrum becomes dominant for photon energies near and above the atomic ionization potential. As to atom-atom or ion-atom collisions, the bremsstrahlung spectrum is completely determined by the atomic contribution. The specific features of the case when the incoming particles are relativistic are discussed at length. A number of examples of colliding pairs are considered, for which the atomic bremsstrahlung process is quite essential: A bare nucleus and an atom, pair of atoms, at least one of which is excited, electron, or atom interacting with a molecule. The same mechanism is essential also in formation of radiation in nuclear and elementary particle collisions. (orig.)

  4. GEOFLOW: simulation of convection in a spherical shell under central force field

    Directory of Open Access Journals (Sweden)

    P. Beltrame

    2006-01-01

    Full Text Available Time-dependent dynamical simulations related to convective motion in a spherical gap under a central force field due to the dielectrophoretic effect are discussed. This work is part of the preparation of the GEOFLOW-experiment which is planned to run in a microgravity environment. The goal of this experiment is the simulation of large-scale convective motion in a geophysical or astrophysical framework. This problem is new because of, on the one hand, the nature of the force field (dielectrophoretic effect and, on another hand, the high degree of symmetries of the system, e.g. the top-bottom reflection. Thus, the validation of this simulation with well-known results is not possible. The questions concerning the influence of the dielectrophoretic force and the possibility to reproduce the theoretically expected motions in the astrophysical framework, are open. In the first part, we study the system in terrestrial conditions: the unidirectional Earth's force is superimposed on the central dielectrophoretic force field to compare with the laboratory experiments during the development of the equipment. In the second part, the GEOFLOW-experiment simulations in weightless conditions are compared with theoretical studies in the astrophysical framework's, in the first instance a fluid under a self-gravitating force field. We present complex time-dependent dynamics, where the dielectrophoretic force field causes significant differences in the flow compared to the case that does not involve this force field.

  5. Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions

    Directory of Open Access Journals (Sweden)

    M.K. Halimah

    Full Text Available Zinc borotellurite glasses doped with lanthanum oxide were successfully prepared through melt-quenching technique. The amorphous nature of the glass system was validated by the presence of a broad hump in the XRD result. The refractive index of the prepared glass samples was calculated by using the equation proposed by Dimitrov and Sakka. The theoretical value of molar refraction, electronic polarizability, oxide ion polarizability and metallization criterion were calculated by using Lorentz-Lorenz equation. Meanwhile, expression proposed by Duffy and Ingram for the theoretical value of optical basicity of multi-component glasses were applied to obtain energy band gap based optical basicity and refractive index based optical basicity. The optical basicity of prepared glasses decreased with the increasing concentration of lanthanum oxide. Metallization criterion on the basis of refractive index showed an increasing trend while energy band gap based metallization criterion showed a decreasing trend. The small metallization criterion values of the glass samples represent that the width of the conduction band becomes larger which increase the tendency for metallization of the glasses. The results obtained indicates that the fabricated glasses have high potential to be applied on optical limiting devices in photonic field. Keywords: Borotellurite glasses, Refractive index, Electronic polarizability, Oxide ion polarizability, Optical basicity, Metallization criterion

  6. Size-scaling behaviour of the electronic polarizability of one-dimensional interacting systems

    Science.gov (United States)

    Chiappe, G.; Louis, E.; Vergés, J. A.

    2018-05-01

    Electronic polarizability of finite chains is accurately calculated from the total energy variation of the system produced by small but finite static electric fields applied along the chain direction. Normalized polarizability, that is, polarizability divided by chain length, diverges as the second power of length for metallic systems but approaches a constant value for insulating systems. This behaviour provides a very convenient way to characterize the wave-function malleability of finite systems as it avoids the need of attaching infinite contacts to the chain ends. Hubbard model calculations at half filling show that the method works for a small U  =  1 interaction value that corresponds to a really small spectral gap of 0.005 (hopping t  =  ‑1 is assumed). Once successfully checked, the method has been applied to the long-range hopping model of Gebhard and Ruckenstein showing 1/r hopping decay (Gebhard and Ruckenstein 1992 Phys. Rev. Lett. 68 244; Gebhard et al 1994 Phys. Rev. B 49 10926). Metallicity for U values below the reported metal-insulator transition is obtained but the surprise comes for U values larger than the critical one (when a gap appears in the spectral density of states) because a steady increase of the normalized polarizability with size is obtained. This critical size-scaling behaviour can be understood as corresponding to a molecule which polarizability is unbounded. We have checked that a real transfer of charge from one chain end to the opposite occurs as a response to very small electric fields in spite of the existence of a large gap of the order of U for one-particle excitations. Finally, ab initio quantum chemistry calculations of realistic poly-acetylene chains prove that the occurrence of such critical behaviour in real systems is unlikely.

  7. Force Characteristics Analysis for Linear Machine with DC Field Excitations

    Directory of Open Access Journals (Sweden)

    A/L Krishna Preshant

    2018-01-01

    Full Text Available In urban regions and particularly in developing countries such as Malaysia with its ever-growing transport sector, there is the need for energy efficient systems. In urban railway systems there is a requirement of frequent braking and start/stop motion, and energy is lost during these processes. To improve the issues of the conventional braking systems, particularly in Japan, they have introduced linear induction motor techniques. The drawbacks of this method, however, is the use of permanent magnets, which not only increase the weight of the entire system but also increases magnetic cogging. Hence an alternative is required which uses the same principles as Magnetic-Levitation but using a magnet-less system. Therefore, the objective of this research is to propose an electromagnetic rail brake system and to analyze the effect of replacing permanent magnets with a magnet-less braking systems to produce a significant amount of brake thrust as compared with the permanent magnet system. The modeling and performance analysis of the model is done using Finite Element Analysis (FEA. The mechanical aspects of the model are designed on Solidworks and then imported to JMAG Software to proceed with the electro-magnetic analysis of the model. There are 3 models developed: Base Model (steel, Permanent Magnet (PM Model and DC Coil Model. The performance of the proposed 2D models developed is evaluated in terms of average force produced and motor constant square density. By comparing the values for the 3 models for the same case of 9A current supplied for a 0.1mm/s moving velocity, the base model, permanent magnet model and DC coil model produced an average force of 7.78 N, 7.55 N, and 8.34 N respectively, however, with increase in DC current supplied to the DC coil model, the average force produced is increased to 13.32 N. Thus, the advantage of the DC coil (magnet-less model, is, that the force produced can be controlled by varying the number of turns in the

  8. Multipolar Polarizabilities and Hyperpolarizabilities in the Sr Optical Lattice Clock

    Science.gov (United States)

    Porsev, S. G.; Safronova, M. S.; Safronova, U. I.; Kozlov, M. G.

    2018-02-01

    We address the problem of the lattice Stark shifts in the Sr clock caused by the multipolar M 1 and E 2 atom-field interactions and by the term nonlinear in lattice intensity and determined by the hyperpolarizability. We develop an approach to calculate hyperpolarizabilities for atoms and ions based on a solution of the inhomogeneous equation which allows us to effectively and accurately carry out complete summations over intermediate states. We apply our method to the calculation of the hyperpolarizabilities for the clock states in Sr. We also carry out an accurate calculation of the multipolar polarizabilities for these states at the magic frequency. Understanding these Stark shifts in optical lattice clocks is crucial for further improvement of the clock accuracy.

  9. Hierarchical atom type definitions and extensible all-atom force fields.

    Science.gov (United States)

    Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai

    2016-03-15

    The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  10. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Anne Myers [Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States)

    2016-06-07

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies for the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.

  11. A test on reactive force fields for the study of silica dimerization reactions

    Energy Technology Data Exchange (ETDEWEB)

    Moqadam, Mahmoud; Riccardi, Enrico; Trinh, Thuat T.; Åstrand, Per-Olof; Erp, Titus S. van, E-mail: titus.van.erp@ntnu.no [Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Realfagbygget D3-117, 7491 Trondheim (Norway)

    2015-11-14

    We studied silica dimerization reactions in the gas and aqueous phase by density functional theory (DFT) and reactive force fields based on two parameterizations of ReaxFF. For each method (both ReaxFF force fields and DFT), we performed constrained geometry optimizations, which were subsequently evaluated in single point energy calculations using the other two methods. Standard fitting procedures typically compare the force field energies and geometries with those from quantum mechanical data after a geometry optimization. The initial configurations for the force field optimization are usually the minimum energy structures of the ab initio database. Hence, the ab initio method dictates which structures are being examined and force field parameters are being adjusted in order to minimize the differences with the ab initio data. As a result, this approach will not exclude the possibility that the force field predicts stable geometries or low transition states which are realistically very high in energy and, therefore, never considered by the ab initio method. Our analysis reveals the existence of such unphysical geometries even at unreactive conditions where the distance between the reactants is large. To test the effect of these discrepancies, we launched molecular dynamics simulations using DFT and ReaxFF and observed spurious reactions for both ReaxFF force fields. Our results suggest that the standard procedures for parameter fitting need to be improved by a mutual comparative method.

  12. Static electric dipole polarizabilities of An5+/6+ and AnO2+/2+ (An = U, Np, and Pu) ions

    International Nuclear Information System (INIS)

    Parmar, Payal; Peterson, Kirk A.; Clark, Aurora E.

    2014-01-01

    The parallel components of static electric dipole polarizabilities have been calculated for the lowest lying spin-orbit states of the penta- and hexavalent oxidation states of the actinides (An) U, Np, and Pu, in both their atomic and molecular diyl ion forms (An 5+/6+ and AnO 2 +/2+ ) using the numerical finite-field technique within a four-component relativistic framework. The four-component Dirac-Hartree-Fock method formed the reference for MP2 and CCSD(T) calculations, while multireference Fock space coupled-cluster (FSCC), intermediate Hamiltonian Fock space coupled-cluster (IH-FSCC) and Kramers restricted configuration interaction (KRCI) methods were used to incorporate additional electron correlation. It is observed that electron correlation has significant (∼5 a.u. 3 ) impact upon the parallel component of the polarizabilities of the diyls. To the best of our knowledge, these quantities have not been previously reported and they can serve as reference values in the determination of various electronic and response properties (for example intermolecular forces, optical properties, etc.) relevant to the nuclear fuel cycle and material science applications. The highest quality numbers for the parallel components (α zz ) of the polarizability for the lowest Ω levels corresponding to the ground electronic states are (in a.u. 3 ) 44.15 and 41.17 for UO 2 + and UO 2 2+ , respectively, 45.64 and 41.42 for NpO 2 + and NpO 2 2+ , respectively, and 47.15 for the PuO 2 + ion

  13. Pion polarizability in nonlocal quark model

    International Nuclear Information System (INIS)

    Efimov, G.V.; Okhlopkova, V.A.

    1978-01-01

    The γγ→ππ amplitude was calculated in nonlocal quark model in the fourth order on the perturbation theory. The coefficients of electric[a) and magnetic polarizability (β) determined are equal in magnitude and opposite in sign αsub(π+-)=βsub(π+-)=+0.014α/msub(π)sup(3), αsub(πsup(0))=-βsub(πsup(0))=-0.07α/msub(π)sup(3). The results have been compared with calculations in other models

  14. Relativistic corrections to molecular dynamic dipole polarizabilities

    DEFF Research Database (Denmark)

    Kirpekar, Sheela; Oddershede, Jens; Jensen, Hans Jørgen Aagaard

    1995-01-01

    in the correlated calculations, as has also been observed for other properties. For SnH4 the correlation contribution and the pure relativistic correction are of the same order of magnitude, whereas for PbH 4 the relativistic correction becomes more important than the correlation contribution. We report estimated...... Cauchy moments, obtained from fitting the dispersion of the calculated corrections as a function of ω2. The frequency dependence of the nonrelativistic polarizability is most pronounced at the correlated level, mainly due to lower excitation energies in the multiconfigurational calculations than those...

  15. The polarizable embedding coupled cluster method

    DEFF Research Database (Denmark)

    Sneskov, Kristian; Schwabe, Tobias; Kongsted, Jacob

    2011-01-01

    We formulate a new combined quantum mechanics/molecular mechanics (QM/MM) method based on a self-consistent polarizable embedding (PE) scheme. For the description of the QM region, we apply the popular coupled cluster (CC) method detailing the inclusion of electrostatic and polarization effects......-called PE-CCSDR(3) model. Finally, we utilize the presented method in the description of a full protein by investigating the shift of the intense electronic excitation energy of the photoactive yellow protein due to the surrounding amino acids....

  16. On averaged force acting on a particle in H.F electromagnetic field

    International Nuclear Information System (INIS)

    Ogunniyi, J.F.; Tskhakaya, D.D.

    1989-06-01

    A general expression is obtained for the time averaged force acting on a particle immersed in a magnetic field in the presence of H.F quasiplanar, quasimonochromatic electromagnetic wave. Here, averaging is done over the period of the H.F wave. It is shown that this averaged force is proportional to the time derivative of the squared H.F wave amplitude. The force also includes a term proportional to the gradient of the time constant magnetic field and is connected with the induced magnetic moment in the H.F field. (author). 7 refs

  17. Occupational exposure to electromagnetic fields in the Polish Armed Forces.

    Science.gov (United States)

    Sobiech, Jaromir; Kieliszek, Jarosław; Puta, Robert; Bartczak, Dagmara; Stankiewicz, Wanda

    2017-06-19

    Standard devices used by military personnel that may pose electromagnetic hazard include: radars, missile systems, radio navigation systems and radio transceivers. The aim of this study has been to evaluate the exposure of military personnel to electromagnetic fields. Occupational exposure to electromagnetic fields was analyzed in the work environment of personnel of 204 devices divided into 5 groups (surface-to-air missile system radars, aircraft and helicopters, communication devices, surveillance and height finder radars, airport radars and radio navigation systems). Measurements were carried out at indicators, device terminals, radio panels, above vehicle seats, in vehicle hatches, by cabinets containing high power vacuum tubes and other transmitter components, by transmission lines, connectors, etc. Portable radios emit the electric field strength between 20-80 V/m close to a human head. The manpack radio operator's exposure is 60-120 V/m. Inside vehicles with high frequency/very high frequency (HF/VHF) band radios, the electric field strength is between 7-30 V/m and inside the radar cabin it ranges between 9-20 V/m. Most of the personnel on ships are not exposed to the electromagnetic field from their own radar systems but rather by accidental exposure from the radar systems of other ships. Operators of surface-to-air missile systems are exposed to the electric field strength between 7-15 V/m and the personnel of non-directional radio beacons - 100-150 V/m. In 57% of military devices Polish soldiers work in the occupational protection zones. In 35% of cases, soldiers work in intermediate and hazardous zones and in 22% - only in the intermediate zone. In 43% of devices, military personnel are not exposed to electromagnetic field. Int J Occup Med Environ Health 2017;30(4):565-577. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  18. Occupational exposure to electromagnetic fields in the Polish Armed Forces

    Directory of Open Access Journals (Sweden)

    Jarosław Kieliszek

    2017-08-01

    Full Text Available Objectives: Standard devices used by military personnel that may pose electromagnetic hazard include: radars, missile systems, radio navigation systems and radio transceivers. The aim of this study has been to evaluate the exposure of military personnel to electromagnetic fields. Material and Methods: Occupational exposure to electromagnetic fields was analyzed in the work environment of personnel of 204 devices divided into 5 groups (surface-to-air missile system radars, aircraft and helicopters, communication devices, surveillance and height finder radars, airport radars and radio navigation systems. Measurements were carried out at indicators, device terminals, radio panels, above vehicle seats, in vehicle hatches, by cabinets containing high power vacuum tubes and other transmitter components, by transmission lines, connectors, etc. Results: Portable radios emit the electric field strength between 20–80 V/m close to a human head. The manpack radio operator’s exposure is 60–120 V/m. Inside vehicles with high frequency/very high frequency (HF/VHF band radios, the electric field strength is between 7–30 V/m and inside the radar cabin it ranges between 9–20 V/m. Most of the personnel on ships are not exposed to the electromagnetic field from their own radar systems but rather by accidental exposure from the radar systems of other ships. Operators of surface-to-air missile systems are exposed to the electric field strength between 7–15 V/m and the personnel of non-directional radio beacons – 100–150 V/m. Conclusions: In 57% of military devices Polish soldiers work in the occupational protection zones. In 35% of cases, soldiers work in intermediate and hazardous zones and in 22% – only in the intermediate zone. In 43% of devices, military personnel are not exposed to electromagnetic field. Int J Occup Med Environ Health 2017;30(4:565–577

  19. Coupled influence of noise and damped propagation of impurity on linear and nonlinear polarizabilities of doped quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731 215, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2015-02-02

    Highlights: • Linear and nonlinear polarizabilities of quantum dot are studied. • Quantum dot is doped with a repulsive impurity. • Doped system is subject to Gaussian white noise. • Dopant migrates under damped condition. • Noise-damping coupling affects polarizabilities. - Abstract: We investigate the profiles of diagonal components of static and frequency-dependent linear, first, and second nonlinear polarizabilities of repulsive impurity doped quantum dot. We have considered propagation of dopant within an environment that damps the motion. Simultaneous presence of noise inherent to the system has also been considered. The dopant has a Gaussian potential and noise considered is a Gaussian white noise. The doped system is exposed to an external electric field which could be static or time-dependent. Noise undergoes direct coupling with damping and the noise-damping coupling strength appears to be a crucial parameter that designs the profiles of polarizability components. This happens because the coupling strength modulates the dispersive and asymmetric character of the system. The frequency of external field brings about additional features in the profiles of polarizability components. The present investigation highlights some useful features in the optical properties of doped quantum dots.

  20. Nanomaterials for in vivo imaging of mechanical forces and electrical fields

    Science.gov (United States)

    Mehlenbacher, Randy D.; Kolbl, Rea; Lay, Alice; Dionne, Jennifer A.

    2018-02-01

    Cellular signalling is governed in large part by mechanical forces and electromagnetic fields. Mechanical forces play a critical role in cell differentiation, tissue organization and diseases such as cancer and heart disease; electrical fields are essential for intercellular communication, muscle contraction, neural signalling and sensory perception. Therefore, quantifying a biological system's forces and fields is crucial for understanding physiology and disease pathology and for developing medical tools for repair and recovery. This Review highlights advances in sensing mechanical forces and electrical fields in vivo, focusing on optical probes. The emergence of biocompatible optical probes, such as genetically encoded voltage indicators, molecular rotors, fluorescent dyes, semiconducting nanoparticles, plasmonic nanoparticles and lanthanide-doped upconverting nanoparticles, offers exciting opportunities to push the limits of spatial and temporal resolution, stability, multi-modality and stimuli sensitivity in bioimaging. We further discuss the materials design principles behind these probes and compare them across various metrics to facilitate sensor selection. Finally, we examine which advances are necessary to fully unravel the role of mechanical forces and electrical fields in vivo, such as the ability to probe the vectorial nature of forces, the development of combined force and field sensors, and the design of efficient optical actuators.

  1. Predator Force Structure Changes at Indian Springs Air Force Auxiliary Field, Nevada Environmental Assessment

    Science.gov (United States)

    2003-07-01

    inventory of Cold War era structures at ISAFAF was conducted in 1994 ( Mariah and Associates 1994); no Cold War era significant structures were identified...1996-0001. June. Mariah and Associates, Inc. 1994. Systematic Study of Air Combat Command Cold War Material Culture. MAI Project 735-15...November. Moulton, Carey L. 1990. Air Force Procedure for Predicting Aircraft Noise Around Airbases: Noise Exposure Model (NOISEMAP) User’s Manual

  2. Microscopic mean field approximation and beyond with the Gogny force

    International Nuclear Information System (INIS)

    Peru, S.; Martini, M.

    2014-01-01

    We review the main results of several works using the finite range Gogny interaction within mean field-based approaches. Starting from static mean field description, a GCM-like method including rotational degrees of freedom, namely the five-dimension collective Hamiltonian, is applied. The theoretical results are used to interpret the shell evolution along the N = 16 isotonic chain. The quasiparticle random-phase-approximation formalism is introduced and used to simultaneously describe high- and low-energy spectroscopy as well as collective and individual excitations. After a discussion on the role of the intrinsic deformation in giant resonances, the appearance of low-energy dipole resonances in light nuclei is analysed. Finally, a comparison of the low-energy spectroscopy obtained with these two extensions of static mean field is performed for 2 + states of N = 16 isotopes. (authors)

  3. Study of Geomagnetic Field Response to Solar Wind Forcing

    Science.gov (United States)

    Kim, S.; Li, X.; Damas, M. C.; Ngwira, C.

    2017-12-01

    The solar wind is an integral component of space weather that has a huge impact on the near-Earth space conditions, which can in turn adversely impact technological infrastructure. By analyzing solar wind data, we can investigate the response of the Earth's magnetic field to changes in solar wind conditions, such as dynamic pressure, speed, and interplanetary magnetic fields (IMF). When a coronal mass ejection (CME) hits the Earth's magnetosphere, it compresses the dayside magnetosphere, which leads to SSC (Sudden Storm Commencement) seen in Dst or SYM-H index. Dst and SYM-H index are a measure of geomagnetic storm intensity that represents the magnetic field perturbations in the equatorial region originating from ring current. In this study, we focused on SSC intervals with sudden density increase, density, greater than 10 n/cc from 2000 to 2015 using data obtained from the NASA CDAWEB service. A total of 1,049 events were picked for this project. Then using INTERMAGNET service, corresponding horizontal component of magnetic field data were collected from several stations located in equatorial region, mid-latitude region, high-latitude region on the day-side and night-side of Earth. Using MATLAB, we calculated the rate of change of magnetic fields (dB/dt) for each station and each event. We found that in most cases, the sudden increase in proton density is associated with large changes in magnetic fields, dB/dt. The largest magnetic field changes were observed on the day-side than night-side at high latitudes. Interestingly, some exceptions were found such that greater dB/dt was found on night-side than day-side during some events, particularly at high latitudes. We suspect these are driven by magnetospheric substorms, which are manifested by an explosive release of energy in the local midnight sector. The next step will be creating the statistical form to see the correlation between proton density changes and magnetic field changes.

  4. Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide

    DEFF Research Database (Denmark)

    Kjær, Hanna; Nielsen, Monia R.; Pagola, Gabriel I.

    2012-01-01

    In this paper we present the so far most extended investigation of the calculation of the coupling constant polarizability of a molecule. The components of the coupling constant polarizability are derivatives of the NMR indirect nuclear spin-spin coupling constant with respect to an external elec...

  5. Model-independent effects of Δ excitation in nucleon polarizabilities

    International Nuclear Information System (INIS)

    Pascalutsa, Vladimir; Phillips, Daniel R.

    2003-01-01

    Model-independent effects of Δ(1232) excitation on nucleon polarizabilities are computed in a Lorentz-invariant fashion. We find a large effect of relative order (M Δ -M)/M in some of the spin polarizabilities, with the backward spin polarizability receiving the largest contribution. Similar subleading effects are found to be important in the fourth-order spin-independent polarizabilities α Eν , α E2 , β Mν , and β M2 . Combining our results with those for the model-independent effects of pion loops we obtain predictions for spin and fourth-order polarizabilities which compare favorably with the results of a recent dispersion-relation analysis of data

  6. A new force field including charge directionality for TMAO in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Usui, Kota; Nagata, Yuki, E-mail: sulpizi@uni-mainz.de, E-mail: nagata@mpip-mainz.mpg.de; Hunger, Johannes; Bonn, Mischa [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Sulpizi, Marialore, E-mail: sulpizi@uni-mainz.de, E-mail: nagata@mpip-mainz.mpg.de [Johannes Gutenberg University Mainz, Staudingerweg 7, 55099 Mainz (Germany)

    2016-08-14

    We propose a new force field for trimethylamine N-oxide (TMAO), which is designed to reproduce the long-lived and highly directional hydrogen bond between the TMAO oxygen (O{sub TMAO}) atom and surrounding water molecules. Based on the data obtained by ab initio molecular dynamics simulations, we introduce three dummy sites around O{sub TMAO} to mimic the O{sub TMAO} lone pairs and we migrate the negative charge on the O{sub TMAO} to the dummy sites. The force field model developed here improves both structural and dynamical properties of aqueous TMAO solutions. Moreover, it reproduces the experimentally observed dependence of viscosity upon increasing TMAO concentration quantitatively. The simple procedure of the force field construction makes it easy to implement in molecular dynamics simulation packages and makes it compatible with the existing biomolecular force fields. This paves the path for further investigation of protein-TMAO interaction in aqueous solutions.

  7. A new force field including charge directionality for TMAO in aqueous solution

    International Nuclear Information System (INIS)

    Usui, Kota; Nagata, Yuki; Hunger, Johannes; Bonn, Mischa; Sulpizi, Marialore

    2016-01-01

    We propose a new force field for trimethylamine N-oxide (TMAO), which is designed to reproduce the long-lived and highly directional hydrogen bond between the TMAO oxygen (O TMAO ) atom and surrounding water molecules. Based on the data obtained by ab initio molecular dynamics simulations, we introduce three dummy sites around O TMAO to mimic the O TMAO lone pairs and we migrate the negative charge on the O TMAO to the dummy sites. The force field model developed here improves both structural and dynamical properties of aqueous TMAO solutions. Moreover, it reproduces the experimentally observed dependence of viscosity upon increasing TMAO concentration quantitatively. The simple procedure of the force field construction makes it easy to implement in molecular dynamics simulation packages and makes it compatible with the existing biomolecular force fields. This paves the path for further investigation of protein-TMAO interaction in aqueous solutions.

  8. Molecular modeling studies of structural properties of polyvinyl alcohol: a comparative study using INTERFACE force field.

    Science.gov (United States)

    Radosinski, Lukasz; Labus, Karolina

    2017-10-05

    Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.

  9. Evaluation of unsteady pressure fields and forces in rotating airfoils from time-resolved PIV

    Science.gov (United States)

    Villegas, A.; Diez, F. J.

    2014-04-01

    The instantaneous pressure fields and aerodynamic loads are obtained for rotating airfoils from time-resolved particle image velocimetry (TR-PIV) measurements. These allowed evaluating the contribution from the local acceleration (unsteady acceleration) to the instantaneous forces. Traditionally, this term has been neglected for wind turbines with quasi-steady flows, but results show that it is a dominant term in the wake where high temporal variations in the flow field are present due to vortex shedding. Briefly, time-resolved particle image velocimetry TR-PIV measurements are used to calculate flow velocity fields and corresponding spatial and temporal derivatives. These derivatives are then used in the Poisson equation to solve for the pressure field and later used in the integral momentum equation to solve for the instantaneous forces. The robustness of the measurements is analyzed by calculating the PIV uncertainty and the independence of the calculated forces. The experimental mean aerodynamic forces are compared with theoretical predictions from the blade element momentum theory showing good agreement. The instantaneous pressure field showed dependence with time in the wake due to vortex shedding. The contribution to the instantaneous forces from each term in the integral momentum equation is evaluated. The analysis shows that the larger contributions to the normal force coefficient are from the unsteady and the pressure terms, and the larger contribution to the tangential force coefficient is from the convective term.

  10. The forced flow high field test facility SULTAN

    International Nuclear Information System (INIS)

    Horvath, I.; Vecsey, G.; Weymuth, P.

    1984-01-01

    The construction of the 8 Tesla, 1 m bore Test Facility SULTAN - I, a common action of ENEA (I-Frascati), ECN (NL-Petten) and SIN (CH-Villigen), is completed. Results on assembly, cooldown and the first operation of the whole system are presented. The SULTAN facility provides a wide range of capability of parameter variations (field, current, cooling) for the investigation of steady state performance and stability of technical superconductors unders nominal and limiting conditions

  11. Linear force-free field of a toroidal symmetry

    Czech Academy of Sciences Publication Activity Database

    Romashets, E. P.; Vandas, Marek

    2009-01-01

    Roč. 499, č. 1 (2009), s. 17-20 ISSN 0004-6361 R&D Projects: GA AV ČR(CZ) 1QS300120506; GA MŠk(CZ) ME09032; GA ČR GA205/09/0170 Institutional research plan: CEZ:AV0Z10030501 Keywords : magnetic fields * solar wind * magnetic clouds Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.179, year: 2009

  12. Effects of Force Field Selection on the Computational Ranking of MOFs for CO2 Separations.

    Science.gov (United States)

    Dokur, Derya; Keskin, Seda

    2018-02-14

    Metal-organic frameworks (MOFs) have been considered as highly promising materials for adsorption-based CO 2 separations. The number of synthesized MOFs has been increasing very rapidly. High-throughput molecular simulations are very useful to screen large numbers of MOFs in order to identify the most promising adsorbents prior to extensive experimental studies. Results of molecular simulations depend on the force field used to define the interactions between gas molecules and MOFs. Choosing the appropriate force field for MOFs is essential to make reliable predictions about the materials' performance. In this work, we performed two sets of molecular simulations using the two widely used generic force fields, Dreiding and UFF, and obtained adsorption data of CO 2 /H 2 , CO 2 /N 2 , and CO 2 /CH 4 mixtures in 100 different MOF structures. Using this adsorption data, several adsorbent evaluation metrics including selectivity, working capacity, sorbent selection parameter, and percent regenerability were computed for each MOF. MOFs were then ranked based on these evaluation metrics, and top performing materials were identified. We then examined the sensitivity of the MOF rankings to the force field type. Our results showed that although there are significant quantitative differences between some adsorbent evaluation metrics computed using different force fields, rankings of the top MOF adsorbents for CO 2 separations are generally similar: 8, 8, and 9 out of the top 10 most selective MOFs were found to be identical in the ranking for CO 2 /H 2 , CO 2 /N 2 , and CO 2 /CH 4 separations using Dreiding and UFF. We finally suggested a force field factor depending on the energy parameters of atoms present in the MOFs to quantify the robustness of the simulation results to the force field selection. This easily computable factor will be highly useful to determine whether the results are sensitive to the force field type or not prior to performing computationally demanding

  13. Force field and a surface model database for silica to simulate interfacial properties in atomic resolution

    OpenAIRE

    Emami, FS; Puddu, V; Berry, RJ; Varshney, V; Patwardhan, SV; Perry, CC; Heinz, H

    2014-01-01

    Silica nanostructures find applications in drug delivery, catalysis, and composites, however, understanding of the surface chemistry, aqueous interfaces, and biomolecule recognition remain difficult using current imaging techniques and spectroscopy. A silica force field is introduced that resolves numerous shortcomings of prior silica force fields over the last thirty years and reduces uncertainties in computed interfacial properties relative to experiment from several 100% to less than 5%. I...

  14. Anharmonic force field and vibrational frequencies of tetrafluoromethane (CF$_4$) and tetrafluorosilane (SiF$_4$)

    OpenAIRE

    Wang, Xiao-Gang; Sibert III, Edwin L.; Martin, Jan M. L.

    1999-01-01

    Accurate quartic anharmonic force fields for CF$_4$ and SiF$_4$ have been calculated using the CCSD(T) method and basis sets of $spdf$ quality. Based on the {\\it ab initio} force field with a minor empirical adjustment, the vibrational energy levels of these two molecules and their isotopomers are calculated by means of high order Canonical Van Vleck Perturbation Theory(CVPT) based on curvilinear coordinates. The calculated energies agree very well with the experimental data. The full quadrat...

  15. Self-consistent mean field forces in turbulent plasmas: Current and momentum relaxation

    International Nuclear Information System (INIS)

    Hegna, C.C.

    1997-08-01

    The properties of turbulent plasmas are described using the two-fluid equations. Under some modest assumptions, global constraints for the turbulent mean field forces that act on the ion and electron fluids are derived. These constraints imply a functional form for the parallel mean field forces in the Ohm's law and the momentum balance equation. These forms suggest that the fluctuations attempt to relax the plasma to a state where both the current and the bulk plasma momentum are aligned along the mean magnetic field with proportionality constants that are global constants. Observations of flow profile evolution during discrete dynamo activity in reversed field pinch experiments are interpreted

  16. Retrofitting Forced Air Combi Systems: A Cold Climate Field Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States); Bohac, Dave [NorthernSTAR, St. Paul, MN (United States); McAlpine, Jack [NorthernSTAR, St. Paul, MN (United States); Hewett, Martha [NorthernSTAR, St. Paul, MN (United States)

    2017-06-01

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water (DHW) and forced air space heating. Called "combi" systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (energy factor of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent. The combined space and water heating approach was not a new idea. Past systems have used non-condensing heating plants, which limited their usefulness in climates with high heating loads. Previous laboratory work (Schoenbauer et al. 2012a) showed that proper installation was necessary to achieve condensing with high efficiency appliances. Careful consideration was paid to proper system sizing and minimizing the water temperature returning from the air handling unit to facilitate condensing operation.

  17. Retrofitting Forced Air Combi Systems: A Cold Climate Field Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Bohac, Dave [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; McAlpine, Jake [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Hewett, Martha [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2017-06-23

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water (DHW) and forced air space heating. Called 'combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (energy factor of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent. The combined space and water heating approach was not a new idea. Past systems have used non-condensing heating plants, which limited their usefulness in climates with high heating loads. Previous laboratory work (Schoenbauer et al. 2012a) showed that proper installation was necessary to achieve condensing with high efficiency appliances. Careful consideration was paid to proper system sizing and minimizing the water temperature returning from the air handling unit to facilitate condensing operation.

  18. Force

    CERN Document Server

    Graybill, George

    2007-01-01

    Forces are at work all around us. Discover what a force is, and different kinds of forces that work on contact and at a distance. We use simple language and vocabulary to make this invisible world easy for students to ""see"" and understand. Examine how forces ""add up"" to create the total force on an object, and reinforce concepts and extend learning with sample problems.

  19. Mie scattering and optical forces from evanescent fields: a complex-angle approach.

    Science.gov (United States)

    Bekshaev, Aleksandr Y; Bliokh, Konstantin Y; Nori, Franco

    2013-03-25

    Mie theory is one of the main tools describing scattering of propagating electromagnetic waves by spherical particles. Evanescent optical fields are also scattered by particles and exert radiation forces which can be used for optical near-field manipulations. We show that the Mie theory can be naturally adopted for the scattering of evanescent waves via rotation of its standard solutions by a complex angle. This offers a simple and powerful tool for calculations of the scattered fields and radiation forces. Comparison with other, more cumbersome, approaches shows perfect agreement, thereby validating our theory. As examples of its application, we calculate angular distributions of the scattered far-field irradiance and radiation forces acting on dielectric and conducting particles immersed in an evanescent field.

  20. Polarizational stopping power of heavy-ion diclusters in two-dimensional electron liquids

    International Nuclear Information System (INIS)

    Ballester, D.; Fuentes, A. M.; Tkachenko, I. M.

    2007-01-01

    The in-plane polarizational stopping power of heavy-ion diclusters in a two-dimensional strongly coupled electron liquid is studied. Analytical expressions for the stopping power of both fast and slow projectiles are derived. To go beyond the random-phase approximation we make use of the inverse dielectric function obtained by means of the method of moments and some recent analytical expressions for the static local-field correction factor

  1. Thermodynamic properties for applications in chemical industry via classical force fields.

    Science.gov (United States)

    Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran

    2012-01-01

    Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.

  2. Gravitomagnetic field of the universe and Coriolis force on the rotating Earth

    International Nuclear Information System (INIS)

    Veto, B

    2011-01-01

    The Machian effect of distant masses of the universe in the frame of reference of the rotating Earth is demonstrated using the gravitomagnetic approach of general relativity. This effect appears in the form of a gravitomagnetic Lorentz force acting on moving bodies on the Earth. The gravitomagnetic field of the universe-deduced from a simple model-exerts a gravitomagnetic Lorentz force on moving bodies, a force parallel to and with comparable strength to the Coriolis force observed on the rotating Earth. It seems after simple considerations that the Coriolis force happens to be the gravitomagnetic Lorentz force exerted by the mass of a black hole universe. The description of the phenomenon is simpler using the gravitomagnetic approach than the standard formulation of general relativity, so the method relying on gravitomagnetism is advisable in lectures intended for master's degree level physics students and advanced undergraduates.

