WorldWideScience

Sample records for polarizabilities chiral model

  1. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ehbert, D.

    1980-01-01

    The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Lanta and Tarrach is given. The results of the paper give evidence to the nonlinear chiral Lagrangian favour

  2. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ebert, D.

    1981-01-01

    It is shown that the pion polarizability calculated in a chiral model with quark loops agrees exactly with the analogous quantity found in a chiral meson-baryon model. The results of a paper by Llanta and Tarrach are discussed critically

  3. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1981-01-01

    The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given. (orig.)

  4. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ehbert, D.

    1981-01-01

    The pion polarizability is calculated in a chiral meson- quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given [ru

  5. Chiral model predictions for electromagnetic polarizabilities of the nucleon: A 'consumer report'

    International Nuclear Information System (INIS)

    Broniowski, W.

    1992-01-01

    This contribution has two parts: (1) The author critically discusses predictions for the electromagnetic polarizabilities of the nucleon obtained in two different approaches: (a) hedgehog models (HM), such as Skyrmions, chiral quark models, hybrid bags, NJL etc., and (b) chiral perturbation theory (χPT). (2) The author shows new results obtained in HM: N c -counting of polarizabilities, splitting of the neutron and proton polarizabilities (he argues that α n > α p in models with pionic clouds), relevance of dispersive terms in the magnetic polarizability β, important role of the Δ resonance in pionic loops, and the effects of non-minimal substitution terms in the effective lagrangian. 3 refs

  6. Generalized polarizabilities of the nucleon in baryon chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Lensky, Vadim [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Pascalutsa, Vladimir; Vanderhaeghen, Marc [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany)

    2017-02-15

    The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep → epγ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (BχPT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χPT (HBχPT) - and discuss the differences between BχPT and HBχPT responsible for these discrepancies. (orig.)

  7. Electromagnetic polarizabilities of hadrons

    International Nuclear Information System (INIS)

    Friar, J.L.

    1988-01-01

    Electromagnetic polarizabilities of hadrons are reviewed, after a discussion of classical analogues. Differences between relativistic and non-relativistic approaches can lead to conflicts with conventional nuclear physics sum rules and calculational techniques. The nucleon polarizabilities are discussed in the context of the non-relativistic valence quark model, which provides a good qualitative description. The recently measured pion polarizabilities are discussed in the context of chiral symmetry and quark-loop models. 58 refs., 5 figs

  8. Chiral bag model

    International Nuclear Information System (INIS)

    Musakhanov, M.M.

    1980-01-01

    The chiral bag model is considered. It is suggested that pions interact only with the surface of a quark ''bag'' and do not penetrate inside. In the case of a large bag the pion field is rather weak and goes to the linearized chiral bag model. Within that model the baryon mass spectrum, β decay axial constant, magnetic moments of baryons, pion-baryon coupling constants and their form factors are calculated. It is shown that pion corrections to the calculations according to the chiral bag model is essential. The obtained results are found to be in a reasonable agreement with the experimental data

  9. Pion polarizability in nonlocal quark model

    International Nuclear Information System (INIS)

    Efimov, G.V.; Okhlopkova, V.A.

    1978-01-01

    The γγ→ππ amplitude was calculated in nonlocal quark model in the fourth order on the perturbation theory. The coefficients of electric[a) and magnetic polarizability (β) determined are equal in magnitude and opposite in sign αsub(π+-)=βsub(π+-)=+0.014α/msub(π)sup(3), αsub(πsup(0))=-βsub(πsup(0))=-0.07α/msub(π)sup(3). The results have been compared with calculations in other models

  10. New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory

    International Nuclear Information System (INIS)

    Chung-Wen Kao; Barbara Pasquini; Marc Vanderhaeghen

    2004-01-01

    We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering (VCS) at Ο(p 4 ) in heavy baryon chiral perturbation theory. At this order, no unknown low energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the VCS amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double polarization experiments which allow to access these spin-flip GPs of the nucleon

  11. Measurement of pion polarizability and chiral anomaly in Primakoff reactions at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Thiemo; Friedrich, Jan Michael; Gerassimov, Sergei; Grabmueller, Stefanie; Haas, Florian; Ketzer, Bernhard; Konorov, Igor; Kuhn, Roland; Neubert, Sebastian; Paul, Stephan; Weitzel, Quirin [TU Muenchen, Physik-Department E18 (Germany); Dinkelbach, Anna-Maria [Prueftechnik Alignment Systems, Ismaning (Germany)

    2008-07-01

    In a pilot run in 2004, the COMPASS experiment at CERN observed the scattering of negative pions of 190 GeV/c off various nuclear targets, measuring soft processes. Primakoff reactions, i.e. interactions between the beam particle and a quasi-real photon from the Coulomb field of the nucleus, are used to study the physics of strong interaction at small momentum transfer. The inverse Compton scattering reaction {pi}{sup -}+Z{yields}{pi}{sup -}+{gamma}+Z gives access to the polarizabilities anti {alpha}{sub {pi}} and anti {beta}{sub {pi}} of the beam pion, which may be used to test chiral pertubation theory. Under the assumption of anti {alpha}{sub {pi}}+ anti {beta}{sub {pi}}=0 a preliminary result has been extracted which is in agreement with calculations of {chi}PT. The {pi}{sup 0} production reaction {pi}{sup -}+Z{yields}{pi}{sup -}+{pi}{sup 0}+Z permits determination of the F{sup 3{pi}} coupling constant of the {gamma}{yields}3{pi} vertex, a measurement crucial for the confirmation of the chiral anomaly hypothesis. Here, the current status of analysis will be shown.

  12. Nucleon electric polarizability in soliton models and the role of the seagull terms

    International Nuclear Information System (INIS)

    Scoccola, N.N.; Cohen, T.D.

    1996-01-01

    The full Hamiltonian of the soliton models contains no electric seagull terms. Here it is shown that if one restricts the fields to the collective subspace then electric seagull terms are induced in the effective Hamiltonian. These effective seagull contributions are consistent with gauge invariance. They also reproduce the leading non-analytic behavior of a large N c chiral perturbation theory calculation of the electric polarizability. (orig.)

  13. Model-independent effects of Δ excitation in nucleon polarizabilities

    International Nuclear Information System (INIS)

    Pascalutsa, Vladimir; Phillips, Daniel R.

    2003-01-01

    Model-independent effects of Δ(1232) excitation on nucleon polarizabilities are computed in a Lorentz-invariant fashion. We find a large effect of relative order (M Δ -M)/M in some of the spin polarizabilities, with the backward spin polarizability receiving the largest contribution. Similar subleading effects are found to be important in the fourth-order spin-independent polarizabilities α Eν , α E2 , β Mν , and β M2 . Combining our results with those for the model-independent effects of pion loops we obtain predictions for spin and fourth-order polarizabilities which compare favorably with the results of a recent dispersion-relation analysis of data

  14. Siegel's chiral boson and the chiral Schwinger model

    International Nuclear Information System (INIS)

    Berger, T.

    1992-01-01

    In this paper Siegel's proposal for a Lagrangian formulation of a chiral boson is analyzed by applying recent results on 2d chiral quantum gravity. A model is derived whose solution consists of a massive scalar and two massless chiral scalars. Therefore it is a minimally bosonized two-fermion chiral Schwinger model

  15. Dynamical chiral bag model

    International Nuclear Information System (INIS)

    Colanero, K.; Chu, M.-C.

    2002-01-01

    We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson wave we find three different kinds of resonances: fermionic, geometric, and σ resonances. We discuss the phenomenological implications of our results

  16. Hyperon polarizabilities in the bound-state soliton model

    International Nuclear Information System (INIS)

    Gobbi, C.; Scoccola, N.N.

    1996-01-01

    A detailed calculation of electric and magnetic static polarizabilities of octet hyperons is presented in the framework of the bound-state soliton model. Both seagull and dispersive contributions are considered, and the results are compared with different model predictions. (orig.)

  17. Molecular polarizabilities and susceptibilities from Frost-model wavefunctions

    International Nuclear Information System (INIS)

    Amos, A.T.; Yoffe, J.A.

    1975-01-01

    Average polarizabilities and susceptibilities of a number of molecules are computed from Frost-model wavefunctions using a form of symmetry-adapted double perturbation theory. The anisotropy of α and chi is found for a few molecules using the elliptical Gaussian form of the Frost model. The results obtained are in reasonable agreement with experiment and other calculated values

  18. Electro-optical parameters of bond polarizability model for aluminosilicates.

    Science.gov (United States)

    Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam

    2006-04-06

    Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.

  19. Non-uniform chiral phase in effective chiral quark models

    International Nuclear Information System (INIS)

    Sadzikowski, M.; Broniowski, W.

    2000-01-01

    We analyze the phase diagram in effective chiral quark models (the Nambu-Jona-Lasinio model, the σ-model with quarks) and show that at the mean-field level a phase with a periodically-modulated chiral fields separates the usual phases with broken and restored chiral symmetry. A possible signal of such a phase is the production of multipion jets travelling in opposite directions, with individual pions having momenta of the order of several hundred MeV. This signal can be interpreted in terms of disoriented chiral condensates. (author)

  20. Chiral Thirring–Wess model

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Anisur, E-mail: anisur.rahman@saha.ac.in

    2015-10-15

    The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson.

  1. Chiral Thirring–Wess model

    International Nuclear Information System (INIS)

    Rahaman, Anisur

    2015-01-01

    The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson

  2. Chiral soliton models for baryons

    International Nuclear Information System (INIS)

    Weigel, H.

    2008-01-01

    This concise research monograph introduces and reviews the concept of chiral soliton models for baryons. In these models, baryons emerge as (topological) defects of the chiral field. The many applications shed light on a number of baryon properties, ranging from static properties via nucleon resonances and deep inelastic scattering to even heavy ion collisions. As far as possible, the theoretical investigations are confronted with experiment. Conceived to bridge the gap between advanced graduate textbooks and the research literature, this volume also features a number of appendices to help nonspecialist readers to follow in more detail some of the calculations in the main text. (orig.)

  3. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model

    Science.gov (United States)

    Pande, Vijay S.; Head-Gordon, Teresa; Ponder, Jay W.

    2016-01-01

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. The protocol uses an automated procedure, ForceBalance, to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimentally obtained data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The new AMOEBA14 water model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures ranging from 249 K to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to a variety of experimental properties as a function of temperature, including the 2nd virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient and dielectric constant. The viscosity, self-diffusion constant and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2 to 20 water molecules, the AMOEBA14 model yields results similar to the AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model. PMID:25683601

  4. Variational approach to chiral quark models

    Energy Technology Data Exchange (ETDEWEB)

    Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira

    1987-03-01

    A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation.

  5. A variational approach to chiral quark models

    International Nuclear Information System (INIS)

    Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira.

    1987-01-01

    A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation. (author)

  6. Transferability of polarizable models for ion-water electrostatic interaction

    International Nuclear Information System (INIS)

    Masia, Marco

    2009-01-01

    Studies of ion-water systems at condensed phase and at interfaces have pointed out that molecular and ionic polarization plays an important role for many phenomena ranging from hydrogen bond dynamics to water interfaces' structure. Classical and ab initio Molecular Dynamics simulations reveal that induced dipole moments at interfaces (e.g. air-water and water-protein) are usually high, hinting that polarizable models to be implemented in classical force fields should be very accurate in reproducing the electrostatic properties of the system. In this paper the electrostatic properties of three classical polarizable models for ion-water interaction are compared with ab initio results both at gas and condensed phase. For Li + - water and Cl - -water dimers the reproducibility of total dipole moments obtained with high level quantum chemical calculations is studied; for the same ions in liquid water, Car-Parrinello Molecular Dynamics simulations are used to compute the time evolution of ionic and molecular dipole moments, which are compared with the classical models. The PD2-H2O model developed by the author and coworkers [Masia et al. J. Chem. Phys. 2004, 121, 7362] together with the gaussian intermolecular damping for ion-water interaction [Masia et al. J. Chem. Phys. 2005, 123, 164505] showed to be the fittest in reproducing the ab initio results from gas to condensed phase, allowing for force field transferability.

  7. Supersymmetry and the chiral Schwinger model

    International Nuclear Information System (INIS)

    Amorim, R.; Das, A.

    1998-01-01

    We have constructed the N= (1) /(2) supersymmetric general Abelian model with asymmetric chiral couplings. This leads to a N= (1) /(2) supersymmetrization of the Schwinger model. We show that the supersymmetric general model is plagued with problems of infrared divergence. Only the supersymmetric chiral Schwinger model is free from such problems and is dynamically equivalent to the chiral Schwinger model because of the peculiar structure of the N= (1) /(2) multiplets. copyright 1998 The American Physical Society

  8. Modeling Electronic Circular Dichroism within the Polarizable Embedding Approach

    DEFF Research Database (Denmark)

    Nørby, Morten S; Olsen, Jógvan Magnus Haugaard; Steinmann, Casper

    2017-01-01

    We present a systematic investigation of the key components needed to model single chromophore electronic circular dichroism (ECD) within the polarizable embedding (PE) approach. By relying on accurate forms of the embedding potential, where especially the inclusion of local field effects...... are in focus, we show that qualitative agreement between rotatory strength parameters calculated by full quantum mechanical calculations and the more efficient embedding calculations can be obtained. An important aspect in the computation of reliable absorption parameters is the need for conformational...... sampling. We show that a significant number of snapshots are needed to avoid artifacts in the calculated electronic circular dichroism parameters due to insufficient configurational sampling, thus highlighting the efficiency of the PE model....

  9. An averaged polarizable potential for multiscale modeling in phospholipid membranes

    DEFF Research Database (Denmark)

    Witzke, Sarah; List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard

    2017-01-01

    A set of average atom-centered charges and polarizabilities has been developed for three types of phospholipids for use in polarizable embedding calculations. The lipids investigated are 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1-palmitoyl...

  10. Principal chiral model on superspheres

    International Nuclear Information System (INIS)

    Mitev, V.; Schomerus, V.; Quella, T.

    2008-09-01

    We investigate the spectrum of the principal chiral model (PCM) on odd-dimensional superspheres as a function of the curvature radius R. For volume-filling branes on S 3 vertical stroke 2 , we compute the exact boundary spectrum as a function of R. The extension to higher dimensional superspheres is discussed, but not carried out in detail. Our results provide very convincing evidence in favor of the strong-weak coupling duality between supersphere PCMs and OSP(2S+2 vertical stroke 2S) Gross-Neveu models that was recently conjectured by Candu and Saleur. (orig.)

  11. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  12. Timoshenko beam model for chiral materials

    Science.gov (United States)

    Ma, T. Y.; Wang, Y. N.; Yuan, L.; Wang, J. S.; Qin, Q. H.

    2018-06-01

    Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton's principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.

  13. Pentaquarks in chiral color dielectric model

    Indian Academy of Sciences (India)

    Recent experiments indicate that a narrow baryonic state having strangeness +1 and mass of about 1540 MeV may be existing. Such a state was predicted in chiral model by Diakonov et al. In this work I compute the mass and width of this state in chiral color dielectric model. I show that the computed width is about 30 MeV.

  14. Hadron properties in chiral sigma model

    International Nuclear Information System (INIS)

    Shen Hong

    2005-01-01

    The modification of hadron masses in nuclear medium is studied by using the chiral sigma model, which is extended to generate the omega meson mass by the sigma condensation in the vacuum in the same way as the nucleon mass. The chiral sigma model provides proper equilibrium properties of nuclear matter. It is shown that the effective masses of both nucleons and omega mesons decrease in nuclear medium, while the effective mass of sigma mesons increases oat finite density in the chiral sigma model. The results obtained in the chiral sigma model are compared with those obtained in the Walecka model, which includes sigma and omega mesons in a non-chiral fashion. (author)

  15. The paradigm of Pseudodual Chiral Models

    International Nuclear Information System (INIS)

    Zachos, C.K.; Curtright, T.L.

    1994-01-01

    This is a synopsis and extension of Phys. Rev. D49 5408 (1994). The Pseudodual Chiral Model illustrates 2-dimensional field theories which possess an infinite number of conservation laws but also allow particle production, at variance with naive expectations-a folk theorem of integrable models. We monitor the symmetries of the pseudodual model, both local and nonlocal, as transmutations of the symmetries of the (very different) usual Chiral Model. We refine the conventional algorithm to more efficiently produce the nonlocal symmetries of the model. We further find the canonical transformation which connects the usual chiral model to its fully equivalent dual model, thus contradistinguishing the pseudodual theory

  16. Recent status of the chiral bag model

    International Nuclear Information System (INIS)

    Hosaka, Atsushi; Toki, Hiroshi.

    1995-01-01

    In this note, recent status of the chiral bag model is presented. As it combines the MIT quark bag model and the Skyrme model, the chiral bag model interpolates the two models smoothly as a function of the chiral bag radius R. The correct limit of R → ∞ is reproduced by including the higher order terms in the Ω expansion of the cranking method. It resolves the so-called small g A problem in a class of models where the semiclassical method is used. (author)

  17. Quantum chromodynamics, chiral symmetry and bag models

    International Nuclear Information System (INIS)

    Soyeur, M.

    1983-08-01

    This course deals with the following subjects: quarks; quantum chromodynamics (the classical Lagrangian of QCD, quark masses, the classical equations of motion of QCD, general properties, lattices); chiral symmetry (massless free Dirac theory, realizations, the σ-model); the M.I.T. bag model (basic assumptions and equations of motion, spherical cavity approximation, properties of hadrons); the chiral bag models (basic assumptions, the cloudy bag model, the little bag model); non-topological soliton bag models

  18. Unified Chiral models of mesons and baryons

    International Nuclear Information System (INIS)

    Mendez-Galain, R.; Ripka, G.

    1990-01-01

    Unified Chiral models of mesons and baryons are presented. Emphasis is placed on the underlying quark structure of hadrons including the Skyrmion. The Nambu Jona-Lasinio model with vector mesons is discussed

  19. Bag model with broken chiral symmetry

    International Nuclear Information System (INIS)

    Efrosinin, V.P.; Zaikin, D.A.

    1986-01-01

    A variant of the bag model in which chiral symmetry is broken and which provides a description of all the experimental data on the light hadrons, including the pion, is discussed. The pion and kaon decay constants are calculated in this model. The problem of taking into account the center-of-mass motion in bag models and the boundary conditions in the bag model with broken chiral symmetry are also discussed

  20. A nonlocal model of chiral dynamics

    International Nuclear Information System (INIS)

    Holdom, B.; Terning, J.; Verbeek, K.

    1989-01-01

    We consider a nonlocal generalization of the nonlinear σ model. Our chirally symmetric model couples quarks with self-energy Σ(p) to Goldstone bosons (GBs). By integrating out the quarks we obtain a chiral lagrangian, the parameters of which are finite integrals of Σ(p). We find that chiral symmetry is not sufficient to derive the well-known Pagels-Stokar formula for the GB decay constant. We reproduce the Wess-Zumino term and we illustrate the dependence of other four derivative coefficients on Σ(p). (orig.)

  1. Analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes.

    Science.gov (United States)

    Hu, Li; Huang, Yingzhou; Pan, Lujun; Fang, Yurui

    2017-09-11

    Plasmonic chirality represents significant potential for novel nanooptical devices due to its association with strong chiroptical responses. Previous reports on plasmonic chirality mechanism mainly focus on phase retardation and coupling. In this paper, we propose a model similar to the chiral molecules for explaining the intrinsic plasmonic chirality mechanism of varies 3D chiral structures quantitatively based on the interplay and mixing of electric and magnetic dipole modes (directly from electromagnetic field numerical simulations), which forms mixed electric and magnetic polarizability.

  2. Parity doublers in chiral potential quark models

    International Nuclear Information System (INIS)

    Kalashnikova, Yu. S.; Nefediev, A. V.; Ribeiro, J. E. F. T.

    2007-01-01

    The effect of spontaneous breaking of chiral symmetry over the spectrum of highly excited hadrons is addressed in the framework of a microscopic chiral potential quark model (Generalised Nambu-Jona-Lasinio model) with a vectorial instantaneous quark kernel of a generic form. A heavy-light quark-antiquark bound system is considered, as an example, and the Lorentz nature of the effective light-quark potential is identified to be a pure Lorentz-scalar, for low-lying states in the spectrum, and to become a pure spatial Lorentz vector, for highly excited states. Consequently, the splitting between the partners in chiral doublets is demonstrated to decrease fast in the upper part of the spectrum so that neighboring states of an opposite parity become almost degenerate. A detailed microscopic picture of such a 'chiral symmetry restoration' in the spectrum of highly excited hadrons is drawn and the corresponding scale of restoration is estimated

  3. Quark matter in a chiral chromodielectric model

    International Nuclear Information System (INIS)

    Broniowski, W.; Kutschera, M.; Cibej, M.; Rosina, M.

    1989-03-01

    Zero and finite temperature quark matter is studied in a chiral chromodielectric model with quark, meson and chromodielectric degrees of freedom. Mean field approximation is used. Two cases are considered: two-flavor and three-flavor quark matter. It is found that at sufficiently low densities and temperatures the system is in a chirally broken phase, with quarks acquiring effective masses of the order of 100 MeV. At higher densities and temperatures a chiral phase transition occurs and the quarks become massless. A comparison to traditional nuclear physics suggests that the chirally broken phase with massive quark gas may be the ground state of matter at densities of the order of a few nuclear saturation densities. 24 refs., 5 figs. (author)

  4. Covariant, chirally symmetric, confining model of mesons

    International Nuclear Information System (INIS)

    Gross, F.; Milana, J.

    1991-01-01

    We introduce a new model of mesons as quark-antiquark bound states. The model is covariant, confining, and chirally symmetric. Our equations give an analytic solution for a zero-mass pseudoscalar bound state in the case of exact chiral symmetry, and also reduce to the familiar, highly successful nonrelativistic linear potential models in the limit of heavy-quark mass and lightly bound systems. In this fashion we are constructing a unified description of all the mesons from the π through the Υ. Numerical solutions for other cases are also presented

  5. Optimization and transferability of non-electrostatic repulsion in the polarizable density embedding model

    DEFF Research Database (Denmark)

    Hrsak, Dalibor; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2017-01-01

    Embedding techniques in combination with response theory represent a successful approach to calculate molecular properties and excited states in large molecular systems such as solutions and proteins. Recently, the polarizable embedding model has been extended by introducing explicit electronic...... densities of the molecules in the nearest environment, resulting in the polarizable density embedding (PDE) model. This improvement provides a better description of the intermolecular interactions at short distances. However, the electronic densities of the environment molecules are calculated in isolation...... interaction energies calculated on the basis of full quantum-mechanical calculations. The obtained optimal factors are used in PDE calculations of various ground- and excited-state properties of molecules embedded in solvents described as polarizable environments. © 2017 Wiley Periodicals, Inc....

  6. Chiral algebras in Landau-Ginzburg models

    Science.gov (United States)

    Dedushenko, Mykola

    2018-03-01

    Chiral algebras in the cohomology of the {\\overline{Q}}+ supercharge of two-dimensional N=(0,2) theories on flat spacetime are discussed. Using the supercurrent multiplet, we show that the answer is renormalization group invariant for theories with an R-symmetry. For N=(0,2) Landau-Ginzburg models, the chiral algebra is determined by the operator equations of motion, which preserve their classical form, and quantum renormalization of composite operators. We study these theories and then specialize to the N=(2,2) models and consider some examples.

  7. Vortex in the chiral quark model

    Science.gov (United States)

    Hadasz, Leszek

    1995-02-01

    We construct the classical vortex solution in the model of chiral field interacting with the non-Abelian SU(2) gauge field. This solution is topologically nontrivial and well localized. We discuss its relevance for effective hadron models based on the flux-tube picture and the possibility of its extension to the higher symmetry gauge groups SU(N).

  8. Model Hamiltonian Calculations of the Nonlinear Polarizabilities of Conjugated Molecules.

    Science.gov (United States)

    Risser, Steven Michael

    This dissertation advances the theoretical knowledge of the nonlinear polarizabilities of conjugated molecules. The unifying feature of these molecules is an extended delocalized pi electron structure. The pi electrons dominate the electronic properties of the molecules, allowing prediction of molecular properties based on the treatment of just the pi electrons. Two separate pi electron Hamiltonians are used in the research. The principal Hamiltonian used is the non-interacting single-particle Huckel Hamiltonian, which replaces the Coulomb interaction among the pi electrons with a mean field interaction. The simplification allows for exact solution of the Hamiltonian for large molecules. The second Hamiltonian used for this research is the interacting multi-particle Pariser-Parr-Pople (PPP) Hamiltonian, which retains explicit Coulomb interactions. This limits exact solutions to molecules containing at most eight electrons. The molecular properties being investigated are the linear polarizability, and the second and third order hyperpolarizabilities. The hyperpolarizabilities determine the nonlinear optical response of materials. These molecular parameters are determined by two independent approaches. The results from the Huckel Hamiltonian are obtained through first, second and third order perturbation theory. The results from the PPP Hamiltonian are obtained by including the applied field directly in the Hamiltonian and determining the ground state energy at a series of field strengths. By fitting the energy to a polynomial in field strength, the polarizability and hyperpolarizabilities are determined. The Huckel Hamiltonian is used to calculate the third order hyperpolarizability of polyenes. These calculations were the first to show the average hyperpolarizability of the polyenes to be positive, and also to show the saturation of the hyperpolarizability. Comparison of these Huckel results to those from the PPP Hamiltonian shows the lack of explicit Coulomb

  9. Circular Intensity Differential Scattering of chiral molecules

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, C.J.

    1980-12-01

    In this thesis a theory of the Circular Intensity Differential Scattering (CIDS) of chiral molecules as modelled by a helix oriented with respect to the direction of incidence of light is presented. It is shown that a necessary condition for the existence of CIDS is the presence of an asymmetric polarizability in the scatterer. The polarizability of the scatterer is assumed generally complex, so that both refractive and absorptive phenomena are taken into account.

  10. About chiral models of dense matter and its magnetic properties

    International Nuclear Information System (INIS)

    Kutschera, M.

    1990-12-01

    The chiral models of dense nucleon matter are discussed. The quark matter with broken chiral symmetry is described. The magnetic properties of dense matter are presented and conclusions are given. 37 refs. (A.S.)

  11. A calculation of internal kinetic energy and polarizability of compressed argon from the statistical atom model

    NARCIS (Netherlands)

    Seldam, C.A. ten; Groot, S.R. de

    1952-01-01

    From Jensen's and Gombás' modification of the statistical Thomas-Fermi atom model, a theory for compressed atoms is developed by changing the boundary conditions. Internal kinetic energy and polarizability of argon are calculated as functions of pressure. At 1000 atm. an internal kinetic energy of

  12. Structure functions from chiral soliton models

    International Nuclear Information System (INIS)

    Weigel, H.; Reinhardt, H.; Gamberg, L.

    1997-01-01

    We study nucleon structure functions within the bosonized Nambu-Jona-Lasinio (NJL) model where the nucleon emerges as a chiral soliton. We discuss the model predictions on the Gottfried sum rule for electron-nucleon scattering. A comparison with a low-scale parametrization shows that the model reproduces the gross features of the empirical structure functions. We also compute the leading twist contributions of the polarized structure functions g 1 and g 2 in this model. We compare the model predictions on these structure functions with data from the E143 experiment by GLAP evolving them from the scale characteristic for the NJL-model to the scale of the data

  13. Chiral quark model with relativistic kinematics

    International Nuclear Information System (INIS)

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The nonstrange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the σ meson) leads to an overall good description of the spectrum

  14. Chiral quark model with relativistic kinematics

    OpenAIRE

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.

  15. Chiral Schwinger model and lattice fermionic regularizations

    International Nuclear Information System (INIS)

    Kieu, T.D.; Sen, D.; Xue, S.

    1988-01-01

    The chiral Schwinger model is studied on the lattice with use of Wilson fermions. The arbitrary mass term for the gauge boson is shown to originate from the arbitrariness of the Wilson parameter, which is required to avoid the doubling phenomenon on the lattice. The necessity for such a term is thus demonstrated in contrast to the mere admissibility as indicated by previous continuum calculations

  16. Structure functions in the chiral bag model

    International Nuclear Information System (INIS)

    Sanjose, V.; Vento, V.; Centro Mixto CSIC/Valencia Univ., Valencia

    1989-01-01

    We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.)

  17. Structure functions in the chiral bag model

    Energy Technology Data Exchange (ETDEWEB)

    Sanjose, V.; Vento, V.

    1989-07-13

    We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.).

  18. Chiral ward-Takahashi identities at finite temperature and chiral phase transition in (2+1) dimensional chiral Gross-Neveu model

    International Nuclear Information System (INIS)

    Shen Kun; Qiu Zhongping

    1993-01-01

    Chiral Ward-Takahashi identities at finite temperature are derived in (2+1) dimensional chiral Gross-Neveu model. In terms of these identities, fermion mass generation and the mass spectra of bound states are investigate at finite temperature. Taking the fermion mass as an order parameter, the authors discuss the phase structure and chiral phase transition and obtain the critical temperature

  19. Star-Triangle Relation of the Chiral Potts Model Revisited

    OpenAIRE

    Horibe, M.; Shigemoto, K.

    2001-01-01

    We give the simple proof of the star-triangle relation of the chiral Potts model. We also give the constructive way to understand the star-triangle relation of the chiral Potts model, which may give the hint to give the new integrable models.

  20. Localized endomorphisms of the chiral Ising model

    International Nuclear Information System (INIS)

    Boeckenhauer, J.

    1994-07-01

    In the frame of the treatment of the chiral Ising model by Mack and Schomerus, examples of localized endomorphisms ρ 1 loc and ρ 1/2 loc are presented. It is shown that they lead to the same superselection sectors as the global ones in the sense that π 0 oρ 1 log ≅π 1 and π 0 pρ 1/2 loc ≅π 1/2 holds. For proving the latter unitary equivalence, Arakis formalism of the selfdual CAR algebra is used. Further it is shown that the localized endomorphisms obey the Ising fusion rules. (orig.)

  1. Strange Hadronic Matter in a Chiral Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Liang; SONG Hong-Qiu; WANG Ping; SU Ru-Keng

    2000-01-01

    The strange hadronic matter with nucleon, Λ-hyperon and E-hyperon is studied by using a chiral symmetry model in a mean-field approximation. The saturation properties and stabilities of the strange hadronic matter are discussed. The result indicates a quite large strangeness fraction (fs) region where the strange hadronic matter is stable against particle emission. In the large fs region, the component dominates, resulting in a deep minimum in the curve of the binding energy per baryon EB versus the strangeness fraction fs with (EB, fs) -~ (-26.0MeV, 1.23).

  2. A chiral model for excited pions

    International Nuclear Information System (INIS)

    Volkov, M.K.; Weiss, C.

    1996-01-01

    We study radially excited mesons (π', σ') in a simple extension of the Nambu-Jona-Lasinio model with a polynomial meson-quark form factor. The form factor is introduced so that the usual form of the NJL gap equation remains unchanged. We derive the effective Lagrangian for π- and π'-mesons which describes the decoupling of the Goldstone pion in the chiral limit in agreement with current algebra. For π' masses in the range of 750 MeV and 1300 MeV f π' /f π is found to be of an order of one per cent. 12 refs

  3. Chiral model for nucleon and delta

    International Nuclear Information System (INIS)

    Birse, M.C.; Banerjee, M.K.

    1985-01-01

    We propose a model of the nucleon and delta based on the idea that strong QCD forces on length scales approx.0.2--1 fm result in hidden chiral SU(2) x SU(2) symmetry and that there is a separation of roles between these forces which are also responsible for binding quarks in hadrons and the forces which produce absolute confinement. This leads us to study a linear sigma model describing the interactions of quarks, sigma mesons, and pions. We have solved this model in the semiclassical (mean-field) approximation for the hedgehog baryon state. We refer to this solution as a chiral soliton. In the semiclassical approximation the hedgehog state is a linear combination of N and Δ. We project this state onto states of good spin and isospin to calculate matrix elements of various operators in these states. Our results are in reasonable agreement with the observed properties of the nucleon. The mesonic contributions to g/sub A/ and sigma(πN) are about two to three times too large, suggesting the need for quantum corrections

  4. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  5. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  6. Molecular Dynamics Simulations of Kinetic Models for Chiral Dominance in Soft Condensed Matter

    DEFF Research Database (Denmark)

    Toxvaerd, Søren

    2001-01-01

    Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality......Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality...

  7. Moduli stabilisation for chiral global models

    International Nuclear Information System (INIS)

    Cicoli, Michele; Mayrhofer, Christoph; Valandro, Roberto

    2011-10-01

    We combine moduli stabilisation and (chiral) model building in a fully consistent global set-up in Type IIB/F-theory. We consider compactifications on Calabi-Yau orientifolds which admit an explicit description in terms of toric geometry. We build globally consistent compactifications with tadpole and Freed-Witten anomaly cancellation by choosing appropriate brane set-ups and world-volume fluxes which also give rise to SU(5)- or MSSM-like chiral models. We fix all the Kaehler moduli within the Kaehler cone and the regime of validity of the 4D effective field theory. This is achieved in a way compatible with the local presence of chirality. The hidden sector generating the non-perturbative effects is placed on a del Pezzo divisor that does not have any chiral intersections with any other brane. In general, the vanishing D-term condition implies the shrinking of the rigid divisor supporting the visible sector. However, we avoid this problem by generating r< n D-term conditions on a set of n intersecting divisors. The remaining (n-r) flat directions are fixed by perturbative corrections to the Kaehler potential. We illustrate our general claims in an explicit example. We consider a K3-fibred Calabi-Yau with four Kaehler moduli, that is an hypersurface in a toric ambient space and admits a simple F-theory up-lift. We present explicit choices of brane set-ups and fluxes which lead to three different phenomenological scenarios: the first with GUT-scale strings and TeV-scale SUSY by fine-tuning the background fluxes; the second with an exponentially large value of the volume and TeV-scale SUSY without fine-tuning the background fluxes; and the third with a very anisotropic configuration that leads to TeV-scale strings and two micron-sized extra dimensions. The K3 fibration structure of the Calabi-Yau three-fold is also particularly suitable for cosmological purposes. (orig.)

  8. Moduli stabilisation for chiral global models

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Mayrhofer, Christoph [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Valandro, Roberto [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2011-10-15

    We combine moduli stabilisation and (chiral) model building in a fully consistent global set-up in Type IIB/F-theory. We consider compactifications on Calabi-Yau orientifolds which admit an explicit description in terms of toric geometry. We build globally consistent compactifications with tadpole and Freed-Witten anomaly cancellation by choosing appropriate brane set-ups and world-volume fluxes which also give rise to SU(5)- or MSSM-like chiral models. We fix all the Kaehler moduli within the Kaehler cone and the regime of validity of the 4D effective field theory. This is achieved in a way compatible with the local presence of chirality. The hidden sector generating the non-perturbative effects is placed on a del Pezzo divisor that does not have any chiral intersections with any other brane. In general, the vanishing D-term condition implies the shrinking of the rigid divisor supporting the visible sector. However, we avoid this problem by generating r

  9. Self-consistent nonlinearly polarizable shell-model dynamics for ferroelectric materials

    International Nuclear Information System (INIS)

    Mkam Tchouobiap, S.E.; Kofane, T.C.; Ngabireng, C.M.

    2002-11-01

    We investigate the dynamical properties of the polarizable shellmodel with a symmetric double Morse-type electron-ion interaction in one ionic species. A variational calculation based on the Self-Consistent Einstein Model (SCEM) shows that a theoretical ferroelectric (FE) transition temperature can be derive which demonstrates the presence of a first-order phase transition for the potassium selenate (K 2 SeO 4 ) crystal around Tc 91.5 K. Comparison of the model calculation with the experimental critical temperature yields satisfactory agreement. (author)

  10. Analysis of a classical chiral bag model

    International Nuclear Information System (INIS)

    Nadeau, H.

    1985-01-01

    The author studies a classical chiral bag model with a Mexican hat-type potential for the self-coupling of the pion fields. He assumes a static spherical bag of radius R, the hedgehog ansatz for the chiral fields and that the quarks are all in the lowest lying s state. The author has considered three classes of models, the cloudy or pantopionic bags, the little or exopionic bags and the endopionic bags, where the pions are allowed all through space, only outside the bag and only inside the bag respectively. In all cases, the quarks are confined in the interior. He calculates the bag radius R, the bag constant B and the total ground state energy R for wide ranges of the two free parameters of the theory, namely the coupling constant λ and the quark frequency omega. The author focuses the study on the endopionic bags, the least known class, and compares the results with the familiar ones of other classes

  11. Toy model for two chiral nonets

    International Nuclear Information System (INIS)

    Fariborz, Amir H.; Jora, Renata; Schechter, Joseph

    2005-01-01

    Motivated by the possibility that nonets of scalar mesons might be described as mixtures of 'two quark' and 'four quark' components, we further study a toy model in which corresponding chiral nonets (containing also the pseudoscalar partners) interact with each other. Although the 'two quark' and 'four quark' chiral fields transform identically under SU(3) L xSU(3) R transformations, they transform differently under the U(1) A transformation which essentially counts total (quark+antiquark) content of the mesons. To implement this, we formulate an effective Lagrangian which mocks up the U(1) A behavior of the underlying QCD. We derive generating equations which yield Ward identity type relations based only on the assumed symmetry structure. This is applied to the mass spectrum of the low lying pseudoscalars and scalars, as well as their 'excitations'. Assuming isotopic spin invariance, it is possible to disentangle the amount of 'two quark' vs 'four quark' content in the pseudoscalar π,K,η-type states and in the scalar κ-type states. It is found that a small 'four quark' content in the lightest pseudoscalars is consistent with a large 'four quark' content in the lightest of the scalar κ mesons. The present toy model also allows one to easily estimate the strength of a 'four quark' vacuum condensate. There seems to be a rich and interesting structure

  12. Performance test of multicomponent quantum mechanical calculation with polarizable continuum model for proton chemical shift.

    Science.gov (United States)

    Kanematsu, Yusuke; Tachikawa, Masanori

    2015-05-21

    Multicomponent quantum mechanical (MC_QM) calculations with polarizable continuum model (PCM) have been tested against liquid (1)H NMR chemical shifts for a test set of 80 molecules. Improvement from conventional quantum mechanical calculations was achieved for MC_QM calculations. The advantage of the multicomponent scheme could be attributed to the geometrical change from the equilibrium geometry by the incorporation of the hydrogen nuclear quantum effect, while that of PCM can be attributed to the change of the electronic structure according to the polarization by solvent effects.

  13. Lorentz Invariant Spectrum of Minimal Chiral Schwinger Model

    Science.gov (United States)

    Kim, Yong-Wan; Kim, Seung-Kook; Kim, Won-Tae; Park, Young-Jai; Kim, Kee Yong; Kim, Yongduk

    We study the Lorentz transformation of the minimal chiral Schwinger model in terms of the alternative action. We automatically obtain a chiral constraint, which is equivalent to the frame constraint introduced by McCabe, in order to solve the frame problem in phase space. As a result we obtain the Lorentz invariant spectrum in any moving frame by choosing a frame parameter.

  14. Currents, charges, and canonical structure of pseudodual chiral models

    International Nuclear Information System (INIS)

    Curtright, T.; Zachos, C.

    1994-01-01

    We discuss the pseudodual chiral model to illustrate a class of two-dimensional theories which have an infinite number of conservation laws but allow particle production, at variance with naive expectations. We describe the symmetries of the pseudodual model, both local and nonlocal, as transmutations of the symmetries of the usual chiral model. We refine the conventional algorithm to more efficiently produce the nonlocal symmetries of the model, and we discuss the complete local current algebra for the pseudodual theory. We also exhibit the canonical transformation which connects the usual chiral model to its fully equivalent dual, further distinguishing the pseudodual theory

  15. Electroweak amplitudes in chiral quark models

    International Nuclear Information System (INIS)

    Fiolhais, Manuel

    2004-01-01

    After referring to some basic features of chiral models for baryons, with quarks and mesons, we describe how to construct model states representing physical baryons. We consider soliton models such as the Linear Sigma Model or the Chromodielectric Model, and bag models such as the Cloudy Bag Model. These models are solved approximately using variational approaches whose starting point is a mean-field description. We go beyond the mean-field description by introducing quantum fluctuations in the mesonic degrees of freedom. This is achieved, in a first step, by using a quantum state to represent meson clouds and, secondly, by performing an angular momentum and isospin projection from the mean-field state (actually a coherent state). Model states for baryons (nucleon, Delta, Roper) constructed in this way are used to determine several physical properties. I this seminar we paid a particular attention to the nucleon-delta electromagnetic and weak transition, presenting the model predictions for the electromagnetic and axial amplitudes

  16. Exchange algebra and exotic supersymmetry in the Chiral Potts model

    International Nuclear Information System (INIS)

    Bernard, D.; Pasquier, V.

    1989-01-01

    We obtain an exchange algebra for the Chiral Potts model, the elements of which are linear in the parameters defining the rapidity curve. This enables us to connect the Chiral Potts model to a U q (GL(2)) algebra. On the other hand, looking at the model from the S-matrix point of view relates it to a Z N generalisation of the supersymmetric algebra

  17. Electromagnetic couplings of the chiral perturbation theory Lagrangian from the perturbative chiral quark model

    International Nuclear Information System (INIS)

    Lyubovitskij, V.E.; Gutsche, Th.; Faessler, Amand; Mau, R. Vinh

    2002-01-01

    We apply the perturbative chiral quark model to the study of the low-energy πN interaction. Using an effective chiral Lagrangian we reproduce the Weinberg-Tomozawa result for the S-wave πN scattering lengths. After inclusion of the photon field we give predictions for the electromagnetic O(p 2 ) low-energy couplings of the chiral perturbation theory effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order (e 2 ) radiative corrections to the πN scattering amplitude. Finally, we estimate the leading isospin-breaking correction to the strong energy shift of the π - p atom in the 1s state, which is relevant for the experiment 'pionic hydrogen' at PSI

  18. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Steinmann, Casper; Ruud, Kenneth

    2015-01-01

    We present a new QM/QM/MM-based model for calculating molecular properties and excited states of solute-solvent systems. We denote this new approach the polarizable density embedding (PDE) model and it represents an extension of our previously developed polarizable embedding (PE) strategy. The PDE...... model is a focused computational approach in which a core region of the system studied is represented by a quantum-chemical method, whereas the environment is divided into two other regions: an inner and an outer region. Molecules belonging to the inner region are described by their exact densities...

  19. Electric polarizability of pions in the semirelativistic quark model; Ehlektricheskaya polyarizuemost' pionov v polurelyativistskoj kvarkovoj modeli

    Energy Technology Data Exchange (ETDEWEB)

    Maksimenko, N V [Gomel& #x27; skij Gosudarstvennyj Univ. im. F.Skoriny, Gomel (Belarus); Kuchin, S M [Filial Bryanskogo Gosudarstvennogo Univ. im. akademika I.G.Petrovskogo, Novozybkov (Russian Federation)

    2012-07-01

    In the paper the calculation is performed of the generalized and static polarizability of charged pions, which are considered as a relativistic system of two point spinor quarks with the linear interaction potential. The question of the relationship between static electricity and generalized polarizabilities of pions in the framework of this approach is studied.

  20. Approximating chiral quark models with linear σ-models

    International Nuclear Information System (INIS)

    Broniowski, Wojciech; Golli, Bojan

    2003-01-01

    We study the approximation of chiral quark models with simpler models, obtained via gradient expansion. The resulting Lagrangian of the type of the linear σ-model contains, at the lowest level of the gradient-expanded meson action, an additional term of the form ((1)/(2))A(σ∂ μ σ+π∂ μ π) 2 . We investigate the dynamical consequences of this term and its relevance to the phenomenology of the soliton models of the nucleon. It is found that the inclusion of the new term allows for a more efficient approximation of the underlying quark theory, especially in those cases where dynamics allows for a large deviation of the chiral fields from the chiral circle, such as in quark models with non-local regulators. This is of practical importance, since the σ-models with valence quarks only are technically much easier to treat and simpler to solve than the quark models with the full-fledged Dirac sea

  1. A chiral quark model of the nucleon

    International Nuclear Information System (INIS)

    Wakamatsu, M.; Yoshiki, H.

