WorldWideScience

Sample records for polarity water electronic

  1. Quantum mechanical force field for water with explicit electronic polarization.

    Science.gov (United States)

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  2. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  3. Electron and positron collisions with polar molecules: studies with the benchmark water molecule

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Rui; Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Faure, Alexandre [Laboratoire d' Astrophysique, UMR 5571 CNRS, Universite Joseph-Fourier, BP 53, 38041 Grenoble cedex 09 (France)], E-mail: j.tennyson@ucl.ac.uk

    2009-07-15

    It is difficult to measure low-energy cross sections for collisions of charged particles with strongly dipolar systems since the magnitude of such cross sections is completely dominated by collisions in the forward direction. Theoretically, it is possible to account for the strong forward scattering using the Born approximation but the procedure for combining Born 'top-up' with the more sophisticated treatments required to treat the scattering in other directions is not unique. This comment describes recent progress in describing both electron and positron collisions with polar molecules taking the important water molecule as a benchmark. Previous calculations on electron water at collision energies below 7 eV are compared with new experiments. Positron water studies up to 10 eV are re-analysed based on given experimental acceptance profiles, which depend on the details of the apparatus and method used in the measurements. It is suggested that theory is capable of giving reliable results for elastic and rotationally inelastic electron/positron collisions with strongly dipolar species.

  4. Polarized Electrons at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, C.K.

    1997-12-31

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented.

  5. Polarized electrons at Jefferson laboratory

    International Nuclear Information System (INIS)

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously. Initial operational experience with the polarized source will be presented

  6. Polarized electron beams at SLAC

    International Nuclear Information System (INIS)

    Moffeit, K.C.

    1992-11-01

    SLAC has successfully accelerated high energy polarized electrons for the Stanford Linear Collider and fixed polarized nuclear target experiments. The polarized electron beams at SLAC use a gallium arsenide (GaAlAs for E-142) photon emission source to provide the beam of polarized electrons with polarization of approximately 28% (41% for E-142). While the beam emittance is reduced in the damping ring for SLC operation a system of bend magnets and superconducting solenoids preserve and orient the spin direction for maximum longitudinal polarization at the collision point. The electron polarization is monitored with a Compton scattering polarimeter, and was typically 22% at the e+e- collision point for the 1992 run. Improvements are discussed to increase the source polarization and to reduce the depolarization effects between the source and the collision point

  7. The SLAC polarized electron source

    International Nuclear Information System (INIS)

    Tang, H.; Alley, R.; Frisch, J.

    1995-06-01

    The SLAC polarized electron source employs a photocathode DC high voltage gun with a loadlock and a YAG pumped Ti:sapphire laser system for colliding beam experiments or a flash lamp pumped Ti:sapphire laser for fixed target experiments. It uses a thin, strained GaAs(100) photocathode, and is capable of producing a pulsed beam with a polarization of ≥80% and a peak current exceeding 10 A. Its operating efficiency has reached 99%. The physics and technology of producing high polarization electron beams from a GaAs photocathode will be reviewed. The prospects of realizing a polarized electron source for future linear colliders will also be discussed

  8. The SLC polarized electron source

    International Nuclear Information System (INIS)

    Clendenin, J.E.

    1990-10-01

    A polarized electron source consisting of a 3-electrode photocathode gun and a flashlamp-pumped dye laser has been designed and built for the SLC and is currently undergoing commissioning. The source is described, and the operating configuration is discussed. The present status of the source and future plans are briefly indicated. 7 refs., 4 figs

  9. Polarization in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Papadichev, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)

    1995-12-31

    Polarization of electromagnetic radiation is required very often in numerous scientific and industrial applications: studying of crystals, molecules and intermolecular interaction high-temperature superconductivity, semiconductors and their transitions, polymers and liquid crystals. Using polarized radiation allows to obtain important data (otherwise inaccessible) in astrophysics, meteorology and oceanology. It is promising in chemistry and biology for selective influence on definite parts of molecules in chain synthesis reactions, precise control of various processes at cell and subcell levels, genetic engineering etc. Though polarization methods are well elaborated in optics, they can fail in far-infrared, vacuum-ultraviolet and X-ray regions because of lack of suitable non-absorbing materials and damaging of optical elements at high specific power levels. Therefore, it is of some interest to analyse polarization of untreated FEL radiation obtained with various types of undulators, with and without axial magnetic field. The polarization is studied using solutions for electron orbits in various cases: plane or helical undulator with or without axial magnetic field, two plane undulators, a combination of right- and left-handed helical undulators with equal periods, but different field amplitudes. Some examples of how a desired polarization (elliptical circular or linear) can be obtained or changed quickly, which is necessary in many experiments, are given.

  10. The ILC polarized electron source

    CERN Document Server

    Brachmann, Axel; Garwin, Edward; Kirby, Robert; Luh Dah An; Maruyama, Takashi; Prepost, Richard; Schultz, David; Sheppard, John

    2005-01-01

    The SLC polarized electron source (PES) can meet the expected requirements of the International Linear Collider (ILC) for polarization, charge and lifetime. However, experience with newer and successful PES designs at JLAB, Mainz and elsewhere can be incorporated into a first-generation ILC source that will emphasize reliability and stability without compromising the photocathode performance. The long pulse train for the ILC may introduce new challenges for the PES, and in addition more reliable and stable operation of the PES may be achievable if appropriate R&D is carried out for higher voltage operation and for a simpler load-lock system. The outline of the R&D program currently taking shape at SLAC and elsewhere is discussed. The principal components of the proposed ILC PES, including the laser system necessary for operational tests, are described.

  11. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    Energy Technology Data Exchange (ETDEWEB)

    Adeyemi, Adeleke H. [Hampton Univ., Hampton, VA (United States); et al.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e⁻/e⁺ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high-Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high-energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  12. Polarization in electron and proton beams

    International Nuclear Information System (INIS)

    Buon, J.

    1986-03-01

    One first introduces the concept of polarization for spin 1/2 particle beams and discusses properties of spin kinetics in a stationary magnetic field. Then the acceleration of polarized protons in synchrotrons is studied with emphasis on depolarization when resonances are crossed and on the cures for reducing it. Finally, transverse polarization of electrons in storage rings is discussed as an equilibrium between polarizing and depolarizing effects of synchrotron radiation. Means for obtaining longitudinal polarization are also treated

  13. Physics results with polarized electrons at SLAC

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1996-03-01

    Polarized electron beams can play an important role in the dynamics of interactions at high energies. Polarized electron beams at SLAC have been an important part of the physics program since 1970, when they were first proposed for use in testing the spin structure of the proton. Since 1992, the SLAC linear accelerator and the SLC have operated solely with polarized electrons, providing data for tests of QCD in studies of the spin structure of the nucleon and tests of the electroweak sector of the Standard Model. In the following sections, the performance of the source is summarized, and some of the recent results using the polarized beams are discussed

  14. Prospect of polarized targets in electron rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1984-01-01

    The feasibility of performing electron scattering experiments with polarized targets in electron storage rings is discussed. Three examples of the physics which would be accessible with this novel method are given. It is noted that this new method is compatible with recent proposals for linac-stretcher-ring accelerator designs. A new method for producing a polarized hydrogen or deuterium target is proposed and some preliminary results are described. A brief summary of laser-driven polarized targets as well as conventionally-produced polarized atomic beams is included

  15. Physics with polarized electrons and targets

    International Nuclear Information System (INIS)

    Donnelly, T.W.

    1984-01-01

    With the advent of electron stretcher or storage rings electron scattering from polarized targets becomes a general new tool for nuclear structure studies. Without such facilities it is necessary to have very dense polarized targets for use with the typical (less or approximately equal 50 μA) electron beams available and very few measurements of this type have been attempted. On the other hand, with electron rings the effective circulating current can be greatly increased. In this case much thinner internal targets may be used while still maintaining the same luminosity as in external beam experiments. In ancticipation of such new experimental capabilities we have re-developed the theoretical basis for discussions of electron scattering from polarized targets using either unpolarized or polarized electron beams. This work takes the formalism of unpolarized (e,e') and extends it in a straightforward way to include general polarizations of electrons, target nuclei, recoil nuclei or any combinations of these polarizations. In the present context it is only possible to provide a brief summary of the general form of the cross section and to present a few illustrative examples of the nuclear structure information that may be extracted from such polarization measurements

  16. Bacteriophage in polar inland waters

    Science.gov (United States)

    Säwström, Christin; Lisle, John; Anesio, A.M.; Priscu, John C.; Laybourn-Parry, J.

    2008-01-01

    Bacteriophages are found wherever microbial life is present and play a significant role in aquatic ecosystems. They mediate microbial abundance, production, respiration, diversity, genetic transfer, nutrient cycling and particle size distribution. Most studies of bacteriophage ecology have been undertaken at temperate latitudes. Data on bacteriophages in polar inland waters are scant but the indications are that they play an active and dynamic role in these microbially dominated polar ecosystems. This review summarises what is presently known about polar inland bacteriophages, ranging from subglacial Antarctic lakes to glacial ecosystems in the Arctic. The review examines interactions between bacteriophages and their hosts and the abiotic and biotic variables that influence these interactions in polar inland waters. In addition, we consider the proportion of the bacteria in Arctic and Antarctic lake and glacial waters that are lysogenic and visibly infected with viruses. We assess the relevance of bacteriophages in the microbial loop in the extreme environments of Antarctic and Arctic inland waters with an emphasis on carbon cycling.

  17. Continuum treatment of electronic polarization effect.

    Science.gov (United States)

    Tan, Yu-Hong; Luo, Ray

    2007-03-07

    A continuum treatment of electronic polarization has been explored for in molecular mechanics simulations in implicit solvents. The dielectric constant for molecule interior is the only parameter in the continuum polarizable model. A value of 4 is found to yield optimal agreement with high-level ab initio quantum mechanical calculations for the tested molecular systems. Interestingly, its performance is not sensitive to the definition of molecular volume, in which the continuum electronic polarization is defined. In this model, quantum mechanical electrostatic field in different dielectric environments from vacuum, low-dielectric organic solvent, and water can be used simultaneously in atomic charge fitting to achieve consistent treatment of electrostatic interactions. The tests show that a single set of atomic charges can be used consistently in different dielectric environments and different molecular conformations, and the atomic charges transfer well from training monomers to tested dimers. The preliminary study gives us the hope of developing a continuum polarizable force field for more consistent simulations of proteins and nucleic acids in implicit solvents.

  18. Continuum treatment of electronic polarization effect

    Science.gov (United States)

    Tan, Yu-Hong; Luo, Ray

    2007-03-01

    A continuum treatment of electronic polarization has been explored for in molecular mechanics simulations in implicit solvents. The dielectric constant for molecule interior is the only parameter in the continuum polarizable model. A value of 4 is found to yield optimal agreement with high-level ab initio quantum mechanical calculations for the tested molecular systems. Interestingly, its performance is not sensitive to the definition of molecular volume, in which the continuum electronic polarization is defined. In this model, quantum mechanical electrostatic field in different dielectric environments from vacuum, low-dielectric organic solvent, and water can be used simultaneously in atomic charge fitting to achieve consistent treatment of electrostatic interactions. The tests show that a single set of atomic charges can be used consistently in different dielectric environments and different molecular conformations, and the atomic charges transfer well from training monomers to tested dimers. The preliminary study gives us the hope of developing a continuum polarizable force field for more consistent simulations of proteins and nucleic acids in implicit solvents.

  19. Latest on polarization in electron storage rings

    International Nuclear Information System (INIS)

    Chao, A.W.

    1983-01-01

    The field of beam polarization in electron storage rings is making rapid progress in recent several years. This report is an attempt to summarize some of these developments concerning how to produce and maintain a high level of beam polarization. Emphasized will be the ideas and current thoughts people have on what should and could be done on electron rings being designed at present such as HERA, LEP and TRISTAN. 23 references

  20. Inclusive quasielastic scattering of polarized electrons from polarized nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, J.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Center for Theoretical Physics]|[Universidad de Granada (Spain). Dept. de Fisica Moderna]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Lab. for Nuclear Science]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics; Caballero, J.A. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia]|[Sevilla Univ. (Spain). Dept. de Fisica Atomica, Molecular y Nuclear; Donnelly, T.W. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Center for Theoretical Physics]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Lab. for Nuclear Science]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics; Moya de Guerra, E. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia

    1996-12-23

    The inclusive quasielastic response functions that appear in the scattering of polarized electrons from polarized nuclei are computed and analyzed for several closed-shell-minus-one nuclei with special attention paid to {sup 39}K. Results are presented using two models for the ejected nucleon - when described by a distorted wave in the continuum shell model or by a plane wave in PWIA with on- and off-shell nucleons. Relativistic effects in kinematics and in the electromagnetic current have been incorporated throughout. Specifically, the recently obtained expansion of the electromagnetic current in powers only of the struck nucleon`s momentum is employed for the on-shell current and the effects of the first-order terms (spin-orbit and convection) are compared with the zeroth-order (charge and magnetization) contributions. The use of polarized inclusive quasielastic electron scattering as a tool for determining near-valence nucleon momentum distributions is discussed. (orig.).

  1. Performance of the SLC polarized electron source with high polarization

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Alley, R.K.; Aoyagi, H.

    1993-04-01

    For the 1992 operating cycle of the SLAC Linear Collider (SLC), the polarized electron source (PES) during its maiden run successfully met the pulse intensity and overall efficiency requirements of the SLC. However, the polarization of the bulk GaAs cathode was low (∼27%) and the pulse-to-pulse stability was marginal. We have shown that adequate charge for the SLC can be extracted from a strained layer cathode having P e ∼80% even though the quantum efficiency (QE) is - beam stability. The performance of the PES during the 1993 SLC operating cycle with these and other improvements is discussed

  2. Polarization calculations for electron storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.

    1988-05-01

    A computer program called SMILE has been developed to calculate the equilibrium polarization in a high-energy electron storage ring. It can calculate spin resonances to arbitrary orders, in principle. Results of polarization calculations are shown for a variety of storage ring models, to elucidate various aspects of the behaviour of the polarization, such as the effects of machine symmetry, beam energy spread, and transverse momentum recoils, etc. Reasonable agreement is obtained with some experimental data from measurements at SPEAR. 12 refs., 12 figs

  3. KEK/NAGOYA/SLAC: Highly polarized electrons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In the push by the Japanese KEK Laboratory, in collaboration with university groups and overseas laboratories, to develop new techniques for the future Japan electronpositron collider (JLC), a recent achievement is a significant increase in the efficient yield of highly polarized electrons

  4. Measurement of inclusive quasielastic scattering of polarized electrons from polarized 3He

    International Nuclear Information System (INIS)

    Woodward, C.E.; Beise, E.J.; Belz, J.E.; Carr, R.W.; Filippone, B.W.; Lorenzon, W.B.; McKeown, R.D.; Mueller, B.; O'Neill, T.G.; Dodson, G.; Dow, K.; Farkhondeh, M.; Kowalski, S.; Lee, K.; Makins, N.; Milner, R.; Thompson, A.; Tieger, D.; van den Brand, J.; Young, A.; Yu, X.; Zumbro, J.

    1990-01-01

    We report a measurement of the asymmetry in spin-dependent quasielastic scattering of longitudinally polarized electrons from a polarized 3 He gas target. This measurement represents the first demonstration of a new method for studying electromagnetic nuclear structure: the scattering of polarized electrons from a polarized nuclear target. The measured asymmetry is in good agreement with a Faddeev calculation and supports the picture of spin-dependent quasielastic scattering from polarized 3 He as predominantly scattering from a polarized neutron

  5. Polarization of a stored electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.

    1981-07-01

    Synchrotron radiation by a point charge is a familiar subject in classical electrodynamics. Perhaps less familiar are some quantum mechanical corrections to the classical results. Some of those quantum aspects of synchrotron radiation are described. One of the quantum effects leads to the expectation that electrons in a storage ring will polarize themselves to 92% - a surprisingly high value. A semi-classical derivation of the quantum effects is given. An effort has been made to minimize the need of using quantum mechanics. Results are put together to derive a final expression of beam polarization. Conditions under which the expected 92% polarization is destroyed are found and attributed to depolarization resonances. The various depolarization mechanisms are first illustrated by an idealized example and then systematically treated by a matrix formalism. It is shown that the strength of depolarization is specified by a key quantity called the spin chromaticity. Finally as an application of the obtained results, an estimate of the achievable level of beam polarization for two existing electron storage rings, SPEAR and PEP, is given.

  6. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  7. Polarized electronic sources for future e+/e- linear colliders

    International Nuclear Information System (INIS)

    Tang, H.; Alley, R.K.; Clendenin, J.E.

    1997-05-01

    Polarized electron beams will play a crucial role in maximizing the physics potential for future e + /e - linear colliders. We will review the SLC polarized electron source (PES), present a design for a conventional PES for the Next Linear Collider (NLC), and discuss the physics issues of a polarized RF gun

  8. Tests of QCD with polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Pavel, T.J.; SLD Collaboration

    1996-08-01

    We present three measurements that exploit the highly-polarized incident electrons of the SLC facility to probe QCD and the hadronization process. We observe preliminary evidence for leading particle production in hadronic decays of the Zo to light-quark pairs. In a high-purity sample of quark jets, the momentum spectra of p, A0, and K(-) are harder than those of p(bar), A(bar)0, and K(+), supporting the hypothesis that faster particles in jets are more likely to carry the primary quark or antiquark of the jet. Second, we present an improved limit on jet handedness, which seeks to measure the transport of quark spin through the hadronization process. Finally, we search for a correlation of the three jet event orientation with the Zo spin direction, which would indicate new physics beyond the Standard model.

  9. Optically pumped electron spin polarized targets for use in the production of polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1979-01-01

    The production of relatively dense electron spin polarized alkali metal vapor targets by optical pumping with intense cw dye lasers is discussed. The target density and electron spin polarization depend on the dye laser intensity and bandwidth, the magnetic field at the target, and the electron spin depolarization time. For example in a magnetic field of 1.5 x 10 3 G, and using 1 W dye laser with a bandwidth of 10 10 Hz one can construct an electron spin polarized Na vapor target with a target thickness of 1.6 x 10 13 atoms/cm 2 and an average electron spin polarization of about 90% even though the Na atoms are completely depolarized at every wall collision. Possible uses of the electron spin polarized targets for the production of intense beams of polarized H - or 3 He - ions are discussed. (orig.)

  10. EPIC - an electron-polarized ion collider

    International Nuclear Information System (INIS)

    Cameron, J.M.

    1999-01-01

    As discussed earlier in this workshop, we have been studying at the Indiana University Cyclotron Facility (IUCF) for some time the potential of a facility-the Light Ion Spin Synchrotron (LISS)- focusing on reactions induced by polarized nucleons at ∼ 1 to 20 GeV. The technology would extrapolate from what we have learned using our existing Cooler ring using internal polarized targets. Indeed, these techniques are most viable at higher energies where the loss of the stored beam is due to the nuclear reactions which are of interest and not that of multiple Coulomb scattering which dominate in our present energy range. However, while the internal targets are not exactly fixed, they certainly do not contribute to the available energy in the center of momentum frame. Consequently, the energy and momentum which can be effective explored are 6 GeV and 3 GeV/c respectively, about the same range that we expect to explore using electromagnetic probes using the enhanced Thomas Jefferson National Accelerator Laboratory electron beam. Looking at the structure of hadrons, as we currently understand it, one can divide it into four size scales. The LISS facility would permit studies of the manifestation of the nucleon substructure but generally would not get to scales where one would only have incoherent interactions at the partonic level. Following in a path already trodden by our European colleagues, we have recently started to look at the possibility of adding an electronic collider option to our plans. This would significantly increase the kinematic range, with 25 GeV protons and 4 GeV electrons (one gets over 20 GeV in the center of mass-equivalent to about 200 GeV on a fixed proton target). The accessible range provides coverage up to Q 2 = 20 GeV/ c 2 and down to x ∼ 10 -2 (here x = Q 2 /2Mv, the usual Bjorken scaling variable). As the energy of both beams would be variable, one can cover the whole range between HERMES and CERN/FNAL muon beams. Examples of the range of

  11. Feasibility studies of a polarized positron source based on the Bremsstrahlung of polarized electrons

    International Nuclear Information System (INIS)

    Dumas, J.

    2011-09-01

    The nuclear and high-energy physics communities have shown a growing interest in the availability of high current, highly-polarized positron beams. A sufficiently energetic polarized photon or lepton incident on a target may generate, via Bremsstrahlung and pair creation within a solid target foil, electron-positron pairs that should carry some fraction of the initial polarization. Recent advances in high current (> 1 mA) spin polarized electron sources at Jefferson Lab offer the perspective of creating polarized positrons from a low energy electron beam. This thesis discusses polarization transfer from electrons to positrons in the perspective of the design optimization of a polarized positron source. The PEPPo experiment, aiming at a measurement of the positron polarization from a low energy (< 10 MeV) highly spin polarized electron beam is discussed. A successful demonstration of this technique would provide an alternative scheme for the production of low energy polarized positrons and useful information for the optimization of the design of polarized positron sources in the sub-GeV energy range. (author)

  12. Scattering of polarized low-energy electrons by ferromagnetic metals

    International Nuclear Information System (INIS)

    Helman, J.S.

    1981-01-01

    A source of spin polarized electrons with remarkable characteristics based on negative electron affinity (NEA) GaAs has recently been developed. It constitutes a unique tool to investigate spin dependent interactions in electron scattering processes. The characteristics and working principles of the source are briefly described. Some theoretical aspects of the scattering of polarized low-energy electrons by ferromagnetic metals are discussed. Finally, the results of the first polarized low-energy electron diffraction experiment using the NEA GaAs source are reviewed; they give information about the surface magnetization of ferromagnetic Ni (110). (Author) [pt

  13. Molecular electron recollision dynamics in intense circularly polarized laser pulses

    Science.gov (United States)

    Bandrauk, André D.; Yuan, Kai-Jun

    2018-04-01

    Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.

  14. Electron Cyclotron Waves Polarization in the TJII Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, A.; Martinez-Fernandez, J.; Wagner, D.

    2013-05-01

    This report describes the theoretical calculations related with the electron cyclotron (EC) waves polarization control in the TJII stellarator. Two main aspects will be distinguished: the determination of the vacuum polarization that the wave must exhibit if a given propagation mode in a cold plasma is desired and the calculation of the behavior of the grooved polarizers and other transmission systems used to launch the vacuum wave with the required polarization. (Author) 13 refs.

  15. Imaging differential polarization microscope with electronic readout

    International Nuclear Information System (INIS)

    Mickols, W.; Tinoco, I.; Katz, J.E.; Maestre, M.F.; Bustamante, C.

    1985-01-01

    A differential polarization microscope forms two images: one of the transmitted intensity and the other due to the change in intensity between images formed when different polarizations of light are used. The interpretation of these images for linear dichroism and circular dichroism are described. The design constraints on the data acquisition systems and the polarization modulation are described. The advantage of imaging several biological systems which contain optically anisotropic structures are described

  16. Spin polarized electron tunneling and magnetoresistance in molecular junctions.

    Science.gov (United States)

    Szulczewski, Greg

    2012-01-01

    This chapter reviews tunneling of spin-polarized electrons through molecules positioned between ferromagnetic electrodes, which gives rise to tunneling magnetoresistance. Such measurements yield important insight into the factors governing spin-polarized electron injection into organic semiconductors, thereby offering the possibility to manipulate the quantum-mechanical spin degrees of freedom for charge carriers in optical/electrical devices. In the first section of the chapter a brief description of the Jullière model of spin-dependent electron tunneling is reviewed. Next, a brief description of device fabrication and characterization is presented. The bulk of the review highlights experimental studies on spin-polarized electron tunneling and magnetoresistance in molecular junctions. In addition, some experiments describing spin-polarized scanning tunneling microscopy/spectroscopy on single molecules are mentioned. Finally, some general conclusions and prospectus on the impact of spin-polarized tunneling in molecular junctions are offered.

  17. The S-DALINAC polarized electron injector SPIN

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, Christian; Bahlo, Thore; Bangert, Phillip; Barday, Roman; Bonnes, Uwe; Brunken, Marco; Burandt, Christoph; Eichhorn, Ralf; Enders, Joachim; Espig, Martin; Platz, Markus; Poltoratska, Yuliya; Roth, Markus; Schneider, Fabian; Wagner, Markus; Weber, Antje; Zwicker, Benjamin [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Ackermann, Wolfgang; Mueller, Wolfgang F.O.; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet, Darmstadt (Germany); Aulenbacher, Kurt [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Mainz (Germany)

    2011-07-01

    A source of polarized electrons has been installed at the superconducting 130 MeV Darmstadt electron linac S-DALINAC. Polarized electrons are generated by irradiating a GaAs cathode with pulsed Ti:Sapphire and diode lasers and preaccelerated to 100 keV. A Wien filter and 100 keV Mott polarimeter are used for spin manipulation and polarization measurement and various beam diagnostic elements are installed. To measure the beam polarization downstream of the superconducting injector linac a 5-10 MeV Mott polarimeter and a Compton-transmission polarimeter have been developed. We report on the status of the polarized electron source and foreseen experiments.

  18. Spin polarized Auger electron spectroscopy of Fe and Ni

    Science.gov (United States)

    Anilturk, O. S.; Koymen, A. R.

    2001-06-01

    Surface sensitive experiments, in which the spin-polarized electrons are involved, play an important role for magnetic characterization, since the spin-polarized electrons are fingerprints for the local magnetization. Scanning electron microscope with polarization analysis (SEMPA) is one of the most powerful tools to investigate the surface magnetic domain structure of magnetic materials. On the other hand, at energies high enough to generate a two-hole final state arising from Auger transitions, it is possible to observe the spin polarization of the Auger electrons. These electrons reveal element-specific local magnetic information, particularly valuable for surface magnetic studies with composite systems. By using the uniqueness of the UTA-SEMPA tool, one can obtain the magnetic domain picture and also perform spin-polarized Auger electron spectroscopy studies by probing a single domain at the surface. In this study, precisely knowing the probed domain, spin polarization of electrons from super Coster-Kronig MMM Auger emissions on Fe and Ni samples have been investigated. The polarization enhancement above the 3p(M23) threshold is observed on both samples.

  19. Spin polarized Auger electron spectroscopy of Fe and Ni

    International Nuclear Information System (INIS)

    Anilturk, O. S.; Koymen, A. R.

    2001-01-01

    Surface sensitive experiments, in which the spin-polarized electrons are involved, play an important role for magnetic characterization, since the spin-polarized electrons are fingerprints for the local magnetization. Scanning electron microscope with polarization analysis (SEMPA) is one of the most powerful tools to investigate the surface magnetic domain structure of magnetic materials. On the other hand, at energies high enough to generate a two-hole final state arising from Auger transitions, it is possible to observe the spin polarization of the Auger electrons. These electrons reveal element-specific local magnetic information, particularly valuable for surface magnetic studies with composite systems. By using the uniqueness of the UTA-SEMPA tool, one can obtain the magnetic domain picture and also perform spin-polarized Auger electron spectroscopy studies by probing a single domain at the surface. In this study, precisely knowing the probed domain, spin polarization of electrons from super Coster - Kronig MMM Auger emissions on Fe and Ni samples have been investigated. The polarization enhancement above the 3p(M 23 ) threshold is observed on both samples. [copyright] 2001 American Institute of Physics

  20. Emittance measurements at the Darmstadt source of polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ingenhaag, Christoph; Barday, Roman; Eckardt, Christian; Enders, Joachim; Goeoek, Alf; Poltoratska, Yuliya; Wagner, Markus [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany)

    2009-07-01

    Emittance measurements for low-energy (100 keV) electron beams are presented. Data was acquired at the teststand of the source of polarized electrons which is being developed for future implementation at the superconducting Darmstadt electron linear accelerator S-DALINAC. Polarized electrons are produced by laser irradiation of a strained-superlattice GaAs cathode. The emittance was determined by measuring the beam profile as a function of the focusing strength of a solenoid for various operation modes (intensity, laser spot size, laser wavelength, pulsed vs. DC laser operation) of the electron source.

  1. Stimulated emission of photoexcited polarized electrons from GaAs

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Melikyan, R.A.

    1986-01-01

    The influence of electric field on the emission of photoexcited polarized electrons is investigated. The thermalization of excited electrons is shown to be prevented at the field intensity in semiconductor of about 3 kV/cm. As a consequence the quantum yield grows up to unity. With the increase of the output energy of electrons the effective operation time of photocathode also increases

  2. On the possibility of obtaining high-energy polarized electrons on Yerevan synchrotron

    International Nuclear Information System (INIS)

    Melikyan, R.A.

    1975-01-01

    A possibility of producing high-energy polarized electrons on the Yerevan synchrotron is discussed. A review of a number of low-energy polarized electron sources and of some of experiments with high-energy polarized electrons is given

  3. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  4. Polarized electron sources for linear colliders

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Ecklund, S.D.; Miller, R.H.; Schultz, D.C.; Sheppard, J.C.

    1992-07-01

    Linear colliders require high peak current beams with low duty factors. Several methods to produce polarized e - beams for accelerators have been developed. The SLC, the first linear collider, utilizes a photocathode gun with a GaAs cathode. Although photocathode sources are probably the only practical alternative for the next generation of linear colliders, several problems remain to be solved, including high voltage breakdown which poisons the cathode, charge limitations that are associated with the condition of the semiconductor cathode, and a relatively low polarization of ≤5O%. Methods to solve or at least greatly reduce the impact of each of these problems are at hand

  5. Improved Superlattices for Spin-Polarized Electron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Mamaev, Yu.A.; Gerchikov, L.G.; Yashin, Yu.P.; Kuz-michev, V.; Vasiliev, D.; /St. Petersburg Polytechnic Inst.; Maruymama, T.; Clendenin, J.E.; /SLAC; Ustinov, V.M.; Zhukov, A.E.; /Ioffe Phys. Tech. Inst.

    2006-12-08

    Photoemission of polarized electrons from heterostructures based on InAlGaAs/GaAs superlattices with minimum conduction-band offsets is investigated. The comparison of the excitation energy dependence of the photoemission polarization degree with the calculated spectra makes it possible to determine the polarization losses at different stages of the photoemission. A maximum polarization of P = 91% and a quantum efficiency of QE = 0.5% are close to the best results obtained for photocathodes that are based on strained semiconductor superlattices.

  6. Status Report of the New Darmstadt Polarized Electron Injector

    Science.gov (United States)

    Poltoratska, Y.; Barday, R.; Bonnes, U.; Brunken, M.; Eckardt, C.; Eichhorn, R.; Enders, J.; Heßler, C.; Ingenhaag, C.; Müller, W. F. O.; Platz, M.; Roth, M.; Steiner, B.; Wagner, M.; Weiland, T.

    2009-08-01

    We present the status of the polarized injector for the superconducting Darmstadt electron linear accelerator S-DALINAC. An offline teststand of the source was built to test all components of the S-DALINAC polarized injector SPIN. The new electron source will deliver a 100 keV polarized beam and complement the present thermionic source operating at 250 kV. Results of the beam properties measurements will be introduced and an outlook on the upcoming installation of the new injector at the S-DALINAC will be given.

  7. An internal polarized 3He target for electron storage rings

    International Nuclear Information System (INIS)

    Kramer, L.H.; Massachusetts Inst. of Tech., Cambridge, MA; DeSchepper, D.; Massachusetts Inst. of Tech., Cambridge, MA; Milner, R.G.; Massachusetts Inst. of Tech., Cambridge, MA; Pate, S.F.; Massachusetts Inst. of Tech., Cambridge, MA; Shin, T.; Massachusetts Inst. of Tech., Cambridge, MA

    1995-01-01

    We describe an internal polarized 3 He target currently under construction which will be used in several electron storage ring experiments. The target is based on the technique of metastability exchange laser optical pumping, where the polarized atoms flow into a cryogenically-cooled storage cell. This novel technique allows for high precision measurements where the beam interacts with the pure atomic species. Both the HERMES experiment at DESY and the BLAST detector at the MIT Bates Laboratory will use the polarized 3 He target in their measurements. Details of the target system, including the provisions needed to incorporate the target into the electron storage ring, are presented. (orig.)

  8. Water-cooled electronics

    CERN Document Server

    Dumont, G; Righini, B

    2000-01-01

    LHC experiments demand on cooling of electronic instrumentation will be extremely high. A large number of racks will be located in underground caverns and counting rooms, where cooling by conventional climatisation would be prohibitively expensive. A series of tests on the direct water cooling of VMEbus units and of their standard power supplies is reported. A maximum dissipation of 60 W for each module and more than 1000 W delivered by the power supply to the crate have been reached. These values comply with the VMEbus specifications. (3 refs).

  9. Engineering the spin polarization of one-dimensional electrons

    Science.gov (United States)

    Yan, C.; Kumar, S.; Thomas, K.; See, P.; Farrer, I.; Ritchie, D.; Griffiths, J.; Jones, G.; Pepper, M.

    2018-02-01

    We present results of magneto-focusing on the controlled monitoring of spin polarization within a one-dimensional (1D) channel, and its subsequent effect on modulating the spin–orbit interaction (SOI) in a 2D GaAs electron gas. We demonstrate that electrons within a 1D channel can be partially spin polarized as the effective length of the 1D channel is varied in agreement with the theoretical prediction. Such polarized 1D electrons when injected into a 2D region result in a split in the odd-focusing peaks, whereas the even peaks remain unaffected (single peak). On the other hand, the unpolarized electrons do not affect the focusing spectrum and the odd and even peaks remain as single peaks, respectively. The split in odd-focusing peaks is evidence of direct measurement of spin polarization within a 1D channel, where each sub-peak represents the population of a particular spin state. Confirmation of the spin splitting is determined by a selective modulation of the focusing peaks due to the Zeeman energy in the presence of an in-plane magnetic field. We suggest that the SOI in the 2D regime is enhanced by a stream of polarized 1D electrons. The spatial control of spin states of injected 1D electrons and the possibility of tuning the SOI may open up a new regime of spin-engineering with application in future quantum information schemes.

  10. The SLAC Polarized Electron Source and Beam for E-158

    Energy Technology Data Exchange (ETDEWEB)

    Humensky, Thomas B

    2003-01-16

    SLAC E-158 is making the first measurement of parity violation in Moeller scattering. E-158 measures the right-left cross-section asymmetry, A{sub LR}, in the scattering of a 45-GeV polarized electron beam off unpolarized electrons in a liquid hydrogen target. E-158 plans to measure the expected Standard Model asymmetry of {approx} 10{sup -7} to an accuracy of better than 10{sup -8}. This paper discusses the performance of the SLAC polarized electron source and beam during E-158's first physics run in April/May 2002.

  11. Spin polarization effects in low-energy elastic electron scattering

    International Nuclear Information System (INIS)

    Beerlage, M.J.M.

    1982-01-01

    This work describes experiments on the role of spin polarization in elastic electron scattering. Chapter I introduces the topic and in chapter II elastic scattering of 10-50 eV electrons from Ar and Kr in the angular range between 40 0 and 110 0 is studied. Noble gases have been chosen as targets in view of their relative theoretical simplicity. Below 25 eV scattered intensities measured by various authors exhibit severe disagreements. However, in the entire energy range, the spin polarization results can reasonably well be used to point out the shortcomings of the available theoretical data. The main topic of chapter III is the first attempt to determine the magnitude of a polarization phenomenon - in elastic electron scattering from the optically active camphor molecule - of which the existence has recently been predicted qualitatively from the absence of parity symmetry in such molecules. Besides these studies on gaseous targets the author has initiated a scattering experiment on crystal surfaces, using spin polarized electrons. Within the framework of this project a large new experimental arrangement has been built up. It consists of a spin polarized electron source and a LEED scattering chamber. Design, construction and test results, showing the usefulness of the set-up, are described in the last chapter. (Auth.)

  12. Electron localization in water clusters

    International Nuclear Information System (INIS)

    Landman, U.; Barnett, R.N.; Cleveland, C.L.; Jortner, J.

    1987-01-01

    Electron attachment to water clusters was explored by the quantum path integral molecular dynamics method, demonstrating that the energetically favored localization mode involves a surface state of the excess electron, rather than the precursor of the hydrated electron. The cluster size dependence, the energetics and the charge distribution of these novel electron-cluster surface states are explored. 20 refs., 2 figs., 1 tab

  13. Parity violation in polarized electron scattering

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1980-10-01

    The weak forces are responsible for the decay of radioactive nuclei, and it was in these decay processes where parity non-conservation was first observed. Beta decay occurs through emission of e + or e - particles, indicating that the weak force can carry charge of both signs, and it was natural to speculate on the existence of a neutral component of the weak force. Even though weak neutral forces had not been observed it was conjectured that a neutral component of weak decay could exist, and Zel'dovich in 1957 suggested that parity violating effects may be observable in electron scattering and in atomic spectra. More than twenty years have passed since the early conjectures, and a great deal has been learned. Progress in quantum field theory led to the development of the SU(2) x U(1) gauge theory of weak and electromagnetic interactions and provided a renormalizable theory with a minimum of additional assumptions. Gauge theories predicted the existence of a new force, the neutral current interaction. This new interaction was first seen in 1973 in the Gargamelle bubble chamber at CERN. Today the neutral currents are accepted as well established, and it is the details of the neutral current structure that occupy attention. In particular the role that electrons play cannot be tested readily in neutrino beams (recent neutrino-electron scattering experiments are, however, rapidly improving this situation) and therefore interest in electron-hadron neutral current effects has been high. Parity violation is a unique signature of weak currents, and measurements of its size are a particularly important and sensitive means for determining the neutral current structure

  14. Polarized View of Supercooled Liquid Water Clouds

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas

    2016-01-01

    Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 C present a well known aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August- September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8deg intervals within 60deg from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135deg and 165deg. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT),which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features

  15. Polarized Parton Distributions at an Electron-Ion Collider

    CERN Document Server

    Ball, Richard D.; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan

    2014-01-01

    We study the potential impact of inclusive deep-inelastic scattering data from a future electron-ion collider (EIC) on longitudinally polarized parton distribution (PDFs). We perform a PDF determination using the NNPDF methodology, based on sets of deep-inelastic EIC pseudodata, for different realistic choices of the electron and proton beam energies. We compare the results to our current polarized PDF set, NNPDFpol1.0, based on a fit to fixed-target inclusive DIS data. We show that the uncertainties on the first moments of the polarized quark singlet and gluon distributions are substantially reduced in comparison to NNPDFpol1.0, but also that more measurements may be needed to ultimately pin down the size of the gluon contribution to the nucleon spin.

  16. Relaxation of femtosecond photoexcited electrons in a polar indirect ...

    Indian Academy of Sciences (India)

    A model calculation is given for the energy relaxation of a non-equilibrium distribution of hot electrons (holes) prepared in the conduction (valence) band of a polar indirect band-gap semiconductor, which has been subjected to homogeneous photoexcitation by a femtosecond laser pulse. The model assumes that the ...

  17. Polarized electron-muon neutrino scattering to electron and neutrino in noncommutative space

    Directory of Open Access Journals (Sweden)

    MM Ettefaghi

    2011-06-01

    Full Text Available For neutrino scattering from polarized electron, the weak interaction term in the cross section is significantly suppressed by the polarized term. The magnetic moment term does not receive any correction from the electron polarization. Hence, the study of the magnetic moment of neutrinos through scattering from the polarized electron leads to a stronger bound on the neutrino magnetic moment compared with the unpolarized case. On the other hand, neutrinos which are electrically neutral can couple directly with photons in Noncommutative (NC QED. In this paper, we calculate the NC QED corrections on this scattering are calculated. The phase difference between the NC term and the polarized weak interaction term is π/2. Therefore, the NC term does not destroy the above suppression.