  3. Influence of Gaussian white noise on the frequency-dependent first nonlinear polarizability of doped quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731215, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2014-05-07

    We investigate the profiles of diagonal components of frequency-dependent first nonlinear (β{sub xxx} and β{sub yyy}) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. In case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.

  4. Density and polarizability of liquid 4He

    International Nuclear Information System (INIS)

    Kempin'ski, V.; Zhuk, T.; Stankovski, Ya.; Sitarzh, S.

    1988-01-01

    The temperature changes in the density of liquid helium are measured in the temperature range of 1.63 to 4.2 K.; Unlike the conventional pycnometric technique, the changes in the hydrostatic displacement of the liquid were determined. The cirrectness of the method chosen and the appropriate equipment for its realization are substantiated. The results obtained are in good agreement with those of other authors. On the basis of temperature measurements of the dependence of density ρ and permittivity ε, the dependence of polarizability A of liquid 4 He on temperature and density was calculated. The results obtained show an alternating character of the dependences A(T) and A(ρ). These dependences are found to correlate

  5. Electronic Energy Transfer in Polarizable Heterogeneous Environments

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Kongsted, Jacob

    2015-01-01

    such couplings provide important insight into the strength of interaction between photo-active pigments in protein-pigment complexes. Recently, attention has been payed to how the environment modifies or even controls the electronic couplings. To enable such theoretical predictions, a fully polarizable embedding......-order multipole moments. We use this extended model to systematically examine three different ways of obtaining EET couplings in a heterogeneous medium ranging from use of the exact transition density to a point-dipole approximation. Several interesting observations are made including that explicit use...... of transition densities in the calculation of the electronic couplings - also when including the explicit environment contribution - can be replaced by a much simpler transition point charge description without comprising the quality of the model predictions....

  6. Study of the leakage field of magnetic force microscopy thin-film tips using electron holography

    NARCIS (Netherlands)

    Frost, B.G.; van Hulst, N.F.; Lunedei, E.; Matteucci, G.; Rikkers, E.

    1996-01-01

    Electron holography is applied for the study of the leakage field of thin-film ferromagnetic tips used as probes in magnetic force microscopy. We used commercially available pyramidal tips covered o­n o­ne face with a thin NiCo film, which were then placed in a high external magnetic field directed

  7. Electromagnetic Scattering of Finite and Infinite 3D Lattices in Polarizable Backgrounds

    International Nuclear Information System (INIS)

    Gallinet, Benjamin; Martin, Olivier J. F.

    2009-01-01

    A novel method is elaborated for the electromagnetic scattering from periodical arrays of scatterers embedded in a polarizable background. A dyadic periodic Green's function is introduced to calculate the scattered electric field in a lattice of dielectric or metallic objects. The method exhibits strong advantages: discretization and computation of the field are restricted to the volume of the scatterers in the unit cell, open and periodic boundary conditions for the electric field are included in the Green's tensor, and finally both near and far-fields physics are directly revealed, without any additional computational effort. Promising applications include the design of periodic structures such as frequency-selective surfaces, photonic crystals and metamaterials.

  8. Interfacial Structural Transition in Hydration Shells of a Polarizable Solute.

    Science.gov (United States)

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2015-05-22

    Electrostatics of polar solvation is typically described by harmonic free energy functionals. Polarizability contributes a negative polarization term that can make the harmonic free energy negative. The harmonic truncation fails in this regime. Simulations of polarizable ideal dipoles in water show that water's susceptibility passes through a maximum in the range of polarizabilities zeroing the harmonic term out. The microscopic origin of the nonmonotonic behavior is an interfacial structural transition involving the density collapse of the first hydration layer and enhanced number of dangling OH bonds.

  9. Quasi-static evolution of sheared force-free fields and the solar flare problem

    Science.gov (United States)

    Aly, J. J.

    1985-01-01

    Some new results are given showing the possible evolution of a two-dimensional force-free field in the half-space z greater than 0 toward an open field. This evolution is driven by shearing motions applied to the feet of the field lines on the boundary z = 0. The consequences of these results for a model of the two-ribbon solar flare are discussed.

  10. Induced-Charge Enhancement of the Diffusion Potential in Membranes with Polarizable Nanopores.

    Science.gov (United States)

    Ryzhkov, I I; Lebedev, D V; Solodovnichenko, V S; Shiverskiy, A V; Simunin, M M

    2017-12-01

    When a charged membrane separates two salt solutions of different concentrations, a potential difference appears due to interfacial Donnan equilibrium and the diffusion junction. Here, we report a new mechanism for the generation of a membrane potential in polarizable conductive membranes via an induced surface charge. It results from an electric field generated by the diffusion of ions with different mobilities. For uncharged membranes, this effect strongly enhances the diffusion potential and makes it highly sensitive to the ion mobilities ratio, electrolyte concentration, and pore size. Theoretical predictions on the basis of the space-charge model extended to polarizable nanopores fully agree with experimental measurements in KCl and NaCl aqueous solutions.

  11. Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double-β Decay Phenomenology

    Science.gov (United States)

    Shanahan, Phiala E.; Tiburzi, Brian C.; Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J.; Nplqcd Collaboration

    2017-08-01

    The potential importance of short-distance nuclear effects in double-β decay is assessed using a lattice QCD calculation of the n n →p p transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarizability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-β decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-β decay searches. The prospects of constraining the isotensor axial polarizabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed.

  12. Unsteady hydrodynamic forces acting on a robotic hand and its flow field.

    Science.gov (United States)

    Takagi, Hideki; Nakashima, Motomu; Ozaki, Takashi; Matsuuchi, Kazuo

    2013-07-26

    This study aims to clarify the mechanism of generating unsteady hydrodynamic forces acting on a hand during swimming in order to directly measure the forces, pressure distribution, and flow field around the hand by using a robotic arm and particle image velocimetry (PIV). The robotic arm consisted of the trunk, shoulder, upper arm, forearm, and hand, and it was independently computer controllable in five degrees of freedom. The elbow-joint angle of the robotic arm was fixed at 90°, and the arm was moved in semicircles around the shoulder joint in a plane perpendicular to the water surface. Two-component PIV was used for flow visualization around the hand. The data of the forces and pressure acting on the hand were sampled at 200Hz and stored on a PC. When the maximum resultant force acting on the hand was observed, a pair of counter-rotating vortices appeared on the dorsal surface of the hand. A vortex attached to the hand increased the flow velocity, which led to decreased surface pressure, increasing the hydrodynamic forces. This phenomenon is known as the unsteady mechanism of force generation. We found that the drag force was 72% greater and the lift force was 4.8 times greater than the values estimated under steady flow conditions. Therefore, it is presumable that swimmers receive the benefits of this unsteady hydrodynamic force. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Resonance oscillations of nonreciprocal long-range van der Waals forces between atoms in electromagnetic fields

    Science.gov (United States)

    Sherkunov, Yury

    2018-03-01

    We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.

  14. The Röntgen interaction and forces on dipoles in time-modulated optical fields

    Science.gov (United States)

    Sonnleitner, Matthias; Barnett, Stephen M.

    2017-12-01

    The Röntgen term is an often neglected contribution to the interaction between an atom and an electromagnetic field in the electric dipole approximation. In this work we discuss how this interaction term leads to a difference between the kinetic and canonical momentum of an atom which, in turn, leads to surprising radiation forces acting on the atom. We use a number of examples to explore the main features of this interaction, namely forces acting against the expected dipole force or accelerations perpendicular to the beam propagation axis.

  15. Drag force in strongly coupled { N }=4 supersymmetric Yang–Mills plasma in a magnetic field

    Science.gov (United States)

    Zhang, Zi-qiang; Ma, Ke; Hou, De-fu

    2018-02-01

    Applying AdS/CFT correspondence, we study the effect of a constant magnetic field { B } on the drag force associated with a heavy quark moving through a strongly-coupled { N }=4 supersymmetric Yang–Mills plasma. The quark is considered moving transverse and parallel to { B }. It is shown that for transverse case, the drag force is linearly dependent on { B } in all regions, while for parallel case, the drag force increases monotonously with increasing { B } and also reveals a linear behavior in the regions of strong { B }. In addition, we find that { B } has a more important effect in the transverse case than for the parallel.

  16. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India)

    2017-05-01

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.

  17. ANLIZE: a molecular mechanics force field visualization tool and its application to 18-crown-6.

    Science.gov (United States)

    Stolworthy, L D; Shirts, R B

    1997-03-01

    We describe a software tool that allows one to visualize and analyze the importance of each individual steric interaction in a molecular mechanics force field. ANLIZE is presently implemented for the Dreiding force field for use with the Cerius2 software package, but could be implemented in any molecular mechanics package with a graphical user interface. ANLIZE calculates individual interactions in the force field, sorts them by size, and displays them in several ways from a menu of choices. This allows the user to scan through selected interactions to visualize which interactions are the primary determinants of preferred conformations. The features of ANLIZE are illustrated using 18-crown-6 as an example, and the factors governing conformational preference in 18-crown-6 are demonstrated. Users of molecular mechanics packages are encouraged to demand this functionality from commercial software producers.

  18. Reactive Force Field for Liquid Hydrazoic Acid with Applications to Detonation Chemistry

    Science.gov (United States)

    Furman, David; Dubnikova, Faina; van Duin, Adri; Zeiri, Yehuda; Kosloff, Ronnie

    The development of a reactive force field (ReaxFF formalism) for Hydrazoic acid (HN3), a highly sensitive liquid energetic material, is reported. The force field accurately reproduces results of density functional theory (DFT) calculations. The quality and performance of the force field are examined by detailed comparison with DFT calculations related to uni, bi and trimolecular thermal decomposition routes. Reactive molecular dynamics (RMD) simulations are performed to reveal the initial chemical events governing the detonation chemistry of liquid HN3. The outcome of these simulations compares very well with recent results of tight-binding DFT molecular dynamics and thermodynamic calculations. Based on our RMD simulations, predictions were made for the activation energies and volumes in a broad range of temperatures and initial material compressions. Work Supported by The Center of Excellence for Explosives Detection, Mitigation and Response, Department of Homeland Security.

  19. Magnetic field sensor based on the Ampere's force using dual-polarization DBR fiber laser

    Science.gov (United States)

    Yao, Shuang; Zhang, Yang; Guan, Baiou

    2015-08-01

    A novel magnetic field sensor using distributed Bragg reflector (DBR) fiber laser by Ampere's force effect is proposed and experimentally demonstrated. The key sensing element, that is the dual-polarization DBR fiber laser, is fixed on the middle part of two copper plates which carry the current. Ampere's force is applied onto the coppers due to an external magnetic field generated by a DC solenoid. Thus, the lateral force from the coppers is converted to a corresponding beat frequency signal shift produced by the DBR laser. The electric current sensing is also realized by the same configuration and same principle simultaneously in an intuitive manner. Good agreement between the theory calculation and the experimental results is obtained, which shows a good linearity. This sensor's sensitivity to the magnetic field and to the electric current finally reaches ~258.92 kHz/mT and ~1.08727 MHz/A, respectively.

  20. How accurately do current force fields predict experimental peptide conformations? An adiabatic free energy dynamics study.

    Science.gov (United States)

    Tzanov, Alexandar T; Cuendet, Michel A; Tuckerman, Mark E

    2014-06-19

    The quality of classical biomolecular simulations is inevitably limited by two problems: the accuracy of the force field used and the comprehensiveness of configuration space sampling. In this work we tackle the sampling problem by carrying out driven adiabatic free energy dynamics to obtain converged free energy surfaces of dipeptides in the gas phase and in solution using selected dihedral angles as collective variables. To calculate populations of conformational macrostates observed in experiment, we introduce a fuzzy clustering algorithm in collective-variable space, which delineates macrostates without prior definition of arbitrary boundaries. With this approach, we calculate the conformational preferences of small peptides with six biomolecular force fields chosen from among the most recent and widely used. We assess the accuracy of each force field against recently published Raman or IR-UV spectroscopy measurements of conformer populations for the dipeptides in solution or in the gas phase.

  1. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    Science.gov (United States)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  2. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    Science.gov (United States)

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  3. Anharmonic force field and vibrational frequencies of tetrafluoromethane (CF4) and tetrafluorosilane (SiF4)

    Science.gov (United States)

    Wang, Xiao-Gang; Sibert, Edwin L.; Martin, Jan M. L.

    2000-01-01

    Accurate quartic anharmonic force fields for CF4 and SiF4 have been calculated using the CCSD(T) method and basis sets of spdf quality. Based on the ab initio force field with a minor empirical adjustment, the vibrational energy levels of these two molecules and their isotopomers are calculated by means of high order Canonical Van Vleck Perturbation Theory (CVPT) based on curvilinear coordinates. The calculated energies agree very well with the experimental data. The full quadratic force field of CF4 is further refined to the experimental data. The symmetrization of the Cartesian basis for arbitrary combination bands of Td group molecules is discussed using the circular promotion operator for the doubly degenerate modes, together with tabulated vector coupling coefficients. The extraction of the spectroscopic constants from our second order transformed Hamiltonian in curvilinear coordinates is discussed, and compared to a similar procedure in rectilinear coordinates.

  4. The 'Arm Force Field' method to predict manual arm strength based on only hand location and force direction.

    Science.gov (United States)

    La Delfa, Nicholas J; Potvin, Jim R

    2017-03-01

    This paper describes the development of a novel method (termed the 'Arm Force Field' or 'AFF') to predict manual arm strength (MAS) for a wide range of body orientations, hand locations and any force direction. This method used an artificial neural network (ANN) to predict the effects of hand location and force direction on MAS, and included a method to estimate the contribution of the arm's weight to the predicted strength. The AFF method predicted the MAS values very well (r 2  = 0.97, RMSD = 5.2 N, n = 456) and maintained good generalizability with external test data (r 2  = 0.842, RMSD = 13.1 N, n = 80). The AFF can be readily integrated within any DHM ergonomics software, and appears to be a more robust, reliable and valid method of estimating the strength capabilities of the arm, when compared to current approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing.

    Science.gov (United States)

    Vanommeslaeghe, K; MacKerell, A D

    2012-12-21

    Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters, and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF's complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/ .

  6. Dynamic polarizabilities for the low lying states of Ca+

    International Nuclear Information System (INIS)

    Tang, Yong-Bo; Shi, Ting-Yun; Qiao, Hao-Xue; Mitroy, J

    2014-01-01

    The dynamic polarizabilities of the 4s, 3d and 4p states of Ca + are calculated using a relativistic structure model. The wavelengths at which the Stark shifts between different pairs of transitions are zero are calculated. Experimental determination of the magic wavelengths could prove useful in developing better atomic structure models and in particular lead to improved values of the polarizabilities for the Ca + (3d) states

  7. Electric dipole polarizability: from few- to many-body systems

    Directory of Open Access Journals (Sweden)

    Miorelli Mirko

    2016-01-01

    Full Text Available We review the Lorentz integral transform coupled-cluster method for the calculation of the electric dipole polarizability. We benchmark our results with exact hyperspherical harmonics calculations for 4He and then we move to a heavier nucleus studying 16O. We observe that the implemented chiral nucleon-nucleon interaction at next-to-next-to-next-to-leading order underestimates the electric dipole polarizability.

  8. Predictions of Phase Separation in Three-Component Lipid Membranes by the MARTINI Force Field

    DEFF Research Database (Denmark)

    Davis, Ryan S.; Sunil Kumar, P. B.; Sperotto, Maria Maddalena

    2013-01-01

    is to understand which types of unsaturated PC induce the formation of thermodynamically stable coexisting phases when added to mixtures of DPPC and Chol and to unravel the mechanisms that drive phase separation in such three-component mixtures. Our simulations indicate that the currently used MARTINI force field...... the MARTINI force field, is primarily due to the interactions between the coarse-grained molecules, i.e., the beads, rather than due to the differences between the conformations of saturated and unsaturated lipid acyl chains, namely entropy driven....

  9. Parallel alignment of bacteria using near-field optical force array for cell sorting

    Science.gov (United States)

    Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.

    2017-08-01

    This paper presents a near-field approach to align multiple rod-shaped bacteria based on the interference pattern in silicon nano-waveguide arrays. The bacteria in the optical field will be first trapped by the gradient force and then rotated by the scattering force to the equilibrium position. In the experiment, the Shigella bacteria is rotated 90 deg and aligned to horizontal direction in 9.4 s. Meanwhile, 150 Shigella is trapped on the surface in 5 min and 86% is aligned with angle < 5 deg. This method is a promising toolbox for the research of parallel single-cell biophysical characterization, cell-cell interaction, etc.

  10. Explicit polarization: a quantum mechanical framework for developing next generation force fields.

    Science.gov (United States)

    Gao, Jiali; Truhlar, Donald G; Wang, Yingjie; Mazack, Michael J M; Löffler, Patrick; Provorse, Makenzie R; Rehak, Pavel

    2014-09-16

    Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems ("fragments") to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples

  11. Examination of forced unsteady separated flow fields on a rotating wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Huyer, S [Univ. of Colorado, Boulder, CO (US)

    1993-04-01

    The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.

  12. Development of a reactive force field for iron-oxyhydroxide systems.

    Science.gov (United States)

    Aryanpour, Masoud; van Duin, Adri C T; Kubicki, James D

    2010-06-03

    We adopt a classical force field methodology, ReaxFF, which is able to reproduce chemical reactions, and train its parameters for the thermodynamics of iron oxides as well as energetics of a few iron redox reactions. Two parametrizations are developed, and their results are compared with quantum calculations or experimental measurements. In addition to training, two test cases are considered: the lattice parameters of a selected set of iron minerals, and the molecular dynamics simulation of a model for alpha-FeOOH (goethite)-water interaction. Reliability and limitations of the developed force fields in predicting structure and energetics are discussed.

  13. On the use of pseudostates to calculate molecular polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Marc; Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower St, London WC1E 6BT (United Kingdom)

    2010-02-28

    The polarizability of a molecule is an intrinsic property which is important for a large variety of problems. However, determining reliable values for these polarizabilities is not straightforward: for instance the standard sum over states formulation of the problem does not converge because of the need to include not only many excited states but also to allow for contributions from the continuum. Here a formulation of this technique is given which uses pseudostates to allow for physical and continuum states otherwise omitted from the expansion. The pseudostates are represented by even-tempered expansions of Gaussian-type orbitals at the molecular centre-of-mass. The method is tested for LiH, Li{sub 2}, water and CO molecules. For LiH and CO, calculations for the polarizability of low-lying excited states are presented including that for the A {sup 3}PI state of CO, whose polarizability appears not to have been previously determined. It is suggested that the use of pseudostates provides a straightforward method of calculating static polarizabilities of molecules in both ground and excited electronic states. The extension of the method to the calculation of dynamic polarizabilities is discussed.

  14. Evaluation of Sulfide Control by Air-Injection in Sewer Force Mains: Field and Laboratory Study

    Directory of Open Access Journals (Sweden)

    Juan T. García

    2017-03-01

    Full Text Available Chemical and biological processes consume dissolved oxygen (DO in urban wastewater during transportation along sewer systems. Anaerobic conditions (DO < 0.2 mg/L are easily reached, leading to sulfide (S2− generation. Release of free sulfide, hydrogen sulfide gas (H2S, from the liquid to the gaseous phase, causes odor, corrosion of pipes and supposes a risk for health of people working in sewers. These issues get worse in force mains, due to inability to take oxygen from the gaseous phase of pipe. Air injection is a suggested practice to control H2S emission in force mains. That technique aims to keep aerobic conditions in wastewater in order to avoid sulfide generation and favor a decrease of Biochemical Organic Demand (BOD. However, several force mains with air injection are not achieving their goals due to a limited oxygen transfer. Field measurements of dissolved oxygen in urban wastewater are presented in an existing force main with air injection during the summer of 2014 in the southeast of Spain. A laboratory scale model is constructed to quantify two-phase flow conditions in pipe due to air injection for different incoming flows rates of water and air. Particularly, for the case of plug flow, also known as elongated bubble flow. Velocity field measurement of water phase in laboratory allows estimating turbulent diffusivity of oxygen in the water, Em, and inter-phase mass transfer coefficient KL(T. In the laboratory, flow and air depth, bubble length, water velocity field, pressure inside force main and water and airflow rates are determined experimentally. These variables are used to assess DO in water phase of force main by comparison with those obtained from field measurements. This work allows assessing air injection efficiency in wastewater, and, therefore, to predict DO in wastewater in force mains.

  15. Nonequilibrium forces between atoms and dielectrics mediated by a quantum field

    International Nuclear Information System (INIS)

    Behunin, Ryan O.; Hu, Bei-Lok

    2011-01-01

    In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three-dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-graining to the physical variables--the medium, the quantum field, and the atom's internal degrees of freedom, in that order--to extract their averaged effects from the lowest tier progressively to the top tier. The first tier of coarse-graining provides the averaged effect of the medium upon the field, quantified by a complex permittivity (in the frequency domain) describing the response of the dielectric to the field in addition to its back action on the field through a stochastic forcing term. The last tier of coarse-graining over the atom's internal degrees of freedom results in an equation of motion for the atom's center of mass from which we can derive the force on the atom. Our nonequilibrium formulation provides a fully dynamical description of the atom's motion including back-action effects from all other relevant variables concerned. In the long-time limit we recover the known results for the atom-dielectric force when the combined system is in equilibrium or in a nonequilibrium stationary state.

  16. Electroabsorption spectra of carotenoid isomers: Conformational modulation of polarizability vs. induced dipole moments

    International Nuclear Information System (INIS)

    Krawczyk, Stanislaw; Jazurek, Beata; Luchowski, Rafal; Wiacek, Dariusz

    2006-01-01

    Electroabsorption spectra of all-trans, 13-cis and 15-cis isomers of carotenoids violaxanthin and β-carotene frozen in organic solvents were analysed in terms of changes in permanent dipole moment, Δμ, and in the linear polarizability, Δα, on electronic excitation. The spectral range investigated covered the two carotenoid absorption bands in the VIS and UV, known to originate from differently oriented transition dipole moments. In contrast with the collinearity of the apparent Δμ with Δα in the lowest-energy allowed (VIS) transition 1A g - ->1B u + , the axis of the largest polarizability change in the UV transition 1A g - ->1A g + (''cis band'') was found to make a large angle with the transition moment, while the direction of Δμ appears to be much closer to it. These data support the view that Δμ's inferred from electrochromic spectra of carotenoids are apparent and are not induced by the local matrix field in the solvent cavity, but merely result from conformational modulation of molecular polarizability

  17. Influence of self-consistent screening and polarizability contractions on interlayer sliding behavior of hexagonal boron nitride

    Science.gov (United States)

    Gong, Wenbin; Zhang, Wei; Wang, Chengbin; Yao, Yagang; Lu, Weibang

    2017-11-01

    The interlayer sliding behaviors of hexagonal boron nitride (h -BN) were investigated via a density functional theory approach with dispersion interaction included. It was found that the self-consistent screening effect (SCS) and the polarizability contractions had significant influences on London dispersion forces, which are responsible for not only the stacking modes but also for the sliding behaviors of h -BN. In consideration of the ionic characteristics of h -BN, surprisingly, the calculated dispersion force was found to dominate the electrostatic interaction along a minimum-energy sliding pathway and make a pronounced contribution (˜35 %) to the barrier during the constrained sliding. This study demonstrates that the SCS and polarizability contractions play important roles in the sliding behaviors of h -BN and that the long-range dispersion interaction should be carefully treated, even in systems with ionic characteristics.

  18. Leveraging intellectual capital through Lewin's Force Field Analysis: The case of software development companies

    Directory of Open Access Journals (Sweden)

    Alexandru Capatina

    2017-09-01

    Full Text Available This article presents an original conceptual framework for the strategic management of intellectual capital assets in software development companies. The framework is based on Lewin's Force Field Analysis. The framework makes it possible to assess software company managers’ opinions regarding the way driving and restraining forces affect the pillars of intellectual capital. The capacity to adapt to change is vital for companies in knowledge-intensive industries. Accordingly, this study examined a sample of 74 Romanian software development companies. The aim was to help companies benefit from managing the driving and restraining forces acting upon the pillars of intellectual capital (human, structural, and relational. The effects of the driving forces, quantified by PathMaker software's Force Field Tool, were observed to be greater than the restraining forces for each pillar of intellectual capital. This paper contributes by showing the explanatory power of this framework. The framework thus offers a tool that helps managers drive change in their organizations through effective intellectual capital management. Furthermore, this article describes how to encourage the implementation of changes that create value for software development companies.

  19. Event horizons in the Polarizable Vacuum Model

    CERN Document Server

    Desiato, J T

    2003-01-01

    The Polarizable Vacuum (PV) Model representation of General Relativity (GR) is used to show that an in-falling particle of matter will reach the central mass object in a finite amount of proper time, as measured along the world line of the particle, when using the PV Metric. It is shown that the in-falling particle passes through an event horizon, analogous to that found in the Schwarzschild solution of GR. Once it passes through this horizon, any light signal emitted outward by the in-falling particle will be moving slower than the in-falling particle, due to the reduced speed of light in this region. Therefore the signal can never escape this horizon. However, the light emitted by a stationary object below the horizon is exponentially red-shifted and can escape along the null geodesics, as was originally predicted by the PV Model. A static, non-rotating charge distribution is added to the central mass and the PV equivalent to the Reissner-Nordstrom metric is derived. It is illustrated that the dipole moment...

  20. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    Science.gov (United States)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  1. Multipolar Force Fields and Their Effects on Solvent Dynamics around Simple Solutes

    DEFF Research Database (Denmark)

    Jakobsen, Sofie; Bereau, Tristan; Meuwly, Markus

    2015-01-01

    The performance of multipole (MTP) and point charge (PC) force fields in classical molecular dynamics (MD) simulations of condensed-phase systems for both equilibrium and dynamical quantities is compared. MTP electrostatics provides an improved description of the anisotropic electrostatic potential...

  2. A valence force field-Monte Carlo algorithm for quantum dot growth modeling

    DEFF Research Database (Denmark)

    Barettin, Daniele; Kadkhodazadeh, Shima; Pecchia, Alessandro

    2017-01-01

    We present a novel kinetic Monte Carlo version for the atomistic valence force fields algorithm in order to model a self-assembled quantum dot growth process. We show our atomistic model is both computationally favorable and capture more details compared to traditional kinetic Monte Carlo models...

  3. Atomic force and scanning near-field optical microscopy study of carbocyanine dye J-aggregates

    Czech Academy of Sciences Publication Activity Database

    Prokhorov, V.V.; Petrova, M.G.; Kovaleva, Natalia; Demikhov, E.I.

    2014-01-01

    Roč. 10, č. 5 (2014), s. 700-704 ISSN 1573-4137 Institutional support: RVO:68378271 Keywords : carbocyanine dye * elementary fibri * high-resolution atomic force microscopy * J-aggregate * probe microscopy * scanning near-field optical microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.096, year: 2014

  4. Validation of molecular force field parameters for peptides including isomerized amino acids.

    Science.gov (United States)

    Oda, Akifumi; Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Kurimoto, Eiji; Yamaotsu, Noriyuki; Hirono, Shuichi; Takahashi, Ohgi

    2018-04-01

    Recently, stereoinversions and isomerizations of amino acid residues in the proteins of living beings have been observed. Because isomerized amino acids cause structural changes and denaturation of proteins, isomerizations of amino acid residues are suspected to cause age-related diseases. In this study, AMBER molecular force field parameters were tested by using computationally generated nonapeptides and tripeptides including stereoinverted and/or isomerized amino acid residues. Energy calculations by using density functional theory were also performed for comparison. Although the force field parameters were developed by parameter fitting for l-α-amino acids, the accuracy of the computational results for d-amino acids and β-amino acids was comparable to those for l-α-amino acids. The conformational energies for tripeptides calculated by using density functional theory were reproduced more accurately than those for nonapeptides calculated by using the molecular mechanical force field. The evaluations were performed for the ff99SB, ff03, ff12SB, and the latest ff14SB force field parameters. © 2018 Wiley Periodicals, Inc.

  5. Accurate van der Waals force field for gas adsorption in porous materials.

    Science.gov (United States)

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Recent Progress in Molecular Simulation of Aqueous Electrolytes: Force Fields, Chemical Potentials and Solubility.

    Czech Academy of Sciences Publication Activity Database

    Nezbeda, Ivo; Moučka, F.; Smith, W.R.

    2016-01-01

    Roč. 114, č. 11 (2016), s. 1665-1690 ISSN 0026-8976 R&D Projects: GA ČR GA15-19542S Grant - others:NSERC(CA) OGP1041 Institutional support: RVO:67985858 Keywords : force fields * chemical potentials * aqueous electrolytes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.870, year: 2016

  7. Gravitomagnetic Field of the Universe and Coriolis Force on the Rotating Earth

    Science.gov (United States)

    Veto, B.

    2011-01-01

    The Machian effect of distant masses of the universe in the frame of reference of the rotating Earth is demonstrated using the gravitomagnetic approach of general relativity. This effect appears in the form of a gravitomagnetic Lorentz force acting on moving bodies on the Earth. The gravitomagnetic field of the universe--deduced from a simple…

  8. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields

    Science.gov (United States)

    Lee, M.W.; Meuwly, M.

    2013-01-01

    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  9. Effects of sleep deprivation on event-related fields and alpha activity during rhythmic force production

    NARCIS (Netherlands)

    Boonstra, T.W.; Daffertshofer, A.; Beek, P.J.

    2005-01-01

    The influence of sleep deprivation (SD) on event-related fields and the distribution of power over the scalp of MEG imaged brain activity was studied during acoustically paced rhythmic force production. At the behavioral level, SD resulted in a reduction of the lag (negative asynchrony) between

  10. A molecular mechanics valence force field for sulfonamides derived by ab initio methods

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, J.B.; Burke, B.J.; Hopfinger, A.J. (Univ. of Illinois, Chicago (United States)); Vance, R.; Martin, E. (DowElanco, Walnut Creek, CA (United States))

    1991-11-28

    Molecular mechanics valence force field parameters for the sulfonamide group, SO[sub 2]NH, have been derived from ab initio calculations at the RHF/6-31G* level of theory. The force field parameters were designed to be used in conjunction with existing parameters from the MM2/MMP2 force field. The new parameters are demonstrated to accurately reproduce the ab initio optimized geometries of four molecules that contain the sulfonamide group. The strategy used in force field parametrization is discussed. The conformational flexibility of the sulfonamide group has been investigated. Calculations at the RHF/6-31G* level reveal the existence of two stable conformers and that interconversion is achieved by nitrogen inversion rather than rotation about the S-N bond. The energetic effects of expanding the basis set to 6-31G** and of including MP2 and MP3 corrections for electron correlation are discussed. The geometries and Mulliken charges for the ab initio optimized structures are also reported.

  11. An Energy Conservative Ray-Tracing Method With a Time Interpolation of the Force Field

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-10

    A new algorithm that constructs a continuous force field interpolated in time is proposed for resolving existing difficulties in numerical methods for ray-tracing. This new method has improved accuracy, but with the same degree of algebraic complexity compared to Kaisers method.

  12. A transferable force field for CdS-CdSe-PbS-PbSe solid systems

    NARCIS (Netherlands)

    Fan, Zhaochuan; Koster, Rik S.; Wang, Shuaiwei; Fang, Changming; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.; van Huis, Marijn A.; Vlugt, Thijs J. H.

    2014-01-01

    A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., "Atomic resolution monitoring of cation exchange in CdSe-PbSe

  13. Stark effect, polarizability, and electroabsorption in silicon nanocrystals

    Science.gov (United States)

    Bulutay, Ceyhun; Kulakci, Mustafa; Turan, Raşit

    2010-03-01

    Demonstrating the quantum-confined Stark effect (QCSE) in silicon nanocrystals (NCs) embedded in oxide has been rather elusive, unlike the other materials. Here, the recent experimental data from ion-implanted Si NCs is unambiguously explained within the context of QCSE using an atomistic pseudopotential theory. This further reveals that the majority of the Stark shift comes from the valence states which undergo a level crossing that leads to a nonmonotonic radiative recombination behavior with respect to the applied field. The polarizability of embedded Si NCs including the excitonic effects is extracted over a diameter range of 2.5-6.5 nm, which displays a cubic scaling, α=cDNC3 , with c=2.436×10-11C/(Vm) , where DNC is the NC diameter. Finally, based on intraband electroabsorption analysis, it is predicted that p -doped Si NCs will show substantial voltage tunability, whereas n -doped samples should be almost insensitive. Given the fact that bulk silicon lacks the linear electro-optic effect as being a centrosymmetric crystal, this may offer a viable alternative for electrical modulation using p -doped Si NCs.

  14. Refined OPLS All-Atom Force Field for Saturated Phosphatidylcholine Bilayers at Full Hydration

    DEFF Research Database (Denmark)

    Maciejewski, A.; Pasenkiewicz-Gierula, M.; Cramariuc, O.

    2014-01-01

    ) density functional theory (DFT). We also tested the effect of the polar environment by using the polarizable continuum model (PCM), and for acyl chains the van der Waals parameters were also adjusted. In effect, six parameter sets were generated and tested on a DPPC bilayer. Out of these six sets, only...... one was found to be able to satisfactorily reproduce experimental data for the lipid bilayer. The successful DPPC model was obtained from MP2 calculations in an implicit polar environment (PCM)....

  15. Optimizing Solute-Solute Interactions in the GLYCAM06 and CHARMM36 Carbohydrate Force Fields Using Osmotic Pressure Measurements.

    Science.gov (United States)

    Lay, Wesley K; Miller, Mark S; Elcock, Adrian H

    2016-04-12

    GLYCAM06 and CHARMM36 are successful force fields for modeling carbohydrates. To correct recently identified deficiencies with both force fields, we adjusted intersolute nonbonded parameters to reproduce the experimental osmotic coefficient of glucose at 1 M. The modified parameters improve behavior of glucose and sucrose up to 4 M and improve modeling of a dextran 55-mer. While the modified parameters may not be applicable to all carbohydrates, they highlight the use of osmotic simulations to optimize force fields.

  16. A Force Field for Water over Pt(111): Development, Assessment and Comparison.

    Science.gov (United States)

    Steinmann, Stephan N; Ferreira de Morais, Rodrigo; Götz, Andreas W; Fleurat-Lessard, Paul; Iannuzzi, Marcella; Sautet, Philippe; Michel, Carine

    2018-04-16

    Metal/water interfaces are key in many natural and industrial processes, such as corrosion, atmospheric or environmental chemistry. Even today, the only practical approach to simulate large interfaces between a metal and water is to perform force field simulations. In this work, we propose a novel force field, GAL17, to describe the interaction of water and a Pt(111) surface. GAL17 builds on three terms: (i) a standard Lennard-Jones potential for the bonding interaction between the surface and water; (ii) a Gaussian term to improve the surface corrugation and (iii) two terms describing the angular dependence of the interaction energy. The 12 parameters of this force field are fitted against a set of 210 adsorption geometries of water on Pt(111). The performance of GAL17 is compared to several other approaches, that have not been validated against extensive first principles computations yet. Their respective accuracy is evaluated on an extended set of 802 adsorption geometries of H2O on Pt(111), 52 geometries derived from ice-like layers and an MD simulation of an interface between a c(4x6) Pt(111) surface and a water layer of 14 Å thickness. The newly developed GAL17 force field provides a significant improvement over previously existing force fields for Pt(111)/H2O interactions. Its well-balanced performance suggests that it is an ideal candidate to generate relevant geometries for the metal/water interface, paving the way to a representative sampling of the equilibrium distribution at the interface and to predict solvation free energies at the solid/liquid interface.