    1991-01-01

    The baryon-number-one extended solution of a chiral quark lagrangian is obtained in the stationary-phase approximation with full inclusion of the sea-quark degrees of freedom. The collective quantization method is then applied to this static solution to obtain the nucleon (and Δ) state with the definite spin and isospin. A fundamental quantity appearing in this quantization procedure is the moment of inertia of the soliton system. We evaluate this quantity without recourse to the derivative expansion, by performing the necessary double sum over all the positive- and negative-energy quark orbitals in the mean field potential. Closed formulas are-derived for the nucleon (and Δ) matrix elements of arbitrary quark bilinear operators. These formulas are then used for calculating various nucleon observables in a nonperturbative manner with inclusion of the sea-quark effects. An especially interesting observable is the spin expectation value of the proton related to the recent EMC experiment. We derive the proton spin sum rule, and then explicitly evaluate the detailed contents of this sum rule. The proton spin analysis is shown to be particularly useful for clarifying the underlying dynamical content of the Skyrme model at quark level, thereby providing us with valuable information about its utility and limitation. (orig.)

  2. Chiral phase transition in a covariant nonlocal NJL model

    International Nuclear Information System (INIS)

    General, I.; Scoccola, N.N.

    2001-01-01

    The properties of the chiral phase transition at finite temperature and chemical potential are investigated within a nonlocal covariant extension of the NJL model based on a separable quark-quark interaction. We find that for low values of T the chiral transition is always of first order and, for finite quark masses, at certain end point the transition turns into a smooth crossover. Our predictions for the position of this point is similar, although somewhat smaller, than previous estimates. (author)

  3. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Reinholdt, Peter; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard

    2017-01-01

    We analyze the performance of the polarizable density embedding (PDE) model-a new multiscale computational approach designed for prediction and rationalization of general molecular properties of large and complex systems. We showcase how the PDE model very effectively handles the use of large...

  4. Exploratory conformational study of (+)-catechin. Modeling of the polarizability and electric dipole moment.

    Science.gov (United States)

    Bentz, Erika N; Pomilio, Alicia B; Lobayan, Rosana M

    2014-12-01

    The extension of the study of the conformational space of the structure of (+)-catechin at the B3LYP/6-31G(d,p) level of theory is presented in this paper. (+)-Catechin belongs to the family of the flavan-3-ols, which is one of the five largest phenolic groups widely distributed in nature, and whose biological activity and pharmaceutical utility are related to the antioxidant activity due to their ability to scavenge free radicals. The effects of free rotation around all C-O bonds of the OH substituents at different rings are taken into account, obtaining as the most stable conformer, one that had not been previously reported. One hundred seven structures, and a study of the effects of charge delocalization and stereoelectronic effects at the B3LYP/6-311++G(d,p) level are reported by natural bond orbital analysis, streamlining the order of these structures. For further analysis of the structural and molecular properties of this compound in a biological environment, the calculation of polarizabilities, and the study of the electric dipole moment are performed considering the whole conformational space described. The results are analyzed in terms of accumulated knowledge for (4α → 6″, 2α → O → 1″)-phenylflavans and (+)-catechin in previous works, enriching the study of both types of structures, and taking into account the importance of considering the whole conformational space in modeling both the polarizability and the electric dipole moment, also proposing to define a descriptive subspace of only 16 conformers.

  5. All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model

    Science.gov (United States)

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Presented is a first generation atomistic force field for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting QM data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude force field yields stable DNA duplexes on the 100 ns time scale and satisfactorily reproduces (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII sub-states of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive force field, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA. PMID:24752978

  6. Polarizability properties of bianisotropic spheres with noncomplete magnetoelectric dyadics

    Science.gov (United States)

    Sihvola, A. H.

    1994-02-01

    The polarizability expressions for bianisotropic scatterers are often complicated expressions of the material parameters. The communication treats the question how the dyadic inversion operations needed in the expressions can be carried out in a well-behaving way. Also, the particular polarizabilities of biaxial chiral spheres are studied in detail.

  7. Decay patterns of multi-quasiparticle bands—a model independent test of chiral symmetry

    International Nuclear Information System (INIS)

    Lawrie, E A

    2017-01-01

    Nuclear chiral systems exhibit chiral symmetry bands, built on left-handed and right-handed angular momentum nucleon configurations. The experimental search for such chiral systems revealed a number of suitable candidates, however an unambiguous identification of nuclear chiral symmetry is still outstanding. In this work it is shown that the decay patterns of chiral bands built on multi-quasiparticle configurations are different from those involving different single-particle configurations. It is suggested to use the observed decay patterns of chiral candidates as a new model-independent test of chiral symmetry. (paper)

  8. Adaptive resolution simulation of polarizable supramolecular coarse-grained water models

    International Nuclear Information System (INIS)

    Zavadlav, Julija; Praprotnik, Matej; Melo, Manuel N.; Marrink, Siewert J.

    2015-01-01

    Multiscale simulations methods, such as adaptive resolution scheme, are becoming increasingly popular due to their significant computational advantages with respect to conventional atomistic simulations. For these kind of simulations, it is essential to develop accurate multiscale water models that can be used to solvate biophysical systems of interest. Recently, a 4-to-1 mapping was used to couple the bundled-simple point charge water with the MARTINI model. Here, we extend the supramolecular mapping to coarse-grained models with explicit charges. In particular, the two tested models are the polarizable water and big multiple water models associated with the MARTINI force field. As corresponding coarse-grained representations consist of several interaction sites, we couple orientational degrees of freedom of the atomistic and coarse-grained representations via a harmonic energy penalty term. This additional energy term aligns the dipole moments of both representations. We test this coupling by studying the system under applied static external electric field. We show that our approach leads to the correct reproduction of the relevant structural and dynamical properties

  9. ZNxZN generalization of the chiral Potts model

    International Nuclear Information System (INIS)

    Bazhanov, V.V.; Kashaev, R.M.; Mangazeev, V.V.

    1990-01-01

    It is shown that the R-matrix which interwines two 3-by-N 2 state cyclic L-operators can be considered as a Boltzmann weight of four-spin box for a lattice model with two-spin interaction juct as the R-matrix of the checkerboard chiral Potts model. The rapidity variables lie on the same algebraiz curve as in the chiral Potts model. Factorization properties of the L-operator and its connection to the SOS models, are also discussed. 13 refs.; 11 figs

  10. Quark matter inside neutron stars in an effective chiral model

    International Nuclear Information System (INIS)

    Kotlorz, A.; Kutschera, M.

    1994-02-01

    An effective chiral model which describes properties of a single baryon predicts that the quark matter relevant to neutron stars, close to the deconfinement density, is in a chirally broken phase. We find the SU(2) model that pion-condensed up and down quark matter is preferred energetically at neutron star densities. It exhibits spin ordering and can posses a permanent magnetization. The equation of state of quark matter with chiral condensate is very well approximated by bag model equation of the state with suitably chosen parameters. We study quark cores inside neutron stars in this model using realistic nucleon equations of state. The biggest quark core corresponds to the second order phase transition to quark matter. Magnetic moment of the pion-condensed quark core is calculated. (author). 19 refs, 10 refs, 1 tab

  11. Light hadrons in the bag model with broken chiral symmetry

    International Nuclear Information System (INIS)

    Efrosinin, V.P.; Zaikin, D.A.

    1987-01-01

    A version of the bag model with broken chiral symmetry is proposed. A satisfactory description of the experimental data on light hadrons including the pion is obtained. The estimate of the pion-nucleon σ term is given in the framework of this model. The pion and kaon decay constants are calculated. The centre-of-mass motion problem in bag models is discussed

  12. Sakai-Sugimoto model, tachyon condensation and chiral symmetry breaking

    International Nuclear Information System (INIS)

    Dhar, Avinash; Nag, Partha

    2008-01-01

    We modify the Sakai-Sugimoto model of chiral symmetry breaking to take into account the open string tachyon which stretches between the flavour D8-branes and D8-bar-branes. There are several reasons of consistency for doing this: (i) Even if it might be reasonable to ignore the tachyon in the ultraviolet where the flavour branes and antibranes are well separated and the tachyon is small, it is likely to condense and acquire large values in the infrared where the branes meet. This takes the system far away from the perturbatively stable minimum of the Sakai-Sugimoto model; (ii) The bifundamental coupling of the tachyon to fermions of opposite chirality makes it a suitable candidate for the quark mass and chiral condensate parameters. We show that the modified Sakai-Sugimoto model with the tachyon present has a classical solution satisfying all the desired consistency properties. In this solution chiral symmetry breaking coincides with tachyon condensation. We identify the parameters corresponding to the quark mass and the chiral condensate and also briefly discuss the mesonic spectra

  13. Distinguishing standard model extensions using monotop chirality at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Allahverdi, Rouzbeh [Department of Physics and Astronomy, University of New Mexico,Albuquerque, NM 87131 (United States); Dalchenko, Mykhailo; Dutta, Bhaskar [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Flórez, Andrés [Departamento de Física, Universidad de los Andes,Bogotá, Carrera 1 18A-10, Bloque IP (Colombia); Gao, Yu [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Kamon, Teruki [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Department of Physics, Kyungpook National University,Daegu 702-701 (Korea, Republic of); Kolev, Nikolay [Department of Physics, University of Regina,SK, S4S 0A2 (Canada); Mueller, Ryan [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Segura, Manuel [Departamento de Física, Universidad de los Andes,Bogotá, Carrera 1 18A-10, Bloque IP (Colombia)

    2016-12-13

    We present two minimal extensions of the standard model, each giving rise to baryogenesis. They include heavy color-triplet scalars interacting with a light Majorana fermion that can be the dark matter (DM) candidate. The electroweak charges of the new scalars govern their couplings to quarks of different chirality, which leads to different collider signals. These models predict monotop events at the LHC and the energy spectrum of decay products of highly polarized top quarks can be used to establish the chiral nature of the interactions involving the heavy scalars and the DM. Detailed simulation of signal and standard model background events is performed, showing that top quark chirality can be distinguished in hadronic and leptonic decays of the top quarks.

  14. Minimal quantization of two-dimensional models with chiral anomalies

    International Nuclear Information System (INIS)

    Ilieva, N.

    1987-01-01

    Two-dimensional gauge models with chiral anomalies - ''left-handed'' QED and the chiral Schwinger model, are quantized consistently in the frames of the minimal quantization method. The choice of the cone time as a physical time for system of quantization is motivated. The well-known mass spectrum is found but with a fixed value of the regularization parameter a=2. Such a unique solution is obtained due to the strong requirement of consistency of the minimal quantization that reflects in the physically motivated choice of the time axis

  15. Hidden symmetries of the Principal Chiral Model unveiled

    International Nuclear Information System (INIS)

    Devchand, C.; Schiff, J.

    1996-12-01

    By relating the two-dimensional U(N) Principal Chiral Model to a Simple linear system we obtain a free-field parametrization of solutions. Obvious symmetry transformations on the free-field data give symmetries of the model. In this way all known 'hidden symmetries' and Baecklund transformations, as well as a host of new symmetries, arise. (author). 21 refs

  16. The Chiral bag model and the little bag

    International Nuclear Information System (INIS)

    Vento, Vincent.

    1980-11-01

    We review the properties of the existing solutions to the Chiral bag equations of motion and discuss how the 'little bag' picture could come about in this scheme. Our analysis leads to a model which is qualitatively similar to the naive quark model with pion cloud corrections. We use this latter approach to look for pion cloud signatures in experimental data

  17. On the vacuum baryon number in the chiral bag model

    International Nuclear Information System (INIS)

    Jaroszewicz, T.

    1984-01-01

    We give a rederivation, generalization and interpretation of the result of Goldstone and Jaffe on the vacuum baryon number in the chiral bag model. Our results are based on considering the bag model as a theory of free quarks, massless inside and infinitely massive outside the bag. (orig.)

  18. Pion electromagnetic polarizabilities and quarks

    International Nuclear Information System (INIS)

    Llanta, E.; Tarrach, R.

    1980-01-01

    The electric and magnetic polarizabilities of the neutral and charged pion are calculated in a coloured quark field theory at the one-loop level. The theory has as free parameter the quark mass but our results do not depend on it. We have found that the electric polarizabilities are αsub(π+-) = -0.04 α/m 3 sub(π), αsub(π 0 ) = -0.4 α/m 3 sub(π). These values are compared with calculations in other models and some comments are made about the polarizability sum rules. (orig.)

  19. Static polarizabilities of dielectric nanoclusters

    International Nuclear Information System (INIS)

    Kim, Hye-Young; Sofo, Jorge O.; Cole, Milton W.; Velegol, Darrell; Mukhopadhyay, Gautam

    2005-01-01

    A cluster consisting of many atoms or molecules may be considered, in some circumstances, to be a single large molecule with a well-defined polarizability. Once the polarizability of such a cluster is known, one can evaluate certain properties--e.g. the cluster's van der Waals interactions, using expressions derived for atoms or molecules. In the present work, we evaluate the static polarizability of a cluster using a microscopic method that is exact within the linear and dipolar approximations. Numerical examples are presented for various shapes and sizes of clusters composed of identical atoms, where the term 'atom' actually refers to a generic constituent, which could be any polarizable entity. The results for the clusters' polarizabilities are compared with those obtained by assuming simple additivity of the constituents' atomic polarizabilities; in many cases, the difference is large, demonstrating the inadequacy of the additivity approximation. Comparison is made (for symmetrical geometries) with results obtained from continuum models of the polarizability. Also, the surface effects due to the nonuniform local field near a surface or edge are shown to be significant

  20. The cavity electromagnetic field within the polarizable continuum model of solvation

    Energy Technology Data Exchange (ETDEWEB)

    Pipolo, Silvio, E-mail: silvio.pipolo@nano.cnr.it [Center S3, CNR Institute of Nanoscience, Modena (Italy); Department of Physics, University of Modena and Reggio Emilia, Modena (Italy); Corni, Stefano, E-mail: stefano.corni@nano.cnr.it [Center S3, CNR Institute of Nanoscience, Modena (Italy); Cammi, Roberto, E-mail: roberto.cammi@unipr.it [Department of Chemistry, Università degli studi di Parma, Parma (Italy)

    2014-04-28

    Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles.

  1. Solvation of actinide salts in water using a polarizable continuum model.

    Science.gov (United States)

    Kumar, Narendra; Seminario, Jorge M

    2015-01-29

    In order to determine how actinide atoms are dressed when solvated in water, density functional theory calculations have been carried out to study the equilibrium structure of uranium plutonium and thorium salts (UO2(2+), PuO2(2+), Pu(4+), and Th(4+)) both in vacuum as well as in solution represented by a conductor-like polarizable continuum model. This information is of paramount importance for the development of sensitive nanosensors. Both UO2(2+) and PuO2(2+) ions show coordination number of 4-5 with counterions replacing one or two water molecules from the first coordination shell. On the other hand, Pu(4+), has a coordination number of 8 both when completely solvated and also in the presence of chloride and nitrate ions with counterions replacing water molecules in the first shell. Nitrates were found to bind more strongly to Pu(IV) than chloride anions. In the case of the Th(IV) ion, the coordination number was found to be 9 or 10 in the presence of chlorides. Moreover, the Pu(IV) ion shows greater affinity for chlorides than the Th(IV) ion. Adding dispersion and ZPE corrections to the binding energy does not alter the trends in relative stability of several conformers because of error cancelations. All structures and energetics of these complexes are reported.

  2. Electric dipole polarizability from first principles calculations

    International Nuclear Information System (INIS)

    Miorelli, M.; University of British Columbia, Vancouver, BC; Bacca, S.; University of Manitoba; Barnea, N.

    2016-01-01

    The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for the 4 He, 40 Ca, and 16 O nuclei, and predict the dipole polarizability for the rare nucleus 22 O.

  3. Bose-Einstein condensation and chiral phase transition in linear sigma model

    International Nuclear Information System (INIS)

    Shu Song; Li Jiarong

    2005-01-01

    With the linear sigma model, we have studied Bose-Einstein condensation and the chiral phase transition in the chiral limit for an interacting pion system. A μ-T phase diagram including these two phenomena is presented. It is found that the phase plane has been divided into three areas: the Bose-Einstein condensation area, the chiral symmetry broken phase area and the chiral symmetry restored phase area. Bose-Einstein condensation can occur either from the chiral symmetry broken phase or from the restored phase. We show that the onset of the chiral phase transition is restricted in the area where there is no Bose-Einstein condensation

  4. Magnetic moments of octet baryons in a chiral potential model

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N; Das, M

    1986-12-01

    Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon self-couplings, is chosen with equally mixed scalar and vector parts in a power-law form. The results are in reasonable agreement with experiment. 32 refs., 2 tables.

  5. Magnetic moments of octet baryons in a chiral potential model

    International Nuclear Information System (INIS)

    Barik, N.

    1986-01-01

    Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon self-couplings, is chosen with equally mixed scalar and vector parts in a power-law form. The results are in reasonable agreement with experiment. (author)

  6. Stationary solutions of multicomponent chiral and gauge models

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.; Chudnovsky, G.V.

    1979-01-01

    The authors examine stationary solutions of completely integrable systems in (x, t) dimensions having infinitely many components. Among the cases under investigation are: (1) the infinite-component non-linear Schroedinger equation; (2) infinite component CPsup(Ω) or SU(N) sigma-models; (3) general gauge and chiral completely integrable systems. (Auth.)

  7. Model for dynamical chiral symmetry breaking and quark condensate

    International Nuclear Information System (INIS)

    Nekrasov, M.L.; Rochev, V.E.

    1986-01-01

    In the framework of the model, proposed earlier to describe nonperturbative QCD, the singularity of the type 1/k 4 in the gluon propagator is shown to result in dynamical chiral symmetry breaking and appearance of quark condensate. The value, obtained for quark condensate, is close to the phenomenological one

  8. Baryons as solitonic solutions of the chiral sigma model

    International Nuclear Information System (INIS)

    Bentz, W.; Hartmann, J.; Beck, F.

    1996-01-01

    Self-consistent solitonic solutions with baryon number one are obtained in the chiral quark sigma model. The translational invariant vacuum is stabilized by a Landau ghost subtraction procedure based on the requirement of the Kaellacute en-Lehmann (KL) representation for the meson propagators. The connection of this ghost free model (KL model) to the more popular Nambu-Jona-Lasinio (NJL) model is discussed in detail. copyright 1996 The American Physical Society

  9. A model with charges and polarizability for CS2 in an ionic liquid

    Indian Academy of Sciences (India)

    RUTH M LYNDEN-BELL

    the static electrostatic distribution in the CS2 molecule with 7 charged sites and anisotropic polarizability on the carbon site and isotropic .... the charges modified to reproduce the molecular quad- ... face at 1.5 times the van der Waals radii from the nuclei ..... shows the probability distribution of induced dipoles on the C site ...

  10. Chiral Thirring–Wess model with Faddeevian regularization

    International Nuclear Information System (INIS)

    Rahaman, Anisur

    2015-01-01

    Replacing vector type of interaction of the Thirring–Wess model by the chiral type a new model is presented which is termed here as chiral Thirring–Wess model. Ambiguity parameters of regularization are so chosen that the model falls into the Faddeevian class. The resulting Faddeevian class of model in general does not possess Lorentz invariance. However we can exploit the arbitrariness admissible in the ambiguity parameters to relate the quantum mechanically generated ambiguity parameters with the classical parameter involved in the masslike term of the gauge field which helps to maintain physical Lorentz invariance instead of the absence of manifestly Lorentz covariance of the model. The phase space structure and the theoretical spectrum of this class of model have been determined through Dirac’s method of quantization of constraint system

  11. Finite-volume and partial quenching effects in the magnetic polarizability of the neutron

    Science.gov (United States)

    Hall, J. M. M.; Leinweber, D. B.; Young, R. D.

    2014-03-01

    There has been much progress in the experimental measurement of the electric and magnetic polarizabilities of the nucleon. Similarly, lattice QCD simulations have recently produced dynamical QCD results for the magnetic polarizability of the neutron approaching the chiral regime. In order to compare the lattice simulations with experiment, calculation of partial quenching and finite-volume effects is required prior to an extrapolation in quark mass to the physical point. These dependencies are described using chiral effective field theory. Corrections to the partial quenching effects associated with the sea-quark-loop electric charges are estimated by modeling corrections to the pion cloud. These are compared to the uncorrected lattice results. In addition, the behavior of the finite-volume corrections as a function of pion mass is explored. Box sizes of approximately 7 fm are required to achieve a result within 5% of the infinite-volume result at the physical pion mass. A variety of extrapolations are shown at different box sizes, providing a benchmark to guide future lattice QCD calculations of the magnetic polarizabilities. A relatively precise value for the physical magnetic polarizability of the neutron is presented, βn=1.93(11)stat(11)sys×10-4 fm3, which is in agreement with current experimental results.

  12. An Anderson-like model of the QCD chiral transition

    International Nuclear Information System (INIS)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-01-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian (“Dirac-Anderson Hamiltonian”) carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  13. Polarizable protein packing

    KAUST Repository

    Ng, Albert H.

    2011-01-24

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol -1] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 Copyright © 2011 Wiley Periodicals, Inc.

  14. Chiral helimagnetic state in a Kondo lattice model with the Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Okumura, Shun; Kato, Yasuyuki; Motome, Yukitoshi

    2018-05-01

    Monoaxial chiral magnets can form a noncollinear twisted spin structure called the chiral helimagnetic state. We study magnetic properties of such a chiral helimagnetic state, with emphasis on the effect of itinerant electrons. Modeling a monoaxial chiral helimagnet by a one-dimensional Kondo lattice model with the Dzyaloshinskii-Moriya interaction, we perform a variational calculation to elucidate the stable spin configuration in the ground state. We obtain a chiral helimagnetic state as a candidate for the ground state, whose helical pitch is modulated by the model parameters: the Kondo coupling, the Dzyaloshinski-Moriya interaction, and electron filling.

  15. Quark fragmentation function and the nonlinear chiral quark model

    International Nuclear Information System (INIS)

    Zhu, Z.K.

    1993-01-01

    The scaling law of the fragmentation function has been proved in this paper. With that, we show that low-P T quark fragmentation function can be studied as a low energy physocs in the light-cone coordinate frame. We therefore use the nonlinear chiral quark model which is able to study the low energy physics under scale Λ CSB to study such a function. Meanwhile the formalism for studying the quark fragmentation function has been established. The nonlinear chiral quark model is quantized on the light-front. We then use old-fashioned perturbation theory to study the quark fragmentation function. Our first order result for such a function shows in agreement with the phenomenological model study of e + e - jet. The probability for u,d pair formation in the e + e - jet from our calculation is also in agreement with the phenomenological model results

  16. Molecular dynamics of polarizable point dipole models for molten NaI. Comparison with first principles simulations

    Directory of Open Access Journals (Sweden)

    Trullàs J.

    2011-05-01

    Full Text Available Molecular dynamics simulations of molten NaI at 995 K have been carried out using polarizable ion models based on rigid ion pair potentials to which the anion induced dipole polarization is added. The polarization is added in such a way that point dipoles are induced on the anions by both local electric field and deformation short-range damping interactions that oppose the electrically induced dipole moments. The structure and self-diffusion results are compared with those obtained by Galamba and Costa Cabral using first principles Hellmann-Feynman molecular dynamics simulations and using classical molecular dynamics of a shell model which allows only the iodide polarization

  17. Consequences of the partial restoration of chiral symmetry in an AdS/QCD model

    International Nuclear Information System (INIS)

    Kim, Youngman; Lee, Hyun Kyu

    2008-01-01

    Chiral symmetry is an essential concept in understanding QCD at low energy. We treat the chiral condensate, which measures the spontaneous breaking of chiral symmetry, as a free parameter to investigate the effect of partially restored chiral symmetry on the physical quantities in the framework of an AdS/QCD model. We observe an interesting scaling behavior among the nucleon mass, pion decay constant, and chiral condensate. We propose a phenomenological way to introduce the temperature dependence of a physical quantity in the AdS/QCD model with the thermal AdS metric.

  18. Chiral Dynamics 2006

    Science.gov (United States)

    Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry

    2007-10-01

    .5 GeV with BABAR / A. Denig. The pion vector form-factor and (g-2)u / C. Smith. Partially quenched CHPT results to two loops / J. Bijnens. Pion-pion scattering with mixed action lattice QCD / P.F. Bedaque. Meson systems with Ginsparg-Wilson valence quarks / A. Walker-Loud. Low energy constants from the MILC collaboration / C. Bernard. Finite volume effects: lattice meets CHPT / G. Schierholz. Lattice QCD simulations with two light dynamical (Wilson) quarks / L. Giusti. Do we understand the low-energy constant L8? / M. Golterman. Quark mass dependence of LECs in the two-flavour sector / M. Schmid. Progress report on the [Pie symbol]0 Lifetime experiment (PRIMEX) at Jlab / D.E. McNulty. Determination of the charged pion polarizabilities / L.V. Fil'kov. Proposed measurement of electroproduction of [Pie symbol]0 near threshold using a large acceptance spectrometer / R.A. Lindgren. The [Pie symbol] meson in [Pie symbol]K scattering / B. Moussallam. Strangeness -1 Meson-Baryon scattering S-wave / J.A. Oller. Results on light mesons decays and dynamics at KLOE / M. Martini. Studies of decays of [symbol] and [symbol] mesons with WASA detector / A. Kupsc. Heavy Quark-Diquark symmetry and X PT for doubly heavy baryons / T. Mehen. HHChPT applied to the charmed-strange parity partners/ R.P. Springer. Study of pion structure through precise measurements of the [Pie symbol]+ --> e+[symbol] decay / D. Pocanic. Exceptional and non-exceptional contributions to the radiative [Pie symbol] decay / V. Mateu. Leading chiral logarithms from unitarity, analyticity and the Roy equations / A. Fuhrer. All orders symmetric subtraction of the nonlinear sigma model in D=4 / A. Quadri -- pt. C. Chiral dynamics in few-nucleon systems. Working group summary: chiral dynamics in few-nucleon systems / H.W Hammer, N. Kalantar-Nayestanaki, and D.R. Phillips. Power counting in nuclear chiral effective field theory / U. van Kolck. On the consistency of Weinberg's power counting / U-G Mei ner. Renormalization

  19. Color superconductivity from the chiral quark-meson model

    Science.gov (United States)

    Sedrakian, Armen; Tripolt, Ralf-Arno; Wambach, Jochen

    2018-05-01

    We study the two-flavor color superconductivity of low-temperature quark matter in the vicinity of chiral phase transition in the quark-meson model where the interactions between quarks are generated by pion and sigma exchanges. Starting from the Nambu-Gorkov propagator in real-time formulation we obtain finite temperature (real axis) Eliashberg-type equations for the quark self-energies (gap functions) in terms of the in-medium spectral function of mesons. Exact numerical solutions of the coupled nonlinear integral equations for the real and imaginary parts of the gap function are obtained in the zero temperature limit using a model input spectral function. We find that these components of the gap display a complicated structure with the real part being strongly suppressed above 2Δ0, where Δ0 is its on-shell value. We find Δ0 ≃ 40MeV close to the chiral phase transition.

  20. Solvent Boundary Potentials for Hybrid QM/MM Computations Using Classical Drude Oscillators: A Fully Polarizable Model.

    Science.gov (United States)

    Boulanger, Eliot; Thiel, Walter

    2012-11-13

    Accurate quantum mechanical/molecular mechanical (QM/MM) treatments should account for MM polarization and properly include long-range electrostatic interactions. We report on a development that covers both these aspects. Our approach combines the classical Drude oscillator (DO) model for the electronic polarizability of the MM atoms with the generalized solvent boundary Potential (GSBP) and the solvated macromolecule boundary potential (SMBP). These boundary potentials (BP) are designed to capture the long-range effects of the outer region of a large system on its interior. They employ a finite difference approximation to the Poisson-Boltzmann equation for computing electrostatic interactions and take into account outer-region bulk solvent through a polarizable dielectric continuum (PDC). This approach thus leads to fully polarizable three-layer QM/MM-DO/BP methods. As the mutual responses of each of the subsystems have to be taken into account, we propose efficient schemes to converge the polarization of each layer simultaneously. For molecular dynamics (MD) simulations using GSBP, this is achieved by considering the MM polarizable model as a dynamical degree of freedom, and hence contributions from the boundary potential can be evaluated for a frozen state of polarization at every time step. For geometry optimizations using SMBP, we propose a dual self-consistent field approach for relaxing the Drude oscillators to their ideal positions and converging the QM wave function with the proper boundary potential. The chosen coupling schemes are evaluated with a test system consisting of a glycine molecule in a water ball. Both boundary potentials are capable of properly reproducing the gradients at the inner-region atoms and the Drude oscillators. We show that the effect of the Drude oscillators must be included in all terms of the boundary potentials to obtain accurate results and that the use of a high dielectric constant for the PDC does not lead to a polarization

  1. Fermion masses in potential models of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Jaroszewicz, T.

    1983-01-01

    A class of models of spontaneous chiral symmetry breaking is considered, based on the Hamiltonian with an instantaneous potential interaction of fermions. An explicit mass term mΨ-barΨ is included and the physical meaning of the mass parameter is discussed. It is shown that if the Hamiltonian is normal-ordered (i.e. self-energy omitted), then the mass m introduced in the Hamiltonian is not the current mass appearing in the current algebra relations. (author)

  2. Tetraquarks in a chiral constituent-quark model

    International Nuclear Information System (INIS)

    Vijande, J.; Fernandez, F.; Valcarce, A.; Silvestre-Brac, B.

    2004-01-01

    We analyze the possibility of heavy-light tetraquark bound states by means of a chiral constituent-quark model. The study is done in a variational approach. Special attention is paid to the contribution given by the different terms of the interacting potential and also to the role played by the different color channels. We find a stable state for both qq anti c anti c and qq anti b anti b configurations. Possible decay modes of these structures are analyzed. (orig.)

  3. Tetraquarks in a chiral constituent-quark model

    Energy Technology Data Exchange (ETDEWEB)

    Vijande, J.; Fernandez, F.; Valcarce, A. [Grupo de Fisica Nuclear, Universidad de Salamanca, E-37008, Salamanca (Spain); Silvestre-Brac, B. [Institut des Sciences Nucleaires, 53 Avenue des Martyrs, F-38026, Grenoble Cedex (France)

    2004-03-01

    We analyze the possibility of heavy-light tetraquark bound states by means of a chiral constituent-quark model. The study is done in a variational approach. Special attention is paid to the contribution given by the different terms of the interacting potential and also to the role played by the different color channels. We find a stable state for both qq anti c anti c and qq anti b anti b configurations. Possible decay modes of these structures are analyzed. (orig.)

  4. Continuum model for chiral induced spin selectivity in helical molecules

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Ernesto [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); González-Arraga, Luis A. [IMDEA Nanoscience, Cantoblanco, 28049 Madrid (Spain); Finkelstein-Shapiro, Daniel; Mujica, Vladimiro [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Berche, Bertrand [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France)

    2015-05-21

    A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π{sub z} − π{sub z} coupling via interbase p{sub x,y} − p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.

  5. K- nuclear potentials from in-medium chirally motivated models

    International Nuclear Information System (INIS)

    Cieply, A.; Gazda, D.; Mares, J.; Friedman, E.; Gal, A.

    2011-01-01

    A self-consistent scheme for constructing K - nuclear optical potentials from subthreshold in-medium KN s-wave scattering amplitudes is presented and applied to analysis of kaonic atoms data and to calculations of K - quasibound nuclear states. The amplitudes are taken from a chirally motivated meson-baryon coupled-channel model, both at the Tomozawa-Weinberg leading order and at the next to leading order. Typical kaonic atoms potentials are characterized by a real part -Re V K - chiral =85±5 MeV at nuclear matter density, in contrast to half this depth obtained in some derivations based on in-medium KN threshold amplitudes. The moderate agreement with data is much improved by adding complex ρ- and ρ 2 -dependent phenomenological terms, found to be dominated by ρ 2 contributions that could represent KNN→YN absorption and dispersion, outside the scope of meson-baryon chiral models. Depths of the real potentials are then near 180 MeV. The effects of p-wave interactions are studied and found secondary to those of the dominant s-wave contributions. The in-medium dynamics of the coupled-channel model is discussed and systematic studies of K - quasibound nuclear states are presented.

  6. Linear response coupled cluster theory with the polarizable continuum model within the singles approximation for the solvent response

    Science.gov (United States)

    Caricato, Marco

    2018-04-01

    We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.

  7. Lattice chiral symmetry and the Wess-Zumino model

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo; Ishibashi, Masato

    2002-01-01

    A lattice regularization of the supersymmetric Wess-Zumino model is studied by using Ginsparg-Wilson operators. We recognize a certain conflict between the lattice chiral symmetry and the Majorana condition for Yukawa couplings, or in Weyl representation a conflict between the lattice chiral symmetry and Yukawa couplings. This conflict is also related, though not directly, to the fact that the kinetic (Kaehler) term and the superpotential term are clearly distinguished in the continuum Wess-Zumino model, whereas these two terms are mixed in the Ginsparg-Wilson operators. We illustrate a case where lattice chiral symmetry together with naive Bose-Fermi symmetry is imposed by preserving a SUSY-like symmetry in the free part of the Lagrangian; one-loop level non-renormalization of the superpotential is then maintained for finite lattice spacing, though the finite parts of wave function renormalization deviate from the supersymmetric value. All these properties hold for the general Ginsparg-Wilson algebra independently of the detailed construction of lattice Dirac operators

  8. Electric dipole polarizability: from few- to many-body systems

    Directory of Open Access Journals (Sweden)

    Miorelli Mirko

    2016-01-01

    Full Text Available We review the Lorentz integral transform coupled-cluster method for the calculation of the electric dipole polarizability. We benchmark our results with exact hyperspherical harmonics calculations for 4He and then we move to a heavier nucleus studying 16O. We observe that the implemented chiral nucleon-nucleon interaction at next-to-next-to-next-to-leading order underestimates the electric dipole polarizability.

  9. Deep inelastic structure functions in the chiral bag model

    International Nuclear Information System (INIS)

    Sanjose, V.; Vento, V.; Centro Mixto CSIC/Valencia Univ., Valencia

    1989-01-01

    We calculate the structure functions for deep inelastic scattering on baryons in the cavity approximation to the chiral bag model. The behavior of these structure functions is analyzed in the Bjorken limit. We conclude that scaling is satisfied, but not Regge behavior. A trivial extension as a parton model can be achieved by introducing the structure function for the pion in a convolution picture. In this extended version of the model not only scaling but also Regge behavior is satisfied. Conclusions are drawn from the comparison of our results with experimental data. (orig.)

  10. Deep inelastic structure functions in the chiral bag model

    Energy Technology Data Exchange (ETDEWEB)

    Sanjose, V. (Valencia Univ. (Spain). Dept. de Didactica de las Ciencias Experimentales); Vento, V. (Valencia Univ. (Spain). Dept. de Fisica Teorica; Centro Mixto CSIC/Valencia Univ., Valencia (Spain). Inst. de Fisica Corpuscular)

    1989-10-02

    We calculate the structure functions for deep inelastic scattering on baryons in the cavity approximation to the chiral bag model. The behavior of these structure functions is analyzed in the Bjorken limit. We conclude that scaling is satisfied, but not Regge behavior. A trivial extension as a parton model can be achieved by introducing the structure function for the pion in a convolution picture. In this extended version of the model not only scaling but also Regge behavior is satisfied. Conclusions are drawn from the comparison of our results with experimental data. (orig.).

  11. Implementation of extended Lagrangian dynamics in GROMACS for polarizable simulations using the classical Drude oscillator model.

    Science.gov (United States)

    Lemkul, Justin A; Roux, Benoît; van der Spoel, David; MacKerell, Alexander D

    2015-07-15

    Explicit treatment of electronic polarization in empirical force fields used for molecular dynamics simulations represents an important advancement in simulation methodology. A straightforward means of treating electronic polarization in these simulations is the inclusion of Drude oscillators, which are auxiliary, charge-carrying particles bonded to the cores of atoms in the system. The additional degrees of freedom make these simulations more computationally expensive relative to simulations using traditional fixed-charge (additive) force fields. Thus, efficient tools are needed for conducting these simulations. Here, we present the implementation of highly scalable algorithms in the GROMACS simulation package that allow for the simulation of polarizable systems using extended Lagrangian dynamics with a dual Nosé-Hoover thermostat as well as simulations using a full self-consistent field treatment of polarization. The performance of systems of varying size is evaluated, showing that the present code parallelizes efficiently and is the fastest implementation of the extended Lagrangian methods currently available for simulations using the Drude polarizable force field. © 2015 Wiley Periodicals, Inc.

  12. Finite nuclei in relativistic models with a light chiral scalar meson

    International Nuclear Information System (INIS)

    Serot, B.D.; Furnstahl, R.J.

    1993-01-01

    Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed

  13. Pion-nucleon scattering in the chiral bag model

    International Nuclear Information System (INIS)

    Israilov, Z.Z.; Musakhanov, M.M.

    1981-01-01

    Pion-nucleon scattering in the (3.3) resonance region in the framework of chiral bag model(CBM) is considered. The effective Hamiltonian of πNΔ-system in the framework of the CBM contains πNN, πNΔ, πΔΔ interaction terms with the formfactor which is essentially dependent on the size and shape of the quark bag. The iteration of the Born graphs of this model provides successful description of the (3.3) and (3.1) scattering where the values of the parameters agree with CBM [ru

  14. On the chiral phase transition in the linear sigma model

    International Nuclear Information System (INIS)

    Tran Huu Phat; Nguyen Tuan Anh; Le Viet Hoa

    2003-01-01

    The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)

  15. The Baryon Number Two System in the Chiral Soliton Model

    International Nuclear Information System (INIS)

    Mantovani-Sarti, V.; Drago, A.; Vento, V.; Park, B.-Y.

    2013-01-01

    We study the interaction between two B = 1 states in a chiral soliton model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the inter soliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications. (author)

  16. Radiative decays of vector mesons in the chiral bag model

    International Nuclear Information System (INIS)

    Tabachenko, A.N.

    1988-01-01

    A new model of radiative π-meson decays of vector mesons in the chiral bag model is proposed. The quark-π-meson interaction has the form of a pseudoscalar coupling and is located on the bag surface. The vector meson decay width depends on the quark masses, the π-meson decay constant, the radius of the bag, and the free parameter Z 2 , which specifies the disappearance of the bag during the decay. The obtained results for the omega- and p-decay widths are in satisfactory agreement with the experiment

  17. Pion-nucleon scattering in the Chiral bag model

    International Nuclear Information System (INIS)

    Israilov, Z.Z.; Musakhanov, M.M.

    1981-01-01

    The effective hamiltonian of the πNΔ-system in the framework of the Chiral Bag Model (CBM) contains πNN-, πNΔ-, πΔΔ-interaction terms with a form factor which is esstentially dependent on the size and shape of the quark bag. The interation of the Born graphs of this model provides successful description of the (3,3) and (3,1) phase shifts [in the (3,3) resonance region] where the values of the paramters agree with the CBM. (orig.)

  18. The exact mass-gaps of the principal chiral models

    CERN Document Server

    Hollowood, Timothy J

    1994-01-01

    An exact expression for the mass-gap, the ratio of the physical particle mass to the $\\Lambda$-parameter, is found for the principal chiral sigma models associated to all the classical Lie algebras. The calculation is based on a comparison of the free-energy in the presence of a source coupling to a conserved charge of the theory computed in two ways: via the thermodynamic Bethe Ansatz from the exact scattering matrix and directly in perturbation theory. The calculation provides a non-trivial test of the form of the exact scattering matrix.

  19. Chiral models of low energy QCD

    International Nuclear Information System (INIS)

    Ripka, G.

    1993-01-01

    Two processes may be distinguished when a hadron propagates in a dense baryonic medium. The polarization of the medium and the change in the quark structure of the hadron. The polarization of the medium is better described in terms of colorless mesons and nucleons while the intrinsic change of the hadron is better described by quark models. It is shown how to couple the two processes. The scaling of effective Lagrangians, is related to changes in the quark constituent masses, based on the QCD scale anomaly. (author) 62 refs

  20. QCD topological susceptibility from the nonlocal chiral quark model

    Science.gov (United States)

    Nam, Seung-Il; Kao, Chung-Wen

    2017-06-01

    We investigate the quantum chromodynamics (QCD) topological susceptibility χ by using the semi-bosonized nonlocal chiral-quark model (SB-NLχQM) for the leading large- N c contributions. This model is based on the liquid-instanton QCD-vacuum configuration, in which SU(3) flavor symmetry is explicitly broken by the finite current-quark mass ( m u,d, m s) ≈ (5, 135) MeV. To compute χ, we derive the local topological charge-density operator Q t( x) from the effective action of SB-NLχQM. We verify that the derived expression for χ in our model satisfies the Witten- Veneziano (WV) and the Leutwyler-Smilga (LS) formulae, and the Crewther theorem in the chiral limit by construction. Once the average instanton size and the inter-instanton distance are fixed with ρ¯ = 1/3 fm and R¯ = 1 fm, respectively, all the other parameters are determined self-consistently within the model. We obtain χ = (167.67MeV)4, which is comparable with the empirical value χ = (175±5MeV)4 whereas it turns out that χ QL = (194.30MeV)4 in the quenched limit. Thus, we conclude that the value of χ will be reduced around 10 20% by the dynamical-quark contribution.

  1. An Effective Chiral Meson Lagrangian at O(p6) from the NJL Model

    International Nuclear Information System (INIS)

    Bel'kov, A.A.; Lanev, A.V.; Schaale, A.; Scherer, S.; Mainz Univ.

    1994-01-01

    In this work we present a strong chiral meson Lagrangian up to and including O(p 6 ) in the momentum expansion. It is derived from the Nambu-Jona-Lasinio (NJL) model using the heat-kernel method. Identities related to the properties of covariant derivatives of the chiral matrix U as well as field transformations have been used to predict the chiral coefficients of a minimal set of linearly independent terms. 16 refs

  2. Electric and magnetic polarizabilities of hadrons via elastic Compton scattering at KAON

    International Nuclear Information System (INIS)

    Moinester, M.A.; Blecher, M.

    1990-08-01

    The study of dynamic properties of hadrons presents a challenge. Among the most basic of these are the electric and magnetic polarizabilities describing the electromagnetic structure of hadrons. They characterize the induced transient dipole moments of hadrons in an external electromagnetic field. During gamma-hadron Compton scattering the lowest order scattering is determined by the charge and magnetic moment. The next order scattering is determined by the induced dipole moments. The dipole polarizabilities probe the rigidity of the internal structure of baryons and mesons, the dipole moments being induced by the rearrangement of the hadron constituents driven by the presence of the electric and magnetic fields of the photon during scattering. A sophisticated understanding of hadrons within the framework of QCD will be tested, in part, by the prediction of these quantities. For the light charged pion, chiral symmetry leads to a precise prediction for the polarizabilities. For the heavier charged kaon, chiral perturbation theory can be applied to predict the polarizabilities. For these cases, the experimental polarizabilities subject the underlying chiral symmetry and chiral perturbation techniques of QCD to new and serious tests. Here the physics of electromagnetic polarizabilities is first described, followed by a review of previous experimental and theoretical polarizability results for the proton, neutron, pion, and kaon. A brief description is then given of how polarizabilities for these hadrons can be studied at the proposed TRIUMF KAON facility. (36 refs., 4 figs.)

  3. Combining the GW formalism with the polarizable continuum model: A state-specific non-equilibrium approach

    Energy Technology Data Exchange (ETDEWEB)

    Duchemin, Ivan, E-mail: ivan.duchemin@cea.fr [INAC, SP2M/L-Sim, CEA/UJF Cedex 09, 38054 Grenoble (France); Jacquemin, Denis [Laboratoire CEISAM - UMR CNR 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 (France); Institut Universitaire de France, 1 rue Descartes, 75005 Paris Cedex 5 (France); Blase, Xavier [CNRS, Inst. NÉEL, F-38000 Grenoble (France); Univ. Grenoble Alpes, Inst. NÉEL, F-38000 Grenoble (France)

    2016-04-28

    We have implemented the polarizable continuum model within the framework of the many-body Green’s function GW formalism for the calculation of electron addition and removal energies in solution. The present formalism includes both ground-state and non-equilibrium polarization effects. In addition, the polarization energies are state-specific, allowing to obtain the bath-induced renormalisation energy of all occupied and virtual energy levels. Our implementation is validated by comparisons with ΔSCF calculations performed at both the density functional theory and coupled-cluster single and double levels for solvated nucleobases. The present study opens the way to GW and Bethe-Salpeter calculations in disordered condensed phases of interest in organic optoelectronics, wet chemistry, and biology.