  18. Electron Interference in Molecular Circular Polarization Attosecond XUV Photoionization

    Directory of Open Access Journals (Sweden)

    Kai-Jun Yuan

    2015-01-01

    Full Text Available Two-center electron interference in molecular attosecond photoionization processes is investigated from numerical solutions of time-dependent Schrödinger equations. Both symmetric H\\(_2^+\\ and nonsymmetric HHe\\(^{2+}\\ one electron diatomic systems are ionized by intense attosecond circularly polarized XUV laser pulses. Photoionization of these molecular ions shows signature of interference with double peaks (minima in molecular attosecond photoelectron energy spectra (MAPES at critical angles \\(\\vartheta_c\\ between the molecular \\(\\textbf{R}\\ axis and the photoelectron momentum \\(\\textbf{p}\\. The interferences are shown to be a function of the symmetry of electronic states and the interference patterns are sensitive to the molecular orientation and pulse polarization. Such sensitivity offers possibility for imaging of molecular structure and orbitals.

  19. Optical studies of polarized-electron-noble-gas collisions

    International Nuclear Information System (INIS)

    Gay, T.I.; Furst, J.E.; Geesmann, H.; Khakoo, M.A.; Madison, D.H.; Wijayaratna, W.M.K.P.; Bartschat, K.

    1992-01-01

    We have measured the Stoke's parameters of light emitted following impact excitation of He and Xe by transversely-polarized electrons. For He, the 2 3 S-3 3 P, 389 nm transition was studied in an effort to systematically develop a highly accurate optical electron polarimeter. The 6 3 P 2 -6 3 D 3 , 882 nm transition in Xe was used to assess the importance of spin-dependent forces on the continuum electron for this target. We attempted (and failed) to made the first optical observations of Mott scattering. (Author)

  20. Study of deep inelastic scattering of polarized electrons off polarized deuterons

    International Nuclear Information System (INIS)

    Kuriki, M.

    1996-03-01

    This thesis describes a 29GeV electron - nucleon scattering experiment carried out at Stanford Linear Accelerator Center (SLAC). Highly polarized electrons are scattered off a polarized ND 3 target. Scattered electrons are detected by two spectrometers located in End Station A (ESA) at angles of 4.5 degrees and 7 degrees with respect to the beam axis. We have measured the spin structure function g 1 of deuteron over the range of 0.029 2 2 . This integral indicates a discrepancy of more than three standard deviations from the prediction of the Ellis-Jaffe sum rule, 0.068±0.005 at Q 2 = 3.0(GeV/c) 2 while our result of g 1 d in good agreement with SMC results. Combined with g 1 of the proton, the measurement of ∫ 0 1 (g 1 d -g 1 n ) is 0.169±0.008. We also obtained the strong coupling constant at Q 2 = 3.0(GeV/c) 2 to be 0.417 -0.110 +0.086 , using the power correction for the sum rule up to third order of α s . This result is in agreement with the strong coupling constant α s (Q 2 ) = 3.0(GeV/c 2 ) obtained from various experiments. Using our deuteron results and the axial vector couplings of hyperon decays, the total quark polarization along the nucleon spin is found to be 0.286±.055, implying that quarks carry only 30% of the nucleon spin. The strange sea quark polarization is also determined to be -0.101 ± .023. These measurements are in agreement with other experiments and provide the world's most precise measurement of these quark polarizations. 80 refs., 151 figs., 23 tabs

  1. Parity nonconservation in polarized electron scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, C.Y.

    1979-10-01

    Recent observations of parity violation in inelastic scattering of electrons at high energy is discussed with reference to the process e(polarized) + D(unpolarized) ..-->.. e + X. The kinetics of this process, the idealized case of scattering from free quark targets, experimental techniques and results, and relations to atomic physics of parity violation in bismuth and thallium atoms with a model independent analysis. 17 references. (JFP)

  2. Parity nonconservation in polarized electron scattering at high energies

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1979-10-01

    Recent observations of parity violation in inelastic scattering of electrons at high energy is discussed with reference to the process e(polarized) + D(unpolarized) → e + X. The kinetics of this process, the idealized case of scattering from free quark targets, experimental techniques and results, and relations to atomic physics of parity violation in bismuth and thallium atoms with a model independent analysis. 17 references

  3. RKKY interaction for the spin-polarized electron gas

    Science.gov (United States)

    Valizadeh, Mohammad M.; Satpathy, Sashi

    2015-11-01

    We extend the original work of Ruderman, Kittel, Kasuya and Yosida (RKKY) on the interaction between two magnetic moments embedded in an electron gas to the case where the electron gas is spin-polarized. The broken symmetry of a host material introduces the Dzyaloshinsky-Moriya (DM) vector and tensor interaction terms, in addition to the standard RKKY term, so that the net interaction energy has the form ℋ = JS1 ṡS2 + D ṡS1 ×S2 + S1 ṡΓ ↔ṡS2. We find that for the spin-polarized electron gas, a nonzero tensor interaction Γ ↔ is present in addition to the scalar RKKY interaction J, while D is zero due to the presence of inversion symmetry. Explicit expressions for these are derived for the electron gas both in 2D and 3D and we show that the net magnetic interaction can be expressed as a sum of Heisenberg and Ising like terms. The RKKY interaction exhibits a beating pattern, caused by the presence of the two Fermi momenta kF↑ and kF↓, while the R-3 distance dependence of the original RKKY result for the 3D electron gas is retained. This model serves as a simple example of the magnetic interaction in systems with broken symmetry, which goes beyond the RKKY interaction.

  4. Exp6-polar thermodynamics of dense supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, S; Fried, L E

    2007-12-13

    We introduce a simple polar fluid model for the thermodynamics of dense supercritical water based on a Buckingham (exp-6) core and point dipole representation of the water molecule. The proposed exp6-polar thermodynamics, based on ideas originally applied to dipolar hard spheres, performs very well when tested against molecular dynamics simulations. Comparisons of the model predictions with experimental data available for supercritical water yield excellent agreement for the shock Hugoniot, isotherms and sound speeds, and are also quite good for the self-diffusion constant and relative dielectric constant. We expect the present approach to be also useful for other small polar molecules and their mixtures.

  5. A polarized look at nucleons: Laser electron gamma source

    Energy Technology Data Exchange (ETDEWEB)

    The LEGS Collaboration

    1991-12-31

    As the title suggests we are going to look at reactions induced on nucleons by polarized photons. The results I am going to show today are from the Laser Electron Gamma Source, or ``LEGS`` facility, at Brookhaven National Laboratory. At LEGS, gamma ray beams are produced by backscattering laser light from relativistic electrons. I will only summarize the main characteristics of this facility, and leave an in depth description to Dr. Schaerf who will discuss LEGS and other similar backscattering facilities on Wednesday. Reactions with polarized photons inevitably reflect interference terms that for the most part remain hidden in spin-averaged unpolarized measurements. This provides a tool for probing interactions that depend upon spin. In particular, we are going to look today at two cases where the polarization is used to probe the tensor interaction. First, we will examine the tensor force between a proton-neutron pair in deuterium. Secondly, we will examine the tensor force between quarks in a proton that produces a small E2 component that is mixed with the predominantly M1 excitation of the delta resonance.The magnitude of this E2 components provides a sensitive probe of the structure of the Nucleon.

  6. A polarized look at nucleons: Laser electron gamma source

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    As the title suggests we are going to look at reactions induced on nucleons by polarized photons. The results I am going to show today are from the Laser Electron Gamma Source, or LEGS'' facility, at Brookhaven National Laboratory. At LEGS, gamma ray beams are produced by backscattering laser light from relativistic electrons. I will only summarize the main characteristics of this facility, and leave an in depth description to Dr. Schaerf who will discuss LEGS and other similar backscattering facilities on Wednesday. Reactions with polarized photons inevitably reflect interference terms that for the most part remain hidden in spin-averaged unpolarized measurements. This provides a tool for probing interactions that depend upon spin. In particular, we are going to look today at two cases where the polarization is used to probe the tensor interaction. First, we will examine the tensor force between a proton-neutron pair in deuterium. Secondly, we will examine the tensor force between quarks in a proton that produces a small E2 component that is mixed with the predominantly M1 excitation of the delta resonance.The magnitude of this E2 components provides a sensitive probe of the structure of the Nucleon.

  7. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  8. Electron-Spin Filters Would Offer Spin Polarization Greater than 1

    Science.gov (United States)

    Ting, David Z.

    2009-01-01

    A proposal has been made to develop devices that would generate spin-polarized electron currents characterized by polarization ratios having magnitudes in excess of 1. Heretofore, such devices (denoted, variously, as spin injectors, spin polarizers, and spin filters) have typically offered polarization ratios having magnitudes in the approximate range of 0.01 to 0.1. The proposed devices could be useful as efficient sources of spin-polarized electron currents for research on spintronics and development of practical spintronic devices.

  9. Coccolithophorids in polar waters: Trigonaspis spp. revisited

    DEFF Research Database (Denmark)

    Thomsen, Helge Abildhauge; Østergaard, Jette B.

    2015-01-01

    of crystallites that cover the surfaces of both the tower-shaped flagellar pole coccoliths and the disc-shaped body coccoliths are the keystone features of the genus. Circumstantial evidence exists linking species of Trigonaspis with species of Pappomonas in haploid-diploid life cycles.......A group of weakly calcified coccolithophorid genera and species were described from polar regions several decades ago. In the interim period a few additional findings have been reported adding to the morphological and biogeographical databases of some of the species. The holococcolithophorid genus...... Trigonaspis is revisited here with the purpose of providing, based on additional sampling from both polar regions, an update on species morphology, life history aspects and biogeography. The genus Trigonaspis as currently circumscribed comprises four taxa – two from each polar region. The triangular plates...

  10. Coccolithophorids in polar waters: Wigwamma spp. revisited

    DEFF Research Database (Denmark)

    Thomsen, Helge Abildhauge; Østergaard, Jette B.; Heldal, Mikal

    2013-01-01

    A contingent of weakly calcified coccolithophorid genera and species were described from polar regions almost 40 years ago. In the interim period a few additional findings have been reported enlarging the realm of some of the species. The genus Wigwamma is revisited here with the purpose of provi...... appearance of the coccolith armour of the cell...

  11. DVCS in the fragmentation region of polarized electron

    International Nuclear Information System (INIS)

    Akushevich, I.; Kuraev, E.A.; Nikolaev, N.N.

    2000-01-01

    For the kinematical region when a hard photon is emitted predominantly close to the direction of motion of a longitudinally polarized initial electron and relatively small momentum transfer to a proton we calculate the azimuthal asymmetry of a photon emission. It arises from the interference of the Bethe-Heitler amplitude and those which are described by a heavy photon impact factor. The azimuthal asymmetry does not decrease in the limit of infinite cms energy. The lowest order expression for the impact factor of a heavy photon is presented

  12. Measurement of Deuteron Tensor Polarization in Elastic Electron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Kenneth K. [Univ. of Maryland, College Park, MD (United States)

    2000-01-01

    Nuclear physics traces it roots back to the very beginning of the last century. The concept of the nuclear atom was introduced by Rutherford around 1910. The discovery of the neutron Chadwick in 1932 gave us the concept of two nucleons: the proton and the neutron. The Jlab electron accelerator with its intermediate energy high current continuous wave beam combined with the Hall C high resolution electron spectrometer and a deutron recoil polarimeter provided experiment E94018 with the opportunity to study the deuteron electomagnetic structure, in particular to measure the tensor polarization observable t20, at high four momentum transfers than ever before. This dissertation presents results of JLab experiment E94018.

  13. An active electron polarized scintillating GSO target for neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Baiboussinov, B. [INFN, Sez. di Padova, Via Marzolo 8, 35131 Padova (Italy); Braggio, C., E-mail: braggio@pd.infn.it [INFN, Sez. di Padova, Via Marzolo 8, 35131 Padova (Italy); Dipartimento di Fisica, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Cardini, A. [INFN, Sez. di Cagliari, S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari) (Italy); Carugno, G. [INFN, Sez. di Padova, Via Marzolo 8, 35131 Padova (Italy); Congiu, F. [Dipartimento di Fisica, Universita di Cagliari, S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari) (Italy); Gain, S. [St. Petersburg State Polytechnical University, 195251 St. Petersburg, Polytekhnicheskaya 29 (Russian Federation); Galeazzi, G. [INFN, Laboratori Nazionali di Legnaro, Viale dell Universita, 2 35020 Legnaro (PD) (Italy); Lai, A. [INFN, Sez. di Cagliari, S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari) (Italy); Lehman, A.; Mocci, P.; Mura, A.; Quochi, F.; Saba, M. [Dipartimento di Fisica, Universita di Cagliari, S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari) (Italy); Saitta, B. [INFN, Sez. di Cagliari, S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari) (Italy); Dipartimento di Fisica, Universita di Cagliari, S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari) (Italy); Sartori, G. [INFN, Sez. di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2012-12-01

    The feasibility of an electron-polarized, active target to be used as detector in neutrino scattering experiments, suggested by several theoretical papers, has been investigated. We report on the properties of the paramagnetic crystal Gd{sub 2}SiO{sub 5} (GSO), in which 7.7% of the total number of electrons present can be polarized by lowering the temperature and applying an intense external magnetic field. The material magnetic susceptibility has been measured down to cryogenic temperatures showing that for H=5 T and T=4 K about 80% of the maximum allowed magnetization can be attained. Also the spectral and time response of the crystal have been characterized and the scintillation process has been studied using a photomultiplier to measure the response to gamma rays irradiation and cosmic rays operating the GSO crystal at 13.5 K. An avalanche photodiode (APD) readout of the scintillation signal from the GSO crystal has also been performed, since the magnetic field-independent response of this device allows it to be placed close to the crystal in the cryogenic environment.

  14. Electron ionization and spin polarization control of Fe atom adsorbed graphene irradiated by a femtosecond laser

    International Nuclear Information System (INIS)

    Yu, Dong; Jiang, Lan; Wang, Feng; Li, Xin; Qu, Liangti; Lu, Yongfeng

    2015-01-01

    We investigate the structural properties and ionized spin electrons of an Fe–graphene system, in which the time-dependent density functional theory (TDDFT) within the generalized gradient approximation is used. The electron dynamics, including electron ionization and ionized electron spin polarization, is described for Fe atom adsorbed graphene under femtosecond laser irradiation. The theoretical results show that the electron ionization and ionized electron spin polarization are sensitive to the laser parameters, such as the incident angle and the peak intensity. The spin polarization presents the maximum value under certain laser parameters, which may be used as a source of spin-polarized electrons. - Highlights: • The structural properties of Fe–graphene system are investigated. • The electron dynamics of Fe–graphene system under laser irradiation are described. • The Fe–graphene system may be used as a source of spin-polarized electrons

  15. Electronic predistortion for compensation of polarization-mode dispersion

    Science.gov (United States)

    Hellerbrand, Stephan; Hanik, Norbert; Weiershausen, W.

    2009-01-01

    One of the major impairments in high-speed optical transmission links is Polarization-Mode Dispersion (PMD). We propose the method of electronic predistortion (EPD) for the mitigation of PMD. This approach has already been successfully applied for the compensation of Chromatic Dispersion (CD) and Fiber-Nonlinearities. The advantage of this method is that impairments can efficiently be mitigated without the need for coherent reception. The proposed scheme is based on the possibility to control the optical field at the transmitter by using two complex modulators for the modulation of two orthogonally polarized optical signals. If the physical origin of PMD is exactly known then the ideal predistorted field and the corresponding electrical driving signals can be computed accurately. In practice, however, this information is not available. Therefore it is shown how to determine appropriate driving signals for a set of measured PMD parameters. Measurements will be communicated through a feedback channel in practice. We suggest a possible strategy for application of this technique in scenarios, in which the adaptation speed is intrinsically limited due to the round-trip delay. Numerical simulations reveal that the use of EPD can significantly increase the tolerance towards PMD in comparison to a system without compensation.

  16. High voltage processing of the SLC polarized electron gun

    International Nuclear Information System (INIS)

    Saez, P.; Clendenin, J.; Garden, C.; Hoyt, E.; Klaisner, L.; Prescott, C.; Schultz, D.; Tang, H.

    1993-04-01

    The SLC polarized electron gun operates at 120 kV with very low dark current to maintain the ultra high vacuum (UHV). This strict requirement protects the extremely sensitive photocathode from contaminants caused by high voltage (HV) activity. Thorough HV processing is thus required x-ray sensitive photographic film, a nanoammeter in series with gun power supply, a radiation meter, a sensitive residual gas analyzer and surface x-ray spectrometry were used to study areas in the gun where HV activity occurred. By reducing the electric field gradients, carefully preparing the HV surfaces and adhering to very strict clean assembly procedures, we found it possible to process the gun so as to reduce both the dark current at operating voltage and the probability of HV discharge. These HV preparation and processing techniques are described

  17. Polarized Electron Beams for Nuclear Physics at the MIT Bates Accelerator Center

    CERN Document Server

    Farkhondeh, Manouchehr; Franklin, Wilbur; Ihloff, Ernie; McAllister, Brian; Milner, Richard; North, William; Tschalär, C; Tsentalovich, Evgeni; Wang, Defa; Wang, Dong; Wang, Fuhua; Zolfaghari, Abbasali; Zwart, Townsend; van der Laan, Jan

    2005-01-01

    The MIT Bates Accelerator Center is delivering highly polarized electron beams to its South Hall Ring for use in Nuclear Physics Experiments. Circulating electron currents in excess of 200 mA with polarization of 70% are scattered from a highly polarized, but very thin atomic beam source deuterium target. At the electron source a compact diode laser creates photoemission of quasi-CW mA pulses of polarized electrons at low duty factors from a strained GaAs photocathode. Refurbished RF transmitters provide power to the 2856 MHz linac, accelerating the beam to 850 MeV in two passes before injection into the South Hall Ring. In the ring a Siberian snake serves to maintain a high degree of longitudinal polarization at the BLAST scattering target. A Compton laser back-scattering polarimeter measures the electron beam polarization with a statistical acuracy of 6% every 15 minutes.

  18. Accounting for electronic polarization in non-polarizable force fields.

    Science.gov (United States)

    Leontyev, Igor; Stuchebrukhov, Alexei

    2011-02-21

    The issues of electronic polarizability in molecular dynamics simulations are discussed. We argue that the charges of ionized groups in proteins, and charges of ions in conventional non-polarizable force fields such as CHARMM, AMBER, GROMOS, etc should be scaled by a factor about 0.7. Our model explains why a neglect of electronic solvation energy, which typically amounts to about a half of total solvation energy, in non-polarizable simulations with un-scaled charges can produce a correct result; however, the correct solvation energy of ions does not guarantee the correctness of ion-ion pair interactions in many non-polarizable simulations. The inclusion of electronic screening for charged moieties is shown to result in significant changes in protein dynamics and can give rise to new qualitative results compared with the traditional non-polarizable force field simulations. The model also explains the striking difference between the value of water dipole μ∼ 3D reported in recent ab initio and experimental studies with the value μ(eff)∼ 2.3D typically used in the empirical potentials, such as TIP3P or SPC/E. It is shown that the effective dipole of water can be understood as a scaled value μ(eff) = μ/√ε(el), where ε(el) = 1.78 is the electronic (high-frequency) dielectric constant of water. This simple theoretical framework provides important insights into the nature of the effective parameters, which is crucial when the computational models of liquid water are used for simulations in different environments, such as proteins, or for interaction with solutes.

  19. Electron affinity of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Gaiduk, Alex P.; Pham, Tuan Anh; Govoni, Marco; Paesani, Francesco; Galli, Giulia

    2018-01-16

    Understanding redox and photochemical reactions in aqueous environments requires a precise knowledge of the ionization potential and electron affinity of liquid water. The former has been measured, but not the latter. We predict the electron affinity of liquid water and of its surface from first principles, coupling path-integral molecular dynamics with ab initio potentials, and many-body perturbation theory. Our results for the surface (0.8 eV) agree well with recent pump-probe spectroscopy measurements on amorphous ice. Those for the bulk (0.1–0.3 eV) differ from several estimates adopted in the literature, which we critically revisit. We show that the ionization potential of the bulk and surface are almost identical; instead their electron affinities differ substantially, with the conduction band edge of the surface much deeper in energy than that of the bulk. We also discuss the significant impact of nuclear quantum effects on the fundamental gap and band edges of the liquid.

  20. Control of Electronic Conduction at an Oxide Heterointerface using Surface Polar Adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Christopher

    2011-08-19

    We study the effect of the surface adsorption of a variety of common laboratory solvents on the conductivity at the interface between LaAlO{sub 3} and SrTiO{sub 3}. This interface possesses a range of intriguing physics, notably a proposed connection between the surface state of the LaAlO{sub 3} and the conductivity buried in the SrTiO{sub 3}. We show that the application of chemicals such as acetone, ethanol, and water can induce a large change (factor of three) in the conductivity. This phenomenon is observed only for polar solvents. These data provide experimental evidence for a general polarization-facilitated electronic transfer mechanism.

  1. Evolution of full stokes parameters in polarized radiative transfer of electron cyclotron waves on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Idei, H.; Kubo, S.; Shimozuma, T.; Tsumori, K.; Watari, T.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Takita, Y.; Yoshimura, Y.; Ohkubo, K.; Sakakibara, S.; Narihara, K.; Yamada, I.; Tanaka, K.; Morisaki, T.; Watanabe, K. Y.; Nakanishi, H.; Ohdachi, S.; Emoto, M.; Matsuoka, K.; Motojima, O.; Fujiwara, M. [LHD Experimental Group, National Institute for Fusion Science, Toki, 509-5292 (Japan); Notake, T. [Nagoya University, Faculty of Engineering, Nagoya, 464-8603 (Japan)

    2003-07-01

    To study polarized radiative transfer of electron cyclotron waves, a general equation of polarization evolution that includes the effects of both birefringence and dichroism is dealt with. Full Stokes parameters are used to describe the polarization state and the absorption rate in the equation. The evolution equation on polarization state is able to treat general cases in which two polarization states of Eigenmodes are not necessary to be orthogonal. Using this equation, a single absorption rate in second harmonic electron cyclotron heating is investigated on the Large Helical Device. (authors)

  2. Water Ice Albedo Variations on the Martian Northern Polar Cap

    Science.gov (United States)

    Hale, A. S.; Bass, D. S.; Tamppari, L. K.

    2003-01-01

    The Viking Orbiters determined that the surface of Mars northern residual cap is water ice. Many researchers have related observed atmospheric water vapor abundances to seasonal exchange between reservoirs such as the polar caps, but the extent to which the exchange between the surface and the atmosphere remains uncertain. Early studies of the ice coverage and albedo of the northern residual Martian polar cap using Mariner 9 and Viking images reported that there were substantial internannual differences in ice deposition on the polar cap, a result which suggested a highly variable Martian climate. However, some of the data used in these studies were obtained at differing values of heliocentric solar longitude (L(sub s)). Reevaluation of this dataset indicated that the residual cap undergoes seasonal brightening throughout the summer, and indicated that this process repeats from year to year. In this study we continue to compare Mariner 9 and Viking Orbiter imaging observations and thermal data of the north residual polar cap to data acquired with Mars Global Surveyor s Mars Orbiter Camera (MOC) instrument. In the current study, our goal is to examine all released data from MGS MOC in the northern summer season, along with applicable TES data in order to better understand the albedo variations in the northern summer and their implications on water transport. To date, work has focused primarily on the MOC dataset. In 1999, data acquisition of the northern polar regions began at L(sub s) = 107, although there was little north polar data acquired from L(sub s)= 107 to L(sub s) = 109. We examined a total of 409 images from L(sub s) = 107 to L(sub s)=148. We have also examined data from 2000 from L(sub s)= 93 to L(sub s)= 110; additional progress is ongoing. Here we present a progress report of our observations, and continue to determine their implications for the Martian water cycle.

  3. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J. E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R. E.; Maruyama, T.; Miller, R. H.; Wang, J. W.; Zhou, F.

    2007-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of ≥200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while ≥500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  4. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R.E.; Maruyama, T.; Miller, R.H.; Wang, J.W.; Zhou, F.; SLAC

    2006-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of (ge)200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while (ge)500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  5. Permeation of nanopores by water the effects of channel polarization

    CERN Document Server

    Allen, R; Hansen, J P

    2003-01-01

    Molecular dynamics simulations are used to characterize the permeation by water of cylindrical nanopores, modelling ion channels, as a function of channel radius R and dielectric permittivity epsilon. Intermittent permeation is found in a narrow range around the threshold values of R and epsilon. While channel permeation is highly sensitive to channel polarization effects, no effect on structural properties of the confined water is found on varying epsilon.

  6. Status report of the Darmstadt polarized electron source at the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Poltoratska, Yuliya; Barday, Roman; Bonnes, Uwe; Brunken, Marco; Eichhorn, Ralf; Eckardt, Christian; Enders, Joachim; Ingenhaag, Christoph; Goeoek, Alf; Platz, Markus; Roth, Markus; Wagner, Markus [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Mueller, Wolfgang F.O.; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet, Darmstadt (Germany)

    2009-07-01

    The injection section of the superconducting Darmstadt electron linear accelerator S-DALINAC will soon be extended with a source of polarized electrons SPIN. The set-up consists of a 100 keV GaAs polarized gun and associated beamline including a Chopper-Prebuncher system to affect the time structure of the emitted beam, a laser system to produce polarized light with the required wavelength and an assembly for polarisation manipulation and measurement. We report on the status of the entire construction and review recent results on operation parameters. An outlook on the upcoming installation of the polarized electron source at the S-DALINAC is given.

  7. Consideration of R2Fe14B layers as targets with polarized electrons

    NARCIS (Netherlands)

    Hoogduin, JM; van Klinken, J

    Thin layers of R2Fe14B magnets (R = rare earth) can be magnetized perpendicularly to their planes and can be used as targets of polarized electrons with polarization of approximate to 4% to facilitate Moller/Bhabha and Compton polarimetry of electrons/positrons and photons, respectively. (C) 1998

  8. Multiangular hyperspectral investigation of polarized light in case 2 waters

    Science.gov (United States)

    Tonizzo, A.; Zhou, J.; Gilerson, A.; Chowdhary, J.; Gross, B.; Moshary, F.; Ahmed, S.

    2009-09-01

    The focus of this work is on the dependence of in situ hyperspectral and multiangular polarized data on the size distribution and refractive index of the suspended particles. Underwater polarization measurements were obtained using a polarimeter developed at the Optical Remote Sensing Laboratory of the City College of New York, NY. The degree of polarization (DOP) of the underwater light field in coastal environments was measured and the water-leaving polarized radiance was derived. In-water optical properties were also measured with an ac-9 (WET Labs). Absorption and attenuation spectra are then used to derive information on the dissolved and suspend components in the water medium which are used in a vector radiative transfer code which provides the upwelling radiance. The model was run for various values of the refractive index of mineral particles until the modeled DOP matched the measured one. The relationship between the intensity of the maximum of the DOP and both the refractive index of the mineral particles and the shapes of their size distributions is analyzed in detail.

  9. Electronic Raman signatures of valley polarization, shell filling in graphene quantum dots

    Science.gov (United States)

    Apalkov, V.; Chakraborty, T.

    2011-07-01

    Our theoretical studies of inelastic light scattering from few-electron graphene quantum dots indicate that the electronic Raman spectrum is governed both by the inter-electron Coulomb interaction and single-particle excitations. The spectral features depend on the number of electrons in the quantum dot (QD) and importantly, on the valley polarization. A closed-shell QD shows different properties in polarized and depolarized geometries. The intensity of the polarized Raman peaks is suppressed for closed-shell systems. We also show how Raman spectroscopy in graphene quantum dots can probe both single-particle and collective many-particle charge-density-type excitations.

  10. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry

    International Nuclear Information System (INIS)

    Clarkson, R.B.; Odintsov, B.M.; Ceroke, P.J.; Ardenkjaer-Larsen, J.H.; Fruianu, M.; Belford, R.L.

    1998-01-01

    Carbon chars have been synthesized in our laboratory from a variety of starting materials, by means of a highly controlled pyrolysis technique. These chars exhibit electron paramagnetic resonance (EPR) line shapes which change with the local oxygen concentration in a reproducible and stable fashion; they can be calibrated and used for oximetry. Biological stability and low toxicity make chars good sensors for in vivo measurements. Scalar and dipolar interactions of water protons at the surfaces of chars may be utilized to produce dynamic nuclear polarization (DNP) of the 1 H nuclear spin population in conjunction with electron Zeeman pumping. Low-frequency EPR, DNP and DNP-enhanced MRI all show promise as oximetry methods when used with carbon chars. (author)

  11. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    Abstract. A theoretical model is presented in this paper for degree of spin polarization in a light emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different ...

  12. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    A theoretical model is presented in this paper for degree of spin polarization in alight emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different temperatures and ...

  13. Vibrational properties of water under confinement: Electronic effects

    Energy Technology Data Exchange (ETDEWEB)

    Donadio, D; Cicero, G; Schwegler, E; Sharma, M; Galli, G

    2008-10-17

    We compare calculations of infrared (IR) spectra of water confined between non polar surfaces, carried out using ab initio and classical simulations. Ab-initio results show important differences between IR spectra and vibrational density of state, unlike classical simulations. These differences originate from electronic charge fluctuations at the interface, whose signature is present in IR spectra but not in the density of states. The implications of our findings for the interpretation of experimental data are discussed.

  14. Proceedings of the Workshop on future of nuclear physics in Europe with polarized electrons and photons

    International Nuclear Information System (INIS)

    Didelez, J.P.; Tamas, G.

    1990-01-01

    In the proceedings of the workshop, held at the Institut de Physique Nucleaire in Orsay, France, full texts of 20 contributions are presented. The two main topics were polarized electrons and polarized photons. It has been reported that significant processes have been made recently in the science and technology of polarized electron sources, polarized targets and polarimeters. The relevant tools are therefore now available to complete extensive experimental programs. The 20 papers are indexed and abstracted separately for the INIS database. (R.P.)

  15. Chemically induced dynamic electron polarization: examples of S-T/sub +1/ polarization

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Nelson, D.J.; Mottley, C.

    1977-01-01

    The observation of excess emission in the CIDEP-pulse radiolysis study of several radicals is ascribed to S-T/sub +-1/ polarization. Observations of this S-T/sub +-1/ polarization in H. radical reactions provide examples of hyperfine effect while the study of micellar systems and viscous solutions illustrates the effect of restricting radical diffusion

  16. Organic polar pollutants in surface waters of inland seas.

    Science.gov (United States)

    Orlikowska, Anna; Fisch, Kathrin; Schulz-Bull, Detlef E

    2015-12-30

    Available data about contamination by polar substances are mostly reported for rivers and near-shore waters and only limited studies exists about their occurrence in marine waters. We present concentrations and distribution of several polar pesticides and UV-filters in surface waters of three inland seas, the Baltic, Black and Mediterranean Sea. Many of the investigated compounds were below detection limits, however, those found in off-shore waters raise a concern about their persistence and possible adverse effect on the ecosystem. Despite a longstanding EU-wide ban we were able to detect atrazine in the Mediterranean and the Baltic Sea. Concentrations in the Black Sea were substantially higher. Runoff from agricultural and urban areas was the main transport route to marine ecosystems for investigated compounds, though irgarol in Mediterranean waters was attributed to intense maritime traffic. 2-Phenylbenzimidazole-5-sulfonic acid was the only UV-filter detected in marine waters, while benzophenone-4 was observed in the estuaries. Occurrence of UV-filters was seasonal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Controlling electron-electron correlation in frustrated double ionization of triatomic molecules with orthogonally polarized two-color laser fields

    Science.gov (United States)

    Chen, A.; Kling, M. F.; Emmanouilidou, A.

    2017-09-01

    We demonstrate the control of electron-electron correlation in frustrated double ionization (FDI) of the two-electron triatomic molecule D3 + when driven by two orthogonally polarized two-color laser fields. We employ a three-dimensional semiclassical model that fully accounts for the electron and nuclear motion in strong fields. We analyze the FDI probability and the distribution of the momentum of the escaping electron along the polarization direction of the longer wavelength and more intense laser field. These observables, when considered in conjunction, bear clear signatures of the prevalence or absence of electron-electron correlation in FDI, depending on the time delay between the two laser pulses. We find that D3 + is a better candidate than H2 for demonstrating also experimentally that electron-electron correlation indeed underlies FDI.

  18. Local electron-electron interaction strength in ferromagnetic nickel determined by spin-polarized positron annihilation.

    Science.gov (United States)

    Ceeh, Hubert; Weber, Josef Andreas; Weber, Josef Andreass; Böni, Peter; Leitner, Michael; Benea, Diana; Chioncel, Liviu; Ebert, Hubert; Minár, Jan; Vollhardt, Dieter; Hugenschmidt, Christoph

    2016-02-16

    We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV.

  19. Proceedings of the workshop on photocathodes for polarized electron sources for accelerators

    International Nuclear Information System (INIS)

    Chatwell, M.; Clendenin, J.; Maruyama, T.; Schultz, D.

    1994-04-01

    Application of the GaAs polarized electron source to studies of surface magnetism; thermal stability of Cs on NES III-V-Photocathodes and its effect on quantum efficiency; AFEL accelerator; production and detection of SPIN polarized electrons; emittance measurements on a 100-keV beam from a GaAs photocathode electron gun; modern theory of photoemission and its applications to practical photocathodes; experimental studies of the charge limit phenomenon in GaAs photocathodes; new material for photoemission electron source; semiconductor alloy InGaAsP grown on GaAs substrate; NEA photocathode surface preparation; technology and physics; metalorganic chemical vapor deposition of GaAs-GaAsP spin-polarized photocathodes; development of photocathodes injectors for JLC-ATF; effect of radiation trapping on polarization of photoelectrons from semiconductors; and energy analysis of electrons emitted by a semiconductor photocathode

  20. Proceedings of the workshop on photocathodes for polarized electron sources for accelerators. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Chatwell, M.; Clendenin, J.; Maruyama, T.; Schultz, D. [eds.

    1994-04-01

    Application of the GaAs polarized electron source to studies of surface magnetism; thermal stability of Cs on NES III-V-Photocathodes and its effect on quantum efficiency; AFEL accelerator; production and detection of SPIN polarized electrons; emittance measurements on a 100-keV beam from a GaAs photocathode electron gun; modern theory of photoemission and its applications to practical photocathodes; experimental studies of the charge limit phenomenon in GaAs photocathodes; new material for photoemission electron source; semiconductor alloy InGaAsP grown on GaAs substrate; NEA photocathode surface preparation; technology and physics; metalorganic chemical vapor deposition of GaAs-GaAsP spin-polarized photocathodes; development of photocathodes injectors for JLC-ATF; effect of radiation trapping on polarization of photoelectrons from semiconductors; and energy analysis of electrons emitted by a semiconductor photocathode.

  1. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure

    International Nuclear Information System (INIS)

    Peter, A. John; Lee, Chang Woo

    2012-01-01

    Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration

  2. Accurate measurement of the electron beam polarization in JLab Hall A using Compton polarimetry

    International Nuclear Information System (INIS)

    Escoffier, S.; Bertin, P.Y.; Brossard, M.; Burtin, E.; Cavata, C.; Colombel, N.; Jager, C.W. de; Delbart, A.; Lhuillier, D.; Marie, F.; Mitchell, J.; Neyret, D.; Pussieux, T.

    2005-01-01

    A major advance in accurate electron beam polarization measurement has been achieved at Jlab Hall A with a Compton polarimeter based on a Fabry-Perot cavity photon beam amplifier. At an electron energy of 4.6GeV and a beam current of 40μA, a total relative uncertainty of 1.5% is typically achieved within 40min of data taking. Under the same conditions monitoring of the polarization is accurate at a level of 1%. These unprecedented results make Compton polarimetry an essential tool for modern parity-violation experiments, which require very accurate electron beam polarization measurements

  3. The HERMES polarized hydrogen and deuterium gas target in the HERA electron storage ring

    Science.gov (United States)

    Airapetian, A.; Akopov, N.; Akopov, Z.; Amarian, M.; Andrus, A.; Aschenauer, E. C.; Augustyniak, W.; Avakian, R.; Avetissian, A.; Avetissian, E.; Bailey, P.; Balin, D.; Baumgarten, C.; Beckmann, M.; Belostotski, S.; Bianchi, N.; Blok, H. P.; Böttcher, H.; Borissov, A.; Borysenko, A.; Bouwhuis, M.; Braun, B.; Brüll, A.; Bryzgalov, V.; Capitani, G. P.; Capiluppi, M.; Chen, T.; Ciullo, G.; Contalbrigo, M.; Court, G.; Dalpiaz, P. F.; De Leo, R.; Demey, M.; De Nardo, L.; De Sanctis, E.; Devitsin, E.; Di Nezza, P.; Düren, M.; Ehrenfried, M.; Elalaoui-Moulay, A.; Elbakian, G.; Ellinghaus, F.; Elschenbroich, U.; Fabbri, R.; Fantoni, A.; Fechtchenko, A.; Felawka, L.; Frullani, S.; Gapienko, G.; Gapienko, V.; Garibaldi, F.; Garrow, K.; Gavrilov, G.; Gharibyan, V.; Graw, G.; Grebeniouk, O.; Gregor, I. M.; Hadjidakis, C.; Haeberli, W.; Hafidi, K.; Hartig, M.; Hasch, D.; Heesbeen, D.; Henoch, M.; Hertenberger, R.; Hesselink, W. H. A.; Hillenbrand, A.; Hoek, M.; Holler, Y.; Hommez, B.; Hristova, I.; Iarygin, G.; Ivanilov, A.; Izotov, A.; Jackson, H. E.; Jgoun, A.; Kaiser, R.; Kinney, E.; Kisselev, A.; Kobayashi, T.; Koch, N.; Kolster, H.; Kopytin, M.; Korotkov, V.; Kozlov, V.; Krauss, B.; Krivokhijine, V. G.; Lagamba, L.; Lapikás, L.; Laziev, A.; Lenisa, P.; Liebing, P.; Linden-Levy, L. A.; Lorenzon, W.; Lu, H.; Lu, J.; Lu, S.; Ma, B.-Q.; Maiheu, B.; Makins, N. C. R.; Mao, Y.; Marianski, B.; Marukyan, H.; Mexner, V.; Meyners, N.; Mussa, R.; Mikloukho, O.; Miller, C. A.; Miyachi, Y.; Muccifora, V.; Nagaitsev, A.; Nappi, E.; Naryshkin, Y.; Nass, A.; Negodaev, M.; Nowak, W.-D.; Oganessyan, K.; Ohsuga, H.; Osborne, A.; Pickert, N.; Potterveld, D. H.; Raithel, M.; Reggiani, D.; Reimer, P. E.; Reischl, A.; Reolon, A. R.; Riedl, C.; Rith, K.; Rosner, G.; Rostomyan, A.; Rubacek, L.; Rubin, J.; Ryckbosch, D.; Salomatin, Y.; Sanjiev, I.; Savin, I.; Schill, C.; Schnell, G.; Schüler, K. P.; Seele, J.; Seidl, R.; Seitz, B.; Shanidze, R.; Shearer, C.; Shibata, T.-A.; Shutov, V.; Sinram, K.; Sommer, W.; Stancari, M.; Statera, M.; Steffens, E.; Steijger, J. J. M.; Stenzel, H.; Stewart, J.; Stinzing, F.; Tait, P.; Tanaka, H.; Taroian, S.; Tchuiko, B.; Terkulov, A.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; van der Nat, P.; van der Steenhoven, G.; van Haarlem, Y.; Vetterli, M. C.; Vikhrov, V.; Vincter, M. G.; Vogel, C.; Volmer, J.; Wang, S.; Wendland, J.; Wilbert, J.; Wise, T.; Ybeles Smit, G.; Ye, Y.; Ye, Z.; Yen, S.; Zihlmann, B.; Zupranski, P.