  17. Calculation of electromagnetic fields and forces in coil systems of arbitrary geometry

    International Nuclear Information System (INIS)

    Sackett, S.J.

    1975-01-01

    A computer program, EFFI, is described which calculates the electric and magnetic fields due to an arbitrary spatial distribution of current-carrying circular loops, circular arcs, and straight lines. The electric field is assumed to arise solely from the time variation of the magnetic field, and the magnetic field due to the changing electric field is assumed to be negligible. In addition, the conductor bundle elements (loops, arcs, lines) are assumed to be absent. Electric and magnetic flux lines and magnetic forces and inductances are also calculated by the program. The algorithm used in the code, which is based on a combination of direct and numerical integration using the Biot-Savart law, is discussed. The methods used to maintain accuracy in calculating fields within the conductor bundle, in particular, are detailed. Several examples are then presented to illustrate the input and output features as well as the accuracy obtained and the running time required

  18. Orthodontic magnets. A study of force and field pattern, biocompatibility and clinical effects.

    Science.gov (United States)

    Bondemark, L

    1994-01-01

    Magnetic forces have been incorporated into orthodontic mechanics during recent years. However, the biocompatibility of magnet alloys and the possible risk of harmful or unusual reactions in tissues exposed to static magnetic fields have been characterized as inconsistent and often contradictory. It has also been questioned whether magnetic forces have significant advantages over traditional mechanics. The present series of studies aimed to analyse the force and field properties, the biocompatibility and the clinical effects of rare earth magnets as well as to compare the efficiency of tooth movement between magnets and another force system. Samarium-cobalt magnets for molar distalization were tested in experimental models for force and field properties. The cytotoxicity of different magnet alloys (rare earth types) as well as of clinically used and recycled magnets was assessed by two in vitro methods, the millipore filter method and an extraction method. The effect of static magnetic fields on human gingival tissue and dental pulp was examined histologically for alterations in cell pattern and cell morphology. The effects of using repelling samarium-cobalt magnets for simultaneous distalization of maxillary first and second molars were analysed in individuals with Class II malocclusion. The efficiency of molar distalization was also intra-individually compared between repelling magnets and superelastic NiTi-coils in individuals with Class II malocclusion and deep bite. The magnet forces decreased approximately with the reciprocal square of the separation distance between the magnets. No fatigue of force over time could be seen. The static magnetic fields were weak and had a limited extent and the flux density dropped exponentially in all directions with increased distance from the magnets, implying a small exposure area when the magnets are used clinically. Rare earth magnets showed good biocompatibility, particularly coated magnets. However, uncoated samarium

  19. Self-consistent Optomechanical Dynamics and Radiation Forces in Thermal Light Fields

    International Nuclear Information System (INIS)

    Sonnleitner, M.

    2014-01-01

    We discuss two different aspects of the mechanical interaction between neutral matter and electromagnetic radiation.The first part addresses the complex dynamics of an elastic dielectric deformed by optical forces. To do so we use a one-dimensional model describing the medium by an array of beam splitters such that the interaction with the incident waves can be described with a transfer-matrix approach. Since the force on each individual beam splitter is known we thus obtain the correct volumetric force density inside the medium. Sending a light field through an initially homogeneous dielectric then results in density modulations which in turn alter the optical properties of this medium.The second part is concerned with mechanical light-effects on atoms in thermal radiation fields. At hand of a generic setup of an atom interacting with a hot sphere emitting blackbody radiation we show that the emerging gradient force may surpass gravity by several orders of magnitude. The strength of the repulsive scattering force strongly depends on the spectrum of the involved atoms and can be neglected in some setups. A special emphasis lies on possible implications on astrophysical scenarios where the interactions between heated dust and atoms, molecules or nanoparticles are of crucial interest. (author) [de

  20. Unsteady flow field around a human hand and propulsive force in swimming.

    Science.gov (United States)

    Matsuuchi, K; Miwa, T; Nomura, T; Sakakibara, J; Shintani, H; Ungerechts, B E

    2009-01-05

    Much effort has been undertaken for the estimation of propulsive force of swimmers in the front crawl. Estimation is typically based on steady flow theory: the so-called quasi-steady analysis. Flow fields around a swimmer, however, are extremely unsteady because the change direction of hand produces unsteady vortex motions. To evaluate the force correctly, it is necessary to know the unsteady properties determined from the vortex dynamics because that unsteadiness is known to make the force greater. Unsteady flow measurements were made for this study using a sophisticated technique called particle image velocimetry (PIV) in several horizontal planes for subjects swimming in a flume. Using that method, a 100 time-sequential flow fields are obtainable simultaneously. Each flow field was calculated from two particle images using the cross-correlation method. The intensity of vortices and their locations were identified. A strong vortex was generated near the hand and then shed by directional change of the hand in the transition phase from in-sweep to out-sweep. When the vortex was shed, a new vortex rotating in the opposite direction around the hand was created. The pair of vortices induced the velocity component in the direction opposite to the swimming. Results of this study show that the momentum change attributable to the increase in this velocity component is the origin of thrust force by the hand.

  1. A novel proof of the DFT formula for the interatomic force field of Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Morante, S., E-mail: morante@roma2.infn.it [Dipartimento di Fisica, Università di Roma, “ Tor Vergata ”, INFN, Sezione di Roma 2, Via della Ricerca Scientifica - 00133 Roma (Italy); Rossi, G.C., E-mail: rossig@roma2.infn.it [Dipartimento di Fisica, Università di Roma, “ Tor Vergata ”, INFN, Sezione di Roma 2, Via della Ricerca Scientifica - 00133 Roma (Italy); Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Compendio del Viminale, Piazza del Viminale 1, I-00184 Rome (Italy)

    2017-02-15

    We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg–Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann–Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.

  2. A novel proof of the DFT formula for the interatomic force field of Molecular Dynamics

    Science.gov (United States)

    Morante, S.; Rossi, G. C.

    2017-02-01

    We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg-Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann-Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.

  3. Development of polarizable models for molecular mechanical calculations I: parameterization of atomic polarizability.

    Science.gov (United States)

    Wang, Junmei; Cieplak, Piotr; Li, Jie; Hou, Tingjun; Luo, Ray; Duan, Yong

    2011-03-31

    In this work, four types of polarizable models have been developed for calculating interactions between atomic charges and induced point dipoles. These include the Applequist, Thole linear, Thole exponential model, and the Thole Tinker-like. The polarizability models have been optimized to reproduce the experimental static molecular polarizabilities obtained from the molecular refraction measurements on a set of 420 molecules reported by Bosque and Sales. We grouped the models into five sets depending on the interaction types, that is, whether the interactions of two atoms that form the bond, bond angle, and dihedral angle are turned off or scaled down. When 1-2 (bonded) and 1-3 (separated by two bonds) interactions are turned off, 1-4 (separated by three bonds) interactions are scaled down, or both, all models including the Applequist model achieved similar performance: the average percentage error (APE) ranges from 1.15 to 1.23%, and the average unsigned error (AUE) ranges from 0.143 to 0.158 Å(3). When the short-range 1-2, 1-3, and full 1-4 terms are taken into account (set D models), the APE ranges from 1.30 to 1.58% for the three Thole models, whereas the Applequist model (DA) has a significantly larger APE (3.82%). The AUE ranges from 0.166 to 0.196 Å(3) for the three Thole models, compared with 0.446 Å(3) for the Applequist model. Further assessment using the 70-molecule van Duijnen and Swart data set clearly showed that the developed models are both accurate and highly transferable and are in fact have smaller errors than the models developed using this particular data set (set E models). The fact that A, B, and C model sets are notably more accurate than both D and E model sets strongly suggests that the inclusion of 1-2 and 1-3 interactions reduces the transferability and accuracy.

  4. Dipole and quadrupole forces exerted on atoms in laser fields: The nonperturbative approach

    International Nuclear Information System (INIS)

    Sindelka, Milan; Moiseyev, Nimrod; Cederbaum, Lorenz S.

    2006-01-01

    Manipulation of cold atoms by lasers has so far been studied solely within the framework of the conventional dipole approximation, and the atom-light interaction has been treated using low order perturbation theory. Laser control of atomic motions has been ascribed exclusively to the corresponding light-induced dipole forces. In this work, we present a general theory to derive the potential experienced by an atom in a monochromatic laser field in a context analogous to the Born-Oppenheimer approximation for molecules in the field-free case. The formulation goes beyond the dipole approximation and gives rise to the field-atom coupling potential terms which so far have not been taken into consideration in theoretical or experimental studies. Contrary to conventional approaches, our method is based upon the many electron Floquet theory and remains valid also for high intensity laser fields (i.e., for a strongly nonperturbative atom-light interaction). As an illustration of the developed theory, we investigate the trapping of cold atoms in optical lattices. We find that for some atoms for specific laser parameters, despite the absence of the dipole force, the laser trapping is still possible due to the electric quadrupole forces. Namely, we show that by using realistic laser parameters one can form a quadrupole optical lattice which is sufficiently strong to trap Ca and Na atoms

  5. On the Shape of Force-Free Field Lines in the Solar Corona

    KAUST Repository

    Prior, C.

    2012-02-02

    This paper studies the shape parameters of looped field lines in a linear force-free magnetic field. Loop structures with a sufficient amount of kinking are generally seen to form S or inverse S (Z) shapes in the corona (as viewed in projection). For a single field line, we can ask how much the field line is kinked (as measured by the writhe), and how much neighbouring flux twists about the line (as measured by the twist number). The magnetic helicity of a flux element surrounding the field line can be decomposed into these two quantities. We find that the twist helicity contribution dominates the writhe helicity contribution, for field lines of significant aspect ratio, even when their structure is highly kinked. These calculations shed light on some popular assumptions of the field. First, we show that the writhe of field lines of significant aspect ratio (the apex height divided by the footpoint width) can sometimes be of opposite sign to the helicity. Secondly, we demonstrate the possibility of field line structures which could be interpreted as Z-shaped, but which have a helicity value sign expected of an S-shaped structure. These results suggest that caution should be exercised in using two-dimensional images to draw conclusions on the helicity value of field lines and flux tubes. © 2012 Springer Science+Business Media B.V.

  6. Protein-DNA docking with a coarse-grained force field

    Directory of Open Access Journals (Sweden)

    Setny Piotr

    2012-09-01

    Full Text Available Abstract Background Protein-DNA interactions are important for many cellular processes, however structural knowledge for a large fraction of known and putative complexes is still lacking. Computational docking methods aim at the prediction of complex architecture given detailed structures of its constituents. They are becoming an increasingly important tool in the field of macromolecular assemblies, complementing particularly demanding protein-nucleic acids X ray crystallography and providing means for the refinement and integration of low resolution data coming from rapidly advancing methods such as cryoelectron microscopy. Results We present a new coarse-grained force field suitable for protein-DNA docking. The force field is an extension of previously developed parameter sets for protein-RNA and protein-protein interactions. The docking is based on potential energy minimization in translational and orientational degrees of freedom of the binding partners. It allows for fast and efficient systematic search for native-like complex geometry without any prior knowledge regarding binding site location. Conclusions We find that the force field gives very good results for bound docking. The quality of predictions in the case of unbound docking varies, depending on the level of structural deviation from bound geometries. We analyze the role of specific protein-DNA interactions on force field performance, both with respect to complex structure prediction, and the reproduction of experimental binding affinities. We find that such direct, specific interactions only partially contribute to protein-DNA recognition, indicating an important role of shape complementarity and sequence-dependent DNA internal energy, in line with the concept of indirect protein-DNA readout mechanism.

  7. Aerodynamic Characterization of ‘DelFly Micro’ in Forward Flight Configuration by Force Measurements and Flow Field Visualization

    OpenAIRE

    Deng, Shuanghou; Percin, Mustafa; van Oudheusden, Bas

    2015-01-01

    This study explores the flow structures and unsteady force generation mechanisms of a flapping-wing micro air vehicle ‘DelFly Micro’ in forward flight configuration. Stereoscopic Particle Image Velocimetry (Stereo-PIV) measurements were performed to acquire three dimensional flow fields in the wake. Six components of forces and moments were captured simultaneously by use of a miniature force sensor.

  8. Polyhedra Formation and Transient Cone Ejection of a Resonant Microdrop Forced by an ac Electric Field

    Science.gov (United States)

    Wang, Ping; Maheshwari, Siddharth; Chang, Hsueh-Chia

    2006-06-01

    New deformation or fission phenomena are reported for microdrops driven by an ac electric field at their resonant frequencies. The Maxwell forces that pull out the vertices from a drop can be enhanced when the ac frequency is comparable to both the drop resonant frequency and the inverse charge relaxation time of the diffuse layer. The selected polyhedra possess symmetries that ensure a global force balance of the Maxwell forces and a linear dimension consistent with a sphere whose nth harmonic (n is up to six in the observation) coincides with the applied ac frequency. At high voltages, the resonant focusing of charges by the vibration modes produces evenly distributed and transient Taylor cones that can eject charged nanodrops.

  9. Statistical field theory with constraints: Application to critical Casimir forces in the canonical ensemble.

    Science.gov (United States)

    Gross, Markus; Gambassi, Andrea; Dietrich, S

    2017-08-01

    The effect of imposing a constraint on a fluctuating scalar order parameter field in a system of finite volume is studied within statistical field theory. The canonical ensemble, corresponding to a fixed total integrated order parameter (e.g., the total number of particles), is obtained as a special case of the theory. A perturbative expansion is developed which allows one to systematically determine the constraint-induced finite-volume corrections to the free energy and to correlation functions. In particular, we focus on the Landau-Ginzburg model in a film geometry (i.e., in a rectangular parallelepiped with a small aspect ratio) with periodic, Dirichlet, or Neumann boundary conditions in the transverse direction and periodic boundary conditions in the remaining, lateral directions. Within the expansion in terms of ε=4-d, where d is the spatial dimension of the bulk, the finite-size contribution to the free energy of the confined system and the associated critical Casimir force are calculated to leading order in ε and are compared to the corresponding expressions for an unconstrained (grand canonical) system. The constraint restricts the fluctuations within the system and it accordingly modifies the residual finite-size free energy. The resulting critical Casimir force is shown to depend on whether it is defined by assuming a fixed transverse area or a fixed total volume. In the former case, the constraint is typically found to significantly enhance the attractive character of the force as compared to the grand canonical case. In contrast to the grand canonical Casimir force, which, for supercritical temperatures, vanishes in the limit of thick films, in the canonical case with fixed transverse area the critical Casimir force attains for thick films a negative value for all boundary conditions studied here. Typically, the dependence of the critical Casimir force both on the temperaturelike and on the fieldlike scaling variables is different in the two ensembles.

  10. The possibility for a pion polarizability measurement at COMPASS

    CERN Document Server

    Guskov, A

    2010-01-01

    The pion electromagnetic structure can be probed in $\\pi^{−}+(A,Z)\\rightarrow\\pi^{-}+(A,Z) + \\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric $(\\alpha_{\\pi})$ and the magnetic $(\\beta_{\\pi})$ polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of point-like pions with the measured cross section. The opportunity to measure pion polarizability via the Primakoff reaction at the COMPASS experiment was studied with a $\\pi^{−}$ beam of 190 GeV. The obtained results are used for preparation of the new measurement.

  11. Dipole (hyper)polarizabilities of neutral silver clusters

    Science.gov (United States)

    Jorge, Francisco E.; de Macedo, Luiz G. M.

    2016-12-01

    At the Douglas-Kroll-Hess (DKH) level, the B3PW91 functional along with the all-electron relativistic basis sets of valence triple and quadruple zeta qualities are used to determine the structure, stability, and electronic properties of the small silver clusters (Agn, n ⩽ 7). The results presented in this study are in good agreement with the experimental data and theoretical values obtained at a higher level of theory from the literature. Static polarizability and hyperpolarizability are also reported. It is verified that the mean dipole polarizability per atom exhibits an odd-even oscillation and that the polarizability anisotropy is directly related to the cluster shape. In this article, the first study of hyperpolarizabilities of small silver clusters is presented. Except for the monomer, the second hyperpolarizabilities of the silver clusters are significantly larger than those of the copper clusters. Project supported by CNPq, CAPES, and FAPES (Brazilian Agencies).

  12. A method to study precision grip control in viscoelastic force fields using a robotic gripper.

    Science.gov (United States)

    Lambercy, Olivier; Metzger, Jean-Claude; Santello, Marco; Gassert, Roger

    2015-01-01

    Instrumented objects and multipurpose haptic displays have commonly been used to investigate sensorimotor control of grasping and manipulation. A major limitation of these devices, however, is the extent to which the experimenter can vary the interaction dynamics to fully probe sensorimotor control mechanisms. We propose a novel method to study precision grip control using a grounded robotic gripper with two moving, mechanically coupled finger pads instrumented with force sensors. The device is capable of stably rendering virtual mechanical properties with a wide dynamic range of achievable impedances. Eight viscoelastic force fields with different combinations of stiffness and damping parameters were implemented, and tested on eight healthy subjects performing 30 consecutive repetitions of a grasp, hold, and release task with time and position constraints. Rates of thumb and finger force were found to be highly correlated (r>0.9) during grasping, revealing that, despite the mechanical coupling of the two finger pads, subjects performed grasping movements in a physiological fashion. Subjects quickly adapted to the virtual dynamics (within seven trials), but, depending on the presented force field condition, used different control strategies to correctly perform the task. The proof of principle presented in this paper underscores the potential of such a one-degree-of-freedom robotic gripper to study neural control of grasping, and to provide novel insights on sensorimotor control mechanisms.

  13. All-Optical Chirality-Sensitive Sorting via Reversible Lateral Forces in Interference Fields.

    Science.gov (United States)

    Zhang, Tianhang; Mahdy, Mahdy Rahman Chowdhury; Liu, Yongmin; Teng, Jing Hua; Lim, Chwee Teck; Wang, Zheng; Qiu, Cheng-Wei

    2017-04-25

    Separating substances by their chirality faces great challenges as well as opportunities in chemistry and biology. In this study, we propose an all-optical solution for passive sorting of chiral objects using chirality-dependent lateral optical forces induced by judiciously interfered fields. First, we investigate the optical forces when the chiral objects are situated in the interference field formed by two plane waves with arbitrary polarization states. When the plane waves are either linearly or circularly polarized, nonzero lateral forces are found at the particle's trapping positions, making such sideways motions observable. Although the lateral forces have different magnitudes on particles with different chirality, their directions are the same for opposite handedness particles, rendering it difficult to separate the chiral particles. We further solve the sorting problem by investigating more complicated polarization states. Finally, we achieve the chiral-selective separation by illuminating only one beam toward the chiral substance situated at an interface between two media, taking advantage of the native interference between the incident and reflective beams at the interface. Our study provides a robust and insightful approach to sort chiral substances and biomolecules with plausible optical setups.

  14. Unsteady hydrodynamic forces acting on a hand and its flow field during sculling motion.

    Science.gov (United States)

    Takagi, Hideki; Shimada, Shohei; Miwa, Takahiro; Kudo, Shigetada; Sanders, Ross; Matsuuchi, Kazuo

    2014-12-01

    The goal of this research is to clarify the mechanism by which unsteady forces are generated during sculling by a skilled swimmer and thereby to contribute to improving propulsive techniques. We used particle image velocimetry (PIV) to acquire data on the kinematics of the hand during sculling, such as fluid forces and flow field. By investigating the correlations between these data, we expected to find a new propulsion mechanism. The experiment was performed in a flow-controlled water channel. The participant executed sculling motions to remain at a fixed position despite constant water flow. PIV was used to visualize the flow-field cross-section in the plane of hand motion. Moreover, the fluid forces acting on the hand were estimated from pressure distribution measurements performed on the hand and simultaneous three-dimensional motion analysis. By executing the sculling motion, a skilled swimmer produces large unsteady fluid forces when the leading-edge vortex occurs on the dorsal side of the hand and wake capture occurs on the palm side. By using a new approach, we observed interesting unsteady fluid phenomena similar to those of flying insects. The study indicates that it is essential for swimmers to fully exploit vortices. A better understanding of these phenomena might lead to an improvement in sculling techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Zero mass field quantization and Kibble's long-range force criterion for the Goldstone theorem

    International Nuclear Information System (INIS)

    Wright, S.H.

    1981-01-01

    The central theme of the dissertation is an investigation of the long-range force criterion used by Kibble in his discussion of the Goldstone Theorem. This investigation is broken up into the following sections: I. Introduction. Spontaneous symmetry breaking, the Goldstone Theorem and the conditions under which it holds are discussed. II. Massless Wave Expansions. In order to make explicit calculations of the operator commutators used in applying Kibble's criterion, it is necessary to work out the operator expansions for a massless field. Unusual results are obtained which include operators corresponding to classical macroscopic field modes. III. The Kibble Criterion for Simple Models Exhibiting Spontaneously Broken Symmetries. The results of the previous section are applied to simple models with spontaneously broken symmetries, namely, the real scalar massless field and the Goldstone model without gauge coupling. IV. The Higgs Mechanism in Classical Field Theory. It is shown that the Higgs Mechanism has a simple interpretation in terms of classical field theory, namely, that it arises from a derivative coupling term between the Goldstone fields and the gauge fields. V. The Higgs Mechanism and Kibble's Criterion. This section draws together the material discussed in sections II to IV. Explicit calculations are made to evaluate Kibble's criterion on a Goldstone-Higgs type of model in the Coulomb gauge. It is found, as expected, that the criterion is not met, but not for reasons relating to the range of the mediating force. By referring to the findings of sections III and IV, it is concluded that the common denominator underlying both the Higgs Mechanism and the failure of Kibble's criterion is a structural aspect of the field equations: derivative coupling between fields

  16. Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case

    DEFF Research Database (Denmark)

    Rossi, G.; Monticelli, L.; Puisto, S. R.

    2011-01-01

    in the parameterization. We refine the MARTINI procedure by including one additional target property related to the structure of the polymer, namely the radius of gyration. The force-field optimization is mainly based on experimental data. We test our procedure on polystyrene, a standard benchmark for coarse-grained (CG...... of microseconds. Finally, we tested our model in dilute conditions. The collapse of the polymer chains in a bad solvent and the swelling in a good solvent could be reproduced.......We hereby introduce a new hybrid thermodynamic-structural approach to the coarse-graining of polymers. The new model is developed within the framework of the MARTINI force-field (Marrink et al., J. Phys. Chem. B, 2007, 111, 7812), which uses mainly thermodynamic properties as targets...

  17. Acoustics forces on a solid sphere in focused sound fields and their use for acoustical traps

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Juhl, Peter Møller; Kristensen, Søren H.

    2009-01-01

    It is known that stationary sound fields can be used to levitate small objects in air; this phenomenon has potential applications in containerless processing of materials. Recently the use of acoustic forces have been considered for the manipulation of small samples, which offers several advantages...... in the cases of hazardous substances, processing of materials under pure conditions, handling of fragile or sticky objects, for instance. Several theoretical investigations on the use of focused Gaussian and Bessel acoustic beams have been reported in literature. In those papers, water has been assumed...... of the work. A theoretical investigation based on the boundary element method (BEM) is first described, where the acoustical forces on a rigid sphere are analyzed. It is assumed that the focused sound field is generated by means of a piezoelectric transducer with a shape of a section of a sphere, which...

  18. Atomistic Force Field for Pyridinium-Based Ionic Liquids: Reliable Transport Properties

    DEFF Research Database (Denmark)

    Voroshylova, I. V.; Chaban, V. V.

    2014-01-01

    Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis(trifluoromethanesulfonyl)......Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis......(trifluoromethanesulfonyl)imide, dicyanamide, hexafluorophosphate, triflate, chloride). We elaborate a systematic procedure, which allows accounting for specific cationanion interactions in the liquid phase. Once these interactions are described accurately, all experimentally determined transport properties can be reproduced. We prove...... that three parameters per interaction site (atom diameter, depth of potential well, point electrostatic charge) provide a sufficient basis to predict thermodynamics (heat of vaporization, density), structure (radial distributions), and transport (diffusion, viscosity, conductivity) of ILs at room conditions...

  19. The force-field derivation and application of explosive/additive interfaces

    Science.gov (United States)

    Long, Yao; Chen, Jun

    2016-10-01

    The inter-molecular force-field across RDX/(paraffin, fluoropolymer) interfaces are derived from first-principles calculated energies under the GGA+vdW functional. Based on the force-field, the polycrystal structures of mixture explosives are obtained, and a set of thermodynamic properties are calculated, including the elastic constants, thermal expansion coefficient, heat capacity, isothermal curve and the Hugoniot curve. The results are in good agreement with the available experiments, and provide a reasonable prediction about the properties of plastic bonded explosives. We find that the thermal expansion coefficient of a multi-component explosive is not only determined by the properties of the components, but is also affected by the thermal stress at the explosive/additive interfaces.

  20. ATK-ForceField: a new generation molecular dynamics software package

    Science.gov (United States)

    Schneider, Julian; Hamaekers, Jan; Chill, Samuel T.; Smidstrup, Søren; Bulin, Johannes; Thesen, Ralph; Blom, Anders; Stokbro, Kurt

    2017-12-01

    ATK-ForceField is a software package for atomistic simulations using classical interatomic potentials. It is implemented as a part of the Atomistix ToolKit (ATK), which is a Python programming environment that makes it easy to create and analyze both standard and highly customized simulations. This paper will focus on the atomic interaction potentials, molecular dynamics, and geometry optimization features of the software, however, many more advanced modeling features are available. The implementation details of these algorithms and their computational performance will be shown. We present three illustrative examples of the types of calculations that are possible with ATK-ForceField: modeling thermal transport properties in a silicon germanium crystal, vapor deposition of selenium molecules on a selenium surface, and a simulation of creep in a copper polycrystal.

  1. An All-Atom Force Field for Tertiary Structure Prediction of Helical Proteins

    Science.gov (United States)

    Herges, T.; Wenzel, W.

    2004-01-01

    We have developed an all-atom free-energy force field (PFF01) for protein tertiary structure prediction. PFF01 is based on physical interactions and was parameterized using experimental structures of a family of proteins believed to span a wide variety of possible folds. It contains empirical, although sequence-independent terms for hydrogen bonding. Its solvent-accessible surface area solvent model was first fit to transfer energies of small peptides. The parameters of the solvent model were then further optimized to stabilize the native structure of a single protein, the autonomously folding villin headpiece, against competing low-energy decoys. Here we validate the force field for five nonhomologous helical proteins with 20–60 amino acids. For each protein, decoys with 2–3 Å backbone root mean-square deviation and correct experimental Cβ–Cβ distance constraints emerge as those with the lowest energy. PMID:15507688

  2. Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field.

    Science.gov (United States)

    Kim, Seonah; Orendt, Anita M; Ferraro, Marta B; Facelli, Julio C

    2009-10-01

    This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. Copyright 2009 Wiley Periodicals, Inc.

  3. Surface Tension of Organic Liquids Using the OPLS/AA Force Field.

    Science.gov (United States)

    Zubillaga, Rafael A; Labastida, Ariana; Cruz, Bibiana; Martínez, Juan Carlos; Sánchez, Enrique; Alejandre, José

    2013-03-12

    Molecular dynamics simulations are performed to obtain the surface tension of 61 organic liquids using the OPLS/AA (all-atom optimized potential for liquid simulations). The force field parameters are the same as those recently used (Caleman et al. J. Chem. Theory Comput.2012, 8, 61) to determine several thermodynamic properties of 146 organic liquids. The correct evaluation of surface tension using slab simulations of liquids requires one to properly take into account the long-range interactions (Trukhymchuk and Alejandre J. Chem. Phys.1999, 111, 8510). In addition, the liquid density from slab simulations has to be the same as that obtained in liquid simulations at constant temperature and pressure. The new results of surface tensions from this work improve those reported by Caleman et al. The OPLS/AA force field gives good surface tensions compared with experimental data for most of the systems studied in this work, although it was developed to simulate liquids.

  4. A Basic Experiment on Two-Dimensional Force of HTSC-Bulk in DC Magnetic-Field

    OpenAIRE

    吉田, 欣二郎; 松田, 茂雄; 松本, 洋和

    2000-01-01

    High temperature superconducting (HTSC) bulk can levitate stably on a track which consists of permanent magnets of the same polarity. This is because HTSC-bulk has a pinning force which keeps from vertical displacement due to the weight. We have proposed a new LSM theory which is based on an idea of considering the pinning force as synchronizing force in using armature travelling-magnetic-field instead of permanent magnets. However, the lift force enough to levitate the vehicle on the ground ...

  5. Determining force field parameters using a physically based equation of state.

    Science.gov (United States)

    van Westen, Thijs; Vlugt, Thijs J H; Gross, Joachim

    2011-06-23

    Force field parameters used in classical molecular simulations can be estimated from quantum mechanical calculations or spectroscopic measurements. This especially applies to bonded interactions such as bond-stretching, bond-bending, and torsional interactions. However, it is difficult and computational expensive to obtain accurate parameters describing the nonbonded van der Waals interactions from quantum mechanics. In many studies, these parameters are adjusted to reproduce experimental data, such as vapor-liquid equilibria (VLE) data. Adjusting these force field parameters to VLE data is currently a cumbersome and computationally expensive task. The reason is that the result of a calculation of the vapor-liquid equilibria depends on the van der Waals interactions of all atom types in the system, therefore requiring many time-consuming iterations. In this work, we use an analytical equation of state, the perturbed chain statistical associating fluid theory (PC-SAFT), to predict the results of molecular simulations for VLE. The analytical PC-SAFT equation of state is used to approximate the objective function f(p) as a function of the array of force field parameters p. The objective function is here for example defined as the deviations of vapor pressure, enthalpy of vaporization and liquid density data, with respect to experimental data. The parameters are optimized using the analytical PC-SAFT equation of state, which is orders of magnitude quicker to calculate than molecular simulation. The solution is an excellent approximation of the real objective function, so that the resulting method requires only very few molecular simulation runs to converge. The method is here illustrated by optimizing transferable Lennard-Jones parameters for the n-alkane series. Optimizing four force field parameters p = (ε(CH(2))(CH(2)), ε(CH(3))(CH(3)), σ(CH(2))(CH(2)), σ(CH(3))(CH(3))) we obtain excellent agreement of coexisting densities, vapor pressure and caloric properties

  6. A force field for 3,3,3-fluoro-1-propenes, including HFO-1234yf.

    Science.gov (United States)

    Raabe, Gabriele; Maginn, Edward J

    2010-08-12

    The European Union (EU) legislation 2006/40/EC bans from January 2011 the cooperative marketing of new car types that use refrigerants in their heating, ventilation, and air conditioning (HVAC) systems with global warming potentials (GWP) higher than 150. Thus, the phase-out of the presently used tetrafluoroethane refrigerant R134a necessitates the adoption of alternative refrigerants. Fluoropropenes such as 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf) are currently regarded as promising low GWP refrigerants, but the lack of experimental data on their thermophysical properties hampers independent studies on their performance in HVAC systems or in other technical applications. In principle, molecular modeling can be used to predict the relevant properties of refrigerants, but adequate intermolecular potential functions ("force fields") are lacking for fluoropropenes. Thus, we developed a transferable force field for fluoropropenes composed of CF(3)-, -CF=, -CH=, CF(2)=, and CH(2)= groups and applied the force field to study 3,3,3 trifluoro-1-propene (HFO-1243zf), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), and hexafluoro-1-propene (HFO-1216). We performed Gibbs ensemble simulations on these three fluoropropenes to compute the vapor pressure, saturated densities, and heats of vaporization. In addition, molecular dynamics simulations were conducted to provide predictions for the density, thermal expansivity, isobaric heat capacity, and transport properties of liquid HFO-1234yf in the temperature range from 263.15 to 310 K and pressures up to 2 MPa. Agreement between simulation results and experimental data and/or correlations (when available) was good, thereby validating the predictive ability of the force field.

  7. Baryonic forces and hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan Karl

    2016-02-12

    In this work the baryon-baryon interaction is studied at next-to-leading order in SU(3) chiral effective field theory and applied to hyperon-nucleon scattering. The properties of hyperons in isospin-symmetric as well as asymmetric nuclear matter are calculated within the Bruecker-Hartree-Fock formalism. Moreover, the leading three-baryon interaction is derived and its low-energy constants are estimated from decuplet intermediate states. We conclude, that chiral effective field theory is a well-suited tool to describe the baryonic forces.

  8. A Simple Model of Fields Including the Strong or Nuclear Force and a Cosmological Speculation

    Directory of Open Access Journals (Sweden)

    David L. Spencer

    2016-10-01

    Full Text Available Reexamining the assumptions underlying the General Theory of Relativity and calling an object's gravitational field its inertia, and acceleration simply resistance to that inertia, yields a simple field model where the potential (kinetic energy of a particle at rest is its capacity to move itself when its inertial field becomes imbalanced. The model then attributes electromagnetic and strong forces to the effects of changes in basic particle shape. Following up on the model's assumption that the relative intensity of a particle's gravitational field is always inversely related to its perceived volume and assuming that all black holes spin, may create the possibility of a cosmic rebound where a final spinning black hole ends with a new Big Bang.

  9. Polarizable Embedding Based on Multiconfigurational Methods: Current Developments and the Road Ahead

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Jensen, H. J. A.; Kongsted, J.

    2014-01-01

    This perspective gives a brief overview of recent developments within the polarizable embedding (PE) method - a multiscale approach developed over the last years. In particular, we are concerned with a recent coupling of the PE method to a multiconfiguration self-consistent field (MCSCF) code......-srDFT). A short discussion of CAS active spaces is also given. A few sample results using a retinal chromophore surrounded by a protein environment illustrate both the importance of the choice of active space and the importance of dynamical correlation. (C) 2014 Wiley Periodicals, Inc....

  10. Molecular dynamics simulations of AP/HMX composite with a modified force field.

    Science.gov (United States)

    Zhu, Wei; Wang, Xijun; Xiao, Jijun; Zhu, Weihua; Sun, Huai; Xiao, Heming

    2009-08-15

    An all-atom force field for ammonium perchlorate (AP) is developed with the framework of pcff force field. The structural parameters of AP obtained with the modified force field are in good agreement with experimental values. Molecular dynamics (MD) simulations have been performed to investigate AP/HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) composite at different temperatures. The binding energies, thermal expansion coefficient, and the trigger bond lengths of HMX in the AP/HMX composite have been obtained. The binding energies of the system increase slightly with temperature increasing, peak at 245K, and then gradually decrease. The volume thermal expansion coefficient of the AP/HMX composite has been derived from the volume variation with temperature. As the temperature rises, the maximal lengths of the trigger bond N-NO(2) of HMX increase gradually. The simulated results indicate that the maximal length of trigger bond can be used as a criterion for judging the sensitivity of energetic composite.

  11. Markov model-based polymer assembly from force field-parameterized building blocks.

    Science.gov (United States)

    Durmaz, Vedat

    2015-03-01

    A conventional by hand construction and parameterization of a polymer model for the purpose of molecular simulations can quickly become very work-intensive and time-consuming. Using the example of polyglycerol, I present a polymer decomposition strategy yielding a set of five monomeric residues that are convenient for an instantaneous assembly and subsequent force field simulation of a polyglycerol polymer model. Force field parameters have been developed in accordance with the classical Amber force field. Partial charges of each unit were fitted to the electrostatic potential using quantum-chemical methods and slightly modified in order to guarantee a neutral total polymer charge. In contrast to similarly constructed models of amino acid and nucleotide sequences, the glycerol building blocks may yield an arbitrary degree of bifurcations depending on the underlying probabilistic model. The iterative development of the overall structure as well as the relation of linear to branching units is controlled by a simple Markov model which is presented with few algorithmic details. The resulting polymer is highly suitable for classical explicit water molecular dynamics simulations on the atomistic level after a structural relaxation step. Moreover, the decomposition strategy presented here can easily be adopted to many other (co)polymers.