  4. On the quantum symmetry of the chiral Ising model

    Science.gov (United States)

    Vecsernyés, Peter

    1994-03-01

    We introduce the notion of rational Hopf algebras that we think are able to describe the superselection symmetries of rational quantum field theories. As an example we show that a six-dimensional rational Hopf algebra H can reproduce the fusion rules, the conformal weights, the quantum dimensions and the representation of the modular group of the chiral Ising model. H plays the role of the global symmetry algebra of the chiral Ising model in the following sense: (1) a simple field algebra F and a representation π on Hπ of it is given, which contains the c = {1}/{2} unitary representations of the Virasoro algebra as subrepresentations; (2) the embedding U: H → B( Hπ) is such that the observable algebra π( A) - is the invariant subalgebra of B( Hπ) with respect to the left adjoint action of H and U(H) is the commutant of π( A); (3) there exist H-covariant primary fields in B( Hπ), which obey generalized Cuntz algebra properties and intertwine between the inequivalent sectors of the observables.

  5. Vector meson decays in the chiral bag model

    International Nuclear Information System (INIS)

    Maxwell, O.V.; Jennings, B.K.

    1985-01-01

    Vector meson decays are examined in a model where a confined quark and antiquark annihilate, producing a pair of elementary pseudoscalar mesons. Two versions of the pseudoscalar meson-quark interaction are employed, one where the coupling is restricted to the bag surface and one where it extends throughout the bag volume. Energy conservation is ensured in the model through insertion of exponential factors containing the bag energy at each interaction vertex. To guarantee momentum conservation, a wave-packet description is utilized in which the decay widths are normalized by a factor involving the overlap of the initial bag state with the confined qanti q state of zero momentum. With either interaction, the model yields a value for the p-width that exceeds the empirical width by a factor two. For the Ksup(*) and PHI mesons, the computed widths depend strongly on the interaction employed. Implications of these results for chiral bag models are discussed. (orig.)

  6. Explicit chiral symmetry breaking in Gross-Neveu type models

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Christian

    2011-07-25

    This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti {psi}i{gamma}{sup {mu}}{partial_derivative}{sub {mu}}{psi}-m{sub 0} anti {psi}{psi}+(g{sup 2})/(2)(anti {psi}{psi}){sup 2}+(G{sup 2})/(2)(anti {psi}i{gamma}{sub 5}{psi}){sup 2} in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL{sub 2} model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL{sub 2} model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL{sub 2} model in ({mu},T,{gamma}) space, where {gamma} arises from m{sub 0} through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL{sub 2} model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel {xi} parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL{sub 2} model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well

  7. Explicit chiral symmetry breaking in Gross-Neveu type models

    International Nuclear Information System (INIS)

    Boehmer, Christian

    2011-01-01

    This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti ψiγ μ ∂ μ ψ-m 0 anti ψψ+(g 2 )/(2)(anti ψψ) 2 +(G 2 )/(2)(anti ψiγ 5 ψ) 2 in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL 2 model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL 2 model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL 2 model in (μ,T,γ) space, where γ arises from m 0 through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL 2 model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel ξ parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL 2 model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well-known that the massless NJL 2 model can be solved analytically. The same is true for the GN model, be it massless or massive. Here, the

  8. Studies on phenomenological hadron models with chiral symmetry

    International Nuclear Information System (INIS)

    Rathske, E.

    1991-12-01

    In this report we consider, in the context of phenomenological models for hadrons, several aspects of Skyrme-type and hybrid bag models. In the first of the two central parts we discuss two qualitatively different generalizations of the minimal SU(2) Skyrme model. One of these consists in adding to the Lagrangian density a symmetric term of fourth order in the field derivatives. Its consequences are determined for solutions and observables by analytical and numerical investigations. In the other we propose a contribution for explicit isospin symmetry breaking in the mesonic as well as the baryonic sector. Together with the standard nonlinear σ-model term it allows for exact time-dependent classical soliton solutions. Their quantization leads to a quantitative connection between the hadronic isospin mass differenced of pions and nucleons. The second main part of this report is devoted to the generalization of SU(2) bag models under the aspect of chiral symmetry. We first show that the construction of appropriate surface terms in the Lagrangian density necessitates the introduction of dynamical bosonic degrees of freedom. This allows for a variety of bag scenarios (including the 'endopionic' bag). We then consider explicit isospin symmetry breaking for hybrid bag models with a nonlinear mesonic sector. An intimate relationship is revealed between the effects of a quark mass difference and the time-dependent bosonic solutions found for the purely mesonic case. It is reflected in a nontrivial interdependence between quark and meson masses, bag radius and chiral angle. We provide an especially extensive list of references for the topics discussed in this report. (orig.) [de

  9. The structure of molten CuCl: Reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model

    International Nuclear Information System (INIS)

    Alcaraz, Olga; Trullàs, Joaquim; Tahara, Shuta; Kawakita, Yukinobu; Takeda, Shin’ichi

    2016-01-01

    The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å −1 related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.

  10. The structure of molten CuCl: Reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, Olga; Trullàs, Joaquim, E-mail: quim.trullas@upc.edu [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord UPC B4-B5, 08034 Barcelona (Spain); Tahara, Shuta [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, Okinawa 903-0213 (Japan); Kawakita, Yukinobu [J-PARC Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195 (Japan); Takeda, Shin’ichi [Department of Physics, Faculty of Sciences, Kyushu University, Fukuoka 819-0395 (Japan)

    2016-09-07

    The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å{sup −1} related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.

  11. SIMP model at NNLO in chiral perturbation theory

    Science.gov (United States)

    Hansen, Martin; Langæble, Kasper; Sannino, Francesco

    2015-10-01

    We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 →2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles. By performing a consistent next-to-leading- and next-to-next-to-leading-order chiral perturbative investigation we demonstrate that the leading-order analysis cannot be used to draw conclusions about the viability of the model. We further show that higher-order corrections substantially increase the tension with phenomenological constraints challenging the viability of the simplest realization of the strongly interacting massive particle paradigm.

  12. The generalized chiral Schwinger model on the two-sphere

    International Nuclear Information System (INIS)

    Bassetto, A.

    1995-01-01

    A family of theories which interpolate between vector and chiral Schwinger models is studied on the two-sphere S 2 . The conflict between the loss of gauge invariance and global geometrical properties is solved by introducing a fixed background connection. In this way the generalized Dirac-Weyl operator can be globally defined on S 2 . The generating functional of the Green functions is obtained by taking carefully into account the contribution of gauge fields with non-trivial topological charge and of the related zero-modes of the Dirac determinant. In the decompactification limit, the Green functions of the flat case are recovered; in particular the fermionic condensate in the vacuum vanishes, at variance with its behaviour in the vector Schwinger model. ((orig.))

  13. Collision-induced polarizabilities of inert gas atoms

    International Nuclear Information System (INIS)

    Clarke, K.L.; Madden, P.A.; Buckingham, A.D.

    1978-01-01

    The use of polarizability densities to calculate collision-induced polarizabilities is investigated. One method for computing polarizabilities of inert gas diatoms employs atomic polarizability densities from finite-field Hartree-Fock calculations, together with classical equations for the polarization of dielectrics. It is shown that this model gives inaccurate values for both the local fields and the local response to non-uniform fields. An alternative method incorporating the same physical effects is used to compute the pair polarizabilities to first order in the interatomic interaction. To first order the pair contribution to the trace of the polarizability is negative at short range. The calculated anisotropy does not differ significantly from the DID value, whereas the polarizability density calculation gives a substantial reduction in the anisotropy. (author)

  14. Chiral bag model with constituent quarks: topological and nontopological decisions

    International Nuclear Information System (INIS)

    Malakhov, I.Yu.; Sveshnikov, K.A.; Fedorov, S.M.; Khalili, M.F.

    2002-01-01

    The three-phase modification of the hybrid chiral bag containing along with asymptotic freedom and hadronization phases and also intermediate phase of the constituent quarks is considered. The self-consistent solutions of the equations of the model in the (1 + 1)-dimensional case are determined with an account of the fermion vacuum polarization effects. The bag renormalized complete energy is studied as a function of the parameters characterizing the bag geometry and its topological (baryon) charge. It is shown that for nonzero topological charge there exists the whole series of configurations representing the local minima of the bag complete energy and containing all three phases, whereas the bag energy minimum in the nontopological case corresponds to zero dimensions of the area corresponding to asymptotic freedom phase [ru

  15. Kaon quark distribution functions in the chiral constituent quark model

    Science.gov (United States)

    Watanabe, Akira; Sawada, Takahiro; Kao, Chung Wen

    2018-04-01

    We investigate the valence u and s ¯ quark distribution functions of the K+ meson, vK (u )(x ,Q2) and vK (s ¯)(x ,Q2), in the framework of the chiral constituent quark model. We judiciously choose the bare distributions at the initial scale to generate the dressed distributions at the higher scale, considering the meson cloud effects and the QCD evolution, which agree with the phenomenologically satisfactory valence quark distribution of the pion and the experimental data of the ratio vK (u )(x ,Q2)/vπ (u )(x ,Q2) . We show how the meson cloud effects affect the bare distribution functions in detail. We find that a smaller S U (3 ) flavor symmetry breaking effect is observed, compared with results of the preceding studies based on other approaches.

  16. The Goldberger-Treiman relation and the chiral soliton model

    International Nuclear Information System (INIS)

    Fiolhais, M.; Urbano, J.N.; Coimbra Univ.; Nippe, A.; Gruemmer, F.; Goeke, K.; Bonn Univ.

    1987-01-01

    The linear chiral soliton model with explicit quark fields and elementary pion- and sigma-fields is solved in order to describe nucleon and delta properties. Special emphasis is put on the axial vector coupling constant g A and on the Goldberger-Treiman relation. To this end baryon Fock states are constructed in a mean field approximation with hedgehog-like configurations from which the physical states are obtained by projection techniques. It is shown that the Goldberger-Treiman relation is only fulfilled if the quark- and pion-hedgehog is generalized and the variation is performed with projected states. Under this condition no parameter set is found which yields a proper g A and a proper pion-nucleon coupling constant g πNN , if the polarization of the Dirac sea is neglected. Other observables are reproduced within 20% limits or less. (orig.)

  17. The generalized hedgehog and the projected chiral soliton model

    International Nuclear Information System (INIS)

    Fiolhais, M.; Kernforschungsanlage Juelich G.m.b.H.; Goeke, K.; Bochum Univ.; Gruemmer, F.; Urbano, J.N.

    1988-01-01

    The linear chiral soliton model with quark fields and elementary pion and sigma fields is solved in order to describe static properties of the nucleon and the delta resonance. To this end a Fock state of the system is constructed which consists of three valence quarks in a 1s orbit with a generalized hedgehog spin-flavour configuration cosηvertical strokeu↓> - sin ηvertical stroked↑>. Coherent states are used to provide a quantum description for the mesonic parts of the total wave function. The corresponding classical pion field also exhibits a generalized hedgehog structure. Various nucleon properties are calculated. These include proton and neutron charge raii, and the mangnetic moment of the proton for which experiment is obtained. (orig./HSI)

  18. Hadron electric polarizability from lattice QCD

    Science.gov (United States)

    Alexandru, Andrei

    2017-09-01

    Electromagnetic polarizabilities are important parameters for hadron structure, describing the response of the charge and current distributions inside the hadron to an external electromagnetic field. For most hadrons these quantities are poorly constrained experimentally since they can only be measured indirectly. Lattice QCD can be used to compute these quantities directly in terms of quark and gluons degrees of freedom, using the background field method. We present results for the neutron electric polarizability for two different quark masses, light enough to connect to chiral perturbation theory. These are currently the lightest quark masses used in polarizability studies. For each pion mass we compute the polarizability at four different volumes and perform an infinite volume extrapolation. We also discuss the effect of turning on the coupling between the background field and the sea quarks. A.A. is supported in part by the National Science Foundation CAREER Grant PHY-1151648 and by U.S. DOE Grant No. DE-FG02-95ER40907.

  19. Comparison of the Marcus and Pekar partitions in the context of non-equilibrium, polarizable-continuum solvation models

    International Nuclear Information System (INIS)

    You, Zhi-Qiang; Herbert, John M.; Mewes, Jan-Michael; Dreuw, Andreas

    2015-01-01

    The Marcus and Pekar partitions are common, alternative models to describe the non-equilibrium dielectric polarization response that accompanies instantaneous perturbation of a solute embedded in a dielectric continuum. Examples of such a perturbation include vertical electronic excitation and vertical ionization of a solution-phase molecule. Here, we provide a general derivation of the accompanying polarization response, for a quantum-mechanical solute described within the framework of a polarizable continuum model (PCM) of electrostatic solvation. Although the non-equilibrium free energy is formally equivalent within the two partitions, albeit partitioned differently into “fast” versus “slow” polarization contributions, discretization of the PCM integral equations fails to preserve certain symmetries contained in these equations (except in the case of the conductor-like models or when the solute cavity is spherical), leading to alternative, non-equivalent matrix equations. Unlike the total equilibrium solvation energy, however, which can differ dramatically between different formulations, we demonstrate that the equivalence of the Marcus and Pekar partitions for the non-equilibrium solvation correction is preserved to high accuracy. Differences in vertical excitation and ionization energies are <0.2 eV (and often <0.01 eV), even for systems specifically selected to afford a large polarization response. Numerical results therefore support the interchangeability of the Marcus and Pekar partitions, but also caution against relying too much on the fast PCM charges for interpretive value, as these charges differ greatly between the two partitions, especially in polar solvents

  20. Comparison of the Marcus and Pekar partitions in the context of non-equilibrium, polarizable-continuum solvation models

    Energy Technology Data Exchange (ETDEWEB)

    You, Zhi-Qiang; Herbert, John M., E-mail: herbert@chemistry.ohio-state.edu [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 (United States); Mewes, Jan-Michael; Dreuw, Andreas [Interdisciplinary Center for Scientific Computing, Ruprechts-Karls University, Im Neuenheimer Feld 368, 69120 Heidelberg (Germany)

    2015-11-28

    The Marcus and Pekar partitions are common, alternative models to describe the non-equilibrium dielectric polarization response that accompanies instantaneous perturbation of a solute embedded in a dielectric continuum. Examples of such a perturbation include vertical electronic excitation and vertical ionization of a solution-phase molecule. Here, we provide a general derivation of the accompanying polarization response, for a quantum-mechanical solute described within the framework of a polarizable continuum model (PCM) of electrostatic solvation. Although the non-equilibrium free energy is formally equivalent within the two partitions, albeit partitioned differently into “fast” versus “slow” polarization contributions, discretization of the PCM integral equations fails to preserve certain symmetries contained in these equations (except in the case of the conductor-like models or when the solute cavity is spherical), leading to alternative, non-equivalent matrix equations. Unlike the total equilibrium solvation energy, however, which can differ dramatically between different formulations, we demonstrate that the equivalence of the Marcus and Pekar partitions for the non-equilibrium solvation correction is preserved to high accuracy. Differences in vertical excitation and ionization energies are <0.2 eV (and often <0.01 eV), even for systems specifically selected to afford a large polarization response. Numerical results therefore support the interchangeability of the Marcus and Pekar partitions, but also caution against relying too much on the fast PCM charges for interpretive value, as these charges differ greatly between the two partitions, especially in polar solvents.

  1. Chiral correlators in Landau-Ginsburg theories and N=2 superconformal models

    International Nuclear Information System (INIS)

    Howe, P.S.; West, P.C.

    1989-01-01

    Chiral correlation functions are computed in N=2 Landau-Ginsburg models using the ε-expansion and the superconformal Ward identities for the Landau-Ginsburg effective action. They are also computed directly using superconformal model techniques. The same results are obtained yielding further confirmation of the identification of superconformal minimal models with Landau-Ginsburg models evaluated at their fixed points. The formulae for the chiral commutators that we compute are extremely simple when expressed in terms of effective actions. (orig.)

  2. Emergent Chiral Spin State in the Mott Phase of a Bosonic Kane-Mele-Hubbard Model

    Science.gov (United States)

    Plekhanov, Kirill; Vasić, Ivana; Petrescu, Alexandru; Nirwan, Rajbir; Roux, Guillaume; Hofstetter, Walter; Le Hur, Karyn

    2018-04-01

    Recently, the frustrated X Y model for spins 1 /2 on the honeycomb lattice has attracted a lot of attention in relation with the possibility to realize a chiral spin liquid state. This model is relevant to the physics of some quantum magnets. Using the flexibility of ultracold atom setups, we propose an alternative way to realize this model through the Mott regime of the bosonic Kane-Mele-Hubbard model. The phase diagram of this model is derived using bosonic dynamical mean-field theory. Focusing on the Mott phase, we investigate its magnetic properties as a function of frustration. We do find an emergent chiral spin state in the intermediate frustration regime. Using exact diagonalization we study more closely the physics of the effective frustrated X Y model and the properties of the chiral spin state. This gapped phase displays a chiral order, breaking time-reversal and parity symmetry, but is not topologically ordered (the Chern number is zero).

  3. Ab initio folding of mixed-fold FSD-EY protein using formula-based polarizable hydrogen bond (PHB) charge model

    Science.gov (United States)

    Zhang, Dawei; Lazim, Raudah; Mun Yip, Yew

    2017-09-01

    We conducted an all-atom ab initio folding of FSD-EY, a protein with a ββα configuration using non-polarizable (AMBER) and polarizable force fields (PHB designed by Gao et al.) in implicit solvent. The effect of reducing the polarization effect integrated into the force field by the PHB model, termed the PHB0.7 was also examined in the folding of FSD-EY. This model incorporates into the force field 70% of the original polarization effect to minimize the likelihood of over-stabilizing the backbone hydrogen bonds. Precise folding of the β-sheet of FSD-EY was further achieved by relaxing the REMD structure obtained in explicit water.

  4. Anomalies of hidden local chiral symmetries in sigma-models and extended supergravities

    International Nuclear Information System (INIS)

    Vecchia, P. di; Ferrara, S.; Girardello, L.

    1985-01-01

    Non-linear sigma-models with hidden gauge symmetries are anomalous, at the quantum level, when coupled to chiral fermions in not anomaly free representations of the hidden chiral symmetry. These considerations generally apply to supersymmetric kaehlerian sigma-models on coset spaces with hidden chiral symmetries as well as to extended supergravities in four dimensions with local SU(N) symmetry. The presence of the anomaly implies that the scenario of dynamical generation of gauge vector bosons has to be reconsidered in these theories. (orig.)

  5. Chiral anomaly, fermionic determinant and two dimensional models

    International Nuclear Information System (INIS)

    Rego Monteiro, M.A. do.

    1985-01-01

    The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt

  6. Polarizable protein packing

    KAUST Repository

    Ng, Albert H.; Snow, Christopher D.

    2011-01-01

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full

  7. Relativistic Chiral Mean Field Model for Finite Nuclei

    Science.gov (United States)

    Ogawa, Y.; Toki, H.; Tamenaga, S.; Haga, A.

    2009-08-01

    We present a relativistic chiral mean field (RCMF) model, which is a method for the proper treatment of pion-exchange interaction in the nuclear many-body problem. There the dominant term of the pionic correlation is expressed in two-particle two-hole (2p-2h) states with particle-holes having pionic quantum number, J^{π}. The charge-and-parity-projected relativistic mean field (CPPRMF) model developed so far treats surface properties of pionic correlation in 2p-2h states with J^{π} = 0^{-} (spherical ansatz). We extend the CPPRMF model by taking 2p-2h states with higher spin quantum numbers, J^{π} = 1^{+}, 2^{-}, 3^{+}, ... to describe the full strength of the pionic correlation in the intermediate range (r > 0.5 fm). We apply the RCMF model to the ^{4}He nucleus as a pilot calculation for the study of medium and heavy nuclei. We study the behavior of energy convergence with the pionic quantum number, J^{π}, and find convergence around J^{π}_{max} = 6^{-}. We include further the effect of the short-range repulsion in terms of the unitary correlation operator method (UCOM) for the central part of the pion-exchange interaction. The energy contribution of about 50% of the net two-body interaction comes from the tensor part and 20% comes from the spin-spin central part of the pion-exchange interaction.}

  8. Chiral Lagrangian calculation of nucleon branching ratios in the supersymmetric SU(5) model

    International Nuclear Information System (INIS)

    Chadha, S.; Daniel, M.

    1983-12-01

    The branching ratios are calculated for the two body nucleon decay modes involving pseudoscalars in the minimal SU(5) supersymmetric model with three generations using the techniques of chiral dynamics. (author)

  9. Application of discrete solvent reaction field model with self-consistent atomic charges and atomic polarizabilities to calculate the χ(1) and χ(2) of organic molecular crystals

    Science.gov (United States)

    Lu, Shih-I.

    2018-01-01

    We use the discrete solvent reaction field model to evaluate the linear and second-order nonlinear optical susceptibilities of 3-methyl-4-nitropyridine-1-oxyde crystal. In this approach, crystal environment is created by supercell architecture. A self-consistent procedure is used to obtain charges and polarizabilities for environmental atoms. Impact of atomic polarizabilities on the properties of interest is highlighted. This approach is shown to give the second-order nonlinear optical susceptibilities within error bar of experiment as well as the linear optical susceptibilities in the same order as experiment. Similar quality of calculations are also applied to both 4-N,N-dimethylamino-3-acetamidonitrobenzene and 2-methyl-4-nitroaniline crystals.

  10. Standard model and chiral gauge theories on the lattice

    International Nuclear Information System (INIS)

    Smit, J.

    1990-01-01

    A review is given of developments in lattice formulations of chiral gauge theories. There is now evidence that the unwanted fermion doublers can be decoupled satisfactorily by giving them masses of the order of the cutoff. (orig.)

  11. A three-flavor chiral effective model with four baryonic multiplets within the mirror assignment

    Energy Technology Data Exchange (ETDEWEB)

    Olbrich, Lisa; Zetenyi, Miklos; Giacosa, Francesco; Rischke, Dirk H. [Institute for Theoretical Physics, Goethe University Frankfurt am Main (Germany)

    2016-07-01

    Chiral symmetry requires the existence of chiral partners in the hadronic mass spectrum. In this talk, we address the question which is the chiral partner of the nucleon. We employ a chirally symmetric linear sigma model, where hadrons and their chiral partners are treated on the same footing. We construct four spin-1/2 baryon multiplets from left- and right-handed quarks as well as left- and right-handed diquarks. Two of these multiplets transform in a ''mirror'' way, which allows for chirally invariant mass terms. We then embed these baryonic multiplets into the Lagrangian of the extended Linear Sigma Model, which features (pseudo)scalar and (axial-)vector mesons, as well as glueballs. Reducing the Lagrangian to the two-flavor case, we obtain four doublets of nucleonic states. These mix to produce the positive-parity nucleon N(939) and the Roper resonance N(1440), as well as the negative-parity resonances N(1535) and N(1650). We determine the parameters of the nucleonic part of the Lagrangian from a fit to masses and decay properties of these states. Studying the limit of vanishing quark condensate, we conclude that N(939) and N(1535), as well as N(1440) and N(1650) form pairs of chiral partners.

  12. Non-leptonic decays in an extended chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Eeg, J. O. [Dept. of Physics, Univ. of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway)

    2012-10-23

    We consider the color suppressed (nonfactorizable) amplitude for the decay mode B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}. We treat the b-quark in the heavy quark limit and the energetic light (u,d,s) quarks within a variant of Large Energy Effective Theory combined with an extension of chiral quark models. Our calculated amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} is suppressed by a factor of order {Lambda}{sub QCD}/m{sub b} with respect to the factorized amplitude, as it should according to QCD-factorization. Further, for reasonable values of the (model dependent) gluon condensate and the constituent quark mass, the calculated nonfactorizable amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} can easily accomodate the experimental value. Unfortunately, the color suppressed amplitude is very sensitive to the values of these model dependent parameters. Therefore fine-tuning is necessary in order to obtain an amplitude compatible with the experimental result for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}.

  13. Chiral phase transition in the soft-wall model of AdS/QCD

    International Nuclear Information System (INIS)

    Chelabi, Kaddour; Fang, Zhen; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2016-01-01

    We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t’Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realized perfectly. In the two-flavor case, it gives a second order chiral phase transition in the chiral limit, while the transition turns to be a crossover for any finite quark mass. In the case of three-flavor, the phase transition becomes a first order one in the chiral limit, while above sufficient large quark mass it turns to be a crossover again. This scenario agrees exactly with the current understanding on chiral phase transition from lattice QCD and other effective model studies.

  14. Antikaon induced Ξ production from a chiral model at NLO

    Directory of Open Access Journals (Sweden)

    Feijoo A.

    2014-01-01

    Full Text Available We study the meson-baryon interaction in the strangeness S = −1 sector using a chiral unitary approach, paying particular attention to the K̄N → KΞ reaction, especially important for constraining the next-to-leading order chiral terms, and considering also the effect of high spin hyperonic resonances. We also present results for the production of Ξ hyperons in nuclei

  15. Nuclear matter saturation in a U(1) circle-times chiral model

    International Nuclear Information System (INIS)

    Lin, Wei

    1989-01-01

    The mean-field approximation in the U(1) circle-times chiral model for nuclear matter maturation is reviewed. Results show that it cannot be the correct saturation mechanism. It is argued that in this chiral model, other than the fact the ω mass can depend on the density of nuclear matter, saturation is still quite like the Walecka picture. 16 refs., 3 figs

  16. Chiral dynamics and heavy quark symmetry in a solvable toy field-theoretic model

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Hill, C.T.

    1994-01-01

    We study a solvable QCD-like toy theory, a generalization of the Nambu--Jona-Lasinio model, which implements chiral symmetries of light quarks and heavy quark symmetry. The chiral symmetric and chiral broken phases can be dynamically tuned. This implies a parity-doubled heavy-light meson system, corresponding to a (0 - ,1 - ) multiplet and a (0 + ,1 + ) heavy spin multiplet. Consequently the mass difference of the two multiplets is given by a Goldberger-Treiman relation and g A is found to be small. The Isgur-Wise function ξ(w), the decay constant f B , and other observables are studied

  17. Degenerate and chiral states in the extended Heisenberg model on the kagome lattice

    Science.gov (United States)

    Gómez Albarracín, F. A.; Pujol, P.

    2018-03-01

    We present a study of the low-temperature phases of the antiferromagnetic extended classical Heisenberg model on the kagome lattice, up to third-nearest neighbors. First, we focus on the degenerate lines in the boundaries of the well-known staggered chiral phases. These boundaries have either semiextensive or extensive degeneracy, and we discuss the partial selection of states by thermal fluctuations. Then, we study the model under an external magnetic field on these lines and in the staggered chiral phases. We pay particular attention to the highly frustrated point, where the three exchange couplings are equal. We show that this point can be mapped to a model with spin-liquid behavior and nonzero chirality. Finally, we explore the effect of Dzyaloshinskii-Moriya (DM) interactions in two ways: a homogeneous and a staggered DM interaction. In both cases, there is a rich low-temperature phase diagram, with different spontaneously broken symmetries and nontrivial chiral phases.

  18. Nuclear matter calculations with a pseudoscalar-pseudovector chiral model

    Energy Technology Data Exchange (ETDEWEB)

    Niembro, R.; Marcos, S.; Bernardos, P. [University of Cantabria, Faculty of Sciences, Department of Modern Physics, 39005 Santander (Spain); Fomenko, V.N. [St Petersburg University for Railway Engineering, Department of Mathematics, 197341 St Petersburg (Russian Federation); Savushkin, L.N. [St Petersburg University for Telecomunications, Department of Physics, 191065 St Petersburg (Russian Federation); Lopez-Quelle, M. [University of Cantabria, Faculty of Sciences, Department of Applied Physics, 39005 Santander, Spain (Spain)

    1998-10-01

    A mixed pseudoscalar-pseudovector {pi}N coupling relativistic Lagrangian is obtained from a pure pseudoscalar chiral one, by transforming the nucleon field according to a generalized Weinberg transformation, which depends on a mixing parameter. The interaction is generated by the {sigma}, {omega} and {pi} meson exchanges. Within the Hartree-Fock context, pion polarization effects, including the {delta} isobar, are considered in the random phase approximation in nuclear matter. These effects are interpreted, in a non-relativistic framework, as a modification of the range and intensity of a Yukawa-type potential by means of a simple function which takes into account the nucleon-hole and {delta}-hole excitations. Results show stability of relativistic nuclear matter against pion condensation. Compression modulus is diminished by the combined effects of the nucleon and {delta} polarization towards the usually accepted experimental values. The {pi}N interaction strength used in this paper is less than the conventional one to ensure the viability of the model. The fitting parameters of the model are the scalar meson mass m{sub {sigma}} and the {omega}-N coupling constant g{sub {omega}}. (author)

  19. Dense baryon matter with isospin and chiral imbalance in the framework of a NJL4 model at large Nc: Duality between chiral symmetry breaking and charged pion condensation

    Science.gov (United States)

    Khunjua, T. G.; Klimenko, K. G.; Zhokhov, R. N.

    2018-03-01

    In this paper the phase structure of dense quark matter has been investigated at zero temperature in the presence of baryon, isospin and chiral isospin chemical potentials in the framework of massless (3 +1 )-dimensional Nambu-Jona-Lasinio model with two quark flavors. It has been shown that in the large-Nc limit (Nc is the number of colors of quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation one. The key conclusion of our studies is the fact that chiral isospin chemical potential generates charged pion condensation in dense quark matter with isotopic asymmetry.

  20. Form factors in the projected linear chiral sigma model

    International Nuclear Information System (INIS)

    Alberto, P.; Coimbra Univ.; Bochum Univ.; Ruiz Arriola, E.; Fiolhais, M.; Urbano, J.N.; Coimbra Univ.; Goeke, K.; Gruemmer, F.; Bochum Univ.

    1990-01-01

    Several nucleon form factors are computed within the framework of the linear chiral soliton model. To this end variational means and projection techniques applied to generalized hedgehog quark-boson Fock states are used. In this procedure the Goldberger-Treiman relation and a virial theorem for the pion-nucleon form factor are well fulfilled demonstrating the consistency of the treatment. Both proton and neutron charge form factors are correctly reproduced, as well as the proton magnetic one. The shapes of the neutron magnetic and of the axial form factors are good but their absolute values at the origin are too large. The slopes of all the form factors at zero momentum transfer are in good agreement with the experimental data. The pion-nucleon form factor exhibits to great extent a monopole shape with a cut-off mass of Λ=690 MeV. Electromagnetic form factors for the vertex γNΔ and the nucleon spin distribution are also evaluated and discussed. (orig.)

  1. Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields

    OpenAIRE

    Gitman, D. M.; Odintsov, S. D.; Shil'nov, Yu. I.

    1996-01-01

    The phase structure of $d=3$ Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the $1/N$-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the ...

  2. The temperature dependence of the chiral condensate in the Schwinger model with Matrix Product States

    International Nuclear Information System (INIS)

    Saito, H; Jansen, K.; Cichy, K.; Frankfurt Univ.; Poznan Univ.

    2014-12-01

    We present our recent results for the tensor network (TN) approach to lattice gauge theories. TN methods provide an efficient approximation for quantum many-body states. We employ TN for one dimensional systems, Matrix Product States, to investigate the 1-flavour Schwinger model. In this study, we compute the chiral condensate at finite temperature. From the continuum extrapolation, we obtain the chiral condensate in the high temperature region consistent with the analytical calculation by Sachs and Wipf.

  3. Chiral and color-superconducting phase transitions with vector interaction in a simple model

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo; Koide, Tomoi; Kunihiro, Teiji; Nemoto, Yukio

    2002-01-01

    We investigate effects of the vector interaction on chiral and color superconducting (CSC) phase transitions at finite density and temperature in a simple Nambu-Jona-Lasinio model. It is shown that the repulsive density-density interaction coming from the vector term, which is present in the effective chiral models but has been omitted, enhances the competition between the chiral symmetry breaking (χSB) and CSC phase transition, and thereby makes the thermodynamic potential have a shallow minimum over a wide range of values of the correlated chiral and CSC order parameters. We find that when the vector coupling is increased, the first order transition between the χSB and CSC phases becomes weaker, and the coexisting phase in which both the chiral and color-gauge symmetry are dynamically broken comes to exist over a wider range of the density and temperature. We also show that there can exist two endpoints, which are tricritical points in the chiral limit, along the critical line of the first order transition in some range of values of the vector coupling. Although our analysis is based on a simple model, the nontrivial interplay between the χSB and CSC phases induced by the vector interaction is expected to be a universal phenomenon and might give a clue to understanding results obtained with two-color QCD on the lattice. (author)

  4. Cooperative effects in the structuring of fluoride water clusters: Ab initio hybrid quantum mechanical/molecular mechanical model incorporating polarizable fluctuating charge solvent

    Science.gov (United States)

    Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.

    1998-08-01

    A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.

  5. Dynamical polarizability of atoms

    International Nuclear Information System (INIS)

    Mukhopadhyay, G.; Lundqvist, S.

    1980-07-01

    The frequency-dependent polarizability of a closed-shell atom is considered in an RPA type approximation. This is usually done using many-body perturbation theory but can also be recast into the form of equations for the density oscillations as previously shown by the authors. The latter approach is known to lead to a non-hermitian problem because of the structure of the interaction kernel. This note shows that this is also true if using the reaction matrix method. The main result is to derive the expression for the polarizability function taking into account the non-hermitian nature of the problem. (author)

  6. Higher-Order Extended Lagrangian Born-Oppenheimer Molecular Dynamics for Classical Polarizable Models.

    Science.gov (United States)

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M N

    2018-02-13

    Generalized extended Lagrangian Born-Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate "shadow" potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.

  7. Symmetry conservation in the linear chiral soliton model

    International Nuclear Information System (INIS)

    Goeke, K.

    1988-01-01

    The linear chiral soliton model with quark fields and elementary pion- and sigma-fields is solved in order to describe static properties of the nucleon and the delta resonance. To this end a Fock-state of the system is constructed consisting out of three valence quarks in a first orbit with a generalized hedgehog spin-flavour configuration. Coherent states are used to provide a quantum description for the mesonic parts of the total wave function. The corresponding classical pion field also exhibit a generalized hedgehog structure. In a pure mean field approximation the variation of the total energy results in the ordinary hedgehog form. In a quantized approach the generalized hedgehog-baryon is projected onto states with good spin and isospin and then noticeable deviations from the simple hedgehog form, if the relevant degrees of freedom of the wave function are varied after the projection. Various nucleon properties are calculated. These include proton and neutron charge radii, and the magnetic moment of the proton for which good agreement with experiment is obtained. The absolute value of the neutron magnetic moment comes out too large, similarly as the axial vector coupling constant and the pion-nucleon-nucleon coupling constant.To the generalization of the hedgehog the Goldberger-Treiman relation and a corresponding virial theorem are fulfilled. Variation of the quark-meson coupling parameter g and the sigma mass m σ shows that the g A is always at least 40 % too large compared to experiment. Hence it is concluded that either the inclusion of the polarization of the Dirac sea and/or further mesons with may be vector character or the consideration of intrinsic deformation is necessary. The concepts and results of the projections are compared with the semiclassical collective quantization method. 6 tabs., 14 figs., 43 refs

  8. Introduction to Chiral Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-09

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.

  9. Introduction to chiral symmetry

    International Nuclear Information System (INIS)

    Koch, V.

    1996-01-01

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented

  10. Baryon axial-vector couplings and SU(3)-symmetry breaking in chiral quark models

    International Nuclear Information System (INIS)

    Horvat, D.; Ilakovac, A.; Tadic, D.

    1986-01-01

    SU(3)-symmetry breaking is studied in the framework of the chiral bag models. Comparisons are also made with the MIT bag model and the harmonic-oscillator quark model. An important clue for the nature of the symmetry breaking comes from the isoscalar axial-vector coupling constant g/sub A//sup S/ which can be indirectly estimated from the Bjorken sum rules for deep-inelastic scattering. The chiral bag model with two radii reasonably well accounts for the empirical values of g/sub A//sup S/ and of the axial-vector coupling constants measured in hyperon semileptonic decays

  11. Magnetic polarizability of pion

    Energy Technology Data Exchange (ETDEWEB)

    Luschevskaya, E.V., E-mail: luschevskaya@itep.ru [Institute for Theoretical and Experimental Physics, Bolshaia Cheremushkinskaia 25, 117218 Moscow (Russian Federation); School of Biomedicine, Far Eastern Federal University, 690950 Vladivostok (Russian Federation); Solovjeva, O.E., E-mail: olga.solovjeva@itep.ru [Institute for Theoretical and Experimental Physics, Bolshaia Cheremushkinskaia 25, 117218 Moscow (Russian Federation); Teryaev, O.V., E-mail: teryaev@theor.jinr.ru [Joint Institute for Nuclear Research, Dubna, 141980 (Russian Federation); National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute), Kashirskoe highway, 31, 115409 Moscow (Russian Federation)

    2016-10-10

    We explore the energy dependence of π mesons off the background Abelian magnetic field on the base of quenched SU(3) lattice gauge theory and calculate the magnetic dipole polarizability of charged and neutral pions for various lattice volumes and lattice spacings. The contribution of the magnetic hyperpolarizability to the neutral pion energy has been also found.

  12. Spin polarizability of hyperons

    Indian Academy of Sciences (India)

    K B VIJAYA KUMAR. Department of Physics, Mangalore University, Mangalagangothri 574 199, India. E-mail: kbvijayakumar@yahoo.com. DOI: 10.1007/s12043-014-0869-4; ePublication: 4 November 2014. Abstract. We review the recent progress of the theoretical understanding of spin polarizabilities of the hyperon in the ...

  13. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model.

    Science.gov (United States)

    Bauer, Brad A; Patel, Sandeep

    2009-08-28

    We present an extension of the TIP4P-QDP model, TIP4P-QDP-LJ, that is designed to couple changes in repulsive and dispersive nonbond interactions to changes in polarizability. Polarizability is intimately related to the dispersion component of classical force field models of interactions, and we explore the effect of incorporating this connection explicitly on properties along the liquid-vapor coexistence curve of pure water. Parametrized to reproduce condensed-phase liquid water properties at 298 K, the TIP4P-QDP-LJ model predicts density, enthalpy of vaporization, self-diffusion constant, and the dielectric constant at ambient conditions to about the same accuracy as TIP4P-QDP but shows remarkable improvement in reproducing the liquid-vapor coexistence curve. TIP4P-QDP-LJ predicts critical constants of T(c)=623 K, rho(c)=0.351 g/cm(3), and P(c)=250.9 atm, which are in good agreement with experimental values of T(c)=647.1 K, rho(c)=0.322 g/cm(3), and P(c)=218 atm, respectively. Applying a scaling factor correction (obtained by fitting the experimental vapor-liquid equilibrium data to the law of rectilinear diameters using a three-term Wegner expansion) the model predicts critical constants (T(c)=631 K and rho(c)=0.308 g/cm(3)). Dependence of enthalpy of vaporization, self-diffusion constant, surface tension, and dielectric constant on temperature are shown to reproduce experimental trends. We also explore the interfacial potential drop across the liquid-vapor interface for the temperatures studied. The interfacial potential demonstrates little temperature dependence at lower temperatures (300-450 K) and significantly enhanced (exponential) dependence at elevated temperatures. Terms arising from the decomposition of the interfacial potential into dipole and quadrupole contributions are shown to monotonically approach zero as the temperature approaches the critical temperature. Results of this study suggest that self-consistently treating the coupling of phase

  14. Electroweak chiral Lagrangian from a natural topcolor-assisted technicolor model

    International Nuclear Information System (INIS)

    Lang Junyi; Jiang Shaozhou; Wang Qing

    2009-01-01

    Based on previous studies on computing coefficients of the electroweak chiral Lagrangian from C. T. Hill's schematic topcolor-assisted technicolor model, we generalize the calculation to K. Lane's prototype natural topcolor-assisted technicolor model. We find that typical features of the model are qualitatively similar to those of Hill's, but Lane's model prefers a smaller technicolor group and the Z ' mass must be smaller than 400 GeV. Furthermore, the S parameter is around the order of +1, mainly due to the existence of three doublets of techniquarks. We obtain the values for all coefficients of the electroweak chiral Lagrangian up to the order p 4 . Apart from large negative four-fermion coupling values, the extended technicolor impacts on the electroweak chiral Lagrangian coefficients are small, since the techniquark self energy, which determines these coefficients, in general receives almost no influence from the extended technicolor induced four-fermion interactions except for its large momentum tail.

  15. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  16. Effects of Composite Pions on the Chiral Condensate within the PNJL Model at Finite Temperature

    Science.gov (United States)

    Blaschke, D.; Dubinin, A.; Ebert, D.; Friesen, A. V.

    2018-05-01

    We investigate the effect of composite pions on the behaviour of the chiral condensate at finite temperature within the Polyakov-loop improved NJL model. To this end we treat quark-antiquark correlations in the pion channel (bound states and scattering continuum) within a Beth-Uhlenbeck approach that uses medium-dependent phase shifts. A striking medium effect is the Mott transition which occurs when the binding energy vanishes and the discrete pion bound state merges the continuum. This transition is triggered by the lowering of the continuum edge due to the chiral restoration transition. This in turn also entails a modification of the Polyakov-loop so that the SU(3) center symmetry gets broken at finite temperature and dynamical quarks (and gluons) appear in the system, taking over the role of the dominant degrees of freedom from the pions. At low temperatures our model reproduces the chiral perturbation theory result for the chiral condensate while at high temperatures the PNJL model result is recovered. The new aspect of the current work is a consistent treatment of the chiral restoration transition region within the Beth-Uhlenbeck approach on the basis of mesonic phase shifts for the treatment of the correlations.

  17. Block spins and chirality in Heisenberg model on Kagome and triangular lattices

    International Nuclear Information System (INIS)

    Subrahmanyam, V.

    1994-01-01

    The spin-1/2 Heisenberg model (HM) is investigated using a block-spin renormalization approach on Kagome and triangular lattices. In both cases, after coarse graining the triangles on original lattice and truncation of the Hilbert space to the triangular ground state subspace, HM reduces to an effective model on a triangular lattice in terms of the triangular-block degrees of freedom viz. the spin and the chirality quantum numbers. The chirality part of the effective Hamiltonian captures the essential difference between the two lattices. It is seen that simple eigenstates can be constructed for the effective model whose energies serve as upper bounds on the exact ground state energy of HM, and chiral ordered variational states have high energies compared to the other variational states. (author). 12 refs, 2 figs

  18. Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states

    Science.gov (United States)

    Poilblanc, Didier

    2017-09-01

    A simple spin-1/2 frustrated antiferromagnetic Heisenberg model (AFHM) on the square lattice—including chiral plaquette cyclic terms—was argued [A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Nat. Commun. 4, 2864 (2013), 10.1038/ncomms3864] to host a bosonic Kalmeyer-Laughlin (KL) fractional quantum Hall ground state [V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987), 10.1103/PhysRevLett.59.2095]. Here, we construct generic families of chiral projected entangled pair states (chiral PEPS) with low bond dimension (D =3 ,4 ,5 ) which, upon optimization, provide better variational energies than the KL Ansatz. The optimal D =3 PEPS exhibits chiral edge modes described by the Wess-Zumino-Witten SU(2) 1 model, as expected for the KL spin liquid. However, we find evidence that, in contrast to the KL state, the PEPS spin liquids have power-law dimer-dimer correlations and exhibit a gossamer long-range tail in the spin-spin correlations. We conjecture that these features are genuine to local chiral AFHM on bipartite lattices.

  19. Upper Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa Model

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany)

    2010-02-15

    We establish the cutoff-dependent upper Higgs boson mass bound by means of direct lattice computations in the framework of a chirally invariant lattice Higgs-Yukawa model emulating the same chiral Yukawa coupling structure as in the Higgs-fermion sector of the Standard Model. As expected from the triviality picture of the Higgs sector, we observe the upper mass bound to decrease with rising cutoff parameter {lambda}. Moreover, the strength of the fermionic contribution to the upper mass bound is explored by comparing to the corresponding analysis in the pure {phi}{sup 4}-theory. (orig.)

  20. Stereoelectronic model to explain the resolution of enantiomeric ibuprofen amides on the Pirkle chiral stationary phase.

    Science.gov (United States)

    Nicoll-Griffith, D A

    1987-07-31

    A chiral recognition model is proposed which incorporates the electronic and steric interactions between amide derivatives of ibuprofen and the (R)-N-(3,5-dinitrobenzoyl)phenylglycine-derived Pirkle chiral stationary phase during high-performance liquid chromatography. Based on this rationale, amide derivatives of ibuprofen were prepared using 4-chloroaniline, 4-bromoaniline, aniline, 4-methoxyaniline and 1-aminonaphthylene to improve the enantiomer separation over previously reported results with this column. The amides prepared gave separation values of 1.16, 1.16, 1.19, 1.21 and 1.23, respectively. These high separation values are consistent with the proposed model.