    2005-03-01

    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA electron ring. Atoms diffusing from the center of the storage cell into a side tube are analyzed to determine the atomic fraction and the atomic polarizations. The atoms have a nuclear polarization, the axis of which is defined by an external magnetic holding field. The holding field was longitudinal during 1996-2000, and was changed to transverse in 2001. The design of the target is described, the method for analyzing the target polarization is outlined, and the performance of the target in the various running periods is presented.

  4. Intense source of spin-polarized electrons using laser-induced optical pumping

    International Nuclear Information System (INIS)

    Gray, L.G.; Giberson, K.W.; Cheng, C.; Keiffer, R.S.; Dunning, F.B.; Walters, G.K.

    1983-01-01

    A source of spin-polarized electrons based on a laser-pumped flowing helium afterglow is described. He(2 3 S) atoms contained in the afterglow are optically pumped using circularly polarized 1.08-μm (2 3 S→2 3 P) radiation provided by a NaF (F 2+ )( color-center laser. Spin angular momentum conservation in subsequent chemi-ionization reactions with CO 2 produces polarized electrons that are extracted from the afterglow. At low currents, < or approx. =1 μA, polarizations of approx.70%--80% are achieved. At higher currents the polarization decreases, falling to approx.40% at 50 μA. The spin polarization can be simply reversed (P→-P) and the source is suitable for use in the majority of low-energy spin-dependent scattering experiments proposed to date

  5. Development of a high average current polarized electron source with long cathode operational lifetime

    Energy Technology Data Exchange (ETDEWEB)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

    2007-02-01

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  6. Spin structure function measurements with polarized protons and electrons at HERA

    International Nuclear Information System (INIS)

    Ball, R.D.; Deshpande, A.; Forte, S.; Hughes, V.W.; Lichtenstadt, J.; Ridolfi, G.

    1995-01-01

    Useful insights into the spin structure functions of the nucleon can be achieved by measurements of spin-dependent asymmetries in inclusive scattering of high energy polarized electrons by high energy polarized protons at HERA. Such an experiment would be a natural extension of the polarized lepton-nucleon scattering experiments presently carried out at CERN and SLAC. We present here estimates of possible data in the extended kinematic range of HERA and associated statistical errors. (orig.)

  7. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    Science.gov (United States)

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions.

  8. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions

    OpenAIRE

    Nefiodov, A. V.; Plunien, G.; Soff, G.

    2002-01-01

    The influence of nuclear polarization on the bound-electron $g$ factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron $g$ factor in highly charged ions.

  9. On possibility of time reversal symmetry violation in neutrino elastic scattering on polarized electron target

    Science.gov (United States)

    Sobków, W.; Błaut, A.

    2018-03-01

    In this paper we indicate a possibility of utilizing the elastic scattering of Dirac low-energy (˜ 1 MeV) electron neutrinos (ν _es) on a polarized electron target (PET) in testing the time reversal symmetry violation (TRSV). We consider a scenario in which the incoming ν _e beam is a superposition of left chiral (LC) and right chiral (RC) states. LC ν _e interact mainly by the standard V-A and small admixture of non-standard scalar S_L, pseudoscalar P_L, tensor T_L interactions, while RC ones are only detected by the exotic V + A and S_R, P_R, T_R interactions. As a result of the superposition of the two chiralities the transverse components of ν e spin polarization (T-even and T-odd) may appear. We compute the differential cross section as a function of the recoil electron azimuthal angle and scattered electron energy, and show how the interference terms between standard V-A and exotic S_R, P_R, T_R couplings depend on the various angular correlations among the transversal ν _e spin polarization, the polarization of the electron target, the incoming neutrino momentum and the outgoing electron momentum in the limit of relativistic ν _e. We illustrate how the maximal value of recoil electrons azimuthal asymmetry and the asymmetry axis location of outgoing electrons depend on the azimuthal angle of the transversal component of the ν _e spin polarization, both for the time reversal symmetry conservation (TRSC) and TRSV. Next, we display that the electron energy spectrum and polar angle distribution of the recoil electrons are also sensitive to the interference terms between V-A and S_R, P_R, T_R couplings, proportional to the T-even and T-odd angular correlations among the transversal ν _e polarization, the electron polarization of the target, and the incoming ν _e momentum, respectively. We also discuss the possibility of testing the TRSV by observing the azimuthal asymmetry of outgoing electrons, using the PET without the impact of the transversal

  10. Performance of a Polarized Deuterium Internal Target in a Medium-Energy Electron Storage Ring.

    NARCIS (Netherlands)

    Zhou, Z.L.; Ferro Luzzi, M.M.E.; van den Brand, J.F.J.; Bulten, H.J.; Alarcon, R.; van Bommel, R.; Botto, T.; Bouwhuis, M.; Buchholz, M.; Choi, S.; Comfort, J.; Doets, M.; Dolfini, S.; Ent, R.; Gaulard, C.; de Jager, C.W.; Lang, J.; de Lange, D.J.; Miller, M.A.; Passchier, E.; Passchier, I.; Poolman, H.R.; Six, E.; Steijger, J.J.M.; Unal, O.; de Vries, H.

    1996-01-01

    A polarized deuterium target internal to a medium-energy electron storage ring is described in the context of spindependent (e, e′d) and (e ,e′p) experiments. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used

  11. Non-perturbative calculation of equilibrium polarization of stored electron beams

    International Nuclear Information System (INIS)

    Yokoya, Kaoru.

    1992-05-01

    Stored electron/positron beams polarize spontaneously owing to the spin-flip synchrotron radiation. In the existing computer codes, the degree of the equilibrium polarization has been calculated using perturbation expansions in terms of the orbital oscillation amplitudes. In this paper a new numerical method is presented which does not employ the perturbation expansion. (author)

  12. Precision gamma-ray polarimetry applied to studies of bremsstrahlung produced by polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Oleksiy

    2015-12-16

    The thesis reports on the measurement of bremsstrahlung linear polarization produced in collisions of longitudinally and transversely polarized electrons with gold atoms. The experiment was performed at the Mainzer Microtron MAMI in the Institut fuer Kernphysik of Johannes Gutenberg-Universitaet Mainz, Germany. Spin-oriented electrons with 2.15 MeV kinetic energy collided with a thin golden target and produced bremsstrahlung. Linear polarization of the emitted photons was measured by means of Compton polarimetry applied to a segmented high-purity germanium detector. Experimental results reveal a strong correlation between the electron spin orientation and bremsstrahlung linear polarization. This indicates a dominant role of the electron spin in atomic-field bremsstrahlung and Coulomb scattering.

  13. Status report of the S-DALINAC polarized electron injector SPIN at Darmstadt

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, Christian; Bahlo, Thore; Bangert, Phillip; Barday, Roman; Bonnes, Uwe; Brunken, Marco; Eichhorn, Ralf; Enders, Joachim; Platz, Markus; Poltoratska, Yuliya; Roth, Markus; Schneider, Fabian; Wagner, Markus; Weber, Antje; Zwicker, Benjamin [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); Ackermann, Wolfgang; Mueller, Wolfgang F.O.; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet Darmstadt (Germany)

    2010-07-01

    At the superconducting 130 MeV Darmstadt electron linac S-DALINAC a source of polarized electrons is being installed. Polarized electrons are produced by photoemission from a negative electron affinity strained superlattice GaAs cathode and preaccelerated to 100 keV. With a Wien filter and Mott polarimeter in the beam line the polarization is manipulated and measured. For beam diagnostics wire scanners, fluorescent screens and a coaxial Faraday cup are included. To measure the beam polarization at higher energies, a 5-10 MeV Mott polarimeter and a 50-130 MeV Moeller polarimeter as well as a Compton transmission polarimeter will be installed. We report on the status of the implementation and show plans for future development and experiments.

  14. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  15. Current-induced spin polarization in a spin-polarized two-dimensional electron gas with spin-orbit coupling

    International Nuclear Information System (INIS)

    Wang, C.M.; Pang, M.Q.; Liu, S.Y.; Lei, X.L.

    2010-01-01

    The current-induced spin polarization (CISP) is investigated in a combined Rashba-Dresselhaus spin-orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin-orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba-Dresselhaus models.

  16. Calculation of the QED correction to the recoil proton polarization by the electron structure function method

    International Nuclear Information System (INIS)

    Afanasev, A.V.; Akushevich, I.; Merenkov, N.P.

    2000-01-01

    The recoil proton polarization for the quasielastic electron-proton scattering is represented as a contraction of the electron structure and the hard part of the polarization dependent contribution into cross-section. The calculation of the hard part with first order radiative correction is performed. The obtained representation includes the leading radiative corrections in all orders of perturbation theory and the main part of the second order next-to-leading ones

  17. Polarization of Sunyaev-Zel'dovich signal due to electron pressure anisotropy in galaxy clusters

    Science.gov (United States)

    Khabibullin, I.; Komarov, S.; Churazov, E.; Schekochihin, A.

    2018-02-01

    We describe polarization of the Sunyaev-Zel'dovich (SZ) effect associated with electron pressure anisotropy likely present in the intracluster medium (ICM). The ICM is an astrophysical example of a weakly collisional plasma where the Larmor frequencies of charged particles greatly exceed their collision frequencies. This permits formation of pressure anisotropies, driven by evolving magnetic fields via adiabatic invariance, or by heat fluxes. SZ polarization arises in the process of Compton scattering of the cosmic microwave background (CMB) photons off the thermal ICM electrons due to the difference in the characteristic thermal velocities of the electrons along two mutually orthogonal directions in the sky plane. The signal scales linearly with the optical depth of the region containing large-scale correlated anisotropy, and with the degree of anisotropy itself. It has the same spectral dependence as the polarization induced by cluster motion with respect to the CMB frame (kinematic SZ effect polarization), but can be distinguished by its spatial pattern. For the illustrative case of a galaxy cluster with a cold front, where electron transport is mediated by Coulomb collisions, we estimate the CMB polarization degree at the level of 10-8 (˜10 nK). An increase of the effective electron collisionality due to plasma instabilities will reduce the effect. Such polarization, therefore, may be an independent probe of the electron collisionality in the ICM, which is one of the key properties of a high-β weakly collisional plasma from the point of view of both astrophysics and plasma theory.

  18. Construction and characterization of a spin polarized helium ion beam for surface electronic structure studies

    International Nuclear Information System (INIS)

    Harrison, A.R.

    1982-01-01

    Ion neutralization and metastable de-excitation spectroscopy, INS and MDS, allow detailed analysis of the surface electronic configuration of metals. The orthodox application of these spectroscopies may be enhanced by electronic spin polarization of the probe beams. For this reason, a spin polarized helium ion beam has been constructed. The electronic spin of helium metastables created within an rf discharge may be spacially aligned by optically pumping the atoms. Subsequent collisions between metastables produce helium ions which retain the orientation of the electronic spin. Extracted ion polarization, although not directly measurable, may be estimated from extracted electron polarization, metastable polarization, pumping radiation absorption and current modulation measurements. Ions extracted from the optically pumped discharge exhibit an estimated polarization of about ten per cent at a beam current of a few tenths of a microampere. Extraction of helium ions from the discharge requires that the ions have a high kinetic energy. However, to avoid undesirable kinetic electron ejection from the target surface, the ions must be decelerated. Examination of various deceleration configurations, in paticular exponential and linear deceleration fields, and experimental observation indicate that a linear decelerating field produces the best low energy beam to the target surface

  19. Estimates of Leaf Relative Water Content from Optical Polarization Measurements

    Science.gov (United States)

    Dahlgren, R. P.; Vanderbilt, V. C.; Daughtry, C. S. T.

    2017-12-01

    Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Existing approaches to remotely sensing canopy water status, such as the Crop Water Stress Index (CWSI) and the Equivalent Water Thickness (EWT), have limitations. The CWSI, based upon remotely sensing canopy radiant temperature in the thermal infrared spectral region, does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWT is based upon the physics of water-light interaction in the 900-2000nm spectral region, not plant physiology. Our goal, development of a remote sensing technique for estimating plant water status based upon measurements in the VIS/NIR spectral region, would potentially provide remote sensing access to plant dehydration physiology - to the cellular photochemistry and structural changes associated with water deficits in leaves. In this research, we used optical, crossed polarization filters to measure the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, for 78 corn (Zea mays) and soybean (Glycine max) leaves having relative water contents (RWC) between 0.60 and 0.98. Our results show that as RWC decreases R increases while T decreases. Our results tie R and T changes in the VIS/NIR to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future.

  20. Polarization asymmetries in photoproduction of electron-positron pairs

    International Nuclear Information System (INIS)

    Vescan, T.

    1980-01-01

    The inclusive reaction γN→e + e - + ... is examined taking into account the polarization of the photon, nucleon and leptons. The results apply also to the exclusive reaction γN→e + e - N by taking the elastic limit of the structure functions. (author)

  1. Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean

    Directory of Open Access Journals (Sweden)

    Alexandra Coello-Camba

    2017-06-01

    Full Text Available Polar areas are experiencing the steepest warming rates on Earth, a trend expected to continue in the future. In these habitats, phytoplankton communities constitute the basis of the food web and their thermal tolerance may dictate how warming affects these delicate environments. Here, we compiled available data on thermal responses of phytoplankton growth in polar waters. We assembled 53 growth-vs.-temperature curves (25 from the Arctic, 28 from the Southern oceans, indicating the limited information available for these ecosystems. Half of the data from Arctic phytoplankton came from natural communities where low ambient concentrations could limit growth rates. Phytoplankton from polar waters grew faster under small temperature increases until reaching an optimum (TOPT, and slowed when temperatures increased beyond this value. This left-skewed curves were characterized by higher activation energies (Ea for phytoplankton growth above than below the TOPT. Combining these thermal responses we obtained a community TOPT of 6.5°C (±0.2 and 5.2°C (±0.1 for Arctic and Southern Ocean phytoplankton communities, respectively. These threshold temperatures were already exceeded at 70°N during the first half of August 2013, evidenced by sea surface temperatures (SSTs, satellite data, http://www.ncdc.noaa.gov. We forecasted SSTs for the end of the twenty-first century by assuming an overall 3°C increase, equivalent to a low emission scenario. Our forecasts show that SSTs at 70°N are expected to exceed TOPT during summer by 2100, and during the first half of August at 75°N. While recent Arctic spring temperatures average 0.5°C and −0.7°C at 70°N and 75°N, respectively, they could increase to 2.8°C at 70°N and 2.2°C at 75°N as we approach 2100. Such temperature increases could lead to intense phytoplankton blooms, shortened by fast nutrient consumption. As SSTs increase, thermal thresholds for phytoplankton growth would be eventually exceeded

  2. Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean

    KAUST Repository

    Coello-Camba, Alexandra

    2017-06-02

    Polar areas are experiencing the steepest warming rates on Earth, a trend expected to continue in the future. In these habitats, phytoplankton communities constitute the basis of the food web and their thermal tolerance may dictate how warming affects these delicate environments. Here, we compiled available data on thermal responses of phytoplankton growth in polar waters. We assembled 53 growth-vs.-temperature curves (25 from the Arctic, 28 from the Southern oceans), indicating the limited information available for these ecosystems. Half of the data from Arctic phytoplankton came from natural communities where low ambient concentrations could limit growth rates. Phytoplankton from polar waters grew faster under small temperature increases until reaching an optimum (TOPT), and slowed when temperatures increased beyond this value. This left-skewed curves were characterized by higher activation energies (Ea) for phytoplankton growth above than below the TOPT. Combining these thermal responses we obtained a community TOPT of 6.5°C (±0.2) and 5.2°C (±0.1) for Arctic and Southern Ocean phytoplankton communities, respectively. These threshold temperatures were already exceeded at 70°N during the first half of August 2013, evidenced by sea surface temperatures (SSTs, satellite data, http://www.ncdc.noaa.gov). We forecasted SSTs for the end of the twenty-first century by assuming an overall 3°C increase, equivalent to a low emission scenario. Our forecasts show that SSTs at 70°N are expected to exceed TOPT during summer by 2100, and during the first half of August at 75°N. While recent Arctic spring temperatures average 0.5°C and −0.7°C at 70°N and 75°N, respectively, they could increase to 2.8°C at 70°N and 2.2°C at 75°N as we approach 2100. Such temperature increases could lead to intense phytoplankton blooms, shortened by fast nutrient consumption. As SSTs increase, thermal thresholds for phytoplankton growth would be eventually exceeded during bloom

  3. Electron-spin polarization in tunnel junctions with ferromagnetic EuS barriers

    International Nuclear Information System (INIS)

    Hao, X.; Moodera, J.S.; Meservey, R.

    1989-01-01

    The authors report here spin-polarized tunneling experiments using non-ferromagnetic electrodes and ferromagnetic EuS barriers. Because of the conduction band in EuS splits into spin-up and spin-down subbands when the temperature is below 16.7 K, the Curie temperature of EuS, the tunnel barrier for electrons with different spin directions is different, therefore giving rise to tunnel current polarization. The spin-filter effect, as it may be called, was observed earlier, directly or indirectly, by several groups: Esaki et al. made a tunneling study on junctions having EuS and EuSe barriers; Thompson et al. studied Schottky barrier tunneling between In and doped EuS; Muller et al. and Kisker et al. performed electron field emission experiments on EuS-coated tungsten tips. The field emission experiments gave a maximum polarization of (89 + 7)% for the emitted electrons. Although the previous tunneling studies did not directly show electron polarization, their results were explained by the same spin- filter effect. This work uses the spin-polarized tunneling technique to show directly that tunnel current is indeed polarized and polarization can be as high as 85%

  4. Effects of solvent polarity on mutual styrene grafting onto polypropylene by electron beam irradiation

    International Nuclear Information System (INIS)

    Moura, E.; Manzoli, J.E.; Geraldo, A.B.C.

    2012-01-01

    Radiation induced mutual grafting of styrene onto polypropylene has been carried using several grafting solutions with different organic solvents and polarity levels. In the mixture of styrene and protic polar solvents high grafting yields were obtained. This behavior suggests that grafting process does not have dependence on swelling of the substrate, something that is expected when a non-polar substrate and a non-polar media are in contact. In this case, the grafting yield may be related to the free radical generation at protic polar solvent; these reactive specimens start the reaction on substrate surface to allow the accessibility of monomer species to active sites. Some reaction mechanisms are proposed. - Highlights: ► Styrene grafting is performed with high yield when protic polar solvents are used. ► Results are related to effects from electron solvation and dipole interactions. ► Grafting samples performed in n-octanol mixtures had crystallinity changes.

  5. Revealing Fundamental Interactions: the Role of Polarized Positrons and Electrons at the Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Moortgat-Pick, G.; /CERN /Durham U., IPPP; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke,; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.; /CERN /Durham U., IPPP /Colorado U. /Tel-Aviv

    2005-07-06

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  6. The Role of polarized positrons and electrons in revealing fundamental interactions at the linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Moortgat-Pick, G.; /CERN /Durham U., IPPP; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke,; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.; /CERN /Durham U., IPPP /Colorado U. /Tel-Aviv

    2005-07-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  7. Creating intense polarized electron beam via laser stripping and spin-orbit interaction

    International Nuclear Information System (INIS)

    Danilov, V.; Ptitsyn, V.; Gorlov, T.

    2010-01-01

    The recent advance in laser field make it possible to excite and strip electrons with definite spin from hydrogen atoms. The sources of hydrogen atoms with orders of magnitude higher currents (than that of the conventional polarized electron cathods) can be obtained from H - sources with good monochromatization. With one electron of H - stripped by a laser, the remained electron is excited to upper state (2P 3/2 and 2P 1/2 ) by a circular polarization laser light from FEL. Then, it is excited to a high quantum number (n=7) with mostly one spin direction due to energy level split of the states with a definite direction of spin and angular momentum in an applied magnetic field and then it is stripped by a strong electric field of an RF cavity. This paper presents combination of lasers and fields to get high polarization and high current electron source.

  8. CP-even and CP-odd transverse polarization of the electron in the muon decay

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.

    1981-01-01

    In the most general weak interaction model with intermediate vector bosons, allowing CP breaking in the muon decay, CP- even and CP-odd transverse polarization of the μ-decay electrons is calculated taking into account the radiative corrections. It is shown that such corrections are essential only at the beginning of the spectrum reducing the observed transverse polarization effects. When the electron energy is close to its maximum and the emission angles are small, the transverse polarization considerably grows. Search for CP-even and CP-odd transverse polarization of the electrons should be carried out at energies Esub(e) approximately equal to O.975 Esub(e)sup(max) and emission angles THETA approximately equal to 25+35 deg [ru

  9. MBE Growth of Graded Structures for Polarized Electron Emitters

    Energy Technology Data Exchange (ETDEWEB)

    2010-08-25

    SVT Associates, in collaboration with SLAC, have investigated two novel photocathode design concepts in an effort to increase polarization and quantum efficiency. AlGaAsSb/GaAs superlattice photocathodes were fabricated to explore the effect of antimony on device operation. In the second approach, an internal electrical field was created within the superlattice active layer by varying the aluminum composition in AlGaAs/GaAs. A 25% increase in quantum efficiency as a result of the gradient was observed.

  10. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    The spin of electrons in semiconductors strongly couple with electric and magnetic fields due to ... where ckμ and d−kμ are annihilation operators for electron with momentum k and spin μ and hole with momentum −k ... kμ and ekμ are annihilation and creation operators for impurity electrons. Qkμ and Qkμ are the coefficient ...

  11. Variational calculation of quantum mechanical/molecular mechanical free energy with electronic polarization of solvent

    Science.gov (United States)

    Nakano, Hiroshi; Yamamoto, Takeshi

    2012-04-01

    Quantum mechanical/molecular mechanical (QM/MM) free energy calculation presents a significant challenge due to an excessive number of QM calculations. A useful approach for reducing the computational cost is that based on the mean field approximation to the QM subsystem. Here, we describe such a mean-field QM/MM theory for electronically polarizable systems by starting from the Hartree product ansatz for the total system and invoking a variational principle of free energy. The MM part is then recast to a classical polarizable model by introducing the charge response kernel. Numerical test shows that the potential of mean force (PMF) thus obtained agrees quantitatively with that obtained from a direct QM/MM calculation, indicating the utility of self-consistent mean-field approximation. Next, we apply the obtained method to prototypical reactions in several qualitatively different solvents and make a systematic comparison of polarization effects. The results show that in aqueous solution the PMF does not depend very much on the water models employed, while in nonaqueous solutions the PMF is significantly affected by explicit polarization. For example, the free energy barrier for a phosphoryl dissociation reaction in acetone and cyclohexane is found to increase by more than 10 kcal/mol when switching the solvent model from an empirical to explicitly polarizable one. The reason for this is discussed based on the parametrization of empirical nonpolarizable models.

  12. Chlorophyll fluorescence extraction from water-leaving radiance of algae-containing water through polarization

    Science.gov (United States)

    Wang, Lin; Qiu, Zhongfeng; Pang, Huifang; Liu, Yongjian; Chen, Yanlong; Jiang, Lingling

    2017-12-01

    When measuring reflectance spectra, it is very important to accurately extract chlorophyll fluorescence from elastic- scattering light in water-leaving radiance. The elastic scattering of light by water particles produces partially polarized light. In contrast, chlorophyll fluorescence in planktonic algae yields completely unpolarized light. These properties can be used to separate fluorescent signals from the water-leaving radiance and thus to determine chlorophyll concentration. The algal species Aureococcus anophagefferens was used to conduct a laboratory polarization experiment. For the tests, we used a field spectroradiometer and a polarizer; measurements were collected using two different observation modes. The chlorophyll fluorescence curve extracted through polarization shows an excellent match with the results obtained using the fluorospectro photometer for both measurement modes, suggesting that polarization-based chlorophyll fluorescence extraction may be feasible. The extracted fluorescence is more reliable at incident zenith angles ranging from 30° to 60°. For algae-containing water, the results improve with increasing chlorophyll concentration. This method could help improve chlorophyll concentration measurement and the remote-sensing detection of resulting harmful algae blooms.

  13. Spin-polarized electron tunneling across a Si delta-doped GaMnAs/n-GaAs interface

    DEFF Research Database (Denmark)

    Andresen, S.E.; Sørensen, B.S.; Lindelof, P.E.

    2003-01-01

    Spin-polarized electron coupling across a Si delta-doped GaMnAs/n-GaAs interface was investigated. The injection of spin-polarized electrons was detected as circular polarized emission from a GaInAs/GaAs quantum well light emitting diode. The angular momentum selection rules were simplified...

  14. First attempt of the measurement of the beam polarization at an accelerator with the optical electron polarimeter POLO

    CERN Document Server

    Collin, B; Essabaa, S; Frascaria, R; Gacougnolle, R; Kunne, Ronald Alexander; Aulenbacher, K; Tioukine, V

    2004-01-01

    The conventional methods for measuring the polarization of electron beams are either time consuming, invasive or accurate only to a few percent. We developped a method to measure electron beam polarization by observing the light emitted by argon atoms following their excitation by the impact of polarized electrons. The degree of circular polarization of the emitted fluorescence is directly related to the electron polarization. We tested the polarimeter on a test GaAs source available at the MAMI electron accelerator in Mainz, Germany. The polarimeter determines the polarization of a 50 keV electron beam decelerated to a few eV and interacting with an effusive argon gas jet. The resulting decay of the excited states produces the emission of a circularly polarized radiation line at 811.5 nm which is observed and analyzed.

  15. Spin-polarized transport in a two-dimensional electron gas with interdigital-ferromagnetic contacts

    DEFF Research Database (Denmark)

    Hu, C.-M.; Nitta, Junsaku; Jensen, Ane

    2001-01-01

    Ferromagnetic contacts on a high-mobility, two-dimensional electron gas (2DEG) in a narrow gap semiconductor with strong spin-orbit interaction are used to investigate spin-polarized electron transport. We demonstrate the use of magnetized contacts to preferentially inject and detect specific spi...

  16. Electron polarization function and plasmons in metallic armchair graphene nanoribbons

    DEFF Research Database (Denmark)

    Shylau, A. A.; Badalyan, S. M.; Peeters, F. M.

    2015-01-01

    Plasmon excitations in metallic armchair graphene nanoribbons are investigated using the random phase approximation. An exact analytical expression for the polarization function of Dirac fermions is obtained, valid for arbitrary temperature and doping. We find that at finite temperatures, due...... mode whose energy dispersion is determined by the graphene's fine structure constant. In the case of two Coulomb-coupled nanoribbons, this plasmon splits into in-phase and out-of-phase plasmon modes with splitting energy determined by the inter-ribbon spacing....

  17. Development of a high average current polarized electron source with long cathode operational lifetime

    Directory of Open Access Journals (Sweden)

    C. K. Sinclair

    2007-02-01

    Full Text Available Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2×10^{5}   C/cm^{2} and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  18. Coccolithophores in Polar Waters: Papposphaera sarion HET and HOL revisited

    DEFF Research Database (Denmark)

    Thomsen, Helge Abildhauge; Heldal, Mikal; Østergaard, Jette B.

    2016-01-01

    Papposphaera sarion was first described from West Greenland waters and has not since then been reported from other sites. We present here additional material of P. sarion from the type locality, transmission electron images of P. sarion from the NEW polynya (NE Greenland) and scanning electron......NEWpolynya as was also the holococcolithophore Turrisphaera phase of this species. Papposphaera sarion has in its life-cycle previously been associated with Turrisphaera arctica.However, a careful re-examination of the micrographs accompanying the description of T. arctica and unpublished material available to us...

  19. A three-dimensional polarization domain retrieval method from electron diffraction data

    International Nuclear Information System (INIS)

    Pennington, Robert S.; Koch, Christoph T.

    2015-01-01

    We present an algorithm for retrieving three-dimensional domains of picometer-scale shifts in atomic positions from electron diffraction data, and apply it to simulations of ferroelectric polarization in BaTiO 3 . Our algorithm successfully and correctly retrieves polarization domains in which the Ti atom positions differ by less than 3 pm (0.4% of the unit cell diagonal distance) with 5 and 10 nm depth resolution along the beam direction, and we also retrieve unit cell strain, corresponding to tetragonal-to-cubic unit cell distortions, for 10 nm domains. Experimental applicability is also discussed. - Highlights: • We show a retrieval method for ferroelectric polarization from TEM diffraction data. • Simulated strain and polarization variations along the beam direction are retrieved. • This method can be used for 3D strain and polarization mapping without specimen tilt

  20. Monitoring single-channel water permeability in polarized cells.

    Science.gov (United States)

    Erokhova, Liudmila; Horner, Andreas; Kügler, Philipp; Pohl, Peter

    2011-11-18

    So far the determination of unitary permeability (p(f)) of water channels that are expressed in polarized cells is subject to large errors because the opening of a single water channel does not noticeably increase the water permeability of a membrane patch above the background. That is, in contrast to the patch clamp technique, where the single ion channel conductance may be derived from a single experiment, two experiments separated in time and/or space are required to obtain the single-channel water permeability p(f) as a function of the incremental water permeability (P(f,c)) and the number (n) of water channels that contributed to P(f,c). Although the unitary conductance of ion channels is measured in the native environment of the channel, p(f) is so far derived from reconstituted channels or channels expressed in oocytes. To determine the p(f) of channels from live epithelial monolayers, we exploit the fact that osmotic volume flow alters the concentration of aqueous reporter dyes adjacent to the epithelia. We measure these changes by fluorescence correlation spectroscopy, which allows the calculation of both P(f,c) and osmolyte dilution within the unstirred layer. Shifting the focus of the laser from the aqueous solution to the apical and basolateral membranes allowed the FCS-based determination of n. Here we validate the new technique by determining the p(f) of aquaporin 5 in Madin-Darby canine kidney cell monolayers. Because inhibition and subsequent activity rescue are monitored on the same sample, drug effects on exocytosis or endocytosis can be dissected from those on p(f).

  1. Electron - polar acoustical phonon interactions in nitride based diluted magnetic semiconductor quantum well via hot electron magnetotransport

    International Nuclear Information System (INIS)

    Pandya, Ankur; Shinde, Satyam; Jha, Prafulla K.

    2015-01-01

    In this paper the hot electron transport properties like carrier energy and momentum scattering rates and electron energy loss rates are calculated via interactions of electrons with polar acoustical phonons for Mn doped BN quantum well in BN nanosheets via piezoelectric scattering and deformation potential mechanisms at low temperatures with high electric field. Electron energy loss rate increases with the electric field. It is observed that at low temperatures and for low electric field the phonon absorption is taking place whereas, for sufficient large electric field, phonon emission takes place. Under the piezoelectric (polar acoustical phonon) scattering mechanism, the carrier scattering rate decreases with the reduction of electric field at low temperatures wherein, the scattering rate variation with electric field is limited by a specific temperature beyond which there is no any impact of electric field on such scattering

  2. Status and recent developments at the polarized-electron injector of the superconducting Darmstadt electron linear accelerator S-DALINAC

    Science.gov (United States)

    Poltoratska, Y.; Eckardt, C.; Ackermann, W.; Aulenbacher, K.; Bahlo, T.; Barday, R.; Brunken, M.; Burandt, C.; Eichhorn, R.; Enders, J.; Espig, M.; Franke, S.; Ingenhaag, C.; Lindemann, J.; Müller, W. F. O.; Platz, M.; Roth, M.; Schneider, F.; Wagner, M.; Weber, A.; Weiland, T.; Zwicker, B.

    2011-05-01

    At the superconducting Darmstadt electron linac a 100 keV source of polarized electrons has been installed. Major components had been tested prior to installation at an offline teststand. Commissioning of the new source at the S-DALINAC will take place early in 2011. We report on the performance of the teststand, simulations, developments on the laser systems, new radio-frequency components for the S-DALINAC injector, and the status of the implementation of the source.

  3. Polarimetry of the polarized hydrogen deuteride HDice target under an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Laine, Vivien E. [Blaise Pascal Univ., Aubiere (France)

    2013-10-01

    The study of the nucleon structure has been a major research focus in fundamental physics in the past decades and still is the main research line of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). For this purpose and to obtain statistically meaningful results, having both a polarized beam and a highly efficient polarized target is essential. For the target, this means high polarization and high relative density of polarized material. A Hydrogen Deuteride (HD) target that presents both such characteristics has been developed first at Brookhaven National Lab (BNL) and brought to the Hall B of Jefferson Lab in 2008. The HD target has been shown to work successfully under a high intensity photon beam (BNL and Jefferson Lab). However, it remained to be seen if the target could stand an electron beam of reasonably high current (nA). In this perspective, the target was tested for the first time in its frozen spin mode under an electron beam at Jefferson Lab in 2012 during the g14 experiment. This dissertation presents the principles and usage procedures of this HD target. The polarimetry of this target with Nuclear Magnetic Resonance (NMR) during the electron beam tests is also discussed. In addition, this dissertation also describes another way to perform target polarimetry with the elastic scattering of electrons off a polarized target by using data taken on helium-3 during the E97-110 experiment that occurred in Jefferson Lab's Hall A in 2003.

  4. Influence of Neutral Currents on Electron and Gamma Polarizations in the Process e+N→e′+N+γ

    International Nuclear Information System (INIS)

    Ousmane Manga, Adamou; Moussa, Aboubacar; Aboubacar, Almoustapha; Samsonenko, N. V.

    2014-01-01

    The differential cross section of electron inelastic scattering by nuclei followed by γ radiation is calculated using the multipole decomposition of the hadronic currents and by taking into account the longitudinal polarization of the initial electron and the circular polarization of the γ radiation. We performed the analysis of the angular and energy dependence of the degree of electron and photon polarization which can yield information on values of weak neutral currents parameters

  5. Calibration of the Chemcatcher passive sampler for monitoring selected polar and semi-polar pesticides in surface water

    International Nuclear Information System (INIS)

    Gunold, Roman; Schaefer, Ralf Bernhard; Paschke, Albrecht; Schueuermann, Gerrit; Liess, Matthias

    2008-01-01

    Passive sampling is a powerful method for continuous pollution monitoring, but calibration experiments are still needed to generate sampling rates in order to estimate water concentrations for polar compounds. We calibrated the Chemcatcher device with an uncovered SDB-XC Empore disk as receiving phase for 12 polar and semi-polar pesticides in aquatic environments in flow-through tank experiments at two water flow velocities (0.135 m/s and 0.4 m/s). In the 14-day period of exposure the uptake of test substances in the sampler remained linear, and all derived sampling rates R s were in the range of 0.1 to 0.5 L/day. By additionally monitoring the release of two preloaded polar pesticides from the SDB-XC disks over time, very high variation in release kinetics was found, which calls into question the applicability of performance reference compounds. Our study expands the applicability of the Chemcatcher for monitoring trace concentrations of pesticides with frequent occurrence in water. - We calibrated the Chemcatcher passive sampler for current-use polar pesticides in surface waters, allowing its application in future monitoring studies

  6. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering.

    Science.gov (United States)

    Kohagen, Miriam; Mason, Philip E; Jungwirth, Pavel

    2016-03-03

    Modeled ions, described by nonpolarizable force fields, can suffer from unphysical ion pairing and clustering in aqueous solutions well below their solubility limit. The electronic continuum correction takes electronic polarization effects of the solvent into account in an effective way by scaling the charges on the ions, resulting in a much better description of the ionic behavior. Here, we present parameters for the sodium ion consistent with this effective polarizability approach and in agreement with experimental data from neutron scattering, which could be used for simulations of complex aqueous systems where polarization effects are important.

  7. Mining social media data for opinion polarities about electronic cigarettes.

    Science.gov (United States)

    Dai, Hongying; Hao, Jianqiang

    2017-03-01

    There is an ongoing debate about harm and benefit of e-cigarettes, usage of which has rapidly increased in recent years. By separating non-commercial (organic) tweets from commercial tweets, we seek to evaluate the general public's attitudes towards e-cigarettes. We collected tweets containing the words 'e-cig', 'e-cigarette', 'e-liquid', 'vape', 'vaping', 'vapor' and 'vaporizer' from 23 July to 14 October 2015 (n=757 167). A multilabel Naïve Bayes model was constructed to classify tweets into 5 polarities (against, support, neutral, commercial, irrelevant). We further analysed the prevalence of e-cigarette tweets, geographic variations in these tweets and the impact of socioeconomic factors on the public attitudes towards e-cigarettes. Opinions from organic tweets about e-cigarettes were mixed (against 17.7%, support 10.8% and neutral 19.4%). The organic-against tweets delivered strong educational information about the risks of e-cigarette use and advocated for the general public, especially youth, to stop vaping. However, the organic-against tweets were outnumbered by commercial tweets and organic-support tweets by a ratio of over 1 to 3. Higher prevalence of organic tweets was associated with states with higher education rates (r=0.60, psocial networks could be highly influential to the general public, especially youth. Further educational campaigns should include measuring their effectiveness. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. Monte Carlo studies of thermalization of electron-hole pairs in spin-polarized degenerate electron gas in monolayer graphene

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2018-02-01

    Monte Carlo method is applied to the study of relaxation of excited electron-hole (e-h) pairs in graphene. The presence of background of spin-polarized electrons, with high density imposing degeneracy conditions, is assumed. To such system, a number of e-h pairs with spin polarization parallel or antiparallel to the background is injected. Two stages of relaxation: thermalization and cooling are clearly distinguished when average particles energy and its standard deviation σ _E are examined. At the very beginning of thermalization phase, holes loose energy to electrons, and after this process is substantially completed, particle distributions reorganize to take a Fermi-Dirac shape. To describe the evolution of and σ _E during thermalization, we define characteristic times τ _ {th} and values at the end of thermalization E_ {th} and σ _ {th}. The dependence of these parameters on various conditions, such as temperature and background density, is presented. It is shown that among the considered parameters, only the standard deviation of electrons energy allows to distinguish between different cases of relative spin polarizations of background and excited electrons.

  9. Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band

    Directory of Open Access Journals (Sweden)

    B. Lundin

    Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.

    Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous

  10. Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band

    Directory of Open Access Journals (Sweden)

    B. Lundin

    2002-08-01

    Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous

  11. Development of a polarized deuterium target to measure T/sub 20/ in electron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Young, L.; Coulter, K.; Gilman, R.A.; Holt, R.J.; Kinney, E.R.; Kowalczyk, R.S.; Napolitano, J.; Potterveld, D.; Lasarenko, B.A.; Mishnev, S.I.

    1989-01-01

    The development of a polarized deuterium target to measure the analyzing power in electron scattering from the deuteron at the highest possible momentum transfer is described. Two areas of research have been simultaneously pursued: the development of a storage cell for polarized atoms (ANL and INP) and the development of a high-flux laser-driven source of polarized deuterium (ANL). The successful combination of these two technological developments will produce a polarized target having a figure of merit of np/sub zz//sup 2/ approx. np/sub z//sup 2/ approx. 10/sup 14/ cm/sup /minus/2/. The progress to date, including, feasibility tests of the storage cell concept, design of a high-density storage cell ad the development of the laser-driven source will be described. 14 refs., 7 figs.