  12. A Database of Force-Field Parameters, Dynamics, and Properties of Antimicrobial Compounds

    Directory of Open Access Journals (Sweden)

    Giuliano Malloci

    2015-08-01

    Full Text Available We present an on-line database of all-atom force-field parameters and molecular properties of compounds with antimicrobial activity (mostly antibiotics and some beta-lactamase inhibitors. For each compound, we provide the General Amber Force Field parameters for the major species at physiological pH, together with an analysis of properties of interest as extracted from µs-long molecular dynamics simulations in explicit water solution. The properties include number and population of structural clusters, molecular flexibility, hydrophobic and hydrophilic molecular surfaces, the statistics of intraand inter-molecular H-bonds, as well as structural and dynamical properties of solvent molecules within first and second solvation shells. In addition, the database contains several key molecular parameters, such as energy of the frontier molecular orbitals, vibrational properties, rotational constants, atomic partial charges and electric dipole moment, computed by Density Functional Theory. The present database (to our knowledge the first extensive one including dynamical properties is part of a wider project aiming to build-up a database containing structural, physico-chemical and dynamical properties of medicinal compounds using different force-field parameters with increasing level of complexity and reliability. The database is freely accessible at http://www.dsf.unica.it/translocation/db/.

  13. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations.

    Science.gov (United States)

    Kukic, Predrag; Kannan, Arvind; Dijkstra, Maurits J J; Abeln, Sanne; Camilloni, Carlo; Vendruscolo, Michele

    2015-10-01

    It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a 'tube model' approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the 'CamTube' force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 μs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost.

  14. Simplified TiO2 force fields for studies of its interaction with biomolecules

    Science.gov (United States)

    Luan, Binquan; Huynh, Tien; Zhou, Ruhong

    2015-06-01

    Engineered TiO2 nanoparticles have been routinely applied in nanotechnology, as well as in cosmetics and food industries. Despite active experimental studies intended to clarify TiO2's biological effects, including potential toxicity, the relation between experimentally inferred nanotoxicity and industry standards for safely applying nanoparticles remains somewhat ambiguous with justified concerns. Supplemental to experiments, molecular dynamics simulations have proven to be efficacious in investigating the molecular mechanism of a biological process occurring at nanoscale. In this article, to facilitate the nanotoxicity and nanomedicine research related to this important metal oxide, we provide a simplified force field, based on the original Matsui-Akaogi force field but compatible to the Lennard-Jones potentials normally used in modeling biomolecules, for simulating TiO2 nanoparticles interacting with biomolecules. The force field parameters were tested in simulating the bulk structure of TiO2, TiO2 nanoparticle-water interaction, as well as the adsorption of proteins on the TiO2 nanoparticle. We demonstrate that these simulation results are consistent with experimental data/observations. We expect that simulations will help to better understand the interaction between TiO2 and molecules.

  15. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability

    International Nuclear Information System (INIS)

    Miffre, A.

    2005-06-01

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, α = (24.33 ± 0.16)*10 -30 m 3 , improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  16. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.

    Science.gov (United States)

    Vato, Alessandro; Szymanski, Francois D; Semprini, Marianna; Mussa-Ivaldi, Ferdinando A; Panzeri, Stefano

    2014-01-01

    We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field) applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop.

  17. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.

    Directory of Open Access Journals (Sweden)

    Alessandro Vato

    Full Text Available We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop.

  18. A Bidirectional Brain-Machine Interface Algorithm That Approximates Arbitrary Force-Fields

    Science.gov (United States)

    Semprini, Marianna; Mussa-Ivaldi, Ferdinando A.; Panzeri, Stefano

    2014-01-01

    We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field) applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop. PMID:24626393

  19. A force field and phonon dispersion curves. I: Application to Cs2 MX6 type systems

    International Nuclear Information System (INIS)

    Cortes, E.; Acevedo, R.

    1998-01-01

    A physical symmetry adapted formalism of general applicability is put forward to gain understanding of both the short and the long range interactions included in the dynamic matrix in solid state Physics. This formalism is carried out with reference to the Cs 2 U Br 6 which belongs to the Fm 3m(O 5 h ) space group. This system has been chosen since many theoretical and experimental studies have been already reported. This research article represents a new effort to gain understanding with reference to the N- body problem in lattice dynamics. based upon new and non published experimental data we have developed an strategy to work out convergence tests so that to carry out through studies of the lattice sums on both, the direct and the reciprocal spaces. This article reports updated information of the phonon dispersion curves along different polarizations directions, with explicit applications to the Cs 2 U Br 6 crystal. The lattice dynamic of this crystal has been worked out, utilising a model which includes a total of 13 force constants, which are derived when a mixed force field: general valence force field (GVFF)-Urey-Bradley force field (UBFF) is employed and a total of three effective charges on the Cesium, Uranium and Bromide ions. It is shown that our model is suitable to describe both the short and the long range interactions. Furthermore and for reasons of completeness, we have included interactions among atoms belonging to different unit cells. This is indeed a rather important breakthrough of the model reported in the literature previously. The advantages and disadvantages of the current formalism are discussed in the text, though we many anticipate a fair degree of success in the description in the description of several important physical observable and in particular in the description of the LO-TO energy gap. (author)

  20. One-Photon Absorption Properties from a Hybrid Polarizable Density Embedding/Complex Polarization Propagator Approach for Polarizable Solutions

    DEFF Research Database (Denmark)

    Hršak, Dalibor; Nørby, Morten Steen; Coriani, Sonia

    2018-01-01

    We present a formulation of the polarizable density embedding (PDE) method in combination with the complex polarization propagator (CPP) method for the calculation of absorption spectra of molecules in solutions. The method is particularly useful for the calculation of near-edge X-ray absorption...... fine structure (NEXAFS) spectra. We compare the performance of PDE-CPP with the previously formulated polarizable embedding (PE)-CPP model for the calculation of the NEXAFS spectra of adenine, formamide, glycine, and adenosine triphosphate (ATP) in water at the carbon and nitrogen K-edges, as well...

  1. Development of complex classical force fields through force matching to ab initio data: application to a room-temperature ionic liquid.

    Science.gov (United States)

    Youngs, Tristan G A; Del Pópolo, Mario G; Kohanoff, Jorge

    2006-03-23

    Recent experimental neutron diffraction data and ab initio molecular dynamics simulation of the ionic liquid dimethylimidazolium chloride ([dmim]Cl) have provided a structural description of the system at the molecular level. However, partial radial distribution functions calculated from the latter, when compared to previous classical simulation results, highlight some limitations in the structural description offered by force field-based simulations. With the availability of ab initio data it is possible to improve the classical description of [dmim]Cl by using the force matching approach, and the strategy for fitting complex force fields in their original functional form is discussed. A self-consistent optimization method for the generation of classical potentials of general functional form is presented and applied, and a force field that better reproduces the observed first principles forces is obtained. When used in simulation, it predicts structural data which reproduces more faithfully that observed in the ab initio studies. Some possible refinements to the technique, its application, and the general suitability of common potential energy functions used within many ionic liquid force fields are discussed.

  2. Nanophotonic force microscopy: characterizing particle-surface interactions using near-field photonics.

    Science.gov (United States)

    Schein, Perry; Kang, Pilgyu; O'Dell, Dakota; Erickson, David

    2015-02-11

    Direct measurements of particle-surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. Here we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. As shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.

  3. Muscle co-contraction patterns in robot-mediated force field learning to guide specific muscle group training.

    Science.gov (United States)

    Pizzamiglio, Sara; Desowska, Adela; Shojaii, Pegah; Taga, Myriam; Turner, Duncan L

    2017-01-01

    Muscle co-contraction is a strategy of increasing movement accuracy and stability employed in dealing with force perturbation of movement. It is often seen in neuropathological populations. The direction of movement influences the pattern of co-contraction, but not all movements are easily achievable for populations with motor deficits. Manipulating the direction of the force instead, may be a promising rehabilitation protocol to train movement with use of a co-contraction reduction strategy. Force field learning paradigms provide a well described procedure to evoke and test muscle co-contraction. The aim of this study was to test the muscle co-contraction pattern in a wide range of arm muscles in different force-field directions utilising a robot-mediated force field learning paradigm of motor adaptation. Forty-two participants volunteered to participate in a study utilising robot-mediated force field motor adaptation paradigm with a clockwise or counter-clockwise force field. Kinematics and surface electromyography (EMG) of eight arm muscles were measured. Both muscle activation and co-contraction was earlier and stronger in flexors in the clockwise condition and in extensors in the counter-clockwise condition. Manipulating the force field direction leads to changes in the pattern of muscle co-contraction.

  4. Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions

    Science.gov (United States)

    Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta

    2017-08-01

    Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.

  5. Streamwise-body-force-model for rapid simulation combining internal and external flow fields

    Directory of Open Access Journals (Sweden)

    Cui Rong

    2016-10-01

    Full Text Available A streamwise-body-force-model (SBFM is developed and applied in the overall flow simulation for the distributed propulsion system, combining internal and external flow fields. In view of axial stage effects, fan or compressor effects could be simplified as body forces along the streamline. These body forces which are functions of local parameters could be added as source terms in Navier-Stokes equations to replace solid boundary conditions of blades and hubs. The validation of SBFM with uniform inlet and distortion inlet of compressors shows that pressure performance characteristics agree well with experimental data. A three-dimensional simulation of the integration configuration, via a blended wing body aircraft with a distributed propulsion system using the SBFM, has been completed. Lift coefficient and drag coefficient agree well with wind tunnel test results. Results show that to reach the goal of rapid integrated simulation combining internal and external flow fields, the computational fluid dynamics method based on SBFM is reasonable.

  6. Gaussian-Charge Polarizable and Nonpolarizable Models for CO2.

    Science.gov (United States)

    Jiang, Hao; Moultos, Othonas A; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2016-02-11

    A polarizable intermolecular potential model using three classical Drude oscillators on the atomic sites has been developed for CO2. The model is rigid with bond lengths and molecular geometries set to their experimental values. Electrostatic interactions are represented by three Gaussian charges connected to the molecular frame by harmonic springs. Nonelectrostatic interactions are represented by the Buckingham exponential-6 potential, with potential parameters optimized to vapor-liquid equilibria (VLE) data. A nonpolarizable CO2 model that shares the other ingredients of the polarizable model was also developed and optimized to VLE data. Gibbs ensemble Monte Carlo and molecular dynamics simulations were used to evaluate the two models with respect to a variety of thermodynamic and transport properties, including the enthalpy of vaporization, second virial coefficient, density in the one-phase fluid region, isobaric and isochoric heat capacities, radial distribution functions, self-diffusion coefficient, and shear viscosity. Excellent agreement between model predictions and experimental data was found for all properties studied. The polarizable and nonpolarizable models provide a similar representation of CO2 properties, which indicates that the properties of pure CO2 fluid are not strongly affected by polarization. The polarizable model, which has an order of magnitude higher computational cost than the nonpolarizable model, will likely be useful for the study of a mixture of CO2 and polar components for which polarization is important.

  7. Substituent effects of the alkyl groups: Polarity vs. polarizability

    Czech Academy of Sciences Publication Activity Database

    Exner, Otto; Böhm, S.

    -, č. 17 (2007), s. 2870-2876 ISSN 1434-193X Institutional research plan: CEZ:AV0Z40550506 Keywords : density functional calculations * hyperconjugation * inductive effect * polarizability Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.914, year: 2007

  8. Neutron polarizability. Possibilities of its determination in neutron experiments

    CERN Document Server

    Aleksandrov, Y A

    2001-01-01

    The history of question of neutron polarizability is discussed. Most of the neutron physical experiments conducted at neutron energies below 14 MeV to discover the electric polarizability of the neutron are reviewed.The existence of additional scattering after all known long range-related phenomena are taken into account are emphasized. In the keV neutron energy region, the effect of neutron polarizability on the angular distribution of scattering (over a wide range of angles) and the energy behavior of the total cross section of neutron interaction is studied. Finally, in the region of low energies (below 1 keV) the focus is on the influence of polarizability on the energy dependence of total neutron cross sections. It is emphasized that measurements at energies below several hundreds keV have not given any positive results yet due to the smallness of the experimental effect. Possible existence of an additional potential of neutron scattering on nuclei with a longer range than that of the usual nuclear poten...

  9. Partial Molar Volume of Methanol in Water: Effect of Polarizability

    Czech Academy of Sciences Publication Activity Database

    Moučka, F.; Nezbeda, Ivo

    2009-01-01

    Roč. 74, č. 4 (2009), s. 559-563 ISSN 0010-0765 R&D Projects: GA AV ČR IAA400720802 Institutional research plan: CEZ:AV0Z40720504 Keywords : water–methanol mixtures * partial molar volume * polarizability Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.856, year: 2009

  10. Calculations of the thermal conductivities of ionic materials by simulation with polarizable interaction potentials.

    Science.gov (United States)

    Ohtori, Norikazu; Salanne, Mathieu; Madden, Paul A

    2009-03-14

    Expressions for the energy current of a system of charged, polarizable ions in periodic boundary conditions are developed in order to allow the thermal conductivity in such a system to be calculated by computer simulation using the Green-Kubo method. Dipole polarizable potentials for LiCl, NaCl, and KCl are obtained on a first-principles basis by "force matching" to the results of ab initio calculations on suitable condensed-phase ionic configurations. Simulation results for the thermal conductivity, and also other transport coefficients, for the melts are compared with experimental data and with results obtained with other interaction potentials. The agreement with experiment is almost quantitative, especially for NaCl and KCl, indicating that these methodologies, perhaps with more sophisticated forms for the potential, can be used to predict thermal conductivities for melts for which experimental determination is very difficult. It is demonstrated that the polarization effects have an important effect on the energy current and are crucial to a predictive scheme for the thermal conductivity.

  11. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    International Nuclear Information System (INIS)

    Kim, S H; Hashi, S; Ishiyama, K

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and 19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  12. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    Science.gov (United States)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  13. A code for calculating force and temperature of a bitter plate type toroidal field coil system

    International Nuclear Information System (INIS)

    Christensen, U.

    1989-01-01

    To assist the design effort of the TF coils for CIT, a set of programs was developed to calculate the transient spatial distribution of the current density, the temperature and the forces in the TF coil conductor region. The TF coils are of the Bitter (disk) type design and therefore have negligible variation of current density in the toroidal direction. During the TF pulse, voltages are induced which cause the field and current to diffuse in the minor radial direction. This penetration, combined with the increase of resistance due to the temperature rise determines the distribution of the current. After the current distribution has been determined, the in-plane (TF-TF) and the out-of-plane (TF-PF) forces in the conductor are computed. The predicted currents and temperatures have been independently corroborated using the SPARK code which has been modified for this type of problem. 6 figs

  14. Novel System for Bite-Force Sensing and Monitoring Based on Magnetic Near Field Communication

    Directory of Open Access Journals (Sweden)

    Jesús Sanz Maudes

    2012-08-01

    Full Text Available Intraoral devices for bite-force sensing have several applications in odontology and maxillofacial surgery, as bite-force measurements provide additional information to help understand the characteristics of bruxism disorders and can also be of help for the evaluation of post-surgical evolution and for comparison of alternative treatments. A new system for measuring human bite forces is proposed in this work. This system has future applications for the monitoring of bruxism events and as a complement for its conventional diagnosis. Bruxism is a pathology consisting of grinding or tight clenching of the upper and lower teeth, which leads to several problems such as lesions to the teeth, headaches, orofacial pain and important disorders of the temporomandibular joint. The prototype uses a magnetic field communication scheme similar to low-frequency radio frequency identification (RFID technology (NFC. The reader generates a low-frequency magnetic field that is used as the information carrier and powers the sensor. The system is notable because it uses an intra-mouth passive sensor and an external interrogator, which remotely records and processes information regarding a patient’s dental activity. This permits a quantitative assessment of bite-force, without requiring intra-mouth batteries, and can provide supplementary information to polysomnographic recordings, current most adequate early diagnostic method, so as to initiate corrective actions before irreversible dental wear appears. In addition to describing the system’s operational principles and the manufacture of personalized prototypes, this report will also demonstrate the feasibility of the system and results from the first in vitro and in vivo trials.

  15. Effect of simulated resistance, fleeing, and use of force on standardized field sobriety testing.

    Science.gov (United States)

    Ho, Jeffrey; Dawes, Donald; Nystrom, Paul; Moore, Johanna; Steinberg, Lila; Tilton, Annemarie; Miner, James

    2015-07-01

    When a law enforcement officer (LEO) stops a suspect believed to be operating (a vehicle) while impaired (OWI), the suspect may resist or flee, and the LEO may respond with force. The suspect may then undergo a Standardized Field Sobriety Test (SFST) to gauge impairment. It is not known whether resistance, fleeing, or actions of force can create an inaccurate SFST result. We examined the effect of resistance, fleeing, and force on the SFST. Human volunteers were prospectively randomized to have a SFST before and after one of five scenarios: (1) five-second conducted electrical weapon exposure; (2) 100-yard (91.4 m) sprint; (3) 45-second physical fight; (4) police dog bite with protective gear; and (5) Oleoresin Capsicum spray to the face with eyes shielded. The SFST was administered and graded by a qualified LEO. After the SFST, the volunteer entered their scenario and was then administered another SFST. Data were analyzed using descriptive statistics. SFST performance was compared before and after using chi-square tests. Fifty-seven subjects enrolled. Three received a single-point penalty during one component of the three-component SFST pre-scenario. No subject received a penalty point in any components of the SFST post-scenario (p = 0.08). This is the first human study to examine the effects of physical resistance, flight, and use of force on the SFST result. We did not detect a difference in the performance of subjects taking the SFST before and after exposure to resistance, flight, or a simulated use of force. © Australian Council for Educational Research 2014.

  16. Influence of the temperature-dependent viscosity on convective flow in the radial force field.

    Science.gov (United States)

    Travnikov, Vadim; Zaussinger, Florian; Beltrame, Philippe; Egbers, Christoph

    2017-08-01

    The numerical investigation of convective flows in the radial force field caused by an oscillating electric field between spherical surfaces has been performed. A temperature difference (T_{1}>T_{2}) as well as a radial force field triggers a fluid flow similar to the Rayleigh-Bénard convection. The onset of convective flow has been studied by means of the linear stability analysis as a function of the radius ratio η=R_{1}/R_{2}. The influence of the temperature-dependent viscosity has been investigated in detail. We found that a varying viscosity contrast β=ν(T_{2})/ν(T_{1}) between β=1 (constant viscosity) and β=50 decreases the critical Rayleigh number by a factor of 6. Additionally, we perform a bifurcation analysis based on numerical simulations which have been calculated using a modified pseudospectral code. Numerical results have been compared with the GeoFlow experiment which is located on the International Space Station (ISS). Nonturbulent three-dimensional structures are found in the numerically predicted parameter regime. Furthermore, we observed multiple stable solutions in both experiments and numerical simulations, respectively.

  17. Mapping the global football field: a sociological model of transnational forces within the world game.

    Science.gov (United States)

    Giulianotti, Richard; Robertson, Roland

    2012-06-01

    This paper provides a sociological model of the key transnational political and economic forces that are shaping the 'global football field'. The model draws upon, and significantly extends, the theory of the 'global field' developed previously by Robertson. The model features four quadrants, each of which contains a dominant operating principle, an 'elemental reference point', and an 'elemental theme'. The quadrants contain, first, neo-liberalism, associated with the individual and elite football clubs; second, neo-mercantilism, associated with nation-states and national football systems; third, international relations, associated with international governing bodies; and fourth, global civil society, associated with diverse institutions that pursue human development and/or social justice. We examine some of the interactions and tensions between the major institutional and ideological forces across the four quadrants. We conclude by examining how the weakest quadrant, featuring global civil society, may gain greater prominence within football. In broad terms, we argue that our four-fold model may be utilized to map and to examine other substantive research fields with reference to globalization. © London School of Economics and Political Science 2012.

  18. Analysis of PM Magnetization Field Effects on the Unbalanced Magnetic Forces due to Rotor Eccentricity in BLDC Motors

    Directory of Open Access Journals (Sweden)

    S. Mahdiuon-Rad

    2013-08-01

    Full Text Available This paper investigates both static and dynamic eccentricities in single phase brushless DC (BLDC motors and analyzes the effect of the PM magnetization field on unbalanced magnetic forces acting on the rotor. Three common types of PM magnetization field patterns including radial, parallel and sinusoidal magnetizations are considered. In both static and dynamic eccentricities, harmonic components of the unbalanced magnetic forces on the rotor are extracted and analyzed. Based on simulation results, the magnetization fields that produce the lowest and highest unbalanced magnetic forces are determined in rotor eccentricity conditions.

  19. Improvement of a force field to model the edges of clay particles

    International Nuclear Information System (INIS)

    Pouvreau, Maxime

    2016-01-01

    The CLAYFF force field is widely used to model the interfaces of clay minerals - and related layered materials - with an aqueous phase. In the simulations, clay particles are typically represented by semi-infinite layers, i.e. only surfaces parallel to the layer plane (basal surfaces) are considered. This simplification is acceptable to a certain extent, but clay layers are really nano sized and terminated by lateral surfaces or edges. These surfaces can not only adsorb solvated species but are also subject to proton transfers, and all physico-chemical processes related to the aqueous phase acidity predominantly occur at the edges. By adding to the CLAYFF force field a Metal-O-H angle bending term whose parameters are correctly adjusted, the simulations of edge interfaces become possible.The parameters of Al-O-H and Mg-O-H terms were obtained from DFT calculations on bulk, basal surface and edge structural models of gibbsite Al(OH) 3 and brucite Mg(OH) 2 , whose layers can be considered as the backbones of clay minerals and related materials. In addition, the Si-O-H term was parametrized from an edge model of kaolinite Al 2 Si 2 O 5 (OH) 4 . Molecular dynamics simulations based on DFT and on CLAYFF with and without Metal-O-H term were performed. The modified force field clearly improves the description of hydroxylated surfaces: the orientation and the vibrational dynamics of the hydroxyl groups, the hydrogen bonding, and the coordination of metal atoms belonging to the edge are all closer to reality [fr

  20. Are current atomistic force fields accurate enough to study proteins in crowded environments?

    Directory of Open Access Journals (Sweden)

    Drazen Petrov

    2014-05-01

    Full Text Available The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded and oxidatively damaged (unfolded forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP as well as indirectly shown for additional two (AMBER94, OPLS-AAL, and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields

  1. An automated analysis workflow for optimization of force-field parameters using neutron scattering data

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Vickie E.; Borreguero, Jose M. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Bhowmik, Debsindhu [Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Ganesh, Panchapakesan; Sumpter, Bobby G. [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Proffen, Thomas E. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Goswami, Monojoy, E-mail: goswamim@ornl.gov [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States)

    2017-07-01

    Graphical abstract: - Highlights: • An automated workflow to optimize force-field parameters. • Used the workflow to optimize force-field parameter for a system containing nanodiamond and tRNA. • The mechanism relies on molecular dynamics simulation and neutron scattering experimental data. • The workflow can be generalized to any other experimental and simulation techniques. - Abstract: Large-scale simulations and data analysis are often required to explain neutron scattering experiments to establish a connection between the fundamental physics at the nanoscale and data probed by neutrons. However, to perform simulations at experimental conditions it is critical to use correct force-field (FF) parameters which are unfortunately not available for most complex experimental systems. In this work, we have developed a workflow optimization technique to provide optimized FF parameters by comparing molecular dynamics (MD) to neutron scattering data. We describe the workflow in detail by using an example system consisting of tRNA and hydrophilic nanodiamonds in a deuterated water (D{sub 2}O) environment. Quasi-elastic neutron scattering (QENS) data show a faster motion of the tRNA in the presence of nanodiamond than without the ND. To compare the QENS and MD results quantitatively, a proper choice of FF parameters is necessary. We use an efficient workflow to optimize the FF parameters between the hydrophilic nanodiamond and water by comparing to the QENS data. Our results show that we can obtain accurate FF parameters by using this technique. The workflow can be generalized to other types of neutron data for FF optimization, such as vibrational spectroscopy and spin echo.

  2. The force analysis for superparamagnetic nanoparticles-based gene delivery in an oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiajia [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Shi, Zongqian, E-mail: zqshi@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Zhang, Pengbo [Department of Anesthesiology, Second Affiliated Hospital of Xi’an Jiaotong University School of Medicine, No.157 West 5 Road, Xi’an, Shaanxi Province 710004 (China)

    2017-04-01

    Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system. - Highlights: • We compare the results of the ECS method and FEA method with the commercial software, Ansys. • We analyze the physic mechanism of the oscillating motion of the particles in the presence of an oscillating magnet. • We discuss the influence of the oscillating amplitude of the magnet on the behavior of the particle.

  3. The force analysis for superparamagnetic nanoparticles-based gene delivery in an oscillating magnetic field

    International Nuclear Information System (INIS)

    Sun, Jiajia; Shi, Zongqian; Jia, Shenli; Zhang, Pengbo

    2017-01-01

    Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system. - Highlights: • We compare the results of the ECS method and FEA method with the commercial software, Ansys. • We analyze the physic mechanism of the oscillating motion of the particles in the presence of an oscillating magnet. • We discuss the influence of the oscillating amplitude of the magnet on the behavior of the particle.

  4. Single stranded loops of quadruplex DNA as key benchmark for testing nucleic acids force fields

    Czech Academy of Sciences Publication Activity Database

    Fadrná, E.; Špačková, Naďa; Sarzynska, J.; Koča, J.; Orozco, M.; Cheatham III, T.E.; Kulinski, T.; Šponer, Jiří

    2009-01-01

    Roč. 5, č. 9 (2009), s. 2514-2530 ISSN 1549-9618 R&D Projects: GA MŠk(CZ) LC06030; GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) IAA400040802 Grant - others:GA ČR(CZ) GA203/09/1476 Program:GA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA quadruplex * MD simulation * force fields Subject RIV: BO - Biophysics Impact factor: 4.804, year: 2009

  5. Performance of molecular mechanics force fields for RNA simulations: Stability of UUCG and GNRA hairpins

    Czech Academy of Sciences Publication Activity Database

    Banáš, P.; Hollas, D.; Zgarbová, M.; Jurečka, P.; Orozco, M.; Cheatham III, T.E.; Šponer, Jiří; Otyepka, M.

    2010-01-01

    Roč. 6, č. 12 (2010), s. 3836-3849 ISSN 1549-9618 R&D Projects: GA MŠk(CZ) LC06030; GA ČR(CZ) GA203/09/1476; GA ČR(CZ) GD203/09/H046; GA AV ČR(CZ) IAA400040802 Grant - others:GA MŠk(CZ) LC512 Program:LC Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : molecular dynamics * force fields * RNA * tetraloops Subject RIV: BO - Biophysics Impact factor: 5.138, year: 2010

  6. Fibre-top atomic force microscope probe with optical near-field detection capabilities.

    Science.gov (United States)

    Tiribilli, B; Margheri, G; Baschieri, P; Menozzi, C; Chavan, D; Iannuzzi, D

    2011-04-01

    We present a fibre-top probe fabricated by carving a tipped cantilever on an optical fibre, with the tip machined in correspondence of the fibre core. When approached to an optical prism illuminated under total internal reflection conditions, the tip of the cantilever detects the optical tunnelling signal, while the light coupled from the opposite end of the fibre measures the deflection of the cantilever. Our results suggest that fibre-top technology can be used for the development of a new generation of hybrid probes that can combine atomic force microscopy with scanning near field optical microscopy. © 2010 The Authors Journal of Microscopy © 2010 Royal Microscopical Society.

  7. Dipole polarizability of alkali-metal (Na, K, Rb)-alkaline-earth-metal (Ca, Sr) polar molecules: Prospects for alignment

    Science.gov (United States)

    Gopakumar, Geetha; Abe, Minori; Hada, Masahiko; Kajita, Masatoshi

    2014-06-01

    Electronic open-shell ground-state properties of selected alkali-metal-alkaline-earth-metal polar molecules are investigated. We determine potential energy curves of the 2Σ+ ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes (23Na, 39K, 85Rb)-(40Ca, 88Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  8. Field investigation source area ST58 old Quartermaster service station, Eielson Air Force Base, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Liikala, T.L.; Evans, J.C.

    1995-01-01

    Source area ST58 is the site of the old Quartermaster service station at Eielson Air Force Base, Alaska. The source area is one of several Source Evaluation Report sites being investigated by Pacific Northwest Laboratory for the US Air Force as candidates for no further remedial action, interim removal action, or a remedial investigation/feasibility study under a Federal Facilities Agreement. The purpose of this work was to characterize source area ST58 and excavate the most contaminated soils for use in composting treatability studies. A field investigation was conducted to determine the nature and extent of soil contamination. The field investigation entailed a records search; grid node location, surface geophysical, and soil gas surveys; and test pit soil sampling. Soil excavation followed based on the results of the field investigation. The site was backfilled with clean soil. Results from this work indicate close spatial correlation between screening instruments, used during the field investigation and soil excavation, and laboratory analyses. Gasoline was identified as the main subsurface contaminant based on the soil gas surveys and test pit soil sampling. A center of contamination was located near the northcentral portion of the source area, and a center was located in the northwestern comer. The contamination typically occurred near or below a former soil horizon probably as a result of surface spills and leaks from discontinuities and/or breaks in the underground piping. Piping locations were delineated during the surface geophysical surveys and corresponded very well to unscaled drawings of the site. The high subsurface concentrations of gasoline detected in the northwestern comer of the source area probably reflect ground-water contamination and/or possibly floating product.

  9. Some interesting consequences from Newton's modified expression of gravitational force in the vector model for gravitational field

    International Nuclear Information System (INIS)

    Vo Van On

    2009-01-01

    In this paper, based on the Vector model for gravitational field we show some interesting consequence from Newton's modified expression of gravitational force: dividing the space into regions around galaxies, maximal sire of stable galaxies. (author)

  10. Repulsive Casimir and Casimir–Polder forces

    International Nuclear Information System (INIS)

    Milton, Kimball A; Abalo, E K; Parashar, Prachi; Pourtolami, Nima; Brevik, Iver; Ellingsen, Simen Å

    2012-01-01

    Casimir and Casimir–Polder repulsions have been known for more than 50 years. The general ‘Lifshitz’ configuration of parallel semi-infinite dielectric slabs permits repulsion if they are separated by a dielectric fluid that has a value of permittivity that is intermediate between those of the dielectric slabs. This was indirectly confirmed in the 1970s, and more directly by Capasso’s group recently. It has also been known for many years that electrically and magnetically polarizable bodies can experience a repulsive quantum vacuum force. More amenable to practical application are situations where repulsion could be achieved between ordinary conducting and dielectric bodies in vacuum. The status of the field of Casimir repulsion with emphasis on some recent developments will be surveyed. Here, stress will be placed on analytic developments, especially on Casimir–Polder (CP) interactions between anisotropically polarizable atoms, and CP interactions between anisotropic atoms and bodies that also exhibit anisotropy, either because of anisotropic constituents, or because of geometry. Repulsion occurs for wedge-shaped and cylindrical conductors, provided the geometry is sufficiently asymmetric, that is, either the wedge is sufficiently sharp or the atom is sufficiently far from the cylinder. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (review)

  11. Effects of lorentz force on flow fields of free burning arc and wall stabilized non-transferred arc

    International Nuclear Information System (INIS)

    Peng Yi; Huang Heji; Pan Wenxia

    2013-01-01

    The flow fields of two typical DC plasma arcs, namely the transferred free burning arc and the non-transferred arc were simulated by solving hydrodynamic equations and electromagnetic equations. The effects of the Lorentz force on the characteristics of the flow fields of these two typical DC plasma arcs were estimated. Results show that in the case of the free burning arc, the Lorentz force due to the current self-induced magnetic field has significant impact on the flow fields, as the self-induced magnetic compression is the main arc constraint mechanism. However, in the case of the non-transferred arc generated in a torch with long and narrow inter-electrode inserts and an abruptly expanded anode, the Lorentz force has limited impact on the flow fields of the plasma especially at the downstream of the inter-electrode inserts, compared with the strong wall constraints and relatively high aerodynamic force. This is because the ratio of the electromagnetic force to the aerodynamic force is only about 0.01 in this region. When the main consideration is outlet parameters of the wall stabilized non-transferred DC arc plasma generator, in order to improve the efficiency of the numerical simulation program, the Lorentz force could be neglected in the non-transferred arc in some cases. (authors)

  12. Influence of the vortex shedding on the time evolution of instantaneous pressure fields and forces in rotating airfoils

    Science.gov (United States)

    Villegas, Arturo; Diez, Francisco J.

    2013-11-01

    Time-resolved measurements of instantaneous pressure fields and aerodynamic loads are obtained for rotating airfoils. These allowed evaluating temporal variations in the flow field and were able to capture the evolution of vortex shedding in the wake of the rotating blade. The results show the influence of vortex shedding in the instantaneous loads. These measurements involve obtaining first the velocity field from TR-PIV. This is used to calculate the pressure field from the Poisson pressure equation, and later the forces from the integral momentum equation. The robustness of the measurements is analyzed by calculating the PIV uncertainty, and the independence of the calculated forces. Experimental mean aerodynamic forces are compared to theoretical predictions from the Blade Element Momentum theory (BEM) showing good agreement. The instantaneous pressure varied with time only in the wake due to vortex shedding. This is the first time the evolution of the instantaneous pressure field has been resolved for a rotating airfoil. The contribution to the instantaneous forces from each term in the integral momentum equation is evaluated. The analysis shows that the larger contributions to the normal force coefficient are from the unsteady and the pressure terms while the larger contribution to the tangential force coefficient is from the convective term. The method can be used to measure unsteady forces in rotating airfoils, providing useful information not just for computational studies, but also for aerodynamics, material and structural optimization and safety purposes.

  13. Development of reactive force fields using ab initio molecular dynamics simulation minimally biased to experimental data

    Science.gov (United States)

    Chen, Chen; Arntsen, Christopher; Voth, Gregory A.

    2017-10-01

    Incorporation of quantum mechanical electronic structure data is necessary to properly capture the physics of many chemical processes. Proton hopping in water, which involves rearrangement of chemical and hydrogen bonds, is one such example of an inherently quantum mechanical process. Standard ab initio molecular dynamics (AIMD) methods, however, do not yet accurately predict the structure of water and are therefore less than optimal for developing force fields. We have instead utilized a recently developed method which minimally biases AIMD simulations to match limited experimental data to develop novel multiscale reactive molecular dynamics (MS-RMD) force fields by using relative entropy minimization. In this paper, we present two new MS-RMD models using such a parameterization: one which employs water with harmonic internal vibrations and another which uses anharmonic water. We show that the newly developed MS-RMD models very closely reproduce the solvation structure of the hydrated excess proton in the target AIMD data. We also find that the use of anharmonic water increases proton hopping, thereby increasing the proton diffusion constant.

  14. [Analysis on instantaneous spatial pattern of thermal force field in Harbin].