  1. Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model

    OpenAIRE

    Akiyama, Satoru; Futami, Yasuhiko

    2003-01-01

    In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the SU(3) chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon appears as a rotational band of the combined system of the...

  2. Deconfinement, chiral transition and localisation in a QCD-like model

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, Matteo; Katz, Sándor D. [Institute for Theoretical Physics, Eötvös University,Pázmány P. sétány 1/A, H-1117 Budapest (Hungary); MTA-ELTE “Lendület” Lattice Gauge Theory Research Group,Pázmány P. sétány 1/A, H-1117 Budapest (Hungary); Kovács, Tamás G. [Institute for Nuclear Research of the Hungarian Academy of Sciences,Bem tér 18/c, H-4026 Debrecen (Hungary); Pittler, Ferenc [HISKP(Theory), University of Bonn,Nussallee 14-16, D-53115 Bonn (Germany)

    2017-02-10

    We study the problems of deconfinement, chiral symmetry restoration and localisation of the low Dirac eigenmodes in a toy model of QCD, namely unimproved staggered fermions on lattices of temporal extension N{sub T}=4. This model displays a genuine deconfining and chirally-restoring first-order phase transition at some critical value of the gauge coupling. Our results indicate that the onset of localisation of the lowest Dirac eigenmodes takes place at the same critical coupling where the system undergoes the first-order phase transition. This provides further evidence of the close relation between deconfinement, chiral symmetry restoration and localisation of the low modes of the Dirac operator on the lattice.

  3. Molecular Polarizability of Sc and C (Fullerene and Graphite Clusters

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2001-05-01

    Full Text Available A method (POLAR for the calculation of the molecular polarizability is presented. It uses the interacting induced dipoles polarization model. As an example, the method is applied to Scn and Cn (fullerene and one-shell graphite model clusters. On varying the number of atoms, the clusters show numbers indicative of particularly polarizable structures. The are compared with reference calculations (PAPID. In general, the Scn calculated (POLAR and Cn computed (POLAR and PAPID are less polarizable than what is inferred from the bulk. However, the Scn calculated (PAPID are more polarizable than what is inferred. Moreover, previous theoretical work yielded the same trend for Sin, Gen and GanAsm small clusters. The high polarizability of the Scn clusters (PAPID is attributed to arise from dangling bonds at the surface of the cluster.

  4. Chiral Models in Noncommutative N=1/2 Four Dimensional Superspace

    DEFF Research Database (Denmark)

    Ryttov, Thomas; Sannino, Francesco

    2005-01-01

    We derive the component Lagrangian for a generic N=1/2 supersymmetric chiral model with an arbitrary number of fields in four space-time dimensions. We then investigate a toy model in which the deformation parameter modifies the undeformed potential near the origin of the field space in a way which...

  5. Efficient modeling of chiral media using SCN-TLM method

    Directory of Open Access Journals (Sweden)

    Yaich M.I.

    2004-01-01

    Full Text Available An efficient approach allowing to include linear bi-isotropic chiral materials in time-domain transmission line matrix (TLM calculations by employing recursive evaluation of the convolution of the electric and magnetic fields and susceptibility functions is presented. The new technique consists to add both voltage and current sources in supplementary stubs of the symmetrical condensed node (SCN of the TLM method. In this article, the details and the complete description of this approach are given. A comparison of the obtained numerical results with those of the literature reflects its validity and efficiency.

  6. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface.

    Science.gov (United States)

    Bauer, Brad A; Warren, G Lee; Patel, Sandeep

    2009-02-10

    We discuss a new classical water force field that explicitly accounts for differences in polarizability between liquid and vapor phases. The TIP4P-QDP (4-point transferable intermolecular potential with charge dependent-polarizability) force field is a modification of the original TIP4P-FQ fluctuating charge water force field of Rick et al.(1) that self-consistently adjusts its atomic hardness parameters via a scaling function dependent on the M-site charge. The electronegativity (χ) parameters are also scaled in order to reproduce condensed-phase dipole moments of comparable magnitude to TIP4P-FQ. TIP4P-QDP is parameterized to reproduce experimental gas-phase and select condensed-phase properties. The TIP4P-QDP water model possesses a gas phase polarizability of 1.40 Å(3) and gas-phase dipole moment of 1.85 Debye, in excellent agreement with experiment and high-level ab initio predictions. The liquid density of TIP4P-QDP is 0.9954(±0.0002) g/cm(3) at 298 K and 1 atmosphere, and the enthalpy of vaporization is 10.55(±0.12) kcal/mol. Other condensed-phase properties such as the isobaric heat capacity, isothermal compressibility, and diffusion constant are also calculated within reasonable accuracy of experiment and consistent with predictions of other current state-of-the-art water force fields. The average molecular dipole moment of TIP4P-QDP in the condensed phase is 2.641(±0.001) Debye, approximately 0.02 Debye higher than TIP4P-FQ and within the range of values currently surmised for the bulk liquid. The dielectric constant, ε = 85.8 ± 1.0, is 10% higher than experiment. This is reasoned to be due to the increase in the condensed phase dipole moment over TIP4P-FQ, which estimates ε remarkably well. Radial distribution functions for TIP4P-QDP and TIP4P-FQ show similar features, with TIP4P-QDP showing slightly reduced peak heights and subtle shifts towards larger distance interactions. Since the greatest effects of the phase-dependent polarizability are

  7. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface

    Science.gov (United States)

    Bauer, Brad A.; Warren, G. Lee; Patel, Sandeep

    2012-01-01

    We discuss a new classical water force field that explicitly accounts for differences in polarizability between liquid and vapor phases. The TIP4P-QDP (4-point transferable intermolecular potential with charge dependent-polarizability) force field is a modification of the original TIP4P-FQ fluctuating charge water force field of Rick et al.1 that self-consistently adjusts its atomic hardness parameters via a scaling function dependent on the M-site charge. The electronegativity (χ) parameters are also scaled in order to reproduce condensed-phase dipole moments of comparable magnitude to TIP4P-FQ. TIP4P-QDP is parameterized to reproduce experimental gas-phase and select condensed-phase properties. The TIP4P-QDP water model possesses a gas phase polarizability of 1.40 Å3 and gas-phase dipole moment of 1.85 Debye, in excellent agreement with experiment and high-level ab initio predictions. The liquid density of TIP4P-QDP is 0.9954(±0.0002) g/cm3 at 298 K and 1 atmosphere, and the enthalpy of vaporization is 10.55(±0.12) kcal/mol. Other condensed-phase properties such as the isobaric heat capacity, isothermal compressibility, and diffusion constant are also calculated within reasonable accuracy of experiment and consistent with predictions of other current state-of-the-art water force fields. The average molecular dipole moment of TIP4P-QDP in the condensed phase is 2.641(±0.001) Debye, approximately 0.02 Debye higher than TIP4P-FQ and within the range of values currently surmised for the bulk liquid. The dielectric constant, ε = 85.8 ± 1.0, is 10% higher than experiment. This is reasoned to be due to the increase in the condensed phase dipole moment over TIP4P-FQ, which estimates ε remarkably well. Radial distribution functions for TIP4P-QDP and TIP4P-FQ show similar features, with TIP4P-QDP showing slightly reduced peak heights and subtle shifts towards larger distance interactions. Since the greatest effects of the phase-dependent polarizability are

  8. Random matrix theory and higher genus integrability: the quantum chiral Potts model

    International Nuclear Information System (INIS)

    Angles d'Auriac, J.Ch.; Maillard, J.M.; Viallet, C.M.

    2002-01-01

    We perform a random matrix theory (RMT) analysis of the quantum four-state chiral Potts chain for different sizes of the chain up to size L 8. Our analysis gives clear evidence of a Gaussian orthogonal ensemble (GOE) statistics, suggesting the existence of a generalized time-reversal invariance. Furthermore, a change from the (generic) GOE distribution to a Poisson distribution occurs when the integrability conditions are met. The chiral Potts model is known to correspond to a (star-triangle) integrability associated with curves of genus higher than zero or one. Therefore, the RMT analysis can also be seen as a detector of 'higher genus integrability'. (author)

  9. The muon anomalous magnetic moment and the pion polarizability

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Kevin T. [University of Maryland, College Park, MD 20742 (United States); Ramsey-Musolf, Michael J. [Physics Department, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-11-10

    We compute the charged pion loop contribution to the muon anomalous magnetic moment a{sub μ}, taking into account the previously omitted effect of the charged pion polarizability, (α{sub 1}−β{sub 1}){sub π{sup +}}. We evaluate this contribution using two different models that are consistent with the requirements of chiral symmetry in the low-momentum regime and perturbative quantum chromodynamics in the asymptotic region. The result may increase the disagreement between the present experimental value for a{sub μ} and the theoretical, Standard Model prediction by as much as ∼60×10{sup −11}, depending on the value of (α{sub 1}−β{sub 1}){sub π{sup +}} and the choice of the model. The planned determination of (α{sub 1}−β{sub 1}){sub π{sup +}} at Jefferson Laboratory will eliminate the dominant parametric error, leaving a theoretical model uncertainty commensurate with the error expected from planned Fermilab measurement of a{sub μ}.

  10. A note on the Noyori model for chiral amplification in the aminoalcohol-catalyzed reaction of aldehydes with dialkylzinc

    Directory of Open Access Journals (Sweden)

    IVAN GUTMAN

    1999-11-01

    Full Text Available The Noyori model of chiral amplification in the alkylation of aldehydes by means of dialkylzinc, catalyzed by chiral aminoalcohols, is further elaborated. A direct, but approximate, relation is obtained between the enantiomeric excess of the catalyst added and the enantiomeric excess of the product.

  11. Soft modes at the critical end point in the chiral effective models

    International Nuclear Information System (INIS)

    Fujii, Hirotsugu; Ohtani, Munehisa

    2004-01-01

    At the critical end point in QCD phase diagram, the scalar, vector and entropy susceptibilities are known to diverge. The dynamic origin of this divergence is identified within the chiral effective models as softening of a hydrodynamic mode of the particle-hole-type motion, which is a consequence of the conservation law of the baryon number and the energy. (author)

  12. Kac-Moody algebra is not hidden symmetry of chiral models

    International Nuclear Information System (INIS)

    Devchand, C.; Schiff, J.

    1997-01-01

    A detailed examination of the infinite dimensional loop algebra of hidden symmetry transformations of the Principal Chiral Model reveals it to have a structure differing from a standard centreless Kac-Moody algebra. A new infinite dimensional Abelian symmetry algebra is shown to preserve a symplectic form on the space of solutions. (author). 15 refs

  13. Magnetic moments of the nucleon octet in a relativistic quark model with chiral symmetry

    International Nuclear Information System (INIS)

    Barik, N.; Dash, B.K.

    1986-01-01

    Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon interactions including gluon self-couplings, is chosen with equally mixed scalar and vector parts in harmonic form. The results are in reasonable agreement with experiment

  14. On Some Calculations of Effective Action and Fujikawa Regularized Anomaly in the Chiral Schwinger Model

    OpenAIRE

    Mehrdad, GOSHTASBPOUR; Center for Theoretical Physics and Mathematics, AEOI:Department of Physics, Shahid Beheshti University

    1991-01-01

    Extended D^†+D-DD^† Fujikawa regularization of anomaly and a method of integration of fermions for the chiral Schwinger model are criticized. On the basis of the corrected integration method, a new extended version of D^2 is obtained, resulting in the Jackiw-Rajaraman effective action.

  15. Chiral symmetry restoration and pion properties in a q-deformed NJL model

    International Nuclear Information System (INIS)

    Timoteo, V.S.; Lima, C.L.

    2006-01-01

    We review the implementation of a q-deformed fermionic algebra in the Nambu-Jona-Lasinio model (NJL). The gap equations obtained from a deformed condensate as well as from the deformation of the NJL Hamiltonian are discussed. The effect of both temperature and deformation in the chiral symmetry restoration process as well as in the pion properties is studied. (author)

  16. Infinite conformal symmetries and Riemann-Hilbert transformation in super principal chiral model

    International Nuclear Information System (INIS)

    Hao Sanru; Li Wei

    1989-01-01

    This paper shows a new symmetric transformation - C transformation in super principal chiral model and discover an infinite dimensional Lie algebra related to the Virasoro algebra without central extension. By using the Riemann-Hilbert transformation, the physical origination of C transformation is discussed

  17. A coarse-grained polarizable force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate

    Science.gov (United States)

    Zeman, Johannes; Uhlig, Frank; Smiatek, Jens; Holm, Christian

    2017-12-01

    We present a coarse-grained polarizable molecular dynamics force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]). For the treatment of electronic polarizability, we employ the Drude model. Our results show that the new explicitly polarizable force field reproduces important static and dynamic properties such as mass density, enthalpy of vaporization, diffusion coefficients, or electrical conductivity in the relevant temperature range. In situations where an explicit treatment of electronic polarizability might be crucial, we expect the force field to be an improvement over non-polarizable models, while still profiting from the reduction of computational cost due to the coarse-grained representation.

  18. Chiral property of the generalized Gross-Neveu model with Usub(N) x Usub(N) flavour chiral symmetry in 1+1 dimensions

    International Nuclear Information System (INIS)

    Sakai, S.

    1983-01-01

    The generalized Gross-Neveu model with Usub(N)xUsub(N) flavours chiral symmetry in 1+1 dimensions is studied by means of boson-fermion metamorphosis. A more rigorous argument on the presence of the low-temperature phase of Berezinski-Kosterlitz-Thauless type is presented. Low-lying physical fermion masses are obtained

  19. Chirality invariance and 'chiral' fields

    International Nuclear Information System (INIS)

    Ziino, G.

    1978-01-01

    The new field model derived in the present paper actually gives a definite answer to three fundamental questions concerning elementary-particle physics: 1) The phenomenological dualism between parity and chirality invariance: it would be only an apparent display of a general 'duality' principle underlying the intrinsic nature itself of (spin 1/2) fermions and expressed by the anticommutativity property between scalar and pseudoscalar charges. 2) The real physical meaning of V - A current structure: it would exclusively be connected to the one (just pointed out) of chiral fields themselves. 3) The unjustified apparent oddness shown by Nature in weak interactions, for the fact of picking out only one of the two (left- and right-handed) fermion 'chiral' projections: the key to such a 'mystery' would just be provided by the consequences of the dual and partial character of the two fermion-antifermion field bases. (Auth.)

  20. On the equivalence between sine-Gordon model and Thirring model in the chirally broken phase of the Thirring model

    International Nuclear Information System (INIS)

    Faber, M.; Ivanov, A.N.

    2001-01-01

    We investigate the equivalence between Thirring model and sine-Gordon model in the chirally broken phase of the Thirring model. This is unlike all other available approaches where the fermion fields of the Thirring model were quantized in the chiral symmetric phase. In the path integral approach we show that the bosonized version of the massless Thirring model is described by a quantum field theory of a massless scalar field and exactly solvable, and the massive Thirring model bosonizes to the sine-Gordon model with a new relation between the coupling constants. We show that the non-perturbative vacuum of the chirally broken phase in the massless Thirring model can be described in complete analogy with the BCS ground state of superconductivity. The Mermin-Wagner theorem and Coleman's statement concerning the absence of Goldstone bosons in the 1+1-dimensional quantum field theories are discussed. We investigate the current algebra in the massless Thirring model and give a new value of the Schwinger term. We show that the topological current in the sine-Gordon model coincides with the Noether current responsible for the conservation of the fermion number in the Thirring model. This allows one to identify the topological charge in the sine-Gordon model with the fermion number. (orig.)

  1. Measurement of the charged-pion polarizability.

    Science.gov (United States)

    Adolph, C; Akhunzyanov, R; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anosov, V; Austregesilo, A; Badełek, B; Balestra, F; Barth, J; Baum, G; Beck, R; Bedfer, Y; Berlin, A; Bernhard, J; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bodlak, M; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Büchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Colantoni, M; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dinkelbach, A M; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Gnesi, I; Gobbo, B; Goertz, S; Gorzellik, M; Grabmüller, S; Grasso, A; Grube, B; Grussenmeyer, T; Guskov, A; Guthörl, T; Haas, F; von Harrach, D; Hahne, D; Hashimoto, R; Heinsius, F H; Herrmann, F; Hinterberger, F; Höppner, Ch; Horikawa, N; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Jörg, P; Joosten, R; Kabuss, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Krämer, M; Kroumchtein, Z V; Kuchinski, N; Kuhn, R; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Marchand, C; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Miyachi, Y; Moinester, M A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Novy, J; Nowak, W-D; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Peshekhonov, D; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Rocco, E; Rossiyskaya, N S; Ryabchikov, D I; Rychter, A; Samoylenko, V D; Sandacz, A; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlüter, T; Schmidt, K; Schmieden, H; Schönning, K; Schopferer, S; Schott, M; Shevchenko, O Yu; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; ter Wolbeek, J; Tessaro, S; Tessarotto, F; Thibaud, F; Uhl, S; Uman, I; Virius, M; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zink, A

    2015-02-13

    The COMPASS collaboration at CERN has investigated pion Compton scattering, π(-)γ→π(-)γ, at center-of-mass energy below 3.5 pion masses. The process is embedded in the reaction π(-)Ni→π(-)γNi, which is initiated by 190 GeV pions impinging on a nickel target. The exchange of quasireal photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, Q(2)<0.0015  (GeV/c)(2). From a sample of 63,000 events, the pion electric polarizability is determined to be α(π)=(2.0±0.6(stat)±0.7(syst))×10(-4)  fm(3) under the assumption α(π)=-β(π), which relates the electric and magnetic dipole polarizabilities. It is the most precise measurement of this fundamental low-energy parameter of strong interaction that has been addressed since long by various methods with conflicting outcomes. While this result is in tension with previous dedicated measurements, it is found in agreement with the expectation from chiral perturbation theory. An additional measurement replacing pions by muons, for which the cross-section behavior is unambiguously known, was performed for an independent estimate of the systematic uncertainty.

  2. Transport and collective radiance in a basic quantum chiral optical model

    Science.gov (United States)

    Kornovan, D. F.; Petrov, M. I.; Iorsh, I. V.

    2017-09-01

    In our work, we theoretically study the dynamics of a single excitation in a one-dimensional array of two-level systems, which are chirally coupled through a single mode waveguide. The chirality is achieved owing to a strong optical spin-locking effect, which in an ideal case gives perfect unidirectional excitation transport. We obtain a simple analytical solution for a single excitation dynamics in the Markovian limit, which directly shows the tolerance of the system with respect to the fluctuations of emitters position. We also show that the Dicke state, which is well known to be superradiant, has twice lower emission rate in the case of unidirectional quantum interaction. Our model is supported and verified with the numerical computations of quantum emitters coupled via surface plasmon modes in a metallic nanowire. The obtained results are based on a very general model and can be applied to any chirally coupled system that gives a new outlook on quantum transport in chiral nanophotonics.

  3. High Precision Measurement of the Neutron Polarizabilities via Compton Scattering on Deuterium at HI γS

    Science.gov (United States)

    Sikora, Mark

    2016-09-01

    The electric (αn) and magnetic (βn) polarizabilities of the neutron are fundamental properties arising from its internal structure which describe the nucleon's response to applied electromagnetic fields. Precise measurements of the polarizabilities provide crucial constraints on models of Quantum Chromodynamics (QCD) in the low energy regime such as Chiral Effective Field Theories as well as emerging ab initio calculations from lattice-QCD. These values also contribute the most uncertainty to theoretical determinations of the proton-neutron mass difference. Historically, the experimental challenges to measuring αn and βn have been due to the difficulty in obtaining suitable targets and sufficiently intense beams, leading to significant statistical uncertainties. To address these issues, a program of Compton scattering experiments on the deuteron is underway at the High Intensity Gamma Source (HI γS) at Duke University with the aim of providing the world's most precise measurement of αn and βn. We report measurements of the Compton scattering differential cross section obtained at incident photon energies of 65 and 85 MeV and discuss the sensitivity of these data to the polarizabilities.

  4. High Precision Measurement of the Neutron Polarizabilities via Compton Scattering on Deuterium at Eγ=65 MeV

    Science.gov (United States)

    Sikora, Mark; Compton@HIGS Team

    2017-01-01

    The electric (αn) and magnetic (βn) polarizabilities of the neutron are fundamental properties arising from its internal structure which describe the nucleon's response to applied electromagnetic fields. Precise measurements of the polarizabilities provide crucial constraints on models of Quantum Chromodynamics (QCD) in the low energy regime such as Chiral Effective Field Theories as well as emerging ab initio calculations from lattice-QCD. These values also contribute the most uncertainty to theoretical determinations of the proton-neutron mass difference. Historically, the experimental challenges to measuring αn and βn have been due to the difficulty in obtaining suitable targets and sufficiently intense beams, leading to significant statistical uncertainties. To address these issues, a program of Compton scattering experiments on the deuteron is underway at the High Intensity Gamma Source (HI γS) at Duke University with the aim of providing the world's most precise measurement of αn and βn. We report measurements of the Compton scattering differential cross section obtained at an incident photon energy of 65 MeV and discuss the sensitivity of these data to the polarizabilities.

  5. Polarizability sum rules in QED

    International Nuclear Information System (INIS)

    Llanta, E.; Tarrach, R.

    1978-01-01

    The well founded total photoproduction and the, assumed subtraction free, longitudinal photoproduction polarizability sum rules are checked in QED at the lowest non-trivial order. The first one is shown to hold, whereas the second one turns out to need a subtraction, which makes its usefulness for determining the electromagnetic polarizabilities of the nucleons quite doubtful. (Auth.)

  6. Structure of the vacuum in the color dielectric model: confinement and chiral symmetry

    International Nuclear Information System (INIS)

    Mazzolo, A.

    1992-01-01

    Two of the most important properties of Quantum Chromodynamic (QCD), spontaneous symmetry breaking of the vacuum and quark confinement at low energy, are first presented. Some important effective models for hadronic physics are then described. Putting QCD on the lattice and using the block-spin method, the color-dielectric model effective Lagrangian is obtained. The structure of the vacuum and the behaviour of uniform quark matter at high intensity are investigated in this model. Its original formulation is extended to handle chiral symmetry (by use of sigma model) and to include negative energy orbitals. At high baryonic density, the model describes the two phase transitions which are expected in QCD: deconfinement of quarks and chiral symmetry restoration. Finally, a heavy meson composed by a charmed quark anti-quark pair, is constructed, and the valence quarks confinement and the vacuum structure around them are studied

  7. Ionization Energies, Electron Affinities, and Polarization Energies of Organic Molecular Crystals: Quantitative Estimations from a Polarizable Continuum Model (PCM)–Tuned Range-Separated Density Functional Approach

    KAUST Repository

    Sun, Haitao

    2016-05-16

    We propose a new methodology for the first-principles description of the electronic properties relevant for charge transport in organic molecular crystals. This methodology, which is based on the combination of a non-empirical, optimally tuned range-separated hybrid functional with the polarizable continuum model, is applied to a series of eight representative molecular semiconductor crystals. We show that it provides ionization energies, electron affinities, and transport gaps in very good agreement with experimental values as well as with the results of many-body perturbation theory within the GW approximation at a fraction of the computational costs. Hence, this approach represents an easily applicable and computationally efficient tool to estimate the gas-to-crystal-phase shifts of the frontier-orbital quasiparticle energies in organic electronic materials.

  8. Electronic excitation of molecules in solution calculated using the symmetry-adapted cluster–configuration interaction method in the polarizable continuum model

    International Nuclear Information System (INIS)

    Fukuda, Ryoichi; Ehara, Masahiro

    2015-01-01

    The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculations show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents

  9. Neutron-skin thickness of finite nuclei in relativistic mean-field models with chiral limits

    International Nuclear Information System (INIS)

    Jiang Weizhou; Li Baoan; Chen Liewen

    2007-01-01

    We study several structure properties of finite nuclei using relativistic mean-field Lagrangians constructed according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities. The models are consistent with current experimental constraints for the equations of state of symmetric matter at both normal and supranormal densities and of asymmetric matter at subsaturation densities. It is shown that these models can successfully describe the binding energies and charge radii of finite nuclei. Compared to calculations with usual relativistic mean-field models, these models give a reduced thickness of neutron skin in 208 Pb between 0.17 fm and 0.21 fm. The reduction of the predicted neutron skin thickness is found to be due to not only the softening of the symmetry energy but also the scaling property of ρ meson required by the partial restoration of chiral symmetry

  10. Higgs-Yukawa model in chirally-invariant lattice field theory

    CERN Document Server

    Bulava, John; Jansen, Karl; Kallarackal, Jim; Knippschild, Bastian; Lin, C.-J.David; Nagai, Kei-Ichi; Nagy, Attila; Ogawa, Kenji

    2013-01-01

    Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.

  11. Higgs mass bounds from a chirally invariant lattice Higgs-Yukawa model with overlap fermions

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim

    2008-10-01

    We study the parameter dependence of the Higgs mass in a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. Eventually, the aim is to establish upper and lower Higgs mass bounds. Here we present our preliminary results on the lower Higgs mass bound at several selected values for the cutoff and give a brief outlook towards the upper Higgs mass bound. (orig.)

  12. Weak ωNN coupling in the non-linear chiral model

    International Nuclear Information System (INIS)

    Shmatikov, M.

    1988-01-01

    In the non-linear chiral model with the soliton solution stabilized by the ω-meson field the weak ωNN coupling constants are calculated. Applying the vector dominance model for the isoscalar current the constant of the isoscalar P-odd ωNN interaction h ω (0) =0 is obtained while the constant of the isovector (of the Lagrangian of the ωNN interaction proves to be h ω (1) ≅ 1.0x10 -7

  13. Higgs-Yukawa model in chirally-invariant lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John [CERN, Geneva (Switzerland). Physics Department; Gerhold, Philipp; Kallarackal, Jim; Nagy, Attila [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [National Taiwan Univ., Taipei (China). Dept. of Physics; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu (China). Inst. of Physics; National Centre for Theoretical Sciences, Hsinchu (China). Div. of Physics; Nagai, Kei-Ichi [Nagoya Univ., Nagoya, Aichi (Japan). Kobayashi-Maskawa Institute; Ogawa, Kenji [Chung-Yuan Christian Univ., Chung-Li (China). Dept. of Physics

    2012-10-15

    Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.

  14. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  15. Modeling chiral criticality and its consequences for heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Almási, Gábor András, E-mail: g.almasi@gsi.de [Gesellschaft für Schwerionenforschung, GSI, D-64291 Darmstadt (Germany); Friman, Bengt, E-mail: b.friman@gsi.de [Gesellschaft für Schwerionenforschung, GSI, D-64291 Darmstadt (Germany); ExtreMe Matter Institute (EMMI), D-64291 Darmstadt (Germany); Redlich, Krzysztof, E-mail: krzysztof.redlich@ift.uni.wroc.pl [ExtreMe Matter Institute (EMMI), D-64291 Darmstadt (Germany); University of Wrocław - Faculty of Physics and Astronomy, PL-50-204 Wrocław (Poland); Department of Physics, Duke University, Durham, NC 27708 (United States)

    2016-12-15

    We explore the critical fluctuations near the chiral critical endpoint (CEP) in a chiral effective model and discuss possible signals of the CEP, recently explored experimentally in nuclear collision. Particular attention is paid to the dependence of such signals on the location of the phase boundary and the CEP relative to the chemical freeze-out conditions in nuclear collisions. We argue that in effective models, standard freeze-out fits to heavy-ion data should not be used directly. Instead, the relevant quantities should be examined on lines in the phase diagram that are defined self-consistently, within the framework of the model. We discuss possible choices for such an approach.

  16. Modeling chiral criticality and its consequences for heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Almasi, Gabor [Gesellschaft fuer Schwerionenforschung, GSI, Darmstadt (Germany); Friman, Bengt [Gesellschaft fuer Schwerionenforschung, GSI, Darmstadt (Germany); ExtreMe Matter Institute (EMMI), Darmstadt (Germany); Redlich, Krzysztof [ExtreMe Matter Institute (EMMI), Darmstadt (Germany); University of Wroclaw, Faculty of Physics and Astronomy, Wroclaw (Poland); Department of Physics, Duke University, Durham, NC (United States)

    2016-07-01

    We explore the critical fluctuations near the chiral critical endpoint (CEP), which belongs to the Z(2) universality class, in a chiral effective model and discuss possible signals of the CEP, recently explored in nuclear collision experiments. Particular attention is attributed to the dependence of such signals on the location of the phase boundary and the CEP relative to the hypothetical freeze-out conditions in nuclear collisions. We argue that in effective models freeze-out fits to heavy-ion results should not be used directly, and relevant quantities should be investigated on lines of the phase diagram, that are defined self-consistently in the framework of the model. We discuss possible choices for such an approach. Additionally we discuss the effect of the repulsive vector interaction of quarks on the location of the CEP and on the structure of the baryon number cumulant ratios.

  17. Dynamic polarizabilities for the low lying states of Ca+

    International Nuclear Information System (INIS)

    Tang, Yong-Bo; Shi, Ting-Yun; Qiao, Hao-Xue; Mitroy, J

    2014-01-01

    The dynamic polarizabilities of the 4s, 3d and 4p states of Ca + are calculated using a relativistic structure model. The wavelengths at which the Stark shifts between different pairs of transitions are zero are calculated. Experimental determination of the magic wavelengths could prove useful in developing better atomic structure models and in particular lead to improved values of the polarizabilities for the Ca + (3d) states

  18. Path-integral formulation of chiral invariant fermion models in two dimensions

    International Nuclear Information System (INIS)

    Furuya, K.; Gamboa Saravi, R.E.; Schaposnik, F.A.

    1982-01-01

    We study the Thirring and chiral-invariant Gross-Neveu (CGN) models using the functional integral method. By introducing an auxiliary vector field we disclose a relation with two-dimensional gauge theories coupled to fermions and then extend a technique based on a chiral change in the functional variables to study purely fermionic models. We obtain the exact Klaiber solution for the massless Thirring model (for spin 1/2) in a very simple way and we then extend our technique to investigate the CGN model. We show the factorization of a free fermionic part at the level of Green functions on very general grounds. We then impose certain restrictions on the behavior of the fields - which render our treatment exact only in the zero winding number sector, but allow the computation of the U(1) part of the CGN Green functions exactly, showing, in particular, its complete decoupling from the color part and the almost long-range order behavior in the infrared region. In our approach, the non-triviality of the jacobian arising from the chiral transformation - directly related to the topological density and the axial anomaly - appears to be crucial for the functional integral treatment of these models. (orig.)

  19. Parity nonconservation and nuclear polarizabilities

    International Nuclear Information System (INIS)

    Haxton, W.

    1990-01-01

    The hadronic weak interaction contributes to parity nonconserving observables in semileptonic interactions. Weak nuclear polarizabilities are frequently important in such interactions. Some of the interesting physics is illustrated by 18 F, a nucleus that provides an important constraint on the neutral weak hadronic current. One observable where the nuclear polarizability is expected to dominate is the nuclear anapole moment. The long-range pion contribution to this weak radiative correction is explored for both nucleons and nuclei. Similar polarizabilities that arise for time-reversal-odd hadronic interactions that conserve or violate parity are discussed in connection with atomic electric dipole moments. 20 refs., 4 figs

  20. Measurement of the charged pion polarizability at COMPASS

    International Nuclear Information System (INIS)

    Nagel, Thiemo Christian Ingo

    2012-01-01

    The reaction π - +Z→π - +γ+Z in which a photon is produced by a beam pion scattering off a quasi-real photon of the Coulomb field of the target nucleus is identified experimentally by the tiny magnitude of the momentum transfer to the nucleus. This process gives access to the charged pion polarizabilities α π and β π whose experimental determination constitutes an important test of Chiral Perturbation Theory. In this work, the pion polarizability is obtained as α π =(1.9±0.7 stat. ±0.8 syst. ) x 10 -4 fm 3 from data taken with 190 GeV/c hadron beam provided by SPS to the COMPASS experiment at CERN in November 2009 and under the assumption of α π +β π =0.

  1. Measurement of the charged pion polarizability at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Thiemo Christian Ingo

    2012-09-26

    The reaction {pi}{sup -}+Z{yields}{pi}{sup -}+{gamma}+Z in which a photon is produced by a beam pion scattering off a quasi-real photon of the Coulomb field of the target nucleus is identified experimentally by the tiny magnitude of the momentum transfer to the nucleus. This process gives access to the charged pion polarizabilities {alpha}{sub {pi}} and {beta}{sub {pi}} whose experimental determination constitutes an important test of Chiral Perturbation Theory. In this work, the pion polarizability is obtained as {alpha}{sub {pi}}=(1.9{+-}0.7{sub stat.}{+-}0.8{sub syst.}) x 10{sup -4} fm{sup 3} from data taken with 190 GeV/c hadron beam provided by SPS to the COMPASS experiment at CERN in November 2009 and under the assumption of {alpha}{sub {pi}}+{beta}{sub {pi}}=0.

  2. Chiral Gold Nanoclusters: Atomic Level Origins of Chirality.

    Science.gov (United States)

    Zeng, Chenjie; Jin, Rongchao

    2017-08-04

    Chiral nanomaterials have received wide interest in many areas, but the exact origin of chirality at the atomic level remains elusive in many cases. With recent significant progress in atomically precise gold nanoclusters (e.g., thiolate-protected Au n (SR) m ), several origins of chirality have been unveiled based upon atomic structures determined by using single-crystal X-ray crystallography. The reported chiral Au n (SR) m structures explicitly reveal a predominant origin of chirality that arises from the Au-S chiral patterns at the metal-ligand interface, as opposed to the chiral arrangement of metal atoms in the inner core (i.e. kernel). In addition, chirality can also be introduced by a chiral ligand, manifested in the circular dichroism response from metal-based electronic transitions other than the ligand's own transition(s). Lastly, the chiral arrangement of carbon tails of the ligands has also been discovered in a very recent work on chiral Au 133 (SR) 52 and Au 246 (SR) 80 nanoclusters. Overall, the origins of chirality discovered in Au n (SR) m nanoclusters may provide models for the understanding of chirality origins in other types of nanomaterials and also constitute the basis for the development of various applications of chiral nanoparticles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nucleon-nucleon interaction of a chiral σ-ω model at finite temperature

    International Nuclear Information System (INIS)

    Rukeng Su

    1994-01-01

    By using the imaginery time Green's function method, the nucleon-nucleon interaction of the chiral σ-ω model has been investigated under the one-loop approximation. The effective masses of the pion, σ-meson and ω-meson at finite temperature are given. We have found that the potential well of the nucleon-nucleon interaction becomes shallow as the temperature increases. At a critical temperature T c (70 MEV) the potential well disappears. (author)

  4. Divergence of the quark self-energy in the second quantized chiral bag model

    International Nuclear Information System (INIS)

    Oset, E.

    1983-01-01

    When summing over the intermediate quark states of a spherical cavity, the quark self-energy of the chiral bag model, in lowest order of the pion coupling, is shown to generate a series of terms, each one growing linearly with the angular variable kappa. However, there is a cancellation between terms for different kappa, which finally leads to an overall linearly divergent series. (orig.)

  5. Nucleon spin-flavor structure in the SU(3)-breaking chiral quark model

    International Nuclear Information System (INIS)

    Song, X.; McCarthy, J.S.; Weber, H.J.

    1997-01-01

    The SU(3) symmetric chiral quark model, which describes interactions between quarks, gluons, and the Goldstone bosons, explains reasonably well many aspects of the flavor and spin structure of the proton, except for the values of f 3 /f 8 and Δ 3 /Δ 8 . Introducing the SU(3)-breaking effect suggested by the mass difference between the strange and nonstrange quarks, we find that this discrepancy can be removed and better overall agreement obtained. copyright 1997 The American Physical Society

  6. Roper resonances and generator coordinate method in the chiral-soliton model

    International Nuclear Information System (INIS)

    Meissner, T.; Gruemmer, F.; Goeke, K.; Harvey, M.

    1989-01-01

    The nucleon and Δ Roper resonances are described by means of the generator coordinate method in the framework of the nontopological chiral-soliton model. Solitons with various sizes are constructed with a constrained variational technique. The masses of all known Roper resonances come out to within 150 MeV of their experimental values. A nucleon compression modulus of about 4 GeV is extracted. The limits of the approach due to the polarization of the Dirac vacuum are displayed

  7. Chiral gauged Wess-Zumino-Witten theories and coset models in conformal field theory

    International Nuclear Information System (INIS)

    Chung, S.; Tye, S.H.

    1993-01-01

    The Wess-Zumino-Witten (WZW) theory has a global symmetry denoted by G L direct-product G R . In the standard gauged WZW theory, vector gauge fields (i.e., with vector gauge couplings) are in the adjoint representation of the subgroup H contained-in G. In this paper, we show that, in the conformal limit in two dimensions, there is a gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R where H L and H R can be different groups. In the special case where H L =H R , the theory is equivalent to vector gauged WZW theory. For general groups H L and H R , an examination of the correlation functions (or more precisely, conformal blocks) shows that the chiral gauged WZW theory is equivalent to (G/H L ) L direct-product(G/H R ) R coset models in conformal field theory

  8. The half-skyrmion phase in a chiral-quark model

    International Nuclear Information System (INIS)

    Mantovani Sarti, Valentina; Vento, Vicente

    2014-01-01

    The Chiral Dilaton Model, where baryons arise as non-topological solitons built from the interaction of quarks and chiral mesons, shows in the high density low temperature regime a two phase scenario in the nuclear matter phase diagram. Dense soliton matter described by the Wigner–Seitz approximation generates a periodic potential in terms of the sigma and pion fields that leads to the formation of a band structure. The analysis up to three times nuclear matter density shows that soliton matter undergoes two separate phase transitions: a delocalization of the baryon number density leading to B=1/2 structures, as in skyrmion matter, at moderate densities, and quark deconfinement at larger densities. This description fits well into the so-called quarkyonic phase where, before deconfinement, nuclear matter should undergo structural changes involving the restoration of fundamental symmetries of QCD

  9. Chiral effective potential in N = {1/2} non-commutative Wess-Zumino model

    International Nuclear Information System (INIS)

    Banin, A.T.; Buchbinder, I.L.; Pletnev, N.G.

    2004-01-01

    We study a structure of holomorphic quantum contributions to the effective action for N = {1/2} noncommutative Wess-Zumino model. Using the symbol operator techniques we present the one-loop chiral effective potential in a form of integral over proper time of the appropriate heat kernel. We prove that this kernel can be exactly found. As a result we obtain the exact integral representation of the one-loop effective potential. Also we study the expansion of the effective potential in a series in powers of the chiral superfield φ and derivative D 2 φ and construct a procedure for systematic calculation of the coefficients in the series. We show that all terms in the series without derivatives can be summed up in an explicit form. (author)

  10. Pion polarizabilities measurement at COMPASS

    CERN Document Server

    Guskov, Alexey

    2008-01-01

    The electromagnetic structure of pions is probed in $\\pi^{−}+(A,Z) \\rightarrow\\pi^{−}+(A,Z)+\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric ($\\bar{\\alpha_{\\pi}}$) and the magnetic ($\\bar{\\beta_{\\pi}}$) polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of pointlike pions with the measured cross section. The pion polarizability measurement was performed with a $\\pi^{-}$ beam of 190 GeV. The high beam intensity, the good spectrometer resolution, the high rate capability, the high acceptance and the possibility to use pion and muon beams, unique to the COMPASS experiment, provide the tools to measure precisely the pion polarizabilities in the Primakoff reaction.

  11. The 10-D chiral null model and the relation to 4-D string solutions

    International Nuclear Information System (INIS)

    Behrndt, K.

    1994-12-01

    The chiral null model is a generalization of the fundamental string and gravitational wave background. It is an example of a conformally invariant model in all orders in α' and has unbroken supersymmetries. In a Kaluza-Klein approach we start in 10 dimensions and reduce the model down to 4 dimensions without making any restrictions. The 4-D field content is given by the metric, torsion, dilaton, a moduli field and 6 gauge fields. This model is self-dual and near the singularities asymptotically free. The relation to known IWP, Taub-NUT and rotating black hole solutions is discussed. (orig.)

  12. Molecular Properties through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2011-01-01

    We review the theory related to the calculation of electric and magnetic molecular properties through polarizable embedding. In particular, we derive the expressions for the response functions up to the level of cubic response within the density functional theory-based polarizable embedding (PE......-DFT) formalism. In addition, we discuss some illustrative applications related to the calculation of nuclear magnetic resonance parameters, nonlinear optical properties, and electronic excited states in solution....

  13. Atomic polarizability in negative-ion photodetachment

    International Nuclear Information System (INIS)

    Watanabe, S.; Greene, C.H.

    1980-01-01

    The influence of a strong atomic polarizability on photodetachment processes is isolated. In a model study of K - photodetachment near the 4p/sub 1/2/, 4p/sub 3/2/ levels of K, the polarizability (α/sub 4p/ approx. = 600a 3 0 ) is shown to cause a striking energy dependence of the parameters which determine the cross section. This study extends the effective range theory of O'Malley, Spruch, and Rosenberg to a broader energy range and to multichannel systems. An appendix provides a derivation of the polarization potential (and correction terms) starting from the electron-atom close-coupling equations, showing some new features

  14. Chiral symmetry in the strong color-electric field in terms of Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Suganuma, Hideo

    1990-01-01

    We examine the behavior of chiral symmetry in an external gluon field using Nambu-Jona-Lasinio model, which is an effective theory of QCD. The Dyson equation for the dynamical quark mass in the presence of the external color-electric field is obtained. By solving it in the color flux tube inside mesons, chiral symmetry would be restored in the flux tube of mesons and this result supports Chiral Bag picture for mesons. Next we consider the flux tubes formed in the central region for ultra-relativistic heavy-ion collisions, and find the chiral restoration occurs there, so that the current quark mass seems to be suitable in calculating the q-q-bar pair creation rate by the Schwinger formula in the flux-tube picture. (author)

  15. Microscopic nuclear structure models and methods: chiral symmetry, wobbling motion and γ –bands

    International Nuclear Information System (INIS)

    Sheikh, Javid A; Bhat, Gowhar H; Dar, Waheed A; Jehangir, Sheikh; Ganai, Prince A

    2016-01-01

    A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of γ -bands, chiral doublet bands and the wobbling mode. In the TPSM approach, γ -bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering γ -bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the γ -band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of γ -bands observed up to the highest spin in dysposium, hafnium, mercury and uranium isotopes. Furthermore, several measurements related to chiral symmetry breaking and wobbling motion have been reported recently. These phenomena, which are possible only for triaxial nuclei, have been investigated using the TPSM approach. It is shown that doublet bands observed in lighter odd–odd Cs-isotopes can be considered as candidates for chiral symmetry breaking. Transverse wobbling motion recently observed in 135 Pr has also been investigated and it is shown that TPSM approach provides a reasonable description of the measured properties. (invited comment)

  16. Chiral phase transition and Anderson localization in the instanton liquid model for QCD

    International Nuclear Information System (INIS)

    Garcia-Garcia, Antonio M.; Osborn, James C.

    2006-01-01

    We study the spectrum and eigenmodes of the QCD Dirac operator in a gauge background given by an instanton liquid model (ILM) at temperatures around the chiral phase transition. Generically we find the Dirac eigenvectors become more localized as the temperature is increased. At the chiral phase transition, both the low lying eigenmodes and the spectrum of the QCD Dirac operator undergo a transition to localization similar to the one observed in a disordered conductor. This suggests that Anderson localization is the fundamental mechanism driving the chiral phase transition. We also find an additional temperature dependent mobility edge (separating delocalized from localized eigenstates) in the bulk of the spectrum which moves toward lower eigenvalues as the temperature is increased. In both regions, the origin and the bulk, the transition to localization exhibits features of a 3D Anderson transition including multifractal eigenstates and spectral properties that are well described by critical statistics. Similar results are obtained in both the quenched and the unquenched case though the critical temperature in the unquenched case is lower. Finally we argue that our findings are not in principle restricted to the ILM approximation and may also be found in lattice simulations

  17. Nucleon-delta mass difference in the chiral bag plus skyrmion hybrid model

    International Nuclear Information System (INIS)

    Kusaka, K.; Toki, H.