  12. OPERATION OF SEAGOING CRUISE SHIPS IN POLAR WATERS OF THE ANTARCTICA

    Directory of Open Access Journals (Sweden)

    Adam WOLSKI

    2017-09-01

    Full Text Available As maritime tourism has been developing dynamically in recent years, including cruises into polar areas, the author attempts to identify factors essential for the safety of navigation in those sea areas, with a specific focus on the waters of the Antarctica. The presented methods of navigation take account of hazards that are typical in polar waters. All the considerations are based on the guidelines of the Polar Code.

  13. Simulation for a New Polarized Electron Injector (SPIN) for the S-DALINAC

    CERN Document Server

    Steiner, Bastian; Gräf, Hans Dieter; Richter, Achim; Roth, Markus; Weiland, Thomas

    2005-01-01

    The Superconducting DArmstädter LINear ACcelerator (S-DALINAC) is a 130 MeV recirculating electron accelerator serving several nuclear and radiation physics experiments. For future tasks, the 250 keV thermal electron source should be completed by a 100 keV polarized electron source. Therefore a new low energy injection concept for the S-DALINAC has to be designed. The main components of the injector are a polarized electron source, an alpha magnet, a Wien filter spin-rotator and a Mott polarimeter. In this paper we report over the first simulation and design results. For our simulations we used the TS2 and TS3 modules of the CST MAFIA (TM) programme which are PIC codes for two and three dimensions and the CST PARTICLE STUDIO (TM).

  14. Diurnal Albedo Variations of the Martian North Polar Water Ice Cap

    Science.gov (United States)

    Troy, R. F.; Bass, D.

    2002-01-01

    Presentation of findings regarding diurnal variations in the north polar water ice cap of Mars as part of a larger study of the interannual and seasonal variations of the Martian north polar water ice cap. Additional information is contained in the original extended abstract.

  15. Water channel structures analysed by electron crystallography.

    Science.gov (United States)

    Tani, Kazutoshi; Fujiyoshi, Yoshinori

    2014-05-01

    The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules. The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids. Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function. Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins. © 2013.

  16. Progress on the design of the polarized Medium-energy Electron Ion Collider at JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F.; Bogacz, A.; Brindza, P.; Camsonne, A.; Daly, E.; Derbenev, Ya. S.; Douglas, D.; Ent, R.; Gaskell, D.; Geng, R.; Grames, J.; Guo, J.; Harwood, L.; Hutton, A.; Jordan, K.; Kimber, A.; Krafft, G.; Li, R.; Michalski, T.; Morozov, V. S.; Nadel-Turonski, P.; /Jefferson Lab /Argonne /DESY /Moscow , Inst. Phys. Tech., Dolgoprydny /Dubna, JINR /Northern Illinois U. /Old Doominion U. /Novosibirsk, GOO Zaryad /SLAC /Texas A-M

    2015-07-14

    The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design.

  17. Polarization Effects in Methylammonium Lead Iodide Electronic Devices

    Science.gov (United States)

    Labram, John; Fabini, Douglas; Perry, Erin; Lehner, Anna; Wang, Hengbin; Glaudell, Anne; Wu, Guang; Evans, Hayden; Buck, David; Cotta, Robert; Echegoyen, Luis; Wudl, Fred; Seshadri, Ram; Chabinyc, Michael

    The immense success of group IV and III-V semiconductors has resulted in disruptive new photovoltaic (PV) cell technologies emerging extremely infrequently. For this reason, the recent progress in Methylammonium Lead Iodide (MAPbI3) solar cells can be viewed as a highly significant historic event. Despite the staggering recent progress made in reported power conversion efficiency (PCE), debate remains intense on the nature of the various instabilities synonymous with these devices. Using various electronic device measurements, we here present a body of experimental evidence consistent with the existence of a mobile ionic species within the MAPbI3 perovskite. Temperature-dependent transistor measurements reveal operating FET devices only below approximately 210K. This is attributed to ionic screening of the (otherwise charge-neutral) semiconductor-dielectric interface. Temperature-dependent pulsed-gate and impedance spectroscopy experiments also reveal behavior consistent with this interpretation. MAPbI3 PV cells were found to possess a PCE which decreases significantly below 210K. Combined, these set of measurements provide an interesting and consistent description of the internal processes at play within the MAPbI3 perovskite structure.

  18. Spin polarized auger electron spectroscopy (SPAES): An element specific local magnetization probe of magnetic materials

    Science.gov (United States)

    Anilturk, Onder S.

    Spin Polarized Auger Electron Spectroscopy (SPAES) is found to have application for investigating fundamental properties as well as element specific local magnetization information on magnetic materials. By using the uniqueness of the UTA-SEMPA tool, one can obtain the surface magnetic domain microstructure and also perform SPAES studies by probing a single domain at the surface. In the current study, knowing the probed domain, spin polarization of electrons from super Coster-Kronig MVV Auger emissions on 3%Si-Fe sheets have been investigated. It is observed that on both sides of 180° domains, separated by a domain wall with an out-of-plane component of magnetization, the spin polarized Auger spectra exhibit similar distributions with high polarization structures, which are consistent with the published data. The element specificity of the system is applied to Gd-Co composite system. Details of 4d core hole initiated Auger transitions showed that the 5d states have enhanced spin polarization, confirming the coupling of moments in the composite system via 5d states of Gd. It is also unambiguously observed that Co magnetic moments are indeed aligned antiparallel to the Gd ones via 4f-5d positive exchange and 3d-5d hybridization.

  19. Modeling of polarization phenomena due to RF sheaths and electron beams in magnetized plasma

    International Nuclear Information System (INIS)

    Faudot, E.

    2005-01-01

    This work investigates the problematic of hot spots induced by accelerated particle fluxes in tokamaks. It is shown that the polarization due to sheaths in the edge plasma in which an electron beam at a high level of energy is injected, can reach several hundreds volts and thus extend the deposition area. The notion of obstructed sheath is introduced and explains the acceleration of energy deposition by the decreasing of the sheath potential. Then, a 2-dimensional fluid modeling of flux tubes in front of ICRF antennae allows us to calculate the rectified potentials taking into account RF polarization currents transverse to magnetic field lines. The 2-dimensional fluid code designed validates the analytical results which show that the DC rectified potential is 50% greater with polarization currents than without. Finally, the simultaneous application of an electron beam and a RF potential reveals that the potentials due to each phenomenon are additives when RF potential is much greater than beam polarization. The density depletion of polarized flux tubes in 2-dimensional PIC (particles in cells) simulations is characterized but not yet explained. (author)

  20. Deep inelastic scattering of polarized electrons by polarized 3 He and the study of the neutron spin structure

    International Nuclear Information System (INIS)

    Arnold, R.G.; Bosted, P.E.; Dunne, J.; Fellbaum, J.; Keppel, C.; Rock, S.E.; Spengos, M.; Szalata, Z.M.; White, J.L.; Breton, V.; Fonvieille, H.; Roblin, Y.; Shapiro, G.; Hughes, E.W.; Borel, H.; Lombard-Nelsen, R.M.; Marroncle, J.; Morgenstern, J.; Staley, F.; Terrien, Y.; Anthony, P.L.; Dietrich, F.S.; Chupp, T.E.; Smith, T.; Thompson, A.K.; Kuhn, S.E.; Cates, G.D.; Middleton, H.; Newbury, N.R.; Anthony, P.L.; Gearhart, R.; Hughes, E.W.; Maruyama, T.; Meyer, W.; Petratos, G.G.; Pitthan, R.; Rokni, S.H.; Stuart, L.M.; White, J.L.; Woods, M.; Young, C.C.; Erbacher, R.; Kawall, D.; Kuhn, S.E.; Meziani, Z.E.; Holmes, R.; Souder, P.A.; Xu, J.; Meziani, Z.E.; Band, H.R.; Johnson, J.R.; Maruyama, T.; Prepost, R.; Zapala, G.

    1996-01-01

    The neutron longitudinal and transverse asymmetries A 1 n and A 2 n have been extracted from deep inelastic scattering of polarized electrons by a polarized 3 He target at incident energies of 19.42, 22.66 and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions g 1 n (x, Q 2 ) and g 2 n (x, Q 2 ) over the range 0.03 2 of 2 (GeV/c) 2 . The data are used for the evaluation of the Ellis-Jaffe and Bjorken sum rules. The neutron spin structure function g 1 n (x, Q 2 ) is small and negative within the range of our measurement, yielding an integral ∫ 0.03 0.6 g 1 n (x)dx - 0.028 ± 0.006 (stat) ± 0.006 (syst). Assuming Regge behavior at low x, we extract Γ 1 n ∫ 0 1 g 1 n (x)dx = - 0.031 ± 0.006 (stat) ± 0.009 (syst). Combined with previous proton integral results from SLAC experiment E143, we find Γ 1 p - Γ 1 n = 0.160 ± 0.015 in agreement with the Bjorken sum rule prediction Γ 1 p - Γ 1 p 0.176 ± 0.008 at a Q 2 value of 3 (GeV/c) 2 evaluated using α s 0.32 ± 0.05. (authors)

  1. Evaluation of electronic polarization energy in oligoacene molecular crystals using the solvated supermolecular approach.

    Science.gov (United States)

    Xu, Tao; Wang, Wenliang; Yin, Shiwei; Wang, Yun

    2017-06-07

    The solvated supermolecular approach, i.e., block-localized wave function coupled with polarizable continuum model (BLW/PCM), was proposed to calculate molecular ionization potential (IP), electron affinity (EA) in the solid phase, and related electronic polarization. Via the calculations of a solvated supermolecule (5M), including four closest molecules, BLW/PCM overcomes the limitation in the calculation for the monomer PCM, that is, nearly same electronic polarization for cation (P + ) and anion (P - ). The solvated supermolecular approach successfully described asymmetric behaviors of P + and P - for oligoacene crystals. In addition, we also compared two charge-localized methods, i.e., BLW and constrained density functional theory (CDFT), to calculate the molecular IP and EA in supermolecules with/without PCM. Our results demonstrate that both the BLW and CDFT correctly estimate the EA and IP values in the gas phase cluster, whereas CDFT/PCM fails to evaluate the P - value of the bulk system.

  2. Electron-atom potential scattering assisted by a bichromatic elliptically polarized laser field

    Science.gov (United States)

    Korajac, Arman; Habibović, Dino; Čerkić, Aner; Busuladžić, Mustafa; Milošević, Dejan B.

    2017-10-01

    Electron-atom potential scattering assisted by a bichromatic (two-component) elliptically polarized laser field is analyzed in the frame of the S-matrix theory. The second Born approximation is applied in the expansion of the S-matrix element. The first term in the expansion corresponds to the single scattering, while the second term in the expansion corresponds to the double scattering of electrons on atomic targets. The double scattering is possible in the presence of a laser field. The electron that has scattered on an atomic target may be driven back by the laser field and scatter again on the same atom. The double-scattered electrons may have considerably higher energies than those that scattered only once. We have investigated the dependence of the energy spectrum on various laser-field and incident electron parameters. The calculated electron energy spectra show the plateau-like structures with abrupt cutoffs. These cutoffs are explained by a classical analysis.

  3. Electronic transport in partially ionized water plasmas

    Science.gov (United States)

    French, Martin; Redmer, Ronald

    2017-09-01

    We use ab initio simulations based on density functional theory to calculate the electrical and thermal conductivities of electrons in partially ionized water plasmas at densities above 0.1 g/cm3. The resulting conductivity data are then fitted to analytic expressions for convenient application. For low densities, we develop a simple and fully analytic model for electronic transport in low-density plasmas in the chemical picture using the relaxation-time approximation. In doing so, we derive a useful analytic expression for electronic transport cross sections with neutral particles, based on a model potential. In the regime of thermal ionization, electrical conductivities from the analytic model agree with the ab initio data within a factor of 2. Larger deviations are observed for the thermal conductivity, and their origin is discussed. Our results are relevant for modeling the interior and evolution of water-rich planets as well as for technical plasma applications.

  4. Search for Time Reversal Violation in Neutron Decay: A Measurement of the Transverse Polarization of Electrons

    International Nuclear Information System (INIS)

    Bodek, K.; Kaczmarek, A.; Kistryn, St.; Kuzniak, M.; Zejma, J.; Pulut, J.; Kirch, K.; Bialek, A.; Kozela, A.; Ban, G.; Naviliat-Cuncic, O.; Gorel, P.; Beck, M.; Lindroth, A.; Severijns, N.; Stephan, E.; Czarnecki, A.

    2006-01-01

    A non-zero value of the R-correlation coefficient due to the e - polarization component, perpendicular to the plane spanned by the spin of the decaying neutron and the electron momentum, would signal a violation of time reversal symmetry and thus physics beyond the Standard Model. The value of the N-correlation coefficient, given by the transverse e - polarization component within that plane, is expected to be finite. The measurement of N serves as an important systematic check of the apparatus for the R-measurement. The first phase of data taking has been completed. Preliminary results from a limited data sample show no deviations from the Standard Model predictions

  5. Physics in the GeV region with polarized targets in electron storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1988-01-01

    There is evidence from the D(γ,p)n reaction that the meson-exchange model is failing in the GeV region. Surprisingly, it appears that the new (Dγ,p)n data favor the energy dependence of the nuclear chromodynamics model rather that of the meson-exchange model. Application of the polarization method to electron scattering studies is in its infancy, and it is potentially a very powerful technique. The internal target method coupled with laser-driven polarized targets should represent an important tool for nuclear physics

  6. Picking a Fight with Water, and Water Lost ... an Electron

    Science.gov (United States)

    Herr, Jonathan D.

    The global need for energy is increasing, as is the importance of producing energy by green and renewable methodologies. This document outlines a research program dedicated to investigating a possible source for this form of energy generation and storage: solar fuels. The photon-induced splitting of water into molecular hydrogen and oxygen is currently hindered by large overpotentials from the oxidation half-reaction of water-splitting. This study concentrated on fundamental models of water-spitting chemistry, using a physical and computational chemistry analysis. The oxidation was first explored via ab initio electronic structure calculations of bare cationic water clusters, comprised of 2 to 21 molecules, in order to determine key electronic interactions that facilitate oxidation. Deeper understanding of these interactions could serve as guides for the development of viable water oxidation catalysts (WOC) designed to reduce overpotentials. The cationic water cluster study was followed by an investigation into hydrated copper (I) clusters, which acted as precursor models for real WOCs. Analyzing how the copper ion perturbed the properties of water clusters led to important electronic considerations for the development of WOCs, such as copper-water interactions that go beyond simple electrostatics. The importance of diagnostic thermodynamic properties, as well as anharmonic characteristics being persistent throughout oxidized water clusters, necessitated the use of quantum and classical molecular dynamics (MD) routines. Therefore, two new methods for accelerating computationally demanding classical and quantum MD methods were developed to increase their accessibility. The first method utilized a new form of electronic extrapolation - a linear prediction routine incorporating a Burg minimization - to decrease the iterations required for solving the electronic equations throughout the dynamics. The second method utilized a multiple-timestepping description of the

  7. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry

    DEFF Research Database (Denmark)

    Clarkson, R B; Odintsov, B M; Ceroke, P J

    1998-01-01

    ; they can be calibrated and used for oximetry. Biological stability and low toxicity make chars good sensors for in vivo measurements. Scalar and dipolar interactions of water protons at the surfaces of chars may be utilized to produce dynamic nuclear polarization (DNP) of the nuclear spin population...

  8. Effect of the anisotropy of the electron g-factor in spin polarization

    International Nuclear Information System (INIS)

    Miah, M. Idrish; Gray, E. MacA.

    2010-01-01

    Spin polarization in the presence of an external magnetic field and electric bias in quantum confined semiconductor structures has been studied by time- and polarization-resolved spectrometry. From measurements with angular variations of the magnetic field from the Voigt configuration (VC) it was found that both the frequency (Ω) and decay rate (β) of the oscillatory component of the polarization increase with variation of the angle from the VC. Their dependences are discussed based on the electron spin dephasing related to the spread of the electron g-factor (g e ) (i.e. unequal values of the longitudinal (g e|| ) and transverse (g e -perpendicular) components of g e ) and the exchange interaction between the electron and hole spins. It is demonstrated that the increase in Ω upon deviation of the magnetic field from the VC relates to the anisotropy of g e (g e|| and g e -perpendicular) resulting from the quantum confinement effect. However, the angular dependence on β is related to the residual exchange interaction between the electron spin and rapidly relaxing hole spin.

  9. Effect of the anisotropy of the electron g-factor in spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong 4331 (Bangladesh); Gray, E. MacA. [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2010-02-15

    Spin polarization in the presence of an external magnetic field and electric bias in quantum confined semiconductor structures has been studied by time- and polarization-resolved spectrometry. From measurements with angular variations of the magnetic field from the Voigt configuration (VC) it was found that both the frequency ({Omega}) and decay rate ({beta}) of the oscillatory component of the polarization increase with variation of the angle from the VC. Their dependences are discussed based on the electron spin dephasing related to the spread of the electron g-factor (g{sub e}) (i.e. unequal values of the longitudinal (g{sub e||}) and transverse (g{sub e}-perpendicular) components of g{sub e}) and the exchange interaction between the electron and hole spins. It is demonstrated that the increase in {Omega} upon deviation of the magnetic field from the VC relates to the anisotropy of g{sub e} (g{sub e||} and g{sub e}-perpendicular) resulting from the quantum confinement effect. However, the angular dependence on {beta} is related to the residual exchange interaction between the electron spin and rapidly relaxing hole spin.

  10. Molecular density functional theory of water including density–polarization coupling

    OpenAIRE

    Jeanmairet, Guillaume; Lévy, Nicolas; Levesque, Maximilien; Borgis, Daniel

    2016-01-01

    International audience; We present a three-dimensional molecular density functional theory of water derived fromfirst-principles that relies on the particle’s density and multipolar polarization density andincludes the density–polarization coupling. This brings two main benefits: (i) scalar densityand vectorial multipolar polarization density fields are much more tractable and give morephysical insight than the full position and orientation densities, and (ii) it includes the fulldensity–pola...

  11. Analytic description of elastic electron-atom scattering in an elliptically polarized laser field

    Science.gov (United States)

    Flegel, A. V.; Frolov, M. V.; Manakov, N. L.; Starace, Anthony F.; Zheltukhin, A. N.

    2013-01-01

    An analytic description of laser-assisted electron-atom scattering (LAES) in an elliptically polarized field is presented using time-dependent effective range (TDER) theory to treat both electron-laser and electron-atom interactions nonperturbatively. Closed-form formulas describing plateau features in LAES spectra are derived quantum mechanically in the low-frequency limit. These formulas provide an analytic explanation for key features of the LAES differential cross section. For the low-energy region of the LAES spectrum, our result generalizes the Kroll-Watson formula to the case of elliptic polarization. For the high-energy (rescattering) plateau in the LAES spectrum, our result generalizes prior results for a linearly polarized field valid for the high-energy end of the rescattering plateau [Flegel , J. Phys. BJPAPEH0953-407510.1088/0953-4075/42/24/241002 42, 241002 (2009)] and confirms the factorization of the LAES cross section into three factors: two field-free elastic electron-atom scattering cross sections (with laser-modified momenta) and a laser field-dependent factor (insensitive to the scattering potential) describing the laser-driven motion of the electron in the elliptically polarized field. We present also approximate analytic expressions for the exact TDER LAES amplitude that are valid over the entire rescattering plateau and reduce to the three-factor form in the plateau cutoff region. The theory is illustrated for the cases of e-H scattering in a CO2-laser field and e-F scattering in a midinfrared laser field of wavelength λ=3.5μm, for which the analytic results are shown to be in good agreement with exact numerical TDER results.

  12. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves

    Science.gov (United States)

    Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2018-02-01

    The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.

  13. Electron spin polarization effects in low energy electron diffraction, ion neutralization and metastable atom deexcitation at solid surfaces. Progress report No. 4, 1 January-31 December 1984

    International Nuclear Information System (INIS)

    1984-01-01

    In the present contract year, a GaAs polarized electron source has been used to undertake a polarized LEED study of order-disorder transformations at Cu 3 Au (100) and (111) surfaces. A polarized LEED study of Cu (100) has also been initiated. A polarized MDS study of Ni(110) surface magnetism has been completed. Spin dependences in the Auger electron yield were observed that provide a measure of the surface magnetism and were used to probe the dependence of surface magnetism on temperature and adsorbate coverage. A similar study using a ferromagnetic glass is now underway. A Mott polarization analyzer, constructed to measure the ESP of the ejected electrons, is also being installed on the apparatus. Such measurements provide direct information concerning the dynamics of secondary electron ejection and the details of adsorbate-substrate bonding

  14. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher

    2017-06-13

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  15. Improved Electron Yield and Spin-Polarization from III-V Photocathodes via Bias Enhanced Carrier Drift: Final Report

    International Nuclear Information System (INIS)

    Mulhollan, Gregory A.

    2006-01-01

    In this DOE STTR program, Saxet Surface Science, with the Stanford Linear Accelerator Center as partner, designed, built and tested photocathode structures such that optimal drift-enhanced spin-polarization from GaAs based photoemitters was achieved with minimal bias supply requirements. The forward bias surface grid composition was optimized for maximum polarization and yield, together with other construction parameters including doping profile. This program has culminated in a cathode bias structure affording increased electron spin polarization when applied to III-V based photocathodes. The optimized bias structure has been incorporated into a cathode mounting and biasing design for use in a polarized electron gun.

  16. The interaction of electrons with polar-optical phonons in two- and three-dimensional electron systems

    International Nuclear Information System (INIS)

    Lassnig, R.

    1983-11-01

    The influence of the polar-optical interaction on the electronic energy levels at high magnetic fields has been investigated for two- and three-dimensional electron systems in weakly polar semiconductors. The interaction leads to a resonant splitting of the energy levels. For a three-dimensional syste m the well-known perturbation theoretical approaches have been compared with variational calculations. An improved Wigner-Brillouin-like perturbation theory has been developed which describes the polaron effects far away as well as in the resonance with high accuracy. For the two-dimensional electron systems a variational non-parabolicity model has been developed to describe the band structure. The influence of the electric and the magnetic potential on the energy levels is described analytically. The broadening of the Landau levels by ionizing impurity scattering and the cyuclotron resonance linewidth has been calculatd. The experimentally observed oscillation of the linweidth with the filling factor of the Landau levels can be well attributed to the variation of the screening strength. The influence of the distribution of the scattering centers with respect to the inversion layer has been calculated, which allows the determination of the material quality. The polaron interaction in two-dimensional electron systems has been first calculated in single-particle interaction for the zeroth and the first electric subband. The influence of the dynamic screening on the interaction strength has been investigated and a dependence on the filling factor as well as on the levelwidth was found. (Author)

  17. Probing membrane protein structure using water polarization transfer solid-state NMR.

    Science.gov (United States)

    Williams, Jonathan K; Hong, Mei

    2014-10-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. Copyright © 2014 Elsevier Inc. All

  18. Classical and quantum theories of the polarization bremsstrahlung in the local electron density model

    International Nuclear Information System (INIS)

    Astapenko, V.A.; Bureeva, L.A.; Lisitsa, V.S.

    2000-01-01

    Classical and quantum theories of polarization bremsstrahlung in a statistical (Thomas-Fermi) potential of complex atoms and ions are developed. The basic assumptions of the theories correspond to the approximations employed earlier in classical and quantum calculations of ordinary bremsstrahlung in a static potential. This makes it possible to study on a unified basis the contribution of both channels in the radiation taking account of their interference. The classical model makes it possible to obtain simple universal formulas for the spectral characteristics of the radiation. The theory is applied to electrons with moderate energies, which are characteristic for plasma applications, specifically, radiation from electrons on the argon-like ion KII at frequencies close to its ionization potential. The computational results show the importance of taking account of the polarization channel of the radiation for plasma with heavy ions

  19. Simple Unbiased Hot-Electron Polarization-Sensitive Near-Infrared Photodetector.

    Science.gov (United States)

    Mirzaee, Somayeh M A; Lebel, Olivier; Nunzi, Jean-Michel

    2018-03-27

    Plasmonic nanostructures can generate energetic "hot" electrons from light in a broad band fashion depending on their shape, size, and arrangement. Such structures have a promising use in photodetectors, allowing high speed, broad band, and multicolor photodetection. Because they function without a band gap absorption, photon detection at any energy would be possible through engineering of the plasmonic nanostructure. Herein, a compact hot-electron-based photodetector that combines polarization sensitivity and circularly polarized light detection in the near-infrared region was fabricated using an indium tin oxide (ITO)-Au hybrid layer. Furthermore, the sensitivity of the device was significantly increased by adding a poled Azo molecular glass film in a capacitor configuration. The resulting device is capable of detecting light below the ITO band gap at ambient temperature without any bias voltage. This photodetector, which is amenable to large-area fabrication, can be integrated with other nanophotonic and nanoplasmonic structures for operation at telecom wavelengths.

  20. Electron-spin filter and polarizer in a standing light wave

    Science.gov (United States)

    Ahrens, Sven

    2017-11-01

    We demonstrate the theoretical feasibility of spin-dependent diffraction and spin polarization of an electron in two counterpropagating, circularly polarized laser beams. The spin dynamics appears in a two-photon process of the Kapitza-Dirac effect in the Bragg regime. We show the spin dependence of the diffraction process by comparison of the time evolution of spin-up and spin-down electrons in a relativistic quantum simulation. We further discuss the spin properties of the scattering by studying an analytically approximated solution of the time-evolution matrix. A classification scheme in terms of unitary or nonunitary propagation matrices is used for establishing a generalized and spin-independent description of the spin properties in the diffraction process.

  1. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); Vergara, Lucía [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); N' Diaye, Alpha T. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Quesada, Adrian [Instituto de Cerámica y Vidrio, CSIC, Calle Kelsen 5, 28049, Madrid (Spain); Schmid, Andreas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-07-15

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface <110> directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along <110> directions. ► Magnetic domain wall structures include wide Néel-caps.

  2. The Mars water cycle at other epochs: History of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The atmospheric water cycle at the present epoch involves summertime sublimation of water from the north polar cap, transport of water through the atmosphere, and condensation on one or both winter CO2 caps. Exchange with the regolith is important seasonally, but the water content of the atmosphere appears to be controlled by the polar caps. The net annual transport through the atmosphere, integrated over long timescales, must be the driving force behind the long-term evolution of the polar caps; clearly, this feeds back into the evolution of the layered terrain. We have investigated the behavior of the seasonal water cycle and the net integrated behavior at the pole for the last 10 exp 7 years. Our model of the water cycle includes the solar input, CO2 condensation and sublimation, and summertime water sublimation through the seasonal cycles, and incorporates the long-term variations in the orbital elements describing the Martian orbit.

  3. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Lu, Yu-Hsuan; Pilkuhn, Manfred H.; Fu, Yi-Keng; Chu, Mu-Tao; Huang, Shyh-Jer; Su, Yan-Kuin; Wang, Kang L.

    2014-01-01

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL

  4. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yu-Hsuan; Pilkuhn, Manfred H. [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Fu, Yi-Keng; Chu, Mu-Tao [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Huang, Shyh-Jer, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States); Su, Yan-Kuin, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electronic Engineering, Kun-Shan University, Tainan 71003, Taiwan (China); Wang, Kang L. [Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States)

    2014-03-21

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL.

  5. Imaging of fast moving electron-density structures in the polar cap

    Directory of Open Access Journals (Sweden)

    C. N. Mitchell

    2007-06-01

    Full Text Available The imaging of fast-moving electron-density structures in the polar cap presents a unique set of challenges that are not encountered in other ionospheric imaging problems. GPS observations of total electron content in the polar cap are sparse compared to other regions in the Northern Hemisphere. Furthermore, the slow relative motion of the satellites across the sky complicates the problem since the velocity of the plasma can be large in comparison and traditional approaches could result in image blurring. This paper presents a Kalman-filter based method that incorporates a forward projection of the solution based on a model plasma drift velocity field. This is the first time that the plasma motion, rather than just integrations of electron density, has been used in an ionospheric imaging algorithm. The motion is derived from the Weimer model of the electric field. It is shown that this novel approach to the implementation of a Kalman filter provides a detailed view of the polar cap ionosphere under severe storm conditions. A case study is given for the October 2003 Halloween storm where verification is provided by incoherent scatter radars.

  6. Investigation of resonant polarization radiation of relativistic electrons in gratings at small angles

    International Nuclear Information System (INIS)

    Aleinik, A.N.; Chefonov, O.V.; Kalinin, B.N.; Naumenko, G.A.; Potylitsyn, A.P.; Saruev, G.A.; Sharafutdinov, A.F.

    2003-01-01

    The resonant optical polarization radiation (ROPR) in the Smith-Purcell geometry and the one from the inclined grating at the Tomsk synchrotron and 6-MeV microtron have been investigated. The polarization radiation was observed at 4.2 deg. from the 200 MeV electron beam and at 5 deg. from the 6.2 MeV electron beam. Two methods of measurement of ROPR maxima in these two cases have been used. In the first case (the experiment on synchrotron) we have fixed the wavelength of radiation using an optical filter; the orientation dependence of this radiation was measured. In this dependence we have observed two peaks of radiation from electrons in gold foil grating of 0.1 mm period. The first large peak is a zeroth order peak in direction of specular reflection, and the second one is the first-order peak of resonant polarization radiation. In the experiment on microtron the spectra of ROPR from aluminum foil strip grating of 0.2 mm period in the Smith-Purcell geometry were measured, and the peak of the first-order Smith-Purcell radiation in these spectra was observed. The comparison of data obtained with the simulation results has been performed

  7. The Mars water cycle at other epochs - Recent history of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1993-01-01

    A numerical model is presented of the integrated role of seasonal water cycle on the evolution of polar deposits on Mars over the last 10 million years. From the model, it is concluded that the only major difference between the polar caps which affects their long-term behavior is ultimately the difference in their elevations. Because of that difference, there is a preference for CO2 frost to stay longer on the northern polar cap. The average difference in sublimation at the caps results in a net south-to-north transport of water ice over long time scales. Superimposed on any long-term behavior is a transfer of water ice between the caps on the 10 exp 5 - 10 exp 6 yr time scales. The amount of water exchanged is small compared to the total ice content of the polar deposits.

  8. A Spin-Light Polarimeter for Multi-GeV Longitudinally Polarized Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Mohanmurthy, Prajwal [Mississippi State University, Starkville, MS (United States); Dutta, Dipangkar [Mississippi State University, Starkville, MS (United States) and Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    The physics program at the upgraded Jefferson Lab (JLab) and the physics program envisioned for the proposed electron-ion collider (EIC) include large efforts to search for interactions beyond the Standard Model (SM) using parity violation in electroweak interactions. These experiments require precision electron polarimetry with an uncertainty of < 0.5 %. The spin dependent Synchrotron radiation, called "spin-light," can be used to monitor the electron beam polarization. In this article we develop a conceptual design for a "spin-light" polarimeter that can be used at a high intensity, multi-GeV electron accelerator. We have also built a Geant4 based simulation for a prototype device and report some of the results from these simulations.

  9. A nanoparticle catalyst for heterogeneous phase para-hydrogen-induced polarization in water.

    Science.gov (United States)

    Glöggler, Stefan; Grunfeld, Alexander M; Ertas, Yavuz N; McCormick, Jeffrey; Wagner, Shawn; Schleker, P Philipp M; Bouchard, Louis-S

    2015-02-16

    Para-hydrogen-induced polarization (PHIP) is a technique capable of producing spin polarization at a magnitude far greater than state-of-the-art magnets. A significant application of PHIP is to generate contrast agents for biomedical imaging. Clinically viable and effective contrast agents not only require high levels of polarization but heterogeneous catalysts that can be used in water to eliminate the toxicity impact. Herein, we demonstrate the use of Pt nanoparticles capped with glutathione to induce heterogeneous PHIP in water. The ligand-inhibited surface diffusion on the nanoparticles resulted in a (1) H polarization of P=0.25% for hydroxyethyl propionate, a known contrast agent for magnetic resonance angiography. Transferring the (1) H polarization to a (13) C nucleus using a para-hydrogen polarizer yielded a polarization of 0.013%. The nuclear-spin polarizations achieved in these experiments are the first reported to date involving heterogeneous reactions in water. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. [The multi-angle polarization spectral character of water and its applications in water color remote sensing].

    Science.gov (United States)

    Wu, Tai-Xia; Yan, Lei; Xiang, Yun; Zhao, Yun-Sheng; Chen, Wei

    2010-02-01

    The reflectance of pure water is very low at visible and near infrared bands. Its spectral characteristics are not obvious. Water always shows dark hue in optical remote sensing images. This dark hue causes the difficulties in water remote sensing identification. There is an interesting phenomenon when the authors research the water polarization spectroscopy. The authors measured water's polarization spectra and reflectance spectra at different view zenith angles using the ASD spectrometer. When the view zenith angle was zero (measured vertically), as the spectrum people commonly measure, there was no polarization phenomenon at the water surface, and the reflectance was low at each band. Along with the increase in view zenith angle, the DOP spectra curves increased evidently, while the reflectance curves only changed a little. When the view zenith angle was over 30 degree, the values of DOP spectrum were much larger than the reflectance spectrum values at the entire visible and near infrared bands. At some bands, the DOP value was several dozen times than its reflectance value. This phenomenon shows that the water's brightness in DOP image is much higher than its brightness in intensity image under the same condition. This rule was verified by the PARASOL multiangle polarization satellite data. Comparing the average brightness of DOP images with the average brightness of intensity images at 490, 670 and 865 nm band, the former is higher than the latter apparently. The brighter DOP images are better for water remote sensing identification It is the first time that the authors found this special multiangle polarization spectral character of water. It revealed the advantage of water detection using the multiangle polarization remote sensing data. This method solved the low reflectivity problem of water color remote sensing. It will greatly improve the capability of water remote sensing identification and the retrieval accuracy of water quality parameters.

  11. Analysis of method of polarization surveying of water surface oil pollution

    Science.gov (United States)

    Zhukov, B. S.

    1979-01-01

    A method of polarization surveying of oil films on the water surface is analyzed. Model calculations of contrasted oil and water obtained with different orientations of the analyzer are discussed. The model depends on the spectral range, water transparency and oil film, and the selection of observational direction.

  12. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  13. Electronic device for measuring the polarization parameter in the π-p → π0n charge exchange reaction on a polarized proton target

    International Nuclear Information System (INIS)

    Brehin, S.

    1967-12-01

    An electronic apparatus has been constructed to measure the polarization parameter P 0 (t) in π - p → π 0 n charge exchange scattering at 5.9 GeV/c and 11,2 GeV/c on polarized proton target. This device insures triggering of a heavy plate spark chamber, allowing visualisation of γ rays from the π 0 decays when the associated neutron offers suitable characteristics in direction and energy. The neutron is detected by an array of 32 counters and his energy is measured by a time of flight method. Electronic circuits of this apparatus are described as test and calibration methods used. (author) [fr

  14. Determination of electron beam polarization using electron detector in Compton polarimeter with less than 1% statistical and systematic uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Amrendra [Mississippi State Univ., Mississippi State, MS (United States)

    2015-05-01

    The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scattered photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (?1 GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a

  15. Polarization Lidar for High Precision Water Depth Measurements of Glacial Melt Water

    Science.gov (United States)

    Barton-Grimley, R. A.; Thayer, J. P.; Koenig, L.; Moussavi, M. S.; Gisler, A.; Crowley, G.

    2016-12-01

    In the past decade, warming temperatures over the GrIS have significantly increased the surface melt flowing through the supraglacial hydrologic system - melt ponds, lakes, and rivers - all playing a crucial role in the mass loss of land ice. The smaller melt ponds, rivers and streams on the ice sheets, which evacuate more water than is contained in the larger lakes [Smith et al., 2015], are not sufficiently measured to quantify melt. Scientific requirements established by the cryospheric community call for hydrographic lidar measurements with water depth accuracy better than ±10 cm over meter-scale depths during the melt season. Lakes observed in Southwest, Greenland were on average 2-3 meters deep with maxima near 8 m. Stream depths ranged from 0.6 to 3.4 m with a mean depth of 2.0 m [Moussavi et al., 2016, Pope et al., 2016 and Smith et al., 2015]. In response, a 532nm topographic/hydrographic lidar demonstrator implementing a novel measurement scheme has been developed. The lab demonstrator isolates water surface and ice substrate returns using polarization scattering attributes, and fast timing, to range resolve the two surfaces at centimeter precision. Results of the lidar demonstrator on polarization properties of surface water roughness and varied ice substrates expected during measurement of supraglacial streams, rivers, and shallow melt ponds will be presented. Demonstrating the measurement techniques in a number of controlled scenarios, necessary for understanding the subsequent instrument response, provides a baseline for future measurements in flow regimes that include stream cross-sectional area and discharge estimates. Supporting analysis indicates benefits in system scalability, applicability, and adaptability using this lidar technique, and offers the means to accurately quantify the predominantly shallow, melt ponds, sinuous rivers, and streams that are not currently identifiable from satellite imagery.

  16. Computer simulations analysis for determining the polarity of charge generated by high energy electron irradiation of a thin film

    DEFF Research Database (Denmark)

    Malac, Marek; Hettler, Simon; Hayashida, Misa

    2017-01-01

    Detailed simulations are necessary to correctly interpret the charge polarity of electron beam irradiated thin film patch. Relying on systematic simulations we provide guidelines and movies to interpret experimentally the polarity of the charged area, to be understood as the sign of the electrost...

  17. Measurement of the longitudinal polarization of the HERA electron beam using crystals and the ZEUS luminosity monitor

    International Nuclear Information System (INIS)

    Piotrzkowski, K.

    1995-12-01

    A measurement of the longitudinal polarization of the electron beam at HERA utilizing coherent interactions of high energy photons in crystals is described. Modification of existing facilities would allow an independent polarization measurement and a verification of birefringence phenomena in crystals for 20-30 GeV photons. Relevant experimental issues and systematic uncertainties are also presented. (orig.)

  18. Molecular density functional theory of water including density-polarization coupling.

    Science.gov (United States)

    Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel

    2016-06-22

    We present a three-dimensional molecular density functional theory of water derived from first-principles that relies on the particle's density and multipolar polarization density and includes the density-polarization coupling. This brings two main benefits: (i) scalar density and vectorial multipolar polarization density fields are much more tractable and give more physical insight than the full position and orientation densities, and (ii) it includes the full density-polarization coupling of water, that is known to be non-vanishing but has never been taken into account. Furthermore, the theory requires only the partial charge distribution of a water molecule and three measurable bulk properties, namely the structure factor and the Fourier components of the longitudinal and transverse dielectric susceptibilities.

  19. Classical radiation effects on relativistic electrons in ultraintense laser fields with circular polarization

    Science.gov (United States)

    Schlegel, Theodor; Tikhonchuk, Vladimir T.

    2012-07-01

    The propagation of a relativistic electron with initial energy ≳100 MeV in a number of simple one-dimensional laser field configurations with circular polarization is studied by solving the relativistic equation of motion in the Landau-Lifschitz approach to account for the radiation friction force. The radiation back-reaction on the electron dynamics becomes visible at dimensionless field amplitudes a ≳ 10 at these high particle energies. Analytical expressions are derived for the energy and the longitudinal momentum of the electron, the frequency shift of the light scattered by the electron and the particle trajectories. These findings are compared with the numerical solutions of the basic equations. A strong radiation damping effect results in reduced light scattering, forming at the same time a broad quasi-continuous spectrum. In addition, the electron dynamics in the strong field of a quasistationary laser piston is investigated. Analytical solutions for the electron trajectories in this complex field pattern are obtained and compared with the numerical solutions. The radiation friction force may stop a relativistic electron after propagation over several laser wavelengths at high laser field strengths, which supports the formation of a stable piston.