    Science.gov (United States)

    Zhu, Ning; Wang, Cheng; Zhou, Hongze; Li, Min

    2003-11-01

    The spatial pattern of urban thermal force field is not only the dominant content in assessing city ecological environment, but also an important base for city green system planning. The status of spatial pattern of thermal force field in Harbin was analyzed with RS and GIS techniques. Based on the instantaneous radiation temperature of the land surfaces in the city when the TM image was sensed remotely, all the patches were divided into 3 levels, i.e., low radiation temperature ( 28 degrees C) were uneven in their areas. The biggest area in these patches was 1489 hm2, and the smallest one was 0.72 hm2. The proportion of the patches with an area less than 1 hm2, between 1-5 hm2, and more than 5 hm2 was 95.02%, 3.46%, and 1.58%, respectively. There were 3 types of spatial patterns of the super-thermal radiation patches, i.e., round form (the average radiation temperature was 30.8 degrees C), ring form (the average radiation temperature was 27 degrees C), and pieces form (the average radiation temperature was 24.7 degrees C). Daowai District and Daoli District were round form, districts along the ring routes of railway in the city were ring form, and Nangang District and Dongli District were pieces form. Some advices to resolve the problem of 'heat island effect' influenced by the factors including greenland covering rate, greenland area and building dimension were discussed.

  15. Vibrational Study and Force Field of the Citric Acid Dimer Based on the SQM Methodology

    Directory of Open Access Journals (Sweden)

    Laura Cecilia Bichara

    2011-01-01

    Full Text Available We have carried out a structural and vibrational theoretical study for the citric acid dimer. The Density Functional Theory (DFT method with the B3LYP/6-31G∗ and B3LYP/6-311++G∗∗ methods have been used to study its structure and vibrational properties. Then, in order to get a good assignment of the IR and Raman spectra in solid phase of dimer, the best fit possible between the calculated and recorded frequencies was carry out and the force fields were scaled using the Scaled Quantum Mechanic Force Field (SQMFF methodology. An assignment of the observed spectral features is proposed. A band of medium intensity at 1242 cm−1 together with a group of weak bands, previously not assigned to the monomer, was in this case assigned to the dimer. Furthermore, the analysis of the Natural Bond Orbitals (NBOs and the topological properties of electronic charge density by employing Bader's Atoms in Molecules theory (AIM for the dimer were carried out to study the charge transference interactions of the compound.

  16. New Force Field Model for Propylene Glycol: Insight to Local Structure and Dynamics.

    Science.gov (United States)

    Ferreira, Elisabete S C; Voroshylova, Iuliia V; Koverga, Volodymyr A; Pereira, Carlos M; Cordeiro, M Natália D S

    2017-12-07

    In this work we developed a new force field model (FFM) for propylene glycol (PG) based on the OPLS all-atom potential. The OPLS potential was refined using quantum chemical calculations, taking into account the densities and self-diffusion coefficients. The validation of this new FFM was carried out based on a wide range of physicochemical properties, such as density, enthalpy of vaporization, self-diffusion coefficients, isothermal compressibility, surface tension, and shear viscosity. The molecular dynamics (MD) simulations were performed over a large range of temperatures (293.15-373.15 K). The comparison with other force field models, such as OPLS, CHARMM27, and GAFF, revealed a large improvement of the results, allowing a better agreement with experimental data. Specific structural properties (radial distribution functions, hydrogen bonding and spatial distribution functions) were then analyzed in order to support the adequacy of the proposed FFM. Pure propylene glycol forms a continuous phase, displaying no microstructures. It is shown that the developed FFM gives rise to suitable results not only for pure propylene glycol but also for mixtures by testing its behavior for a 50 mol % aqueous propylene glycol solution. Furthermore, it is demonstrated that the addition of water to the PG phase produces a homogeneous solution and that the hydration interactions prevail over the propylene glycol self-association interactions.

  17. DOE Task Force meeting on Electrical Breakdown of Insulating Ceramics in a High Radiation Field

    International Nuclear Information System (INIS)

    Green, P.H.

    1991-08-01

    This volume contains the abstracts and presentation material from the Research Assistance Task Force Meeting ''Electrical Breakdown of Insulating Ceramics in a High-Radiation Field.'' The meeting was jointly sponsored by the Office of Basic Energy Sciences and the Office of Fusion Energy of the US Department of Energy in Vail, Colorado, May 28--June 1, 1991. The 26 participants represented expertise in fusion, radiation damage, electrical breakdown, ceramics, and semiconductor and electronic structures. These participants came from universities, industries, national laboratories, and government. The attendees represented eight nations. The Task Force meeting was organized in response to the recent discovery that a combination of temperature, electric field, and radiation for an extended period of time has an unexplained adverse effect in ceramics, termed radiation-enhanced electrical degradation (REED). REED occurs after an incubation period and continues to accelerate with irradiation until the ceramics can no longer be regarded as insulators. It appears that REED is irreversible and the ceramic insulators cannot be readily annealed or otherwise repaired for future services. This effect poses a serious threat for fusion reactors, which require electrical insulators in diagnostic devices, in radio frequency and neutral beam systems, and in magnetic assemblies. The problem of selecting suitable electrical insulating materials in thus far more serious than previously anticipated

  18. Beyond Born-Mayer: Improved Models for Short-Range Repulsion in ab Initio Force Fields.

    Science.gov (United States)

    Van Vleet, Mary J; Misquitta, Alston J; Stone, Anthony J; Schmidt, J R

    2016-08-09

    Short-range repulsion within intermolecular force fields is conventionally described by either Lennard-Jones (A/r(12)) or Born-Mayer (A exp(-Br)) forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of intermolecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, and robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Finally, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach.

  19. NONLINEAR FORCE-FREE MAGNETIC FIELD FITTING TO CORONAL LOOPS WITH AND WITHOUT STEREOSCOPY

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.

    2013-01-01

    We developed a new nonlinear force-free magnetic field (NLFFF) forward-fitting algorithm based on an analytical approximation of force-free and divergence-free NLFFF solutions, which requires as input a line-of-sight magnetogram and traced two-dimensional (2D) loop coordinates of coronal loops only, in contrast to stereoscopically triangulated three-dimensional loop coordinates used in previous studies. Test results of simulated magnetic configurations and from four active regions observed with STEREO demonstrate that NLFFF solutions can be fitted with equal accuracy with or without stereoscopy, which relinquishes the necessity of STEREO data for magnetic modeling of active regions (on the solar disk). The 2D loop tracing method achieves a 2D misalignment of μ 2 = 2.°7 ± 1.°3 between the model field lines and observed loops, and an accuracy of ≈1.0% for the magnetic energy or free magnetic energy ratio. The three times higher spatial resolution of TRACE or SDO/AIA (compared with STEREO) also yields a proportionally smaller misalignment angle between model fit and observations. Visual/manual loop tracings are found to produce more accurate magnetic model fits than automated tracing algorithms. The computation time of the new forward-fitting code amounts to a few minutes per active region.

  20. Modelling of Ion Transport in Solids with a General Bond Valence Based Force-Field

    Directory of Open Access Journals (Sweden)

    S. Adams

    2010-12-01

    Full Text Available Empirical bond length - bond valence relations provide insight into the link between structure of and ion transport in solid electrolytes. Building on our earlier systematic adjustment of bond valence (BV parameters to the bond softness, here we discuss how the squared BV mismatch can be linked to the absolute energy scale and used as a general Morse-type interaction potential for analyzing low-energy pathways in ion conducting solid or mixed conductors either by an energy landscape approach or by molecular dynamics (MD simulations. For a wide range of Lithium oxides we could thus model ion transport revealing significant differences to an earlier geometric approach. Our novel BV-based force-field has also been applied to investigate a range of mixed conductors, focusing on cathode materials for lithium ion battery (LIB applications to promote a systematic design of LIB cathodes that combine high energy density with high power density. To demonstrate the versatility of the new BV-based force-field it is applied in exploring various strategies to enhance the power performance of safe low cost LIB materials (LiFePO4, LiVPO4F, LiFeSO4F, etc..

  1. An Analysis of Biomolecular Force Fields for Simulations of Polyglutamine in Solution

    Energy Technology Data Exchange (ETDEWEB)

    Fluitt, Aaron M. [Univ. of Chicago, IL (United States); de Pablo, Juan J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    Polyglutamine (polyQ) peptides are a useful model system for biophysical studies of protein folding and aggregation, both for their intriguing aggregation properties and their own relevance to human disease. The genetic expansion of a polyQ tract triggers the formation of amyloid aggregates associated with nine neurodegenerative diseases. Several clearly identifiable and separable factors, notably the length of the polyQ tract, influence the mechanism of aggregation, its associated kinetics, and the ensemble of structures formed. Atomistic simulations are well positioned to answer open questions regarding the thermodynamics and kinetics of polyQ folding and aggregation. The additional, explicit representation of water permits deeper investigation of the role of solvent dynamics, and it permits a direct comparison of simulation results with infrared spectroscopy experiments. The generation of meaningful simulation results hinges on satisfying two essential criteria: achieving sufficient conformational sampling to draw statistically valid conclusions, and accurately reproducing the intermolecular forces that govern system structure and dynamics. In this work, we examine the ability of 12 biomolecular force fields to reproduce the properties of a simple, 30-residue polyQ peptide (Q30) in explicit water. In addition to secondary and tertiary structure, we consider generic structural properties of polymers that provide additional dimensions for analysis of the highly degenerate disordered states of the molecule. We find that the 12 force fields produce a wide range of predictions. We identify AMBER ff99SB, AMBER ff99SB*, and OPLS-AA/L to be most suitable for studies of polyQ folding and aggregation.

  2. Biopolymers under large external forces and mean-field RNA virus evolutionary dynamics

    Science.gov (United States)

    Ahsan, Syed Amir

    The modeling of the mechanical response of single-molecules of DNA and RNA under large external forces through statistical mechanical methods is central to this thesis with a small portion devoted to modeling the evolutionary dynamics of positive-sense single-stranded RNA viruses. In order to develop and test models of biopolymer mechanics and illuminate the mechanisms underlying biological processes where biopolymers undergo changes in energy on the order of the thermal energy, , entails measuring forces and lengths on the scale of piconewtons (pN) and nanometers (nm), respectively. A capacity achieved in the past two decades at the single-molecule level through the development of micromanipulation techniques such as magnetic and optical tweezers, atomic force microscopy, coupled with advances in micro- and nanofabrication. The statistical mechanical models of biopolymers developed in this dissertation are dependent upon and the outcome of these advancements and resulting experiments. The dissertation begins in chapter 1 with an introduction to the structure and thermodynamics of DNA and RNA, highlighting the importance and effectiveness of simple, two-state models in their description as a prelude to the emergence of two-state models in the research manuscripts. In chapter 2 the standard models of the elasticity of polymers and of a polymer gel are reviewed, characterizing the continuum and mean-field models, including the scaling behavior of DNA in confined spaces. The research manuscript presented in the last section of chapter 2 (section 2.5), subsequent to a review of a Flory gel and in contrast to it, is a model of the elasticity of RNA as a gel, with viral RNA illustrating an instance of such a network, and shown to exhibit anomalous elastic behavior, a negative Poisson ratio, and capable of facilitating viral RNA encapsidation with further context provided in section 5.1. In chapter 3 the experimental methods and behavior of DNA and RNA under mechanical

  3. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges

    Directory of Open Access Journals (Sweden)

    Agustín Leobardo Herrera-May

    2016-08-01

    Full Text Available Microelectromechanical systems (MEMS resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases.

  4. Construction of force-free fields which have toroidal surfaces about a given surface

    International Nuclear Information System (INIS)

    Bouligand, G.

    1983-05-01

    A study of two-fields (B vector, rotB vector) of conservative flux which admits a family of toroidal surfaces of parameter phi on a domain limited by a given surface S, suggests their construction by a Cauchy-Arzela method of step by step. Taking into account the Newcomb condition this method is consistent with force-free magnetic fields and with helical equilibria with scalar pressure. The method supposes that B vector is of class C 1 . This construction makes use of the remarkable property of the field B vector to be the surface gradient of a generating multivalued function Q on a closed surface. Consequently, the initial surface will be given with its normal metric coefficient K; that is to say, B vector admits a family F of homotopic surfaces on a infinitesimal domain about S, an element of F. From this, the periodic part of Q is a solution of a Beltrami equation for the flux conservation of which numerical resolution is envisaged. The study of these fields is made in a biorthogonal system of coordinates. The coeffficients of the two fundamental metric forms of magnetic surfaces vary with phi and are interrelated by a sixth order differential system of equations which gives their variation [fr

  5. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges.

    Science.gov (United States)

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-08-24

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases).

  6. Direct measurements of the frequency-dependent dielectrophoresis force.

    Science.gov (United States)

    Wei, Ming-Tzo; Junio, Joseph; Ou-Yang, H Daniel

    2009-01-02

    Dielectrophoresis (DEP), the phenomenon of directed motion of electrically polarizable particles in a nonuniform electric field, is promising for applications in biochemical separation and filtration. For colloidal particles in suspension, the relaxation of the ionic species in the shear layer gives rise to a frequency-dependent, bidirectional DEP force in the radio frequency range. However, quantification methods of the DEP force on individual particles with the pico-Newton resolution required for the development of theories and design of device applications are lacking. We report the use of optical tweezers as a force sensor and a lock-in phase-sensitive technique for analysis of the particle motion in an amplitude modulated DEP force. The coherent detection and sensing scheme yielded not only unprecedented sensitivity for DEP force measurements, but also provided a selectivity that clearly distinguishes the pure DEP force from all the other forces in the system, including electrophoresis, electro-osmosis, heat-induced convection, and Brownian forces, all of which can hamper accurate measurements through other existing methods. Using optical tweezers-based force transducers already developed in our laboratory, we have results that quantify the frequency-dependent DEP force and the crossover frequency of individual particles with this new experimental method.

  7. Electric field and force modeling for electrostatic levitation of lossy dielectric plates

    Science.gov (United States)

    Woo, S. J.; Higuchi, T.

    2010-11-01

    Electrostatic levitation holds great promise for the semiconductor, solar panel, and flat-panel display industry where the handling of dielectrics in a contact-free manner can bring many advantages and solve long-standing contamination and particulate control problems. In this work an analytical model is developed for the electrostatic levitation field between a lossy dielectric plate and a generic stator electrode structure consisting of a regular planar array of parallel bar electrodes. Time-varying voltages of differing polarities are alternatingly applied to the bar electrodes. Atmospheric humidity-related surface conduction on the plate is explicitly taken into account in the model since it has a profound effect on the field dynamics. Based on this model, the electrostatic levitation force is calculated using the Maxwell stress tensor formulation. The levitation force dynamics are investigated by evaluating the transient response of the field under a step in the applied voltages. In this context, the rate of electric charge build up on the plate is characterized by the suspension initiation time (TSI), which is defined as the time elapsed between applying step voltages to the stator electrodes and start of lift-off of the dielectric plate from its initial position. TSI is theoretically predicted for 0.7 mm thick soda-lime glass substrates, typically used in the manufacturing of liquid crystal displays (LCDs), as a function of electrode geometry, air gap separation, ambient humidity, and step voltage magnitudes. The predicted results are shown to be in good agreement with previously published experimental data for soda-lime glass substrates.

  8. Influence of AC external magnetic field on guidance force relaxation between HTS bulk and NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: zhlcai2000@163.com; Wang Suyu; Wang Jiasu; Zheng Jun [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2007-12-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to time-varying external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. So it is required to study whether the guidance force of the bulks is influenced by the inhomogeneity. In this paper, we studied the characteristics of the guidance force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet was used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experiment results, it was found that the guidance force was decreased with the application of the AC external magnetic field, and the decay increased with the amplitude and was almost independent of the frequency.

  9. Polarizability of deformed nuclei and energy shifts in muonic atoms

    International Nuclear Information System (INIS)

    Nali, P.F.; Quarati, P.

    1980-01-01

    The polarizability and nuclear-polarization energy shifts of nuclei composed of closed shells plus valence nucleons in muonic atoms have been calculated: the harmonic-oscillator results of the El polarizability and the energy shifts have been corrected by means of a perturbative approach, which takes into account the effects introduced by the deformation Nilsson potential. Furthermore, to take into account the core polarization effect, different harmonic-oscillator parameters for the core and the valence nucleons have been assumed. The energy shifts of a sequence of states occupied by the muon during its atomic electromagnetic cascade for the nuclei 17 O and 17 F, 41 Ca and 41 Sc have been calculated. (author)

  10. Polarizability of π-mesons in the quark confinement model

    International Nuclear Information System (INIS)

    Avakyan, E.Z.; Avakyan, S.L.; Efimov, G.V.; Ivanov, M.A.

    1988-01-01

    The electric α π and magnetic β π polarizabilities are calculated in the Quark Confinement Model (QCM). The diagrams with vector, scalar and axial intermediate states are taken into account. It is found that intermediate scalar mesons give an essential contribution to electric and magnetic polarizabilities of pions. The following values for α π and β π are obtained: α π ± =4.06x10 -43 cm 3 ; β π ± =-3.84x10 -43 ; α π 0 =-0.18x10 -43 cm 3 ; β π 0 =1.92x10 -43 cm 3 . The widths of strong (α 0 (980) → πη, f 0 (975) → ππ, ε(730) → ππ) and radiative (α 0 (980), f 0 (980), ε(730) → γγ) decays are calculated. The results are obtained to be in satisfactory agreement with expermental data

  11. United polarizable multipole water model for molecular mechanics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Rui; Wang, Qiantao; Ren, Pengyu, E-mail: pren@mail.utexas.edu [Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Wang, Lee-Ping; Pande, Vijay S. [Department of Chemistry, Stanford University, Stanford, California 94305 (United States)

    2015-07-07

    We report the development of a united AMOEBA (uAMOEBA) polarizable water model, which is computationally 3–5 times more efficient than the three-site AMOEBA03 model in molecular dynamics simulations while providing comparable accuracy for gas-phase and liquid properties. In this coarse-grained polarizable water model, both electrostatic (permanent and induced) and van der Waals representations have been reduced to a single site located at the oxygen atom. The permanent charge distribution is described via the molecular dipole and quadrupole moments and the many-body polarization via an isotropic molecular polarizability, all located at the oxygen center. Similarly, a single van der Waals interaction site is used for each water molecule. Hydrogen atoms are retained only for the purpose of defining local frames for the molecular multipole moments and intramolecular vibrational modes. The parameters have been derived based on a combination of ab initio quantum mechanical and experimental data set containing gas-phase cluster structures and energies, and liquid thermodynamic properties. For validation, additional properties including dimer interaction energy, liquid structures, self-diffusion coefficient, and shear viscosity have been evaluated. The results demonstrate good transferability from the gas to the liquid phase over a wide range of temperatures, and from nonpolar to polar environments, due to the presence of molecular polarizability. The water coordination, hydrogen-bonding structure, and dynamic properties given by uAMOEBA are similar to those derived from the all-atom AMOEBA03 model and experiments. Thus, the current model is an accurate and efficient alternative for modeling water.

  12. Experimental Constraints on Polarizability Corrections to Hydrogen Hyperfine Structure

    International Nuclear Information System (INIS)

    Nazaryan, Vahagn; Carlson, Carl E.; Griffioen, Keith A.

    2006-01-01

    We present a state-of-the-art evaluation of the polarizability corrections--the inelastic nucleon corrections--to the hydrogen ground-state hyperfine splitting using analytic fits to the most recent data. We find a value Δ pol =1.3±0.3 ppm. This is 1-2 ppm smaller than the value of Δ pol deduced using hyperfine splitting data and elastic nucleon corrections obtained from modern form factor fits

  13. Force Field Benchmark of Amino Acids: I. Hydration and Diffusion in Different Water Models.

    Science.gov (United States)

    Zhang, Haiyang; Yin, Chunhua; Jiang, Yang; van der Spoel, David

    2018-04-18

    Thermodynamic and kinetic properties are of critical importance for the applicability of computational models to biomolecules such as proteins. Here we present an extensive evaluation of the Amber ff99SB-ILDN force field for modeling of hydration and diffusion of amino acids with three-site (SPC, SPC/E, SPC/E b , and TIP3P), four-site (TIP4P, TIP4P-Ew, and TIP4P/2005), and five-site (TIP5P and TIP5P-Ew) water models. Hydration free energies (HFEs) of neutral amino acid side chain analogues have little dependence on the water model, with a root-mean-square error (RMSE) of ∼1 kcal/mol from experimental observations. On the basis of the number of interacting sites in the water model, HFEs of charged side chains can be putatively classified into three groups, of which the group of three-site models lies between those of four- and five-site water models; for each group, the water model dependence is greatly eliminated when the solvent Galvani potential is considered. Some discrepancies in the location of the first hydration peak ( R RDF ) in the ion-water radial distribution function between experimental and calculated observations were detected, such as a systematic underestimation of the acetate (Asp side chain) ion. The RMSE of calculated diffusion coefficients of amino acids from experiment increases linearly with the increasing diffusion coefficients of the solvent water models at infinite dilution. TIP3P has the fastest diffusivity, in line with literature findings, while the "FB" and "OPC" water model families as well as TIP4P/2005 perform well, within a relative error of 5%, and TIP4P/2005 yields the most accurate estimate for the water diffusion coefficient. All of the tested water models overestimate amino acid diffusion coefficients by approximately 40% (TIP4P/2005) to 200% (TIP3P). Scaling of protein-water interactions with TIP4P/2005 in the Amber ff99SBws and ff03ws force fields leads to more negative HFEs but has little influence on the diffusion of

  14. Novel parallel plate condenser for single particle electrostatic force measurements in atomic force microscope

    KAUST Repository

    Kwek, Jin Wang

    2011-07-01

    A combination of small parallel plate condenser with Indium Tin Oxide (ITO) glass slides as electrodes and an atomic force microscope (AFM) is used to characterize the electrostatic behavior of single glass bead microparticles (105-150 μm) glued to the AFM cantilever. This novel setup allows measurements of the electrostatic forces acting on a particle in an applied electrical field to be performed in ambient air conditions. By varying the position of the microparticle between the electrodes and the strength of the applied electric field, the relative contributions of the particle net charge, induced and image charges were investigated. When the microparticle is positioned in the middle of the electrodes, the force acting on the microparticle was linear with the applied electric field and proportional to the microparticle net charge. At distances close to the bottom electrode, the force follows a parabolic relationship with the applied electric field reflecting the contributions of induced and image charges. The method can be used for the rapid evaluation of the charging and polarizability properties of the microparticle as well as an alternative to the conventional Faraday\\'s pail technique. © 2011 Elsevier B.V.

  15. Density Functional Studies of Molecular Polarizabilities. 10. Fulvenes and Fulvalenes

    Directory of Open Access Journals (Sweden)

    Humberto J. Soscún Machado

    2000-09-01

    Full Text Available We report accurate Ab Initio Hartree Fock (HF and Density Functional Theory (DFT studies of the static dipole polarizabilities and first hyperpolarizabilities of the [n] fulvene and the [n,m] fulvalene series of molecules (with n, m = 3,5,7. Calculations are also reported for the parent cycloalkenes: cyclopropene, cyclopentadiene and cycloheptatriene (1-3 respectively. Geometries were optimized at the HF/6-311G(3d,2p level of theory. All the fulvenes (4-6 and the smaller fulvalenes (7, 9 and 10 are found to be planar. Pentaheptafulvalene (11 is slightly non-planar whilst heptafulvalene (12 has a folded C2h structure. Calculated C-C bond lengths are consistently smaller than the experimental values. Dipole polarizabilities and non-zero hyperpolarizabilities were calculated at the HF/6-311++G(3d,2p and BLYP/6-311++G(3d,2p levels of theory, using HF/6-311G(3d,2p geometries. Dipole polarizabilities correlate well with those given on the basis of atom additivity. Molecules (8, (9 and (11 show very large dipole hyperpolarizabilities.

  16. Action-at-a-distance metamaterials: Distributed local actuation through far-field global forces

    Science.gov (United States)

    Hedayati, R.; Mirzaali, M. J.; Vergani, L.; Zadpoor, A. A.

    2018-03-01

    Mechanical metamaterials are a sub-category of designer materials where the geometry of the material at the small-scale is rationally designed to give rise to unusual properties and functionalities. Here, we propose the concept of "action-at-a-distance" metamaterials where a specific pattern of local deformation is programmed into the fabric of (cellular) materials. The desired pattern of local actuation could then be achieved simply through the application of one single global and far-field force. We proposed graded designs of auxetic and conventional unit cells with changing Poisson's ratios as a way of making "action-at-a-distance" metamaterials. We explored five types of graded designs including linear, two types of radial gradients, checkered, and striped. Specimens were fabricated with indirect additive manufacturing and tested under compression, tension, and shear. Full-field strain maps measured with digital image correlation confirmed different patterns of local actuation under similar far-field strains. These materials have potential applications in soft (wearable) robotics and exosuits.

  17. Action-at-a-distance metamaterials: Distributed local actuation through far-field global forces

    Directory of Open Access Journals (Sweden)

    R. Hedayati

    2018-03-01

    Full Text Available Mechanical metamaterials are a sub-category of designer materials where the geometry of the material at the small-scale is rationally designed to give rise to unusual properties and functionalities. Here, we propose the concept of “action-at-a-distance” metamaterials where a specific pattern of local deformation is programmed into the fabric of (cellular materials. The desired pattern of local actuation could then be achieved simply through the application of one single global and far-field force. We proposed graded designs of auxetic and conventional unit cells with changing Poisson’s ratios as a way of making “action-at-a-distance” metamaterials. We explored five types of graded designs including linear, two types of radial gradients, checkered, and striped. Specimens were fabricated with indirect additive manufacturing and tested under compression, tension, and shear. Full-field strain maps measured with digital image correlation confirmed different patterns of local actuation under similar far-field strains. These materials have potential applications in soft (wearable robotics and exosuits.

  18. An atomistic fingerprint algorithm for learning ab initio molecular force fields

    Science.gov (United States)

    Tang, Yu-Hang; Zhang, Dongkun; Karniadakis, George Em

    2018-01-01

    Molecular fingerprints, i.e., feature vectors describing atomistic neighborhood configurations, is an important abstraction and a key ingredient for data-driven modeling of potential energy surface and interatomic force. In this paper, we present the density-encoded canonically aligned fingerprint algorithm, which is robust and efficient, for fitting per-atom scalar and vector quantities. The fingerprint is essentially a continuous density field formed through the superimposition of smoothing kernels centered on the atoms. Rotational invariance of the fingerprint is achieved by aligning, for each fingerprint instance, the neighboring atoms onto a local canonical coordinate frame computed from a kernel minisum optimization procedure. We show that this approach is superior over principal components analysis-based methods especially when the atomistic neighborhood is sparse and/or contains symmetry. We propose that the "distance" between the density fields be measured using a volume integral of their pointwise difference. This can be efficiently computed using optimal quadrature rules, which only require discrete sampling at a small number of grid points. We also experiment on the choice of weight functions for constructing the density fields and characterize their performance for fitting interatomic potentials. The applicability of the fingerprint is demonstrated through a set of benchmark problems.

  19. Accurate force field for molybdenum by machine learning large materials data

    Science.gov (United States)

    Chen, Chi; Deng, Zhi; Tran, Richard; Tang, Hanmei; Chu, Iek-Heng; Ong, Shyue Ping

    2017-09-01

    In this work, we present a highly accurate spectral neighbor analysis potential (SNAP) model for molybdenum (Mo) developed through the rigorous application of machine learning techniques on large materials data sets. Despite Mo's importance as a structural metal, existing force fields for Mo based on the embedded atom and modified embedded atom methods do not provide satisfactory accuracy on many properties. We will show that by fitting to the energies, forces, and stress tensors of a large density functional theory (DFT)-computed dataset on a diverse set of Mo structures, a Mo SNAP model can be developed that achieves close to DFT accuracy in the prediction of a broad range of properties, including elastic constants, melting point, phonon spectra, surface energies, grain boundary energies, etc. We will outline a systematic model development process, which includes a rigorous approach to structural selection based on principal component analysis, as well as a differential evolution algorithm for optimizing the hyperparameters in the model fitting so that both the model error and the property prediction error can be simultaneously lowered. We expect that this newly developed Mo SNAP model will find broad applications in large and long-time scale simulations.

  20. Volume pinning force and upper critical field of irradiated Nb3Sn

    International Nuclear Information System (INIS)

    Maier, P.; Seibt, E.

    1981-01-01

    Irradiation by neutrons and ions in A15 superconductors (Nb 3 Sn, V 3 Ga) exerts a stronger influence on the pinning behavior than in nonordered alloys (NbTi). In this work it is shown for deuteron irradiated Nb 3 /Sn wires prepared by the bronze process that the dose curve of the volume pinning force P/sub V/ can be conveniently described by a sum of two terms, due to the grain boundary pinning and to the radiation pinning, respectively. After deduction of the contribution by the radiation-induced pinning centers, good agreement is obtained between the measured P/sub V/ values and those calculated using the upper critical field B/sub c/2 and the transition temperature T/sub c/ on the basis of the irradiation fluence. The use of a theoretical relationship between B/sub c/2 and T/sub c/ is supported by measured values. Application to multifilamentary superconductors with high current carrying capabilities simplifies the calculation of P/sub V/, since the radiation induced volume pinning force can be neglected

  1. A robust force field based method for calculating conformational energies of charged drug-like molecules

    DEFF Research Database (Denmark)

    Pøhlsgaard, Jacob; Harpsøe, Kasper; Jørgensen, Flemming Steen

    2012-01-01

    The binding affinity of a drug like molecule depends among other things on the availability of the bioactive conformation. If the bioactive conformation has a significantly higher energy than the global minimum energy conformation, the molecule is unlikely to bind to its target. Determination...... of the global minimum energy conformation and calculation of conformational penalties of binding are prerequisites for prediction of reliable binding affinities. Here, we present a simple and computationally efficient procedure to estimate the global energy minimum for a wide variety of structurally diverse...... molecules, including polar and charged compounds. Identifying global energy minimum conformations of such compounds with force-field methods is problematic due to the exaggeration of intramolecular electrostatic interactions. We demonstrate that the global energy minimum conformations of zwitterionic...

  2. Shape Design of Unsteady Forced Heat-convection Fields to Control Temperature Distribution History

    Science.gov (United States)

    Katamine, Eiji; Okada, Naoya

    2017-11-01

    This paper presents a numerical solution to shape design of unsteady forced heat-convection fields to control temperature to a prescribed distribution. The square error integral between the actual temperature distributions and the prescribed temperature distributions on the prescribed sub-domains during the specified period of time is used as the objective functional. Shape gradient of the shape design problem is derived theoretically using the Lagrange multiplier method, adjoint variable method, and the formulae of the material derivative. Reshaping is carried out by the traction method proposed as an approach to solving shape optimization problems. Numerical analyses program for the shape design is developed based on FreeFem++, and the validity of proposed method is confirmed by results of 2D numerical analyses.

  3. Electric field and dielectrophoretic force on a dielectric particle chain in a parallel-plate electrode system

    International Nuclear Information System (INIS)

    Techaumnat, B; Eua-arporn, B; Takuma, T

    2004-01-01

    This paper presents results of calculations of the electric field and dielectrophoretic force on a dielectric particle chain suspended in a host liquid lying between parallel-plate electrodes. The method of calculation is based on the method of multipole images using the multipole re-expansion technique. We have investigated the effect of the particle permittivity, the tilt angle (between the chain and the applied field) and the chain arrangement on the electric field and force. The results show that the electric field intensification rises in accordance with the increase in the ratio of the particle-to-liquid permittivity, Γ ε . The electric field at the contact point between the particles decreases with increasing tilt angle, while the maximal field at the contact point between the particles and the plate electrodes is almost unchanged. The maximal field can be approximated by a simple formula, which is a quadratic function of Γ ε . The dielectrophoretic force depends significantly on the distance from other particles or an electrode. However, for the tilt angles in this paper, the horizontal force on the upper particle of the chain always has the direction opposite to the shear direction. The maximal horizontal force of a chain varies proportional to (Γ ε - 1) 1.7 if the particles in the chain are still in contact with each other. The approximated force, based on the force on an isolated chain, has been compared with our calculation results. The comparison shows that no approximation model agrees well with our results throughout the range of permittivity ratios

  4. Quasi-static evolution of force-free magnetic fields and a model for two-ribbon solar flares

    Science.gov (United States)

    Aly, J. J.

    1985-01-01

    It is shown that a two-dimensional force-free field in the solar corona can evolve in a quasi-static manner toward an open configuration, assuming the coronal field is invariant with respect to translations parallel to the x-axis. The theoretical result is applied to the quantitative theory of the evolution of two-ribbon solar flares of Kopp and Pneuman (1976), and the results are discussed. It is concluded that the two-dimensional force is the principal mechanism for the opening of the coronal magnetic field prior to reconnection during a solar flare.

  5. Compatibility of the Chameleon-Field Model with Fifth-Force Experiments, Cosmology, and PVLAS and CAST Results

    International Nuclear Information System (INIS)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine

    2007-01-01

    We analyze the PVLAS results using a chameleon field whose properties depend on the environment. We find that, assuming a runaway bare potential V(φ) and a universal coupling to matter, the chameleon potential is such that the scalar field can act as dark energy. Moreover, the chameleon-field model is compatible with the CERN Axion Solar Telescope results, fifth-force experiments, and cosmology

  6. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers

    Science.gov (United States)

    Pérez, Alberto; Marchán, Iván; Svozil, Daniel; Sponer, Jiri; Cheatham, Thomas E.; Laughton, Charles A.; Orozco, Modesto

    2007-01-01

    We present here the parmbsc0 force field, a refinement of the AMBER parm99 force field, where emphasis has been made on the correct representation of the α/γ concerted rotation in nucleic acids (NAs). The modified force field corrects overpopulations of the α/γ = (g+,t) backbone that were seen in long (more than 10 ns) simulations with previous AMBER parameter sets (parm94-99). The force field has been derived by fitting to high-level quantum mechanical data and verified by comparison with very high-level quantum mechanical calculations and by a very extensive comparison between simulations and experimental data. The set of validation simulations includes two of the longest trajectories published to date for the DNA duplex (200 ns each) and the largest variety of NA structures studied to date (15 different NA families and 97 individual structures). The total simulation time used to validate the force field includes near 1 μs of state-of-the-art molecular dynamics simulations in aqueous solution. PMID:17351000

  7. Current sheet formation in a sheared force-free-magnetic field. [in sun

    Science.gov (United States)

    Wolfson, Richard

    1989-01-01

    This paper presents the results of a study showing how continuous shearing motion of magnetic footpoints in a tenuous, infinitely conducting plasma can lead to the development of current sheets, despite the absence of such sheets or even of neutral points in the initial state. The calculations discussed here verify the earlier suggestion by Low and Wolfson (1988) that extended current sheets should form due to the shearing of a force-free quadrupolar magnetic field. More generally, this work augments earlier studies suggesting that the appearance of discontinuities - current sheets - may be a necessary consequence of the topological invariance imposed on the magnetic field geometry of an ideal MHD system by virtue of its infinite conductivity. In the context of solar physics, the work shows how the gradual and continuous motion of magnetic footpoints at the solar photosphere may lead to the buildup of magnetic energy that can then be released explosively when finite conductivity effects become important and lead to the rapid dissipation of current sheets. Such energy release may be important in solar flares, coronal mass ejections, and other eruptive events.

  8. Physical Principles of Development of the State Standard of Biological Cell Polarizability

    Science.gov (United States)

    Shuvalov, G. V.; Generalov, K. V.; Generalov, V. M.; Kruchinina, M. V.; Koptev, E. S.; Minin, O. V.; Minin, I. V.