    1988-01-01

    We study the nucleon-delta isobar mass difference in the chiral bag plus skyrmion hybrid model (CSH). While in the Skyrme model the collective rotation solely provides the mass difference, in the CSH model the one-gluon exchange process also contributes in addition to the collective rotation due to the broken symmetry restoration. We study the one-gluon exchange contribution using the collective coordinate projection method. We find that the one-gluon exchange energy tends to compensate for the decreasing tendency of the rotational energy in the large bag region. (orig.)

  18. Thermal evolution of massive strange compact objects in a SU(3) chiral Quark Meson model

    Energy Technology Data Exchange (ETDEWEB)

    Zacchi, Andreas

    2017-07-04

    In this work, thermodynamical properties of strongly interacting matter within a chiral SU(2)- and SU(3) chiral Quark Meson model have been analysed. Both effective models describe the development of the quark masses in media via the corresponding fields through chiral symmetry, which is expected to be restored at high temperatures and/or high densities, and spontaneously broken at low temperatures and/or densities. Spontaneous and explicit chiral symmetry breaking patterns give rise to massive Goldstone bosons, which are associated with the pions. Their chiral partners, the sigma mesons, are expected to be degenerate in mass, which was what we studied and observed at large temperatures/densities. The derivation and computation of thermodynamical quantities and properties in both cases can for instance be used to study relativistic and hydrodynamic Heavy Ion Collisions and the early universe for vanishing baryon number (SU(2)-case). They are also interesting for extreme astrophysical scenarios, such as Supernova explosions and the thermal evolution of their remnants, which has been among the topics of this thesis (SU(3)-case). Inclusion of the zero point energy in the SU(2) model has been carried out separately for the meson sector and for the quark sector as well as in a combined approach, where we learned, that the quark sector is quite dominant and that the vacuum fluctuations of the meson fields have little influence on the order parameter, but affect the relativistic degrees of freedom. In the SU(3) case, the inclusion of the zero point energy in the quark sector is much more computationally complex, but, as in the SU(2) case, is also not negliable, as its influence also changes the thermodynamical quantities at finite temperatures in a nontrivial manner. Here some features of the Supernova equation of state have been studied, which look promising for further investigations for Supernovae (proto neutron stars) and also for compact star mergers. The final

  19. Description of the Charge Transfer States at the Pentacene/C60 Interface: Combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model

    KAUST Repository

    Zheng, Zilong

    2016-06-24

    Density functional theory (DFT) approaches based on range-separated hybrid functionals are currently methods of choice for the description of the charge-transfer (CT) states in organic donor/acceptor solar cells. However, these calculations are usually performed on small-size donor/acceptor complexes and as result do not account for electronic polarization effects. Here, using a pentacene/C60 complex as a model system, we discuss the ability of long-range corrected (LCR) hybrid functionals in combination with the polarizable continuum model (PCM) to determine the impact of the solid-state environment on the CT states. The CT energies are found to be insensitive to the interactions with the dielectric medium when a conventional time-dependent DFT/PCM (TDDFT/PCM) approach is used. However, a decrease in the energy of the CT state in the framework of LRC functionals can be obtained by using a smaller range-separated parameter when going from an isolated donor/acceptor complex to the solid-state case.

  20. Strange star candidates revised within a quark model with chiral mass scaling

    Institute of Scientific and Technical Information of China (English)

    Ang Li; Guang-Xiong Peng; Ju-Fu Lu

    2011-01-01

    We calculate the properties of static strange stars using a quark model with chiral mass scaling. The results are characterized by a large maximum mass (~ 1.6 M⊙) and radius (~ 10 km). Together with a broad collection of modern neutron star models, we discuss some recent astrophysical observational data that could shed new light on the possible presence of strange quark matter in compact stars. We conclude that none of the present astrophysical observations can prove or confute the existence of strange stars.

  1. Light pseudoscalar mesons in a nonlocal SU(3) chiral quark model

    International Nuclear Information System (INIS)

    Scarpettini, A.; Gomez Dumm, D.; Scoccola, Norberto N.

    2004-01-01

    We study the properties of the light pseudoscalar mesons in a three-flavor chiral quark model with nonlocal separable interactions. We concentrate on the evaluation of meson masses and decay constants, considering both the cases of Gaussian and Lorentzian nonlocal regulators. The results are found to be in quite good agreement with the empirical values, in particular in the case of the ratio f K /f π and the anomalous decay π 0 →γγ. In addition, the model leads to a reasonable description of the observed phenomenology in the η-η ' sector, even though it implies the existence of two significantly different state mixing angles

  2. Light pseudoscalar mesons in a nonlocal three flavor chiral quark model

    International Nuclear Information System (INIS)

    Gomez Dumm, D.

    2004-01-01

    We study the properties of light pseudoscalar mesons in a nonlocal three flavor chiral quark model with nonlocal separable interactions. We consider the case of a Gaussian regulator, evaluating meson masses and decay constants. Our results are found to be in good agreement with empirical values, in particular, in the case of the ratio f κ /f π and the decay π 0 → γγ. The model leads also to a reasonable description of the observed phenomenology in the η-η ' sector, where two significantly different mixing angles are required. Detailed description of the work sketched here can be found in Ref. [1]. (author)

  3. Electrode redox reactions with polarizable molecules

    Science.gov (United States)

    Matyushov, Dmitry V.

    2018-04-01

    A theory of redox reactions involving electron transfer between a metal electrode and a polarizable molecule in solution is formulated. Both the existence of molecular polarizability and its ability to change due to electron transfer distinguish this problem from classical theories of interfacial electrochemistry. When the polarizability is different between the oxidized and reduced states, the statistics of thermal fluctuations driving the reactant over the activation barrier becomes non-Gaussian. The problem of electron transfer is formulated as crossing of two non-parabolic free energy surfaces. An analytical solution for these free energy surfaces is provided and the activation barrier of electrode electron transfer is given in terms of two reorganization energies corresponding to the oxidized and reduced states of the molecule in solution. The new non-Gaussian theory is, therefore, based on two theory parameters in contrast to one-parameter Marcus formulation for electrode reactions. The theory, which is consistent with the Nernst equation, predicts asymmetry between the cathodic and anodic branches of the electrode current. They show different slopes at small electrode overpotentials and become curved at larger overpotentials. However, the curvature of the Tafel plot is reduced compared to the Marcus-Hush model and approaches the empirical Butler-Volmer form with different transfer coefficients for the anodic and cathodic currents.

  4. Revisiting a many-body model for water based on a single polarizable site: from gas phase clusters to liquid and air/liquid water systems.

    Science.gov (United States)

    Réal, Florent; Vallet, Valérie; Flament, Jean-Pierre; Masella, Michel

    2013-09-21

    We present a revised version of the water many-body model TCPE [M. Masella and J.-P. Flament, J. Chem. Phys. 107, 9105 (1997)], which is based on a static three charge sites and a single polarizable site to model the molecular electrostatic properties of water, and on an anisotropic short range many-body energy term specially designed to accurately model hydrogen bonding in water. The parameters of the revised model, denoted TCPE/2013, are here developed to reproduce the ab initio energetic and geometrical properties of small water clusters (up to hexamers) and the repulsive water interactions occurring in cation first hydration shells. The model parameters have also been refined to reproduce two liquid water properties at ambient conditions, the density and the vaporization enthalpy. Thanks to its computational efficiency, the new model range of applicability was validated by performing simulations of liquid water over a wide range of temperatures and pressures, as well as by investigating water liquid/vapor interfaces over a large range of temperatures. It is shown to reproduce several important water properties at an accurate enough level of precision, such as the existence liquid water density maxima up to a pressure of 1000 atm, the water boiling temperature, the properties of the water critical point (temperature, pressure, and density), and the existence of a "singularity" temperature at about 225 K in the supercooled regime. This model appears thus to be particularly well-suited for characterizing ion hydration properties under different temperature and pressure conditions, as well as in different phases and interfaces.

  5. Solvent effect on the intermolecular proton transfer of the Watson and Crick guanine-cytosine and adenine-thymine base pairs: a polarizable continuum model study.

    Science.gov (United States)

    Romero, Eduardo E; Hernandez, Florencio E

    2018-01-03

    Herein we present our results on the study of the double proton transfer (DPT) mechanism in the adenine-thymine (AT) and guanine-cytosine (GC) base pairs, both in gas phase and in solution. The latter was modeled using the polarizable continuum method (PCM) in different solvents. According to our DFT calculations, the DPT may occur for both complexes in a stepwise mechanism in condensate phase. In gas phase only the GC base pair exhibits a concerted DPT mechanism. Using the Wigner's tunneling corrections to the transition state theory we demonstrate that such corrections are important for the prediction of the rate constants of both systems in gas and in condensate phase. We also show that (i) as the polarity of the medium decreases the equilibrium constant of the DPT reaction increases in both complexes, and (ii) that the equilibrium constant in the GC complex is four orders of magnitude larger than in AT. This observation suggests that the spontaneous mutations in DNA base pairs are more probable in GC than in AT.

  6. Solvent effects on the excited-state double proton transfer mechanism in the 7-azaindole dimer: a TDDFT study with the polarizable continuum model.

    Science.gov (United States)

    Yu, Xue-Fang; Yamazaki, Shohei; Taketsugu, Tetsuya

    2017-08-30

    Solvent effects on the excited-state double proton transfer (ESDPT) mechanism in the 7-azaindole (7AI) dimer were investigated using the time-dependent density functional theory (TDDFT) method. Excited-state potential energy profiles along the reaction paths in a locally excited (LE) state and a charge transfer (CT) state were calculated using the polarizable continuum model (PCM) to include the solvent effect. A series of non-polar and polar solvents with different dielectric constants were used to examine the polarity effect on the ESDPT mechanism. The present results suggest that in a non-polar solvent and a polar solvent with a small dielectric constant, ESDPT follows a concerted mechanism, similar to the case in the gas phase. In a polar solvent with a relatively large dielectric constant, however, ESDPT is likely to follow a stepwise mechanism via a stable zwitterionic intermediate in the LE state on the adiabatic potential energy surface, although inclusion of zero-point vibrational energy (ZPE) corrections again suggests the concerted mechanism. In the meantime, the stepwise reaction path involving the CT state with neutral intermediates is also examined, and is found to be less competitive than the concerted or stepwise path in the LE state in both non-polar and polar solvents. The present study provides a new insight into the experimental controversy of the ESDPT mechanism of the 7AI dimer in a solution.

  7. The Role of Stochastic Models in Interpreting the Origins of Biological Chirality

    Directory of Open Access Journals (Sweden)

    Gábor Lente

    2010-04-01

    Full Text Available This review summarizes recent stochastic modeling efforts in the theoretical research aimed at interpreting the origins of biological chirality. Stochastic kinetic models, especially those based on the continuous time discrete state approach, have great potential in modeling absolute asymmetric reactions, experimental examples of which have been reported in the past decade. An overview of the relevant mathematical background is given and several examples are presented to show how the significant numerical problems characteristic of the use of stochastic models can be overcome by non-trivial, but elementary algebra. In these stochastic models, a particulate view of matter is used rather than the concentration-based view of traditional chemical kinetics using continuous functions to describe the properties system. This has the advantage of giving adequate description of single-molecule events, which were probably important in the origin of biological chirality. The presented models can interpret and predict the random distribution of enantiomeric excess among repetitive experiments, which is the most striking feature of absolute asymmetric reactions. It is argued that the use of the stochastic kinetic approach should be much more widespread in the relevant literature.

  8. Pion polarizabilities measurement at COMPASS

    CERN Document Server

    Guskov, Alexey

    2008-01-01

    The electromagnetic structure of pions is probed in $\\pi^{−} + (A,Z)\\rightarrow\\pi^{−} + (A,Z) +\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric $(\\bar{\\alpha_{\\pi}})$ and the magnetic $(\\bar{\\beta_{\\pi}})$ polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of pointlike pions with the measured cross section. The pion polarizability measurement was performed with $a \\pi^{−}$ beam of 190 GeV. The high beam intensity, the good spectrometer resolution, the high rate capability, the high acceptance and the possibility to use pion and muon beams, unique to the COMPASS experiment, provide the tools to measure precisely the pion polarizabilities in the Primakoff reaction. The preliminary result for pion polarizabilities under the assumption of $\\bar{\\alpha_{\\pi}} + \\bar{\\beta_{\\pi}} =$ 0 is $\\ba...

  9. Two dimensional untwisted (4,4), twisted (4,4-bar) and chiral supersymmetric non linear σ-models

    International Nuclear Information System (INIS)

    Lhallabi, T.; Saidi, E.H.

    1987-09-01

    D=2 N=(4,4) harmonic superspace analysis is developed. The underlying untwisted (4,4) non linear σ-models are studied. A method of deriving chiral (4,0) and (0,4) models is presented. The Lagrange superparameter leading to the constraint specifying the hyperkahler manifold structure is predicted and its relation to the matter superfield is stated in a covariant way. A known construction is recovered. We show also that (4,4) model is not a direct sum of the chiral ones. Finally a twisted (4,4-bar) model is obtained. (author). 28 refs

  10. Chirally motivated separable potential model for eta N amplitudes

    Czech Academy of Sciences Publication Activity Database

    Cieplý, Aleš; Smejkal, J.

    2013-01-01

    Roč. 919, DEC (2013), s. 46-66 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GAP203/12/2126 Institutional support: RVO:61389005 Keywords : Chrial model * eta-nucleon amplitude * Baryon resonances Subject RIV: BE - Theoretical Physics Impact factor: 2.499, year: 2013

  11. K- nuclear potentials from in-medium chirally motivated models

    Czech Academy of Sciences Publication Activity Database

    Cieplý, Aleš; Friedman, E.; Gal, A.; Gazda, Daniel; Mareš, Jiří

    2011-01-01

    Roč. 84, č. 4 (2011), 045206/1-045206/11 ISSN 0556-2813 R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : p-wave interactions * coupled-channel model Subject RIV: BE - Theoretical Physics Impact factor: 3.308, year: 2011

  12. SIMP model at NNLO in chiral perturbation theory

    DEFF Research Database (Denmark)

    Hansen, Martin Rasmus Lundquist; Langaeble, K.; Sannino, F.

    2015-01-01

    We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 to 2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles...... with phenomenological constraints challenging the viability of the simplest realisation of the strongly interacting massive particle (SIMP) paradigm....

  13. $Z_b(10650)$ and $Z_b(10610)$ states in a chiral quark model

    OpenAIRE

    Li, M. T.; Wang, W. L.; Dong, Y. B.; Zhang, Z. Y.

    2012-01-01

    We perform a systematic study of $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ systems by using effective interaction in our chiral quark model. Our results show that the interactions of $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ states are attractive, which consequently result in $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ bound states. The recent observed exotic-like hadrons of $Z_b(10610)$ and $Z_b(10650)$ are, therefore in our approach,...

  14. Qq(Q-bar)(q-bar)' states in chiral SU(3) quark model

    International Nuclear Information System (INIS)

    Zhang Haixia; Zhang Min; Zhang Zongye

    2007-01-01

    We study the masses of Qq(Q-bar)(q-bar)' states with J PC =0 ++ , 1 ++ , 1 +- and 2 ++ in the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q(q') is the light quark (u,d or s). According to our numerical results, it is improbable to make the interpretation of [cn(c-bar)(n-bar)] 1 ++ and [cn(c-bar)(n-bar)] 2 ++ (n=u,d) states as X(3872) and Y(3940), respectively. However, it is interesting to find the tetraquarks in the bq(b-bar)(q-bar)' system. (authors)

  15. Effects of renormalizing the chiral SU(2) quark-meson model

    Science.gov (United States)

    Zacchi, Andreas; Schaffner-Bielich, Jürgen

    2018-04-01

    We investigate the restoration of chiral symmetry at finite temperature in the SU(2) quark-meson model, where the mean field approximation is compared to the renormalized version for quarks and mesons. In a combined approach at finite temperature, all the renormalized versions show a crossover transition. The inclusion of different renormalization scales leave the order parameter and the mass spectra nearly untouched but strongly influence the thermodynamics at low temperatures and around the phase transition. We find unphysical results for the renormalized version of mesons and the combined one.

  16. Double-polarizating scanning radiometer

    International Nuclear Information System (INIS)

    Mishev, D.N.; Nazyrski, T.G.

    1986-01-01

    The double-polarizating single-channel scanning radiometer comprises the following serial connected parts: a scanning double-polarizating aerial, a block for polarization separation, a radiometer receiver, an analog-to-digit converter and an information flow forming block. The low frequency input of the radiometer receiver is connected with a control block, which is also connected with a first bus of a microprocessor, the second bus of which is connected with the A-D converter. The control input of the scanning double-polarizating aerial is connected with the first microprocessor bus. The control inputs of the block for polarization separation are linked by an electronic switch with the output of the forming block, the input of which is connected to the first input of the control block. The control inputs of the block for polarization separation are connected with the second and the third input of the information flow forming block. 2 cls

  17. Spin Sum Rules and Polarizabilities: Results from Jefferson Lab

    International Nuclear Information System (INIS)

    Jian-Ping Chen

    2006-01-01

    The nucleon spin structure has been an active, exciting and intriguing subject of interest for the last three decades. Recent experimental data on nucleon spin structure at low to intermediate momentum transfers provide new information in the confinement regime and the transition region from the confinement regime to the asymptotic freedom regime. New insight is gained by exploring moments of spin structure functions and their corresponding sum rules (i.e. the generalized Gerasimov-Drell-Hearn, Burkhardt-Cottingham and Bjorken). The Burkhardt-Cottingham sum rule is verified to good accuracy. The spin structure moments data are compared with Chiral Perturbation Theory calculations at low momentum transfers. It is found that chiral perturbation calculations agree reasonably well with the first moment of the spin structure function g 1 at momentum transfer of 0.05 to 0.1 GeV 2 but fail to reproduce the neutron data in the case of the generalized polarizability (delta) LT (the (delta) LT puzzle). New data have been taken on the neutron ( 3 He), the proton and the deuteron at very low Q 2 down to 0.02 GeV 2 . They will provide benchmark tests of Chiral dynamics in the kinematic region where the Chiral Perturbation theory is expected to work

  18. Relation between the Lee-Wick and Nambu-Jona-Lasinio models of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Klevansky, S.P.; Lemmer, R.H.

    1990-01-01

    The connection between the sigma model of Lee and Wick and the Nambu-Jona-Lasinio (NJL) model is discussed. It is shown that the sigma field potential of the linear Lee-Wick model is identical in form with the variation of the vacuum energy of the NJL system with the baryonic scalar density n s . The sigma field is proportional to n s . Furthermore, the coupling constant and mass of this σ field are fully determined by the NJL model version of the Goldberger-Treiman relation. It is shown further that the restoration of chiral symmetry with increasing baryonic density always occurs via a second order transition in the NJL model, while it is necessarily of first order in the associated linear Lee-Wick model. (orig.)

  19. Gravitational polarizability of black holes

    International Nuclear Information System (INIS)

    Damour, Thibault; Lecian, Orchidea Maria

    2009-01-01

    The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h l of a black hole are defined and computed. They are then compared to their electromagnetic analogs h l EM . The Love numbers h l give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.

  20. Molecular Modeling Study of Chiral Separation and Recognition Mechanism of β-Adrenergic Antagonists by Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Yifeng Chai

    2012-01-01

    Full Text Available Chiral separations of five β-adrenergic antagonists (propranolol, esmolol, atenolol, metoprolol, and bisoprolol were studied by capillary electrophoresis using six cyclodextrins (CDs as the chiral selectors. Carboxymethylated-β-cyclodextrin (CM-β-CD exhibited a higher enantioselectivity power compared to the other tested CDs. The influences of the concentration of CM-β-CD, buffer pH, buffer concentration, temperature, and applied voltage were investigated. The good chiral separation of five β-adrenergic antagonists was achieved using 50 mM Tris buffer at pH 4.0 containing 8 mM CM-β-CD with an applied voltage of 24 kV at 20 °C. In order to understand possible chiral recognition mechanisms of these racemates with CM-β-CD, host-guest binding procedures of CM-β-CD and these racemates were studied using the molecular docking software Autodock. The binding free energy was calculated using the Autodock semi-empirical binding free energy function. The results showed that the phenyl or naphthyl ring inserted in the hydrophobic cavity of CM-β-CD and the side chain was found to point out of the cyclodextrin rim. Hydrogen bonding between CM-β-CD and these racemates played an important role in the process of enantionseparation and a model of the hydrogen bonding interaction positions was constructed. The difference in hydrogen bonding formed with the –OH next to the chiral center of the analytes may help to increase chiral discrimination and gave rise to a bigger separation factor. In addition, the longer side chain in the hydrophobic phenyl ring of the enantiomer was not beneficial for enantioseparation and the chiral selectivity factor was found to correspond to the difference in binding free energy.

  1. Chiral Quark-Meson model of N and DELTA with vector mesons

    International Nuclear Information System (INIS)

    Broniowski, W.; Banerjee, M.K.

    1985-10-01

    Vector mesons rho, A 1 and ω are introduced in the Chiral Quark-Meson Theory (CQMT) of N and Δ. We propose a new viewpoint for developing CQMT from QCD at the mean-field level. The SU(2) x SU(2) chiral Lagrangian incorporates universal coupling. Accordingly, rho is coupled to the conserved isospin current, A to the partially conserved axial-vector current (PCAC), and ω to the conserved baryon current. As a result the only parameter of the model not directly related to experiment is the quark-pion coupling constant. A fully self-consistent mean-field solution to the model is found for fields in the hedgehog ansatz. The vector mesons play a very important role in the system. They contribute significantly to the values of observables and produce a high-quality fit to many data. The classical stability of the system with respect to hedgehog excitations is analyzed through the use of the Quark-Meson RPA equations (QMRPA)

  2. Modeling spontaneous chiral symmetry breaking and deracemization phenomena: discrete versus continuum approaches.

    Science.gov (United States)

    Blanco, Celia; Ribó, Josep M; Hochberg, David

    2015-02-01

    We derive the class of population balance equations (PBE), recently applied to model the Viedma deracemization experiment, from an underlying microreversible kinetic reaction scheme. The continuum limit establishing the relationship between the micro- and macroscopic processes and the associated particle fluxes erases the microreversible nature of the molecular interactions in the population growth rate functions and limits the scope of such PBE models to strict kinetic control. The irreversible binary agglomeration processes modeled in those PBEs contribute an additional source of kinetic control. These limitations are crucial regarding the question of the origin of biological homochirality, where the interest in any model lies precisely in its ability for absolute asymmetric synthesis and the amplification of the tiny inherent statistical chiral fluctuations about the ideal racemic composition up to observable enantiometric excess levels.

  3. Higgs boson resonance parameters and the finite temperature phase transition in a chirally invariant Higgs-Yukawa model

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Gerhold, Philip; Kallarackal, Jim; Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humbolt-Univ. Berlin (Germany)

    2011-12-15

    We study a chirally invariant Higgs-Yukawa model regulated on a space-time lattice. We calculate Higgs boson resonance parameters and mass bounds for various values of the mass of the degenerate fermion doublet. Also, first results on the phase transition temperature are presented. In general, this model may be relevant for BSM scenarios with a heavy fourth generation of quarks. (orig.)

  4. Chiral recognition in separation science: an overview.

    Science.gov (United States)

    Scriba, Gerhard K E

    2013-01-01

    Chiral recognition phenomena play an important role in nature as well as analytical separation sciences. In separation sciences such as chromatography and capillary electrophoresis, enantiospecific interactions between the enantiomers of an analyte and the chiral selector are required in order to observe enantioseparations. Due to the large structural variety of chiral selectors applied, different mechanisms and structural features contribute to the chiral recognition process. This chapter briefly illustrates the current models of the enantiospecific recognition on the structural basics of various chiral selectors.

  5. Some aspects of pion physics in the Nambu- and Jona-Lasinio model and chiral Lagrangians

    International Nuclear Information System (INIS)

    Tegen, R.

    1994-03-01

    I discuss here to what extent the original two-flavour NJL model (which has a minimal number of adjustable parameters) reproduces pion observables. In particular, the sensitivity of the recently calculated electromagnetic mass shift to these NJL parameters is pointed out and a new way to fix them is suggested. A new set of O(1/N c ) diagrams, which are the first meson loop corrections to the RPA, is presented and its effect on the pionic Goldstone mode, its electromagnetic form factor, weak decay constant, and on the constituent quark mass m is discusseed. The relation of these NJL model results to some other chiral Lagrangians is pointed out, where ever possible. The here presented higher order diagrams indicate how one could systematically generate the next-order diagrams. It is, however, questionable whether the simplistic but mathematically manageable contact interaction of the NJL model should be maintained also in these higher order diagrams. (orig.)

  6. The Higgs boson resonance width from a chiral Higgs-Yukawa model on the lattice

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim; Humboldt-Universitaet, Berlin; Jansen, Karl

    2011-11-01

    The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for quarks, leptons and the weak gauge bosons. We use a 4-dimensional Euclidean lattice formulation of the Higgs-Yukawa sector of the electroweak model to compute physical quantities in the path integral approach which is evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. The chiral symmetry of the model is incorporated by using the Neuberger overlap Dirac operator. The here considered Higgs-Yukawa model does not involve the weak gauge bosons and furthermore, only a degenerate doublet of top- and bottom quarks are incorporated. The goal of this work is to study the resonance properties of the Higgs boson and its sensitivity to the strength of the quartic self coupling. (orig.)

  7. Masses of the light hadrons in the chiral and cloudy bag models

    International Nuclear Information System (INIS)

    Saito, Koichi.

    1983-10-01

    The masses of the light hadrons except for the pion are calculated in the stable chiral and cloudy bag models with the massless or massive u, d quark and pion. Two difficulties in these models, i.e. the lack of stability and the divergence of the quark self-energy, are removed by taking account of a simple non-local quark-pion interaction. The effects of the finite size of the qq-bar pion and the behavior of the quark self-energy are discussed in detail. In our calculation the bag self-energy due to the pion has an important role in the origin of the N-Δ and the Σ-Λ mass differences. The baryon octet and decuplet masses are well reproduced by the present model. (author)

  8. Chiral forces and molecular dissymmetry

    International Nuclear Information System (INIS)

    Mohan, R.

    1992-01-01

    Chiral molecules leading to helical macromolecules seem to preserve information and extend it better. In the biological world RNA is the very paradigm for self-replication, elongation and autocatalytic editing. The nucleic acid itself is not chiral. It acquires its chirality by association with D-sugars. Although the chiral information or selectivity put in by the unit monomer is no longer of much interest to the biologists - they tend to leave it to the Darwinian selection principle to take care of it as illustrated by Frank's model - it is vital to understand the origin of chirality. There are three different approaches for the chiral origin of life: (1) Phenomenological, (2) Electromagnetic molecular and Coriolis forces and (3) Atomic or nuclear force, the neutral weak current. The phenomenological approach involves spontaneous symmetry breaking fluctuations in far for equilibrium systems or nucleation and crystallization. Chance plays a major role in the chiral molecule selected

  9. Applications of chiral symmetry

    International Nuclear Information System (INIS)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T χ implies that the ρ and a 1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, m ρ (T χ ) > m ρ (0). The author conjectures that at T χ the thermal ρ - a 1 , peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by T χ . The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates

  10. Modeling Textural Processes during Self-Assembly of Plant-Based Chiral-Nematic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Yogesh K. Murugesan

    2010-12-01

    Full Text Available Biological liquid crystalline polymers are found in cellulosic, chitin, and DNA based natural materials. Chiral nematic liquid crystalline orientational order is observed frozen-in in the solid state in plant cell walls and is known as a liquid crystal analogue characterized by a helicoidal plywood architecture. The emergence of the plywood architecture by directed chiral nematic liquid crystalline self assembly has been postulated as the mechanism that leads to optimal cellulose fibril organization. In natural systems, tissue growth and development takes place in the presence of inclusions and secondary phases leaving behind characteristic defects and textures, which provide a unique testing ground for the validity of the liquid crystal self-assembly postulate. In this work, a mathematical model, based on the Landau-de Gennes theory of liquid crystals, is used to simulate defect textures arising in the domain of self assembly, due to presence of secondary phases representing plant cells, lumens and pit canals. It is shown that the obtained defect patterns observed in some plant cell walls are those expected from a truly liquid crystalline phase. The analysis reveals the nature and magnitude of the viscoelastic material parameters that lead to observed patterns in plant-based helicoids through directed self-assembly. In addition, the results provide new guidance to develop biomimetic plywoods for structural and functional applications.

  11. Do the seagull terms really survive for the electric polarizability of the nucleon?

    International Nuclear Information System (INIS)

    Saito, S.

    1998-01-01

    The seagull terms for the electric polarizability of the nucleon are shown indeed to vanish, if one introduces fluctuations around the Skyrmion configuration, and the origin of the electric polarizability cannot after all be attributed to the seagull terms in the Skyrme model. (orig.)

  12. Open-ended response theory with polarizable embedding

    DEFF Research Database (Denmark)

    Steindal, Arnfinn Hykkerud; Beerepoot, Maarten T P; Ringholm, Magnus

    2016-01-01

    We present the theory and implementation of an open-ended framework for electric response properties at the level of Hartree-Fock and Kohn-Sham density functional theory that includes effects from the molecular environment modeled by the polarizable embedding (PE) model. With this new state......-of-the-art multiscale functionality, electric response properties to any order can be calculated for molecules embedded in polarizable atomistic molecular environments ranging from solvents to complex heterogeneous macromolecules such as proteins. In addition, environmental effects on multiphoton absorption (MPA...

  13. Finite volume effects on the electric polarizability of neutral hadrons in lattice QCD

    Science.gov (United States)

    Lujan, M.; Alexandru, A.; Freeman, W.; Lee, F. X.

    2016-10-01

    We study the finite volume effects on the electric polarizability for the neutron, neutral pion, and neutral kaon using eight dynamically generated two-flavor nHYP-clover ensembles at two different pion masses: 306(1) and 227(2) MeV. An infinite volume extrapolation is performed for each hadron at both pion masses. For the neutral kaon, finite volume effects are relatively mild. The dependence on the quark mass is also mild, and a reliable chiral extrapolation can be performed along with the infinite volume extrapolation. Our result is αK0 phys=0.356 (74 )(46 )×10-4 fm3 . In contrast, for neutron, the electric polarizability depends strongly on the volume. After removing the finite volume corrections, our neutron polarizability results are in good agreement with chiral perturbation theory. For the connected part of the neutral pion polarizability, the negative trend persists, and it is not due to finite volume effects but likely sea quark charging effects.

  14. Phase transition of the first kind with respect to the density in a model of spontaneous breaking of chiral symmetry

    International Nuclear Information System (INIS)

    Bogolyubov, N.P.

    1988-01-01

    A model of the spontaneous breaking of chiral symmetry motivated by quantum chromodynamics is considered at a finite density of the quarks and zero temperature. For zero chemical potential the dynamical quark mass, the bag constant, and the vacuum expectation value are estimated. The dependence of the grand thermodynamic potential on the chemical potential of the quarks and of the energy on the particle number density are calculated. It is found that there is a phase transition of the first kind with respect to the density of the quarks accompanied by restoration of the chiral symmetry. The critical values of the fermion density are found

  15. Scalar mesons and glueballs in a chiral U(3)xU(3) quark model with 't Hooft interaction

    International Nuclear Information System (INIS)

    Nagy, M.; Volkov, M.K.; Yudichev, V.L.

    2000-01-01

    In a U(3)xU(3) quark chiral model of the Nambu-Jona-Lasino (NJL) type with the 't Hooft interaction, the ground scalar isoscalar mesons and a scalar glueball are described. The glueball (dilaton) is introduced into the effective meson Lagrangian written in a chirally symmetric form on the basis of scale invariance. The singlet-octet mixing of scalar isoscalar mesons and their mixing with the glueball are taken into account. Mass spectra of the scalar mesons and glueball and their strong decays are described

  16. Interface of the polarizable continuum model of solvation with semi-empirical methods in the GAMESS program

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Blædel, Kristoffer L.; Christensen, Anders Steen

    2013-01-01

    An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules such as ubiq......An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules...

  17. Topological and nontopological solutions for the chiral bag model with constituent quarks

    International Nuclear Information System (INIS)

    Sveshnikov, K.; Malakhov, I.; Khalili, M.; Fedorov, S.

    2002-01-01

    The three-phase version of the hybrid chiral bag model, containing the phase of asymptotic freedom, the hadronization phase as well as the intermediate phase of constituent quarks is proposed. For this model the self-consistent solutions of different topology are found in (1 + 1)D with due regard for fermion vacuum polarization effects. The renormalized total energy of the bag is studied as a function of its geometry and topological charge. It is shown that in the case of nonzero topological charge there exists a set of configurations being the local minima of the total energy of the bag and containing all the three phases, while in the nontopological case the minimum of the total energy of the bag corresponds to vanishing size of the phase of asymptotic freedom

  18. Chiral spin liquids at finite temperature in a three-dimensional Kitaev model

    Science.gov (United States)

    Kato, Yasuyuki; Kamiya, Yoshitomo; Nasu, Joji; Motome, Yukitoshi

    2017-11-01

    Chiral spin liquids (CSLs) in three dimensions and thermal phase transitions to paramagnet are studied by unbiased Monte Carlo simulations. For an extension of the Kitaev model to a three-dimensional tricoordinate network dubbed the hypernonagon lattice, we derive low-energy effective models in two different anisotropic limits. We show that the effective interactions between the emergent Z2 degrees of freedom called fluxes are unfrustrated in one limit, while highly frustrated in the other. In both cases, we find a first-order phase transition to the CSL, where both time-reversal and parity symmetries are spontaneously broken. In the frustrated case, however, the CSL state is highly exotic—the flux configuration is subextensively degenerate while showing a directional order with broken C3 rotational symmetry. Our results provide two contrasting archetypes of CSLs in three dimensions, both of which allow approximation-free simulation for investigating the thermodynamics.

  19. Analysis of η,KL→π+π-γ using chiral models

    International Nuclear Information System (INIS)

    Picciotto, C.

    1992-01-01

    The decay η→π + π - γ is analyzed using two different approaches that incorporate vector mesons in the chiral Lagrangian, one which treats vector mesons as massive Yang-Mills bosons and one which treats them as dynamical gauge bosons of a hidden symmetry. From these approaches a common way of adding vector mesons to that decay emerges. A rate and photon spectrum are generated which compare reasonably to the experimental data. The procedure is then adapted into a simple pole model and used to calculate the more complicated decay K L →π + π - γ. Notwithstanding some uncertainties in the model, a rate that matches the experimental one is obtained with reasonable values of SU(3)-breaking parameters

  20. Adler function and hadronic contribution to the muon g-2 in a nonlocal chiral quark model

    International Nuclear Information System (INIS)

    Dorokhov, Alexander E.

    2004-01-01

    The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instantonlike quark-quark interaction. This function describes the transition between the high-energy asymptotically free region of almost massless current quarks to the low-energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from the hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, a μ hvp(1) , is estimated

  1. Strange mesonic transition form factor in the chiral constituent quark model

    International Nuclear Information System (INIS)

    Ito, H.; Ramsey-Musolf, M.J.

    1998-01-01

    The form factor g ρπ (S) (Q 2 ) of the strange vector current transition matrix element left-angle ρ|bar sγ μ s|π right-angle is calculated within the chiral quark model. A strange vector current of the constituent U and D quarks is induced by kaon radiative corrections and this mechanism yields the nonvanishing values of g ρπ (S) (0). The numerical result at the photon point is consistent with the one given by the φ-meson dominance model, but the falloff in the Q 2 dependence is faster than the monopole form factor. Mesonic radiative corrections are also examined for the electromagnetic ρ-to-π and K * -to-K transition amplitudes. copyright 1998 The American Physical Society

  2. Chiral effective-field theory of the nucleon spin structure

    Science.gov (United States)

    Pascalutsa, Vladimir

    2017-01-01

    I will review the recent chiral EFT calculations of the nucleon (spin) structure functions at low Q2, confronted with the Jefferson Lab measurements. The moments of the structure functions correspond with various polarizabilities, and I will explain why one of them - δLT - is especially interesting. I will also discuss how the spin structure functions at low Q enter in the atomic calculations of the hyperfine splittings and how they are impacting the ongoing experimental program at PSI (Switzerland) to measure the ground-state hyperfine splitting of muonic hydrogen. Partially supported by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB 1044 [The Low-Energy Frontier of the Standard Model].

  3. Interface of the polarizable continuum model of solvation with semi-empirical methods in the GAMESS program

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Blædel, Kristoffer; Christensen, Anders S

    2013-01-01

    An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules such as ubiq......An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules...... such as ubiquitin a reasonable speedup (up to a factor of six) is observed for up to 16 cores. The SCF convergence is greatly improved by PCM for proteins compared to the gas phase....

  4. Interface of the polarizable continuum model of solvation with semi-empirical methods in the GAMESS program.

    Directory of Open Access Journals (Sweden)

    Casper Steinmann

    Full Text Available An interface between semi-empirical methods and the polarized continuum model (PCM of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41. The interface includes energy gradients and is parallelized. For large molecules such as ubiquitin a reasonable speedup (up to a factor of six is observed for up to 16 cores. The SCF convergence is greatly improved by PCM for proteins compared to the gas phase.

  5. Effects of chirality and surface stresses on the bending and buckling of chiral nanowires

    International Nuclear Information System (INIS)

    Wang, Jian-Shan; Shimada, Takahiro; Kitamura, Takayuki; Wang, Gang-Feng

    2014-01-01

    Due to their superior optical, elastic and electrical properties, chiral nanowires have many applications as sensors, probes, and building blocks of nanoelectromechanical systems. In this paper, we develop a refined Euler–Bernoulli beam model for chiral nanowires with surface effects and material chirality incorporated. This refined model is employed to investigate the bending and buckling of chiral nanowires. It is found that surface effects and material chirality significantly affect the elastic behaviour of chiral nanowires. This study is helpful not only for understanding the size-dependent behaviour of chiral nanowires, but also for characterizing their mechanical properties. (paper)

  6. Nonlinear spectroscopic studies of chiral media

    International Nuclear Information System (INIS)

    Belkin, Mikhail Alexandrovich

    2004-01-01

    Molecular chirality plays an important role in chemistry, biology, and medicine. Traditional optical techniques for probing chirality, such as circular dichroism and Raman optical activity rely on electric-dipole forbidden transitions. As a result, their intrinsic low sensitivity limits their use to probe bulk chirality rather than chiral surfaces, monolayers or thin films often important for chemical or biological systems. Contrary to the traditional chirality probes, chiral signal in sum-frequency generation (SFG) is electric-dipole allowed both on chiral surface and in chiral bulk making it a much more promising tool for probing molecular chirality. SFG from a chiral medium was first proposed in 1965, but had never been experimentally confirmed until this thesis work was performed. This thesis describes a set of experiments successfully demonstrating that chiral SFG responses from chiral monolayers and liquids are observable. It shows that, with tunable inputs, SFG can be used as a sensitive spectroscopic tool to probe chirality in both electronic and vibrational resonances of chiral molecules. The monolayer sensitivity is feasible in both cases. It also discusses the relevant theoretical models explaining the origin and the strength of the chiral signal in vibrational and electronic SFG spectroscopies

  7. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Zamorano, M; Torres-Silva, H [Departamento de Electronica, Universidad de Tarapaca, 18 de Septiembre 2222, Arica (Chile)

    2006-04-07

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.

  8. Generalized chiral membrane dynamics

    International Nuclear Information System (INIS)

    Cordero, R.; Rojas, E.

    2003-01-01

    We develop the dynamics of the chiral superconducting membranes (with null current) in an alternative geometrical approach. Besides of this, we show the equivalence of the resulting description with the one known Dirac-Nambu-Goto (DNG) case. Integrability for chiral string model is obtained using a proposed light-cone gauge. In a similar way, domain walls are integrated by means of a simple Ansatz. (Author)

  9. The solution of a chiral random matrix model with complex eigenvalues

    International Nuclear Information System (INIS)

    Akemann, G

    2003-01-01

    We describe in detail the solution of the extension of the chiral Gaussian unitary ensemble (chGUE) into the complex plane. The correlation functions of the model are first calculated for a finite number of N complex eigenvalues, where we exploit the existence of orthogonal Laguerre polynomials in the complex plane. When taking the large-N limit we derive new correlation functions in the case of weak and strong non-Hermiticity, thus describing the transition from the chGUE to a generalized Ginibre ensemble. We briefly discuss applications to the Dirac operator eigenvalue spectrum in quantum chromodynamics with non-vanishing chemical potential. This is an extended version of hep-th/0204068

  10. Born term for high-energy meson-hadron collisions from QCD and chiral quark model

    International Nuclear Information System (INIS)

    Ochs, W.; Shimada, T.

    1988-01-01

    Various experimental observations reveal a sizeable hard component in the high-energy 'soft' hadronic collisions. For primary meson beams we propose a QCD Born term which describes the dissociation of the primary meson into a quark-antiquark pair in the gluon field of the target. A pointlike effective pion-quark coupling is assumed as in the chiral quark model by Manohar and Georgi. We derive the total cross sections which for pion beams, for example, are given in terms of f π -2 and some properties of the hadronic final states. In particular, we stress the importance of studying three-jet events in meson-nucleon scattering and discuss the seagull effect. (orig.)

  11. Axial charges of octet and decuplet baryons in a perturbative chiral quark model

    Science.gov (United States)

    Liu, X. Y.; Samart, D.; Khosonthongkee, K.; Limphirat, A.; Xu, K.; Yan, Y.

    2018-05-01

    Using the perturbative chiral quark model (PCQM), we investigate and predict in this work axial charges gAB of octet and decuplet N , Σ , Ξ , Δ , Σ*, and Ξ* baryons, considering both the ground and excited states in the quark propagator. The PCQM predictions are in good agreement with the experimental data, lattice-QCD values, and other approaches. In addition, the study reveals that the meson cloud is influential in the PCQM, contributing around 30% to the total values of gAB, and the meson cloud contribution to gAB stems mainly from the diagrams with the ground-state quark propagator while the excited intermediate quark states reduce gAB by 10-20%.

  12. Low-temperature expansions and correlation functions of the Z3-chiral Potts model

    International Nuclear Information System (INIS)

    Han, N.S.; Honecker, A.

    1993-04-01

    Using perturbative methods we derive new results for the spectrum and correlation functions of the general Z 3 -chiral Potts quantum chain in the massive low-temperature phase. Explicit calculations of the ground state energy and the first excitations in the zero momentum sector give excellent approximations and confirm the general statement that the spectrum in the low-temperature phase of general Z n -spin quantum chains is identical to one in the high-temperature phase where the role of charge and boundary conditions are interchanged. Using a perturbative expansion of the ground state for the Z 3 model we are able to gain some insight in correlation functions. We argue that they might be oscillating and give estimates for the oscillation length as well as the correlation length. (orig.)

  13. Polarizability effects on the structure and dynamics of ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcante, Ary de Oliveira, E-mail: arycavalcante@ufam.edu.br [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil); Departamento de Química, Universidade Federal do Amazonas, Av. Rodrigo Octávio, 6200, Coroado, Manaus, AM (Brazil); Ribeiro, Mauro C. C. [Laboratório de Espectroscopia Molecular, Instituto de Química, Universidade de São Paulo, São Paulo, SP C.P. 26077, 05513 970 São Paulo, SP (Brazil); Skaf, Munir S. [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil)

    2014-04-14

    Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup −} and PF{sub 6}{sup −}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (χ) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibrium structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.

  14. One-Photon Absorption Properties from a Hybrid Polarizable Density Embedding/Complex Polarization Propagator Approach for Polarizable Solutions

    DEFF Research Database (Denmark)

    Hršak, Dalibor; Nørby, Morten Steen; Coriani, Sonia

    2018-01-01

    We present a formulation of the polarizable density embedding (PDE) method in combination with the complex polarization propagator (CPP) method for the calculation of absorption spectra of molecules in solutions. The method is particularly useful for the calculation of near-edge X-ray absorption...... fine structure (NEXAFS) spectra. We compare the performance of PDE-CPP with the previously formulated polarizable embedding (PE)-CPP model for the calculation of the NEXAFS spectra of adenine, formamide, glycine, and adenosine triphosphate (ATP) in water at the carbon and nitrogen K-edges, as well...