  20. The Contribution of Water Ice Clouds to the Water Cycle in the North Polar Region of Mars: Preliminary Analysis

    Science.gov (United States)

    Bass, D. S.; Tamppari, L. K.

    2000-01-01

    While it has long been known that Mars' north residual polar cap and the Martian regolith are significant sources of atmospheric water vapor, the amount of water vapor observed in the northern spring season by the Viking Mars Atmospheric Water Detector instrument (MAWD) cannot be attributed to cap and regolith sources alone. Kahn suggested that ice hazes may be the mechanism by which additional water is supplied to the Martian atmosphere. Additionally, a significant decrease in atmospheric water vapor was observed in the late northern summer that could not be correlated with the return of the cold seasonal C02 ice. While the detection of water ice clouds on Mars indicate that water exists in Mars' atmosphere in several different phases, the extent to which water ice clouds play a role in moving water through the Martian atmosphere remains uncertain. Work by Bass et. al. suggested that the time dependence of water ice cap seasonal variability and the increase in atmospheric water vapor depended on the polar cap center reaching 200K, the night time saturation temperature. Additionally, they demonstrated that a decrease in atmospheric water vapor may be attributed to deposition of water ice onto the surface of the polar cap; temperatures were still too warm at this time in the summer for the deposition of carbon dioxide. However, whether water ice clouds contribute significantly to this variability is unknown. Additional information is contained in original extended abstract.

  1. Water absorption in PEEK and PEI matrices. Contribution to the understanding of water-polar group interactions

    Science.gov (United States)

    Courvoisier, E.; Bicaba, Y.; Colin, X.

    2016-05-01

    The water absorption in two aromatic linear polymers (PEEK and PEI) was studied between 10% and 90% RH at 30, 50 and 70°C. It was found that these polymers display classical Henry and Fick's behaviors. Moreover, they have very close values of equilibrium water concentration C∞ and water diffusivity D presumably because their respective polar groups establish molecular interactions of the same nature with water. This assumption was checked from a literature compilation of values of C∞ and D for a large variety of linear and tridimensional polymers containing a single type of polar group. It was then evidenced that almost all types of carbonyl group (in particular, those belonging to imides, amides and ketones) have the same molar contribution to water absorption, except those belonging to esters which are much less hydrophilic. Furthermore, hydroxyl and sulfone groups are much more hydrophilic than carbonyl groups so that their molar contribution is located on another master curve. On this basis, semi-empirical structure/water transport property relationships were proposed. It was found that C∞ increases exponentially with the concentration of polar groups (presumably because water is doubly bonded), but also with the intensity of their molecular interactions with water. In contrast, D is inversely proportional to C∞, which means that polar group-water interactions slow down the rate of water diffusion.

  2. Investigating Pulsed Discharge Polarity Employing Solid-State Pulsed Power Electronics

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    , the influence of electric field distribution is analyzed using Finite Element simulations for the employed geometries and mediums. The experimental and simulation results have verified the important role of the applied voltage polarity, employed geometry and medium of the system on plasma generation.......Power electronics technique has become a key technology in solid-state pulsed power supplies. Since pulsed power applications have been matured and found its way into many industrial applications, moving toward energy efficiency is gaining much more interest. Therefore, finding an optimum operation...... condition plays an important role in maintaining the desired performance. Investigating the system parameters contributed to the generated pulses is an effective way in improving the system performance further ahead. One of these parameters is discharge polarity which has received less attention...

  3. Angular correlation and polarization studies for radiative electron capture into high-Z ions

    CERN Document Server

    Stöhlker, T; Fritzsche, S; Gumberidze, A; Kozhuharov, C; Ma, X; Orsic-Muthig, A; Spillmann, U; Sierpowski, D; Surzhykov, A; Tachenov, S; Warczak, A

    2004-01-01

    Recent photon correlation studies for Radiative Electron Capture into high-Z projectiles are reviewed. Emphasis is given to the investigation of polarization phenomena which are now accessible due to recent developments in position sensitive solid-states detectors. It is shown, that REC may provide a tool for the diagnostics and detection of the spinâ€"polarization of particles involved in atomic collisions. Also the impact of REC studies for atomic structure studies is outlined. Here the strong alignment of excited states induced by REC allowed us to observe an interference between competing decay branches for the case of the Lyman-α1 transition in hydrogen-like ions.

  4. Continuous wave protocol for simultaneous polarization and optical detection of P1-center electron spin resonance

    Science.gov (United States)

    Kamp, E. J.; Carvajal, B.; Samarth, N.

    2018-01-01

    The ready optical detection and manipulation of bright nitrogen vacancy center spins in diamond plays a key role in contemporary quantum information science and quantum metrology. Other optically dark defects such as substitutional nitrogen atoms (`P1 centers') could also become potentially useful in this context if they could be as easily optically detected and manipulated. We develop a relatively straightforward continuous wave protocol that takes advantage of the dipolar coupling between nitrogen vacancy and P1 centers in type 1b diamond to detect and polarize the dark P1 spins. By combining mutual spin flip transitions with radio frequency driving, we demonstrate the simultaneous optical polarization and detection of the electron spin resonance of the P1 center. This technique should be applicable to detecting and manipulating a broad range of dark spin populations that couple to the nitrogen vacancy center via dipolar fields, allowing for quantum metrology using these spin populations.

  5. An IIR adaptive electronic equalizer for polarization multiplexed fiber optic communication systems

    Science.gov (United States)

    Zeng, Xiang-Ye; Liu, Jian-Fei; Zhao, Qi-Da

    2011-09-01

    An electronic digital equalizer for polarization multiplex coherent fiber optic communication systems is designed to compensate polarization mode dispersion (PMD) and residual chromatic dispersion (CD) of transmission channel. The proposed equalizer is realized with fraction spaced infinite impulse response (IIR) butterfly structure with 21 feedforward taps and 2 feedback taps. Compared with finite impulse response (FIR) structure, this structure can reduce implementation complexity of hardware under the same condition. To keep track of the random variation of channel characteristics, the filter weights are updated by least mean square (LMS) algorithm. The simulation results show that the proposed equalizer can compensate residual chromatic dispersion (CD) of 1600 ps/nm and differential group delay (DGD) of 90 ps simultaneously, and also can increase the PMD and residual CD tolerance of the whole communication system.

  6. Electron spin injection from a regrown Fe layer in a spin-polarized vertical-cavity surface-emitting laser

    Science.gov (United States)

    Holub, M.; Bhattacharya, P.; Shin, J.; Saha, D.

    2007-04-01

    An electroluminescence circular polarization of 23% and threshold current reduction of 11% are obtained in an electrically pumped spin-polarized vertical-cavity surface-emitting laser. Electron spin injection is accomplished utilizing a regrown Fe/ n-AlGaAs Schottky tunnel barrier deposited around the base of the laser mesas. Negligible circular polarizations and threshold current reductions are measured for nonmagnetic and Fe-based control VCSELs, which provides convincing evidence of spin injection, transport, and detection in our spin-polarized laser.

  7. Electron-spin polarization of photoions produced through photoionization from the laser-excited triplet state of Sr

    International Nuclear Information System (INIS)

    Yonekura, Nobuaki; Nakajima, Takashi; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2004-01-01

    We report the detailed experimental study on the production of electron-spin-polarized Sr + ions through one-photon resonant two-photon ionization via laser-excited 5s5p 3 P 1 (M J =+1) of Sr atoms produced by laser-ablation. We have experimentally confirmed that the use of laser-ablation for the production of Sr atoms prior to photoionization does not affect the electron-spin polarization. We have found that the degree of electron-spin polarization is 64±9%, which is in good agreement with our recent theoretical prediction. As we discuss in detail, we infer, from a simple analysis, that photoelectrons, being the counterpart of electron-spin-polarized Sr + ions, have approximately the same degree of electron-spin polarization. Our experimental results demonstrate that the combined use of laser-ablation technique and pulsed lasers for photoionization would be a compact and effective way to realize a pulsed source for spin-polarized ions and electrons for the studies of various spin-dependent dynamics in chemical physics

  8. Six-channel multi-wavelength polarization Raman lidar for aerosol and water vapor profiling.

    Science.gov (United States)

    Wang, Zhaofei; Mao, Jiandong; Li, Juan; Zhao, Hu; Zhou, Chunyan; Sheng, Hongjiang

    2017-07-10

    Aerosols and water vapor are important atmospheric components, and have significant effects on both atmospheric energy conversion and climate formation. They play the important roles in balancing the radiation budget between the atmosphere and Earth, while water vapor also directly affects rainfall and other weather processes. To further research atmospheric aerosol optical properties and water vapor content, an all-time six-channel multi-wavelength polarization Raman lidar has been developed at Beifang University of Nationalities. In addition to 1064, 532, and 355 nm Mie scattering channels, the lidar has a polarization channel for 532 nm return signals, a 660 nm water vapor channel, and a 607 nm nitrogen detection channel. Experiments verified the lidar's feasibility and return signals from six channels were detected. Using inversion algorithms, extinction coefficient profiles at 1064, 532 and 355 nm, Ångström exponent profiles, depolarization ratio profiles, and water vapor mixing ratio profiles were all obtained. The polarization characteristics and water vapor content of cirrus clouds, the polarization characteristics of dusty weather, and the water vapor profiles over different days were also analyzed. Results show that the lidar has the full-time detection capability for atmospheric aerosol optical properties and water vapor profiles, and real-time measurements of aerosols and water vapor over the Yinchuan area were realized, providing important information for studying the environmental quality and climate change in this area.

  9. Bidirectional electron anisotropies in the distant tail: ISEE-3 observations of polar rain

    International Nuclear Information System (INIS)

    Baker, D.N.; Bame, S.J.; Feldman, W.C.; Gosling, J.T.; Zwickl, R.D.; Slavin, J.A.; Smith, E.J.

    1985-01-01

    A detailed observational treatment of bidirectional electrons (50 approx.500 eV) in the distant magnetotail (r greater than or equal to 100 R/sub E/) is presented. It is found that electrons in this energy range commonly exhibit strong, field-aligned anisotropies in the tail lobes. Because of large tail motions, the ISEE-3 data provide extensive sampling of both the north and south lobes in rapid succession, demonstrating directly the strong asymmetries that exist between the north and south lobes at any one time. The bidirectional fluxes are found to occur predominantly in the lobe directly connected to the sunward IMF in the open magnetosphere model (north lobe for away sectors and south lobe for toward sectors). Electron anisotropy and magnetic field data are presented which show the transition from unidirectional (sheath) electron populations to bidirectional (lobe) populations. Taken together, the present evidence suggests that the bidirectional electrons that we observe in the distant tail are closely related to the polar rain electrons observed previously at lower altitudes. Furthermore, these data provide strong evidence that the distant tail is comprised largely of open magnetic field lines in contradistinction to some recently advanced models

  10. Application of electron beam technology in improving sewage water ...

    African Journals Online (AJOL)

    The use of electron beam to disinfect sewage water is gaining importance. The current problem on environmental health in relation to water pollution insists for the safe disposal of sewage water. In general, sewage water comprises of heterogeneous organic based chemicals as well as pathogens. EB (electron beam) ...

  11. Tensor polarization in elastic electron-deuteron scattering to the highest possible momentum transfers

    Energy Technology Data Exchange (ETDEWEB)

    Garcon, M; Ahmidouch, A; Anklin, H; Arvieux, J; Ball, J; Beedoe, S; Beise, E J; Bimbo, L; Boeglin, W; Breuer, H; Carlini, R; Chant, N S; Danagoulian, S; Dow, K; Ducret, J -E; Dunne, J; Ewell, L; Eyraud, L; Furget, C; Gilman, R; Glashausser, C; Gueye, P; Gustafsson, K; Hafidi, K; Honegger, A; Jourdan, J; Kox, S; Kumbartzki, G; Lu, L; Lung, A; Mack, D; Markowitz, P; McIntyre, J; Meekins, D; Merchez, F; Mitchell, J; Mohring, R; Mtingwa, S; Mrktchyan, H; Pitz, D; Qin, L; Ransome, R; Raoul, J -S; Roos, P G; Rutt, P; Schmidt, W; Sawafta, R; Stepanyan, S; Stephenson, R; Tieulent, R; Tomasi-Gustafsson, E

    1999-07-01

    In elastic electron-deuteron scattering, the tensor polarization moments t{sub 20}, t{sub 21} and t{sub 22}, together with the unpolarized cross-sections, have been measured up to a momentum transfer of 1.8 (GeV/c){sup 2}, or 6.8 fm{sup -1}. The experiment was performed at Jefferson Laboratory using the recoil deuteron polarimeter POLDER. Preliminary results are presented and discussed, especially in view of their significance concerning the applicability of perturbative QCD to this exclusive process.

  12. Cross-field injection of a charged, polarized, ion-electron beam

    International Nuclear Information System (INIS)

    Hamilton, G.W.

    1976-01-01

    An early idea for fueling a controlled fusion device had been the injection of a polarized mixture of ions and electrons across a magnetic field and into the device. Now, the beam intensity (several kA/cm 2 ) required for this technique is available from pulsed ion diodes. Remaining feasibility questions involve beam optics and trapping. The most obvious advantage over neutral-beam injection is avoidance of the need to produce high-energy atoms. Therefore, the technique will compete best at ion energies above 100 keV. The method appears feasible for pulsed startup of mirror machines, but not for steady-state injection into a plasma

  13. Electron bombardment of water adsorbed on Zr(0001) surfaces

    CERN Document Server

    Ankrah, S; Ramsier, R D

    2003-01-01

    A study of the effects of electron bombardment on water adsorbed on Zr(0001) is reported. Zirconium surfaces are dosed with isotopic water mixtures at 160 K followed by electron bombardment (485 eV). The system is then probed by low energy electron diffraction, temperature programmed desorption (TPD) and Auger electron spectroscopy (AES). No evidence is found that would indicate preferential mixing of hydrogen from the bulk with isotopic water dissociation products during TPD. However, electron bombardment results in the sharpening of a hydrogen/deuterium desorption peak near 320 K and the production of water near 730 K at low water exposures. In addition, although water does not oxidize Zr(0001) thermally, electron bombardment of adsorbed water induces a shift of about 2 eV in the Zr AES features indicating that the surface is partially oxidized by electron bombardment.

  14. New-type spin polarized electron source and its applications; Atarashii spin henkyoku denshi sengen to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Saka, T.; Kato, T. [Daido Steel Co. Ltd., Nagoya (Japan); Nakanishi, T.; Okumi, S. [Nagoya University, Nagoya (Japan); Horinaka, H. [Osaka Prefectural University, Osaka (Japan). College of Engineering

    1998-08-20

    This paper reveals that using distorted thin GaAs film can realize high polarization in spin polarized electron ray, and introduces properties of the developed ray source. The paper also touches on the application thereof to property physics. Realization of the high spin polarization is based on use of the `optical polarization method`. With this method, electrons in specific spin state are excited into a conduction band by utilizing the selection law used when valency electrons of zincblende type crystal such as GaAs absorb circular polarization. These electrons are taken out into vacuum and used as polarized electron beams. In order to realize uniformly distorted GaAs film, a method was discussed, with which the thin GaAs films are grown on substrates with different lattice constants, and the films are distorted by means of lattice mismatch. GaAs(1-x)Px was used for the substrates. GaAs(1-x)Px has the lattice constant decrease as the P`s mixed crystal ratio `x` increases. If a thin GaAs film is grown on this substrate, it is possible to obtain GaAs which is subjected to compression stress in the direction parallel with the growing surface, and tensile stress in the vertical direction. 13 refs., 5 figs., 1 tab.

  15. Electron Density Dropout Near Enceladus in the Context of Water-Vapor and Water-Ice

    Science.gov (United States)

    Farrell, W. M.; Kurth, W. S.; Gurnett, D. A.; Johnson, R. E.; Kaiser, M. L.; Wahlund, J.-E.; Waite, J. H., Jr.

    2009-01-01

    On 12 March 2008, the Cassini spacecraft made a close encounter with the Saturnian moon Enceladus, passing within 52 km of the moon. The spacecraft trajectory was intentionally-oriented in a southerly direction to create a close alignment with the intense water-dominated plumes emitted from the south polar region. During the passage, the Cassini Radio and Plasma Wave System (RPWS) detected two distinct radio signatures: 1) Impulses associated with small water-ice dust grain impacts and 2) an upper hybrid (UH) resonance emission that both intensified and displayed a sharp frequency decrease in the near-vicinity of the moon. The frequency decrease of the UH emission is associated with an unexpectedly sharp decrease in electron density from approximately 90 el/cubic cm to below 20 el/cubic cm that occurs on a time scale of a minute near the closest encounter with the moon. In this work, we consider a number of scenarios to explain this sharp electron dropout, but surmise that electron absorption by ice grains is the most likely process.

  16. High-frequency microstrip cross resonators for circular polarization electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Henderson, J J; Ramsey, C M; Quddusi, H M; del Barco, E

    2008-07-01

    In this article we discuss the design and implementation of a novel microstrip resonator which allows absolute control of the microwaves polarization degree for frequencies up to 30 GHz. The sensor is composed of two half-wavelength microstrip line resonators, designed to match the 50 Omega impedance of the lines on a high dielectric constant GaAs substrate. The line resonators cross each other perpendicularly through their centers, forming a cross. Microstrip feed lines are coupled through small gaps to three arms of the cross to connect the resonator to the excitation ports. The control of the relative magnitude and phase between the two microwave stimuli at the input ports of each line allows for tuning the degree and type of polarization of the microwave excitation at the center of the cross resonator. The third (output) port is used to measure the transmitted signal, which is crucial to work at low temperatures, where reflections along lengthy coaxial lines mask the signal reflected by the resonator. Electron paramagnetic resonance spectra recorded at low temperature in an S=5/2 molecular magnet system show that 82% fidelity circular polarization of the microwaves is achieved over the central area of the resonator.

  17. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization.

    Science.gov (United States)

    Scott, Faith J; Saliba, Edward P; Albert, Brice J; Alaniva, Nicholas; Sesti, Erika L; Gao, Chukun; Golota, Natalie C; Choi, Eric J; Jagtap, Anil P; Wittmann, Johannes J; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th Sigurdsson, Snorri; Barnes, Alexander B

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a agile high-power microwave sources. Copyright © 2018. Published by Elsevier Inc.

  18. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization

    Science.gov (United States)

    Scott, Faith J.; Saliba, Edward P.; Albert, Brice J.; Alaniva, Nicholas; Sesti, Erika L.; Gao, Chukun; Golota, Natalie C.; Choi, Eric J.; Jagtap, Anil P.; Wittmann, Johannes J.; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th. Sigurdsson, Snorri; Barnes, Alexander B.

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources.

  19. Characteristics of energetic electron precipitation into the earth's polar atmosphere and geomagnetic conditions

    Science.gov (United States)

    Makhmutov, V. S.; Bazilevskaya, G. A.; Krainev, M. B.

    A number of energetic electron precipitation events (EPEs) were observed in the Earth's polar atmosphere (Murmansk region, geographical coordinates 68.57 N, 33.03 E and Mirny, Antarctica, 66.34 S, 92.55 E) during the long-term cosmic ray balloon experiment from 1957 up to now. During geomagnetic storms significant X-ray fluxes caused by precipitating electrons at the top of the atmosphere sometimes penetrated to the atmospheric depth of 60 gcm-2. We show that (1) there is a quasi-11-year cycle in EPE occurrence shifted with respect to solar activity cycle, and (2) the yearly rate of EPE occurrence has an ascending trend during the period 1965-1999. The EPE characteristics evaluated from the balloon experiment are compared with the available data on geomagnetic activity and the possible relations between the features of EPE events and geomagnetic conditions are discussed.

  20. Polarized electron beams elastically scattered by atoms as a tool for testing fundamental predictions of quantum mechanics.

    Science.gov (United States)

    Dapor, Maurizio

    2018-03-29

    Quantum information theory deals with quantum noise in order to protect physical quantum bits (qubits) from its effects. A single electron is an emblematic example of a qubit, and today it is possible to experimentally produce polarized ensembles of electrons. In this paper, the theory of the polarization of electron beams elastically scattered by atoms is briefly summarized. Then the POLARe program suite, a set of computer programs aimed at the calculation of the spin-polarization parameters of electron beams elastically interacting with atomic targets, is described. Selected results of the program concerning Ar, Kr, and Xe atoms are presented together with the comparison with experimental data about the Sherman function for low kinetic energy of the incident electrons (1.5eV-350eV). It is demonstrated that the quantum-relativistic theory of the polarization of electron beams elastically scattered by atoms is in good agreement with experimental data down to energies smaller than a few eV.

  1. Polarized light and scanning electron microscopic investigation of enamel hypoplasia in primary teeth.

    Science.gov (United States)

    Sabel, Nina; Klingberg, Gunilla; Dietz, Wolfram; Nietzsche, Sandor; Norén, Jörgen G

    2010-01-01

    Enamel hypoplasia is a developmental disturbance during enamel formation, defined as a macroscopic defect in the enamel, with a reduction of the enamel thickness with rounded, smooth borders. Information on the microstructural level is still limited, therefore further studies are of importance to better understand the mechanisms behind enamel hypoplasia. To study enamel hypoplasia in primary teeth by means of polarized light microscopy and scanning electron microscopy. Nineteen primary teeth with enamel hypoplasia were examined in a polarized light microscope and in a scanning electron microscope. The cervical and incisal borders of the enamel hypoplasia had a rounded appearance, as the prisms in the rounded cervical area of the hypoplasia were bent. The rounded borders had a normal surface structure whereas the base of the defects appeared rough and porous. Morphological findings in this study indicate that the aetiological factor has a short duration and affects only certain ameloblasts. The bottom of the enamel hypoplasia is porous and constitutes possible pathways for bacteria into the dentin.

  2. On the possibility of the electron polarization to be the driving force for the C60-TMB nanowire growth

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Geng, Junfeng; Solov'yov, Andrey V.

    2009-01-01

    The effect of electron polarization has been suggested to explain the exceptionally large length-to width aspect ratio (more than 3000) in recently observed C_60-based nanowires. The theoretical estimates performed in the present Letter show that at room temperature the effect of electron polariz...

  3. Responses of invertebrates to temperature and water stress: A polar perspective.

    Science.gov (United States)

    Everatt, Matthew J; Convey, Pete; Bale, Jeffrey S; Worland, M Roger; Hayward, Scott A L

    2015-12-01

    As small bodied poikilothermic ectotherms, invertebrates, more so than any other animal group, are susceptible to extremes of temperature and low water availability. In few places is this more apparent than in the Arctic and Antarctic, where low temperatures predominate and water is unusable during winter and unavailable for parts of summer. Polar terrestrial invertebrates express a suite of physiological, biochemical and genomic features in response to these stressors. However, the situation is not as simple as responding to each stressor in isolation, as they are often faced in combination. We consider how polar terrestrial invertebrates manage this scenario in light of their physiology and ecology. Climate change is also leading to warmer summers in parts of the polar regions, concomitantly increasing the potential for drought. The interaction between high temperature and low water availability, and the invertebrates' response to them, are therefore also explored. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Polarization of electron-beam irradiated LDPE films: contribution to charge generation and transport

    Science.gov (United States)

    Banda, M. E.; Griseri, V.; Teyssèdre, G.; Le Roy, S.

    2018-04-01

    Electron-beam irradiation is an alternative way to generate charges in insulating materials, at controlled position and quantity, in order to monitor their behaviour in regard to transport phenomena under the space charge induced electric field or external field applied. In this study, low density polyethylene (LDPE) films were irradiated by a 80 keV electron-beam with a flux of 1 nA cm‑2 during 10 min in an irradiation chamber under vacuum conditions, and were then characterized outside the chamber using three experimental methods. The electrical behaviour of the irradiated material was assessed by space charge measurements using the pulsed electro-acoustic (PEA) method under dc stress. The influence of the applied electric field polarity and amplitude has been tested in order to better understand the charge behaviour after electron-beam irradiation. Fourier transform infra-red spectroscopy (FTIR) and photoluminescence (PL) measurements were performed to evaluate the impact of the electron beam irradiation, i.e. deposited charges and energy, on the chemical structure of the irradiated samples. The present results show that the electrical behaviour in LDPE after irradiation is mostly driven by charges, i.e. by physical process functions of the electric field, and that changes in the chemical structure seems to be mild.

  5. Water adsorption on non polar ZnO surfaces: from single molecules to multilayers

    Science.gov (United States)

    Kenmoe, Stephane; Biedermann, P. Ulrich

    2015-03-01

    The interface between water and ZnO plays an important role in many domains of technological relevance. Following the vital role of adsorbed water on substrate properties and the fascinating properties of interfacial water, there is a great interest in characterizing this interface. We use DFT to study the possible aggregation regimes that can form on the ZnO non-polar low-index (1010) and (1120) surfaces. We study the adsorption of water monomers, small water clusters like water dimers, water chains, ladder-like water structures, water thin films and water multilayers. Based on this, trends in binding energy as well as the binding mechanisms are analyzed to understand the driving forces and the nature of the fundamental interactions that stabilize the adsorbed layers.

  6. [Impact of Light Polarization on the Measurement of Water Particulate Backscattering Coefficient].

    Science.gov (United States)

    Liu, Jia; Gong, Fang; He, Xian-qiang; Zhu, Qian-kun; Huang, Hai-qing

    2016-01-01

    Particulate backscattering coefficient is a main inherent optical properties (IOPs) of water, which is also a determining factor of ocean color and a basic parameter for inversion of satellite ocean color remote sensing. In-situ measurement with optical instruments is currently the main method for obtaining the particulate backscattering coefficient of water. Due to reflection and refraction by the mirrors in the instrument optical path, the emergent light source from the instrument may be partly polarized, thus to impact the measurement accuracy of water backscattering coefficient. At present, the light polarization of measuring instruments and its impact on the measurement accuracy of particulate backscattering coefficient are still poorly known. For this reason, taking a widely used backscattering coefficient measuring instrument HydroScat6 (HS-6) as an example in this paper, the polarization characteristic of the emergent light from the instrument was systematically measured, and further experimental study on the impact of the light polarization on the measurement accuracy of the particulate backscattering coefficient of water was carried out. The results show that the degree of polarization(DOP) of the central wavelength of emergent light ranges from 20% to 30% for all of the six channels of the HS-6, except the 590 nm channel from which the DOP of the emergent light is slightly low (-15%). Therefore, the emergent light from the HS-6 has significant polarization. Light polarization has non-neglectable impact on the measurement of particulate backscattering coefficient, and the impact degree varies with the wave band, linear polarization angle and suspended particulate matter (SPM) concentration. At different SPM concentrations, the mean difference caused by light polarization can reach 15.49%, 11.27%, 12.79%, 14.43%, 13.76%, and 12.46% in six bands, 420, 442, 470, 510, 590, and 670 nm, respectively. Consequently, the impact of light polarization on the

  7. Spectral and Angular Degree of Polarization of the Water Leaving Radiance from the Ocean

    Science.gov (United States)

    Gray, D. J.; Gillis, D. B.; Bowles, J. H.; Korwan, D.; Miller, D.; Lamela, G.

    2016-02-01

    The polarization of the light field reflected from the ocean is now being recognized to contain additional information that can aid in the retrieval of biogeochemical properties of the ocean. But there are currently very few remote sensing systems that can take advantage of this information. We have developed a hyperspectral polarimeter to measure the full linear polarization of the ocean reflectance. The polarimeter uses four lenses with calcite polarizers oriented at 0, 45, 90, and 135 degrees relative to horizontal and measures the linear Stokes vector parameters (I, Q, U) over the spectral range from 350 - 950 nm. The degree and angle of polarization were measured in different water types and found to strongly depend on the inherent optical properties of the water, specifically on the single-scatter albedo, but also phase function, and viewing geometry. We show results for different water types as a function of viewing angle relative to nadir and azimuthal angle relative to the sun. We also show the importance of understanding the effects of the atmosphere on the upwelling polarization signal.

  8. Solvation thermodynamics and heat capacity of polar and charged solutes in water

    Science.gov (United States)

    Sedlmeier, Felix; Netz, Roland R.

    2013-03-01

    The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F- and a Na+ ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na+ and F- ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity ΔCp stays positive and even increases slightly upon charging the Na+ ion, it decreases upon charging the F- ion and becomes negative beyond an ion charge of q = -0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.

  9. Determination of thermodynamic affinities of various polar olefins as hydride, hydrogen atom, and electron acceptors in acetonitrile.

    Science.gov (United States)

    Cao, Ying; Zhang, Song-Chen; Zhang, Min; Shen, Guang-Bin; Zhu, Xiao-Qing

    2013-07-19

    A series of 69 polar olefins with various typical structures (X) were synthesized and the thermodynamic affinities (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the polar olefins obtaining hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the polar olefins (X(•-)) obtaining protons and hydrogen atoms, and the thermodynamic affinities of the hydrogen adducts of the polar olefins (XH(•)) obtaining electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The pure C═C π-bond heterolytic and homolytic dissociation energies of the polar olefins (X) in acetonitrile and the pure C═C π-bond homolytic dissociation energies of the radical anions of the polar olefins (X(•-)) in acetonitrile were estimated. The remote substituent effects on the six thermodynamic affinities of the polar olefins and their related reaction intermediates were examined using the Hammett linear free-energy relationships; the results show that the Hammett linear free-energy relationships all hold in the six chemical and electrochemical processes. The information disclosed in this work could not only supply a gap of the chemical thermodynamics of olefins as one class of very important organic unsaturated compounds but also strongly promote the fast development of the chemistry and applications of olefins.

  10. Hexagonal SiC with spatially separated active sites on polar and nonpolar facets achieving enhanced hydrogen production from photocatalytic water reduction.

    Science.gov (United States)

    Wang, Da; Liu, Ning; Guo, Zhongnan; Wang, Wenjun; Guo, Liwei; Yuan, Wenxia; Chen, Xiaolong

    2018-02-14

    Sufficient spatial separation of photo-generated electrons and holes plays a significant role in affecting the efficiency for solar energy conversion. Non-equivalent facets of a catalyst are known to possess different charge distribution properties. Here, we report that hexagonal 6H-SiC, a metal-free, environmentally friendly, polar semiconductor, exhibits different charge distribution and photocatalytic properties on naturally occurring Si-{0001} and {10-10} facets. Very strong selectivity of metals in situ photodeposition occurs in these two facets, demonstrating that the photo-excited electrons are assembled only on polar Si-{0001} facets while the holes are assembled on non-polar {10-10} facets. Consequently, reduction reactions occur only on the Si-{0001} facets with noble metals, and meantime oxidation occurs only in {10-10} with metal oxide. We show that the activity of photocatalytic water splitting is significantly enhanced by this kind of selective depositions resulting from the charge spatial separation. The underlying mechanism is investigated in terms of experimental evidence and first principles calculations. Our results demonstrate that the utilization of facets with opposite catalytic characteristics could be a feasible means to enhance the photocatalytic performance in diverse semiconducting materials. This is, in particular, of interest for polar semiconductors, as their particles always naturally occur in both polar facets and non-polar ones without needing facet engineering.

  11. LEIC - A Polarized Low Energy Electron-ion Collider at Jefferson Lab

    International Nuclear Information System (INIS)

    A polarized electron-ion collider is envisioned as the future nuclear science program at JLab beyond the 12 GeV CEBAF. Presently, a medium energy collider (MEIC) is set as an immediate goal with options for a future energy upgrade. A comprehensive design report for MEIC has been released recently. The MEIC facility could also accommodate electron and proton/ion collisions in a low CM energy range, covering proton energies from 10 to 25 GeV and ion energies with a similar magnetic rigidity, for additional science reach. In this paper, we present a conceptual design of this low energy collider, LEIC, showing its luminosity can reach above 10 33 cm -2 s -1 . The design specifies that the large booster of the MEIC is converted to a low energy ion collider ring with an interaction region and an electron cooler integrated into it. The design provides options for either sharing the detector with the MEIC or a dedicated low energy detector in a third collision point, with advantages of either a minimum cost or extra detection parallel to the MEIC operation, respectively. The LEIC could be positioned as the first and low cost phase of a multi-stage approach to realize the full MEIC

  12. Tailoring electronic structure of α-AlH3 to enhance spin polarization: Insights from density functional calculations

    Science.gov (United States)

    Lu, Yi-Lin; Dong, Shengjie; Zhou, Baozeng; Sun, Lili; Zhao, Hui; Wu, Ping

    2017-09-01

    The effects of 3d transition metals doping on the structural, electronic, and magnetic properties of aluminum hydride were investigated based on spin-polarized first-principles calculations. The studies indicated that V, Cr, Mn, and Fe doping could produce polarization of high-spin state, while Co and Ni doping would induce polarization of low-spin state. It was found that the magnetic ground state depended on the distance between two substitutions and the long-range ferromagnetic coupling was achieved upon doping V, Mn, and Fe. The present work indicated that the introduced 3d-block dopants could tailor aluminum hydride into either a potential half-metallic or n-type magnetic semiconductor by tuning the valence electrons of the impurities. The main findings of this work pointed out the possibilities of the applications of hydrides in future hydride electronics and spintronics.

  13. Managing the solvent water polarization to obtain improved NMR spectra of large molecular structures

    International Nuclear Information System (INIS)

    Hiller, Sebastian; Wider, Gerhard; Etezady-Esfarjani, Touraj; Horst, Reto; Wuethrich, Kurt

    2005-01-01

    In large molecular structures, the magnetization of all hydrogen atoms in the solute is strongly coupled to the water magnetization through chemical exchange between solvent water and labile protons of macromolecular components, and through dipole-dipole interactions and the associated 'spin diffusion' due to slow molecular tumbling. In NMR experiments with such systems, the extent of the water polarization is thus of utmost importance. This paper presents a formalism that describes the propagation of the water polarization during the course of different NMR experiments, and then compares the results of model calculations for optimized water polarization with experimental data. It thus demonstrates that NMR spectra of large molecular structures can be improved with the use of paramagnetic spin relaxation agents which selectively enhance the relaxation of water protons, so that a substantial gain in signal-to-noise can be achieved. The presently proposed use of a relaxation agent can also replace the water flip-back pulses when working with structures larger than about 30 kDa. This may be a valid alternative in situations where flip-back pulses are difficult to introduce into the overall experimental scheme, or where they would interfere with other requirements of the NMR experiment

  14. Model-independent analysis of polarization effects in elastic electron-deuteron scattering in presence of two-photon exchange

    International Nuclear Information System (INIS)

    Gakh, G.I.; Tomasi-Gustafsson, E.

    2006-01-01

    The general spin structure of the matrix element, taking into account the 2-photon exchange contribution, for the elastic electron (positron) - deuteron scattering has been derived using general symmetry properties of the hadron electromagnetic interaction, such as P-, C- and T-invariances as well as lepton helicity conservation in QED at high energy. Taking into account also crossing symmetry, the amplitudes of e ± d scattering can be parametrized in terms of fifteen real functions. The expressions for the differential cross section and for all polarization observables are given in terms of these functions. We consider the case of an arbitrary polarized deuteron target and polarized electron beam (both longitudinal and transverse). The transverse polarization of the electron beam induces a single-spin asymmetry which is non-zero in presence of 2-photon exchange. It is shown that elastic deuteron electromagnetic form factors can still be extracted in presence of 2 photon exchange, from the measurements of the differential cross sections and of one polarization observable (for example, the tensor asymmetry) for electron and positron deuteron elastic scattering, in the same kinematical conditions. (authors)

  15. Compact quadrupole triplet for the S-DALINAC polarized electron injector SPIN

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, C.; Eichhorn, R.; Enders, J.; Hessler, C.; Poltoratska, Y. [Inst. fuer Kernphysik, Technische Univ. Darmstadt (Germany); Ackermann, W.; Mueller, W.F.O.; Steiner, B.; Weiland, T. [Inst. fuer Theorie Elektromagnetischer Felder, Technische Univ. Darmstadt (Germany)

    2007-07-01

    An ultra compact quadrupole triplet for the S-DALINAC Polarized Electron Injector SPIN has been developed. This development is due to limiting spatial restrictions. Each individual quadrupole has a length of 8 mm, affixed by two 2 mm aluminum plates, resulting in a length of only 12 mm per quadrupole. The gaps between each quadrupole are set to 18 mm, therefore the complete triplet has a total length of only 72 mm. The quadrupole design includes a large aperture, suitable for CF 35 beam pipes. As fringe fields reach far info neighboring yokes, the assembly requires simulation by a beam dynamics tool for optimal weighting of the current excitation. Measurement of the magnetic field distribution is compared to numerical values and the quadrupole strength is calculated. (orig.)

  16. Spin density measurement of water-bridged Co-dimer using polarized neutrons

    DEFF Research Database (Denmark)

    Damgaard-Møller, Emil; Overgaard, Jacob; Chilton, Nick

    present an experimentally determined spin density using polarized neutron diffraction in a simple water-bridged cobalt dimer [Co2(H2O)(piv)4(Hpiv)2(py)2] which is known to have a small ferromagnetic coupling between the spin centers. Visualizing the SDD could get us one step further in understanding...

  17. Impact of trophic state on the distribution of intact polar lipids in surface waters of lakes

    NARCIS (Netherlands)

    Bale, N.J.; Hopmans, E.C.; Schoon, P.; de Kluijver, A.; Downing, J.A.; Middelburg, J.J.; Sinninghe Damsté, J.S.; Schouten, S.

    2016-01-01

    We characterized the intact polar lipid (IPL) composition in the surface waters of 22 lakes from Minnesota and Iowa, ranging in trophic state between eutrophic and oligo-mesotrophic, to investigate the impact of trophic state on IPL composition. A high diversity of IPL classes was detected. Most IPL

  18. Theory of current-induced spin polarization in an electron gas

    Science.gov (United States)

    Gorini, Cosimo; Maleki Sheikhabadi, Amin; Shen, Ka; Tokatly, Ilya V.; Vignale, Giovanni; Raimondi, Roberto

    2017-05-01

    We derive the Bloch equations for the spin dynamics of a two-dimensional electron gas in the presence of spin-orbit coupling. For the latter we consider both the intrinsic mechanisms of structure inversion asymmetry (Rashba) and bulk inversion asymmetry (Dresselhaus), and the extrinsic ones arising from the scattering from impurities. The derivation is based on the SU(2) gauge-field formulation of the Rashba-Dresselhaus spin-orbit coupling. Our main result is the identification of a spin-generation torque arising from Elliot-Yafet scattering, which opposes a similar term arising from Dyakonov-Perel relaxation. Such a torque, which to the best of our knowledge has gone unnoticed so far, is of basic nature, i.e., should be effective whenever Elliott-Yafet processes are present in a system with intrinsic spin-orbit coupling, irrespective of further specific details. The spin-generation torque contributes to the current-induced spin polarization (CISP), also known as inverse spin-galvanic or Edelstein effect. As a result, the behavior of the CISP turns out to be more complex than one would surmise from consideration of the internal Rashba-Dresselhaus fields alone. In particular, the symmetry of the current-induced spin polarization does not necessarily coincide with that of the internal Rashba-Dresselhaus field, and an out-of-plane component of the CISP is generally predicted, as observed in recent experiments. We also discuss the extension to the three-dimensional electron gas, which may be relevant for the interpretation of experiments in thin films.