    2018-03-01

    A new state standard of biological cell polarizability based on micron-size latex particles has been developed. As a standard material, it is suggested to use polystyrene. Values of the polarizability calculated for erythrocytes and values of the polarizability of micron-size spherical latex particles measured with measuring-computing complexes agree within the limits of satisfactory relative error. The Standard allows one the unit of polarizability measurements [m3] to be assigned to cells and erythrocytes for the needs of medicine.

  9. Dynamic dipole polarizabilities of the Li atom and the Be+ ion

    International Nuclear Information System (INIS)

    Tang Liyan; Yan Zongchao; Shi Tingyun; Mitroy, J.

    2010-01-01

    The dynamic dipole polarizabilities for Li atoms and Be + ions in the 2 2 S and 2 2 P states are calculated using the variational method with a Hylleraas basis. The present polarizabilities represent the definitive values in the nonrelativistic limit. Corrections due to relativistic effects are also estimated. Analytic representations of the polarizabilities for frequency ranges encompassing the n=3 excitations are presented. The recommended polarizabilities for 7 Li and 9 Be + are 164.11±0.03 a 0 3 and 24.489±0.004 a 0 3 , respectively.

  10. Chiral model predictions for electromagnetic polarizabilities of the nucleon: A 'consumer report'

    International Nuclear Information System (INIS)

    Broniowski, W.

    1992-01-01

    This contribution has two parts: (1) The author critically discusses predictions for the electromagnetic polarizabilities of the nucleon obtained in two different approaches: (a) hedgehog models (HM), such as Skyrmions, chiral quark models, hybrid bags, NJL etc., and (b) chiral perturbation theory (χPT). (2) The author shows new results obtained in HM: N c -counting of polarizabilities, splitting of the neutron and proton polarizabilities (he argues that α n > α p in models with pionic clouds), relevance of dispersive terms in the magnetic polarizability β, important role of the Δ resonance in pionic loops, and the effects of non-minimal substitution terms in the effective lagrangian. 3 refs

  11. Electrostatic force and torque description of generalized spheroidal particles in optical landscapes

    Science.gov (United States)

    Going, Ryan W.; Conover, Brandon L.; Escuti, Michael J.

    2008-08-01

    Optical trapping, mixing, and sorting of micro- and nano-scale particles of arbitrary shape (e.g., blood cells and nanorods) are but a few of the burgeoning applications of optical interference landscapes. Due to their non-invasive, non-contact manipulation potential, biologists and nanotechnologists alike are showing increased interest in this area and experimental results continue to be promising. A complete and reliable theoretical description of the particles' response within these fields will allow us to accurately predict their behavior and motion. We develop an electrostatic model of the optical force and torque on anisotropic particles in optical intensity gradients. The complete optical field is defined and a Maxwell stress tensor approach is taken to realize the force and torque induced by the electric field due to the polarizability of the particle. We utilize the properties of real dielectrics and steady state optical fields to extend this approach to the electrodynamic case inherent in optical trapping. We then compare our results against our recently reported form factor approach and use the differences to try to determine the importance of polarizability in optical trapping.

  12. A Non-Linear Force-Free Field Model for the Evolving Magnetic Structure of Solar Filaments

    Science.gov (United States)

    Mackay, Duncan H.; van Ballegooijen, A. A.

    2009-12-01

    In this paper the effect of a small magnetic element approaching the main body of a solar filament is considered through non-linear force-free field modeling. The filament is represented by a series of magnetic dips. Once the dips are calculated, a simple hydrostatic atmosphere model is applied to determine which structures have sufficient column mass depth to be visible in Hα. Two orientations of the bipole are considered, either parallel or anti-parallel to the overlying arcade. The magnetic polarity that lies closest to the filament is then advected towards the filament. Initially for both the dominant and minority polarity advected elements, right/left bearing barbs are produced for dextral/sinsitral filaments. The production of barbs due to dominant polarity elements is a new feature. In later stages the filament breaks into two dipped sections and takes a highly irregular, non-symmetrical form with multiple pillars. The two sections are connected by field lines with double dips even though the twist of the field is less than one turn. Reconnection is not found to play a key role in the break up of the filament. The non-linear force-free fields produce very different results to extrapolated linear-force free fields. For the cases considered here the linear force-free field does not produce the break up of the filament nor the production of barbs as a result of dominant polarity elements.

  13. Magnetic displacement force and torque on dental keepers in the static magnetic field of an MR scanner.

    Science.gov (United States)

    Omatsu, Mika; Obata, Takayuki; Minowa, Kazuyuki; Yokosawa, Koichi; Inagaki, Eri; Ishizaka, Kinya; Shibayama, Koichi; Yamamoto, Toru

    2014-12-01

    To evaluate the effect of the static magnetic field of magnetic resonance (MR) scanners on keepers (ie, ferromagnetic stainless steel plate adhered to the abutment tooth of dental magnetic attachments). Magnetically induced displacement force and torque on keepers were measured using 1.5 Tesla (T) and 3.0 T MR scanners and a method outlined by American Society for Testing and Materials (ASTM). Changes in magnetic flux density before and after exposure to scanner static magnetic field were examined. The maximum magnetically induced displacement forces were calculated to be 10.3 × 10(-2) N at 1.5 T and 13.9 × 10(-2) N at 3.0 T on the cover surface. The maximum torques exerted on the keeper (4 mm in diameter) were 0.83 N × 4 mm at 1.5 T and 0.85 N × 4 mm at 3.0 T. These forces were considerably higher than the gravitational force (7.7 × 10(-4) N) of the keeper but considerably lower than the keeper-root cap proper adhesive force. The keepers' magnetic flux density remained less than that of the Earth. Magnetically induced displacement force and torque on the keeper in the MR scanner do not influence the keeper-root cap proper adhesive force. © 2013 Wiley Periodicals, Inc.

  14. Energy expenditure and intake during Special Operations Forces field training in a jungle and glacial environment.

    Science.gov (United States)

    Johnson, Caleb D; Simonson, Andrew J; Darnell, Matthew E; DeLany, James P; Wohleber, Meleesa F; Connaboy, Christopher

    2018-04-01

    The purpose of this study was to identify and compare energy requirements specific to Special Operations Forces in field training, in both cool and hot environments. Three separate training sessions were evaluated, 2 in a hot environment (n = 21) and 1 in a cool environment (n = 8). Total energy expenditure was calculated using doubly labeled water. Dietary intake was assessed via self-report at the end of each training mission day, and macronutrient intakes were calculated. Across the 3 missions, mean energy expenditure (4618 ± 1350 kcal/day) exceeded mean energy intake (2429 ± 838 kcal/day) by an average of 2200 kcal/day. Macronutrient intakes (carbohydrates (g/(kg·day body weight (bw)) -1 ) = 3.2 ± 1.2; protein (g/(kg·day bw) -1 ) = 1.3 ± 0.7; fat (g/(kg·day bw) -1 ) = 1.2 ± 0.7) showed inadequate carbohydrate and possibly protein intake across the study period, compared with common recommendations. Total energy expenditures were found to be similar between hot (4664 ± 1399 kcal/day) and cool (4549 ± 1221 kcal/day) environments. However, energy intake was found to be higher in the cool (3001 ± 900 kcal/day) compared with hot (2200 ± 711 kcal/day) environments. Based on the identified energy deficit, high variation in energy expenditures, and poor macronutrient intake, a greater attention to feeding practices during similar training scenarios for Special Operations Forces is needed to help maintain performance and health. The differences in environmental heat stress between the 2 climates/environments had no observed effect on energy expenditures, but may have influenced intakes.

  15. Trace Contraband Detection Field-Test by the South Texas Specialized Crimes and Narcotics Task Force

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Contraband Detection Dept.; Shannon, Gary W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Contraband Detection Dept.

    2006-04-01

    This report describes the collaboration between the South Texas Specialized Crimes and Narcotics Task Force (STSCNTF) and Sandia National Laboratories (SNL) in a field test that provided prototype hand-held trace detection technology for use in counter-drug operations. The National Institute of Justice (NIJ)/National Law Enforcement and Corrections Technology Center (NLECTC)/Border Research and Technology Center (BRTC) was contacted by STSCNTF for assistance in obtaining cutting-edge technology. The BRTC created a pilot project for Sandia National Laboratories (SNL) and the STSCNTF for the use of SNL’s Hound, a hand-held sample collection and preconcentration system that, when combined with a commercial chemical detector, can be used for the trace detection of illicit drugs and explosives. The STSCNTF operates in an area of high narcotics trafficking where methods of concealment make the detection of narcotics challenging. Sandia National Laboratories’ (SNL) Contraband Detection Department personnel provided the Hound system hardware and operational training. The Hound system combines the GE VaporTracer2, a hand-held commercial chemical detector, with an SNL-developed sample collection and preconcentration system. The South Texas Task force reported a variety of successes, including identification of a major shipment of methamphetamines, the discovery of hidden compartments in vehicles that contained illegal drugs and currency used in drug deals, and the identification of a suspect in a nightclub shooting. The main advantage of the hand-held trace detection unit is its ability to quickly identify the type of chemical (drugs or explosives) without a long lag time for laboratory analysis, which is the most common analysis method for current law enforcement procedures.

  16. Reproducing Quantum Probability Distributions at the Speed of Classical Dynamics: A New Approach for Developing Force-Field Functors.

    Science.gov (United States)

    Sundar, Vikram; Gelbwaser-Klimovsky, David; Aspuru-Guzik, Alán

    2018-04-05

    Modeling nuclear quantum effects is required for accurate molecular dynamics (MD) simulations of molecules. The community has paid special attention to water and other biomolecules that show hydrogen bonding. Standard methods of modeling nuclear quantum effects like Ring Polymer Molecular Dynamics (RPMD) are computationally costlier than running classical trajectories. A force-field functor (FFF) is an alternative method that computes an effective force field that replicates quantum properties of the original force field. In this work, we propose an efficient method of computing FFF using the Wigner-Kirkwood expansion. As a test case, we calculate a range of thermodynamic properties of Neon, obtaining the same level of accuracy as RPMD, but with the shorter runtime of classical simulations. By modifying existing MD programs, the proposed method could be used in the future to increase the efficiency and accuracy of MD simulations involving water and proteins.

  17. A verification of quantum field theory – measurement of Casimir force

    Indian Academy of Sciences (India)

    : F = &z where & is the force constant and z is the cantilever deflection. The cantilever is calibrated and the residual potential difference between the grounded sphere and plate is measured using the electrostatic force between them. The detail ...

  18. Polarized particle levitation in hexapole field

    International Nuclear Information System (INIS)

    Jones, T.B.; Kallio, G.A.; Robinson, K.S.

    1976-06-01

    Proposed here is a novel electrostatic levitation scheme which uses the force exerted by a non-uniform electric field on a polarized particle. The scheme differs from conventional quadrupole levitation devices principally in that the levitated particle is uncharged. In order to provide the proper force required to achieve dynamic stabilization, a very intense non-uniform time-varying electric field produced by a three-dimensional hexapole electrode structure is utilized. The primary advantage of this levitation scheme might accrue in target fabrication operations where particle charge is undesirable or where reproducible charging of the particles themselves is difficult, due to high resistivity. The disadvantages of this scheme, as compared to charged particle levitation, are (i) a more complex electrode structure and (ii) significantly higher voltages. The scheme has possible application to molecular mass spectrometry, in situations where un-ionized but strongly polar or polarizable molecules are to be trapped or confined for analysis

  19. Recent advances toward a general purpose linear-scaling quantum force field.

    Science.gov (United States)

    Giese, Timothy J; Huang, Ming; Chen, Haoyuan; York, Darrin M

    2014-09-16

    Conspectus There is need in the molecular simulation community to develop new quantum mechanical (QM) methods that can be routinely applied to the simulation of large molecular systems in complex, heterogeneous condensed phase environments. Although conventional methods, such as the hybrid quantum mechanical/molecular mechanical (QM/MM) method, are adequate for many problems, there remain other applications that demand a fully quantum mechanical approach. QM methods are generally required in applications that involve changes in electronic structure, such as when chemical bond formation or cleavage occurs, when molecules respond to one another through polarization or charge transfer, or when matter interacts with electromagnetic fields. A full QM treatment, rather than QM/MM, is necessary when these features present themselves over a wide spatial range that, in some cases, may span the entire system. Specific examples include the study of catalytic events that involve delocalized changes in chemical bonds, charge transfer, or extensive polarization of the macromolecular environment; drug discovery applications, where the wide range of nonstandard residues and protonation states are challenging to model with purely empirical MM force fields; and the interpretation of spectroscopic observables. Unfortunately, the enormous computational cost of conventional QM methods limit their practical application to small systems. Linear-scaling electronic structure methods (LSQMs) make possible the calculation of large systems but are still too computationally intensive to be applied with the degree of configurational sampling often required to make meaningful comparison with experiment. In this work, we present advances in the development of a quantum mechanical force field (QMFF) suitable for application to biological macromolecules and condensed phase simulations. QMFFs leverage the benefits provided by the LSQM and QM/MM approaches to produce a fully QM method that is able to

  20. A verification of quantum field theory – measurement of Casimir force

    Indian Academy of Sciences (India)

    Abstract. Here we review our work on measurement of the Casimir force between a large alu- minum coated a sphere and flat plate using an atomic force microscope. The average statistical pre- cision is 1% of the force measured at the closest separation. We have also shown nontrival boundary dependence of the Casimir ...

  1. Constraining Carbonaceous Aerosol Climate Forcing by Bridging Laboratory, Field and Modeling Studies

    Science.gov (United States)

    Dubey, M. K.; Aiken, A. C.; Liu, S.; Saleh, R.; Cappa, C. D.; Williams, L. R.; Donahue, N. M.; Gorkowski, K.; Ng, N. L.; Mazzoleni, C.; China, S.; Sharma, N.; Yokelson, R. J.; Allan, J. D.; Liu, D.

    2014-12-01

    Biomass and fossil fuel combustion emits black (BC) and brown carbon (BrC) aerosols that absorb sunlight to warm climate and organic carbon (OC) aerosols that scatter sunlight to cool climate. The net forcing depends strongly on the composition, mixing state and transformations of these carbonaceous aerosols. Complexities from large variability of fuel types, combustion conditions and aging processes have confounded their treatment in models. We analyse recent laboratory and field measurements to uncover fundamental mechanism that control the chemical, optical and microphysical properties of carbonaceous aerosols that are elaborated below: Wavelength dependence of absorption and the single scattering albedo (ω) of fresh biomass burning aerosols produced from many fuels during FLAME-4 was analysed to determine the factors that control the variability in ω. Results show that ω varies strongly with fire-integrated modified combustion efficiency (MCEFI)—higher MCEFI results in lower ω values and greater spectral dependence of ω (Liu et al GRL 2014). A parameterization of ω as a function of MCEFI for fresh BB aerosols is derived from the laboratory data and is evaluated by field data, including BBOP. Our laboratory studies also demonstrate that BrC production correlates with BC indicating that that they are produced by a common mechanism that is driven by MCEFI (Saleh et al NGeo 2014). We show that BrC absorption is concentrated in the extremely low volatility component that favours long-range transport. We observe substantial absorption enhancement for internally mixed BC from diesel and wood combustion near London during ClearFlo. While the absorption enhancement is due to BC particles coated by co-emitted OC in urban regions, it increases with photochemical age in rural areas and is simulated by core-shell models. We measure BrC absorption that is concentrated in the extremely low volatility components and attribute it to wood burning. Our results support

  2. Extension of the ReaxFF Combustion Force Field toward Syngas Combustion and Initial Oxidation Kinetics.

    Science.gov (United States)

    Ashraf, Chowdhury; van Duin, Adri C T

    2017-02-09

    A detailed insight of key reactive events related to oxidation and pyrolysis of hydrocarbon fuels further enhances our understanding of combustion chemistry. Though comprehensive kinetic models are available for smaller hydrocarbons (typically C 3 or lower), developing and validating reaction mechanisms for larger hydrocarbons is a daunting task, due to the complexity of their reaction networks. The ReaxFF method provides an attractive computational method to obtain reaction kinetics for complex fuel and fuel mixtures, providing an accuracy approaching ab-initio-based methods but with a significantly lower computational expense. The development of the first ReaxFF combustion force field by Chenoweth et al. (CHO-2008 parameter set) in 2008 has opened new avenues for researchers to investigate combustion chemistry from the atomistic level. In this article, we seek to address two issues with the CHO-2008 ReaxFF description. While the CHO-2008 description has achieved significant popularity for studying large hydrocarbon combustion, it fails to accurately describe the chemistry of small hydrocarbon oxidation, especially conversion of CO 2 from CO, which is highly relevant to syngas combustion. Additionally, the CHO-2008 description was obtained faster than expected H abstraction by O 2 from hydrocarbons, thus underestimating the oxidation initiation temperature. In this study, we seek to systemically improve the CHO-2008 description and validate it for these cases. Additionally, our aim was to retain the accuracy of the 2008 description for larger hydrocarbons and provide similar quality results. Thus, we expanded the ReaxFF CHO-2008 DFT-based training set by including reactions and transition state structures relevant to the syngas and oxidation initiation pathways and retrained the parameters. To validate the quality of our force field, we performed high-temperature NVT-MD simulations to study oxidation and pyrolysis of four different hydrocarbon fuels, namely

  3. Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field

    DEFF Research Database (Denmark)

    Monti, Susanna; Corozzi, Alessandro; Fristrup, Peter

    2013-01-01

    In order to describe possible reaction mechanisms involving amino acids, and the evolution of the protonation state of amino acid side chains in solution, a reactive force field (ReaxFF-based description) for peptide and protein simulations has been developed as an expansion of the previously...... force field on a relatively short time scale (500 ps) is validated by comparison with classical non-reactive simulations and experimental data of well characterized test cases, comprising capped amino acids, peptides, and small proteins, and reaction mechanisms connected to the pharmaceutical sector....... A good agreement of ReaxFF predicted conformations and kinetics with reference data is obtained....

  4. Open-ended response theory with polarizable embedding

    DEFF Research Database (Denmark)

    Steindal, Arnfinn Hykkerud; Beerepoot, Maarten T P; Ringholm, Magnus

    2016-01-01

    We present the theory and implementation of an open-ended framework for electric response properties at the level of Hartree-Fock and Kohn-Sham density functional theory that includes effects from the molecular environment modeled by the polarizable embedding (PE) model. With this new state......) properties can be studied by evaluating single residues of the response functions. The PE approach includes mutual polarization effects between the quantum and classical parts of the system through induced dipoles that are determined self-consistently with respect to the electronic density. The applicability...

  5. Polarizability expressions for predicting resonances in plasmonic and Mie scatterers

    Science.gov (United States)

    Colom, Rémi; Devilez, Alexis; Enoch, Stefan; Stout, Brian; Bonod, Nicolas

    2017-06-01

    Polarizability expressions are commonly used in optics and photonics to model light scattering by small particles. Models based on Taylor series of the scattering coefficients of the particles fail to predict the morphologic resonances hosted by dielectric particles. Here we propose to use the factorization of the special functions appearing in the expression of the Mie scattering coefficients to derive pointlike models. These models can be applied to reproduce both Mie resonances of dielectric particles and plasmonic resonances of metallic particles. They provide simple but robust tools to predict accurately the electric and magnetic Mie resonances in dielectric particles.

  6. On the magnetic polarizability tensor of US coinage

    Science.gov (United States)

    Davidson, John L.; Abdel-Rehim, Omar A.; Hu, Peipei; Marsh, Liam A.; O’Toole, Michael D.; Peyton, Anthony J.

    2018-03-01

    The magnetic dipole polarizability tensor of a metallic object gives unique information about the size, shape and electromagnetic properties of the object. In this paper, we present a novel method of coin characterization based on the spectroscopic response of the absolute tensor. The experimental measurements are validated using a combination of tests with a small set of bespoke coin surrogates and simulated data. The method is applied to an uncirculated set of US coins. Measured and simulated spectroscopic tensor responses of the coins show significant differences between different coin denominations. The presented results are encouraging as they strongly demonstrate the ability to characterize coins using an absolute tensor approach.

  7. Calculations of polarizabilities and hyperpolarizabilities for the Be+ ion

    International Nuclear Information System (INIS)

    Tang Liyan; Zhang Junyi; Mitroy, J.; Yan Zongchao; Shi Tingyun; Babb, James F.

    2009-01-01

    The polarizabilities and hyperpolarizabilities of the Be + ion in the 2 2 S state and the 2 2 P state are determined. Calculations are performed using two independent methods: (i) variationally determined wave functions using Hylleraas basis set expansions and (ii) single electron calculations utilizing a frozen-core Hamiltonian. The first few parameters in the long-range interaction potential between a Be + ion and a H, He, or Li atom, and the leading parameters of the effective potential for the high-L Rydberg states of beryllium were also computed. All the values reported are the results of calculations close to convergence. Comparisons are made with published results where available.

  8. Pion and kaon polarizabilities in the quark confinement model

    International Nuclear Information System (INIS)

    Ivanov, M.A.; Mizutani, T.

    1992-01-01

    The quark confinement model (QCM) which is based on quark confinement and the composite nature of hadrons, is applied to the study of electromagnetic polarizabilities of the π and K mesons. The Compton scattering amplitude for pseudoscalar meson in the QCM obtains contributions from the following processes (or diagrams): (1) the photon scattering by a point charge, (2) diagrams which involve only one quark loop, (3) the scalar, vector, and axial meson exchanges. The presence of quark loops in QCM diagrams introduces nontrivial momentum dependences which do not exist in the effective Lagrangian scheme with only meson degrees of freedom

  9. The impact of previous knee injury on force plate and field-based measures of balance.

    Science.gov (United States)

    Baltich, Jennifer; Whittaker, Jackie; Von Tscharner, Vinzenz; Nettel-Aguirre, Alberto; Nigg, Benno M; Emery, Carolyn

    2015-10-01

    Individuals with post-traumatic osteoarthritis demonstrate increased sway during quiet stance. The prospective association between balance and disease onset is unknown. Improved understanding of balance in the period between joint injury and disease onset could inform secondary prevention strategies to prevent or delay the disease. This study examines the association between youth sport-related knee injury and balance, 3-10years post-injury. Participants included 50 individuals (ages 15-26years) with a sport-related intra-articular knee injury sustained 3-10years previously and 50 uninjured age-, sex- and sport-matched controls. Force-plate measures during single-limb stance (center-of-pressure 95% ellipse-area, path length, excursion, entropic half-life) and field-based balance scores (triple single-leg hop, star-excursion, unipedal dynamic balance) were collected. Descriptive statistics (mean within-pair difference; 95% confidence intervals) were used to compare groups. Linear regression (adjusted for injury history) was used to assess the relationship between ellipse-area and field-based scores. Injured participants on average demonstrated greater medio-lateral excursion [mean within-pair difference (95% confidence interval); 2.8mm (1.0, 4.5)], more regular medio-lateral position [10ms (2, 18)], and shorter triple single-leg hop distances [-30.9% (-8.1, -53.7)] than controls, while no between group differences existed for the remaining outcomes. After taking into consideration injury history, triple single leg hop scores demonstrated a linear association with ellipse area (β=0.52, 95% confidence interval 0.01, 1.01). On average the injured participants adjusted their position less frequently and demonstrated a larger magnitude of movement during single-limb stance compared to controls. These findings support the evaluation of balance outcomes in the period between knee injury and post-traumatic osteoarthritis onset. Copyright © 2015 Elsevier Ltd. All rights

  10. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    Science.gov (United States)

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  11. Development and application of a ReaxFF reactive force field for hydrogen combustion.

    Science.gov (United States)

    Agrawalla, Satyam; van Duin, Adri C T

    2011-02-17

    To investigate the reaction kinetics of hydrogen combustion at high-pressure and high-temperature conditions, we constructed a ReaxFF training set to include reaction energies and transition states relevant to hydrogen combustion and optimized the ReaxFF force field parameters against training data obtained from quantum mechanical calculations and experimental values. The optimized ReaxFF potential functions were used to run NVT MD (i.e., molecular dynamics simulation with fixed number of atoms, volume, and temperature) simulations for various H(2)/O(2) mixtures. We observed that the hydroperoxyl (HO(2)) radical plays a key role in the reaction kinetics at our input conditions (T ≥ 3000 K, P > 400 atm). The reaction mechanism observed is in good agreement with predictions of existing continuum-scale kinetic models for hydrogen combustion, and a transition of reaction mechanism is observed as we move from high pressure, low temperature to low pressure, high temperature. Since ReaxFF derives its parameters from quantum mechanical data and can simulate reaction pathways without any preconditioning, we believe that atomistic simulations through ReaxFF could be a useful tool in enhancing existing continuum-scale kinetic models for prediction of hydrogen combustion kinetics at high-pressure and high-temperature conditions, which otherwise is difficult to attain through experiments.

  12. The ELBA force field for coarse-grain modeling of lipid membranes.

    Directory of Open Access Journals (Sweden)

    Mario Orsi

    Full Text Available A new coarse-grain model for molecular dynamics simulation of lipid membranes is presented. Following a simple and conventional approach, lipid molecules are modeled by spherical sites, each representing a group of several atoms. In contrast to common coarse-grain methods, two original (interdependent features are here adopted. First, the main electrostatics are modeled explicitly by charges and dipoles, which interact realistically through a relative dielectric constant of unity (ε(r = 1. Second, water molecules are represented individually through a new parametrization of the simple Stockmayer potential for polar fluids; each water molecule is therefore described by a single spherical site embedded with a point dipole. The force field is shown to accurately reproduce the main physical properties of single-species phospholipid bilayers comprising dioleoylphosphatidylcholine (DOPC and dioleoylphosphatidylethanolamine (DOPE in the liquid crystal phase, as well as distearoylphosphatidylcholine (DSPC in the liquid crystal and gel phases. Insights are presented into fundamental properties and phenomena that can be difficult or impossible to study with alternative computational or experimental methods. For example, we investigate the internal pressure distribution, dipole potential, lipid diffusion, and spontaneous self-assembly. Simulations lasting up to 1.5 microseconds were conducted for systems of different sizes (128, 512 and 1058 lipids; this also allowed us to identify size-dependent artifacts that are expected to affect membrane simulations in general. Future extensions and applications are discussed, particularly in relation to the methodology's inherent multiscale capabilities.

  13. Semi-quartic force fields retrieved from multi-mode expansions: Accuracy, scaling behavior, and approximations

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Raghunathan [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Rauhut, Guntram, E-mail: rauhut@theochem.uni-stuttgart.de [Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)

    2015-04-21

    Semi-quartic force fields (QFF) rely on a Taylor-expansion of the multi-dimensional Born-Oppenheimer potential energy surface (PES) and are frequently used within the calculation of anharmonic vibrational frequencies based on 2nd order vibrational perturbation theory (VPT2). As such they are usually determined by differentiation of the electronic energy with respect to the nuclear coordinates. Alternatively, potential energy surfaces can be expanded in terms of multi-mode expansions, which typically do not require any derivative techniques. The computational effort to retrieve QFF from size-reduced multi-mode expansions has been studied and has been compared with standard Taylor-expansions. As multi-mode expansions allow for the convenient introduction of subtle approximations, these will be discussed in some detail. In addition, a preliminary study about the applicability of a generalized Duschinsky transformation to QFFs is provided. This transformation allows for the efficient evaluation of VPT2 frequencies of isotopologues from the PES of the parent compound and thus avoids the recalculation of PESs in different axes systems.

  14. Semi-quartic force fields retrieved from multi-mode expansions: Accuracy, scaling behavior, and approximations

    International Nuclear Information System (INIS)

    Ramakrishnan, Raghunathan; Rauhut, Guntram

    2015-01-01

    Semi-quartic force fields (QFF) rely on a Taylor-expansion of the multi-dimensional Born-Oppenheimer potential energy surface (PES) and are frequently used within the calculation of anharmonic vibrational frequencies based on 2nd order vibrational perturbation theory (VPT2). As such they are usually determined by differentiation of the electronic energy with respect to the nuclear coordinates. Alternatively, potential energy surfaces can be expanded in terms of multi-mode expansions, which typically do not require any derivative techniques. The computational effort to retrieve QFF from size-reduced multi-mode expansions has been studied and has been compared with standard Taylor-expansions. As multi-mode expansions allow for the convenient introduction of subtle approximations, these will be discussed in some detail. In addition, a preliminary study about the applicability of a generalized Duschinsky transformation to QFFs is provided. This transformation allows for the efficient evaluation of VPT2 frequencies of isotopologues from the PES of the parent compound and thus avoids the recalculation of PESs in different axes systems

  15. Surface field of forces and protein adsorption behavior of poly(hydroxyethylmethacrylate) films deposited from plasma.

    Science.gov (United States)

    Morra, M; Cassinelli, C

    1995-01-01

    Polymeric films were deposited from hydroxyethylmethacrylate (HEMA) plasma on non-woven poly(butyleneterephtalate) (PBT) filter materials. To test the effect of deposition conditions on surface properties, film were deposited using a constant monomer flow rate and a discharge power ranging from 40-100 W. Surface composition and surface energetics were evaluated by Electron Spectroscopy for Chemical Analysis (ESCA) and contact angle measurement, respectively. Albumin (Alb) and fibrinogen (Fg) adsorption from single protein solutions to the plasma-coated filters was measured. Results illustrate the marked effects of the deposition condition on the surface composition, the surface field of forces, and the protein adsorption behavior. The latter is modeled by the application of the Good-van Oss-Chaudhury theory of Lewis acid-base contribution to interfacial energetics. Materials endowed with widely different properties are obtained from the same monomer and different deposition conditions, a result that must be taken into account both in the production step, to assure constant quality, and in the development of specifically tailored materials.

  16. Comparison of force fields and calculation methods for vibration intervals of isotopic H+3 molecules

    International Nuclear Information System (INIS)

    Carney, G.D.; Adler-Golden, S.M.; Lesseski, D.C.

    1986-01-01

    This paper reports (a) improved values for low-lying vibration intervals of H + 3 , H 2 D + , D 2 H + , and D + 3 calculated using the variational method and Simons--Parr--Finlan representations of the Carney--Porter and Dykstra--Swope ab initio H + 3 potential energy surfaces, (b) quartic normal coordinate force fields for isotopic H + 3 molecules, (c) comparisons of variational and second-order perturbation theory, and (d) convergence properties of the Lai--Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H + 3 , H 2 D + , D 2 H + , and D + 3 for these potential surfaces are 6.9 (Carney--Porter) and 1.2 cm -1 (Dykstra--Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10 cm -1 for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed ''t'' coordinate Hamiltonian for these molecules, except in the case of H 2 D +

  17. Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field

    Science.gov (United States)

    Nielsen, Jakob T.; Eghbalnia, Hamid R.; Nielsen, Niels Chr.

    2011-01-01

    The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we present a new and highly accurate, precise, and robust formulation for the prediction of NMR chemical shifts from protein structures. Our approach, shAIC (shift prediction guided by Akaikes Information Criterion), capitalizes on mathematical ideas and an information-theoretic principle, to represent the functional form of the relationship between structure and chemical shift as a parsimonious sum of smooth analytical potentials which optimally takes into account short-, medium-, and long-range parameters in a nuclei-specific manner to capture potential chemical shift perturbations caused by distant nuclei. shAIC outperforms the state-of-the-art methods that use analytical formulations. Moreover, for structures derived by NMR or structures with novel folds, shAIC delivers better overall results; even when it is compared to sophisticated machine learning approaches. shAIC provides for a computationally lightweight implementation that is unimpeded by molecular size, making it an ideal for use as a force field. PMID:22293396

  18. Source evaluation report phase 2 investigation: Limited field investigation. Final report: United States Air Force Environmental Restoration Program, Eielson Air Force Base, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This report describes the limited field investigation work done to address issues and answer unresolved questions regarding a collection of potential contaminant sources at Eielson Air Force Base (AFB), near Fairbanks, Alaska. These sources were listed in the Eielson AFB Federal Facility Agreement supporting the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of the base. The limited field investigation began in 1993 to resolve all remaining technical issues and provide the data and analysis required to evaluate the environmental hazard associated with these sites. The objective of the limited field investigation was to allow the remedial project managers to sort each site into one of three categories: requiring remedial investigation/feasibility study, requiring interim removal action, or requiring no further remedial action.

  19. The electric double layer at high surface potentials: The influence of excess ion polarizability

    NARCIS (Netherlands)

    Hatlo, M. M.|info:eu-repo/dai/nl/412640678; van Roij, R.H.H.G.|info:eu-repo/dai/nl/152978984; Lue, L.

    2012-01-01

    By including the excess ion polarizability into the Poisson-Boltzmann theory, we show that the decrease in differential capacitance with voltage, observed for metal electrodes above a threshold potential, can be understood in terms of thickening of the double layer due to ion-induced polarizability

  20. Molecular dynamics of polarizable point dipole models for molten NaI. Comparison with first principles simulations

    Directory of Open Access Journals (Sweden)

    Trullàs J.

    2011-05-01

    Full Text Available Molecular dynamics simulations of molten NaI at 995 K have been carried out using polarizable ion models based on rigid ion pair potentials to which the anion induced dipole polarization is added. The polarization is added in such a way that point dipoles are induced on the anions by both local electric field and deformation short-range damping interactions that oppose the electrically induced dipole moments. The structure and self-diffusion results are compared with those obtained by Galamba and Costa Cabral using first principles Hellmann-Feynman molecular dynamics simulations and using classical molecular dynamics of a shell model which allows only the iodide polarization

  1. Influence of Complete Coriolis Force on the Dispersion Relation of Ocean Internal-wave in a Background Currents Field

    Directory of Open Access Journals (Sweden)

    Liu Yongjun

    2015-01-01

    Full Text Available In this thesis, the influence of complete Coriolis force (the model includes both the vertical and horizontal components of Coriolis force on the dispersion relation of ocean internal-wave under background currents field are studied, it is important to the study of ocean internal waves in density-stratified ocean. We start from the control equation of sea water movement in the background of the non-traditional approximation, and the vertical velocity solution is derived where buoyancy frequency N(z gradually varies with the ocean depth z. The results show that the influence of complete Coriolis force on the dispersion relation of ocean internal-wave under background currents field is obvious, and these results provide strong evidence for the understanding of dynamic process of density stratified ocean internal waves.

  2. Lithium photoionization cross-section and dynamic polarizability using square integrable basis sets and correlated wave functions

    International Nuclear Information System (INIS)

    Hollauer, E.; Nascimento, M.A.C.

    1985-01-01

    The photoionization cross-section and dynamic polarizability for lithium atom are calculated using a discrete basis set to represent both the bound and the continuum-states of the atom, to construct an approximation to the dynamic polarizability. From the imaginary part of the complex dynamic polarizability one extracts the photoionization cross-section and from its real part the dynamic polarizability. The results are in good agreement with the experiments and other more elaborate calculations (Author) [pt

  3. Identification of the cognate peptide-MHC target of T cell receptors using molecular modeling and force field scoring

    DEFF Research Database (Denmark)

    Lanzarotti, Esteban; Marcatili, Paolo; Nielsen, Morten

    2018-01-01

    a key, but currently poorly comprehended, component for our understanding of this variation in the immunogenicity of MHC binding peptides. Here, we demonstrate that identification of the cognate target of a TCR from a set of p:MHC complexes to a high degree is achievable using simple force-field energy...

  4. New Parameterization of the Cornell et al Empirical Force Field Covering Amino Group Nonplanarity in Nucleic Acid Bases

    Czech Academy of Sciences Publication Activity Database

    Ryjáček, Filip; Kubař, Tomáš; Hobza, Pavel

    2003-01-01

    Roč. 24, - (2003), s. 1891-1901 ISSN 0192-8651 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : Cornell et al. potential * nonplanar amino group * force field parameterization Subject RIV: CF - Physical ; Theoretical Chem istry Impact factor: 3.186, year: 2003

  5. Operation of a scanning near field optical microscope in reflection in combination with a scanning force microscope

    NARCIS (Netherlands)

    van Hulst, N.F.; Moers, M.H.P.; Moers, M.H.P.; Noordman, O.F.J.; Noordman, O.F.J.; Faulkner, T.; Segerink, Franciscus B.; van der Werf, Kees; de Grooth, B.G.; Bölger, B.; Bölger, B.