  15. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  16. Chiral discrimination in nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Lazzeretti, Paolo

    2017-11-01

    Chirality is a fundamental property of molecules whose spatial symmetry is characterized by the absence of improper rotations, making them not superimposable to their mirror image. Chiral molecules constitute the elementary building blocks of living species and one enantiomer is favoured in general (e.g. L-aminoacids and D-sugars pervade terrestrial homochiral biochemistry) because most chemical reactions producing natural substances are enantioselective. Since the effect of chiral chemicals and drugs on living beings can be markedly different between enantiomers, the quest for practical spectroscopical methods to scrutinize chirality is an issue of great importance and interest. Nuclear magnetic resonance (NMR) is a topmost analytical technique, but spectrometers currently used are ‘blind’ to chirality, i.e. unable to discriminate the two mirror-image forms of a chiral molecule, because, in the absence of a chiral solvent, the spectral parameters, chemical shifts and spin-spin coupling constants are identical for enantiomers. Therefore, the development of new procedures for routine chiral recognition would offer basic support to scientists. However, in the presence of magnetic fields, a distinction between true and false chirality is mandatory. The former epitomizes natural optical activity, which is rationalized by a time-even pseudoscalar, i.e. the trace of a second-rank tensor, the mixed electric dipole/magnetic dipole polarizability. The Faraday effect, magnetic circular dichroism and magnetic optical activity are instead related to a time-odd axial vector. The present review summarizes recent theoretical and experimental efforts to discriminate enantiomers via NMR spectroscopy, with the focus on the deep connection between chirality and symmetry properties under the combined set of fundamental discrete operations, namely charge conjugation, parity (space inversion) and time (motion) reversal.

  17. Polarizability of KC60: Evidence for Potassium Skating on the C60 Surface

    Science.gov (United States)

    Rayane, D.; Antoine, R.; Dugourd, Ph.; Benichou, E.; Allouche, A. R.; Aubert-Frécon, M.; Broyer, M.

    2000-02-01

    We present the first measurement of the polarizability and the permanent dipole moment of isolated KC60 molecules by molecular beam deflection technique. We have obtained a value of 2506+/-250 Å3 for the polarizability at room temperature. The addition of a potassium atom enhances by more than a factor of 20 the polarizability of a pure C60 molecule. This very high polarizability and the lack of observed permanent dipole show that the apparent polarizability of KC60 is induced by the free skating of the potassium atom on the C60 surface, resulting in a statistical orientation of the dipole. The results are interpreted with a simple model similar to the Langevin theory for paramagnetic systems.

  18. Chirality-controlled crystallization via screw dislocations.

    Science.gov (United States)

    Sung, Baeckkyoung; de la Cotte, Alexis; Grelet, Eric

    2018-04-11

    Chirality plays an important role in science from enantiomeric separation in chemistry to chiral plasmonics in nanotechnology. However, the understanding of chirality amplification from chiral building blocks to ordered helical superstructures remains a challenge. Here, we demonstrate that topological defects, such as screw dislocations, can drive the chirality transfer from particle to supramolecular structure level during the crystallization process. By using a model system of chiral particles, which enables direct imaging of single particle incorporation into growing crystals, we show that the crystallization kinetic pathway is the key parameter for monitoring, via the defects, the chirality amplification of the crystalline structures from racemic to predominantly homohelical. We provide an explanation based on the interplay between geometrical frustration, racemization induced by thermal fluctuations, and particle chirality. Our results demonstrate that screw dislocations not only promote the growth, but also control the chiral morphology and therefore the functionality of crystalline states.

  19. Upper and lower Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa model

    International Nuclear Information System (INIS)

    Gerhold, Philipp Frederik Clemens

    2009-01-01

    Motivated by the advent of the Large Hadron Collider (LHC) the aim of the present work is the non-perturbative determination of the cutoff-dependent upper and lower mass bounds of the Standard Model Higgs boson based on first principle calculations, in particular not relying on additional information such as the triviality property of the Higgs- Yukawa sector or indirect arguments like vacuum stability considerations. For that purpose the lattice approach is employed to allow for a non-perturbative investigation of a chirally invariant lattice Higgs-Yukawa model, serving here as a reasonable simplification of the full Standard Model, containing only those fields and interactions which are most essential for the intended Higgs boson mass determination. These are the complex Higgs doublet as well as the top and bottom quark fields and their mutual interactions. To maintain the chiral character of the Standard Model Higgs-fermion coupling also on the lattice, the latter model is constructed on the basis of the Neuberger overlap operator, obeying then an exact global lattice chiral symmetry. Respecting the fermionic degrees of freedom in a fully dynamical manner by virtue of a PHMC algorithm appropriately adapted to the here intended lattice calculations, such mass bounds can indeed be established with the aforementioned approach. Supported by analytical calculations performed in the framework of the constraint effective potential, the lower bound is found to be approximately m low H (Λ)=80 GeV at a cutoff of Λ=1000 GeV. The emergence of a lower Higgs boson mass bound is thus a manifest property of the pure Higgs-Yukawa sector that evolves directly from the Higgs-fermion interaction for a given set of Yukawa coupling constants. Its quantitative size, however, turns out to be non-universal in the sense, that it depends on the specific form, for instance, of the Higgs boson self-interaction. The upper Higgs boson mass bound is then established in the strong coupling

  20. Electroweak chiral Lagrangian from the topcolor-assisted technicolor model with nontrivial technicolor fermion condensation and walking

    International Nuclear Information System (INIS)

    Ge Fengjun; Jiang Shaozhou; Wang Qing

    2011-01-01

    The electroweak chiral Lagrangian for the topcolor-assisted technicolor model proposed by K. Lane, which uses nontrivial patterns of techniquark condensation and walking, was investigated in this study. We found that the features of the model are qualitatively similar to those of Lane's previous natural topcolor-assisted technicolor prototype model, but there is no limit on the upper bound of the Z ' mass. We discuss the phase structure and possible walking behavior of the model. We obtained the values of all coefficients of the electroweak chiral Lagrangian up to an order of p 4 . We show that although the walking effect reduces the S parameter to half its original value, it maintains an order of 2. Moreover, a special hypercharge arrangement is needed to achieve further reductions in its value.

  1. Sensitivity to properties of the phi-meson in the nucleon structure in the chiral soliton model

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, N.C.; Zhang, L. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-04-01

    The influence of the {phi}-meson on the nucleon properties in the chiral soliton model is discussed. Properties of the {phi}-meson and its photo- and electroproduction are of fundamental interest to CEBAF and its possible future extension. The quark model assigns {phi} an s{bar s} structure, thus forbidding the radiative decay {phi}{yields}{pi}{sup 0}{gamma}. Experimentally it is also found to be suppressed, yielding a branching fraction of 1.3{times}10{sup {minus}3}. However, {phi}{yields}{rho}{pi} and {phi}{yields}{pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} are not suppressed at all. Thus, it is possible to incorporate the widths of these decays into the framework of the chiral soliton model, by making use of a specific model for the compliance with OZI rule. Such a model is for example, the {omega}-{phi} mixing model. Consequence of this in the context of a chiral soliton model, which builds on the {pi}{rho}{omega}a{sub 1}(f{sub 1}) meson effective Lagrangian, is the context of this report.

  2. Chiral Spirals from Discontinuous Chiral Symmetry

    Science.gov (United States)

    Kojo, Toru

    2014-09-01

    Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. NSF Grants PHY09-69790, PHY13-05891.

  3. Accelerating GW calculations with optimal polarizability basis

    Energy Technology Data Exchange (ETDEWEB)

    Umari, P.; Stenuit, G. [CNR-IOM DEMOCRITOS Theory Elettra Group, Basovizza (Trieste) (Italy); Qian, X.; Marzari, N. [Department of Materials Science and Engineering, MIT, Cambridge, MA (United States); Giacomazzi, L.; Baroni, S. [CNR-IOM DEMOCRITOS Theory Elettra Group, Basovizza (Trieste) (Italy); SISSA - Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy)

    2011-03-15

    We present a method for accelerating GW quasi-particle (QP) calculations. This is achieved through the introduction of optimal basis sets for representing polarizability matrices. First the real-space products of Wannier like orbitals are constructed and then optimal basis sets are obtained through singular value decomposition. Our method is validated by calculating the vertical ionization energies of the benzene molecule and the band structure of crystalline silicon. Its potentialities are illustrated by calculating the QP spectrum of a model structure of vitreous silica. Finally, we apply our method for studying the electronic structure properties of a model of quasi-stoichiometric amorphous silicon nitride and of its point defects. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Electronic Energy Transfer in Polarizable Heterogeneous Environments

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Kongsted, Jacob

    2015-01-01

    such couplings provide important insight into the strength of interaction between photo-active pigments in protein-pigment complexes. Recently, attention has been payed to how the environment modifies or even controls the electronic couplings. To enable such theoretical predictions, a fully polarizable embedding......-order multipole moments. We use this extended model to systematically examine three different ways of obtaining EET couplings in a heterogeneous medium ranging from use of the exact transition density to a point-dipole approximation. Several interesting observations are made including that explicit use...... of transition densities in the calculation of the electronic couplings - also when including the explicit environment contribution - can be replaced by a much simpler transition point charge description without comprising the quality of the model predictions....

  5. An asymptotic safety scenario for gauged chiral Higgs-Yukawa models

    International Nuclear Information System (INIS)

    Gies, Holger; Rechenberger, Stefan; Scherer, Michael M.; Zambelli, Luca

    2013-01-01

    We investigate chiral Higgs-Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative - though weak-coupling - threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaussian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a ''walking'' mid-momentum regime. (orig.)

  6. An asymptotic safety scenario for gauged chiral Higgs-Yukawa models

    Science.gov (United States)

    Gies, Holger; Rechenberger, Stefan; Scherer, Michael M.; Zambelli, Luca

    2013-12-01

    We investigate chiral Higgs-Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative—though weak-coupling—threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaußian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a "walking" mid-momentum regime.

  7. Nonlinear optical properties of chiral polyesters: a joint experimental and theoretical study

    Science.gov (United States)

    Biju, Philip; Sreekumar, K.

    2003-10-01

    A series of polyesters containing donor-acceptor π-conjugated polar segments (4,4'-azobenzene dicarbonyl chloride) and chiral building units [L(+)-diethyl tartrate] in the main chain were synthesized and characterized by spectroscopic (IR, UV-Vis, 1H NMR, 13C NMR), thermal (TG/DTG, DSC), and optical (refractive index, optical rotation techniques). Chiral order was induced with a preferred helical sense to attain noncentrosymmetric ordering of dipoles (polar order) in macroscopic dimensions by chemical synthesis (chemical poling). A comprehensive attempt has been made to correlate the polar order of the polymer chains with the chiral order arising out of a preferred helical sense of the chains. This has been achieved by adopting four different theoretical models and comparing the results with the experimentally observed values of the second order polarizability tensor β. The models used are (1) Logarithmic Law of Mixing (LLM), (2) the Extended Boundary Condition Method (EBCM), (3) The Random Field Ising Model (RFIM) and (4) Semiempirical Computational Model (SCM). The results of the theoretical predictions are compared with the experimentally determined values of β.

  8. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  9. Computational analysis of electronic polarizabilities in Thomas ...

    African Journals Online (AJOL)

    The electric polarizability,α, of a molecule is a measure of its ability to respond to an electric field and acquire an electric dipole moment, μ. The electric polarizability, α has been calculated for several ions and atoms by obtaining the perturbation of wave functions by an external field from a numerical solution of differential ...

  10. Microscopic evaluation of the nuclear dipole polarizability

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E; Orlandini, G; Stringari, S; Traini, M [Trento Univ. (Italy). Dept. di Matematica e Fisica

    1977-12-01

    The dipole polarizability sum rule has been evaluated by means of a restricted Hartree-Fock approach. The method leads to a simple and analytical expression for the dipole polarizability. Explicit calculations have been performed in /sup 16/O and /sup 40/Ca with different types of interaction.

  11. Excited States in Solution through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus; Aidas, Kestutis; Kongsted, Jacob

    2010-01-01

    mechanical calculation. The polarizable embedding potential is described by an atomistic representation including terms up to localized octupoles and anisotropic polarizabilities. It is generally applicable to any quantum chemical description but is here implemented for the case of Kohn−Sham density...

  12. What's wrong with anomalous chiral gauge theory?

    International Nuclear Information System (INIS)

    Kieu, T.D.

    1994-05-01

    It is argued on general ground and demonstrated in the particular example of the Chiral Schwinger Model that there is nothing wrong with apparently anomalous chiral gauge theory. If quantised correctly, there should be no gauge anomaly and chiral gauge theory should be renormalisable and unitary, even in higher dimensions and with non-Abelian gauge groups. Furthermore, it is claimed that mass terms for gauge bosons and chiral fermions can be generated without spoiling the gauge invariance. 19 refs

  13. Chirality in adsorption on solid surfaces.

    Science.gov (United States)

    Zaera, Francisco

    2017-12-07

    In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called "sergeants and soldiers" phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral

  14. Sum rules across the unpolarized Compton processes involving generalized polarizabilities and moments of nucleon structure functions

    Science.gov (United States)

    Lensky, Vadim; Hagelstein, Franziska; Pascalutsa, Vladimir; Vanderhaeghen, Marc

    2018-04-01

    We derive two new sum rules for the unpolarized doubly virtual Compton scattering process on a nucleon, which establish novel low-Q2 relations involving the nucleon's generalized polarizabilities and moments of the nucleon's unpolarized structure functions F1(x ,Q2) and F2(x ,Q2). These relations facilitate the determination of some structure constants which can only be accessed in off-forward doubly virtual Compton scattering, not experimentally accessible at present. We perform an empirical determination for the proton and compare our results with a next-to-leading-order chiral perturbation theory prediction. We also show how these relations may be useful for a model-independent determination of the low-Q2 subtraction function in the Compton amplitude, which enters the two-photon-exchange contribution to the Lamb shift of (muonic) hydrogen. An explicit calculation of the Δ (1232 )-resonance contribution to the muonic-hydrogen 2 P -2 S Lamb shift yields -1 ±1 μ eV , confirming the previously conjectured smallness of this effect.

  15. Static and dynamic polarizabilities of Na- within a variationally stable coupled-channel hyperspherical method

    International Nuclear Information System (INIS)

    Masili, Mauro; Groote, J.J. de

    2004-01-01

    Using a model potential representation combined with a variationally stable method, we present a precise calculation of the electric dipole polarizabilities of the sodium negative ion (Na - ). The effective two-electron eigensolutions for Na - are obtained from a hyperspherical coupled-channel calculation. This approach allows efficient error control and insight into the system's properties through one-dimensional potential curves. Our result of 1018.3 a.u. for the static dipole polarizability is in agreement with previous calculations and supports our results for the dynamic polarizability, which has scarcely been investigated hitherto

  16. Torons, chiral symmetry breaking and U(1) problem in σ-model and gauge theories. Part 2

    International Nuclear Information System (INIS)

    Zhitnitskij, A.R.

    1989-01-01

    The main point of this work is the physical consenquences of the existence of fractional charge in the σ-models and espesially in the physically interesting theory QCD. It is shown that the corresponding fluctuations ensure spontaneous breaking of the chiral symmetry and give a nonzero contribution to the chiral condensate. Toron solution is determined on the manifold with boundary. In this case many questions arise such as: global boundary conditions, the stability of the solution, self-adjointness of Dirac operator, single-valuedness of the physical values and so on. These questions are interconnected and turn out to be self cobsistent only for the special choice of the topological number (Q=1/2 for SU(2)). It is shown that in the Dirac's spectrum of the quarks the gap between zero and the continuum is absent. 50 refs.; 10 figs

  17. Non-chiral, molecular model of negative Poisson ratio in two dimensions

    International Nuclear Information System (INIS)

    Wojciechowski, K W

    2003-01-01

    A two-dimensional model of tri-atomic molecules (in which 'atoms' are distributed on vertices of equilateral triangles, and which are further referred to as cyclic trimers) is solved exactly in the static (zero-temperature) limit for the nearest-neighbour site-site interactions. It is shown that the cyclic trimers form a mechanically stable and elastically isotropic non-chiral phase of negative Poisson ratio. The properties of the system are illustrated by three examples of atom-atom interaction potentials: (i) the purely repulsive (n-inverse-power) potential, (ii) the purely attractive (n-power) potential and (iii) the Lennard-Jones potential which shows both the repulsive and the attractive part. The analytic form of the dependence of the Poisson ratio on the interatomic potential is obtained. It is shown that the Poisson ratio depends, in a universal way, only on the trimer anisotropy parameter both (1) in the limit of n → ∞ for cases (i) and (ii), as well as (2) at the zero external pressure for any potential with a doubly differentiable minimum, case (iii) is an example

  18. Description of a nucleon in nuclear matter using the chiral bag model

    International Nuclear Information System (INIS)

    Bunatyan, G.G.

    1990-01-01

    The chiral bag (cloudy bag) model, which contains an essentially nonlinear interaction of quarks with both the classical and quantum pion field, is extended for description of a nucleon in nuclear matter. The dependence on the density and temperature of the medium is studied. The pion field in nuclear matter differs considerably from the free field, and this leads to a modification of the nucleon bag. Increase of the density ρ and temperature T causes strengthening of the pion field and growth of its thermodynamic fluctuations. At sufficiently high densities ρ approx-gt ρ CB and temperatures T≥T cr this leads to instability of the three-quark nucleon bag. Under such conditions nuclear matter cannot be composed only of nucleons, and one should expect the appearance of a different, non-nucleon, phase. Estimates of the critical density and temperature are obtained: ρ CB ∼ (1.5-2)ρ 0 and T cr ∼ 200 MeV (where ρ 0 is the conventional nuclear density)

  19. Exact scattering in the SU(n) supersymmetric principal chiral model

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1997-01-01

    The complete spectrum of states in the supersymmetric principal chiral model based on SU(n) is conjectured, and an exact factorizable S-matrix is proposed to describe scattering amongst these states. The SU(n)_L*SU(n)_R symmetry of the lagrangian is manifest in the S-matrix construction. The supersymmetries, on the other hand, are incorporated in the guise of spin-1/2 charges acting on a set of RSOS kinks associated with su(n) at level n. To test the proposed S-matrix, calculations of the change in the ground-state energy in the presence of a coupling to a background charge are carried out. The results derived from the lagrangian using perturbation theory and from the S-matrix using the TBA are found to be in complete agreement for a variety of background charges which pick out, in turn, the highest weight states in each of the fundamental representations of SU(n). In particular, these methods rule out the possibility of additional CDD factors in the S-matrix. Comparison of the expressions found for the free-...

  20. Chiral Cliffs: Investigating the Influence of Chirality on Binding Affinity.

    Science.gov (United States)

    Schneider, Nadine; Lewis, Richard A; Fechner, Nikolas; Ertl, Peter

    2018-05-11

    Chirality is understood by many as a binary concept: a molecule is either chiral or it is not. In terms of the action of a structure on polarized light, this is indeed true. When examined through the prism of molecular recognition, the answer becomes more nuanced. In this work, we investigated chiral behavior on protein-ligand binding: when does chirality make a difference in binding activity? Chirality is a property of the 3D structure, so recognition also requires an appreciation of the conformation. In many situations, the bioactive conformation is undefined. We set out to address this by defining and using several novel 2D descriptors to capture general characteristic features of the chiral center. Using machine-learning methods, we built different predictive models to estimate if a chiral pair (a set of two enantiomers) might exhibit a chiral cliff in a binding assay. A set of about 3800 chiral pairs extracted from the ChEMBL23 database was used to train and test our models. By achieving an accuracy of up to 75 %, our models provide good performance in discriminating chiral cliffs from non-cliffs. More importantly, we were able to derive some simple guidelines for when one can reasonably use a racemate and when an enantiopure compound is needed in an assay. We critically discuss our results and show detailed examples of using our guidelines. Along with this publication we provide our dataset, our novel descriptors, and the Python code to rebuild the predictive models. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Vibrational polarizabilities of hydrogen-bonded water

    International Nuclear Information System (INIS)

    Torii, Hajime

    2013-01-01

    Highlights: ► Vibrational polarizabilities of hydrogen-bonded water are analyzed theoretically. ► Total vibrational polarizability is (at least) comparable to the electronic one. ► Molecular translations contribute to the vibrational polarizability below 300 cm −1 . ► Intermolecular charge fluxes along H bonds are induced by molecular translations. ► The results are discussed in relation to the observed dielectric properties. - Abstract: The vibrational polarizabilities and the related molecular properties of hydrogen-bonded water are analyzed theoretically, taking the case of (water) 30 clusters as an example case. It is shown that some off-diagonal dipole derivatives are large for the translations of incompletely hydrogen-bonded molecules, and this is reasonably explained by the scheme of intermolecular charge fluxes induced along hydrogen bonds. In total, because of these intermolecular charge fluxes, molecular translations give rise to the vibrational polarizability of 2.8–3.3 a 0 3 per molecule, which is as large as about 40% of the electronic polarizability, mainly in the frequency region below 300 cm −1 . Adding the contributions of the molecular rotations (librations) and the translation–rotation cross term, the total polarizability (electronic + vibrational) at ∼100 cm −1 is slightly larger than the double of that at >4000 cm −1 . The relation of these results to some observed time- and frequency-dependent dielectric properties of liquid water is briefly discussed

  2. Shining light on polarizable dark particles

    Energy Technology Data Exchange (ETDEWEB)

    Fichet, Sylvain [ICTP South American Institute for Fundamental Research, Instituto de Fisica Teorica, Sao Paulo State University,Rua Dr. Bento Teobaldo Ferraz 271, Bloco 2, Barra Funda (Brazil)

    2017-04-14

    We investigate the possibilities of searching for a self-conjugate polarizable particle in the self-interactions of light. We first observe that polarizability can arise either from the exchange of mediator states or as a consequence of the inner structure of the particle. To exemplify this second possibility we calculate the polarizability of a neutral bosonic open string, and find it is described only by dimension-8 operators. Focussing on the spin-0 case, we calculate the light-by-light scattering amplitudes induced by the dimension-6 and 8 polarizability operators. Performing a simulation of exclusive diphoton production with proton tagging at the LHC, we find that the imprint of the polarizable dark particle can be potentially detected at 5σ significance for mass and cutoff reaching values above the TeV scale, for √s=13 TeV and 300 fb{sup −1} of integrated luminosity. If the polarizable dark particle is stable, it can be a dark matter candidate, in which case we argue this exclusive diphoton search may complement the existing LHC searches for polarizable dark matter.

  3. Searching for Models Exhibiting High Circularly Polarized Luminescence: the Electroactive Inherently Chiral Oligothiophenes.

    Science.gov (United States)

    Benincori, Tiziana; Appoloni, Giulio; Mussini, Patrizia Romana; Arnaboldi, Serena; Cirilli, Roberto; Quartapelle Procopio, Elsa; Panigati, Monica; Abbate, Sergio; Mazzeo, Giuseppe; Longhi, Giovanna

    2018-05-02

    Two new inherently chiral oligothiophenes characterized by the atropisomeric 3,3'-bithianaphtene scaffold functionalized with fused ring bithiophene derivatives, namely 4H-cyclopenta [2,1-b3:4b']dithiophene (CPDT) and dithieno[3,3-b:2',3'-d]pyrrole (DTP), were synthesized. The racemates were fully characterized and resolved into antipodes by enantioselective HPLC. The enantiomers were analyzed through different chiroptical techniques: electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) were employed to attribute the absolute configuration (AC). Comparison of experimental and calculated VCD spectra confirmed the DFT calculated conformational characteristics. The compound functionalized with two CPDT units was oxidized with FeCl3 and ECD and CPL of the resulting material were measured. Circularly Polarized Luminescence (CPL) was measured in order to verify if inherently chiral oligothiophenes could be promising systems for chiral photonics applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Search for the Chiral Magnetic Effect in Heavy-Ion Collisions and Quantification of the Background with the AMPT Model

    Science.gov (United States)

    Bryon, Jacob

    2017-09-01

    The chiral magnetic effect (CME) arises from the chirality imbalance of quarks and its interaction to the strong magnetic field generated in non-central heavy-ion collisions. Possible formation of domains of quarks with chirality imbalances is an intrinsic property of the Quantum ChromoDynamics (QCD), which describes the fundamental strong interactions among quarks and gluons. Azimuthal-angle correlations have been used to measure the magnitude of charge- separation across the reaction plane, which was predicted to arise from the CME. However, backgrounds from collective motion (flow) of the collision system can also contribute to the correlation observable. In this poster, we investigate the magnitude of the background utilizing the AMPT model, which contains no CME signals. We demonstrate, for Au +Au collisions at 200 and 39 GeV, a scheme to remove the flow background via the event-shape engineering with the vanishing magnitude of the flow vector. We also calculate the ensemble average of the charge-separation observable, and provide a background baseline for the experimental data.

  5. Two-chiral component microemulsion EKC - chiral surfactant and chiral oil. Part 2: diethyl tartrate.

    Science.gov (United States)

    Kahle, Kimberly A; Foley, Joe P

    2007-08-01

    In this second study on dual-chirality microemulsions containing a chiral surfactant and a chiral oil, a less hydrophobic and lower interfacial tension chiral oil, diethyl tartrate, is employed (Part 1, Foley, J. P. et al.., Electrophoresis, DOI: 10.1002/elps.200600551). Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and diethyl tartrate (D, L, or racemic, 0.88% v/v) were examined as pseudostationary phases (PSPs) for the enantioseparation of six chiral pharmaceutical compounds: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Average efficiencies increased with the addition of a chiral oil to R-DDCV PSP formulations. Modest improvements in resolution and enantioselectivity (alpha(enant)) were achieved with two-chiral-component systems over the one-chiral-component microemulsion. Slight enantioselective synergies were confirmed using a thermodynamic model. Results obtained in this study are compared to those obtained in Part 1 as well as those obtained with chiral MEEKC using an achiral, low-interfacial-tension oil (ethyl acetate). Dual-chirality microemulsions with the more hydrophobic oil dibutyl tartrate yielded, relative to diethyl tartrate, higher efficiencies (100,000-134,000 vs. 80,800-94,300), but lower resolution (1.64-1.91 vs. 2.08-2.21) due to lower enantioselectivities (1.060-1.067 vs. 1.078-1.081). Atenolol enantiomers could not be separated with the dibutyl tartrate-based microemulsions but were partially resolved using diethyl tartrate microemulsions. A comparable single-chirality microemulsion based on the achiral oil ethyl acetate yielded, relative to diethyl tartrate, lower efficiency (78 300 vs. 91 600), higher resolution (1.99 vs. 1.83), and similar enantioselectivities.

  6. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.

    1996-06-01

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  7. Torons, chiral symmetry breaking and U(1) problem in σ-model and in gauge theories. Part 1

    International Nuclear Information System (INIS)

    Zhitnitskij, A.R.

    1989-01-01

    A novel class of self-dual solutions in σ-models and in SU(2) gauge theories is considered. The solution is defined on manifold with boundary, it has topological charge Q=1/2. The contribution of the corresponding fluctuations and toron configurations to chiral condensate is calculated. This contribution has finite nonzero value. The APS (Atiyah, Patodi, Singer) theorem for a manifold with a boundary is discussed for the O(3) σ model. The necessity of imposing non-local boundary conditions for the Dirac operator is explained. 30 refs.; 4 figs

  8. Enhanced polarizability of aromatic molecules placed in the vicinity of silver clusters

    International Nuclear Information System (INIS)

    Mayer, A; Schatz, G C

    2009-01-01

    We use a charge-dipole interaction model to study the polarizability of aromatic molecules that are placed between two silver clusters. In particular we examine the enhancement in polarizability induced by the clusters at plasmon-like resonant frequencies of the cluster-molecule-cluster system. The model used for these simulations relies on representation of the atoms by both a net electric charge and a dipole. By relating the time variation of the atomic charges to the currents that flow through the bonds of the structures considered, a least-action principle can be formulated that enables the atomic charges and dipoles to be determined. We consider benzene, naphthalene and anthracene for this study, comparing the polarizability of these aromatic molecules when placed in the middle between two Ag 120 clusters, with their polarizability as isolated molecules. We find that the polarizability of these molecules is enhanced by the clusters, and this increases the electromagnetic coupling between the two clusters. This results in significant red-shifting (by up to 0.8 eV) of the lowest energy optical transition in the cluster-molecule-cluster system compared to plasmon-like excitation in the cluster-cluster system. The resulting resonant polarizability enhancement leads to an electromagnetic enhancement in surface-enhanced Raman scattering of over 10 6 .

  9. Static and dynamical anomalies caused by chiral soliton lattice in molecular-based chiral magnets

    International Nuclear Information System (INIS)

    Kishine, Jun-ichiro; Inoue, Katsuya; Kikuchi, Koichi

    2007-01-01

    Interplay of crystallographic chirality and magnetic chirality has been of great interest in both chemist's and physicist's viewpoints. Crystals belonging to chiral space groups are eligible to stabilize macroscopic chiral magnetic order. This class of magnetic order is described by the chiral XY model, where the transverse magnetic field perpendicular to the chiral axis causes the chiral soliton lattice (CSL) formation. As a clear evidence of the chiral magnetic order, the temperature dependence of the transverse magnetization exhibits sharp cusp just below the mean field ferrimagnetic transition temperature, indicating the formation of the CSL. In addition to the static anomaly, we expect the CSL formation also causes dynamical anomalies such as induction of the spin supercurrent

  10. Hierarchical chirality transfer in the growth of Towel Gourd tendrils

    Science.gov (United States)

    Wang, Jian-Shan; Wang, Gang; Feng, Xi-Qiao; Kitamura, Takayuki; Kang, Yi-Lan; Yu, Shou-Wen; Qin, Qing-Hua

    2013-01-01

    Chirality plays a significant role in the physical properties and biological functions of many biological materials, e.g., climbing tendrils and twisted leaves, which exhibit chiral growth. However, the mechanisms underlying the chiral growth of biological materials remain unclear. In this paper, we investigate how the Towel Gourd tendrils achieve their chiral growth. Our experiments reveal that the tendrils have a hierarchy of chirality, which transfers from the lower levels to the higher. The change in the helical angle of cellulose fibrils at the subcellular level induces an intrinsic torsion of tendrils, leading to the formation of the helical morphology of tendril filaments. A chirality transfer model is presented to elucidate the chiral growth of tendrils. This present study may help understand various chiral phenomena observed in biological materials. It also suggests that chirality transfer can be utilized in the development of hierarchically chiral materials having unique properties. PMID:24173107

  11. Chirality effect in disordered graphene ribbon junctions

    International Nuclear Information System (INIS)

    Long Wen

    2012-01-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)

  12. On the p4-corrections to K → 3π decay amplitudes in nonlinear and linear chiral models

    International Nuclear Information System (INIS)

    Bel'kov, A.A.; Bolnn, G.; Lanyov, A.V.; Schaale, A.

    1993-09-01

    The calculations of isotopic amplitudes and their results for the direct CP-violating charge asymmetry in K ± → 3π decays within the nonlinear and linear (σ-model) chiral Lagrangian approach are compared with each other. It is shown, that the latter, taking into account intermediate scalar resonances, does not reproduce the p 4 -corrections of the nonlinear approach introduced by Gasser and Leutwyler, being saturated mainly by vector resonance exchange. The resulting differences concerning the CP violation effect are traced in some detail. (author). 31 refs., 1 tab

  13. Photoproduction of pions on nuclear in chiral bag model with account of motion effects of recoil nucleon

    International Nuclear Information System (INIS)

    Dorokhov, A.E.; Kanokov, Z.; Musakhanov, M.M.; Rakhimov, A.M.

    1989-01-01

    Pion production on a nucleon is studied in the chiral bag model (CBM). A CBM version is investigated in which the pions get into the bag and interact with quarks in a pseudovector way in the entire volume. Charged pion photoproduction amplitudes are found taking into account the recoil nucleon motion effects. Angular and energy distributions of charged pions, polarization of the recoil nucleon, multipoles are calculated. The recoil effects are shon to give an additional contribution to the static approximation of order of 10-20%. At bag radius value R=1 in the calculations are consistent with the experimental data

  14. Vector mesons and chiral symmetry

    International Nuclear Information System (INIS)

    Ecker, G.

    1989-01-01

    The ambiguities in the off-shell behaviour of spin-1 exchange can be resolved to O(p 4 ) in the chiral low-energy expansion if the asymptotic behaviour of QCD is properly incorporated. As a consequence, the chiral version of vector (and axial-vector) meson dominance is model independent. Additional high-energy constraints motivated by QCD determine the V,A resonance couplings uniquely. In particular, QCD in its effective chiral realization sucessfully predicts Γ(ρ→2π). 10 refs. (Author)

  15. Nonadiabatic Response Model of Laser-Induced Ultrafast π-Electron Rotations in Chiral Aromatic Molecules

    International Nuclear Information System (INIS)

    Kanno, Manabu; Kono, Hirohiko; Fujimura, Yuichi; Lin, Sheng H.

    2010-01-01

    We theoretically investigated the nonadiabatic couplings between optically induced π-electron rotations and molecular vibrations in a chiral aromatic molecule irradiated by a nonhelical, linearly polarized laser pulse. The results of wave packet dynamics simulation show that the vibrational amplitudes strongly depend on the initial rotation direction, clockwise or counterclockwise, which is controlled by the polarization direction of the incident pulse. This suggests that attosecond π-electron rotations can be observed by spectroscopic detection of femtosecond molecular vibrations.

  16. Influence of microemulsion chirality on chromatographic figures of merit in EKC: results with novel three-chiral-component microemulsions and comparison with one- and two-chiral-component microemulsions.

    Science.gov (United States)

    Kahle, Kimberly A; Foley, Joe P

    2007-08-01

    Novel microemulsion formulations containing all chiral components are described for the enantioseparation of six pairs of pharmaceutical enantiomers (atenolol, ephedrine, metoprolol, N-methyl ephedrine, pseudoephedrine, and synephrine). The chiral surfactant dodecoxycarbonylvaline (DDCV, R- and S-), the chiral cosurfactant S-2-hexanol, and the chiral oil diethyl tartrate (R- and S-) were combined to create four different chiral microemulsions, three of which were stable. Results obtained for enantioselectivity, efficiency, and resolution were compared for the triple-chirality systems and the single-chirality system that contained chiral surfactant only. Improvements in enantioselectivity and resolution were achieved by simultaneously incorporating three chiral components into the aggregate. The one-chiral-component microemulsion provided better efficiencies. Enantioselective synergies were identified for the three-chiral-component nanodroplets using a thermodynamic model. Additionally, two types of dual-chirality systems, chiral surfactant/chiral cosurfactant and chiral surfactant/chiral oil, were examined in terms of chromatographic figures of merit, with the former providing much better resolution. The two varieties of two-chiral-component microemulsions gave similar values for enantioselectivity and efficiency. Lastly, the microemulsion formulations were divided into categories based on the number of chiral microemulsion reagents and the average results for each pair of enantiomers were analyzed for trends. In general, enantioselectivity and resolution were enhanced while efficiency was decreased as more chiral components were used to create the pseudostationary phase (PSP).

  17. The η′N interaction from a chiral effective model and η′-N bound state

    International Nuclear Information System (INIS)

    Sakai, Shuntaro; Jido, Daisuke

    2015-01-01

    The η ′ mass reduction in the nuclear medium is expected owing to the degeneracy of the pseudoscalar-singlet and octet mesons in the restoration of the spontaneous chiral symmetry breaking. In this study, we investigate the η ′ N 2body interaction, which is the fundamental interaction of the in-medium η ′ properties, using the linear sigma model as a chiral effective model. The η ′ N interaction in the linear sigma model comes from the scalar meson exchange with U A (1) symmetry effect and is found to be fairly strong attraction. The transition amplitude of η ′ N to the ηN channel is relatively small compared to that of elastic channel. From the analysis of the η ′ N 2body system, we find a η ′ N bound state with the binding energy 12.3-3.3iMeV. We expect that this strongly attractive two body interaction leads to a deep and attractive optical potential

  18. Quark spin-flavor layered structure with condensed π/sup 0/ field in Chiral bag model

    International Nuclear Information System (INIS)

    Tamagaki, R.; Tatsumi, T.

    1984-01-01

    In order to understand predispositions of high density matter, a new phase possibly arising from the neutron matter under π/sup 0/ condensation is studied in chiral bag model, as a facet in which both quark and pion degrees of freedom are incorporated in a well-developed situation of π/sup 0/ condensation. The aspects of this phase are characterized by the periodic layered structure of the two-dimensional quark matter with a specific spin-flavor order the π/sup 0/ field existent as the Nambu-Goldstone mode between the adjacent layers. Such quark configuration is caused due to the pion-quark coupling at the layer (bag) surface which drastically lowers quark energy. Energy properties of the system are examined, and it is shown that the one-gluon-exchange contribution provides the repulsive effect to prevent the layered structure from collapsing. This model provides an example which can be solved nonperturbatively in the chiral bag model and suggests the possibility of an intermediate stage which may appear prior to the phase transition to uniform quark matter

  19. Time reversal violating nuclear polarizability and atomic electric dipole moment

    International Nuclear Information System (INIS)

    Ginges, J.S.M.; Flambaum, V.V.; Mititelu, G.

    2000-01-01

    Full text: We propose a nuclear mechanism which can induce an atomic electric dipole moment (EDM). The interaction of external electric E and magnetic H fields with nuclear electric and magnetic dipole moments, d and ,u, gives rise to an energy shift, U= -β ik E i H k , where β ik is the nuclear polarizability. Parity and time invariance violating (P,T-odd) nuclear forces generate a mixed P,T-odd nuclear polarizability, whereψ 0 and ψ n are P,T-odd perturbed ground and excited nuclear states, respectively. In the case of a heavy spherical nucleus with a single unpaired nucleon, the perturbed wavefunctions are U = -β ik E i H k , where ξis a constant proportional to the strength of the nuclear P,T-odd interaction, σ is the nuclear spin operator, and ψ n is an unperturbed wavefunction. There are both scalar and tensor contributions to the nuclear P,T-odd polarizability. An atomic EDM is induced by the interaction of the fields of an unpaired electron in an atom with the P,T-odd perturbed atomic nucleus. An estimate for the value of this EDM has been made. The measurements of atomic EDMs can provide information about P,T-odd nuclear forces and test models of CP-violation

  20. Fluctuations and the Phase Transition in a Chiral Model with Polyakov Loops%引入Polyakov环路的手征模型中的涨落与相变

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We explore the NJL model with Polyakov loops for a system of three colors and two flavors within the mean-field approximation, where both chiral symmetry and confinement are taken into account. We focus on the phase structure of the model and study the chiral and Polyakov loop susceptibilities.

  1. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kallarackal, Jim

    2011-04-28

    Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the

  2. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    International Nuclear Information System (INIS)

    Kallarackal, Jim

    2011-01-01

    Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the

  3. Charged pions polarizability measurement at COMPASS

    CERN Document Server

    Guskov, A

    2010-01-01

    The pion electromagnetic structure can be probed in $\\pi^{−}+(A,Z)\\rightarrow\\pi^{-}+(A,Z)+\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric $(\\alpha_{\\pi})$ and the magnetic $(\\beta_{\\pi})$ polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of point-like pions with the measured cross section. The opportunity to measure pion polarizability via the Primakoff reaction at the COMPASS experiment was studied with $a$ $\\pi^{-}$ beam of 190 GeV during pilot run 2004. The obtained results were used for preparation of the new data taking which was performed in 2009.

  4. Equation of state of isospin-asymmetric nuclear matter in relativistic mean-field models with chiral limits

    International Nuclear Information System (INIS)

    Jiang Weizhou; Li Baozn; Chen Liewen

    2007-01-01

    Using in-medium hadron properties according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities and considering naturalness of the coupling constants, we have newly constructed several relativistic mean-field Lagrangians with chiral limits. The model parameters are adjusted such that the symmetric part of the resulting equation of state at supra-normal densities is consistent with that required by the collective flow data from high energy heavy-ion reactions, while the resulting density dependence of the symmetry energy at sub-saturation densities agrees with that extracted from the recent isospin diffusion data from intermediate energy heavy-ion reactions. The resulting equations of state have the special feature of being soft at intermediate densities but stiff at high densities naturally. With these constrained equations of state, it is found that the radius of a 1.4M o canonical neutron star is in the range of 11.9 km≤R≤13.1 km, and the maximum neutron star mass is around 2.0M o close to the recent observations

  5. Chiral topological insulator of magnons

    Science.gov (United States)

    Li, Bo; Kovalev, Alexey A.

    2018-05-01

    We propose a magnon realization of 3D topological insulator in the AIII (chiral symmetry) topological class. The topological magnon gap opens due to the presence of Dzyaloshinskii-Moriya interactions. The existence of the topological invariant is established by calculating the bulk winding number of the system. Within our model, the surface magnon Dirac cone is protected by the sublattice chiral symmetry. By analyzing the magnon surface modes, we confirm that the backscattering is prohibited. By weakly breaking the chiral symmetry, we observe the magnon Hall response on the surface due to opening of the gap. Finally, we show that by changing certain parameters, the system can be tuned between the chiral topological insulator, three-dimensional magnon anomalous Hall, and Weyl magnon phases.

  6. Hadron polarizability data analysis: GoAT

    Energy Technology Data Exchange (ETDEWEB)

    Stegen, H., E-mail: hkstegen@mta.ca; Hornidge, D. [Mount Allison University, Sackville (Canada); Collicott, C. [Dalhousie University, Halifax (Canada); Martel, P. [Mount Allison University, Sackville (Canada); Johannes Gutenberg University, Mainz (Germany); Ott, P. [Johannes Gutenberg University, Mainz (Germany)

    2015-12-31

    The A2 Collaboration at the Institute for Nuclear Physics in Mainz, Germany, is working towards determining the polarizabilities of hadrons from nonperturbative quantum chromodynamics through Compton scattering experiments at low energies. The asymmetry observables are directly related to the scalar and spin polarizabilities of the hadrons. Online analysis software, which will give real-time feedback on asymmetries, efficiencies, energies, and angle distributions, has been developed. The new software is a big improvement over the existing online code and will greatly develop the quality of the acquired data.

  7. Hadron polarizability data analysis: GoAT

    Science.gov (United States)

    Stegen, H.; Collicott, C.; Hornidge, D.; Martel, P.; Ott, P.

    2015-12-01

    The A2 Collaboration at the Institute for Nuclear Physics in Mainz, Germany, is working towards determining the polarizabilities of hadrons from nonperturbative quantum chromodynamics through Compton scattering experiments at low energies. The asymmetry observables are directly related to the scalar and spin polarizabilities of the hadrons. Online analysis software, which will give real-time feedback on asymmetries, efficiencies, energies, and angle distributions, has been developed. The new software is a big improvement over the existing online code and will greatly develop the quality of the acquired data.

  8. Quantum mechanical determination of atomic polarizabilities of ionic liquids.

    Science.gov (United States)

    Heid, Esther; Szabadi, András; Schröder, Christian

    2018-04-25

    The distribution of a molecule's polarizability to individual atomic sites is inevitable to develop accurate polarizable force fields. We present the direct quantum mechanical calculation of atomic polarizabilities of 27 common ionic liquids. The method is superior to previously published distribution routines based on large databases of the molecular polarizability, and enables the correct description of any ionic liquid and its peculiarities within the quantum mechanical framework.

  9. Chiral colour and axigluons

    International Nuclear Information System (INIS)

    Cuypers, F.

    1989-01-01

    The authors studies the phenomenological implications of the Chiral Colour model which allow him to derive experimental bounds on the axigluon mass or to predict deviations from the Standard Model. After a short introduction to the theory, the author examines the way it modifies the standard decay of quarkonium. Comparison with the observed lifetime of the upsilon allows him to exclude the existence of axigluons lighter than 9 GeV. (Others have since extended the work and were able to increase this limit to 25 GeV.) He then studies the Chiral Colour contribution to the hadronic cross-section in the electron-positron scattering and derive a conservative lower bound of 50 GeV for the axigluon mass. Finally, he predicts observable enhancements of the lifetime and rare decay channels of the Z O in the presence of light axigluons

  10. Enantioselective Biotransformation of Chiral Persistent Organic Pollutants.

    Science.gov (United States)

    Zhang, Ying; Ye, Jing; Liu, Min

    2017-01-01

    Enantiomers of chiral compounds commonly undergo enantioselective transformation in most biologically mediated processes. As chiral persistent organic pollutants (POPs) are extensively distributed in the environment, differences between enantiomers in biotransformation should be carefully considered to obtain exact enrichment and specific health risks. This review provides an overview of in vivo biotransformation of chiral POPs currently indicated in the Stockholm Convention and their chiral metabolites. Peer-reviewed journal articles focused on the research question were thoroughly searched. A set of inclusion and exclusion criteria were developed to identify relevant studies. We mainly compared the results from different animal models under controlled laboratory conditions to show the difference between enantiomers in terms of distinct transformation potential. Interactions with enzymes involved in enantioselective biotransformation, especially cytochrome P450 (CYP), were discussed. Further research areas regarding this issue were proposed. Limited evidence for a few POPs has been found in 30 studies. Enantioselective biotransformation of α-hexachlorocyclohexane (α-HCH), chlordane, dichlorodiphenyltrichloroethane (DDT), heptachlor, hexabromocyclododecane (HBCD), polychlorinated biphenyls (PCBs), and toxaphene, has been investigated using laboratory mammal, fish, bird, and worm models. Tissue and excreta distributions, as well as bioaccumulation and elimination kinetics after administration of racemate and pure enantiomers, have been analyzed in these studies. Changes in enantiomeric fractions have been considered as an indicator of enantioselective biotransformation of chiral POPs in most studies. Results of different laboratory animal models revealed that chiral POP biotransformation is seriously affected by chirality. Pronounced results of species-, tissue-, gender-, and individual-dependent differences are observed in in vivo biotransformation of chiral POPs

  11. Chiral anomaly, bosonization and fractional charge

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Rego Monteiro, M.A. do.