  19. Stratospheric water vapour in the vicinity of the Arctic polar vortex

    Energy Technology Data Exchange (ETDEWEB)

    Maturilli, M. [Alfred Wegener Institute for Polar and Marine Research, Potsdam (Germany); Fierli, F. [CNR (Italy). Inst. for Atmospheric Sciences and Climate; Yushkov, V.; Lukyanov, A.; Khaykin, S. [Central Aerological Observatory, Moscow (Russian Federation); Hauchecorne, A. [CNRS, Verrieres-le-Buisson (France). Service d' Aeronomie

    2006-07-01

    The stratospheric water vapour mixing ratio inside, outside, and at the edge of the polar vortex has been accurately measured by the FLASH-B Lyman-Alpha hygrometer during the LAUTLOS campaign in Sodankylae, Finland, in January and February 2004. The retrieved H{sub 2}O profiles reveal a detailed view on the Arctic lower stratospheric water vapour distribution, and provide a valuable dataset for the validation of model and satellite data. Analysing the measurements with the semi-lagrangian advection model MIMOSA, water vapour profiles typical for the polar vortex' interior and exterior have been identified, and laminae in the observed profiles have been correlated to filamentary structures in the potential vorticity field. Applying the validated MIMOSA transport scheme to specific humidity fields from operational ECMWF analyses, large discrepancies from the observed profiles arise. Although MIMOSA is able to reproduce weak water vapour filaments and improves the shape of the profiles compared to operational ECMWF analyses, both models reveal a dry bias of about 1 ppmv in the lower stratosphere above 400 K, accounting for a relative difference from the measurements in the order of 20%. The large dry bias in the analysis representation of stratospheric water vapour in the Arctic implies the need for future regular measurements of water vapour in the polar stratosphere to allow the validation and improvement of climate models. (orig.)

  20. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  1. Ab initio calculation of the electronic absorption spectrum of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  2. Ab initio calculation of the electronic absorption spectrum of liquid water

    International Nuclear Information System (INIS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-01-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase

  3. Polarization of 'water-skies' above arctic open waters: how polynyas in the ice-cover can be visually detected from a distance.

    Science.gov (United States)

    Hegedüs, Ramón; Akesson, Susanne; Horváth, Gábor

    2007-01-01

    The foggy sky above a white ice-cover and a dark water surface (permanent polynya or temporary lead) is white and dark gray, phenomena called the 'ice-sky' and the 'water-sky,' respectively. Captains of icebreaker ships used to search for not-directly-visible open waters remotely on the basis of the water sky. Animals depending on open waters in the Arctic region may also detect not-directly-visible waters from a distance by means of the water sky. Since the polarization of ice-skies and water-skies has not, to our knowledge, been studied before, we measured the polarization patterns of water-skies above polynyas in the arctic ice-cover during the Beringia 2005 Swedish polar research expedition to the North Pole region. We show that there are statistically significant differences in the angle of polarization between the water-sky and the ice-sky. This polarization phenomenon could help biological and man-made sensors to detect open waters not directly visible from a distance. However, the threshold of polarization-based detection would be rather low, because the degree of linear polarization of light radiated by water-skies and ice-skies is not higher than 10%.

  4. Improved Electron Yield and Spin-Polarization from III-V Photocathodes Via Bias Enhanced Carrier Drift

    CERN Document Server

    Mulhollan, Gregory A; Brachmann, Axel; Clendenin, James E; Garwin, Edward; Kirby, Robert; Luh Dah An; Maruyama, Takashi; Prepost, Richard

    2005-01-01

    Spin-polarized electrons are commonly used in high energy physics. Future work will benefit from greater polarization. Polarizations approaching 90% have been achieved at the expense of yield. The primary paths to higher polarization are material design and electron transport. Our work addresses the latter. Photoexcited electrons may be preferentially emitted or suppressed by an electric field applied across the active region. We are tuning this forward bias for maximum polarization and yield, together with other parameters, e.g., doping profile Preliminary measurements have been carried out on bulk GaAs. As expected, the yield change far from the bandgap is quite large. The bias is applied to the bottom (non-activated) side of the cathode so that the accelerating potential as measured with respect to the ground potential chamber walls is unchanged for different front-to-back cathode bias values. For a bias which enhances emission, the yield nearly doubles. For a bias which diminishes emission, the yield is a...

  5. First measurement of the electric formfactor of the neutron in the exclusive quasielastic scattering of polarized electrons from polarized 3He

    International Nuclear Information System (INIS)

    Meyerhoff, M.; Eyl, D.; Frey, A.; Andresen, H.G.; Annand, J.R.M.; Aulenbacher, K.; Becker, J.; Blume-Werry, J.; Dombo, T.; Drescher, P.; Ducret, J.E.; Fischer, H.; Grabmayr, P.; Hall, S.; Hartmann, P.; Hehl, T.; Heil, W.; Hoffmann, J.; Kellie, J.D.; Klein, F.; Leduc, M.; Moeller, H.; Nachtigall, C.; Ostrick, M.; Otten, E.W.; Owens, R.O.; Pluetzer, S.; Reichert, E.; Rohe, D.; Schaefer, M.; Schearer, L.D.; Schmieden, H.; Steffens, K.; Surkau, R.; Walcher, T.

    1995-01-01

    A first measurement of the asymmetry in quasielastic scattering of longitudinally polarized electrons from a polarized 3 He gas target in coincidence with the knocked out neutron is reported. This measurement was made feasible by the cw beam of the 855 meV Mainz Microtron MAMI. It allows a determination of the electric formfactor of the neutron G n E independent of binding effects to first order. At bar Q 2 =0.31 (GeV/c) 2 two asymmetries bar A parallel (rvec S He parallel rvec q) and bar A perpendicular (rvec S He perpendicular rvec q) have been measured giving bar A parallel =(-7.40±0.73%) and bar A perpendicular =(0.89±0.30)%. The ratio bar A perpendicular /bar A parallel is independent of the absolute value of the electron and target polarization and yields G n E =0.035±0.012±0.005. copyright 1995 American Institute of Physics

  6. Effects of Heme Electronic Structure and Distal Polar Interaction on Functional and Vibrational Properties of Myoglobin.

    Science.gov (United States)

    Kanai, Yuki; Nishimura, Ryu; Nishiyama, Kotaro; Shibata, Tomokazu; Yanagisawa, Sachiko; Ogura, Takashi; Matsuo, Takashi; Hirota, Shun; Neya, Saburo; Suzuki, Akihiro; Yamamoto, Yasuhiko

    2016-02-15

    We analyzed the oxygen (O2) and carbon monoxide (CO) binding properties, autoxidation reaction rate, and FeO2 and FeCO vibrational frequencies of the H64Q mutant of sperm whale myoglobin (Mb) reconstituted with chemically modified heme cofactors possessing a variety of heme Fe electron densities (ρ(Fe)), and the results were compared with those for the previously studied native [Shibata, T. et al. J. Am. Chem. Soc. 2010, 132, 6091-6098], and H64L [Nishimura, R. et al. Inorg. Chem. 2014, 53, 1091-1099], and L29F [Nishimura, R. et al. Inorg. Chem. 2014, 53, 9156-9165] mutants in order to elucidate the effect of changes in the heme electronic structure and distal polar interaction contributing to stabilization of the Fe-bound ligand on the functional and vibrational properties of the protein. The study revealed that, as in the cases of the previously studied native protein [Shibata, T. et al. Inorg. Chem. 2012, 51, 11955-11960], the O2 affinity and autoxidation reaction rate of the H64Q mutant decreased with a decrease in ρ(Fe), as expected from the effect of a change in ρ(Fe) on the resonance between the Fe(2+)-O2 bond and Fe(3+)-O2(-)-like species in the O2 form, while the CO affinity of the protein is independent of a change in ρ(Fe). We also found that the well-known inverse correlation between the frequencies of Fe-bound CO (ν(CO)) and Fe-C (ν(FeC)) stretching [Li, X.-Y.; Spiro, T. G. J. Am. Chem. Soc. 1988, 110, 6024-6033] is affected differently by changes in ρ(Fe) and the distal polar interaction, indicating that the effects of the two electronic perturbations due to the chemical modification of a heme cofactor and the replacement of nearby amino acid residues on the resonance between the two alternative canonical forms of the FeCO fragment in the protein are slightly different from each other. These findings provide a new insight for deeper understanding of the functional regulation of the protein.

  7. Perennial water ice identified in the south polar cap of Mars.

    Science.gov (United States)

    Bibring, Jean-Pierre; Langevin, Yves; Poulet, François; Gendrin, Aline; Gondet, Brigitte; Berthé, Michel; Soufflot, Alain; Drossart, Pierre; Combes, Michel; Bellucci, Giancarlo; Moroz, Vassili; Mangold, Nicolas; Schmitt, Bernard

    2004-04-08

    The inventory of water and carbon dioxide reservoirs on Mars are important clues for understanding the geological, climatic and potentially exobiological evolution of the planet. From the early mapping observation of the permanent ice caps on the martian poles, the northern cap was believed to be mainly composed of water ice, whereas the southern cap was thought to be constituted of carbon dioxide ice. However, recent missions (NASA missions Mars Global Surveyor and Odyssey) have revealed surface structures, altimetry profiles, underlying buried hydrogen, and temperatures of the south polar regions that are thermodynamically consistent with a mixture of surface water ice and carbon dioxide. Here we present the first direct identification and mapping of both carbon dioxide and water ice in the martian high southern latitudes, at a resolution of 2 km, during the local summer, when the extent of the polar ice is at its minimum. We observe that this south polar cap contains perennial water ice in extended areas: as a small admixture to carbon dioxide in the bright regions; associated with dust, without carbon dioxide, at the edges of this bright cap; and, unexpectedly, in large areas tens of kilometres away from the bright cap.

  8. Creation of High Mobility Two-Dimensional Electron Gases via Strain Induced Polarization at an Otherwise Nonpolar Complex Oxide Interface

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Trier, Felix; Kasama, Takeshi

    2015-01-01

    The discovery of two-dimensional electron gases (2DEGs) in SrTiO3-based heterostructures provides new opportunities for nanoelectronics. Herein, we create a new type of oxide 2DEG by the epitaxial-strain-induced polarization at an otherwise nonpolar perovskite-type interface of CaZrO3/SrTiO3. Rem...

  9. Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy

    Science.gov (United States)

    Ginsberg, Naomi S.; Davis, Jeffrey A.; Ballottari, Matteo; Cheng, Yuan-Chung; Bassi, Roberto; Fleming, Graham R.

    2011-01-01

    The CP29 light harvesting complex from green plants is a pigment-protein complex believed to collect, conduct, and quench electronic excitation energy in photosynthesis. We have spectroscopically determined the relative angle between electronic transition dipole moments of its chlorophyll excitation energy transfer pairs in their local protein environments without relying on simulations or an X-ray crystal structure. To do so, we measure a basis set of polarized 2D electronic spectra and isolate their absorptive components on account of the tensor relation between the light polarization sequences used to obtain them. This broadly applicable advance further enhances the acuity of polarized 2D electronic spectroscopy and provides a general means to initiate or feed back on the structural modeling of electronically-coupled chromophores in condensed phase systems, tightening the inferred relations between the spatial and electronic landscapes of ultrafast energy flow. We also discuss the pigment composition of CP29 in the context of light harvesting, energy channeling, and photoprotection within photosystem II. PMID:21321222

  10. Water vapor retrieval from near-IR measurements of polarized scanning atmospheric corrector

    Science.gov (United States)

    Qie, Lili; Ning, Yuanming; Zhang, Yang; Chen, Xingfeng; Ma, Yan; Li, Zhengqiang; Cui, Wenyu

    2018-02-01

    Water vapor and aerosol are two key atmospheric factors effecting the remote sensing image quality. As water vapor is responsible for most of the solar radiation absorption occurring in the cloudless atmosphere, accurate measurement of water content is important to not only atmospheric correction of remote sensing images, but also many other applications such as the study of energy balance and global climate change, land surface temperature retrieval in thermal remote sensing. A multi-spectral, single-angular, polarized radiometer called Polarized Scanning Atmospheric Corrector (PSAC) were developed in China, which are designed to mount on the same satellite platform with the principle payload and provide essential parameters for principle payload image atmospheric correction. PSAC detect water vapor content via measuring atmosphere reflectance at water vapor absorbing channels (i.e. 0.91 μm) and nearby atmospheric window channel (i.e. 0.865μm). A near-IR channel ratio method was implemented to retrieve column water vapor (CWV) amount from PSAC measurements. Field experiments were performed at Yantai, in Shandong province of China, PSAC aircraft observations were acquired. The comparison between PSAC retrievals and ground-based Sun-sky radiometer measurements of CWV during the experimental flights illustrates that this method retrieves CWV with relative deviations ranging from 4% 13%. This method retrieve CWV more accurate over land than over ocean, as the water reflectance is low.

  11. Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms

    International Nuclear Information System (INIS)

    Nakajima, Takashi; Yonekura, Nobuaki; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2003-01-01

    We demonstrate the simultaneous production of spin-polarized ions/electrons using two-color, two-photon ionization of laser-ablated metallic atoms. Specifically, we have applied the developed technique to laser-ablated Sr atoms, and found that the electron-spin polarization of Sr + ions, and accordingly, the spin polarization of photoelectrons is 64%±9%, which is in good agreement with the theoretical prediction we have recently reported [T. Nakajima and N. Yonekura, J. Chem. Phys. 117, 2112 (2002)]. Our experimental results open up a simple way toward the construction of a spin-polarized dual ion/electron source

  12. Application of electron beam technology in improving sewage water ...

    African Journals Online (AJOL)

    user

    sewage and to increase the water quality of the wastewater by decreasing BOD and COD. So, the irradiation sewage water can find its application either in agriculture for irrigation or in industry sector for cooling purpose or in both the sectors. Key words: Disinfection, electron beam accelerator, organic matter, sewage water ...

  13. The Effect of Electrical Polarization on Electronic Structure in LSM Electrodes: An Operando XAS, RIXS and XES Study

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Carvalho, H.W.P.; Zielke, Philipp

    2017-01-01

    in the Mn K edge energy towards lower energies. The shift is assigned to a decrease in the average Mn oxidation state, which based on Kβ XES changes from 3.4 at open circuit voltage to 3.2 at −800 mV applied potential. Furthermore, RIXS rendered pronounced changes in the population of the Mn 3d orbitals...... (RIXS) at the Mn K-edge. The study of polarization induced changes in the electronic properties and structure has been carried out at 500°C in 10–20% O2 with electrical polarization applied in the range from −850 mV to 800 mV. Cathodic polarizations in the range −600 mV to −850 mV induced a shift......, due to filling of the Mn d-orbitals during the cathodic polarization. Overall, the study experimentally links the electrical polarization of LSM electrodes to the structural and electronic properties of Mn - these properties are expected to be of major importance for the electrocatalytic performance...

  14. Water on Mars: Inventory, distribution, and possible sources of polar ice

    Science.gov (United States)

    Clifford, S. M.

    1992-01-01

    Theoretical considerations and various lines of morphologic evidence suggest that, in addition to the normal seasonal and climatic exchange of H2O that occurs between the Martian polar caps, atmosphere, and mid to high latitude regolith, large volumes of water have been introduced into the planet's long term hydrologic cycle by the sublimation of equatorial ground ice, impacts, catastrophic flooding, and volcanism. Under the climatic conditions that are thought to have prevailed on Mars throughout the past 3 to 4 b.y., much of this water is expected to have been cold trapped at the poles. The amount of polar ice contributed by each of the planet's potential crustal sources is discussed and estimated. The final analysis suggests that only 5 to 15 pct. of this potential inventory is now in residence at the poles.

  15. Does the parent positive ion intervene in the fate of the incompletely relaxed trapped electron in irradiated polar liquids?

    International Nuclear Information System (INIS)

    Jay-Gerin, J.P.; Ferradini, C.

    1992-01-01

    A model is proposed concerning the influence of the parent positive ion on the fate of the incompletely relaxed trapped electron (e ir - ) in irradiated polar liquids. This model is based on the release, by a tunneling and (or) a trap-hopping mechanism in the Coulomb field of the cation, of the electrons captured in preexisting shallow localized states below the bottom of the conduction band of the solvent. The released electrons would either recombine with the parent positive ion or get retrapped. The net effect would be an accumulation of electrons in deeper traps. The removal of weakly trapped electrons would contribute to the decrease of the infrared part of the optical absorption spectrum during the very early time dynamics of electron solvation. Such a process would imply, as a consequence, the existence of a maximum of the e ir - absorption spectrum

  16. EU-wide survey of polar organic persistent pollutants in European river waters

    Energy Technology Data Exchange (ETDEWEB)

    Loos, Robert [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi, 21020 Ispra (Italy)], E-mail: robert.loos@jrc.it; Gawlik, Bernd Manfred; Locoro, Giovanni; Rimaviciute, Erika; Contini, Serafino; Bidoglio, Giovanni [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi, 21020 Ispra (Italy)

    2009-02-15

    This study provides the first EU-wide reconnaissance of the occurrence of polar organic persistent pollutants in European river waters. More than 100 individual water samples from over 100 European rivers from 27 European Countries were analysed for 35 selected compounds, comprising pharmaceuticals, pesticides, PFOS, PFOA, benzotriazoles, hormones, and endocrine disrupters. Around 40 laboratories participated in this sampling exercise. The most frequently and at the highest concentration levels detected compounds were benzotriazole, caffeine, carbamazepine, tolyltriazole, and nonylphenoxy acetic acid (NPE{sub 1}C). Only about 10% of the river water samples analysed could be classified as 'very clean' in terms of chemical pollution. The rivers responsible for the major aqueous emissions of PFOS and PFOA from the European Continent could be identified. For the target compounds chosen, we are proposing 'indicative warning levels' in surface waters, which are (for most compounds) close to the 90th percentile of all water samples analysed. - More than 100 river water samples from 27 European Countries were analysed for 35 selected polar organic contaminants.

  17. Atomic configuration of hydrogenated and clean tantalum(111) surfaces: Bond relaxation, energy entrapment and electron polarization

    Science.gov (United States)

    Bo, Maolin; Li, Lei; Guo, Yongling; Yao, Chuang; Peng, Cheng; Sun, Chang Q.

    2018-01-01

    By studying the tantalum (Ta)(111) surface with X-ray photoemission spectroscopy and density functional theory, we determined binding energy values for the clean Ta(111) (+3.068 eV) and hydrogenated Ta(111) (+3.421 eV) surfaces with an isolated atom level of 18.977 eV. Using the bond-band barrier and zone-selective electron spectroscopy correlation, we investigated the mechanism of hydrogenation adsorption on the Ta(111) surface. We found the local densities of states of the first layer of Ta atoms in the reconstructed structure, which formed on the adsorbent hydrogen of the surface chemical bond contracts and dipole polarization. Moreover, we showed that on the Ta(111) surface, the hydrogen-induced surface core level shifts are dominated by quantum entrapment and are proportional to the calculated hybridized orbitals of the valence band. The latter is therefore correlated to the local surface chemical reactivity and is useful for other adsorbate systems on transition metals.

  18. Development of a Polarized Electron Gun Based on an S-Band PWT Photoinjector

    CERN Document Server

    Clendenin, J E; Yu, D; Newsham, D; Luo, Y; Smirnov, A

    2003-01-01

    An RF polarized electron gun utilizing the unique features of an integrated, plane-wave-transformer (PWT) photoelectron injector [1] is being developed by DULY Research Inc. in collaboration with SLAC. Modifications to a DULY S-band device [2] include: a re-design of the photocathode/RF backplane interface to accommodate a GaAs cathode; change in the design of the vacuum ports to provide 10-11 Torr operation; the inclusion of a load-lock photocathode replacement system to allow for reactivation and cessation of the GaAs photocathode in a vacuum; and alteration of the magnet field coils to make room for the load-lock. The use of a stainless steel outer tank and cooling rods without copper plating may also provide better vacuum performance at the expense of diminished Q factor. The effectiveness of both the standard cooling rods and synthetic diamond heat sinks for disk cooling is investigated for future linear collider applications operating at a rep rate of 180 Hz and a bunch charge of 2 nC.

  19. Estimating the Relative Water Content of Single Leaves from Optical Polarization Measurements.

    Science.gov (United States)

    Vanderbilt, V. C.; Daughtry, C. S. T.; Dahlgren, R. P.

    2016-12-01

    Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. For monitoring canopy water status, existing approaches such as the Crop Water Stress Index and the Equivalent Water Thickness have limitations. The CWSI does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWI is based upon the physics of water-light interaction, not plant physiology. In this research, we applied optical polarization techniques to monitor the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both changed nonlinearly as each leaf dried, R increasing and T decreasing. Our results tie changes in the VIS/NIR R and T to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future. However, using our approach to estimate the water status of a leaf does not appear possible at present, because our results display too much variability that we do not yet understand.

  20. Estimating the Relative Water Content of Single Leaves from Optical Polarization Measurements

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Remotely sensing the water status of plants and the water content of canopies remain long-term goals of remote sensing research. For monitoring canopy water status, existing approaches such as the Crop Water Stress Index and the Equivalent Water Thickness have limitations. The CWSI does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWI is based upon the physics of water-light interaction, not plant physiology. In this research, we applied optical polarization techniques to monitor the VISNIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both changed nonlinearly as each leaf dried, R increasing and T decreasing. Our results tie changes in the VISNIR R and T to leaf physiological changes linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf and perhaps of a plant canopy might be possible in the future. However, using our approach to estimate the water status of a leaf does not appear possible at present, because our results display too much variability that we do not yet understand.

  1. Detecting Canopy Water Status Using Shortwave Infrared Reflectance Data From Polar Orbiting and Geostationary Platforms

    DEFF Research Database (Denmark)

    Fensholt, Rasmus; Huber Gharib, Silvia; Proud, Simon Richard

    2010-01-01

    analyses performed on SEVIRI SIWSI during a dry period within the growing season support these findings. These results suggest that the combined advantage of an improved temporal resolution and a fixed viewing angle potentially makes the SEVIRI sensor an interesting complementary data source to POES data......-based canopy water status detection from geostationary Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) data as compared to polar orbiting environmental satellite (POES)-based moderate resolution imaging spectroradiometer (MODIS) data. The EO-based SWIR water stress index...

  2. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water

    Energy Technology Data Exchange (ETDEWEB)

    Floris, Franca Maria, E-mail: floris@dcci.unipi.it; Amovilli, Claudio [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa (Italy); Filippi, Claudia [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2014-01-21

    We investigate here the vertical n → π{sup *} and π → π{sup *} transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π{sup *} case and also improve considerably the shift for the π → π{sup *} transition.

  3. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water

    International Nuclear Information System (INIS)

    Floris, Franca Maria; Amovilli, Claudio; Filippi, Claudia

    2014-01-01

    We investigate here the vertical n → π * and π → π * transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π * case and also improve considerably the shift for the π → π * transition

  4. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water

    Science.gov (United States)

    Floris, Franca Maria; Filippi, Claudia; Amovilli, Claudio

    2014-01-01

    We investigate here the vertical n → π* and π → π* transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π* case and also improve considerably the shift for the π → π* transition.

  5. Non-dipole effects in spin polarization of photoelectrons from 3d electrons of Xe, Cs and Ba

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Cherepkov, N A [State University of Aerospace Instrumentation, St. Petersburg 190000 (Russian Federation); Chernysheva, L V [A F Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Felfli, Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta GA 30314 (United States); Msezane, A Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta GA 30314 (United States)

    2005-04-28

    The non-dipole contribution to spin polarization of photoelectrons from Xe, Cs and Ba 3d{sub 5/2} and 3d{sub 3/2} levels is calculated. The calculation is carried out within the framework of a modified version of the spin-polarized random phase approximation with exchange. The effects of relaxation of excited electrons due to the 3d-vacancy creation are also accounted for. It is demonstrated that the parameters that characterize the photoelectron angular distribution as functions of the incoming photon energy, although being predictably small, acquire additional peculiarities when the interaction between electrons that belong to the 3d{sub 5/2} and 3d{sub 3/2} components of the spin-orbit doublet is taken into account.

  6. Effect of Interfacial Polarization and Water Absorption on the Dielectric Properties of Epoxy-Nanocomposites

    Directory of Open Access Journals (Sweden)

    Philipp Marx

    2017-05-01

    Full Text Available Five types of nanofillers, namely, silica, surface-silylated silica, alumina, surface-silylated alumina, and boron nitride, were tested in this study. Nanocomposites composed of an epoxy/amine resin and one of the five types of nanoparticles were tested as dielectrics with a focus on (i the surface functionalization of the nanoparticles and (ii the water absorption by the materials. The dispersability of the nanoparticles in the resin correlated with the composition (OH content of their surfaces. The interfacial polarization of the thoroughly dried samples was found to increase at lowered frequencies and increased temperatures. The β relaxation, unlike the interfacial polarization, was not significantly increased at elevated temperatures (below the glass-transition temperature. Upon the absorption of water under ambient conditions, the interfacial polarization increased significantly, and the insulating properties decreased or even deteriorated. This effect was most pronounced in the nanocomposite containing silica, and occurred as well in the nanocomposites containing silylated silica or non-functionalized alumina. The alternating current (AC breakdown strength of all specimens was in the range of 30 to 35 kV·mm−1. In direct current (DC breakdown tests, the epoxy resin exhibited the lowest strength of 110 kV·mm−1; the nanocomposite containing surface-silylated alumina had a strength of 170 kV·mm−1. In summary, water absorption had the most relevant impact on the dielectric properties of nanocomposites containing nanoparticles, the surfaces of which interacted with the water molecules. Nanocomposites containing silylated alumina particles or boron nitride showed the best dielectric properties in this study.

  7. Electronic structure of the water dimer cation

    Czech Academy of Sciences Publication Activity Database

    Pieniazek, P. A.; Vande Vondele, J.; Jungwirth, Pavel; Krylov, A. I.; Bradforth, S. E.

    2008-01-01

    Roč. 112, č. 27 (2008), s. 6159-6170 ISSN 1089-5639 R&D Projects: GA ČR(CZ) GA202/06/0286 Grant - others:NSF(US) CHE-0617060 Institutional research plan: CEZ:AV0Z40550506 Keywords : water dimer * ionization * proton transfer * ab initio Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.871, year: 2008

  8. Thermalisation and recombination of subexcitation electrons in solid water

    Energy Technology Data Exchange (ETDEWEB)

    Goulet, T.; Jay-Gerin, J.-P. (Sherbrooke Univ., PQ (Canada). Faculte de Medicine); Patau, J.-P. (Toulouse-3 Univ., 31 (France))

    1990-01-01

    The results of Monte Carlo simulations of the thermalisation of subexcitation electrons in solid water are reported. In the simulations, the possibility is taken into account that, prior to being thermalised, the electrons either recombine with their parent cation (H{sub 2}O{sup +}), or undergo a dissociative attachment to water molecules. A particular emphasis is placed on the description of the recombination process and on the influence of the parent cation on the electron's motion. The simulations are performed for different initial electron energies E{sub o} in the subexcitations energy range (i.e. E{sub o} < 7.4 eV). For each of these energies, the mean thermalisation distance {sub th} and time {sub th} are determined, as well as the proportions P{sub rec} and P{sub dis} of subexcitation electrons which, instead of thermalising, undergo recombination or dissociative attachment. (author).

  9. Electron beam sterilization of water discharged from sewage

    International Nuclear Information System (INIS)

    Miyata, Teijiro; Arai, Hidehiko; Tokunaga, Okihiro; Machi, Sueo; Kondo, Masaki; Minemura, Takashi; Nakao, Akio; Seike, Yasuhiko.

    1989-01-01

    At present, the water treated at city sewerages is discharged to rivers after the chlorine sterilization, but it was clarified recently that this chlorine treatment produces carcinogenic organic chlorine compounds, and residual chlorine exerts harmful effect to aquatics, therefore, it is desirable to develop the sterilization techniques substituting for chlorine treatment. Already many reports elucidated that irradiation is effective for the sterilization of the water discharged from sewerage. However, as the technical subject for putting radiation process in practical use, the treatment of large quantity was a problem. Recently by the progress of the technology of manufacturing electron accelerators, the equipment with large power output which can treat in large quantity was developed, and it has become applicable also to sewage treatment. Therefore, the authors examined the practicality of electron beam process as the substitute technology for chlorine sterilizaiton. In the case of using electron beam, though the power output of accelerators is large, the flight range of electron beam in water is short. The comparison of the sterilization effect of electron beam with that of Co-60 gamma ray, the effects of water depth, discharged water quality and water velocity on the sterilization effect and so on were experimentally examined. (K.I.)

  10. Signature properties of water: Their molecular electronic origins

    OpenAIRE

    Sokhan, Vlad P.; Jones, Andrew P.; Cipcigan, Flaviu S.; Crain, Jason; Martyna, Glenn J.

    2015-01-01

    Water challenges our fundamental understanding of emergent materials properties from a molecular perspective. It exhibits a uniquely rich phenomenology including dramatic variations in behavior over the wide temperature range of the liquid into water's crystalline phases and amorphous states. We show that many-body responses arising from water's electronic structure are essential mechanisms harnessed by the molecule to encode for the distinguishing features of its condensed states. We treat t...

  11. Comparison of the secondary electrons produced by proton and electron beams in water

    Energy Technology Data Exchange (ETDEWEB)

    Kia, Mohammad Reza, E-mail: m-r-kia@aut.ac.ir; Noshad, Houshyar [Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), P.O. Box 15875-4413, Hafez Avenue, Tehran (Iran, Islamic Republic of)

    2016-05-15

    The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, and secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.

  12. Boiling of simulated tap water: effect on polar brominated disinfection byproducts, halogen speciation, and cytotoxicity.

    Science.gov (United States)

    Pan, Yang; Zhang, Xiangru; Wagner, Elizabeth D; Osiol, Jennifer; Plewa, Michael J

    2014-01-01

    Tap water typically contains numerous halogenated disinfection byproducts (DBPs) as a result of disinfection, especially of chlorination. Among halogenated DBPs, brominated ones are generally significantly more toxic than their chlorinated analogues. In this study, with the aid of ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry by setting precursor ion scans of m/z 79/81, whole spectra of polar brominated DBPs in simulated tap water samples without and with boiling were revealed. Most polar brominated DBPs were thermally unstable and their levels were substantially reduced after boiling via decarboxylation or hydrolysis; the levels of a few aromatic brominated DBPs increased after boiling through decarboxylation of their precursors. A novel adsorption unit for volatile total organic halogen was designed, which enabled the evaluation of halogen speciation and mass balances in the simulated tap water samples during boiling. After boiling for 5 min, the overall level of brominated DBPs was reduced by 62.8%, of which 39.8% was volatilized and 23.0% was converted to bromide; the overall level of chlorinated DBPs was reduced by 61.1%, of which 44.4% was volatilized and 16.7% was converted to chloride; the overall level of halogenated DBPs was reduced by 62.3%. The simulated tap water sample without boiling was cytotoxic in a chronic (72 h) exposure to mammalian cells; this cytotoxicity was reduced by 76.9% after boiling for 5 min. The reduction in cytotoxicity corresponded with the reduction in overall halogenated DBPs. Thus, boiling of tap water can be regarded as a "detoxification" process and may reduce human exposure to halogenated DBPs through tap water ingestion.

  13. Measurement of the Spin Structure Function of the Neutron G1(N) from Deep Inelastic Scattering of Polarized Electrons from Polarized Neutrons in He-3

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J

    2004-01-06

    Polarized electrons of energies 19.42, 22.67, and 25.5 GeV were scattered off a polarized {sup 3}He target at SLAC's End Station A to measure the spin asymmetry of the neutron. From this asymmetry, the spin dependent structure function g{sub 1}{sup n}(x) was determined over a range in x from 0.03 to 0.6 with an average Q{sup 2} of 2 (GeV/C){sup 2}. The value of the integral of g{sub 1}{sup n} over x is {integral}g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.009. The results were interpreted in the frame work of the Quark Parton Model (QPM) and used to test the Ellis-Jaffe and Bjorken sum rules. The value of the integral is 2.6 standard deviations from the Ellis-Jaffe prediction while the Bjorken sum rule was found to be in agreement with this data and proton data from SMC and E-143.

  14. Berry phase and shot noise for spin-polarized and entangled electrons

    International Nuclear Information System (INIS)

    Wang Pei; Tang Weihua; Lu Dinghui; Jiang Lixia; Zhao Xuean

    2007-01-01

    Shot noise for entangled and spin-polarized states in a four-probe geometric setup has been studied by adding two rotating magnetic fields in an incoming channel. Our results show that the noise power oscillates as the magnetic fields vary. The singlet, entangled triplet and polarized states can be distinguished by adjusting the magnetic fields. The Berry phase can be derived by measuring the shot noise power

  15. Investigations of a Cretaceous limestone with spectral induced polarization and scanning electron microscopy

    Science.gov (United States)

    Johansson, Sara; Sparrenbom, Charlotte; Fiandaca, Gianluca; Lindskog, Anders; Olsson, Per-Ivar; Dahlin, Torleif; Rosqvist, Håkan

    2017-02-01

    Characterization of varying bedrock properties is a common need in various contexts, ranging from large infrastructure pre-investigations to environmental protection. A direct current resistivity and time domain induced polarization (IP) survey aiming to characterize properties of a Cretaceous limestone was carried out in the Kristianstad basin, Sweden. The time domain IP data was processed with a recently developed method in order to suppress noise from the challenging urban setting in the survey area. The processing also enabled extraction of early decay times resulting in broader spectra of the time decays and inversion for Cole-Cole parameters. The aims of this study is to investigate if large-scale geoelectrical variations as well as small-scale structural and compositional variations exist within the Kristianstad limestone, and to evaluate the usefulness of Cole-Cole inverted IP data in early time ranges for bedrock characterization. The inverted sections showed variations within the limestone that could be caused by variations in texture and composition. Samples from a deep drilling in the Kristianstad basin were investigated with scanning electron microscopy and energy dispersive X-ray spectroscopy, and the results showed that varying amounts of pyrite, glauconite and clay matrix were present at different levels in the limestone. The local high IP anomalies in the limestone could be caused by these minerals otherwise the IP responses were generally weak. There were also differences in the texture of the limestone at different levels, governed by fossil shapes and composition, proportions of calcareous cement and matrix as well as amount of silicate grains. Textural variations may have implications on the variation in Cole-Cole relaxation time and frequency factor. However, more research is needed in order to directly connect microgeometrical properties in limestone to spectral IP responses. The results from this study show that it is possible to recover

  16. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron (positron) storage rings

    International Nuclear Information System (INIS)

    Duan, Zhe; Bai, Mei; Barber, Desmond P.; Qin, Qing

    2015-04-01

    With the recently emerging global interest in building a next generation of circular electron-positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code(PTC) (Schmidt et al., 2002) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1978) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called ''correlated'' crossing of spin resonances during synchrotron oscillations at current energies, evolves into ''uncorrelated'' crossing of spin resonances at ultra-high energies.

  17. Reduction of the Thompson scattering cross section in a strong circularly polarized light field in a plasma with the change of its spectrum. “quantum-classical” electron

    Science.gov (United States)

    Korobkin, V. V.; Romanovsky, M. Yu.

    1992-12-01

    It is shown that in a strong circularly polarized laser field a classical electron motion around ions can occur. The scattering of these electrons in a plasma has the Thompson cross section in the limit of strongs field only and for a subrelativistic motion of the electrons. There are non-ion satellites apart from the basic frequency in the scattering spectrum.

  18. Investigation of the electronic transport in polarization-induced nanowires using conductive atomic force microscopy (AFM)

    Science.gov (United States)

    Selcu, Camelia; Carnevale, Santino C.; Kent, Thomas F.; Akyol, Fatih; Phillips, Patrick J.; Mills, Michael J.; Rajan, Siddharth; Pelz, Jonathan P.; Myers, Roberto C.

    2013-03-01

    In the search to improve short wavelength light emitting diodes (LED's), where the dislocations limit their performance and hole doping (Mg) is a fundamental challenge, the III-Nitride polarization-induced nanowire LED provides a promising system to address these problems. The new type of pn diode, polarization-induced nanowire LED (PINLED), was developed by linearly grading AlGaN composition of the nanowires (from GaN to AlN and back to GaN) from 0% to 100% and back to 0% Al (Carnevale et al, Nano Lett., 12, 915 (2012)). In III-Nitrides (Ga,Al/N), the effects of polarization are commonly observed at the surfaces and interfaces. Thus, in the case of the polarization-induced nanowire LEDs, taking advantage of the bound polarization charge, due to the grading of the AlGaN, the pn diodes are formed. The polarity of the nanowires determines the carrier type in each graded region, and therefore the diode orientation (n/p vs p/n). We used conductive AFM to investigate polarity of the PINLED's as well as hole conductivity in PINLED's made of AlGaN with and without acceptor doping. The results reveal that most of the wires are n-top/p-bottom (N-face), but some are p-top/n-bottom (Ga-face). Also, we found that the current density is 3 orders of magnitude larger in the case of the doped nanowires than the nanowires with no impurity doping.

  19. Magnetic properties and core electron binding energies of liquid water

    Science.gov (United States)

    Galamba, N.; Cabral, Benedito J. C.

    2018-01-01

    The magnetic properties and the core and inner valence electron binding energies of liquid water are investigated. The adopted methodology relies on the combination of molecular dynamics and electronic structure calculations. Born-Oppenheimer molecular dynamics with the Becke and Lee-Yang-Parr functionals for exchange and correlation, respectively, and includes an empirical correction (BLYP-D3) functional and classical molecular dynamics with the TIP4P/2005-F model were carried out. The Keal-Tozer functional was applied for predicting magnetic shielding and spin-spin coupling constants. Core and inner valence electron binding energies in liquid water were calculated with symmetry adapted cluster-configuration interaction. The relationship between the magnetic shielding constant σ(17O), the role played by the oxygen atom as a proton acceptor and donor, and the tetrahedral organisation of liquid water are investigated. The results indicate that the deshielding of the oxygen atom in water is very dependent on the order parameter (q) describing the tetrahedral organisation of the hydrogen bond network. The strong sensitivity of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between σ(17O) and the energy gap between the 1a1[O1s] (core) and the 2a1 (inner valence) orbitals of water. Although several studies discussed the eventual connection between magnetic properties and core electron binding energies, such a correlation could not be clearly established. Here, we demonstrate that for liquid water this correlation exists although involving the gap between electron binding energies of core and inner valence orbitals.

  20. Electrocoagulation with polarity switch for fast oil removal from oil in water emulsions.

    Science.gov (United States)

    Gobbi, Lorena C A; Nascimento, Izabela L; Muniz, Eduardo P; Rocha, Sandra M S; Porto, Paulo S S

    2018-05-01

    An electrocoagulation technique using a 3.5 L reactor, with aluminum electrodes in a monopolar arrangement with polarity switch at each 10 s was used to separate oil from synthetic oily water similar in oil concentration to produced water from offshore platforms. Up to 98% of oil removal was achieved after 20 min of processing. Processing time dependence of the oil removal and pH was measured and successfully adjusted to exponential models, indicating a pseudo first order behavior. Statistical analysis was used to prove that electrical conductivity and total solids depend significantly on the concentration of electrolyte (NaCl) in the medium. Oil removal depends mostly on the distance between the electrodes but is proportional to electrolyte concentration when initial pH is 8. Electrocoagulation with polarity switch maximizes the lifetime of the electrodes. The process reduced oil concentration to a value below that stipulated by law, proving it can be an efficient technology to minimize the offshore drilling impact in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Primary events following electron injection into water and adsorbed water layers

    International Nuclear Information System (INIS)

    Barnett, R.N.; Landman, U.; Nitzan, A.