    1992-01-01

    Images obtained with a scanning near field optical microscope (SNOM) operating in reflection are presented. We have obtained the first results with a SiN tip as optical probe. The instrument is simultaneously operated as a scanning force microscope (SFM). Moreover, the instrument incorporates an

  6. Molecular Modeling of Bifunctional Chelate Peptide Conjugates. 1. Copper and Indium Parameters for the AMBER Force Field

    DEFF Research Database (Denmark)

    Reichert, David E.; Norrby, Per-Ola; Welch, Michael J.

    2001-01-01

    In this work we describe the development of parameters for In(III) and Cu(II) for the AMBER* force field as found in the modeling package MacroModel. These parameters were developed using automated procedures from a combination of crystallographic structures and ab initio calculations. The new pa...

  7. Molecular dynamic study of Shock wave response of bulk amorphous polyvinyl chloride: effect of chain length and force field

    Science.gov (United States)

    Neogi, Anupam; Mitra, Nilanjan

    2015-06-01

    Atomistic molecular dynamics in conjunction with multi-scale shock technique is utilized to investigate shock wave response of bulk amorphous polyvinyl chloride. Dependence of chain length on physical and mechanical behaviour of polymeric material at ambient condition of temperature and pressure are well known but unknown for extreme conditions. Non-reactive force fields PCFF, COMPASS and PCFF+ were used to determine applicability of the force field for the study of the material subjected to shock loads. Several samples of PVC with various chain lengths were subjected to a range of shock compression from 1.5-10.0 km/s. Even though dependence of chain length was observed for lower shock strengths but was not for intense shock loads. The principle Hugoniot points, calculated by applying hydrostatic Rankine-Hugoniot equations and as well as multi-scale shock technique, were compared against LASL experimental shock data, demonstrating superior performance of PCFF+ force-field over PCFF and COMPASS. Shock induced melting characteristic and vibrational spectroscopic study were conducted and compared with experimental data to observe differences in response with relation to different force fields, chain length of the material for different shock intensities.

  8. Aerodynamic Characterization of ‘DelFly Micro’ in Forward Flight Configuration by Force Measurements and Flow Field Visualization

    NARCIS (Netherlands)

    Deng, S.; Percin, M.; Van Oudheusden, B.

    2015-01-01

    This study explores the flow structures and unsteady force generation mechanisms of a flapping-wing micro air vehicle ‘DelFly Micro’ in forward flight configuration. Stereoscopic Particle Image Velocimetry (Stereo-PIV) measurements were performed to acquire three dimensional flow fields in the wake.

  9. Host and adsorbate dynamics in silicates with flexible frameworks: Empirical force field simulation of water in silicalite

    Science.gov (United States)

    Bordat, Patrice; Cazade, Pierre-André; Baraille, Isabelle; Brown, Ross

    2010-03-01

    Molecular dynamics simulations are performed on the pure silica zeolite silicalite (MFI framework code), maintaining via a new force field both framework flexibility and realistic account of electrostatic interactions with adsorbed water. The force field is similar to the well-known "BKS" model [B. W. H. van Beest et al., Phys. Rev. Lett. 64, 1955 (1990)], but with reduced partial atomic charges and reoptimized covalent bond potential wells. The present force field reproduces the monoclinic to orthorhombic transition of silicalite. The force field correctly represents the hydrophobicity of pure silica silicalite, both the adsorption energy, and the molecular diffusion constants of water. Two types of adsorption, specific and weak unspecific, are predicted on the channel walls and at the channel intersection. We discuss molecular diffusion of water in silicalite, deducing a barrier to crossing between the straight and the zigzag channels. Analysis of the thermal motion shows that at room temperature, framework oxygen atoms incurring into the zeolite channels significantly influence the dynamics of adsorbed water.

  10. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye [Sanford-Burnham-Prebys Medical Discovery Institute (United States); Schwieters, Charles D. [National Institutes of Health, Center for Information Technology (United States); Opella, Stanley J. [University of California San Diego, Department of Chemistry and Biochemistry (United States); Marassi, Francesca M., E-mail: fmarassi@sbmri.org [Sanford-Burnham-Prebys Medical Discovery Institute (United States)

    2017-01-15

    Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision

  11. Automated property optimization via ab initio O(N) elongation method: Application to (hyper-)polarizability in DNA

    International Nuclear Information System (INIS)

    Orimoto, Yuuichi; Aoki, Yuriko

    2016-01-01

    An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method, and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between “choose-maximum” (choose a base pair giving the maximum β for each step) and “choose-minimum” (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account.

  12. Task-space separation principle: a force-field approach to motion planning for redundant manipulators.

    Science.gov (United States)

    Tommasino, Paolo; Campolo, Domenico

    2017-02-03

    In this work, we address human-like motor planning in redundant manipulators. Specifically, we want to capture postural synergies such as Donders' law, experimentally observed in humans during kinematically redundant tasks, and infer a minimal set of parameters to implement similar postural synergies in a kinematic model. For the model itself, although the focus of this paper is to solve redundancy by implementing postural strategies derived from experimental data, we also want to ensure that such postural control strategies do not interfere with other possible forms of motion control (in the task-space), i.e. solving the posture/movement problem. The redundancy problem is framed as a constrained optimization problem, traditionally solved via the method of Lagrange multipliers. The posture/movement problem can be tackled via the separation principle which, derived from experimental evidence, posits that the brain processes static torques (i.e. posture-dependent, such as gravitational torques) separately from dynamic torques (i.e. velocity-dependent). The separation principle has traditionally been applied at a joint torque level. Our main contribution is to apply the separation principle to Lagrange multipliers, which act as task-space force fields, leading to a task-space separation principle. In this way, we can separate postural control (implementing Donders' law) from various types of tasks-space movement planners. As an example, the proposed framework is applied to the (redundant) task of pointing with the human wrist. Nonlinear inverse optimization (NIO) is used to fit the model parameters and to capture motor strategies displayed by six human subjects during pointing tasks. The novelty of our NIO approach is that (i) the fitted motor strategy, rather than raw data, is used to filter and down-sample human behaviours; (ii) our framework is used to efficiently simulate model behaviour iteratively, until it converges towards the experimental human strategies.

  13. Stem breakage of salt marsh vegetation under wave forcing: A field and model study

    Science.gov (United States)

    Vuik, Vincent; Suh Heo, Hannah Y.; Zhu, Zhenchang; Borsje, Bas W.; Jonkman, Sebastiaan N.

    2018-01-01

    One of the services provided by coastal ecosystems is wave attenuation by vegetation, and subsequent reduction of wave loads on flood defense structures. Therefore, stability of vegetation under wave forcing is an important factor to consider. This paper presents a model which determines the wave load that plant stems can withstand before they break or fold. This occurs when wave-induced bending stresses exceed the flexural strength of stems. Flexural strength was determined by means of three-point-bending tests, which were carried out for two common salt marsh species: Spartina anglica (common cord-grass) and Scirpus maritimus (sea club-rush), at different stages in the seasonal cycle. Plant stability is expressed in terms of a critical orbital velocity, which combines factors that contribute to stability: high flexural strength, large stem diameter, low vegetation height, high flexibility and a low drag coefficient. In order to include stem breakage in the computation of wave attenuation by vegetation, the stem breakage model was implemented in a wave energy balance. A model parameter was calibrated so that the predicted stem breakage corresponded with the wave-induced loss of biomass that occurred in the field. The stability of Spartina is significantly higher than that of Scirpus, because of its higher strength, shorter stems, and greater flexibility. The model is validated by applying wave flume tests of Elymus athericus (sea couch), which produced reasonable results with regards to the threshold of folding and overall stem breakage percentage, despite the high flexibility of this species. Application of the stem breakage model will lead to a more realistic assessment of the role of vegetation for coastal protection.

  14. Field Measurements of Heating Efficiency of Electric Forced-Air Furnaces in Six Manufactured Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bob; Palmiter, Larry S.; Siegel, Jeff

    1994-07-26

    This report presents the results of field measurements of heating efficiency for six manufactured homes in the Pacific Northwest heated with electric forced-air systems. This is the first in a series of regional and national efforts to measure in detail the heating efficiency of manufactured homes. Only six homes were included in this study because of budgetary constraints; therefore this is not a representative sample. These investigations do provide some useful information on the heating efficiency of these homes. Useful comparisons can be drawn between these study homes and site-built heating efficiencies measured with a similar protocol. The protocol used to test these homes is very similar to another Ecotope protocol used in the study conducted in 1992 and 1993 for the Bonneville Power Administration to test the heating efficiency of 24 homes. This protocol combined real-time power measurements of furnace energy usage with energy usage during co-heat periods. Accessory data such as house and duct tightness measurements and tracer gas measurements were used to describe these homes and their heating system efficiency. Ensuring that manufactured housing is constructed in an energy and resource efficient manner is of increasing concern to manufactured home builders and consumers. No comparable work has been done to measure the heating system efficiency of MCS manufactured homes, although some co-heat tests have been performed on manufactured homes heated with natural gas to validate HUD thermal standards. It is expected that later in 1994 more research of this kind will be conducted, and perhaps a less costly and less time-consuming method for testing efficiencies will be develops.

  15. Forces on a current-carrying wire in a magnetic field: the macro-micro connection

    DEFF Research Database (Denmark)

    Avelar Sotomaior Karam, Ricardo; Kneubil, Fabiana; Robilotta, Manoel

    2017-01-01

    distributions, we show that the electrons are subject to both magnetic and electric forces, whereas the ionic lattice of the metal is dragged by an electric force. Furthermore, an analysis of the orders of magnitude involved in the problem gives counterintuitive results with valuable educational potential. We...

  16. Analysis of the magnetic field, force, and torque for two-dimensional Halbach cylinders

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Smith, Anders; Bahl, Christian Robert Haffenden

    2010-01-01

    for a two dimensional Halbach cylinder are derived. The remanent flux density of a Halbach magnet is characterized by the integer p. For a number of applications the force and torque between two concentric Halbach cylinders are important. These quantities are calculated and the force is shown to be zero...

  17. Electric birefringence and streaming-electric birefringence of synthesized imogolite: the anisotropy of electric polarizability.

    Science.gov (United States)

    Matsumoto, Mitsuhiro; Koibuchi, Sae; Hayashi, Naoki

    2007-04-15

    Imogolite synthesized from sodium orthosilicate and aluminum trichloride was fractionated into four fractions by centrifuging at 12,000 x g (1h). The supernatant, which did not deposit by three times centrifugations, was used for all measurements. The signal of birefringence under a reversing electric pulse showed that the permanent dipole moment is negligibly small at low fields. The electric birefringence under a rectangular electric pulse is positive. The saturated value is proportional to the concentration of imogolite in the range of 0-0.1mg/ml and decreases rapidly with an increase of added salt concentration for NaCl and AgNO(3). It slightly depends on the pH of solution and is biggest in pure water. Then we have determined the anisotropy of electric polarizability (Deltaalpha) for imogolite in pure water at 0.05 mg/ml. Deltaalpha we obtained from the method decreases rapidly at low fields and slowly at high fields as shown in references [M. Matsumoto, Colloids Surf. A 148 (1999) 75, M. Matsumoto, Biophys. Chem. 58 (1996) 173]. It is approximately shown by the following expression, Deltaalpha=Deltaalpha(infinity)+(Deltaalpha(0)-Deltaalpha(infinity))/(1+KE), (Deltaalpha(0):Deltaalpha at E=0, Deltaalpha(infinity):Deltaalpha at E=infinity). Using this relation we can draw the curve of electric birefringence as a function of electric field and compare it with experimental values. The results, when Deltaalpha(0)=1.17x10(-28)Fm(2), Deltaalpha(infinity)=0.005x10(-28)Fm(2) and K=0.00031 m/V, are in good agreement with each other. In order to explain the reason why the anisotropy of electric polarizability rapidly decreases with an increase of electric field we propose that the difference of electrophoretic mobility between parts of colloidal particle causes the orientation of a rod like particle. The theoretical electric birefringence as a function of electric field we obtained is considerably in good agreement with the experimental values.

  18. Axisymmetric force-free magnetosphere in the exterior of a neutron star - II. Maximum storage and open field energies

    Science.gov (United States)

    Kojima, Yasufumi; Okamoto, Satoki

    2018-04-01

    A magnetar's magnetosphere gradually evolves by the injection of energy and helicity from the interior. Axisymmetric static solutions for a relativistic force-free magnetosphere with a power-law current model are numerically obtained. They provide information about the configurations in which the stored energy is large. The energy along a sequence of equilibria increases and becomes sufficient to open the magnetic field. A magnetic flux rope, in which a large amount of toroidal field is confined, is formed in the vicinity of the star, for states exceeding the open field energy. These states are energetically metastable, and the excess energy may be ejected as a magnetar outburst.

  19. Quantum mechanics based force field for carbon (QMFF-Cx) validated to reproduce the mechanical and thermodynamics properties of graphite

    Science.gov (United States)

    Pascal, Tod A.; Karasawa, Naoki; Goddard, William A.

    2010-10-01

    As assemblies of graphene sheets, carbon nanotubes, and fullerenes become components of new nanotechnologies, it is important to be able to predict the structures and properties of these systems. A problem has been that the level of quantum mechanics practical for such systems (density functional theory at the PBE level) cannot describe the London dispersion forces responsible for interaction of the graphene planes (thus graphite falls apart into graphene sheets). To provide a basis for describing these London interactions, we derive the quantum mechanics based force field for carbon (QMFF-Cx) by fitting to results from density functional theory calculations at the M06-2X level, which demonstrates accuracies for a broad class of molecules at short and medium range intermolecular distances. We carried out calculations on the dehydrogenated coronene (C24) dimer, emphasizing two geometries: parallel-displaced X (close to the observed structure in graphite crystal) and PD-Y (the lowest energy transition state for sliding graphene sheets with respect to each other). A third, eclipsed geometry is calculated to be much higher in energy. The QMFF-Cx force field leads to accurate predictions of available experimental mechanical and thermodynamics data of graphite (lattice vibrations, elastic constants, Poisson ratios, lattice modes, phonon dispersion curves, specific heat, and thermal expansion). This validates the use of M06-2X as a practical method for development of new first principles based generations of QMFF force fields.

  20. Calculations of dipole and quadrupole polarizability radial functions for LiH and HF: A comparison of different linear response methods

    Czech Academy of Sciences Publication Activity Database

    Paidarová, Ivana; Sauer, S. P. A.

    2005-01-01

    Roč. 48, - (2005), s. 185-208 ISSN 0065-3276 R&D Projects: GA ČR GA203/04/2146; GA AV ČR 1ET400400410 Institutional research plan: CEZ:AV0Z40400503 Keywords : polarization propagator calculations * frequency-dependent polarizabilities * consistent-field calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.877, year: 2005

  1. The SPASIBA force field of aldehydes. Part II: structure and vibrational wavenumbers of ethandial, propenal and 2-methylpropenal

    Science.gov (United States)

    Durier, V.; Zanoun a, A.; Belaidi, A.; Vergoten, G.

    1999-02-01

    The SPASIBA potential energy function has been extended to conjugated aldehydes. Molecular structures, conformational energies, moments of inertia, dipole moments and vibrational wavenumbers have all been examined. The tested molecules are ethandial (glyoxal), propenal (acrolein), 2-methylpropenal (methacrolein) and some of their deuterated analogs. The parameters of the force field were developed in order to reproduce experimental values: structures, conformational energies and vibrational wavenumbers (minimization of the standard deviation between observed and calculated vibrational wavenumbers). A set of 30 independent force constants was found to be sufficient to describe correctly the structure and vibrational wavenumbers. The average r.m.s errors is 15.25 cm -1.

  2. DFT calculations for anharmonic force field and spectroscopic constants of YC2 and its 13C isotopologues

    Science.gov (United States)

    Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Li, Jing

    2018-02-01

    The construction of the complete third and the semi-diagonal quartic force fields including the anharmonicity of the ground state (X˜2A1) for yttrium dicarbide (YC2) is carried out employing the vibrational second-order perturbation theory (VPT2) in combination with the density functional theory (DFT). The equilibrium geometries optimization, anharmonic force field and vibrational spectroscopic constants of YC2 are calculated by B3LYP, B3PW91 and B3P86 methods. Aug-cc-pVnZ (n = D, T, Q) and cc-pVnZ-PP (n = D, T, Q) basis sets are chosen for C and Y atoms, respectively. The calculated geometry parameters of YC2 agree well with the corresponding experimental and previous theoretical results. The bonding characters of Ysbnd C2 or Csbnd C are discussed. Based on the optimized equilibrium geometries, the spectroscopic constants and anharmonic force field of YC2 are calculated. Comparing with the spectroscopic constants of YC2 derived from the experiment, the calculated results show that the B3PW91 and B3P86 methods are superior to B3LYP for YC2. The Coriolis coupling constants, cubic and quartic force constants of YC2 are reasonably predicted. Besides, the spectroscopic constants and anharmonic force field of Y13C2 (X˜2A1) and Y13CC (X˜2A‧) are calculated for the first time, which are expected to guide the high resolution experimental work for YC2 and its 13C isotopologues.

  3. Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer’s peptides

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Thanh Thuy; Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr; Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)

    2016-05-28

    Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ{sub 16−22} and Aβ{sub 37−42} of the full length Aβ{sub 1−42} Alzheimer’s peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, which incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ{sub 16−22} dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ{sub 16−22} and the dimer and trimer of Aβ{sub 37−42}. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ{sub 16−22} decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ{sub 37−42} decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.

  4. DFT calculations for anharmonic force field and spectroscopic constants of YC2and its13C isotopologues.

    Science.gov (United States)

    Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Li, Jing

    2018-02-15

    The construction of the complete third and the semi-diagonal quartic force fields including the anharmonicity of the ground state (X˜ 2 A 1 ) for yttrium dicarbide (YC 2 ) is carried out employing the vibrational second-order perturbation theory (VPT2) in combination with the density functional theory (DFT). The equilibrium geometries optimization, anharmonic force field and vibrational spectroscopic constants of YC 2 are calculated by B3LYP, B3PW91 and B3P86 methods. Aug-cc-pVnZ (n=D, T, Q) and cc-pVnZ-PP (n=D, T, Q) basis sets are chosen for C and Y atoms, respectively. The calculated geometry parameters of YC 2 agree well with the corresponding experimental and previous theoretical results. The bonding characters of YC 2 or CC are discussed. Based on the optimized equilibrium geometries, the spectroscopic constants and anharmonic force field of YC 2 are calculated. Comparing with the spectroscopic constants of YC 2 derived from the experiment, the calculated results show that the B3PW91 and B3P86 methods are superior to B3LYP for YC 2 . The Coriolis coupling constants, cubic and quartic force constants of YC 2 are reasonably predicted. Besides, the spectroscopic constants and anharmonic force field of Y 13 C 2 (X˜ 2 A 1 ) and Y 13 CC (X˜ 2 A ' ) are calculated for the first time, which are expected to guide the high resolution experimental work for YC 2 and its 13 C isotopologues. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    Treweek, Benjamin C., E-mail: btreweek@utexas.edu; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P.O. Box 8029, Austin, TX 78713-8029 (United States)

    2015-10-28

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  6. Effects of ponderomotive forces and space-charge field on laser plasma hydrodynamics

    International Nuclear Information System (INIS)

    Cang Yu; Lu Xin; Wu Huichun; Zhang Jie

    2005-01-01

    Using a two-fluid two-temperature hydrodynamic code, authors studied the hydrodynamics in the interaction of intense (10 15 W/cm 2 ) ultrashort (150 fs) laser pulses and linear density plasmas. The simulation results show the ponderomotive force effect on the formation of the electron density ripples in under-dense region, such ripples increase the reflection of the laser pulse, and on the separation of the plasma in critical surface. Quasi-electroneutrality is not suitable in this case because of the different ponderomotive force and the gradient of thermal-pressure for ions and electrons. Ions are moved by the electrostatic force. Comparing with the simulation results from one-fluid two-temperature code, authors find that under strong ponderomotive force and gradient of thermo-pressure, two-fluid code is more suitable to simulate the hydrodynamics of plasmas. (authors)

  7. Forcing of a photochemical air quality model with atmospheric fields simulated by a regional climate model

    CSIR Research Space (South Africa)

    Naidoo, M

    2010-10-01

    Full Text Available Within the context of climate change over southern Africa, little is understood about the potential local response of air quality to changes in the larger scale environment. Under future climate forcing, there may be significant changes...

  8. Force-field development and molecular dynamics simulations of ferrocene-peptide conjugates as a scaffold for hydrogenase mimics.

    Energy Technology Data Exchange (ETDEWEB)

    De Hatten, Xavier [University of Bordeaux; Cournia, Zoe [Yale University; Smith, Jeremy C [ORNL; Metzler-Nolte, Nils [University of Bochum, Germany

    2007-08-01

    The increasing importance of hydrogenase enzymes in the new energy research field has led us to examine the structure and dynamics of potential hydrogenase mimics, based on a ferrocene-peptide scaffold, using molecular dynamics (MD) simulations. To enable this MD study, a molecular mechanics force field for ferrocene-bearing peptides was developed and implemented in the CHARMM simulation package, thus extending the usefulness of the package into peptide-bioorganometallic chemistry. Using the automated frequency-matching method (AFMM), optimized intramolecular force-field parameters were generated through quantum chemical reference normal modes. The partial charges for ferrocene were derived by fitting point charges to quantum-chemically computed electrostatic potentials. The force field was tested against experimental X-ray crystal structures of dipeptide derivatives of ferrocene-1,1{prime}-dicarboxylic acid. The calculations reproduce accurately the molecular geometries, including the characteristic C2-symmetrical intramolecular hydrogen-bonding pattern, that were stable over 0.1{micro}s MD simulations. The crystal packing properties of ferrocene-1-(D)alanine-(D)proline{prime}-1-(D)alanine-(D)proline were also accurately reproduced. The lattice parameters of this crystal were conserved during a 0.1 s MD simulation and match the experimental values almost exactly. Simulations of the peptides in dichloromethane are also in good agreement with experimental NMR and circular dichroism (CD) data in solution. The developed force field was used to perform MD simulations on novel, as yet unsynthesized peptide fragments that surround the active site of [Ni-Fe] hydrogenase. The results of this simulation lead us to propose an improved design for synthetic peptide-based hydrogenase models. The presented MD simulation results of metallocenes thereby provide a convincing validation of our proposal to use ferrocene-peptides as minimal enzyme mimics.

  9. Force-Field Development and Molecular Dynamics Simulations of Ferrocene–Peptide Conjugates as a Scaffold for Hydrogenase Mimics

    Energy Technology Data Exchange (ETDEWEB)

    de Hatten, Xavier; Cournia, Zoe; Huc, Ivan; Smith, Jeremy C.; Metzler-Nolte, Nils

    2007-10-05

    The increasing importance of hydrogenase enzymes in the new energy research field has led us to examine the structure and dynamics of potential hydrogenase mimics, based on a ferrocene-peptide scaffold, using molecular dynamics (MD) simulations. To enable this MD study, a molecular mechanics force field for ferrocene-bearing peptides was developed and implemented in the CHARMM simulation package, thus extending the usefulness of the package into peptide-bioorganometallic chemistry. Using the automated frequency-matching method (AFMM), optimized intramolecular force-field parameters were generated through quantum chemical reference normal modes. The partial charges for ferrocene were derived by fitting point charges to quantum-chemically computed electrostatic potentials. The force field was tested against experimental X-ray crystal structures of dipeptide derivatives of ferrocene-1,1'-dicarboxylic acid. The calculations reproduce accurately the molecular geometries, including the characteristic C{sub 2}-symmetrical intramolecular hydrogen-bonding pattern, that were stable over 0.1 {micro}s MD simulations. The crystal packing properties of ferrocene-1-(D)alanine-(D)proline-1'-(D)alanine-(D)proline were also accurately reproduced. The lattice parameters of this crystal were conserved during a 0.1 {micro}s MD simulation and match the experimental values almost exactly. Simulations of the peptides in dichloromethane are also in good agreement with experimental NMR and circular dichroism (CD) data in solution. The developed force field was used to perform MD simulations on novel, as yet unsynthesized peptide fragments that surround the active site of [Ni-Fe] hydrogenase. The results of this simulation lead us to propose an improved design for synthetic peptide-based hydrogenase models. The presented MD simulation results of metallocenes thereby provide a convincing validation of our proposal to use ferrocene-peptides as minimal enzyme mimics.

  10. The influence of inhomogeneous magnetic field over a NdFeB guideway on levitation force of the HTS bulk maglev system

    Science.gov (United States)

    Zhao, Lifeng; Deng, Jiangtao; Li, Linbo; Feng, Ning; Wei, Pu; Lei, Wei; Jiang, Jing; Wang, Xiqin; Zhang, Yong; Zhao, Yong

    2018-04-01

    Dynamic responses of high temperature superconducting bulk to inhomogeneous magnetic field distribution of permanent magnet guideway, as well as enlarged amplitude of magnetic field obtained by partially covering the permanent magnet guideway (PMG) with iron sheets in different thickness, are investigated. Experiments show that the instantaneous levitation force increases with the increase of the variation rate of magnetic field (dB/dt). Meanwhile, inhomogeneous magnetic field from PMG causes the decay of levitation force. The decay of levitation force almost increases linearly with the increase of alternating magnetic field amplitude. It should be very important for the application of high-speed maglev system.

  11. Unsteady hydrodynamic forces acting on a robotic arm and its flow field: application to the crawl stroke.

    Science.gov (United States)

    Takagi, Hideki; Nakashima, Motomu; Ozaki, Takashi; Matsuuchi, Kazuo

    2014-04-11

    This study aims to clarify the mechanisms by which unsteady hydrodynamic forces act on the hand of a swimmer during a crawl stroke. Measurements were performed for a hand attached to a robotic arm with five degrees of freedom independently controlled by a computer. The computer was programmed so the hand and arm mimicked a human performing the stroke. We directly measured forces on the hand and pressure distributions around it at 200 Hz; flow fields underwater near the hand were obtained via 2D particle image velocimetry (PIV). The data revealed two mechanisms that generate unsteady forces during a crawl stroke. One is the unsteady lift force generated when hand movement changes direction during the stroke, leading to vortex shedding and bound vortex created around it. This bound vortex circulation results in a lift that contributes to the thrust. The other occurs when the hand moves linearly with a large angle of attack, creating a Kármán vortex street. This street alternatively sheds clockwise and counterclockwise vortices, resulting in a quasi-steady drag contributing to the thrust. We presume that professional swimmers benefit from both mechanisms. Further studies are necessary in which 3D flow fields are measured using a 3D PIV system and a human swimmer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Theoretical studies of the global minima and polarizabilities of small lithium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hanshi; Zhao, Ya-Fan; Hammond, Jeffrey R.; Bylaska, Eric J.; Apra, Edoardo; van Dam, Hubertus JJ; Li, Jun; Govind, Niranjan; Kowalski, Karol

    2016-01-16

    Lithium clusters Lin (n=1-20) have been investigated with density functional theory (DFT) and coupled—cluster (CC) methods. The global-minimum structures are located via an improved basin---hopping algorithm and the lowest energy Lin isomers are confirmed with DFT geometry optimizations, CCSD(T) energy calculations, and by comparing simulated and experimental polarizabilities. The tetrahedral Li4 structure is found to be the basic building block of lithium clusters Lin (n=6-20). Simulated polarizabilities, including thermal effects at room temperature, are in good agreement with measured isotropic polarizabilities.

  13. Static and dynamic polarizabilities of Na- within a variationally stable coupled-channel hyperspherical method

    International Nuclear Information System (INIS)

    Masili, Mauro; Groote, J.J. de

    2004-01-01

    Using a model potential representation combined with a variationally stable method, we present a precise calculation of the electric dipole polarizabilities of the sodium negative ion (Na - ). The effective two-electron eigensolutions for Na - are obtained from a hyperspherical coupled-channel calculation. This approach allows efficient error control and insight into the system's properties through one-dimensional potential curves. Our result of 1018.3 a.u. for the static dipole polarizability is in agreement with previous calculations and supports our results for the dynamic polarizability, which has scarcely been investigated hitherto

  14. Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: a systematic study of several common force fields.

    Science.gov (United States)

    Trinh, Thuat T; Vlugt, Thijs J H; Kjelstrup, Signe

    2014-10-07

    We report a systematic investigation of the thermal conductivity of various three-site models of carbon dioxide (CO2) using nonequilibrium molecular dynamics in the temperature range 300-1000 K and for pressures up to 200 MPa. A direct comparison with experimental data is made. Three popular CO2 force fields (MSM, EPM2, and TraPPE) and two flexible models (based on EPM2) were investigated. All rigid force fields accurately predict the equation of state for carbon dioxide for the given range of variables. They can also reproduce the thermal conductivity of CO2 at room temperature and predict a decrease of the thermal conductivity with increasing temperature. At high temperatures, the rigid models underestimate the thermal conductivity.

  15. Construction of an accurate quartic force field by using generalised least-squares fitting and experimental design

    International Nuclear Information System (INIS)

    Carbonniere, Philippe; Begue, Didier; Dargelos, Alain; Pouchan, Claude

    2004-01-01

    In this work we present an attractive least-squares fitting procedure which allows for the calculation of a quartic force field by jointly using energy, gradient, and Hessian data, obtained from electronic wave function calculations on a suitably chosen grid of points. We use the experimental design to select the grid points: a 'simplex-sum' of Box and Behnken grid was chosen for its efficiency and accuracy. We illustrate the numerical implementations of the method by using the energy and gradient data for H 2 O and H 2 CO. The B3LYP/cc-pVTZ quartic force field performed from 11 and 44 simplex-sum configurations shows excellent agreement in comparison to the classical 44 and 168 energy calculations

  16. Two studies of colloidal interactions: electric polarizability and protein crystallization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fraden, Seth; Hu, Yue

    2001-08-06

    (I)Electric polarizability. During this grant period, the focus was on five topics concerning electric field effects on colloids. The first topic focuses on electric interactions between charged colloids in the absence of external fields, and the remaining four deal with colloids in the presence of external fields. The topics are (1) calculation of the effect of confinement on the pair-potential between like-charged colloids, (2) experimental determination of the interparticle potential under the conditions of dielectric polarization, (3) measurement of the evolution of structure of ER fluids, (4) synthesis of novel colloids designed for ER studies, and (5) computer modeling of polarization of surface charge. (II) Protein crystallization. Studies of the phase behavior of mixtures of proteins and polymers were initiated. The motivation was to test recent theories that suggested that optimal conditions for protein crystallization could be obtained using such mixtures. Combined light scattering measurements of the virial coefficients and determination of the phase diagram of protein/polymer mixtures revealed that the theoretical picture needs to be substantially modified.

  17. Electrophoresis of a polarizable charged colloid with hydrophobic surface: A numerical study

    Science.gov (United States)

    Bhattacharyya, Somnath; Majee, Partha Sarathi

    2017-04-01

    We consider the electrophoresis of a charged colloid for a generalized situation in which the particle is considered to be polarizable and the surface exhibits hydrophobicity. The dielectric polarization of the particle creates a nonlinear dependence of the electrophoretic velocity on the applied electric field, and the core hydrophobicity amplifies the fluid convection in the Debye layer. Thus, a linear analysis is no longer applicable for this situation. The present analysis is based on the numerical solution of the nonlinear electrokinetic equations based on the Navier-Stokes-Nernst-Planck-Poisson equations coupled with the Laplace equation for the electric field within the dielectric particle. The hydrophobicity of the particle may influence its electric polarization by enhancing the convective transport of ions. The nonlinear effects, such as double-layer polarization and relaxation, are also influenced by the hydrophobicity of the particle surface. The present results compare well for a lower range of the applied electric field and surface charge density with the existing results for a perfectly dielectric particle with a hydrophobic surface based on the first-order perturbation analysis due to Khair and Squires [Phys. Fluids 21, 042001 (2009), 10.1063/1.3116664]. Dielectric polarization creates a reduction in particle electrophoretic velocity, and its impact is strong for a moderate range of Debye length. A quantitative measure of the nonlinear effects is demonstrated by comparing the electrophoretic velocity with an existing linear model.

  18. Non-empirical calculations of force field and vibrational spectrum of LiBH3+ complex ion using the MO lcao sct method

    International Nuclear Information System (INIS)

    Ozerova, V.M.; Solomonik, V.G.

    1983-01-01

    Non-empiric calculations of the force field, frequencies of normal oscillations and intensities of oscillations in JR spectrum of LiBH 3 + complex ions are performed using the MO lcao SCF method. The alteration of the force field and vibrational spectrum of BH 3 molecule is analyzed in the case of its coordination with Li + cation

  19. Identification of the cognate peptide-MHC target of T cell receptors using molecular modeling and force field scoring.

    Science.gov (United States)

    Lanzarotti, Esteban; Marcatili, Paolo; Nielsen, Morten

    2018-02-01

    Interactions of T cell receptors (TCR) to peptides in complex with MHC (p:MHC) are key features that mediate cellular immune responses. While MHC binding is required for a peptide to be presented to T cells, not all MHC binders are immunogenic. The interaction of a TCR to the p:MHC complex holds a key, but currently poorly comprehended, component for our understanding of this variation in the immunogenicity of MHC binding peptides. Here, we demonstrate that identification of the cognate target of a TCR from a set of p:MHC complexes to a high degree is achievable using simple force-field energy terms. Building a benchmark of TCR:p:MHC complexes where epitopes and non-epitopes are modelled using state-of-the-art molecular modelling tools, scoring p:MHC to a given TCR using force-fields, optimized in a cross-validation setup to evaluate TCR inter atomic interactions involved with each p:MHC, we demonstrate that this approach can successfully be used to distinguish between epitopes and non-epitopes. A detailed analysis of the performance of this force-field-based approach demonstrate that its predictive performance depend on the ability to both accurately predict the binding of the peptide to the MHC and model the TCR:p:MHC complex structure. In summary, we conclude that it is possible to identify the TCR cognate target among different candidate peptides by using a force-field based model, and believe this works could lay the foundation for future work within prediction of TCR:p:MHC interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A Force field for tricalcium aluminate to characterize surface properties, initial hydration, and organically modified interfaces in atomic resolution

    OpenAIRE

    Mishra, Ratan K.; Fernández Carrasco, Lucía; Flatt, Robert J.; Heinz, Hendrik

    2014-01-01

    Tricalcium aluminate (C3A) is a major phase of Portland cement clinker and some dental root filling cements. An accurate all-atom force field is introduced to examine structural, surface, and hydration properties as well as organic interfaces to overcome challenges using current laboratory instrumentation. Molecular dynamics simulation demonstrates excellent agreement of computed structural, thermal, mechanical, and surface properties with available experimental data. The parameters are integ...

  1. Molecular Dynamics Simulation of Cross-Linked Epoxy Polymers: the Effect of Force Field on the Estimation of Properties

    OpenAIRE

    B. Arab; A. Shokuhfar

    2013-01-01

    In this paper, the molecular dynamics method was used to calculate the physical and mechanical properties of the cross-linked epoxy polymer composed of diglycidyl ether of bisphenol-A (DGEBA) as resin and diethylenetriamine (DETA) as curing agent. Calculation of the properties was performed using the constant-strain (static) approach. A series of independent simulations were carried out based on four widely used force fields; COMPASS, PCFF, UFF and Dreiding. Proper comparisons between the res...