    1984-01-01

    A method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper time method and using Seeley's asymptotic expansion is presented. With this method the chiral anomaly ofr ν=4,6 dimensions is computed easily, bosonization of some massless two-dimensional models is discussed and the problem of charge fractionization is handled. Besides, the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-hermitean operators is commented. (Author) [pt

  12. Chiral anomaly, bosonization, and fractional charge

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Monteiro, M.A.R.

    1985-01-01

    We present a method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper-time method and using Seeley's asymptotic expansion. With this method we compute easily the chiral anomaly for ν = 4,6 dimensions, discuss bosonization of some massless two-dimensional models, and handle the problem of charge fractionization. In addition, we comment on the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-Hermitian operators

  13. On chiral bosonization

    International Nuclear Information System (INIS)

    Bastianelli, F.

    1991-01-01

    We examine the bosonization of chiral fermions in a gravitational background, using a path integral approach. The bosonic model is given by an action proposed some time ago by Floreanini and Jackiw, suitably coupled to gravity. We use a regulator for the path integral measure obtained from the general construction of Diaz, Hatsuda, Troost, van Nieuwenhuizen and Van Proeyen. We show that the effective actions are identical. (orig.)

  14. On the polarizability dyadics of electrically small, convex objects

    Science.gov (United States)

    Lakhtakia, Akhlesh

    1993-11-01

    This communication on the polarizability dyadics of electrically small objects of convex shapes has been prompted by a recent paper published by Sihvola and Lindell on the polarizability dyadic of an electrically gyrotropic sphere. A mini-review of recent work on polarizability dyadics is appended.

  15. Multi-particle structure in the Zn-chiral Potts models

    International Nuclear Information System (INIS)

    Gehlen, G. von; Honecker, A.

    1992-10-01

    We calculate the lowest translationally invariant levels of the Z 3 - and Z 4 -symmetrical chiral Potts quantum chains, using numerical diagonalization of the hamiltonian for N≤12 and N≤10 sites, respectively, and extrapolating N→∞. In the high-temperature massive phase we find that the pattern of the low-lying zero momentum levels can be explained assuming the existence of n-1 particles carrying Z n -charges Q=1, ..., n-1 (mass m Q ), and their scattering states. In the superintegrable case the masses of the n-1 particles become proportional to their respective charges: m Q =Qm 1 . Exponential convergence in N is observed for the single particle gaps, while power convergence is seen for the scattering levels. We also verify that qualitatively the same pattern appears for the self-dual and integrable cases. For general Z n we show that the energy-momentum relations of the particles show a parity non-conservation asymmetry which for very high temperatures is exclusive due to the presence of a macroscopic momentum P m =(1-2Q/n)Φ, where Φ is the chiral angle and Q is the Z n -charge of the respective particle. (orig.)

  16. Modelling and experimental evaluation of reaction kinetics in reactive extraction for chiral separation of amines, amino acids and amino-alcohols

    NARCIS (Netherlands)

    Steensma, M.; Kuipers, N.J.M.; de Haan, A.B.; Kwant, Gerard

    2007-01-01

    This paper reports on determination of the intrinsic reaction kinetics in reactive extraction of chiral compounds. It is important to know the mass transfer rates and reaction kinetics separately for a reliable scale-up. A kinetic model is developed to interpret the experimental data from the

  17. The superfield method for the calculation of effective potentials applied to chiral superfields: Wess-Zumino and O'Raifeartaigh models

    International Nuclear Information System (INIS)

    Santos, R.P. dos.

    1986-12-01

    The superfield method is applied to the effective potential calculation in supersymmetric models. The Weinberg and Jackiw methods are discussed in the context of supersymmetric field theories, highlighting the greater simplicity obtained when the Feynman super diagrams are used. The chiral superfield propagators are derived and their relations with components field are commented. (L.C.J.A.)

  18. QCD and the chiral critical point

    International Nuclear Information System (INIS)

    Gavin, S.; Gocksch, A.; Pisarski, R.D.

    1994-01-01

    As an extension of QCD, consider a theory with ''2+1'' flavors, where the current quark masses are held in a fixed ratio as the overall scale of the quark masses is varied. At nonzero temperature and baryon density it is expected that in the chiral limit the chiral phase transition is of first order. Increasing the quark mass from zero, the chiral transition becomes more weakly first order, and can end in a chiral critical point. We show that the only massless field at the chiral critical point is a σ meson, with the universality class that of the Ising model. Present day lattice simulations indicate that QCD is (relatively) near to the chiral critical point

  19. Asymmetric synthesis using chiral-encoded metal

    Science.gov (United States)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-08-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.

  20. The polarizable embedding coupled cluster method

    DEFF Research Database (Denmark)

    Sneskov, Kristian; Schwabe, Tobias; Kongsted, Jacob

    2011-01-01

    We formulate a new combined quantum mechanics/molecular mechanics (QM/MM) method based on a self-consistent polarizable embedding (PE) scheme. For the description of the QM region, we apply the popular coupled cluster (CC) method detailing the inclusion of electrostatic and polarization effects...

  1. The axial polarizability of nucleons and nuclei

    International Nuclear Information System (INIS)

    Ericson, M.; Figureau, A.

    1981-02-01

    The part of the static nuclear axial polarizability arising from the nucleonic excitations is derived from the low energy expansion of the πN amplitude. It is shown that the contribution of the Δ intermediate state, though dominant, does not saturate the nucleonic response. A similar effect, though more pronounced, is known to occur for the magnetic susceptibility

  2. Polarizable Density Embedding Coupled Cluster Method

    DEFF Research Database (Denmark)

    Hršak, Dalibor; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2018-01-01

    by an embedding potential consisting of a set of fragment densities obtained from calculations on isolated fragments with a quantum-chemistry method such as Hartree-Fock (HF) or Kohn-Sham density functional theory (KS-DFT) and dressed with a set of atom-centered anisotropic dipole-dipole polarizabilities...

  3. K$_{-}$ and K$_{-}$ polarizability from kaonic atoms

    CERN Document Server

    Backenstoss, Gerhard; Bergström, I; Bunaciu, T; Egger, J; Hagelberg, R; Hultberg, S; Koch, H; Lynen, Y; Ritter, H G; Schwitter, A; Tauscher, L

    1973-01-01

    The K/sup -/ mass was determined from kaonic atomic X-rays from Au and Ba to be 493.691+or-0.040 MeV. An upper limit for the polarizability of the K/sup -/ was found to be 0.020 fm/sup 3/ at 90% confidence. (18 refs).

  4. Polarizability tensor and Kramers-Heisenberg induction

    NARCIS (Netherlands)

    Wijers, Christianus M.J.

    2004-01-01

    A general expression for the semiclassical, nonrelativistic linear polarizability of an arbitrary volume element V has been derived in the long wavelength approximation. The derivation starts from the expectation value of the dipole strength, as in the original Kramers-Heisenberg paper about optical

  5. Dinamical polarizability of highly excited hydrogen-like states

    International Nuclear Information System (INIS)

    Delone, N.B.; Krajnov, V.P.

    1982-01-01

    Analytic expressions are derived for the dynamic polarizability of highly excited hydrogen-like atomic states. It is shown that in the composite matrix element which determines the dynamic polarizability there is a strong compensation of the terms as a result of which the resulting magnitude of the dynamic polarizability is quasiclasically small compared to the individual terms of the composite matrix. It is concluded that the resonance behaviour of the dynamic polarizability of highly excited states differs significantly from the resonance behaviour of the polarizability for the ground and low-lying atomic states. The static limit and high-frequency limit of on electromagnetic field are considered

  6. The effective χ parameter in polarizable polymeric systems: One-loop perturbation theory and field-theoretic simulations.

    Science.gov (United States)

    Grzetic, Douglas J; Delaney, Kris T; Fredrickson, Glenn H

    2018-05-28

    We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ̃) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor Sk and the dielectric function ϵ^(k) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters B AA , B AB , and B BB , which then determine χ̃. The one-loop theory not only enables the quantitative prediction of χ̃ but also provides useful insight into the dependence of χ̃ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ϵ^(k) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ̃N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.

  7. Flavor structure of the nucleon electromagnetic form factors and transverse charge densities in the chiral quark-soliton model

    Science.gov (United States)

    Silva, António; Urbano, Diana; Kim, Hyun-Chul

    2018-02-01

    We investigate the flavor decomposition of the electromagnetic form factors of the nucleon, based on the chiral quark-soliton model (χQSM) with symmetry-conserving quantization. We consider the rotational 1/N_c and linear strange-quark mass (ms) corrections. We discuss the results of the flavor-decomposed electromagnetic form factors in comparison with the recent experimental data. In order to see the effects of the strange quark, we compare the SU(3) results with those of SU(2). Finally, we discuss the transverse charge densities for both unpolarized and polarized nucleons. The transverse charge density inside a neutron turns out to be negative in the vicinity of the center within the SU(3) χQSM, which can be explained by the contribution of the strange quark.

  8. K → πι+ι- decays in the effective chiral lagrangian of the standard model

    International Nuclear Information System (INIS)

    Pich, A.; Rafael, E. de; Ecker, G.

    1986-01-01

    The decay amplitudes of K → πι + ι - transitions (ι = e or μ) are calculated in chiral perturbation theory to lowest non-trivial order. This includes one-loop contributions as well as contributions from all possible tree level counterterms to the corresponding order in momenta and meson masses. Only one combination of counterterm coupling constants appearing in the decay amplitudes remains unknown. Two possible solutions for this constant are found from a comparison with the experimentally known K + → π + e + e - decay rate. Predictions are then obtained for the rates of K + → π + μ + μ - , K S o → π o e + e - and K S o → π o μ + μ - decays as well as for the corresponding spectra in the invariant mass of the lepton pair. The CP-violating transition K L o → π o 'γ' → π o ι + ι - is also discussed. (Author)

  9. Chiral mirrors

    International Nuclear Information System (INIS)

    Plum, Eric; Zheludev, Nikolay I.

    2015-01-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media

  10. Static dipole polarizabilities of Scn (n ≤ 15) clusters

    International Nuclear Information System (INIS)

    Xi-Bo, Li; Jiang-Shan, Luo; Wei-Dong, Wu; Yong-Jian, Tang; Hong-Yan, Wang; Yun-Dong, Guo

    2009-01-01

    The static dipole polarizabilities of scandium clusters with up to 15 atoms are determined by using the numerically finite field method in the framework of density functional theory. The electronic effects on the polarizabilities are investigated for the scandium clusters. We examine a large highest occupied molecular orbital — the lowest occupied molecular orbital (HOMO–LUMO) gap of a scandium cluster usually corresponds to a large dipole moment. The static polarizability per atom decreases slowly and exhibits local minimum with increasing cluster size. The polarizability anisotropy and the ratio of mean static polarizability to the HOMO–LUMO gap can also reflect the cluster stability. The polarizability of the scandium cluster is partially related to the HOMO–LUMO gap and is also dependent on geometrical characteristics. A strong correlation between the polarizability and ionization energy is observed. (atomic and molecular physics)

  11. Sensitivity of predictions in an effective model: Application to the chiral critical end point position in the Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Biguet, Alexandre; Hansen, Hubert; Brugiere, Timothee; Costa, Pedro; Borgnat, Pierre

    2015-01-01

    The measurement of the position of the chiral critical end point (CEP) in the QCD phase diagram is under debate. While it is possible to predict its position by using effective models specifically built to reproduce some of the features of the underlying theory (QCD), the quality of the predictions (e.g., the CEP position) obtained by such effective models, depends on whether solving the model equations constitute a well- or ill-posed inverse problem. Considering these predictions as being inverse problems provides tools to evaluate if the problem is ill-conditioned, meaning that infinitesimal variations of the inputs of the model can cause comparatively large variations of the predictions. If it is ill-conditioned, it has major consequences because of finite variations that could come from experimental and/or theoretical errors. In the following, we shall apply such a reasoning on the predictions of a particular Nambu-Jona-Lasinio model within the mean field + ring approximations, with special attention to the prediction of the chiral CEP position in the (T-μ) plane. We find that the problem is ill-conditioned (i.e. very sensitive to input variations) for the T-coordinate of the CEP, whereas, it is well-posed for the μ-coordinate of the CEP. As a consequence, when the chiral condensate varies in a 10MeV range, μ CEP varies far less. As an illustration to understand how problematic this could be, we show that the main consequence when taking into account finite variation of the inputs, is that the existence of the CEP itself cannot be predicted anymore: for a deviation as low as 0.6% with respect to vacuum phenomenology (well within the estimation of the first correction to the ring approximation) the CEP may or may not exist. (orig.)

  12. Sensitivity of predictions in an effective model: Application to the chiral critical end point position in the Nambu-Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Biguet, Alexandre; Hansen, Hubert; Brugiere, Timothee [Universite Claude Bernard de Lyon, Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Villeurbanne Cedex (France); Costa, Pedro [Universidade de Coimbra, Centro de Fisica Computacional, Departamento de Fisica, Coimbra (Portugal); Borgnat, Pierre [CNRS, l' Ecole normale superieure de Lyon, Laboratoire de Physique, Lyon Cedex 07 (France)

    2015-09-15

    The measurement of the position of the chiral critical end point (CEP) in the QCD phase diagram is under debate. While it is possible to predict its position by using effective models specifically built to reproduce some of the features of the underlying theory (QCD), the quality of the predictions (e.g., the CEP position) obtained by such effective models, depends on whether solving the model equations constitute a well- or ill-posed inverse problem. Considering these predictions as being inverse problems provides tools to evaluate if the problem is ill-conditioned, meaning that infinitesimal variations of the inputs of the model can cause comparatively large variations of the predictions. If it is ill-conditioned, it has major consequences because of finite variations that could come from experimental and/or theoretical errors. In the following, we shall apply such a reasoning on the predictions of a particular Nambu-Jona-Lasinio model within the mean field + ring approximations, with special attention to the prediction of the chiral CEP position in the (T-μ) plane. We find that the problem is ill-conditioned (i.e. very sensitive to input variations) for the T-coordinate of the CEP, whereas, it is well-posed for the μ-coordinate of the CEP. As a consequence, when the chiral condensate varies in a 10MeV range, μ {sub CEP} varies far less. As an illustration to understand how problematic this could be, we show that the main consequence when taking into account finite variation of the inputs, is that the existence of the CEP itself cannot be predicted anymore: for a deviation as low as 0.6% with respect to vacuum phenomenology (well within the estimation of the first correction to the ring approximation) the CEP may or may not exist. (orig.)

  13. Laser Writing of Multiscale Chiral Polymer Metamaterials

    Directory of Open Access Journals (Sweden)

    E. P. Furlani

    2012-01-01

    Full Text Available A new approach to metamaterials is presented that involves laser-based patterning of novel chiral polymer media, wherein chirality is realized at two distinct length scales, intrinsically at the molecular level and geometrically at a length scale on the order of the wavelength of the incident field. In this approach, femtosecond-pulsed laser-induced two-photon lithography (TPL is used to pattern a photoresist-chiral polymer mixture into planar chiral shapes. Enhanced bulk chirality can be realized by tuning the wavelength-dependent chiral response at both the molecular and geometric level to ensure an overlap of their respective spectra. The approach is demonstrated via the fabrication of a metamaterial consisting of a two-dimensional array of chiral polymer-based L-structures. The fabrication process is described and modeling is performed to demonstrate the distinction between molecular and planar geometric-based chirality and the effects of the enhanced multiscale chirality on the optical response of such media. This new approach to metamaterials holds promise for the development of tunable, polymer-based optical metamaterials with low loss.

  14. Dual chiral density wave in quark matter

    International Nuclear Information System (INIS)

    Tatsumi, Toshitaka

    2002-01-01

    We prove that quark matter is unstable for forming a dual chiral density wave above a critical density, within the Nambu-Jona-Lasinio model. Presence of a dual chiral density wave leads to a uniform ferromagnetism in quark matter. A similarity with the spin density wave theory in electron gas and the pion condensation theory is also pointed out. (author)

  15. Chiralities of spiral waves and their transitions.

    Science.gov (United States)

    Pan, Jun-ting; Cai, Mei-chun; Li, Bing-wei; Zhang, Hong

    2013-06-01

    The chiralities of spiral waves usually refer to their rotation directions (the turning orientations of the spiral temporal movements as time elapses) and their curl directions (the winding orientations of the spiral spatial geometrical structures themselves). Traditionally, they are the same as each other. Namely, they are both clockwise or both counterclockwise. Moreover, the chiralities are determined by the topological charges of spiral waves, and thus they are conserved quantities. After the inwardly propagating spirals were experimentally observed, the relationship between the chiralities and the one between the chiralities and the topological charges are no longer preserved. The chiralities thus become more complex than ever before. As a result, there is now a desire to further study them. In this paper, the chiralities and their transition properties for all kinds of spiral waves are systemically studied in the framework of the complex Ginzburg-Landau equation, and the general relationships both between the chiralities and between the chiralities and the topological charges are obtained. The investigation of some other models, such as the FitzHugh-Nagumo model, the nonuniform Oregonator model, the modified standard model, etc., is also discussed for comparison.

  16. Physics of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1991-01-01

    This subsection of the 'Modeling QCD' Workshop has included five talks. E. Shuryak spoke on 'Recent Progress in Understanding Chiral Symmetry Breaking'; below it is split into two parts: (i) a mini-review of the field and (ii) a brief presentation of the status of the theory of interacting instantons. The next sections correspond to the following talks: (iii) K. Goeke et al., 'Chiral Restoration and Medium Corrections to Nucleon in the NJL Model'; (iv) M. Takizawa and K. Kubodera, 'Study of Meson Properties and Quark Condensates in the NJL Model with Instanton Effects'; (v) G. Klein and A. G. Williams, 'Dynamical Chiral Symmetry Breaking in Dual QCD'; and (vi) R. D. Ball, 'Skyrmions and Baryons.' (orig.)

  17. Influence of heavy hadronic states on the QCD phase diagram and on the freeze-out within a hadronic chiral model

    International Nuclear Information System (INIS)

    Zeeb, G.

    2006-01-01

    In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized σ-ω model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the resulting freeze

  18. Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS2 Nanostructures.

    Science.gov (United States)

    Purcell-Milton, Finn; McKenna, Robert; Brennan, Lorcan J; Cullen, Conor P; Guillemeney, Lilian; Tepliakov, Nikita V; Baimuratov, Anvar S; Rukhlenko, Ivan D; Perova, Tatiana S; Duesberg, Georg S; Baranov, Alexander V; Fedorov, Anatoly V; Gun'ko, Yurii K

    2018-02-27

    Two-dimensional (2D) nanomaterials have been intensively investigated due to their interesting properties and range of potential applications. Although most research has focused on graphene, atomic layered transition metal dichalcogenides (TMDs) and particularly MoS 2 have gathered much deserved attention recently. Here, we report the induction of chirality into 2D chiral nanomaterials by carrying out liquid exfoliation of MoS 2 in the presence of chiral ligands (cysteine and penicillamine) in water. This processing resulted in exfoliated chiral 2D MoS 2 nanosheets showing strong circular dichroism signals, which were far past the onset of the original chiral ligand signals. Using theoretical modeling, we demonstrated that the chiral nature of MoS 2 nanosheets is related to the presence of chiral ligands causing preferential folding of the MoS 2 sheets. There was an excellent match between the theoretically calculated and experimental spectra. We believe that, due to their high aspect ratio planar morphology, chiral 2D nanomaterials could offer great opportunities for the development of chiroptical sensors, materials, and devices for valleytronics and other potential applications. In addition, chirality plays a key role in many chemical and biological systems, with chiral molecules and materials critical for the further development of biopharmaceuticals and fine chemicals, and this research therefore should have a strong impact on relevant areas of science and technology such as nanobiotechnology, nanomedicine, and nanotoxicology.

  19. Polarizable atomistic calculation of site energy disorder in amorphous Alq3.

    Science.gov (United States)

    Nagata, Yuki

    2010-02-01

    A polarizable molecular dynamics simulation and calculation scheme for site energy disorder is presented in amorphous tris(8-hydroxyquinolinato)aluminum (Alq(3)) by means of the charge response kernel (CRK) method. The CRK fit to the electrostatic potential and the tight-binding approximation are introduced, which enables modeling of the polarizable electrostatic interaction for a large molecule systematically from an ab initio calculation. The site energy disorder for electron and hole transfers is calculated in amorphous Alq(3) and the effect of the polarization on the site energy disorder is discussed.

  20. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Energy Technology Data Exchange (ETDEWEB)

    Zope, Rajendra R., E-mail: rzope@utep.edu; Baruah, Tunna [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Bhusal, Shusil; Basurto, Luis [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Jackson, Koblar [Physics Department and Science of Advanced Materials Ph.D. Program, Central Michigan University, Mt. Pleasant, Michigan 48859 (United States)

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolated C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  1. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    International Nuclear Information System (INIS)

    Zope, Rajendra R.; Baruah, Tunna; Bhusal, Shusil; Basurto, Luis; Jackson, Koblar

    2015-01-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C 60 @C 240 and C 60 @C 180 onions shows that, compared to the polarizability of isolated C 60 fullerene, the encapsulation of the C 60 in C 240 and C 180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C 60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability

  2. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Science.gov (United States)

    Zope, Rajendra R.; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  3. Two-chiral-component microemulsion electrokinetic chromatography-chiral surfactant and chiral oil: part 1. dibutyl tartrate.

    Science.gov (United States)

    Kahle, Kimberly A; Foley, Joe P

    2007-06-01

    The first simultaneous use of a chiral surfactant and a chiral oil for microemulsion EKC (MEEKC) is reported. Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and dibutyl tartrate (D, L, or racemic, 1.23% v/v) were examined as chiral pseudostationary phases (PSPs) for the separation of six pairs of pharmaceutical enantiomers: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Subtle differences were observed for three chromatographic figures of merit (alpha(enant), alpha(meth), k) among the chiral microemulsions; a moderate difference was observed for efficiency (N) and elution range. Dual-chirality microemulsions provided both the largest and smallest enantioselectivities, due to small positive and negative synergies between the chiral microemulsion components. For the ephedrine family of compounds, dual-chiral microemulsions with surfactant and oil in opposite stereochemical configurations provided higher enantioselectivities than the single-chiral component microemulsion (RXX), whereas dual-chiral microemulsions with surfactant and oil in the same stereochemical configurations provided lower enantioselectivities than RXX. Slight to moderate enantioselective synergies were confirmed using a thermodynamic model. Efficiencies observed with microemulsions comprised of racemic dibutyl tartrate or dibutyl-D-tartrate were significantly higher than those obtained with dibutyl-L-tartrate, with an average difference in plate count of about 25 000. Finally, one two-chiral-component microemulsion (RXS) provided significantly better resolution than the remaining one- and two-chiral-component microemulsions for the ephedrine-based compounds, but only slightly better or equivalent resolution for non-ephedrine compounds.

  4. Non-leptonic decays of K-mesons within the chiral quark model

    International Nuclear Information System (INIS)

    Bergan, A.E.

    1996-01-01

    This theses is based upon four previously printed paper. The main result of the first paper was that a very small contribution to K o -anti K o was found for the siamese penguin diagram with a momentum dependent penguin coefficient. The calculation was done with different regularizations. The same momentum dependent penguin interaction was used in the second paper. Dimensional regularization made it possible to calculate analytical results for K→φ, and a relatively small g 8 1/2 factor was found due to large subleading terms. In the third paper nonperturbative effects on the B K parameter were obtained. To order (G 3 ) a vanishing result appeared due to a complete cancellation among the 20 contributing diagrams. In the fourth paper a calculation was made of K→φ which included non-diagonal self-energy effects due to the s→d transition. This calculation made it possible to include a heavy top quark. The calculation was done in two ways. First the unphysical K→φ transition was calculated. The result was then related to the physical K→2φ decay due to chiral symmetry. Then the same result was obtained by a direct calculation of K→2φ. In the CP-conserving case the contribution was small while the CP-violating part was sizable. Due to a large cancellation between the operator Q 6 and Q 8 the contribution was of the same size as ε/ε itself. 76 refs

  5. Polarizabilities of the beryllium clock transition

    International Nuclear Information System (INIS)

    Mitroy, J.

    2010-01-01

    The polarizabilities of the three lowest states of the beryllium atom are determined from a large basis configuration interaction calculation. The polarizabilities of the 2s 2 1 S e ground state (37.73a 0 3 ) and the 2s2p 3 P 0 o metastable state (39.04a 0 3 ) are found to be very similar in size and magnitude. This leads to an anomalously small blackbody radiation shift at 300 K of -0.018(4) Hz for the 2s 2 1 S e -2s2p 3 P 0 o clock transition. Magic wavelengths for simultaneous trapping of the ground and metastable states are also computed.

  6. Polarizability of a crystal with impurities

    International Nuclear Information System (INIS)

    Goettig, S.

    1985-09-01

    The expression for the complex frequency- and wavevector-dependent longitudinal electronic polarizability due to the presence of a weak static disorder (e.g. impurities) in a crystal with an arbitrary band structure is derived. The quantum kinetic equation in the self-consistent-field approximation is solved, expanding the one-particle density operator in powers of the screened static imperfection field and a weak perturbing electric field. The polarizability is determined by the induced electronic charge density quadratic in the imperfection field and linear in the perturbing field, averaged over the statistical distribution of imperfections. The obtained expression, which accounts properly for the collective effects in the electronic plasma, takes also into account the polar coupling of the plasma with longitudinal optical phonons. The conductivity in the optical limit (q-vector→O) is calculated, and the correspondence with one-band effective-mass approximation is established. (author)

  7. Phase coexistence properties of polarizable Stockmayer fluids

    International Nuclear Information System (INIS)

    Kiyohara, K.; Gubbins, K.E.; Panagiotopoulos, A.Z.

    1997-01-01

    We report the phase coexistence properties of polarizable Stockmayer fluids of reduced permanent dipoles |m 0 * |= 1.0 and 2.0 and reduced polarizabilities α * = 0.00, 0.03, and 0.06, calculated by a series of grand canonical Monte Carlo simulations with the histogram reweighting method. In the histogram reweighting method, the distributions of density and energy calculated in Grand Canonical Monte Carlo simulations are stored in histograms and analyzed to construct the grand canonical partition function of the system. All thermodynamic properties are calculated from the grand partition function. The results are compared with Wertheim close-quote s renormalization perturbation theory. Deviations between theory and simulation results for the coexistence envelope are near 2% for the lower dipole moment and 10% for the higher dipole moment we studied. copyright 1997 American Institute of Physics

  8. On the dynamic polarizability of atoms

    International Nuclear Information System (INIS)

    Nuroh, K.; Zaremba, E.

    1989-04-01

    The positive frequency dependent polarizability of atoms is discussed in terms of the particle-hole polarization propagator. It is considered in the simplest approximation defined by the Bethe-Salpeter equation which includes a subset of particle-hole interactions to all orders in the Coulomb potential. Its solution is used to show the relationship between different formulations of atomic photoabsorption via the effective dipole matrix element (Fermi's 'golden rule'), the TDLDA and the reaction matrix. (author). 21 refs, 7 figs

  9. Chiral Magnetic Spirals

    International Nuclear Information System (INIS)

    Basar, Goekce; Dunne, Gerald V.; Kharzeev, Dmitri E.

    2010-01-01

    We argue that the presence of a very strong magnetic field in the chirally broken phase induces inhomogeneous expectation values, of a spiral nature along the magnetic field axis, for the currents of charge and chirality, when there is finite baryon density or an imbalance between left and right chiralities. This 'chiral magnetic spiral' is a gapless excitation transporting the currents of (i) charge (at finite chirality), and (ii) chirality (at finite baryon density) along the direction of the magnetic field. In both cases it also induces in the transverse directions oscillating currents of charge and chirality. In heavy ion collisions, the chiral magnetic spiral possibly provides contributions both to the out-of-plane and the in-plane dynamical charge fluctuations recently observed at BNL RHIC.

  10. On the τ(2)-model in the chiral Potts model and cyclic representation of the quantum group Uq(sl2)

    International Nuclear Information System (INIS)

    Roan Shishyr

    2009-01-01

    We identify the precise relationship between the five-parameter τ (2) -family in the N-state chiral Potts model and XXZ chains with U q (sl 2 )-cyclic representation. By studying the Yang-Baxter relation of the six-vertex model, we discover a one-parameter family of L-operators in terms of the quantum group U q (sl 2 ). When N is odd, the N-state τ (2) -model can be regarded as the XXZ chain of U q (sl 2 ) cyclic representations with q N =1. The symmetry algebra of the τ (2) -model is described by the quantum affine algebra U q (sl 2 -hat) via the canonical representation. In general, for an arbitrary N, we show that the XXZ chain with a U q (sl 2 )-cyclic representation for q 2N = 1 is equivalent to two copies of the same N-state τ (2) -model. (fast track communication)

  11. Non-leptonic decays of K-mesons within the chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Bergan, A E

    1997-12-31

    This theses is based upon four previously printed paper. The main result of the first paper was that a very small contribution to K{sup o}-anti K{sup o} was found for the siamese penguin diagram with a momentum dependent penguin coefficient. The calculation was done with different regularizations. The same momentum dependent penguin interaction was used in the second paper. Dimensional regularization made it possible to calculate analytical results for K{yields}{phi}, and a relatively small g{sub 8}{sup 1/2} factor was found due to large subleading terms. In the third paper nonperturbative effects on the B{sub K} parameter were obtained. To order (G{sup 3}) a vanishing result appeared due to a complete cancellation among the 20 contributing diagrams. In the fourth paper a calculation was made of K{yields}{phi} which included non-diagonal self-energy effects due to the s{yields}d transition. This calculation made it possible to include a heavy top quark. The calculation was done in two ways. First the unphysical K{yields}{phi} transition was calculated. The result was then related to the physical K{yields}2{phi} decay due to chiral symmetry. Then the same result was obtained by a direct calculation of K{yields}2{phi}. In the CP-conserving case the contribution was small while the CP-violating part was sizable. Due to a large cancellation between the operator Q{sub 6} and Q{sub 8} the contribution was of the same size as {epsilon}/{epsilon} itself. 76 refs.

  12. Chiral discotics; expression and amplification of chirality

    NARCIS (Netherlands)

    Brunsveld, L.; Meijer, E.W.; Rowan, A.E.; Nolte, R.J.M.; Denmark, S.E.; Nolte, R.J.M.; Meijer, E.W.

    2003-01-01

    In this contribution, chirality and discotic liquid crystals are discussed as a tool for studying the self-assembly of these molecules, both in solution and in the solid state. Therefore, the objective of this chapter is to summarize and elucidate how molecular chirality can be expressed in discotic

  13. The coupling of ω-transaminase and Oppenauer oxidation reactions via intra-membrane multicomponent diffusion – A process model for the synthesis of chiral amines

    DEFF Research Database (Denmark)

    Esparza-Isunza, T.; González-Brambila, M.; Gani, Rafiqul

    2015-01-01

    amine product. Using 2-propylamine as the amine donor of the ω-transaminase reaction, gives acetone as a by-product, which in turn allows the coupling of the ω-transaminase reaction with the Oppenauer oxidation. The Oppenauer reaction converts secondary alcohols into ketones, and these can subsequently......In this study we consider the theoretical coupling of an otherwise thermodynamically limited ω-transaminase reaction to an Oppenauer oxidation, in order to shift the equilibria of both reactions, with the aim of achieving a significant (and important) increase in the yield of the desired chiral...... of this paper is to report the development of a mathematical model as a tool for the simulation and potential design of such a process for the production of a range of chiral amines. The mathematical model developed considers that each reaction is performed in a single ideally mixed isothermal reactor operating...

  14. Pions and the chiral bag

    International Nuclear Information System (INIS)

    Rho, M.

    1982-01-01

    As an aid to discussing the structure of nucleons and nuclei conceptual framework, heuristic arguments are presented which indicate that a hadron can be considered as a bag consisting of two different phases. The chiral structure of the phase outside the bag is discussed in terms of effective field theories and it is shown to what extent experiments in nuclei can constrain the structure of such theories. Results thus obtained are then combined to set up a set of equations for the bag structure of u and d hadrons, incorporating asymptotic freedom in the phase inside of the bag confinement of quarks and gluons by boundary conditions and spontaneously broken chiral symmetry in the outside. This set of equations which represent a chirally invariant generalization of the M.I.T. bag model is then solved. (U.K.)

  15. Fusion rules of chiral algebras

    International Nuclear Information System (INIS)

    Gaberdiel, M.

    1994-01-01

    Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)

  16. Chirality and gravitational parity violation.

    Science.gov (United States)

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.

  17. Measurement of molecular polarizability on Rayleigh light scattering

    International Nuclear Information System (INIS)

    Nerushev, O.A.; Novopashin, S.A.

    1994-01-01

    The installation for measuring the polarizability of atoms and molecules on Rayleigh light scattering is described. The measurements in gases with the known polarizability are used for a calibration. Test measurements are carried out on nitrogen, argon, carbon dioxide, vapours of water and acetone. The results of measurements are compared with the table data. The technique is used for measuring the polarizability of fullerene molecules. 6 refs., 2 figs

  18. Dielectric constant of atomic fluids with variable polarizability

    OpenAIRE

    Alder, B. J.; Beers, J. C.; Strauss, H. L.; Weis, J. J.

    1980-01-01

    The Clausius-Mossotti function for the dielectric constant is expanded in terms of single atom and pair polarizabilities, leading to contributions that depend on both the trace and the anisotropy of the pair-polarizability tensor. The short-range contribution of the anisotropic part to the pair polarizabilities has previously been obtained empirically from light scattering experiments, whereas the trace contribution is now empirically determined by comparison to dielectric experiments. For he...

  19. Chiral symmetry on the lattice

    International Nuclear Information System (INIS)

    Creutz, M.

    1994-11-01

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model

  20. Description of the Charge Transfer States at the Pentacene/C60 Interface: Combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model

    KAUST Repository

    Zheng, Zilong; Bredas, Jean-Luc; Coropceanu, Veaceslav

    2016-01-01

    are usually performed on small-size donor/acceptor complexes and as result do not account for electronic polarization effects. Here, using a pentacene/C60 complex as a model system, we discuss the ability of long-range corrected (LCR) hybrid functionals

  1. Communication: Permanent dipoles contribute to electric polarization in chiral NMR spectra

    International Nuclear Information System (INIS)

    Buckingham, A. David

    2014-01-01

    Nuclear magnetic resonance spectroscopy is blind to chirality because the spectra of a molecule and its mirror image are identical unless the environment is chiral. However, precessing nuclear magnetic moments in chiral molecules in a strong magnetic field induce an electric polarization through the nuclear magnetic shielding polarizability. This effect is equal and opposite for a molecule and its mirror image but is small and has not yet been observed. It is shown that the permanent electric dipole moment of a chiral molecule is partially oriented through the antisymmetric part of the nuclear magnetic shielding tensor, causing the electric dipole to precess with the nuclear magnetic moment and producing a much larger temperature-dependent electric polarization with better prospects of detection

  2. Speciation and gene flow between snails of opposite chirality.

    Directory of Open Access Journals (Sweden)

    Angus Davison

    2005-09-01

    Full Text Available Left-right asymmetry in snails is intriguing because individuals of opposite chirality are either unable to mate or can only mate with difficulty, so could be reproductively isolated from each other. We have therefore investigated chiral evolution in the Japanese land snail genus Euhadra to understand whether changes in chirality have promoted speciation. In particular, we aimed to understand the effect of the maternal inheritance of chirality on reproductive isolation and gene flow. We found that the mitochondrial DNA phylogeny of Euhadra is consistent with a single, relatively ancient evolution of sinistral species and suggests either recent "single-gene speciation" or gene flow between chiral morphs that are unable to mate. To clarify the conditions under which new chiral morphs might evolve and whether single-gene speciation can occur, we developed a mathematical model that is relevant to any maternal-effect gene. The model shows that reproductive character displacement can promote the evolution of new chiral morphs, tending to counteract the positive frequency-dependent selection that would otherwise drive the more common chiral morph to fixation. This therefore suggests a general mechanism as to how chiral variation arises in snails. In populations that contain both chiral morphs, two different situations are then possible. In the first, gene flow is substantial between morphs even without interchiral mating, because of the maternal inheritance of chirality. In the second, reproductive isolation is possible but unstable, and will also lead to gene flow if intrachiral matings occasionally produce offspring with the opposite chirality. Together, the results imply that speciation by chiral reversal is only meaningful in the context of a complex biogeographical process, and so must usually involve other factors. In order to understand the roles of reproductive character displacement and gene flow in the chiral evolution of Euhadra, it will be

  3. On chiral and non chiral 1D supermultiplets

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica

    2011-07-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  4. On chiral and non chiral 1D supermultiplets

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2011-01-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  5. Electric Dipole Polarizability of ^{48}Ca and Implications for the Neutron Skin.

    Science.gov (United States)

    Birkhan, J; Miorelli, M; Bacca, S; Bassauer, S; Bertulani, C A; Hagen, G; Matsubara, H; von Neumann-Cosel, P; Papenbrock, T; Pietralla, N; Ponomarev, V Yu; Richter, A; Schwenk, A; Tamii, A

    2017-06-23

    The electric dipole strength distribution in ^{48}Ca between 5 and 25 MeV has been determined at RCNP, Osaka from proton inelastic scattering experiments at forward angles. Combined with photoabsorption data at higher excitation energy, this enables the first extraction of the electric dipole polarizability α_{D}(^{48}Ca)=2.07(22)  fm^{3}. Remarkably, the dipole response of ^{48}Ca is found to be very similar to that of ^{40}Ca, consistent with a small neutron skin in ^{48}Ca. The experimental results are in good agreement with ab initio calculations based on chiral effective field theory interactions and with state-of-the-art density-functional calculations, implying a neutron skin in ^{48}Ca of 0.14-0.20 fm.

  6. Nucleon polarizabilities from deuteron Compton scattering within a Green's function hybrid approach

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, R.P.; Hemmert, T.R. [Technische Universitaet Muenchen, Institut fuer Theoretische Physik (T39), Physik-Department, Garching (Germany); Griesshammer, H.W. [Technische Universitaet Muenchen, Institut fuer Theoretische Physik (T39), Physik-Department, Garching (Germany); Universitaet Erlangen-Nuernberg, Institut fuer Theoretische Physik III, Naturwissenschaftliche Fakultaet I, Erlangen (Germany); The George Washington University, Center for Nuclear Studies, Department of Physics, Washington DC (United States)

    2010-10-15

    We examine elastic Compton scattering from the deuteron for photon energies ranging from zero to 100MeV, using state-of-the-art deuteron wave functions and NN potentials. Nucleon-nucleon rescattering between emission and absorption of the two photons is treated by Green's functions in order to ensure gauge invariance and the correct Thomson limit. With this Green's function hybrid approach, we fulfill the low-energy theorem of deuteron Compton scattering and there is no significant dependence on the deuteron wave function used. Concerning the nucleon structure, we use the chiral effective field theory with explicit {delta} (1232) degrees of freedom within the small-scale expansion up to leading-one-loop order. Agreement with available data is good at all energies. Our 2-parameter fit to all elastic {gamma} d data leads to values for the static isoscalar dipole polarizabilities which are in excellent agreement with the isoscalar Baldin sum rule. Taking this value as additional input, we find {alpha}{sub E}{sup s} = (11.3{+-}0.7(stat){+-}0.6(Baldin){+-}1(theory)){sup .}10{sup -4} fm{sup 3} and {beta}{sub M}{sup s} = (3.2{+-}0.7(stat){+-}0.6(Baldin){+-}1(theory)){sup .}10{sup -4} fm{sup 3} and conclude by comparison to the proton numbers that neutron and proton polarizabilities are the same within rather small errors. (orig.)

  7. Síntesis de 3-ciano-4-hidroxicumarina y análisis de su equilibrio tautomérico utilizando la Teoría del Funcional de la Densidad (DFT y el modelo de solvatación continua (PCM | Synthesis of 3-cyanohydroxycoumarin and analysis of its tautomeric equilibrium using Density Functional Theory (DFT and polarizable continuum model (PCM

    Directory of Open Access Journals (Sweden)

    Gustavo Cabrera

    2017-11-01

    Full Text Available The procedure for the synthesis of 3-cyano-4-hydroxycoumarin is presented along with the results from the analysis of its tautomeric equilibrium using Density Functional Theory (DFT and Polarizable Continuum Model (PCM. The geometry of the compounds was optimized with Gaussian 03 and from the resulting structures, a group of thermodynamic and kinetic parameters were determined. It was found that 3-cyano-4-hydroxycoumarin was the most stable tautomer, as was also shown by spectroscopic techniques. Other parameters, such as: transition state energy, equlibrium constant, kinetic constant, bond orders and bond angles, were also calculated.

  8. Towards Molecular Dynamics Simulations of Chiral Room-Temperature Ionic Liquids

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Chval, Z.; Storch, Jan; Izák, Pavel

    2014-01-01

    Roč. 189, SI (2014), s. 85-94 ISSN 0167-7322 R&D Projects: GA ČR(CZ) GAP106/12/0569; GA MŠk LH12020 Institutional support: RVO:67985858 Keywords : chiral room-temperature ionic liquid * molecular dynamics simulation * non-polarizable fully flexible all-atom force field Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.515, year: 2014

  9. Gelation induced supramolecular chirality: chirality transfer, amplification and application.

    Science.gov (United States)

    Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua

    2014-08-14

    Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.

  10. Mechanical separation of chiral dipoles by chiral light

    International Nuclear Information System (INIS)

    Canaguier-Durand, Antoine; Hutchison, James A; Genet, Cyriaque; Ebbesen, Thomas W

    2013-01-01

    We calculate optical forces and torques exerted on a chiral dipole by chiral light fields and reveal genuine chiral forces in combining the chiral contents of both light field and dipolar matter. Here, the optical chirality is characterized in a general way through the definition of optical chirality density and chirality flow. We show, in particular, that both terms have mechanical effects associated, respectively, with reactive and dissipative components of the chiral forces. Remarkably, these chiral force components are directly related to standard observables: optical rotation for the reactive component and circular dichroism for the dissipative one. As a consequence, the resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This suggests promising strategies for using chiral light forces to mechanically separate chiral objects according to their enantiomeric form. (paper)

  11. Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide

    DEFF Research Database (Denmark)

    Kjær, Hanna; Nielsen, Monia R.; Pagola, Gabriel I.

    2012-01-01

    In this paper we present the so far most extended investigation of the calculation of the coupling constant polarizability of a molecule. The components of the coupling constant polarizability are derivatives of the NMR indirect nuclear spin-spin coupling constant with respect to an external elec...

  12. Hyperfine-mediated static polarizabilities of monovalent atoms and ions

    International Nuclear Information System (INIS)

    Dzuba, V. A.; Flambaum, V. V.; Beloy, K.; Derevianko, A.

    2010-01-01

    We apply relativistic many-body methods to compute static differential polarizabilities for transitions inside the ground-state hyperfine manifolds of monovalent atoms and ions. Knowledge of this transition polarizability is required in a number of high-precision experiments, such as microwave atomic clocks and searches for CP-violating permanent electric dipole moments. While the traditional polarizability arises in the second order of interaction with the externally applied electric field, the differential polarizability involves an additional contribution from the hyperfine interaction of atomic electrons with nuclear moments. We derive formulas for the scalar and tensor polarizabilities including contributions from magnetic dipole and electric quadrupole hyperfine interactions. Numerical results are presented for Al, Rb, Cs, Yb + , Hg + , and Fr.