    1990-01-01

    The initial stages of the evolution of an electron injected into bulk water (at 300 K) and into thin water films (1--4 monolayers) adsorbed on a Pt(111) substrate at 50 K are investigated. It is shown that for electrons injected into bulk water with an initial translational kinetic energy between 1.54 and 6.18 eV (i.e., subexcitation energies), the electron momentum time-correlation function left-angle p(0)p(t)right-angle, decays to zero on a time scale of less than 1 fs, reflecting strong backscattering of the electron by the water molecules. On this time scale the electron propagation in the medium is dominated by elastic processes. Furthermore, during this initial stage the system is well represented by a static aqueous medium. Transmission of electrons injected into thin films of adsorbed water is also dominated by elastic scattering. The dependence of the electron transmission probability on the film thickness and the initial injection energy are in accord with recent experimental results of photoinjected electrons into adsorbed water films

  2. A salt water battery with high stability and charging rates made from solution processed conjugated polymers with polar side chains

    KAUST Repository

    Moia, Davide

    2017-11-28

    We report a neutral salt water based battery which uses p-type and n-type solution processed polymer films as the cathode and the anode of the cell. The specific capacity of the electrodes (approximately 30 mAh cm-3) is achieved via formation of bipolarons in both the p-type and n-type polymers. By engineering ethylene glycol and zwitterion based side chains attached to the polymer backbone we facilitate rapid ion transport through the non-porous polymer films. This, combined with efficient transport of electronic charge via the conjugated polymer backbones, allowed the films to maintain constant capacity at high charge and discharge rates (>1000 C-rate). The electrodes also show good stability during electrochemical cycling (less than 30% decrease in capacity over >1000 cycles) and an output voltage up to 1.4 V. The performance of these semiconducting polymers with polar side-chains demonstrates the potential of this material class for fast-charging, water based electrochemical energy storage devices.

  3. Electron's anomalous magnetic-moment effects on electron-hydrogen elastic collisions in the presence of a circularly polarized laser field

    International Nuclear Information System (INIS)

    Elhandi, S.; Taj, S.; Attaourti, Y.; Manaut, B.; Oufni, L.

    2010-01-01

    The effect of the electron's anomalous magnetic moment on the relativistic electronic dressing for the process of electron-hydrogen atom elastic collisions is investigated. We consider a laser field with circular polarization and various electric field strengths. The Dirac-Volkov states taking into account this anomaly are used to describe the process in the first order of perturbation theory. The correlation between the terms coming from this anomaly and the electric field strength gives rise to the strong dependence of the spinor part of the differential cross section (DCS) with respect to these terms. A detailed study has been devoted to the nonrelativistic regime as well as the moderate relativistic regime. Some aspects of this dependence as well as the dynamical behavior of the DCS in the relativistic regime have been addressed.

  4. Exploring warm dense water by using Free-Electron-Laser

    Science.gov (United States)

    Sperling, P.; Kim, J.; Chen, Z.; French, M.; Curry, C.; Koralek, J.; Mo, M.; Nakatsutsumi, M.; Rodel, R.; Redmer, R.; Toleikis, S.; Zalden, P.; Glenzer, S. H.

    2017-10-01

    Warm dense water is predicted in the interior of giant planets and has an important impact on planetary evolutions. As such, the electrical and thermal properties in this regime are critically important for modelling astrophysical objects. We present electrical property measurements in warm dense water by using a novel planar water jet compatible with high repetition rate studies. The liquid density water is isochorically and uniformly heated to non-equilibrium warm dense matter by FLASH free-electron laser irradiation (5.5 nm, 0.1 - 20 μ J). The dielectric function can be extracted from optical transmission and reflection measurements on the picosecond timescale before significant expansion and subsequent relaxation occurs. The time-dependent dielectric function reveals the electronic properties of water at different temperatures of the electronic and ionic subsystem during the heating and relaxation process, that allow to infer the electron-ion energy coupling. Comparison with 2-temperature density-functional-theory molecular-dynamic simulations show good agreement, that can not be achieved by standard theories of plasma physics. This work is supported by DOE FES under FWP 100182.

  5. Transmission and Trapping of Cold Electrons in Water Ice

    DEFF Research Database (Denmark)

    Balog, Richard; Cicman, Peter; Field, David

    2011-01-01

    Experiments are reported that show currents of low energy (“cold”) electrons pass unattenuated through crystalline ice at 135 K for energies between zero and 650 meV, up to the maximum studied film thickness of 430 bilayers, showing negligible apparent trapping. By contrast, both porous amorphous...... ice and compact crystalline ice at 40 K show efficient electron trapping. Ice at intermediate temperatures reveals metastable trapping that decays within a few hundred seconds at 110 K. Our results are the first to demonstrate full transmission of cold electrons in high temperature water ice...

  6. Effects of solvent polarity on mutual polypropylene grafting by electron beam irradiation

    International Nuclear Information System (INIS)

    Geraldo, A.B.C.; Moura, E.; Somessari, E.S.R.; Silveira, C.G.; Paes, H.A.; Souza, C.A.; Fernandes, W.; Manzoli, J.E.

    2011-01-01

    Complete text of publication follows. Copolymerization by grafting is a process largely known and the advantages of modifying polymers by radiation includes superimposition of properties related to the backbone and the grafted chains in the absence of an initiator. This process produces low byproduct levels, costs and hazards. Since polypropylene is applied in many industrial and commercial sectors, the grafting process is an alternative to improve some of its physical and chemical properties. The aim of this work was to verify the effect of distinct organic solvents on polypropylene grafting process by mutual irradiation applying absorbed doses from 30 kGy to 100 kGy at dose rates of 2.2 kGy/s and 22.4 kGy/s. All process were performed in atmosphere air presence. Styrene was the monomer grafted on polymer substrate and some non-polar and polar organic solvents, like toluene, xylene, acetone, methanol and its homologous, were used at distinct concentrations. The grafted samples were evaluated by degree of styrene grafting (gravimetric determination) and the Mid-FTIR spectrophotometry. As a general behavior, the degree of grafting increases when absorbed dose values increase in a specific solvent until a maximum dose value (50-70 kGy), after this, the degree of grafting decreases. Moreover, the grafting process have high yields when protic polar solvents are used. These results suggest the grafting process does not have dependence of substrate swelling, that is expected when a non-polar substrate and a non-polar media are in contact. The grafting, in this case, can be related to the free radical generation at protic polar solvents in a first step of process mechanism; these reactive specimens start the reaction on substrate surface to allow the accessibility of monomer species to active sites. Some reaction mechanisms are proposed.

  7. The Mars water cycle at other epochs: Recent history of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The Martian polar caps and layered terrain presumably evolves by the deposition and removal of small amounts of water and dust each year, the current cap attributes therefore represent the incremental transport during a single year as integrated over long periods of time. The role was studied of condensation and sublimation of water ice in this process by examining the seasonal water cycle during the last 10(exp 7) yr. In the model, axial obliquity, eccentricity, and L sub s of perihelion vary according to dynamical models. At each epoch, the seasonal variations in temperature are calculated at the two poles, keeping track of the seasonal CO2 cap and the summertime sublimation of water vapor into the atmosphere; net exchange of water between the two caps is calculated based on the difference in the summertime sublimation between the two caps (or on the sublimation from one cap if the other is covered with CO2 frost all year). Results from the model can help to explain (1) the apparent inconsistency between the timescales inferred for layer formation and the much older crater retention age of the cap and (2) the difference in sizes of the two residual caps, with the south being smaller than the north.

  8. Electronic Structures of Magnetic Iron and Cobalt Thin Films on TUNGSTEN(001): a Spin-Polarized Inverse Photoemission Study

    Science.gov (United States)

    Cai, Qing

    Electronic structure is a central question in metallic magnetism as well as in magnetic materials research. The electronic properties in a two-dimensional system such as thin films of a few atomic layers is an important issue in surface science. The epitaxial thin film preparation and morphology are of special technological interests. In this thesis, these questions are addressed. Spin-polarized inverse photoemission spectroscopy is used to study the unoccupied electron band states in magnetic thin film magnets of Fe and Co epitaxially grown on W(001) surface. The clean W(001) surface was studied by angle -resolved inverse photoemission spectroscopy and the bulk band dispersion was determined. Ultrathin Fe overlayers on W(001) show a square lateral crystal structure similar to the bcc-Fe(001) surface. The electronic structure develops into a structure that is close to that of bulk Fe at about four atomic layers. In the normal-incidence spin polarized inverse photoemission spectra, direct transitions to the majority and minority final states near the H^'_ {25} point are identified in good agreement with the theoretical calculations. One Fe monolayer, or multilayers less than four, showed behavior corresponding to a gradually reduced Curie temperature. When the film thickness is reduced, the spin-resolved spectral behavior show that the majority spin signal peak moves from near the Fermi energy to about 1.3 eV while the minority peak stays at about the same position near 1.3 eV. The results are used to examine the spatial correlation of the spin fluctuations in the system in comparison with a theoretical spectral calculation, and favors the disordered-local-moment picture in the contemporary theory of itinerant magnetism. The Co overlayer shows an overlayer structure that consists of equivalent, mutually rotated domains of distorted hexagonal lateral structure. For one atomic layer of Co in that structure, which has a nominal lateral atomic density twice that of the

  9. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR.

    Science.gov (United States)

    White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water (1)H polarization to polysaccharides through distance- and mobility-dependent (1)H-(1)H dipolar couplings and detecting it through polysaccharide (13)C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water-pectin polarization transfer is much faster than water-cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water-polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water-pectin spin diffusion precedes water-cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

  10. The polarization response in InAs quantum dots: theoretical correlation between composition and electronic properties

    International Nuclear Information System (INIS)

    Usman, Muhammad; O’Reilly, Eoin P; Tasco, Vittorianna; Todaro, Maria Teresa; De Giorgi, Milena; Passaseo, Adriana; Klimeck, Gerhard

    2012-01-01

    III–V growth and surface conditions strongly influence the physical structure and resulting optical properties of self-assembled quantum dots (QDs). Beyond the design of a desired active optical wavelength, the polarization response of QDs is of particular interest for optical communications and quantum information science. Previous theoretical studies based on a pure InAs QD model failed to reproduce experimentally observed polarization properties. In this work, multi-million atom simulations are performed in an effort to understand the correlation between chemical composition and polarization properties of QDs. A systematic analysis of QD structural parameters leads us to propose a two-layer composition model, mimicking In segregation and In–Ga intermixing effects. This model, consistent with mostly accepted compositional findings, allows us to accurately fit the experimental PL spectra. The detailed study of QD morphology parameters presented here serves as a tool for using growth dynamics to engineer the strain field inside and around the QD structures, allowing tuning of the polarization response. (paper)

  11. Transient charging and discharging of spin-polarized electrons in a quantum dot

    DEFF Research Database (Denmark)

    De Souza, Fabricio; Leao, S.A.; Gester, R. M.

    2007-01-01

    We study spin-polarized transient transport in a quantum dot coupled to two ferromagnetic leads subjected to a rectangular bias voltage pulse. Time-dependent spin-resolved currents, occupations, spin accumulation, and tunneling magnetoresistance TMR are calculated using both nonequilibrium Green...

  12. IMPROVED PARAMETERIZATION OF WATER CLOUD MODEL FOR HYBRID-POLARIZED BACKSCATTER SIMULATION USING INTERACTION FACTOR

    Directory of Open Access Journals (Sweden)

    S. Chauhan

    2017-07-01

    Full Text Available The prime aim of this study was to assess the potential of semi-empirical water cloud model (WCM in simulating hybrid-polarized SAR backscatter signatures (RH and RV retrieved from RISAT-1 data and integrate the results into a graphical user interface (GUI to facilitate easy comprehension and interpretation. A predominant agricultural wheat growing area was selected in Mathura and Bharatpur districts located in the Indian states of Uttar Pradesh and Rajasthan respectively to carry out the study. The three-date datasets were acquired covering the crucial growth stages of the wheat crop. In synchrony, the fieldwork was organized to measure crop/soil parameters. The RH and RV backscattering coefficient images were extracted from the SAR data for all the three dates. The effect of four combinations of vegetation descriptors (V1 and V2 viz., LAI-LAI, LAI-Plant water content (PWC, Leaf water area index (LWAI-LWAI, and LAI-Interaction factor (IF on the total RH and RV backscatter was analyzed. The results revealed that WCM calibrated with LAI and IF as the two vegetation descriptors simulated the total RH and RV backscatter values with highest R2 of 0.90 and 0.85 while the RMSE was lowest among the other tested models (1.18 and 1.25 dB, respectively. The theoretical considerations and interpretations have been discussed and examined in the paper. The novelty of this work emanates from the fact that it is a first step towards the modeling of hybrid-polarized backscatter data using an accurately parameterized semi-empirical approach.

  13. Application of electron beam technology in improving sewage water ...

    African Journals Online (AJOL)

    user

    Application of electron beam technology in improving sewage water quality: An advance technique. Y. Avasn Maruthi1*, N. Lakshmana Das1, Kaizar Hossain1, K. S. S. Sarma2, K. P. Rawat2 and. S. Sabharwal2. 1GITAM Institute of Science, GITAM University, Visakhapatnam-530045, Andhra Pradesh, India. 2Radiation ...

  14. Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water

    DEFF Research Database (Denmark)

    Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.

    We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...

  15. Structures and electron affinities of indole-(water)N clusters

    Science.gov (United States)

    Carles, S.; Desfrançois, C.; Schermann, J. P.; Smith, D. M. A.; Adamowicz, L.

    2000-02-01

    Rydberg electron transfer spectroscopy (RET) has been used to determine the dipole-bound electron affinity of the indole molecule, and the value of 3 meV was obtained. RET has also been employed to study [indole-(water)N]- cluster anions and the results have been interpreted with the help of ab initio calculations. It has been shown that for N=1 and 2 only dipole-bound anions are formed and that the electron attachment induces large amplitude motions in these systems. [Indole-(water)N]- anions with N=3 and 4 have not been observed. This finding for N=3 is consistent with a low theoretically predicted dipole moment of the neutral indole-(water)3 complex, which is insufficient for the formation of a stable dipole-bound anion. Above N=5, RET experiments showed formation of valence [indole-(water)N]- anions. From the observed size threshold for the formation of these anions, the negative value of the valence electron affinity of indole equal to -1.03±0.05 meV was deduced.

  16. Simple Physics-Based Analytical Formulas for the Potentials of Mean Force of the Interaction of Amino Acid Side Chains in Water. VII. Charged-Hydrophobic/Polar and Polar-Hydrophobic/Polar Side Chains.

    Science.gov (United States)

    Makowski, Mariusz; Liwo, Adam; Scheraga, Harold A

    2017-01-19

    The physics-based potentials of side-chain-side-chain interactions corresponding to pairs composed of charged and polar, polar and polar, charged and hydrophobic, and hydrophobic and hydrophobic side chains have been determined. A total of 144 four-dimensional potentials of mean force (PMFs) of all possible pairs of molecules modeling these pairs were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation, and the analytical expressions were then fitted to the PMFs. Depending on the type of interacting sites, the analytical approximation to the PMF is a sum of terms corresponding to van der Waals interactions and cavity-creation involving the nonpolar sections of the side chains and van der Waals, cavity-creation, and electrostatic (charge-dipole or dipole-dipole) interaction energies and polarization energies involving the charged or polar sections of the side chains. The model used in this work reproduces all features of the interacting pairs. The UNited RESidue force field with the new side-chain-side-chain interaction potentials was preliminarily tested with the N-terminal part of the B-domain of staphylococcal protein A (PDBL 1BDD ; a three-α-helix bundle) and UPF0291 protein YnzC from Bacillus subtilis (PDB: 2HEP ; an α-helical hairpin).

  17. Body water distribution in severe obesity and its assessment from eight-polar bioelectrical impedance analysis.

    Science.gov (United States)

    Sartorio, A; Malavolti, M; Agosti, F; Marinone, P G; Caiti, O; Battistini, N; Bedogni, G

    2005-02-01

    To measure body water distribution and to evaluate the accuracy of eight-polar bioelectrical impedance analysis (BIA) for the assessment of total body water (TBW) and extracellular water (ECW) in severe obesity. Cross-sectional study. Obesity clinic. In all, 75 women aged 18-66 y, 25 with body mass index (BMI) between 19.1 and 29.9 kg/m(2) (ie not obese), 25 with BMI between 30.0 and 39.9 kg/m(2) (ie class I and II obese), and 25 with BMI between 40.0 and 48.2 kg/m(2) (ie class III obese). TBW and ECW were measured by (2)H(2)O and Br dilution. Body resistance (R) was obtained by summing the resistances of arms, trunk and legs as measured by eight-polar BIA (InBody 3.0, Biospace, Seoul, Korea). The resistance index at a frequency of x kHz (RI(x)) was calculated as height (2)/R(x). ECW : TBW was similar in women with class III (46+/-3%, mean+/-s.d.) and class I-II obesity (45+/-3%) but higher than in nonobese women (39+/-3%, P<0.05). In a random subsample of 37 subjects, RI(500) explained 82% of TBW variance (P<0.0001) and cross-validation of the obtained algorithm in the remaining 38 subjects gave a percent root mean square error (RMSE%) of 5% and a pure error (PE) of 2.1 l. In the same subjects, RI(5) explained 87% of ECW variance (P<0.0001) and cross-validation of the obtained algorithm gave a RMSE% of 8% and a PE of 1.4 l. The contribution of weight and BMI to the prediction of TBW and ECW was nil or negligible on practical grounds. ECW : TBW is similar in women with class I-II and class III obesity up to BMI values of 48.2 kg/m(2). Eight-polar BIA offers accurate estimates of TBW and ECW in women with a wide range of BMI (19.1-48.2 kg/m(2)) without the need of population-specific formulae.

  18. Development, construction and characterization of a variable repetitive spin-polarized electron gun with an inverted-geometry insulator

    International Nuclear Information System (INIS)

    Espig, Martin

    2016-02-01

    Within the scope of this thesis a pulsed source of spin polarized electrons Photo-CATCH was designed, constructed, characterized and has been put into operation. This source is based on the photoemission of spin-polarized electrons from GaAs-photocathodes. Both the design of the electron gun, consisting of an ultra-high vacuum chamber and an electrode with Pierce geometry, as well as the properties of the electron beam have been simulated with CST Studio. Results were a maximum electric field of (0.064±0.001) MV/m/kV on the electrode surface and a beam emittance as a function of the radius of the laser spot on the photocathode of element of n,x =(1.7478(4).10 -4 .(r)/(μm)+2.8(18).10 -5 ) mm mrad at a beam current of 100 μA. Currently Photo-CATCH provides electron beams with an energy of 60 keV, which can be expanded up to 100 keV by upgrading the high-voltage power supply. The electron gun has an inverted-geometry insulator to ensure a compact design of the ultra-high vacuum chamber and a maximum person- and machine-safety from sparkovers. Since the properties of the laser light directly affect the properties of the generated electron beam a pulsed semiconductor laser system has been specially developed and built for Photo-CATCH. This is characterized by a high variability of its operating parameters, in particular its wavelength and repetition rate, in order to fulfill the broad variety of requirements of various nuclear physics experiments. By selecting the wavelength of the used laser diode highly polarized or high-current electron beams can be generated from GaAs-photocathodes. The time profile of the laser has direct influence to the longitudinal profile of the electron bunch. Through the radiofrequency modulation of the pumping current of the impedance-matched semiconductor laser system, consisting of a DC power source and an electrical pulse generator with 881 ps broad pump pulses, Lorentz shaped laser pulses with a minimum FWHM of (43.8±1.2) ps at a

  19. Signature properties of water: Their molecular electronic origins.

    Science.gov (United States)

    Sokhan, Vlad P; Jones, Andrew P; Cipcigan, Flaviu S; Crain, Jason; Martyna, Glenn J

    2015-05-19

    Water challenges our fundamental understanding of emergent materials properties from a molecular perspective. It exhibits a uniquely rich phenomenology including dramatic variations in behavior over the wide temperature range of the liquid into water's crystalline phases and amorphous states. We show that many-body responses arising from water's electronic structure are essential mechanisms harnessed by the molecule to encode for the distinguishing features of its condensed states. We treat the complete set of these many-body responses nonperturbatively within a coarse-grained electronic structure derived exclusively from single-molecule properties. Such a "strong coupling" approach generates interaction terms of all symmetries to all orders, thereby enabling unique transferability to diverse local environments such as those encountered along the coexistence curve. The symmetries of local motifs that can potentially emerge are not known a priori. Consequently, electronic responses unfiltered by artificial truncation are then required to embody the terms that tip the balance to the correct set of structures. Therefore, our fully responsive molecular model produces, a simple, accurate, and intuitive picture of water's complexity and its molecular origin, predicting water's signature physical properties from ice, through liquid-vapor coexistence, to the critical point.

  20. Alternating electron and proton transfer steps in photosynthetic water oxidation.

    Science.gov (United States)

    Klauss, André; Haumann, Michael; Dau, Holger

    2012-10-02

    Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel-production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese-calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S(2) → S(3) transition of the classical S-state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant (Y Z OX). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein-water interface is characterized by a high activation energy (E(a) = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S(0) → S(1) transition are similar (τ, approximately 100 µs; E(a) = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to . By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established.

  1. Chirality Emergence in Thin Solid Films of Amino Acids by Polarized Light from Synchrotron Radiation and Free Electron Laser

    Directory of Open Access Journals (Sweden)

    Mashahiro Adachi

    2009-07-01

    Full Text Available One of the most attractive hypothesis for the origin of homochirality in terrestrial bioorganic compounds is that a kind of “chiral impulse” as an asymmetric excitation source induced asymmetric reactions on the surfaces of such materials such as meteorites or interstellar dusts prior to the existence of terrestrial life (Cosmic Scenario. To experimentally introduce chiral structure into racemic films of amino acids (alanine, phenylalanine, isovaline, etc., we irradiated them with linearly polarized light (LPL from synchrotron radiation and circularly polarized light (CPL from a free electron laser. After the irradiation, we evaluated optical anisotropy by measuring the circular dichroism (CD spectra and verified that new Cotton peaks appeared at almost the same peak position as those of the corresponding non-racemic amino acid films. With LPL irradiation, two-dimensional anisotropic structure expressed as linear dichroism and/or linear birefringence was introduced into the racemic films. With CPL irradiation, the signs of the Cotton peaks exhibit symmetrical structure corresponding to the direction of CPL rotation. This indicates that some kinds of chiral structure were introduced into the racemic film. The CD spectra after CPL irradiation suggest the chiral structure should be derived from not only preferential photolysis but also from photolysis-induced molecular structural change. These results suggest that circularly polarized light sources in space could be associated with the origin of terrestrial homochirality; that is, they would be effective asymmetric exciting sources introducing chiral structures into bio-organic molecules or complex organic compounds.

  2. Chirality Emergence in Thin Solid Films of Amino Acids by Polarized Light from Synchrotron Radiation and Free Electron Laser

    Science.gov (United States)

    Takahashi, Jun-ichi; Shinojima, Hiroyuki; Seyama, Michiko; Ueno, Yuko; Kaneko, Takeo; Kobayashi, Kensei; Mita, Hajime; Adachi, Mashahiro; Hosaka, Masahito; Katoh, Masahiro

    2009-01-01

    One of the most attractive hypothesis for the origin of homochirality in terrestrial bioorganic compounds is that a kind of “chiral impulse” as an asymmetric excitation source induced asymmetric reactions on the surfaces of such materials such as meteorites or interstellar dusts prior to the existence of terrestrial life (Cosmic Scenario). To experimentally introduce chiral structure into racemic films of amino acids (alanine, phenylalanine, isovaline, etc.), we irradiated them with linearly polarized light (LPL) from synchrotron radiation and circularly polarized light (CPL) from a free electron laser. After the irradiation, we evaluated optical anisotropy by measuring the circular dichroism (CD) spectra and verified that new Cotton peaks appeared at almost the same peak position as those of the corresponding non-racemic amino acid films. With LPL irradiation, two-dimensional anisotropic structure expressed as linear dichroism and/or linear birefringence was introduced into the racemic films. With CPL irradiation, the signs of the Cotton peaks exhibit symmetrical structure corresponding to the direction of CPL rotation. This indicates that some kinds of chiral structure were introduced into the racemic film. The CD spectra after CPL irradiation suggest the chiral structure should be derived from not only preferential photolysis but also from photolysis-induced molecular structural change. These results suggest that circularly polarized light sources in space could be associated with the origin of terrestrial homochirality; that is, they would be effective asymmetric exciting sources introducing chiral structures into bio-organic molecules or complex organic compounds. PMID:19742124

  3. Coupled spin and charge collective excitations in a spin polarized electron gas

    International Nuclear Information System (INIS)

    Marinescu, D.C.; Quinn, J.J.; Yi, K.S.

    1997-01-01

    The charge and longitudinal spin responses induced in a spin polarized quantum well by a weak electromagnetic field are investigated within the framework of the linear response theory. The authors evaluate the excitation frequencies for the intra- and inter-subband transitions of the collective charge and longitudinal spin density oscillations including many-body corrections beyond the random phase approximation through the spin dependent local field factors, G σ ± (q,ω). An equation-of-motion method was used to obtain these corrections in the limit of long wavelengths, and the results are given in terms of the equilibrium pair correlation function. The finite degree of spin polarization is shown to introduce coupling between the charge and spin density modes, in contrast with the result for an unpolarized system

  4. Spin-wave propagation and spin-polarized electron transport in single-crystal iron films

    Science.gov (United States)

    Gladii, O.; Halley, D.; Henry, Y.; Bailleul, M.

    2017-11-01

    The techniques of propagating spin-wave spectroscopy and current-induced spin-wave Doppler shift are applied to a 20-nm-thick Fe/MgO(001) film. The magnetic parameters extracted from the position of the spin-wave resonance peaks are very close to those tabulated for bulk iron. From the zero-current propagating wave forms, a group velocity of 4 km/s and an attenuation length of about 6 μ m are extracted for 1.6-μ m -wavelength spin wave at 18 GHz. From the measured current-induced spin-wave Doppler shift, we extract a surprisingly high degree of spin polarization of the current of 83 % , which constitutes the main finding of this work. This set of results makes single-crystalline iron a promising candidate for building devices utilizing high-frequency spin waves and spin-polarized currents.

  5. Spin matching conditions in large electron storage rings with purely horizontal beam polarization

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1990-08-01

    In a storage ring with a purely horizontal spin and a Siberian Snake, the spin matching conditions are similar to the spin matching conditions for vertical polarization; a combination of beam bumps has to be found which compensate the depolarizing effects. These bumps compensate the random emission of synchrotron emission on the spin. The aim of this paper is to define spin matching conditions that compensate this effect

  6. Influence of polarization potential on probabilities of free-free transitions of electrons

    International Nuclear Information System (INIS)

    Dobrolyubov, N.Yu.; Kukin, V.D.; Rostovskij, V.S.

    1997-01-01

    The method for calculating the matrix element of electrical dipole transition between the continuos spectrum states with an account of existence of coulomb and polarization potentials in the atom external area is considered. The recurrent of formulae, enabling the calculation of contribution to the matrix element from integrals over the area outside the atom with application of values of radial wave functions and their first derivatives at the boundary, are obtained

  7. Spin matching conditions in large electron storage rings with purely horizontal beam polarization

    Energy Technology Data Exchange (ETDEWEB)

    Rossmanith, R.

    1990-08-01

    In a storage ring with a purely horizontal spin and a Siberian Snake, the spin matching conditions are similar to the spin matching conditions for vertical polarization; a combination of beam bumps has to be found which compensate the depolarizing effects. These bumps compensate the random emission of synchrotron emission on the spin. The aim of this paper is to define spin matching conditions that compensate this effect.

  8. First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments

    Directory of Open Access Journals (Sweden)

    Maxime Deutsch

    2014-05-01

    Full Text Available Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.

  9. Small scale density variations of electrons and charged particles in the vicinity of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2003-01-01

    Full Text Available We present small scale variations of electron number densities and particle charge number densities measured in situ in the presence of polar mesosphere summer echoes. It turns out that the small scale fluctuations of electrons and negatively charged particles show a strong anticorrelation down to the smallest scales observed. Comparing these small scale structures with the simultaneously measured radar signal to noise profile, we find that the radar profile is well described by the power spectral density of both electrons and charged particles at the radar half wavelength (=the Bragg scale. Finally, we consider the shape of the power spectra of the observed plasma fluctuations and find that both charged particles and electrons show spectra that can be explained in terms of either neutral air turbulence acting on the distribution of a low diffusivity tracer or the fossil remnants of a formerly active turbulent region. All these results are consistent with the theoretical ideas by Rapp and Lübken (2003 suggesting that PMSE can be explained by a combination of active and fossil neutral air turbulence acting on the large and heavy charged aerosol particles which are subsequently mirrored in the electron number density distribution that becomes visible to a VHF radar when small scale fluctuations are present.

  10. Electron-ion temperature ratio estimations in the summer polar mesosphere when subject to HF radio wave heating

    Science.gov (United States)

    Pinedo, H.; La Hoz, C.; Havnes, O.; Rietveld, M.

    2014-10-01

    We have inferred the electron temperature enhancements above mesospheric altitudes under Polar Mesospheric Summer Echoes (PMSE) conditions when the ionosphere is exposed to artificial HF radio wave heating. The proposed method uses the dependence of the radar cross section on the electron-to-ion temperature ratio to infer the heating factor from incoherent scatter radar (ISR) power measurements above 90 km. Model heating temperatures match our ISR estimations between 90 and 130 km with 0.94 Pearson correlation index. The PMSE strength measured by the MORRO MST radar is about 50% weaker during the heater-on period when the modeled electron-to-ion mesospheric temperature is approximately 10 times greater than the unperturbed value. No PMSE weakening is found when the mesospheric temperature enhancement is by a factor of three or less. The PMSE weakening and its absence are consistent with the modeled mesospheric electron temperatures. This consistency supports to the proposed method for estimating mesospheric electron temperatures achieved by independent MST and ISR radar measurements.

  11. Magnetization reversal of ferromagnetic nanoparticles induced by a stream of polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kozhushner, M.A.; Gatin, A.K.; Grishin, M.V.; Shub, B.R. [Semenov Institute of Chemical Physics of RAS, 4, Kosygin Street, Moscow 119991 (Russian Federation); Kim, V.P.; Khomutov, G.B. [Faculty of Physics, Lomonosov Moscow State University, Lenin Gory 1-2, Moscow 119991 (Russian Federation); Ilegbusi, O.J. [University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2450 (United States); Trakhtenberg, L.I. [Semenov Institute of Chemical Physics of RAS, 4, Kosygin Street, Moscow 119991 (Russian Federation)

    2016-09-15

    The remagnetization of ferromagnetic Fe{sub 3}O{sub 4} nanoparticles of several thousand cubic nanometers by spin-polarized current is investigated. For this purpose, magnetite nanoparticles are synthesized and deposited on a conductive nonmagnetic substrate. The remagnetization is conducted in high-vacuum scanning tunneling microscope (STM). The STM tip from magnetized iron wire constitutes one electrode while the ferromagnetic nanoparticle on the graphite surface represents the second electrode. The measured threshold value of remagnetization current (I{sub thresh}=9 nA) is the lowest value of current at which remagnetization occurs. The change in nanoparticle magnetization is detected by the effect of giant magnetic resistance, specifically, the dependence of the weak polarized current (Ipolarized current on magnetic moment of small ferromagnetic nanoclusters. The peculiarities of size dependence of the observed effects are explained. - Highlights: • Ferromagnetic nanoparticle in STM with ferromagnetic tip. • Change of the direction of nanoparticle magnetization by current I>I{sub cr}=9 nA. • GMR effect used to control change of magnetization.

  12. Polarization Impacts on the Water-Leaving Radiance Retrieval from Above-Water Radiometric Measurements

    Science.gov (United States)

    2012-12-10

    Society of America OCIS codes: 010.0010, 280.0280, 010.4450, 010.1320. 1. Introduction coastal water-quality monitoring as well as in var ...reflection from waves and wavelets at the sea surface. Follow- ing Cox and Munk [28-30], the ocean surface can be modeled based on a distribution of...performed for a fixed relative azimuth angle of 90° whereas HyperSAS data are acquired for var - ious relative azimuth angles, here comprising those

  13. Multimission empirical ocean tide modeling for shallow waters and polar seas

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar

    2011-01-01

    A new global ocean tide model named DTU10 (developed at Technical University of Denmark) representing all major diurnal and semidiurnal tidal constituents is proposed based on an empirical correction to the global tide model FES2004 (Finite Element Solutions), with residual tides determined using...... to recover twice the spatial variations of the tidal signal which is particularly important in shallow waters where the spatial scale of the tidal signal is scaled down. Outside the +/- 66 degrees parallel combined Envisat, GEOSAT Follow-On, and ERS-2, data sets have been included to solve for the tides up...... to the +/- 82 degrees parallel. A new approach to removing the annual sea level variations prior to estimating the residual tides significantly improved tidal determination of diurnal constituents from the Sun-synchronous satellites (e. g., ERS-2 and Envisat) in the polar seas. Extensive evaluations with six...

  14. Coulomb-corrected Volkov-type solution for an electron in an intense circularly polarized laser field

    Science.gov (United States)

    Bauer, Jaroslaw

    2001-04-01

    A simple analytical approximation exists for the wavefunction of an unbound electron interacting both with a strong circularly polarized laser field and an atomic Coulomb potential (Reiss and Krainov 1994 Phys. Rev. A 50 R910). This wavefunction is the Volkov state with a first-order Coulomb correction coming from some perturbative expansion of the potential in the Kramers-Henneberger reference frame. The expansion is valid, if the distance from the centre of the Coulomb force is smaller than the classical radius of motion of a free electron in a plane-wave field. We improve the approximate Coulomb-Volkov wavefunction by including the next term in the perturbative expansion of the atomic potential.

  15. Evolution of oil/water interface in the presence of SDBS detected by dual polarization interferometry

    Science.gov (United States)

    Duan, Ming; Ding, Ziling; Wang, Hu; Xiong, Yan; Fang, Shenwen; Shi, Peng; Liu, Shuai

    2018-01-01

    In this work, the technique of dual polarization interferometry (DPI) was applied to establish a new method to monitor the real-time evolution of oil/water interface in the presence of sodium dodecyl benzene sulfonate (SDBS) at molecular level. A three-stage model of adsorption-desorption-detachment had been proposed and was systematically discussed upon the addition of different SDBS concentrations based on the variation of the interfacial mass with time. The results demonstrated two patterns of adsorption morphology at the oil/water interface, SDBS mono-molecules and SDBS hemi-micelles at SDBS concentrations below and above cmc respectively according to the relaxation time obtained by theoretical model and the reaction order calculated by integral method in the analysis of adsorbed dynamics. The capability of oil detachment with the aid of SDBS as well as the properties of the outlet fluid were investigated under two patterns of adsorption morphologies, which showed different effects of oil detachment with the aid of SDBS molecules. The speed of oil detachment and the fluorescence intensity of the outlet fluid during the detachment process indicated the fact that the oil detachment capability was significantly promoted by the morphology of the absorbed hemi-micelles. The findings in the present study are crucial for fully understanding the interfacial behavior of surfactants applied in oil/water interface, which is of great significance in enhanced oil recovery and pollution industry.

  16. Effect of vacuum polarization on the excitation of hydrogen atom by electron impact

    Directory of Open Access Journals (Sweden)

    Sujata Bhattacharyya

    1981-01-01

    for 1S−2S excitation of the hydrogen atom by electron impact. The excitation amplitude calculated field theoretically is found to be lowered by 0.47t2/(t2+93 where t2=4|P−Q|2, P and Q being the momenta of the incident and scattered electrons respectively.

  17. Electron spin polarization effects in low-energy electron diffraction, ion neutralization, and metastable-atom deexcitation at solid surfaces. Progress report No. 3, January 1-December 31, 1983

    International Nuclear Information System (INIS)

    Walters, G.K.; Dunning, F.B.

    1983-01-01

    The importance of electron spin polarization (ESP) effects in the various spectroscopies used to study solid surfaces has become increasingly apparent in recent years. Recent low energy electron diffraction (LEED) investigations in this laboratory and elsewhere have shown that a great deal of new information contributing to the understanding of the geometrical arrangements of atoms at a surface can be obtained if the polarization of the various LEED beams is measured, or if the incident electron beam is polarized. Polarized LEED studies have shown large polarization features that are very sensitive to the presence of adsorbed layers, surface reconstruction, etc. In addition, theory suggests that polarization measurements can provide a more sensitive test of many of the parameters used in a surface model than can conventional LEED intensity measurements alone. Polarized LEED has also been applied to the study of surface magnetism. In the present contract year, polarized LEED has been used, together with Auger analysis and LEED intensity measurements, as a diagnostic to characterize Ni(001) surfaces produced by laser annealing

  18. Sensitivity of polarization fluctuations to the nature of protein-water interactions: Study of biological water in four different protein-water systems

    Science.gov (United States)

    Ghosh, Rikhia; Banerjee, Saikat; Hazra, Milan; Roy, Susmita; Bagchi, Biman

    2014-12-01

    Since the time of Kirkwood, observed deviations in magnitude of the dielectric constant of aqueous protein solution from that of neat water (˜80) and slower decay of polarization have been subjects of enormous interest, controversy, and debate. Most of the common proteins have large permanent dipole moments (often more than 100 D) that can influence structure and dynamics of even distant water molecules, thereby affecting collective polarization fluctuation of the solution, which in turn can significantly alter solution's dielectric constant. Therefore, distance dependence of polarization fluctuation can provide important insight into the nature of biological water. We explore these aspects by studying aqueous solutions of four different proteins of different characteristics and varying sizes, chicken villin headpiece subdomain (HP-36), immunoglobulin binding domain protein G (GB1), hen-egg white lysozyme (LYS), and Myoglobin (MYO). We simulate fairly large systems consisting of single protein molecule and 20000-30000 water molecules (varied according to the protein size), providing a concentration in the range of ˜2-3 mM. We find that the calculated dielectric constant of the system shows a noticeable increment in all the cases compared to that of neat water. Total dipole moment auto time correlation function of water ⟨δMW(0)δMW(t)⟩ is found to be sensitive to the nature of the protein. Surprisingly, dipole moment of the protein and total dipole moment of the water molecules are found to be only weakly coupled. Shellwise decomposition of water molecules around protein reveals higher density of first layer compared to the succeeding ones. We also calculate heuristic effective dielectric constant of successive layers and find that the layer adjacent to protein has much lower value (˜50). However, progressive layers exhibit successive increment of dielectric constant, finally reaching a value close to that of bulk 4-5 layers away. We also calculate shellwise

  19. Thermalisation of high energy electrons and positrons in water vapour

    Science.gov (United States)

    Munoz, A.; Blanco, F.; Limao-Vieira, P.; Thorn, P. A.; Brunger, M. J.; Buckman, S. J.; Garcia, G.

    2008-07-01

    In this study we describe a method to simulate single electron tracks of electrons in molecular gases, particularly in water vapour, from relatively high energies, where Born (Inokuti 1971) approximation is supposed to be valid, down to thermal energies paying special attention to the low energy secondary electrons which are abundantly generated along the energy degradation procedure. Experimental electron scattering cross sections (Munoz et al. 2007) and energy loss spectra (Thorn et al. 2007) have been determined, where possible, to be used as input parameters of the simulating program. These experimental data have been complemented with optical potential calculation (Blanco and Garcia 2003) providing a complete set of interaction probability functions for each type of collision which could take place in the considered energy range: elastic, ionization, electronic excitation, vibrational and rotational excitation. From the simulated track structure (Munoz et al. 2005) information about energy deposition and radiation damage at the molecular level can be derived. A similar procedure is proposed to the study of single positron tracks in gases. Due to the lack of experimental data for positron interaction with molecules, especially for those related to energy loss and excitation cross sections, some distribution probability data have been derived from those of electron scattering by introducing positron characteristics as positroniun formation. Preliminary results for argon are presented discussing also the utility of the model to biomedical applications based on positron emitters.