  2. [Analysis of the use of field medical units in the armies of NATO and Russian Armed Forces].

    Science.gov (United States)

    Korniushko, I G; Iakovlev, S V; Murashev, I V; Sidorov, V A; Medvedev, V R; Matveev, A G

    2011-12-01

    An analysis of medical services of NATO and the Medical Service of the Armed Forces of the Russian Federation of modern technology deployment stages of medical evacuation (tents, inflatable structures, shelters, containers, medical armored vehicles, cars, etc.) is presented. Examples of their usage in isolated employment, usage in the group as a mobile medical stations and field hospitals in various conditions, the prospects and directions of development of technical means deployment of medical service are given.

  3. ALOAD - a code to determine the concentrated forces equivalent with a distributed pressure field for a FEM analysis

    Directory of Open Access Journals (Sweden)

    Nicolae APOSTOLESCU

    2010-12-01

    Full Text Available The main objective of this paper is to describe a code for calculating an equivalent systemof concentrate loads for a FEM analysis. The tables from the Aerodynamic Department containpressure field for a whole bearing surface, and integrated quantities both for the whole surface andfor fixed and mobile part. Usually in a FEM analysis the external loads as concentrated loadsequivalent to the distributed pressure field are introduced. These concentrated forces can also be usedin static tests. Commercial codes provide solutions for this problem, but what we intend to develop isa code adapted to the user’s specific needs.

  4. Optical force on a discrete invisibility cloak in time-dependent fields

    Energy Technology Data Exchange (ETDEWEB)

    Chaumet, Patrick C.; Zolla, Frederic; Nicolet, Andre; Belkebir, Kamal [Institut Fresnel, CNRS, Aix-Marseille Universite, Campus de St-Jerome 13013 Marseille (France); Rahmani, Adel [Department of Mathematical Sciences, University of Technology, Sydney, Broadway NSW 2007 (Australia)

    2011-09-15

    We study, in time domain, the exchange of momentum between an electromagnetic pulse and a three-dimensional, discrete, spherical invisibility cloak. We find that a discrete cloak, initially at rest, would experience an electromagnetic force due to the pulse but would acquire zero net momentum and net displacement. On the other hand, we find that while the cloak may manage to conceal an object and shroud it from the electromagnetic forces associated with the pulse, the cloak itself can experience optomechanical stress on a scale much larger than the object would in the absence of the cloak. We also consider the effects of material dispersion and losses on the electromagnetic forces experienced by the cloak and show that they lead to a transfer of momentum from the pulse to the cloak.

  5. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Bruus, Henrik

    2015-01-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places...... no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δs and δt relative to the particle radius a, but it assumes the particle to be small in comparison to the acoustic wavelength λ. This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer......-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices...

  6. Force fields for monovalent and divalent metal cations in TIP3P water based on thermodynamic and kinetic properties

    Science.gov (United States)

    Mamatkulov, Shavkat; Schwierz, Nadine

    2018-02-01

    Metal cations are essential in many vital processes. In order to capture the role of different cations in all-atom molecular dynamics simulations of biological processes, an accurate parametrization is crucial. Here, we develop force field parameters for the metal cations Li+, Na+, K+, Cs+, Mg2+, Ca2+, Sr2+, and Ba2+ in combination with the TIP3P water model that is frequently used in biomolecular simulations. In progressing toward improved force fields, the approach presented here is an extension of previous efforts and allows us to simultaneously reproduce thermodynamic and kinetic properties of aqueous solutions. We systematically derive the parameters of the 12-6 Lennard-Jones potential which accurately reproduces the experimental solvation free energy, the activity derivative, and the characteristics of water exchange from the first hydration shell of the metal cations. In order to reproduce all experimental properties, a modification of the Lorentz-Berthelot combination rule is required for Mg2+. Using a balanced set of solution properties, the optimized force field parameters aim to capture the fine differences between distinct metal cations including specific ion binding affinities and the kinetics of cation binding to biologically important anionic groups.

  7. Electro-hydrodynamic force field and flow patterns generated by a DC corona discharge in the air

    Science.gov (United States)

    Monrolin, Nicolas; Plouraboue, Franck; Praud, Olivier

    2016-11-01

    Ionic wind refers to the electro-convection of ionised air between high voltage electrodes. Microscopic ion-neutral collisions are responsible for momentum transfer from accelerated ions, subjected to the electric field, to the neutral gas molecules resulting in a macroscopic airflow acceleration. In the past decades it has been investigated for various purposes from food drying through aerodynamic flow control and eventually laptop cooling. One consequence of air acceleration between the electrodes is thrust generation, often referred to as the Biefeld-Brown effect or electro-hydrodynamic thrust. In this experimental study, the ionic wind velocity field is measured with the PIV method. From computing the acceleration of the air we work out the electrostatic force field for various electrodes configurations. This enables an original direct evaluation of the force distribution as well as the influence of electrodes shape and position. Thrust computation based on the flow acceleration are compared with digital scale measurements. Complex flow features are highlighted such as vortex shedding, indicating that aerodynamic effects may play a significant role. Furthermore, the aerodynamic drag force exerted on the electrodes is quantified by choosing an appropriate control volume. Authors thank Region Midi-Pyrenee and CNES Launcher Directorate for financial support.

  8. Development of CHARMM-Compatible Force-Field Parameters for Cobalamin and Related Cofactors from Quantum Mechanical Calculations.

    Science.gov (United States)

    Pavlova, Anna; Parks, Jerry M; Gumbart, James C

    2018-02-13

    Corrinoid cofactors such as cobalamin are used by many enzymes and are essential for most living organisms. Therefore, there is broad interest in investigating cobalamin-protein interactions with molecular dynamics simulations. Previously developed parameters for cobalamins are based mainly on crystal structure data. Here, we report CHARMM-compatible force field parameters for several corrinoids developed from quantum mechanical calculations. We provide parameters for corrinoids in three oxidation states, Co 3+ , Co 2+ , and Co 1+ , and with various axial ligands. Lennard-Jones parameters for the cobalt center in the Co(II) and Co(I) states were optimized using a helium atom probe, and partial atomic charges were obtained with a combination of natural population analysis (NPA) and restrained electrostatic potential (RESP) fitting approaches. The Force Field Toolkit was used to optimize all bonded terms. The resulting parameters, determined solely from calculations of cobalamin alone or in water, were then validated by assessing their agreement with density functional theory geometries and by analyzing molecular dynamics simulation trajectories of several corrinoid proteins for which X-ray crystal structures are available. In each case, we obtained excellent agreement with the reference data. In comparison to previous CHARMM-compatible parameters for cobalamin, we observe a better agreement for the fold angle and lower RMSD in the cobalamin binding site. The approach described here is readily adaptable for developing CHARMM-compatible force-field parameters for other corrinoids or large biomolecules.

  9. Molecular dynamics simulations of cholesterol-rich membranes using a coarse-grained force field for cyclic alkanes

    Energy Technology Data Exchange (ETDEWEB)

    MacDermaid, Christopher M., E-mail: chris.macdermaid@temple.edu; Klein, Michael L.; Fiorin, Giacomo, E-mail: giacomo.fiorin@temple.edu [Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122-1801 (United States); Kashyap, Hemant K. [Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); DeVane, Russell H. [Modeling and Simulation, Corporate Research and Development, The Procter and Gamble Company, West Chester, Ohio 45069 (United States); Shinoda, Wataru [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Klauda, Jeffery B. [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2015-12-28

    The architecture of a biological membrane hinges upon the fundamental fact that its properties are determined by more than the sum of its individual components. Studies on model membranes have shown the need to characterize in molecular detail how properties such as thickness, fluidity, and macroscopic bending rigidity are regulated by the interactions between individual molecules in a non-trivial fashion. Simulation-based approaches are invaluable to this purpose but are typically limited to short sampling times and model systems that are often smaller than the required properties. To alleviate both limitations, the use of coarse-grained (CG) models is nowadays an established computational strategy. We here present a new CG force field for cholesterol, which was developed by using measured properties of small molecules, and can be used in combination with our previously developed force field for phospholipids. The new model performs with precision comparable to atomistic force fields in predicting the properties of cholesterol-rich phospholipid bilayers, including area per lipid, bilayer thickness, tail order parameter, increase in bending rigidity, and propensity to form liquid-ordered domains in ternary mixtures. We suggest the use of this model to quantify the impact of cholesterol on macroscopic properties and on microscopic phenomena involving localization and trafficking of lipids and proteins on cellular membranes.

  10. Maxwell-Faraday stresses in electromagnetic fields and the self-force on a uniformly accelerating point charge

    International Nuclear Information System (INIS)

    Rowland, D R

    2007-01-01

    The physical analysis of a uniformly accelerating point charge provides a rich problem to explore in advanced courses in electrodynamics and relativity since it brings together fundamental concepts in relation to electromagnetic radiation, Einstein's equivalence principle and the inertial mass of field energy in ways that reveal subtleties in each of these concepts. By first exploring the heuristic value of Maxwell's and Faraday's idea that the electromagnetic field is like a stressed material medium, it is shown in this paper that the problem also provides an interesting application of the electromagnetic stress-energy-momentum tensor and that an analysis using this tensor provides clear physical insight into this highly subtle and contentious problem and the so-called '4/3 problem' of classical electromagnetic theory. In particular, it is shown that the stress force on a uniformly accelerating, uniformly charged spherical shell due to its own field is simply the (relativistic) inertial mass of the charge's electrostatic field times the acceleration. Since the inertial mass of the electromagnetic field forms part of the observed rest mass of a charged particle, it is argued that the results are therefore consistent with the Lorentz-Abraham-Dirac equation of motion for an accelerating point charge, which implies that for uniform acceleration, the work done by the force acting on the charge only goes into increasing the kinetic energy of the charge, none goes into the creation of radiation

  11. Dipole polarizability of alkali-metal (Na, K, Rb)–alkaline-earth-metal (Ca, Sr) polar molecules: Prospects for alignment

    Energy Technology Data Exchange (ETDEWEB)

    Gopakumar, Geetha, E-mail: geetha@tmu.ac.jp; Abe, Minori; Hada, Masahiko [Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Kajita, Masatoshi [National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795 (Japan)

    2014-06-14

    Electronic open-shell ground-state properties of selected alkali-metal–alkaline-earth-metal polar molecules are investigated. We determine potential energy curves of the {sup 2}Σ{sup +} ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes ({sup 23}Na, {sup 39}K, {sup 85}Rb)–({sup 40}Ca, {sup 88}Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  12. The flow field acting on the fluttering profile, kinematics, forces and total moment

    Czech Academy of Sciences Publication Activity Database

    Kozánek, Jan; Vlček, Václav; Zolotarev, Igor

    2013-01-01

    Roč. 13, č. 7 (2013), s. 1-7 ISSN 0219-4554 R&D Projects: GA ČR GA101/09/1522 Institutional support: RVO:61388998 Keywords : fluttering profile * interferometry visualization * acting forces and moment Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 1.059, year: 2013

  13. Forces acting on a small particle in an acoustical field in a viscous fluid

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Bruus, Henrik

    2012-01-01

    We calculate the acoustic radiation force from an ultrasound wave on a compressible, spherical particle suspended in a viscous fluid. Using Prandtl-Schlichting boundary-layer theory, we include the kinematic viscosity of the solvent and derive an analytical expression for the resulting radiation...

  14. Measurement of time-varying displacement fields in cell culture for traction force optical coherence microscopy (Conference Presentation)

    Science.gov (United States)

    Mulligan, Jeffrey A.; Adie, Steven G.

    2017-02-01

    Mechanobiology is an emerging field which seeks to link mechanical forces and properties to the behaviors of cells and tissues in cancer, stem cell growth, and other processes. Traction force microscopy (TFM) is an imaging technique that enables the study of traction forces exerted by cells on their environment to migrate as well as sense and manipulate their surroundings. To date, TFM research has been performed using incoherent imaging modalities and, until recently, has been largely confined to the study of cell-induced tractions within two-dimensions using highly artificial and controlled environments. As the field of mechanobiology advances, and demand grows for research in physiologically relevant 3D culture and in vivo models, TFM will require imaging modalities that support such settings. Optical coherence microscopy (OCM) is an interferometric imaging modality which enables 3D cellular resolution imaging in highly scattering environments. Moreover, optical coherence elastography (OCE) enables the measurement of tissue mechanical properties. OCE relies on the principle of measuring material deformations in response to artificially applied stress. By extension, similar techniques can enable the measurement of cell-induced deformations, imaged with OCM. We propose traction force optical coherence microscopy (TF-OCM) as a natural extension and partner to existing OCM and OCE methods. We report the first use of OCM data and digital image correlation to track temporally varying displacement fields exhibited within a 3D culture setting. These results mark the first steps toward the realization of TF-OCM in 2D and 3D settings, bolstering OCM as a platform for advancing research in mechanobiology.

  15. Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities

    International Nuclear Information System (INIS)

    Stuyver, T.; Fias, S.; De Proft, F.; Geerlings, P.; Fowler, P. W.

    2015-01-01

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability

  16. Conduction of molecular electronic devices: qualitative insights through atom-atom polarizabilities.

    Science.gov (United States)

    Stuyver, T; Fias, S; De Proft, F; Fowler, P W; Geerlings, P

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  17. Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Stuyver, T.; Fias, S., E-mail: sfias@vub.ac.be; De Proft, F.; Geerlings, P. [ALGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium); Fowler, P. W. [Department of Chemistry, University of Sheffield, Sheffield S3 7HF (United Kingdom)

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  18. Metal-organic materials (MOMs) for adsorption of polarizable gases and methods of using MOMs

    Science.gov (United States)

    Zaworotko, Michael; Mohamed, Mona H.; Elsaidi, Sameh

    2017-06-14

    Embodiments of the present disclosure provide for multi-component metal-organic materials (MOMs), systems including the MOM, systems for separating components in a gas, methods of separating polarizable gases from a gas mixture, and the like.

  19. Generation of fast electrons in reversed field pinches by the equilibrium grad |B| force

    International Nuclear Information System (INIS)

    Fiksel, G.

    1994-10-01

    It is shown that a decreasing magnetic field profile in reversed-field pinch plasmas leads to formation of an anisotropic electron distribution function at the plasma edge. The mechanism is the conservation of the magnetic moment and the energy of electrons that collisionlessly travel outward in a stochastic magnetic field. As a result, the electrons have high parallel energies and low perpendicular energies at the edge. The details of the distribution function correspond well to experimental results

  20. Effect of boundary heat flux on solidification in a forced liquid metal flow: a phase-field simulation

    Science.gov (United States)

    Du, Lifei; Zhang, Rong

    2014-12-01

    A phase-field model coupling with velocity field is employed to study the effect of boundary heat flux on the microstructure formation of a Ni-40.8%Cu alloy with liquid flow during the solidification, and an anti-trapping current is introduced to suppress the solute trapping due to the larger interface width used in simulations than a real solidifying material. The effect of the flow field coupling with boundary heat extractions on the microstructure formation as well as distributions of concentration and temperature fields are analyzed and discussed. The forced liquid flow can significantly affect the heat and solute diffusions, thus influencing morphology formation, concentration and temperature distributions during the solidification. The solute segregation and concentration diffusion are changed by boundary heat extractions, and the morphology, concentration and temperature distributions are significantly influenced by increasing the heat extraction, which relatively makes the effect of liquid flow constrained. By increasing the initial velocity of liquid flow, the lopsided rate of the primary dendrite arm is enlarged and the growth manner of dendrite arms gets changed, and the transition of the microstructure from dendrite to cellular moves to the large heat extraction direction. Therefore, there exists the competition between the heat flux, temperature gradient and forced liquid flow that finally determines the microstructure formation during directional solidification.

  1. Tuning the instability in static mode atomic force spectroscopy as obtained in an AFM by applying an electric field between the tip and the substrate.

    Science.gov (United States)

    Biswas, Soma; Raychaudhuri, A K; Sreeram, P A; Dietzel, Dirk

    2012-11-01

    We have investigated experimentally the role of cantilever instabilities in determination of the static mode force-distance curves in presence of a dc electric field. The electric field has been applied between the tip and the sample in an atomic force microscope working in ultra-high vacuum. We have shown how an electric field modifies the observed force (or cantilever deflection)-vs-distance curves, commonly referred to as the static mode force spectroscopy curves, taken using an atomic force microscope. The electric field induced instabilities shift the jump-into-contact and jump-off-contact points and also the deflection at these instability points. We explained the experimental results using a model of the tip-sample interaction and quantitatively established a relation between the observed static mode force spectroscopy curves and the applied electric field which modifies the effective tip-sample interaction in a controlled manner. The investigation establishes a way to quantitatively evaluate the electrostatic force in an atomic force microscope using the static mode force spectroscopy curves. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Analytic cubic and quartic force fields using density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Ringholm, Magnus; Gao, Bin; Thorvaldsen, Andreas J.; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); Jonsson, Dan [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); High Performance Computing Group, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm, Sweden and PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Ekström, Ulf; Helgaker, Trygve [Center for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo (Norway)

    2014-01-21

    We present the first analytic implementation of cubic and quartic force constants at the level of Kohn–Sham density-functional theory. The implementation is based on an open-ended formalism for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with respect to nuclear displacements as well as automatic differentiation of the exchange–correlation kernels. We use generalized second-order vibrational perturbation theory to calculate the fundamental frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and Hartree–Fock results. The Hartree–Fock anharmonic corrections agree well with the B3LYP corrections when calculated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of electron correlation is not essential for the reliable calculation of cubic and quartic force constants.

  3. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Directory of Open Access Journals (Sweden)

    Shilei Liu

    2017-07-01

    Full Text Available Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF and acoustic streaming (AS. In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV. Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.

  4. Defining Condensed Phase Reactive Force Fields from ab Initio Molecular Dynamics Simulations: The Case of the Hydrated Excess Proton.

    Science.gov (United States)

    Knight, Chris; Maupin, C Mark; Izvekov, Sergei; Voth, Gregory A

    2010-10-12

    In this report, a general methodology is presented for the parametrization of a reactive force field using data from a condensed phase ab initio molecular dynamics (AIMD) simulation. This algorithm allows for the creation of an empirical reactive force field that accurately reproduces the underlying ab initio reactive surface while providing the ability to achieve long-time statistical sampling for large systems not possible with AIMD alone. In this work, a model for the hydrated excess proton is constructed where the hydronium cation and proton hopping portions of the model are statistically force-matched to the results of Car-Parrinello Molecular Dynamics (CPMD) simulations. The flexible nature of the algorithm also allows for the use of the more accurate classical simple point-charge flexible water (SPC/Fw) model to describe the water-water interactions while utilizing the ab initio data to create an overall multistate molecular dynamics (MS-MD) reactive model of the hydrated excess proton in water. The resulting empirical model for the system qualitatively reproduces thermodynamic and dynamic properties calculated from the ab initio simulation while being in good agreement with experimental results and previously developed multistate empirical valence bond (MS-EVB) models. The present methodology, therefore, bridges the AIMD technique with the MS-MD modeling of reactive events, while incorporating key strengths of both.

  5. The inertial effect of acceleration fields on a self-decoupled wheel force transducer

    Directory of Open Access Journals (Sweden)

    Lihang Feng

    Full Text Available AbstractWheel force transducer (WFT is a tool which can measure the three-axis forces and three-axis torques applied to the wheel in vehicle testing applications. However, the transducer is generally mounted on the wheel of a moving vehicle, when abruptly accelerating or braking, the mass/inertia of the transducer itself has extra effects on the sensor response so that inertia/mass loads will be detected and coupled into the signal outputs. This is the inertia coupling effect that decreases the sensor accuracy and should be avoided. In this paper, the inertia coupling problem induced by six dimensional accelerations is investigated for a universal WFT. Inertia load distribution of the WFT is solved based on the principle of equivalent mass and rotary inertia firstly, thus then its impact can be identified with the theoretical derivation. FEM simulation and experimental verification are performed as well. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear respectively. The relative errors are acceptable within less than 5% and the maximum impact of inertia loads on the signal output is about 1.5% in the measuring range.

  6. Live cell near-field optical imaging and voltage sensing with ultrasensitive force control.

    Science.gov (United States)

    Brahami, Aaron; Levy, Hadas; Zlotkin-Rivkin, Efrat; Melamed-Book, Naomi; Tal, Nataly; Lev, Dmitry; Yeshua, Talia; Fedosyeyev, Oleg; Aroeti, Benjamin; Lewis, Aaron

    2017-05-29

    Force controlled optical imaging of membranes of living cells is demonstrated. Such imaging has been extended to image membrane potential changes to demonstrate that live cell imaging has been achieved. To accomplish this advance, limitations inherent in atomic force microscopy (AFM) since its inception in 1986 [G. Binnig, C. F. Quate, and C. Gerber, "Atomic Force Microscope," Phys. Rev. Lett. 56, 930-933 (1986).] had to be overcome. The advances allow for live cell imaging of a whole genre of functional biological imaging with stiff (1-10N/m) scanned probe imaging cantilevers. Even topographic imaging of fine cell protrusions, such as microvilli, has been accomplished with such cantilevers. Similar topographic imaging has only recently been demonstrated with the standard soft (0.05N/m) cantilevers that are generally required for live cell imaging. The progress reported here demonstrates both ultrasensitive AFM (~100pN), capable of topographic imaging of even microvilli protruding from cell membranes and new functional applications that should have a significant impact on optical and other approaches in biological imaging of living systems and ultrasoft materials.

  7. Acoustic radiation force on a multilayered sphere in a Gaussian standing field

    Science.gov (United States)

    Wang, Haibin; Liu, Xiaozhou; Gao, Sha; Cui, Jun; Liu, Jiehui; He, Aijun; Zhang, Gutian

    2018-03-01

    We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach. An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid. The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed, with particular emphasis on the shell thickness of every layer, and the width of the Gaussian beam. The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka, as well as the shell thickness of each layer. This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave, which may benefit the improvement and development of acoustic control technology, such as trapping, sorting, and assembling a cell, and drug delivery applications. Project supported by National Key R&D Program (Grant No. 2016YFF0203000), the National Natural Science Foundation of China (Grant Nos. 11774167 and 61571222), the Fundamental Research Funds for the Central Universities of China (Grant No. 020414380001), the Key Laboratory of Underwater Acoustic Environment, Institute of Acoustics, Chinese Academy of Sciences (Grant No. SSHJ-KFKT-1701), and the AQSIQ Technology R&D Program of China (Grant No. 2017QK125).

  8. Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms

    International Nuclear Information System (INIS)

    Kharchenko, V.F.

    2015-01-01

    The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of the bound system formed by the Coulomb interaction the corresponding inhomogeneous integral equation determining an off-shell scattering function, which consistently describes virtual multiple scattering, can be solved exactly analytically for all electric multipole polarizabilities. Our method allows to reproduce the known Dalgarno–Lewis formula for electric multipole polarizabilities of the hydrogen atom in the ground state and can also be applied to determine the polarizability of the atom in excited bound states. - Highlights: • A new description for electric polarization of hydrogen-like atoms. • Expression for multipole polarizabilities in terms of off-shell scattering functions. • Derivation of integral equation determining the off-shell scattering function. • Rigorous analytic solving the integral equations both for ground and excited states. • Study of contributions of virtual multiple scattering to electric polarizabilities

  9. Linear evolution of current sheets in sheared force-free magnetic fields with discontinuous connectivity

    Science.gov (United States)

    Wolfson, Richard

    1990-01-01

    Thin current sheets arising in tenuous, magnetized solar coronal plasmas may constitute an important mechanism for energy buildups and subsequent energy releases; they could arise from the continuous-and-random motion of magnetic footprints associated with photospheric velocity fields. A model is presented for study of the quasi-static evolution of current sheets due to shearing of the footpoints, in a highly idealized geometry that incorporates an abrupt jump in field-line connectivity. The model highlights that formation of thin current layers and allows large shearing motions prior to violation of the linear approximation. Excess energy comparable to that released by solar flares can be stored in a sheared field.

  10. Three-dimensional morphologies of inclined equiaxed dendrites growing under forced convection by phase-field-lattice Boltzmann method

    Science.gov (United States)

    Sakane, Shinji; Takaki, Tomohiro; Ohno, Munekazu; Shibuta, Yasushi; Shimokawabe, Takashi; Aoki, Takayuki

    2018-02-01

    Three-dimensional growth morphologies of equiaxed dendrites growing under forced convection, with their preferred growth direction inclined from the flow direction, were investigated by performing large-scale phase-field lattice Boltzmann simulations on a graphical-processing-unit supercomputer. The tip velocities of the dendrite arms with their preferred growth directions inclined toward the upstream and downstream directions increased and decreased, respectively, as a result of forced convection. In addition, the tip velocities decreased monotonically as the angle between the preferred growth direction and the upstream direction increased. Here, the degree of acceleration of the upstream tips was larger than the degree of deceleration of the downstream tips. The angles between the actual tip growth directions and the preferred growth direction of the dendrite arms exhibited a characteristic change with two local maxima and two local minima.

  11. π -Stacking interactions in YFP, quantum mechanics and force field evaluations in the S0 and S1 states

    Science.gov (United States)

    Merabti, Karim Elhadj; Azizi, Sihem; Ridard, Jacqueline; Lévy, Bernard; Demachy, Isabelle

    2017-08-01

    We study the π -stacking interaction between the chromophore and Tyr203 in the Yellow Fluorescent Protein (YFP) in order to (i) evaluate the contribution of the internal interaction energy of the isolated Chromophore-Tyrosine complex (Eint) to the 26 nm red shift observed from GFP to YFP, (ii) compare the effects of Eint and of the proteic environment. To that end, we perform quantum mechanical and force field (ff) calculations of the isolated complex in S0 and S1 states on a large sample of geometries, together with molecular dynamics simulations and potential of mean force analysis. The calculated absorption wavelengths are found red shifted with respect to the isolated chromophore by 12-19 nm, that represents a large part of the GFP-YFP shift. We find that the effect of the protein is determinant on the dynamics of the complex while the error that results from using a classicalff is of limited effect.

  12. Direction Change of the Force Action upon Conductor under Frequency Variation of the Acting Magnetic Field

    OpenAIRE

    Batygin, Yu.; Khimenko, l.; Lavinsky, V.

    2004-01-01

    The present work is dedicated to the description of the thin-walled conductor attraction effect by the pulse magnetic field. This phenomenon was displayed experimentally. The effect pointed out relates to the direction of the pulse magnetic fields energy practical usage for the different technologies in manufacture. In the scientific literature this direction is known as the magnetic pulse metal forming. A hypothesis about the physical essence of the displayed phenomenon is suggested.

  13. An Empirical Evaluation of Air Force Field Feeding with Recommendations for a New System

    Science.gov (United States)

    1984-06-01

    Refrigerator 1 Hobart HS-l 1585.00 Hot Holding Cabinets 2 Crescent Metal H-138-COD- 1834 930.00 Vegetable Slicer, Grater, Shredder 1 Qualheim 440...the main complaint of 75% of the cooks concerned the breakdowns in the provision of steam. -o ., 0_ 󈨑T --v7 T. 4. APPENDIX D 1. THE HARVEST BARE FOOD...food service operations. The Air Force allows for further breakdown based on operational requirements. The URN kits are arranged so that support pack

  14. The attenuation of the levitation force of HTS bulk exposed to AC magnetic field on the above NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Liu Minxian, E-mail: liukey_sjtu@263.net [School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Wang Yan [Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China)

    2012-01-15

    The characteristic of the levitation force relaxation was studied by experiment. The levitation force is attenuated with the application of the AC external magnetic field. The decay increases with the amplitude of the A external magnetic field. The decay is almost independent of the frequency of AC field. In the present High Temperature Superconducting (HTS) maglev vehicle system, the air gaps between the adjacent permanent magnets make the magnetic fields above the NdFeB guideway non-uniform. So it is required to study the characteristics of levitation force of the HTS bulk affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we have studied the characteristics of the levitation force relaxation by an experiment in which AC magnetic field generated by an electromagnet is used to simulate the time-varying magnetic field caused by the inhomogeneity of the NdFeB guideway. From the experiment results, it is found that the levitation force is attenuated with the application of the AC field, and the attenuation is increased with the amplitude of the AC field, but the attenuation is almost independent of the frequency the AC magnetic field.

  15. The attenuation of the levitation force of HTS bulk exposed to AC magnetic field on the above NdFeB guideway

    International Nuclear Information System (INIS)

    Liu Minxian; Wang Yan

    2012-01-01

    The characteristic of the levitation force relaxation was studied by experiment. The levitation force is attenuated with the application of the AC external magnetic field. The decay increases with the amplitude of the A external magnetic field. The decay is almost independent of the frequency of AC field. In the present High Temperature Superconducting (HTS) maglev vehicle system, the air gaps between the adjacent permanent magnets make the magnetic fields above the NdFeB guideway non-uniform. So it is required to study the characteristics of levitation force of the HTS bulk affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we have studied the characteristics of the levitation force relaxation by an experiment in which AC magnetic field generated by an electromagnet is used to simulate the time-varying magnetic field caused by the inhomogeneity of the NdFeB guideway. From the experiment results, it is found that the levitation force is attenuated with the application of the AC field, and the attenuation is increased with the amplitude of the AC field, but the attenuation is almost independent of the frequency the AC magnetic field.

  16. Combining displacement field and grip force information to determine mechanical properties of planar tissue with complicated geometry.

    Science.gov (United States)

    Nagel, Tina M; Hadi, Mohammad F; Claeson, Amy A; Nuckley, David J; Barocas, Victor H

    2014-11-01

    Performing planar biaxial testing and using nominal stress-strain curves for soft-tissue characterization is most suitable when (1) the test produces homogeneous strain fields, (2) fibers are aligned with the coordinate axes, and (3) strains are measured far from boundaries. Some tissue types [such as lamellae of the annulus fibrosus (AF)] may not allow for these conditions to be met due to their natural geometry and constitution. The objective of this work was to develop and test a method utilizing a surface displacement field, grip force-stretch data, and finite-element (FE) modeling to facilitate analysis of such complex samples. We evaluated the method by regressing a simple structural model to simulated and experimental data. Three different tissues with different characteristics were used: Superficial pectoralis major (SPM) (anisotropic, aligned with axes), facet capsular ligament (FCL) (anisotropic, aligned with axes, bone attached), and a lamella from the AF (anisotropic, aligned off-axis, bone attached). We found that the surface displacement field or the grip force-stretch data information alone is insufficient to determine a unique parameter set. Utilizing both data types provided tight confidence regions (CRs) of the regressed parameters and low parameter sensitivity to initial guess. This combined fitting approach provided robust characterization of tissues with varying fiber orientations and boundaries and is applicable to tissues that are poorly suited to standard biaxial testing. The structural model, a set of C++ finite-element routines, and a Matlab routine to do the fitting based on a set of force/displacement data is provided in the on-line supplementary material.

  17. Simultaneous fitting of a potential-energy surface and its corresponding force fields using feedforward neural networks

    Science.gov (United States)

    Pukrittayakamee, A.; Malshe, M.; Hagan, M.; Raff, L. M.; Narulkar, R.; Bukkapatnum, S.; Komanduri, R.

    2009-04-01

    An improved neural network (NN) approach is presented for the simultaneous development of accurate potential-energy hypersurfaces and corresponding force fields that can be utilized to conduct ab initio molecular dynamics and Monte Carlo studies on gas-phase chemical reactions. The method is termed as combined function derivative approximation (CFDA). The novelty of the CFDA method lies in the fact that although the NN has only a single output neuron that represents potential energy, the network is trained in such a way that the derivatives of the NN output match the gradient of the potential-energy hypersurface. Accurate force fields can therefore be computed simply by differentiating the network. Both the computed energies and the gradients are then accurately interpolated using the NN. This approach is superior to having the gradients appear in the output layer of the NN because it greatly simplifies the required architecture of the network. The CFDA permits weighting of function fitting relative to gradient fitting. In every test that we have run on six different systems, CFDA training (without a validation set) has produced smaller out-of-sample testing error than early stopping (with a validation set) or Bayesian regularization (without a validation set). This indicates that CFDA training does a better job of preventing overfitting than the standard methods currently in use. The training data can be obtained using an empirical potential surface or any ab initio method. The accuracy and interpolation power of the method have been tested for the reaction dynamics of H+HBr using an analytical potential. The results show that the present NN training technique produces more accurate fits to both the potential-energy surface as well as the corresponding force fields than the previous methods. The fitting and interpolation accuracy is so high (rms error=1.2 cm-1) that trajectories computed on the NN potential exhibit point-by-point agreement with corresponding

  18. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field.

    Science.gov (United States)

    Batcho, C S; Gagné, M; Bouyer, L J; Roy, J S; Mercier, C

    2016-11-19

    When subjects learn a novel motor task, several sources of feedback (proprioceptive, visual or auditory) contribute to the performance. Over the past few years, several studies have investigated the role of visual feedback in motor learning, yet evidence remains conflicting. The aim of this study was therefore to investigate the role of online visual feedback (VFb) on the acquisition and retention stages of motor learning associated with training in a reaching task. Thirty healthy subjects made ballistic reaching movements with their dominant arm toward two targets, on 2 consecutive days using a robotized exoskeleton (KINARM). They were randomly assigned to a group with (VFb) or without (NoVFb) VFb of index position during movement. On day 1, the task was performed before (baseline) and during the application of a velocity-dependent resistive force field (adaptation). To assess retention, participants repeated the task with the force field on day 2. Motor learning was characterized by: (1) the final endpoint error (movement accuracy) and (2) the initial angle (iANG) of deviation (motor planning). Even though both groups showed motor adaptation, the NoVFb-group exhibited slower learning and higher final endpoint error than the VFb-group. In some condition, subjects trained without visual feedback used more curved initial trajectories to anticipate for the perturbation. This observation suggests that learning to reach targets in a velocity-dependent resistive force field is possible even when feedback is limited. However, the absence of VFb leads to different strategies that were only apparent when reaching toward the most challenging target. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Simulations of A-RNA duplexes. The effect of sequence, solute force field, water model, and salt concentration

    Czech Academy of Sciences Publication Activity Database

    Beššeová, Ivana; Banáš, Pavel; Kührová, P.; Košinová, P.; Otyepka, Michal; Šponer, Jiří

    Roč. 116, č. 33 ( 2012 ), s. 9899-9916 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GBP305/12/G034; GA ČR(CZ) GAP208/12/1878; GA ČR(CZ) GD203/09/H046; GA ČR(CZ) GA203/09/1476 Grant - others:GA AV ČR(CZ) GPP301/11/P558 Program:GP Institutional research plan: CEZ:AV0Z50040702 Keywords : A-RNA * molecular dynamics * force field Subject RIV: BO - Biophysics Impact factor: 3.607, year: 2012

  20. Te inclusion-induced electrical field perturbation in CdZnTe single crystals revealed by Kelvin probe force microscopy.

    Science.gov (United States)

    Gu, Yaxu; Jie, Wanqi; Li, Linglong; Xu, Yadong; Yang, Yaodong; Ren, Jie; Zha, Gangqiang; Wang, Tao; Xu, Lingyan; He, Yihui; Xi, Shouzhi

    2016-09-01

    To understand the effects of tellurium (Te) inclusions on the device performance of CdZnTe radiation detectors, the perturbation of the electrical field in and around Te inclusions was studied in CdZnTe single crystals via Kelvin probe force microscopy (KPFM). Te inclusions were proved to act as lower potential centers with respect to surrounding CdZnTe matrix. Based on the KPFM results, the energy band diagram at the Te/CdZnTe interface was established, and the bias-dependent effects of Te inclusion on carrier transportation is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.