  13. Sensitive criterion for chirality; Chiral doublet bands in 104Rh59

    International Nuclear Information System (INIS)

    Koike, T.; Starosta, K.; Vaman, C.; Ahn, T.; Fossan, D.B.; Clark, R.M.; Cromaz, M.; Lee, I.Y.; Macchiavelli, A.O.

    2003-01-01

    A particle plus triaxial rotor model was applied to odd-odd nuclei in the A ∼ 130 region in order to study the unique parity πh11/2xνh11/2 rotational bands. With maximum triaxiality assumed and the intermediate axis chosen as the quantization axis for the model calculations, the two lowest energy eigenstates of a given spin have chiral properties. The independence of the quantity S(I) on spin can be used as a new criterion for chirality. In addition, a diminishing staggering amplitude of S(I) with increasing spin implies triaxiality in neighboring odd-A nuclei. Chiral quartet bases were constructed specifically to examine electromagnetic properties for chiral structures. A set of selection rules unique to chirality was derived. Doublet bands built on the πg9/2xνh11/2 configuration have been discovered in odd-odd 104Rh using the 96Zr(11B, 3n) reaction. Based on the discussed criteria for chirality, it is concluded that the doublet bands observed in 104Rh exhibit characteristic chiral properties suggesting a new region of chirality around A ∼110. In addition, magnetic moment measurements have been performed to test the πh11/2xνh11/2 configuration in 128Cs and the πg9/2xνh11/2 configuration in 104Rh

  14. Size-scaling behaviour of the electronic polarizability of one-dimensional interacting systems

    Science.gov (United States)

    Chiappe, G.; Louis, E.; Vergés, J. A.

    2018-05-01

    Electronic polarizability of finite chains is accurately calculated from the total energy variation of the system produced by small but finite static electric fields applied along the chain direction. Normalized polarizability, that is, polarizability divided by chain length, diverges as the second power of length for metallic systems but approaches a constant value for insulating systems. This behaviour provides a very convenient way to characterize the wave-function malleability of finite systems as it avoids the need of attaching infinite contacts to the chain ends. Hubbard model calculations at half filling show that the method works for a small U  =  1 interaction value that corresponds to a really small spectral gap of 0.005 (hopping t  =  ‑1 is assumed). Once successfully checked, the method has been applied to the long-range hopping model of Gebhard and Ruckenstein showing 1/r hopping decay (Gebhard and Ruckenstein 1992 Phys. Rev. Lett. 68 244; Gebhard et al 1994 Phys. Rev. B 49 10926). Metallicity for U values below the reported metal-insulator transition is obtained but the surprise comes for U values larger than the critical one (when a gap appears in the spectral density of states) because a steady increase of the normalized polarizability with size is obtained. This critical size-scaling behaviour can be understood as corresponding to a molecule which polarizability is unbounded. We have checked that a real transfer of charge from one chain end to the opposite occurs as a response to very small electric fields in spite of the existence of a large gap of the order of U for one-particle excitations. Finally, ab initio quantum chemistry calculations of realistic poly-acetylene chains prove that the occurrence of such critical behaviour in real systems is unlikely.

  15. Active chiral fluids.

    Science.gov (United States)

    Fürthauer, S; Strempel, M; Grill, S W; Jülicher, F

    2012-09-01

    Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive material equations for active fluids which account for the effects of active chiral processes. We identify active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes. We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated motors do not create a hydrodynamic far field.

  16. 8th International Workshop on Chiral Dynamics

    CERN Document Server

    2016-01-01

    The International Workshop on Chiral Dynamics 2015, the eighth in a series which started in 1994 at MIT, and was later held in Mainz (1997), Jefferson Lab (2000 and 2012), Bonn (2003), Duke (2006) and Bern (2009), will take place in Pisa, from June 29 to July 3 2015, and will be jointly hosted by the Department of Physics of the University of Pisa and the Pisa branch of the Istituto Nazionale di Fisica Nucleare. The purpose of this workshop series is to bring physicists together who are active in this field, as well as those who are interested, to discuss and debate the most recent achievements and future developments. The workshop will have a near equal contribution from theorists and experimentalists and, as in the latest editions, a strong synergy with the lattice community will be present. Topics: Hadron structure Isospin breaking in hadronic systems Meson-meson and meson-baryon interaction Effective field theory and chiral perturbation theory Few-body physics Compton scattering and the polarizabilities o...

  17. On the theory of electric double layer with explicit account of a polarizable co-solvent

    Energy Technology Data Exchange (ETDEWEB)

    Budkov, Yu. A., E-mail: urabudkov@rambler.ru [Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Department of Applied Mathematics, National Research University Higher School of Economics, Moscow (Russian Federation); Kolesnikov, A. L. [Institut für Nichtklassische Chemie e.V., Universität Leipzig, Leipzig (Germany); Kiselev, M. G. [Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation)

    2016-05-14

    We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On

  18. On the theory of electric double layer with explicit account of a polarizable co-solvent

    International Nuclear Information System (INIS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Kiselev, M. G.

    2016-01-01

    We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On

  19. Deformed chiral nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics

    1991-04-18

    We compute properties of the nucleon in a hybrid chiral model based on the linear {sigma}-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and g{sub A}. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations. (orig.).

  20. The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules as probes of constraints from analyticity and chiral symmetry in dynamical models for pion-nucleon scattering

    International Nuclear Information System (INIS)

    Kondratyuk, S.; Kubodera, K.; Myhrer, F.; Scholten, O.

    2004-01-01

    The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules are calculated within a relativistic, unitary and crossing symmetric dynamical model for pion-nucleon scattering using two different methods: (1) by evaluating the scattering amplitude at the corresponding low-energy kinematics and (2) by evaluating the sum-rule integrals with the calculated total cross section. The discrepancy between the results of the two methods provides a measure of the breaking of analyticity and chiral symmetry in the model. The contribution of the Δ resonance, including its dressing with meson loops, is discussed in some detail and found to be small

  1. Out of equilibrium phase transitions and a toy model for disoriented chiral condensates

    International Nuclear Information System (INIS)

    Bedaque, P.F.; Das, A.

    1993-07-01

    We study the dynamics of a second order phase transition in a situation that mimics a sudden quench to a temperature below the critical temperature in a model with dynamical symmetry breaking. In particular we show that the domains of correlated values of the condensate grow as √t and that this result seems to be largely model independent. (author). 9 refs

  2. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    International Nuclear Information System (INIS)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui; Du Yu

    2010-01-01

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  3. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Du Yu, E-mail: du_yu@jlu.edu.cn, E-mail: yhyang@ntu.edu.sg [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2010-04-23

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  4. A chiral quark model for meson electroproduction in the S11 partial wave

    International Nuclear Information System (INIS)

    Golli, B.; Sirca, S.

    2011-01-01

    We calculate the meson scattering and electroproduction amplitudes in the S11 partial wave in a coupled-channel approach that incorporates quasi-bound quark-model states. Using the quark wave functions and the quark-meson interaction from the Cloudy Bag Model, we obtain a good overall agreement with the available experimental results for the partial widths of the N(1535) and the N(1650) resonances as well as for the pion, eta and kaon electroproduction amplitudes. Our model is consistent with the N(1535) resonance being dominantly a genuine three-quark state rather than a quasi-bound state of mesons and baryons. (orig.)

  5. A quantitative analysis of instabilities in the linear chiral sigma model

    International Nuclear Information System (INIS)

    Nemes, M.C.; Nielsen, M.; Oliveira, M.M. de; Providencia, J. da

    1990-08-01

    We present a method to construct a complete set of stationary states corresponding to small amplitude motion which naturally includes the continuum solution. The energy wheighted sum rule (EWSR) is shown to provide for a quantitative criterium on the importance of instabilities which is known to occur in nonasymptotically free theories. Out results for the linear σ model showed be valid for a large class of models. A unified description of baryon and meson properties in terms of the linear σ model is also given. (author)

  6. Green-Schwarz superstring as an asymmetric chiral field sigma model

    International Nuclear Information System (INIS)

    Isaev, A.P.; Ivanov, E.A.

    1988-01-01

    A new class of two-dimensional σ-models of the Wess-Zumino-Witten type is constructed. The target manifold of these models is coset space GxG/G - , where supergroup G is obtained by contraction from an arbitrary semisimple Lie supergroup and G - is some abelian supergroup of translations in GxG. It is shown that the equations of motion following from the Wess-Zumino-Witten type action of these models admit a zero-curvature representation. 16 refs

  7. Light-front realization of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Itakura, Kazunori; Maedan, Shinji

    2001-01-01

    We discuss a description of chiral symmetry breaking in the light-front (LF) formalism. Based on careful analyses of several modes, we give clear answers to the following three fundamental questions: (i) What is the difference between the LF chiral transformation and the ordinary chiral transformation? (ii) How does a gap equation for the chiral condensate emerge? (iii) What is the consequence of the coexistence of a nonzero chiral condensate and the trivial Fock vacuum? The answer to Question (i) is given through a classical analysis of each model. Question (ii) is answered based on our recognition of the importance of characteristic constraints, such as the zero-mode and fermionic constraints. Question (iii) is intimately related to another important problem, reconciliation of the nonzero chiral condensate ≠ 0 and the invariance of the vacuum under the LF chiral transformation Q 5 LF | 0> = 0. This and Question (iii) are understood in terms of the modified chiral transformation laws of the dependent variables. The characteristic ways in which the chiral symmetry breaking is realized are that the chiral charge Q 5 LF is no longer conserved and that the transformation of the scalar and pseudoscalar fields is modified. We also discuss other outcomes, such as the light-cone wave function of the pseudoscalar meson in the Nambu-Jona-Lasinio model. (author)

  8. Chiral bags, skyrmions and quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.

    1984-09-01

    Recent developments on an intriguing connection between the quark-bag description of the baryons (nucleons in particular) and the Skyrmion model are discussed in terms of the constraints coming from chiral anomalies. Topics treated are the leaking baryon charge, axial charge and energy density; the role of chiral anomalies; the role of Skyrme's quartic term and the connection to the meson degrees of freedom; and finally some qualitative implications in nuclei. The presentation is purposely descriptive and intuitive instead of mathematically precise

  9. Pionic and radiative decays of vector mesons in the chiral bag model

    International Nuclear Information System (INIS)

    Araki, M.; Osaka Univ.; Council for Scientific and Industrial Research, Pretoria; Flinders Univ. of South Australia, Bedford Park. School of Physical Sciences)

    1986-01-01

    It is shown that a mechanism, within the framework of the cloudy bag model, analogous to that for e + e - ->2γ in QED accounts qualitatively for the decays p->2π, ω->πγ and p->πγ with a bag radii 0.8-1.0 fm, and averaged momenta for decay particles. For the radiative decays, the process identical to that in the vector-dominance model gives about 60% of the total calculated width. It also explains small decay widths previously calculated, using the single quark transition process. (orig.)

  10. Competitive chiral induction in a 2D molecular assembly: Intrinsic chirality versus coadsorber-induced chirality.

    Science.gov (United States)

    Chen, Ting; Li, Shu-Ying; Wang, Dong; Wan, Li-Jun

    2017-11-01

    Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction-mediated chirality induction and the intrinsic stereogenic center-controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, ( S )-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction-mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly.

  11. Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry

    International Nuclear Information System (INIS)

    Barik, N.

    1987-01-01

    The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data. (author)

  12. Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N; Das, M

    1987-05-01

    The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data.

  13. Density and polarizability of liquid 4He

    International Nuclear Information System (INIS)

    Kempin'ski, V.; Zhuk, T.; Stankovski, Ya.; Sitarzh, S.

    1988-01-01

    The temperature changes in the density of liquid helium are measured in the temperature range of 1.63 to 4.2 K.; Unlike the conventional pycnometric technique, the changes in the hydrostatic displacement of the liquid were determined. The cirrectness of the method chosen and the appropriate equipment for its realization are substantiated. The results obtained are in good agreement with those of other authors. On the basis of temperature measurements of the dependence of density ρ and permittivity ε, the dependence of polarizability A of liquid 4 He on temperature and density was calculated. The results obtained show an alternating character of the dependences A(T) and A(ρ). These dependences are found to correlate

  14. Chiral-model of weak-interaction form factors and magnetic moments of octet baryons

    International Nuclear Information System (INIS)

    Kubodera, K.; Kohyama, Y.; Tsushima, K.; Yamaguchi, T.

    1989-01-01

    For baryon spectroscopy, magnetic moments and weak interaction form factors provide valuable information, and the impressive amount of available experimental data on these quantities for the octet baryons invites detailed investigations. The authors of this paper have made extensive studies of the weak-interaction form factors and magnetic moments of the octet baryons within the framework of the volume-type cloudy-bag model (v-type CBM). The clouds of all octet mesons have been included. Furthermore, we have taken into account in a unified framework various effects that were so far only individually discussed in the literature. Thus, the gluonic effects, center-of-mass (CM0 corrections, and recoil corrections have been included). In this talk, after giving a brief summary of some salient features of the results, we discuss a very interesting application of our model to the problem of the spin content of nucleons

  15. Searching for quantum solitons in a (3+1)-dimensional chiral Yukawa model

    International Nuclear Information System (INIS)

    Farhi, E.; Graham, N.; Jaffe, R.L.; Weigel, H.

    2002-01-01

    We search for static solitons stabilized by heavy fermions in a (3+1)-dimensional Yukawa model. We compute the renormalized energy functional, including the exact one-loop quantum corrections, and perform a variational search for configurations that minimize the energy for a fixed fermion number. We compute the quantum corrections using a phase shift parameterization, in which we renormalize by identifying orders of the Born series with corresponding Feynman diagrams. For higher-order terms in the Born series, we develop a simplified calculational method. When applicable, we use the derivative expansion to check our results. We observe marginally bound configurations at large Yukawa coupling, and discuss their interpretation as soliton solutions subject to general limitations of the model

  16. The ring structure of chiral operators for minimal models coupled to 2D gravity

    International Nuclear Information System (INIS)

    Sarmadi, M.H.

    1992-09-01

    The BRST cohomology ring for (p,q) models coupled to gravity is discussed. In addition to the generators of the ghost number zero ring, the existence of a generator of ghost number - 1 and its inverse is proved and used to construct the entire ring. Some comments are made regarding the algebra of the vector fields on the ring and the supersymmetric extension. (author). 13 refs

  17. Chiral Schwinger model with the Faddeevian regularization in the light-front frame: construction of the gauge-invariant theory through the Stueckelberg term, Hamiltonian and BRST formulations

    International Nuclear Information System (INIS)

    Kulshreshtha, U.

    1998-01-01

    A chiral Schwinger model with the Faddeevian regularization a la Mitra is studied in the light-front frame. The front-form theory is found to be gauge-non-invariant. The Hamiltonian formulation of this gauge-non-invariant theory is first investigated and then the Stueckelberg term for this theory is constructed. Finally, the Hamiltonian and BRST formulations of the resulting gauge-invariant theory, obtained by the inclusion of the Stueckelberg term in the action of the above gauge-non-invariant theory, are investigated with some specific gauge choices. (orig.)

  18. Dielectric constant of atomic fluids with variable polarizability.

    Science.gov (United States)

    Alder, B J; Beers, J C; Strauss, H L; Weis, J J

    1980-06-01

    The Clausius-Mossotti function for the dielectric constant is expanded in terms of single atom and pair polarizabilities, leading to contributions that depend on both the trace and the anisotropy of the pair-polarizability tensor. The short-range contribution of the anisotropic part to the pair polarizabilities has previously been obtained empirically from light scattering experiments, whereas the trace contribution is now empirically determined by comparison to dielectric experiments. For helium, the short-range trace part agrees well with electronic structure calculations, whereas for argon qualitative agreement is achieved.

  19. Observation of chiral phonons

    KAUST Repository

    Zhu, Hanyu; Yi, Jun; Li, Ming-yang; Xiao, Jun; Zhang, Lifa; Yang, Chih-Wen; Kaindl, Robert A.; Li, Lain-Jong; Wang, Yuan; Zhang, Xiang

    2018-01-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  20. Observation of chiral phonons

    KAUST Repository

    Zhu, Hanyu

    2018-02-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  1. Isotope chirality in long-armed multifunctional organosilicon ("Cephalopod") molecules.

    Science.gov (United States)

    Barabás, Béla; Kurdi, Róbert; Zucchi, Claudia; Pályi, Gyula

    2018-07-01

    Long-armed multifunctional organosilicon molecules display self-replicating and self-perfecting behavior in asymmetric autocatalysis (Soai reaction). Two representatives of this class were studied by statistical methods aiming at determination of probabilities of natural abundance chiral isotopomers. The results, reported here, show an astonishing richness of possibilities of the formation of chiral isotopically substituted derivatives. This feature could serve as a model for the evolution of biological chirality in prebiotic and early biotic stereochemistry. © 2018 Wiley Periodicals, Inc.

  2. Geometrical approach to central molecular chirality: a chirality selection rule

    OpenAIRE

    Capozziello, S.; Lattanzi, A.

    2004-01-01

    Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...

  3. Chiral dimethylamine flutamide derivatives-modeling, synthesis, androgen receptor affinities and carbon-11 labeling

    International Nuclear Information System (INIS)

    Jacobson, Orit; Laky, Desideriu; Carlson, Kathryn E.; Elgavish, Sharona; Gozin, Michael; Even-Sapir, Einat; Leibovitc, Ilan; Gutman, Mordechai; Chisin, Roland; Katzenellenbogen, John A.; Mishani, Eyal

    2006-01-01

    Most prostate cancers are androgen dependent upon initial diagnosis. On the other hand, some very aggressive forms of prostate cancer were shown to have lost the expression of the androgen receptor (AR). Although the AR is routinely targeted in endocrine treatment, the clinical outcome remains suboptimal. Therefore, it is crucial to demonstrate the presence and activity of the AR in each case of prostate cancer, before and after treatment. While noninvasive positron emission tomography (PET) has the potential to determine AR expression of tumor cells in vivo, fully optimized PET imaging agents are not yet available. Based on molecular modeling, three novel derivatives of hydroxyflutamide (Compounds 1-3) were designed and synthesized. They contain an electron-rich group (dimethylamine) located on the methyl moiety, which may confer a better stability to the molecule in vivo. Compounds 1-3 have AR binding that is similar or higher than that of the currently used commercial drugs. An automated carbon-11 radiolabeling route was developed, and the compounds were successfully labeled with a 10-15% decay-corrected radiochemical yield, 99% radiochemical purity and a specific activity of 4Ci/μmol end of bombardment (n=15). These labeled biomarkers may facilitate the future quantitative molecular imaging of AR-positive prostate cancer using PET and may also allow for image-guided treatment of prostate cancer

  4. Strange baryons in a chiral quark-meson model. Pt. 2

    International Nuclear Information System (INIS)

    McGovern, J.A.; Birse, M.C.

    1990-01-01

    The chrial-quark meson model is used to study baryon properties with realistic breaking of SU(3). The symmetry breaking is assumed to be strong, so that a random phase approximation (RPA) can be used. In this the strange baryons are described as excitations built on the hedgehog soliton and have an excitation energy of 315 MeV. Other properties of strange baryons are obtained by an approximate spin-isospin projection from the RPA wave function. The magnetic moments agree reasonably well with experiment, but the deviations from the experimental values suggest that the method is valid for the case of rather stronger symmetry breaking than is realistic. The dependence of the RPA energy on the magnitude of the symmetry breaking is examined, and found to be strongly nonlinear for realistic values. This supports the idea that a large πN sigma commutator need not imply a large strange-quark content in the proton. For reasonable values of the scalar meson masses the strange-quark condensate is found to be less than 5% of the total, at the mean-field level. We also estimate the contribution to the condensate from RPA correlations. Within a one-mode approximation we find these to be very small, ≅ 2%. (orig.)

  5. Influence of heavy hadronic states on the QCD phase diagram and on the freeze-out within a hadronic chiral model; Einfluss schwerer hadronischer Zustaende auf das QCD-Phasendiagramm und die Ausfrierbedingungen in einem hadronischen chiralen Modell

    Energy Technology Data Exchange (ETDEWEB)

    Zeeb, G.

    2006-07-01

    In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized {sigma}-{omega} model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the

  6. Polarizabilities and hyperpolarizabilities of the alkali metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fuentealba, P. (Chile Univ., Santiago (Chile). Departamento de Fisica and Centro de Mecanica Cuantica Aplicada (CMCA)); Reyes, O. (Chile Univ., Santiago (Chile). Dept. de Fisica)

    1993-08-14

    The electric static dipole polarizability [alpha], quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability [gamma] have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability [gamma]. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author).

  7. The polarizability of diatomic helium. Ph.D. Thesis

    Science.gov (United States)

    Fortune, P. J.

    1974-01-01

    The calculation of the electric dipole polarizability tensor of the He 2 dimer is described, and the results are used in the computation of several dielectric and optical properties of helium gas, at both high (322 K) and low (4 K) temperatures. The properties considered are the second dielectric virial coefficient, the second Kerr virial coefficient, and the depolarization ratio of the integrated intensities for the Raman scattering experiments. The thesis consists of five parts: the polarizability and various properties are defined; the calculation of the polarizability in the long-range region in terms of a quantum mechanical multipole expansion is described; the calculation of the He2 polarizability in the overlap region via coupled Hartree-Fock perturbation theory is described; the calculation of the quantum pair distribution function for both the He-3 and He-4 isotopes at 4 K is discussed; and the calculated values of the properties of helium gas are given.

  8. Contributions of polarizabilities to four basis polarizations of electromagnetic media

    International Nuclear Information System (INIS)

    Bukina, E.N.; Dubovik, V.M.

    1999-01-01

    All contributions to four basis polarizations of an arbitrary electromagnetic medium at the expense of mixed polarizabilities up to fourth rank tensors are presented. Some concrete examples are considered

  9. Polarizabilities and hyperpolarizabilities of the alkali metal atoms

    International Nuclear Information System (INIS)

    Fuentealba, P.; Reyes, O.

    1993-01-01

    The electric static dipole polarizability α, quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability γ have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability γ. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author)

  10. Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field

    OpenAIRE

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and...

  11. Black-Body Radiation Correction to the Polarizability of Helium

    OpenAIRE

    Puchalski, M.; Jentschura, U. D.; Mohr, P. J.

    2011-01-01

    The correction to the polarizability of helium due to black-body radiation is calculated near room temperature. A precise theoretical determination of the black-body radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ord...

  12. Effect of core polarizability on photoionization cross-section calculations.

    Science.gov (United States)

    Kirkpatrick, R. C.

    1972-01-01

    Demonstration of the importance of core polarizability in a case where cancellation is only moderate, with suggestion of an improvement to the scaled Thomas-Fermi (STF) wave functions of Stewart and Rotenberg (1965). The inclusion of dipole polarizability of the core for argon is shown to substantially improve the agreement between the theoretical and experimental photoionization cross sections for the ground-state configuration.

  13. Training software for chiral separations in capillary electrophoresis

    NARCIS (Netherlands)

    Reijenga, J.C.; Ingelse, B.A.; Everaerts, F.M.

    1997-01-01

    A previously published steady-state simulation program for CE was extended with a sub-menu for chiral interaction. The interaction was modelled with a hypothetical (neutral) selector with properties similar to cyclodextrins. A three-type chiral interaction model was implemented in such a way that it

  14. Density Functional Studies of Molecular Polarizabilities. 7. Anthracene and Phenanthrene

    Directory of Open Access Journals (Sweden)

    Humberto J. Soscun Machado

    2000-03-01

    Full Text Available We report accurate Ab Initio studies of the static dipole polarizabilities of anthracene and phenanthrene. Geometries were optimized at the HF/6-311G(3d,2p level of theory. Dipole polarizabilities were calculated at the HF/6-311++G(3d,2p and BLYP/6-311++G(3d,2p levels of theory, using HF/6-311G(3d,2p geometries. The calculated dipole polarizabilities for anthracene are compared with experiment. Inclusion of electron correlation using the BLYP procedure increases the L and M components of the dipole polarizability, but not the perpendicular (N component. Examination of corresponding BLYP results for the polyacene series benzene, naphthalene and anthracene shows that the normal component of the dipole polarizability scales linearly with the number of benzene ring units, with an increment of 20.8 au. The medium component also scales linearly with an increment of 42.8 atomic units. The long component does not scale linearly. Semi-emiprical AM1 calculations are also given for comparison; the normal component of the dipole polarizability tensor is poorly represented by such calculations.

  15. Chiral nucleon-nucleon forces in nuclear structure calculations

    Directory of Open Access Journals (Sweden)

    Coraggio L.

    2016-01-01

    Full Text Available Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.

  16. The covariant chiral ring

    Energy Technology Data Exchange (ETDEWEB)

    Bourget, Antoine; Troost, Jan [Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75005 Paris (France)

    2016-03-23

    We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N=(4,4) supersymmetry in two dimensions. For seed target spaces K3 and T{sup 4}, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.

  17. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  18. Quasi-free Compton scattering and the polarizabilities of the neutron

    International Nuclear Information System (INIS)

    Kossert, K.; Camen, M.; Wissmann, F.; Schumacher, M.; Seitz, B.; Ahrens, J.; Arends, H.J.; Beck, R.; Caselotti, G.; Jahn, O.; Jennewein, P.; Olmos de Leon, V.; Annand, J.R.M.; McGeorge, J.C.; Rosner, G.; Grabmayr, P.; Natter, A.; Levchuk, M.I.; L'vov, A.I.; Petrun'kin, V.A.; Smend, F.; Thomas, A.; Weihofen, W.; Zapadtka, F.

    2003-01-01

    Differential cross-sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz photon tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48cm diameter x 64cm NaI(Tl) photon detector and the Goettingen SENECA recoil detector. The data cover photon energies ranging from 200MeV to 400MeV at θ LAB γ =136.2 . Liquid deuterium and hydrogen targets allowed direct comparison of free and quasi-free scattering from the proton. The neutron detection efficiency of the SENECA detector was measured via the reaction p(γ,π + n). The ''free'' proton Compton scattering cross-sections extracted from the bound proton data are in reasonable agreement with those for the free proton which gives confidence in the method to extract the differential cross-section for free scattering from quasi-free data. Differential cross-sections on the free neutron have been extracted and the difference of the electromagnetic polarizabilities of the neutron has been determined to be α n -β n =9.8±3.6(stat) +2.1 -1.1 (syst)±2.2(model) in units of 10 -4 fm 3 . In combination with the polarizability sum α n +β n =15.2±0.5 deduced from photoabsorption data, the neutron electric and magnetic polarizabilities, α n =12.5±1.8(stat) + 1 .1 -0.6 (syst)±1.1(model) and β n =2.7±1.8(stat) +0.6 -1.1 (syst)±1.1(model) are obtained. The backward spin polarizability of the neutron was determined to be γ (n) π =(58.6±4.0) x 10 -4 fm 4 . (orig.)

  19. Molecular-Level Design of Heterogeneous Chiral Catalysis

    International Nuclear Information System (INIS)

    Zaera, Francisco

    2012-01-01

    The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration

  20. Chiral near-fields around chiral dolmen nanostructure

    International Nuclear Information System (INIS)

    Fu, Tong; Wang, Tiankun; Chen, Yuyan; Wang, Yongkai; Qu, Yu; Zhang, Zhongyue

    2017-01-01

    Discriminating the handedness of the chiral molecule is of great importance in the field of pharmacology and biomedicine. Enhancing the chiral near-field is one way to increase the chiral signal of chiral molecules. In this paper, the chiral dolmen nanostructure (CDN) is proposed to enhance the chiral near-field. Numerical results show that the CDN can increase the optical chirality of the near-field by almost two orders of magnitude compared to that of a circularly polarized incident wave. In addition, the optical chirality of the near-field of the bonding mode is enhanced more than that of the antibonding mode. These results provide an effective method for tailoring the chiral near-field for biophotonics sensors. (paper)

  1. Induced-Charge Enhancement of the Diffusion Potential in Membranes with Polarizable Nanopores.

    Science.gov (United States)

    Ryzhkov, I I; Lebedev, D V; Solodovnichenko, V S; Shiverskiy, A V; Simunin, M M

    2017-12-01

    When a charged membrane separates two salt solutions of different concentrations, a potential difference appears due to interfacial Donnan equilibrium and the diffusion junction. Here, we report a new mechanism for the generation of a membrane potential in polarizable conductive membranes via an induced surface charge. It results from an electric field generated by the diffusion of ions with different mobilities. For uncharged membranes, this effect strongly enhances the diffusion potential and makes it highly sensitive to the ion mobilities ratio, electrolyte concentration, and pore size. Theoretical predictions on the basis of the space-charge model extended to polarizable nanopores fully agree with experimental measurements in KCl and NaCl aqueous solutions.

  2. Polarizability of Kr6+ from high-L Kr5+ fine-structure measurements

    International Nuclear Information System (INIS)

    Lundeen, S. R.; Fehrenbach, C. W.

    2007-01-01

    The transition between n=55 and n=109 Rydberg levels of Kr 5+ has been studied at high resolution using the resonant excitation stark ionization spectroscopy method. Resolved excitation of L=6, 7, 8, and 9 levels in n=55 lead to a determination of the fine-structure energies of these levels. Interpreted with the long-range polarization model, this leads to a measurement of the dipole polarizabilities of Zn-like Kr 6+ , α d =2.69(4)a 0 3 . Obtaining a value of the quadrupole polarizability from the data will require additional theoretical input. Factors contributing to the signal and noise levels in measurements of this type are discussed

  3. Search for the characters of chiral rotation in excited bands for the idea chiral nuclei with A ∼ 130

    International Nuclear Information System (INIS)

    Chen Qibo; Yao Jiangming; Meng Jie; Zhang Shuangquan; Qi Bin

    2010-01-01

    Since the occurrence of chirality was originally suggested in 1997 by Frauendorf and Meng [1] and experimentally observed in 2001 [2] , the investigation of chiral symmetry in atomic nuclei becomes one of the most important topics in nuclear physics. More and more chiral doublet bands [3-7] in atomic nuclei [8] have been reported. There are also many discussions about the fingerprints of chirality. In the pioneer paper [1] , the two lowest near degenerate bands given by the particle-rotor model (PRM) are interpreted as chiral doublet bands. If the nucleus has chiral geometry with proper configuration, the character of chiral rotation may appear not only in the two lowest bands, but also in the other bands. Therefore, it is interesting to search for the character of chiral rotation, Based on the PRM model with configuration corresponding to A ∼ 130 mass region, we examine the theoretical spectroscopy of higher excited bands (band3, band4, band5 and band6) beyond the two lowest bands (bandl and band2), including energies, spin-alignments, projection of total angular momentum and electromagnetic transition probabilities. The results show that band3 and band4 have characters of chirality in some spin region. (authors)

  4. Finding the chiral gravitational wave background of an axion-S U (2 ) inflationary model using CMB observations and laser interferometers

    Science.gov (United States)

    Thorne, Ben; Fujita, Tomohiro; Hazumi, Masashi; Katayama, Nobuhiko; Komatsu, Eiichiro; Shiraishi, Maresuke

    2018-02-01

    A detection of B-mode polarization of the cosmic microwave background (CMB) anisotropies would confirm the presence of a primordial gravitational wave background (GWB). In the inflation paradigm, this would be an unprecedented probe of the energy scale of inflation as it is directly proportional to the power spectrum of the GWB. However, similar tensor perturbations can be produced by the matter fields present during inflation, breaking the simple relationship between energy scale and the tensor-to-scalar ratio r . It is therefore important to find ways of distinguishing between the generation mechanisms of the GWB. Without doing a full model selection, we analyze the detectability of a new axion-S U (2 ) gauge field model by calculating the signal-to-noise ratio of future CMB and interferometer observations sensitive to the chirality of the tensor spectrum. We forecast the detectability of the resulting CMB temperature and B-mode (TB) or E-mode and B-mode (EB) cross-correlation by the LiteBIRD satellite, considering the effects of residual foregrounds, gravitational lensing, and assess the ability of such an experiment to jointly detect primordial TB and EB spectra and self-calibrate its polarimeter. We find that LiteBIRD will be able to detect the chiral signal for r*>0.03 , with r* denoting the tensor-to-scalar ratio at the peak scale, and that the maximum signal-to-noise ratio for r*advanced stage of a LISA-like mission, which is designed to be sensitive to the intensity and polarization of the GWB. We find that such experiments would complement CMB observations as they would be able to detect the chirality of the GWB with high significance on scales inaccessible to the CMB. We conclude that CMB two-point statistics are limited in their ability to distinguish this model from a conventional vacuum fluctuation model of GWB generation, due to the fundamental limits on their sensitivity to parity violation. In order to test the predictions of such a model as

  5. Pure chiral optical fibres.

    Science.gov (United States)

    Poladian, L; Straton, M; Docherty, A; Argyros, A

    2011-01-17

    We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.

  6. Relativistic Chiral Kinetic Theory

    International Nuclear Information System (INIS)

    Stephanov, Mikhail

    2016-01-01

    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  7. Relativistic Chiral Kinetic Theory

    Energy Technology Data Exchange (ETDEWEB)

    Stephanov, Mikhail

    2016-12-15

    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  8. Baryon Chiral Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Becher,

    2002-08-08

    After contrasting the low energy effective theory for the baryon sector with one for the Goldstone sector, I use the example of pion nucleon scattering to discuss some of the progress and open issues in baryon chiral perturbation theory.

  9. Electronic Polarizability and the Effective Pair Potentials of Water

    Science.gov (United States)

    Leontyev, I. V.; Stuchebrukhov, A. A.

    2014-01-01

    Employing the continuum dielectric model for electronic polarizability, we have developed a new consistent procedure for parameterization of the effective nonpolarizable potential of liquid water. The model explains the striking difference between the value of water dipole moment μ~3D reported in recent ab initio and experimental studies with the value μeff~2.3D typically used in the empirical potentials, such as TIP3P or SPC/E. It is shown that the consistency of the parameterization scheme can be achieved if the magnitude of the effective dipole of water is understood as a scaled value μeff=μ∕εel, where εel =1.78 is the electronic (high-frequency) dielectric constant of water, and a new electronic polarization energy term, missing in the previous theories, is included. The new term is evaluated by using Kirkwood - Onsager theory. The new scheme is fully consistent with experimental data on enthalpy of vaporization, density, diffusion coefficient, and static dielectric constant. The new theoretical framework provides important insights into the nature of the effective parameters, which is crucial when the computational models of liquid water are used for simulations in different environments, such as proteins, or for interaction with solutes. PMID:25383062

  10. Generalized chiral perturbation theory

    International Nuclear Information System (INIS)

    Knecht, M.; Stern, J.

    1994-01-01

    The Generalized Chiral Perturbation Theory enlarges the framework of the standard χPT (Chiral Perturbation Theory), relaxing certain assumptions which do not necessarily follow from QCD or from experiment, and which are crucial for the usual formulation of the low energy expansion. In this way, experimental tests of the foundations of the standard χPT become possible. Emphasis is put on physical aspects rather than on formal developments of GχPT. (author). 31 refs

  11. Influence of Chirality in Ordered Block Copolymer Phases

    Science.gov (United States)

    Prasad, Ishan; Grason, Gregory

    2015-03-01

    Block copolymers are known to assemble into rich spectrum of ordered phases, with many complex phases driven by asymmetry in copolymer architecture. Despite decades of study, the influence of intrinsic chirality on equilibrium mesophase assembly of block copolymers is not well understood and largely unexplored. Self-consistent field theory has played a major role in prediction of physical properties of polymeric systems. Only recently, a polar orientational self-consistent field (oSCF) approach was adopted to model chiral BCP having a thermodynamic preference for cholesteric ordering in chiral segments. We implement oSCF theory for chiral nematic copolymers, where segment orientations are characterized by quadrupolar chiral interactions, and focus our study on the thermodynamic stability of bi-continuous network morphologies, and the transfer of molecular chirality to mesoscale chirality of networks. Unique photonic properties observed in butterfly wings have been attributed to presence of chiral single-gyroid networks, this has made it an attractive target for chiral metamaterial design.

  12. Quenched chiral logarithms

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1992-04-01

    I develop a diagrammatic method for calculating chiral logarithms in the quenched approximation. While not rigorous, the method is based on physically reasonable assumptions, which can be tested by numerical simulations. The main results are that, at leading order in the chiral expansion, (a) there are no chiral logarithms in quenched f π m u = m d ; (b) the chiral logarithms in B K and related kaon B-parameters are, for m d = m s the same in the quenched approximation as in the full theory (c) for m π and the condensate, there are extra chiral logarithms due to loops containing the η', which lead to a peculiar non-analytic dependence of these quantities on the bare quark mass. Following the work of Gasser and Leutwyler, I discuss how there is a predictable finite volume dependence associated with each chiral logarithm. I compare the resulting predictions with numerical results: for most quantities the expected volume dependence is smaller than the errors. but for B V and B A there is an observed dependence which is consistent with the predictions

  13. Communication: Polarizable polymer chain under external electric field in a dilute polymer solution.

    Science.gov (United States)

    Budkov, Yu A; Kolesnikov, A L; Kiselev, M G

    2015-11-28

    We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such "field-induced" globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification.

  14. Compton scattering on the proton, neutron, and deuteron in chiral perturbation theory to O(Q{sup 4})

    Energy Technology Data Exchange (ETDEWEB)

    S.R. Beane; M. Malheiro; J.A. McGovern; D.R. Phillips; U. van Kolck

    2004-03-01

    We study Compton scattering in systems with A=1 and 2 using chiral perturbation theory up to fourth order. For the proton we fit the two undetermined parameters in the O(Q{sup 4}) {gamma}p amplitude of McGovern to experimental data in the region {omega}, {radical}|t| {le} 180 MeV, obtaining a {chi}{sup 2}/d.o.f. of 133/113. This yields a model-independent extraction of proton polarizabilities based solely on low-energy data: {alpha}{sub p} = (12.1 {+-} 1.1 (stat.)){sub -0.5}{sup +0.5} (theory) and {beta}{sub p} = (3.4 {+-} 1.1 (stat.)){sub -0.1}{sup +0.1} (theory), both in units of 10{sup -4} fm{sup 3}. We also compute Compton scattering on deuterium to O(Q{sup 4}). The {gamma}d amplitude is a sum of one- and two-nucleon mechanisms, and contains two undetermined parameters, which are related to the isoscalar nucleon polarizabilities. We fit data points from three recent {gamma}d scattering experiments with a {chi}{sup 2}/d.o.f. = 26.3/20, and find {alpha}{sub N} = 8.9 {+-} 1.5 (stat.){sub -0.9}{sup +4.7} (theory) and {beta}{sub N} = 2.2 {+-} 1.5 (stat.){sub -0.9}{sup +1.2} (theory), again in units of 10{sup -4} fm{sup 3}.

  15. Broken chiral symmetry and the structure of hadrons

    International Nuclear Information System (INIS)

    Spence, W.L.

    1982-01-01

    The spontaneous breaking of chiral symmetry plays a decisive role in the structure of hadrons composed of light quarks. The formalism by which the dynamics of chiral symmetry breaking and its implications for hadronic structure can be explored in a simplified world in which fully relativistic zero-bare-mass quarks interact through a chirally symmetric instantaneous confining potential is presented. By thus modeling the essentials of the chiral limit-N/sub c/ infinity limit of QCD contact is made with the successes of existent semiphenomenological models of hadrons but post assumptions which explicitly violate chiral symetry are avoided. This revised approach then makes possible a unification of the dynamics of hadron structure with the mechanism of spontaneous chiral breaking and guarantees the appearance of the correct Goldstone excitations. The chiral breaking order parameter (absolute value anti psi psi), effective quark mass, and Goldstone boson wave function are obtainable by solving a single non-linear integral equation once a potential has been prescribed. The stability of the chiral asymmetric vacuum must then be established by studying the linear eigenvalue problem which determines the spectrum of states with vacuum quantum numbers. The nature of the instability of the chiral symmetric vacuum that leads to spontaneous symmetry breaking is explained and its apparent contingency on details of the dynamics is emphasized. It is argued that a single massless fermion in a chirally symmetric potential does form bound states for which a semi-classical description is given. Coupling to vacuum pairs of such bound states occasions the possibility of chiral symmetry breakdown

  16. Chiral charge erasure via thermal fluctuations of magnetic helicity

    International Nuclear Information System (INIS)

    Long, Andrew J.; Sabancilar, Eray

    2016-01-01

    We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, λ≳1/(αμ_5), the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential μ_5 parametrizes the chiral asymmetry and α is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale λ, finding δ H∼λT and τ∼αλ"3T"2 for a relativistic plasma at temperature T. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time t∼T"3/(α"5μ_5"4) until it reaches an equilibrium value H∼μ_5T"2/α, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, μ_5< T/α, this avenue for chiral charge erasure is found to be slower than the chiral magnetic effect for which t∼T/(α"3μ_5"2). This mechanism for chiral charge erasure can be important for the hypercharge sector of the Standard Model as well as extensions including U(1) gauge interactions, such as asymmetric dark matter models.

  17. Chiral quarks and proton decay

    International Nuclear Information System (INIS)

    Chadha, S.; Daniel, M.; Gounaris, G.J.; Murphy, A.J.

    1984-04-01

    The authors calculate the hadronic matrix elements of baryon decay operators using a chiral effective Lagrangian with quarks, gluons and Goldstone boson fields. The cases where the ΔB=1 operators arise from supersymmetric SU(5) GUT as well as the minimal SU(5) GUT model are studied. In each model the results depend on two parameters. In particular there is a range of values for the two parameters, where the dominant decay modes in the minimal SU(5) GUT are: p→etae + and n→π - e + . (author)

  18. Patterns of symmetry breaking in chiral QCD

    Science.gov (United States)

    Bolognesi, Stefano; Konishi, Kenichi; Shifman, Mikhail

    2018-05-01

    We consider S U (N ) Yang-Mills theory with massless chiral fermions in a complex representation of the gauge group. The main emphasis is on the so-called hybrid ψ χ η model. The possible patterns of realization of the continuous chiral flavor symmetry are discussed. We argue that the chiral symmetry is broken in conjunction with a dynamical Higgsing of the gauge group (complete or partial) by bifermion condensates. As a result a color-flavor locked symmetry is preserved. The 't Hooft anomaly matching proceeds via saturation of triangles by massless composite fermions or, in a mixed mode, i.e. also by the "weakly" coupled fermions associated with dynamical Abelianization, supplemented by a number of Nambu-Goldstone mesons. Gauge-singlet condensates are of the multifermion type and, though it cannot be excluded, the chiral symmetry realization via such gauge invariant condensates is more contrived (requires a number of four-fermion condensates simultaneously and, even so, problems remain) and less plausible. We conclude that in the model at hand, chiral flavor symmetry implies dynamical Higgsing by bifermion condensates.

  19. Determination of lifetimes and nonadiabatic correlations from measured dipole polarizabilities

    International Nuclear Information System (INIS)

    Curtis, Lorenzo J

    2007-01-01

    In atomic systems for which the total oscillator strength of excitations from the ground state is dominated by the transition to the lowest resonance level, the f-sum rule provides a bracketing inequality connecting the lifetime τ of that level to the dipole polarizability α d . This relationship has been used previously to deduce α d from τ. It is shown here that improved spectroscopic accuracies now permit this procedure to be inverted, with τ deduced from a value for α d obtained spectroscopically using the core polarization model. A similar quantitative relationship exists connecting the nonadiabatic correlation factor β to τ, and thus also to α d . The method is applied to a recent measurement of α d for Kr 6+ to obtain the values τ(4s4p 1 P 1 ) 0.096 ± 0.003 ns and β(Kr 6+ ) = 1.71 ± 0.03a 5 0 . It is shown that the use of this method to make precision lifetime determinations for a small number of ions in an isoelectronic sequence permits the exploitation of observed semiempirical regularities to specify the lifetimes of all ions in that sequence

  20. Autoamplification of molecular chirality through the induction of supramolecular chirality

    NARCIS (Netherlands)

    van Dijken, Derk Jan; Beierle, John M.; Stuart, Marc C. A.; Szymanski, Wiktor; Browne, Wesley R.; Feringa, Ben L.

    2014-01-01

    The novel concept for the autoamplification of molecular chirality, wherein the amplification proceeds through the induction of supramolecular chirality, is presented. A solution of prochiral, ring-open diarylethenes is doped with a small amount of their chiral, ring-closed counterpart. The