  20. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  1. Can Electron Propagator Methods Be Used To Improve Polarization Propagator Methods?

    DEFF Research Database (Denmark)

    Jensen, Hans Jørgen Aagaard

    2008-01-01

    Calculations of Rydberg excitation energies with the second-order polarization propagator approximation (SOPPA) often produce results which are more in error than the random phase approximation (RPA), which formally is the first-order model. This is obviously because of cancellation of errors...... at the RPA level. On the other hand, valence excitation energies behave as expected, and they are systematically improved in SOPPA compared to RPA. Note that a Rydberg series is related to one of the ionization thresholds of the molecule, and it is thus obvious that a good description of the ionization...

  2. Beamline for Photoemission Spectromicroscopy and Spin Polarized Microscopy with Slow Electrons at CESLAB

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk

    2008-01-01

    Roč. 15, č. 1 (2008), s. 111-112 ISSN 1210-8529 Institutional research plan: CEZ:AV0Z20650511 Keywords : CESLAB * beamline * LEEM/PEEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  3. Polar Ozone Response to Energetic Particle Precipitation Over Decadal Time Scales: The Role of Medium-Energy Electrons

    Science.gov (United States)

    Andersson, M. E.; Verronen, P. T.; Marsh, D. R.; Seppälä, A.; Päivärinta, S.-M.; Rodger, C. J.; Clilverd, M. A.; Kalakoski, N.; van de Kamp, M.

    2018-01-01

    One of the key challenges in polar middle atmosphere research is to quantify the total forcing by energetic particle precipitation (EPP) and assess the related response over solar cycle time scales. This is especially true for electrons having energies between about 30 keV and 1 MeV, so-called medium-energy electrons (MEE), where there has been a persistent lack of adequate description of MEE ionization in chemistry-climate simulations. Here we use the Whole Atmosphere Community Climate Model (WACCM) and include EPP forcing by solar proton events, auroral electron precipitation, and a recently developed model of MEE precipitation. We contrast our results from three ensemble simulations (147 years) in total with those from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) in order to investigate the importance of a more complete description of EPP to the middle atmospheric ozone, odd hydrogen, and odd nitrogen over decadal time scales. Our results indicate average EPP-induced polar ozone variability of 12-24% in the mesosphere, and 5-7% in the middle and upper stratosphere. This variability is in agreement with previously published observations. Analysis of the simulation results indicate the importance of inclusion of MEE in the total EPP forcing: In addition to the major impact on the mesosphere, MEE enhances the stratospheric ozone response by a factor of 2. In the Northern Hemisphere, where wintertime dynamical variability is larger than in the Southern Hemisphere, longer simulations are needed in order to reach more robust conclusions.

  4. Monitoring of 45 pesticides in Lebanese surface water using Polar Organic Chemical Integrative Sampler (POCIS)

    Science.gov (United States)

    Aisha, Al Ashi; Hneine, Wael; Mokh, Samia; Devier, Marie-Hélène; Budzinski, Hélèn; Jaber, Farouk

    2017-09-01

    The aim of this study is to assess the dissolved concentration of 45 pesticides in the surface waters of the Lebanese Republic using Polar Organic Chemical Integrative Sampler "POCIS". All of the sampling sites are located in the major agricultural land areas in Lebanon. POCIS (n = 3) were deployed at Ibrahim River, Qaraoun Lake and Hasbani River for a duration of 14 days. The total concentration of pesticides ranged from not detected (nd) to 137.66 ng.L-1. Chlorpyrifos, DDE-pp, diazinon and Fenpropathrin were the most abundant compounds. Qaraoun Lake and Hasbani River were found to be more polluted than Ibrahim River, since they receive large amounts of waste water derived from nearby agricultural lands and they had the lowest dilution factor. The aqueous average concentration of the target compounds were estimated using sampling rates obtained from the literature. Comparison between Time Weighed Average concentrations "TWA" using POCIS and spot sampling is presented. Results showed that POCIS TWA concentrations are in agreement with spot sampling concentrations for Ibrahim and Hasbani Rivers. The toxicity of the major detected pesticides on three representative aquatic species ( Daphnia magna, Scenedesmus quadricauda and Oncorhynchus mykiss) is also reported.

  5. Determination of commonly used polar herbicides in agricultural drainage waters in Australia by HPLC.

    Science.gov (United States)

    Tran, Anh T K; Hyne, Ross V; Doble, Philip

    2007-03-01

    The present study describes the application of different extraction techniques for the preconcentration of ten commonly found acidic and non-acidic polar herbicides (2,4-D, atrazine, bensulfuron-methyl, clomazone, dicamba, diuron, MCPA, metolachlor, simazine and triclopyr) in the aqueous environment. Liquid-liquid extraction (LLE) with dichloromethane, solid-phase extraction (SPE) using Oasis HLB cartridges or SBD-XC Empore disks were compared for extraction efficiency of these herbicides in different matrices, especially water samples from contaminated agricultural drainage water containing high concentrations of particulate matter. Herbicides were separated and quantified by high performance liquid chromatography (HPLC) with an ultraviolet detector. SPE using SDB-XC Empore disks was applied to determine target herbicides in the Murrumbidgee Irrigation Area (NSW, Australia) during a two-week survey from October 2005 to November 2005. The daily aqueous concentrations of herbicides from 24-h composite samples detected at two sites increased after run-off from a storm event and were in the range of: 0.1-17.8 microg l(-1), diuron, respectively.

  6. Quantitative Determination of Spring Water Quality Parameters via Electronic Tongue

    Directory of Open Access Journals (Sweden)

    Noèlia Carbó

    2017-12-01

    Full Text Available The use of a voltammetric electronic tongue for the quantitative analysis of quality parameters in spring water is proposed here. The electronic voltammetric tongue consisted of a set of four noble electrodes (iridium, rhodium, platinum, and gold housed inside a stainless steel cylinder. These noble metals have a high durability and are not demanding for maintenance, features required for the development of future automated equipment. A pulse voltammetry study was conducted in 83 spring water samples to determine concentrations of nitrate (range: 6.9–115 mg/L, sulfate (32–472 mg/L, fluoride (0.08–0.26 mg/L, chloride (17–190 mg/L, and sodium (11–94 mg/L as well as pH (7.3–7.8. These parameters were also determined by routine analytical methods in spring water samples. A partial least squares (PLS analysis was run to obtain a model to predict these parameter. Orthogonal signal correction (OSC was applied in the preprocessing step. Calibration (67% and validation (33% sets were selected randomly. The electronic tongue showed good predictive power to determine the concentrations of nitrate, sulfate, chloride, and sodium as well as pH and displayed a lower R2 and slope in the validation set for fluoride. Nitrate and fluoride concentrations were estimated with errors lower than 15%, whereas chloride, sulfate, and sodium concentrations as well as pH were estimated with errors below 10%.

  7. Mars Water Ice and Carbon Dioxide Seasonal Polar Caps: GCM Modeling and Comparison with Mars Express Omega Observations

    Science.gov (United States)

    Forget, F.; Levrard, B.; Montmessin, F.; Schmitt, B.; Doute, S.; Langevin, Y.; Bibring, J. P.

    2005-01-01

    To better understand the behavior of the Mars CO2 ice seasonal polar caps, and in particular interpret the the Mars Express Omega observations of the recession of the northern seasonal cap, we present some simulations of the Martian Climate/CO2 cycle/ water cycle as modeled by the Laboratoire de Meteorologie Dynamique (LMD) global climate model.

  8. Low temporal variation in the intact polar lipid composition of North Sea coastal marine water reveals limited chemotaxonomic value

    NARCIS (Netherlands)

    Brandsma, J.; Hopmans, E.C.; Philippart, C.J.M.; Veldhuis, M.J.W.; Schouten, S.; Sinninghe Damsté, J.S.S.

    2012-01-01

    Temporal variations in the abundance and composition of intact polar lipids (IPLs) in North Sea coastal marine water were assessed over a one-year seasonal cycle, and compared with environmental parameters and the microbial community composition. Sulfoquinovosyldiacylglycerol (SQDG) was the most

  9. Determination of octanol-water partition coefficients of polar polycyclic aromatic compounds (N-PAC) by high performance liquid chromatography

    DEFF Research Database (Denmark)

    Helweg, C.; Nielsen, T.; Hansen, P.E.

    1997-01-01

    using a Diol column with an eluent of 35 % MeOH and 65 % water. The results indicate that the Diol column, in reversed phase mode, is able to form hydrogen bonds with a solute. Different LFERs between retention and log K-ow was found for polar and nonpolar compounds. In general log K-ow increased...

  10. A Hybrid System Based on an Electronic Nose Coupled with an Electronic Tongue for the Characterization of Moroccan Waters

    Directory of Open Access Journals (Sweden)

    Z. Haddi

    2014-05-01

    Full Text Available A hybrid multisensor system combined with multivariate analysis was applied to the characterization of different kinds of Moroccan waters. The proposed hybrid system based on an electronic nose coupled with an electronic tongue consisted of metal oxide semiconductors and potentiometric sensors respectively. Five Taguchi Gas Sensors were implemented in the electronic nose for the discrimination between mineral, natural, sparkling, river and tap waters. Afterwards, the electronic tongue, based on series of Ion-Selective-Electrodes was applied to the analysis of the same waters. Multisensor responses obtained from the waters were processed by two chemometrics: Principal Component Analysis (PCA and Linear Discriminant Analysis (LDA. PCA results using electronic nose data depict all of the potable water samples in a separate group from the samples that were originated from river. Furthermore, PCA and LDA analysis on electronic tongue data permitted clear and rapid recognizing of the different waters due to the concentration changes of the chemical parameters from source to another.

  11. Investigations of a Cretaceous limestone with spectral induced polarization and scanning electron microscopy

    DEFF Research Database (Denmark)

    Johansson, Sara; Sparrembom, Charlotte; Fiandaca, Gianluca

    2017-01-01

    Characterization of varying bedrock properties is a common need in various contexts, ranging from large infrastructure pre-investigations to environmental protection. A direct current resistivity and time domain induced polarization (IP) survey aiming to characterize properties of a Cretaceous...... limestone was carried out in the Kristianstad basin, Sweden. The time domain IP data was processed with a recently developed method in order to suppress noise from the challenging urban setting in the survey area. The processing also enabled extraction of early decay times resulting in broader spectra......-ray spectroscopy, and the results showed that varying amounts of pyrite, glauconite and clay matrix were present at different levels in the limestone. The local high IP anomalies in the limestone could be caused by these minerals otherwise the IP responses were generally weak. There were also differences...

  12. Manipulating NiFe/AlOx interfacial chemistry for the spin-polarized electrons transport

    International Nuclear Information System (INIS)

    Zhao, Chong-Jun; Sun, Li; Ding, Lei; Li, Jian-Wei; Zhang, Jing-Yan; Cao, Yi; Yu, Guang-Hua

    2013-01-01

    Through vacuum annealing, interfacial chemical composition of sputter-deposited AlO x /NiFe/AlO x can be controlled for electron transport manipulation. Chemical status change at the NiFe/AlO x interface was quantified by X-ray photoelectron spectroscopy and correlated to the structure and electron transport properties of the heterostructure. It is found that elemental Al existed in the insulting AlO x after annealing at intermediate temperature can improve the AlO x /NiFe interface and thus favor the electronic transport. Annealing at higher temperature will result in native AlO x formation and degrade transport properties due to the NiFe/AlO x interfaces deterioration caused by significant difference in thermal expansion coefficients of the two materials.

  13. Electronic states of Myricetin. UV-Vis polarization spectroscopy and quantum chemical calculations.

    Science.gov (United States)

    Vojta, Danijela; Karlsen, Eva Marie; Spanget-Larsen, Jens

    2017-02-15

    Myricetin (3,3',4',5,5',7'-hexahydroxyflavone) was investigated by linear dichroism spectroscopy on molecular samples partially aligned in stretched poly(vinyl alcohol) (PVA). At least five electronic transitions in the range 40,000-20,000cm -1 were characterized with respect to their wavenumbers, relative intensities, and transition moment directions. The observed bands were assigned to electronic transitions predicted with TD-B3LYP/6-31+G(d,p). Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A microwave satellite water vapour column retrieval for polar winter conditions

    Energy Technology Data Exchange (ETDEWEB)

    Perro, Christopher; Lesins, Glen; Duck, Thomas J.; Cadeddu, Maria

    2016-01-01

    A new microwave satellite water vapour retrieval for the polar winter atmosphere is presented. The retrieval builds on the work of Miao et al. (2001) and Melsheimer and Heygster (2008), employing auxiliary information for atmospheric conditions and numerical optimization. It was tested using simulated and actual measurements from the Microwave Humidity Sounder (MHS) satellite instruments. Ground truth was provided by the G-band vapour radiometer (GVR) at Barrow, Alaska. For water vapour columns less than 6 kg m-2, comparisons between the retrieval and GVR result in a root mean square (RMS) deviation of 0.39 kg m-2 and a systematic bias of 0.08 kg m-2. These results are compared with RMS deviations and biases at Barrow for the retrieval of Melsheimer and Heygster (2008), the AIRS and MIRS satellite data products, and the ERA-Interim, NCEP, JRA-55, and ASR reanalyses. When applied to MHS measurements, the new retrieval produces a smaller RMS deviation and bias than for the earlier retrieval and satellite data products. The RMS deviations for the new retrieval were comparable to those for the ERA-Interim, JRA-55, and ASR reanalyses; however, the MHS retrievals have much finer horizontal resolution (15 km at nadir) and reveal more structure. The new retrieval can be used to obtain pan-Arctic maps of water vapour columns of unprecedented quality. It may also be applied to measurements from the Special Sensor Microwave/Temperature 2 (SSM/T2), Advanced Microwave Sounding Unit B (AMSU-B), Special Sensor Microwave Imager/Sounder (SSMIS), Advanced Technology Microwave Sounder (ATMS), and Chinese MicroWave Humidity Sounder (MWHS) instruments.

  15. Impact of water dilution and cation tail length on ionic liquid characteristics: Interplay between polar and non-polar interactions

    Science.gov (United States)

    Hegde, Govind A.; Bharadwaj, Vivek S.; Kinsinger, Corey L.; Schutt, Timothy C.; Pisierra, Nichole R.; Maupin, C. Mark

    2016-08-01

    The recalcitrance of lignocellulosic biomass poses a major challenge that hinders the economical utilization of biomass for the production of biofuel, plastics, and chemicals. Ionic liquids have become a promising solvent that addresses many issues in both the pretreatment process and the hydrolysis of the glycosidic bond for the deconstruction of cellulosic materials. However, to make the use of ionic liquids economically viable, either the cost of ionic liquids must be reduced, or a less expensive solvent (e.g., water) may be added to reduce the overall amount of ionic liquid used in addition to reducing the viscosity of the binary liquid mixture. In this work, we employ atomistic molecular dynamics simulations to investigate the impact of water dilution on the overall liquid structure and properties of three imidazolium based ionic liquids. It is found that ionic liquid-water mixtures exhibit characteristics that can be grouped into two distinct regions, which are a function of the ionic liquid concentration. The trends observed in each region are found to correlate with the ordering in the local structure of the ionic liquid that arises from the dynamic interactions between the ion pairs. Simulation results suggest that there is a high level of local ordering in the molecular structure at high concentrations of ionic liquids that is driven by the aggregation of the cationic tails and the anion-water interactions. It is found that as the concentration of ionic liquids in the binary mixture is decreased, there is a point at which the competing self and cross interaction energies between the ionic liquid and water shifts away from a cation-anion dominated regime, which results in a significant change in the mixture properties. This break point, which occurs around 75% w/w ionic liquids, corresponds to the point at which water molecules percolate into the ionic liquid network disrupting the ionic liquids' nanostructure. It is observed that as the cationic alkyl

  16. Finite-bias electronic transport of molecules in a water solution

    KAUST Repository

    Rungger, Ivan

    2010-06-04

    The effects of water wetting conditions on the transport properties of molecular nanojunctions are investigated theoretically by using a combination of empirical-potential molecular-dynamics and first-principles electronic-transport calculations. These are at the level of the nonequilibrium Green’s-function method implemented for self-interaction corrected density-functional theory. We find that water effectively produces electrostatic gating to the molecular junction with a gating potential determined by the time-averaged water dipole field. Such a field is large for the polar benzene-dithiol molecule, resulting in a transmission spectrum shifted by about 0.6 eV with respect to that of the dry junction. The situation is drastically different for carbon nanotubes (CNTs). In fact, because of their hydrophobic nature the gating is almost negligible so that the average transmission spectrum of wet Au/CNT/Au junctions is essentially the same as that in dry conditions. This suggests that CNTs can be used as molecular interconnects also in water-wet situations, for instance, as tips for scanning tunnel microscopy in solution or in biological sensors.

  17. Effect of electron beam irradiation on fisheries water

    International Nuclear Information System (INIS)

    Sarala Selambakkannu; Khomsaton Abu Bakar; Jamaliah Shariff; Suhairi Alimon

    2012-01-01

    This paper studies about water obtained from fish pond of fisheries research centre. Usual water quality parameters such as pH, COD, Turbidity and Ammonia content were analyzed before and after irradiation. Electron beam irradiation was used to irradiate the water with the dose 100 kGy, 200 kGy and 300 kGy. Only high dose was applied on this water as only a limited amount of samples was supplied. All the parameters indicated a slight increase after irradiation except for the ammonia content, which showed a gradual decrease as irradiation dose increases. Sample condition was changed before irradiation in order to obtain more effective results in the following batch. The water sample from fisheries was diluted with distilled water to the ratio of 1:1.This was followed with irradiation at 100 kGy, 200 kGy and 300 kGy. The results still showed an increase in all parameters after irradiation except for ammonia content. For the following irradiation batch, the pH of the sample was adjusted to pH 4 and pH 8 before irradiation. For this sample the irradiation dose selected was only 100 kGy. A higher value of ammonia was observed for the sample with pH 4 after irradiation. Other parameters were almost the same as the first two batches. (author)

  18. Induction of unidirectional π-electron rotations in low-symmetry aromatic ring molecules using two linearly polarized stationary lasers.

    Science.gov (United States)

    Mineo, Hirobumi; Yamaki, Masahiro; Kim, Gap-Sue; Teranishi, Yoshiaki; Lin, Sheng Hsien; Fujimura, Yuichi

    2016-09-29

    A new laser-control scenario of unidirectional π-electron rotations in a low-symmetry aromatic ring molecule having no degenerate excited states is proposed. This scenario is based on dynamic Stark shifts of two relevant excited states using two linearly polarized stationary lasers. Each laser is set to selectively interact with one of the two electronic states, the lower and higher excited states are shifted up and down with the same rate, respectively, and the two excited states become degenerate at their midpoint. One of the four control parameters of the two lasers, i.e. two frequencies and two intensities, determines the values of all the other parameters. The direction of π-electron rotations, clockwise or counter-clockwise rotation, depends on the sign of the relative phase of the two lasers at the initial time. An analytical expression for the time-dependent expectation value of the rotational angular momentum operator is derived using the rotating wave approximation (RWA). The control scenario depends on the initial condition of the electronic states. The control scenario with the ground state as the initial condition was applied to toluene molecules. The derived time-dependent angular momentum consists of a train of unidirectional angular momentum pulses. The validity of the RWA was checked by numerically solving the time-dependent Schrödinger equation. The simulation results suggest an experimental realization of the induction of unidirectional π-electron rotations in low-symmetry aromatic ring molecules without using any intricate quantum-optimal control procedure. This may open up an effective generation method of ring currents and current-induced magnetic fields in biomolecules such as amino acids having aromatic ring molecules for searching their interactions.

  19. Effect of Rashba and Dresselhaus Spin-Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic-Electric Barrier Nanostructure

    Science.gov (United States)

    Yang, Shi-Peng; Lu, Mao-Wang; Huang, Xin-Hong; Tang, Qiang; Zhou, Yong-Long

    2017-04-01

    A theoretical study has been carried out on the spin-dependent electron transport in a hybrid magnetic-electric barrier nanostructure with both Rashba and Dresselhaus spin-orbit couplings, which can be experimentally realized by depositing a ferromagnetic strip and a Schottky metal strip on top of a semiconductor heterostructure. The spin-orbit coupling-dependent transmission coefficient, conductance, and spin polarization are calculated by solving the Schrödinger equation exactly with the help of the transfer-matrix method. We find that both the magnitude and sign of the electron spin polarization vary strongly with the spin-orbit coupling strength. Thus, the degree of electron spin polarization can be manipulated by properly adjusting the spin-orbit coupling strength, and such a nanosystem can be employed as a controllable spin filter for spintronics applications.

  20. Atomic-resolution study of polarity reversal in GaSb grown on Si by scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Vajargah, S.; Woo, S. Y.; Botton, G. A. [Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Brockhouse Institute for Material Research, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Ghanad-Tavakoli, S. [Centre for Emerging Device Technologies, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Kleiman, R. N.; Preston, J. S. [Brockhouse Institute for Material Research, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Centre for Emerging Device Technologies, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2012-11-01

    The atomic-resolved reversal of the polarity across an antiphase boundary (APB) was observed in GaSb films grown on Si by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The investigation of the interface structure at the origin of the APB reveals that coalescence of two domains with Ga-prelayer and Sb-prelayer causes the sublattice reversal. The local strain and lattice rotation distributions of the APB, attributed to the discordant bonding length at the APB with the surrounding GaSb lattice, were further studied using the geometric phase analysis technique. The crystallographic characteristics of the APBs and their interaction with other planar defects were observed with HAADF-STEM. The quantitative agreement between experimental and simulated images confirms the observed polarities in the acquired HAADF-STEM data. The self-annihilation mechanism of the APBs is addressed based on the rotation induced by anti-site bonds and APBs' faceting.

  1. Searches for the Anomalous FCNC Top-Higgs Couplings with Polarized Electron Beam at the LHeC

    Directory of Open Access Journals (Sweden)

    XiaoJuan Wang

    2017-01-01

    Full Text Available We study the single top and Higgs associated production e-p→νet-→νehq-(h→bb- in the top-Higgs FCNC couplings at the LHeC with the electron beam energy of Ee=60 GeV and Ee=120 GeV and combination of a 7 TeV and 50 TeV proton beam. With the possibility of e-beam polarization (pe=0, ±0.6, we distinct the cut-based method and the multivariate analysis- (MVA- based method and compare with the current experimental and theoretical limits. It is shown that the branching ratio Br(t→uh can be probed to 0.113 (0.093%, 0.071 (0.057%, 0.030 (0.022%, and 0.024 (0.019% with the cut-based (MVA-based analysis at (Ep, Ee = (7 TeV, 60 GeV, (Ep, Ee = (7 TeV, 120 GeV, (Ep, Ee = (50 TeV, 60 GeV, and (Ep, Ee = (50 TeV, 120 GeV beam energy and 1σ level. With the possibility of e-beam polarization, the expected limits can be probed down to 0.090 (0.073%, 0.056 (0.045%, 0.024 (0.018%, and 0.019 (0.015%, respectively.

  2. Evaluation of polar organic micropollutants as indicators for wastewater-related coastal water quality impairment

    International Nuclear Information System (INIS)

    Nödler, Karsten; Tsakiri, Maria; Aloupi, Maria; Gatidou, Georgia; Stasinakis, Athanasios S.; Licha, Tobias

    2016-01-01

    Results from coastal water pollution monitoring (Lesvos Island, Greece) are presented. In total, 53 samples were analyzed for 58 polar organic micropollutants such as selected herbicides, biocides, corrosion inhibitors, stimulants, artificial sweeteners, and pharmaceuticals. Main focus is the application of a proposed wastewater indicator quartet (acesulfame, caffeine, valsartan, and valsartan acid) to detect point sources and contamination hot-spots with untreated and treated wastewater. The derived conclusions are compared with the state of knowledge regarding local land use and infrastructure. The artificial sweetener acesulfame and the stimulant caffeine were used as indicators for treated and untreated wastewater, respectively. In case of a contamination with untreated wastewater the concentration ratio of the antihypertensive valsartan and its transformation product valsartan acid was used to further refine the estimation of the residence time of the contamination. The median/maximum concentrations of acesulfame and caffeine were 5.3/178 ng L −1 and 6.1/522 ng L −1 , respectively. Their detection frequency was 100%. Highest concentrations were detected within the urban area of the capital of the island (Mytilene). The indicator quartet in the gulfs of Gera and Kalloni (two semi-enclosed embayments on the island) demonstrated different concentration patterns. A comparatively higher proportion of untreated wastewater was detected in the gulf of Gera, which is in agreement with data on the wastewater infrastructure. The indicator quality of the micropollutants to detect wastewater was compared with electrical conductivity (EC) data. Due to their anthropogenic nature and low detection limits, the micropollutants are superior to EC regarding both sensitivity and selectivity. The concentrations of atrazine, diuron, and isoproturon did not exceed the annual average of their environmental quality standards (EQS) defined by the European Commission. At two

  3. Protons and electrons generated from a 5-{mu}m thick copper tape target irradiated by s-, circularly-, and p-polarized 55-fs laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Advanced Photon Research Center, Japan Atomic Energy Agency, Umeimidai 8-1, Kizu, Kyoto 619-0215 (Japan); National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan)], E-mail: lizhong@sinap.ac.cn; Daido, H. [Advanced Photon Research Center, Japan Atomic Energy Agency, Umeimidai 8-1, Kizu, Kyoto 619-0215 (Japan); Fukumi, A. [Advanced Photon Research Center, Japan Atomic Energy Agency, Umeimidai 8-1, Kizu, Kyoto 619-0215 (Japan); National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Bulanov, S.V.; Sagisaka, A.; Ogura, K.; Yogo, A.; Nishiuchi, M.; Orimo, S.; Mori, M. [Advanced Photon Research Center, Japan Atomic Energy Agency, Umeimidai 8-1, Kizu, Kyoto 619-0215 (Japan); Oishi, Y.; Nayuki, T.; Fujii, T.; Nemoto, K. [Central Research Institute of Electric Power Industry, Nagasaka 2-6-1, Yokosuka, Kanagawa 240-0196 (Japan); Nakamura, S.; Noda, A. [Institute of Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Choi, I.W.; Sung, J.H.; Ko, D.-K.; Lee, J. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2007-10-01

    The angular distribution and energy spectra of energetic protons emitted from a 5-{mu}m thick copper tape target irradiated by p-, circularly-, and s-polarized 55-fs laser pulses with intensity of 8-9x10{sup 18} W/cm{sup 2} are measured. The protons are found in the rear target normal direction while the hot electrons are found in the laser propagation direction. The maximum energy of protons is equal to 1.34 MeV for p-polarized irradiation. The energy spectrum of protons depends strongly on the total amount of electrons but it does not so strongly depend on the electron angular distribution under our experiment conditions. Two-dimensional particle in cell simulations also show the maximal proton acceleration for the p-polarized pulse, less efficient acceleration for the circular polarization, and lower acceleration efficiency in the case of the s-polarization, which is related to the electron acceleration efficiency at the front side of the target.

  4. Development of a LabVIEW-based surface with innovative controls for the control system of the spin-polarized electron test source Photo-CATCH

    Energy Technology Data Exchange (ETDEWEB)

    Roesch, Heidi Ayse; Enders, Joachim; Espig, Martin; Fritzsche, Yuliya; Wagner, Markus [TU Darmstadt, Institut fuer Kernphysik (Germany)

    2016-07-01

    Operations of the spin-polarized electron source of the S-DALINAC will be supported by a photo-cathode activation, test and cleaning system, Photo-CATCH. Besides cathode-performance studies, this teststand produces spin-polarized electron bunches from a GaAs photo-cathode that are then transported, manipulated, and characterized by devices in a low-energy beam line. To set and monitor the various components of the beamline, a control system was developed, based on the EPICS framework. As interfaces, LabVIEW was used in combination with a gamepad as a controlling device.

  5. Semiannual Variation in the Number of Energetic Electron Precipitation Events Recorded in the Polar Atmosphere

    Science.gov (United States)

    Stozhkov, Y. Ivanovich; Makhmutov, V. S.; Bazilevskaya, G. A.; Krainev, M. B.; Svirkhevskaya, A. K.; Svirzhevsky, N. S.; Mailin, S. Y.

    2003-07-01

    The analysis of the monthly numbers of Electron Precipitation Events (EPEs) recorded at Olenya station (Murmansk region) during 1970-1987, shows the semiannual variation with two maxima centered on April and September. We analyse the interplanetary plasma and geomagnetic indices data sets associated with the EPEs recorded. The possible relationship of this variation and RusselMcPherron, Equino ctial and Axial effects is discussed.

  6. Relaxation of electron energy in the polar semiconductor double quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Khás, Zdeněk; Zdeněk, Petr; Čerňanský, Marian; Lin, C. Y.

    2002-01-01

    Roč. 314, - (2002), s. 490-493 ISSN 0921-4526 R&D Projects: GA AV ČR IAA1010113; GA MŠk OC P5.20 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum dots * relaxation * double quantum dots * electron-photon interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.609, year: 2002

  7. Triply differential cross section and polarization correlations in electron bremsstrahlung emission

    International Nuclear Information System (INIS)

    Shaffer, C.D.; Tong, X.; Pratt, R.H.

    1996-01-01

    We report results from a reformulation of the relativistic bremsstrahlung code of Tseng and Pratt. This permits calculation of the triply differential cross section d 3 σ of bremsstrahlung (electron-photon coincidence measurements) in electron scattering on neutral atoms and ions. The cross section d 3 σ is viewed as a more sensitive test of the theory, and predictions are needed for comparison with the more systematic and accurate experiments which are now being undertaken. The reformulation represents an extension of the previous code (which only calculated the doubly differential cross section), again utilizing partial-wave and multipole expansions in a screened potential within the independent particle approximation, but differently organizing their summation. The best previous predictions for the triply differential cross sections are due to Elwert and Haug, under assumptions less restrictive than Born approximation yet valid for high-Z elements only at very high incident electron energy. While we confirm differences from the Elwert-Haug results, we do not see a systematic improvement in the agreement with the limited previous experimental data, and further experiments are awaited with interest. copyright 1996 The American Physical Society

  8. A Measurement of the Effective Electron Neutral Current Coupling Parameters from Polarized Bhabha Scattering at the Z0 Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Langston, Matthew D

    2003-07-15

    The effective electron neutral current coupling parameters, {bar g}{sub V}{sup 3} and {bar g}{sub A}{sup c}, have been measured from analyzing 43,222 polarized Bhabha scattered events (e{sup +}e{sup -} {yields} e{sup +}e{sup -}) using the SLAC Large Detector (SLD) experiment at the Stanford Linear Accelerator Center (SLAC). The SLAC Linear Collider (SLC) produced the Bhabha scattered events by colliding polarized electrons, with an average polarization of 74%, with unpolarized positrons at an average center-of-mass energy of 91.25 GeV. The analysis used the entire SLD data sample collected between 1994 and 1998 (the last year the SLD detector collected data). The results are {bar g}{sub V}{sup e} = -0.0469 {+-} 0.0024 (stat.) {+-} 0.0004 (sys.); {bar g}{sub A}{sup e} = -0.5038 {+-} 0.0010 (stat.) {+-} 0.0043 (sys.). All Bhabha scattered events within the angular acceptance of the SLD calorimeter subsystems were used in this analysis, including both small-angle events (28 mrad. {le} theta {le} 68 mrad.) measured by the Silicon/Tungsten Luminosity Monitor (LUM), and large angle events (0 {le} |cos{theta}| {le} 0.9655) measured by the Liquid Argon Calorimeter (LAC). Using all of the data in this manner allows for the high-precision measurement of the luminosity provided by the LUM to constrain the uncertainty on {bar g}{sub V}{sup e} and {bar g}{sub A}{sup e}. The measured integrated luminosity for the combined 1993 through 1998 SLD data sample is L{sub Integrated} = 19,247 {+-} 17 (stat.) {+-} 146 (sys.) nb{sup -1}. In contrast with other SLD precision measurements of the effective weak mixing angle, which are sensitive to the ratio {bar g}{sub V}{sup e}/{bar g}{sub A}{sup e}, this result independently determines {bar g}{sub V}{sup 3} and {bar g}{sub A}{sup c}. The analysis techniques to measure {bar g}{sub V}{sup 3} and {bar g}{sub A}{sup c} are described, and the results are compared with other SLD measurements as well as other experiments.

  9. Passive sampling for target and nontarget analyses of moderately polar and nonpolar substances in water.

    Science.gov (United States)

    Allan, Ian J; Harman, Christopher; Ranneklev, Sissel B; Thomas, Kevin V; Grung, Merete

    2013-08-01

    The applicability of silicone rubber and low-density polyethylene (LDPE) as passive sampling materials for target and nontarget analyses of moderately polar and nonpolar substances was assessed through a field deployment of samplers along a small, polluted stream in Oslo, Norway. Silicone and LDPE samplers of identical surface area (but different volumes) were deployed at 6 sites in the River Alna for 49 d. Quantitative target analysis by gas chromatography-mass spectrometry (quadrupole, single-ion monitoring mode) demonstrated that masses of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine compounds absorbed in the 2 polymeric materials were consistent with the current understanding of the control and mode of accumulation in these sampler materials. Some deviation was observed for decabromodiphenyl ether (BDE-209) and may be linked to the large molecular size of this substance, resulting in lower diffusivity in the LDPE. Target and nontarget analyses with gas chromatography coupled to high resolution time-of-flight mass spectrometry allowed the identification of a wide range of chemicals, including organophosphate compounds (OPCs) and musk compounds (galaxolide and tonalid). Semiquantitative analysis revealed enhanced quantities of the OPCs in silicone material, indicating some limitation in the absorption and diffusion of these substances in LDPE. Overall, silicone allows nontarget screening analysis for compounds with a wider range of log octanol-water partition coefficient values than what can be achieved with LDPE. Copyright © 2013 SETAC.

  10. The polar warhead of a TRIM24 bromodomain inhibitor rearranges a water-mediated interaction network.

    Science.gov (United States)

    Liu, Jiuyang; Li, Fudong; Bao, Hongyu; Jiang, Yiyang; Zhang, Shuya; Ma, Rongsheng; Gao, Jia; Wu, Jihui; Ruan, Ke

    2017-04-01

    Tripartite motif-containing protein 24 (TRIM24) is closely correlated with multiple cancers, and a recent study demonstrated that the bromodomain of TRIM24 is essential for the proliferation of lethal castration-resistant prostate cancer. Here, we identify three new inhibitors of the TRIM24 bromodomain using NMR fragment-based screening. The crystal structures of two new inhibitors in complex with the TRIM24 bromodomain reveal that the water-bridged interaction network is conserved in the same fashion as those for known benzoimidazolone inhibitors. Interestingly, the polar substitution on the warhead of one new inhibitor pulls the whole ligand approximately 2 Å into the inner side pocket of the TRIM24 bromodomain, and thus exhibits a binding mode significantly different from other known bromodomain ligands. This mode provides a useful handle for further hit-to-lead evolution toward novel inhibitors of the TRIM24 bromodomain. Structural data are available in the PDB under the accession numbers 5H1T, 5H1U, and 5H1V. © 2017 Federation of European Biochemical Societies.

  11. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells.

    Science.gov (United States)

    Pinto, David; Coradin, Thibaud; Laberty-Robert, Christel

    2018-04-01

    In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between -0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (-0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Polarization of electron beams in high energy storage rings. Pt. 1

    International Nuclear Information System (INIS)

    Mane, S.R.

    1992-01-01

    The spin resonances in high energy electron storage rings are calculated using perturbation theory, for various model storage rings, and the results are compared against analytical formulas (in the case of higher order synchrotron resonances), to elucidate the convergence of the perturbation series. A new analytical formula for synchrotron resonances centered on an integer is also derived, because it is shown that the older formula contains approximations not always valid in modern storage rings. The perturbation series is shown to converge and to agree with the analytical formulas, and the number of terms required for convergence is estimated. Some other pedagogical results are also presented. (orig.)

  13. Produced Water Treatment Using the Switchable Polarity Solvent Forward Osmosis (SPS FO) Desalination Process: Preliminary Engineering Design Basis

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel; Adhikari, Birendra; Orme, Christopher; Wilson, Aaron

    2016-05-01

    Switchable Polarity Solvent Forward Osmosis (SPS FO) is a semi-permeable membrane-based water treatment technology. INL is currently advancing SPS FO technology such that a prototype unit can be designed and demonstrated for the purification of produced water from oil and gas production operations. The SPS FO prototype unit will used the thermal energy in the produced water as a source of process heat, thereby reducing the external process energy demands. Treatment of the produced water stream will reduce the volume of saline wastewater requiring disposal via injection, an activity that is correlated with undesirable seismic events, as well as generate a purified product water stream with potential beneficial uses. This paper summarizes experimental data that has been collected in support of the SPS FO scale-up effort, and describes how this data will be used in the sizing of SPS FO process equipment. An estimate of produced water treatment costs using the SPS FO process is also provided.

  14. Ab Initio Model for Vibrational Excitation of Polar Molecules by Low-Energy Electrons

    Science.gov (United States)

    Vanroose, W. I.; Rescigno, T. N.; McCurdy, C. W.

    2003-05-01

    Vibrational excitation of the hydrogen halides by electron impact has been a subject of continued interest ever since the first observations of pronounced threshold peaks in the cross sections by Rohr and Linder twenty five years ago. Two semi-empirical models have been developed to explain these features, one a virtual state model by Gauyacq and Herzenberg based on effective-range theory, the other by Domcke and co-workers based on a non-local Feshbach resonance model. We will show that a non-empirical model can be formulated which captures the essential features of the observed cross sections. The only parameters needed to implement the calculations are the potential energy curve of the negative ion in the region where it is bound, the potential curve of the neutral target and its R-dependent dipole moment. We use an effective range theory for the nuclear dynamics, which can be implemented without an expansion in target vibrational states, instead of non-local equations derived from Feshbach partitioning. Another new element is the use of a dipole coupled partial-wave model to predict the analytic continuation of the negative ion potential curve into the continuum. We will illustrate the new model with results for electron-HCl scattering.

  15. CERN: TeV Electron-Positron Linear Collider Studies; More polarization in LEP

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The world's highest energy electronpositron collider - CERN's LEP, with a circumference of 27 kilometres - will also be the last such machine to be built as a storage ring. With interest growing in electronpositron physics at energies beyond those attainable at LEP, the next generation of electron-positron colliders must be linear if prohibitive synchrotron radiation power losses are to be avoided. Very high energy linear colliders present many technical challenges but mastery of SLC at Stanford, the world's first electron-positron linear collider, is encouraging. The physics issues of a linear collider have been examined by the international community in ICFA workshops in Saariselka, Finland (September 1991) and most recently in Hawaii (April 1993). The emerging consensus is for a collider with an initial collision energy around 500 GeV, and which can be upgraded to over 1 TeV. A range of very different collider designs are being studied at Laboratories in Europe, the US, Japan and Russia. Following the report of the 1987 CERN Long Range Planning Committee chaired by Carlo Rubbia, studies for a 2 TeV linear collider have progressed at CERN alongside work towards the Laboratory's initial objective - the LHC high energy proton-proton collider in the LEP tunnel

  16. Quantum entanglement in manganese(II) hexakisimidazole nitrate: on electronic structure imaging - A polarized neutron diffraction and DFT study

    Science.gov (United States)

    Wallace, Warren A.

    2016-04-01

    Quantum entanglement has been visualized for the first time, in view of the spin density distribution and electronic structure for manganese in manganese(II)hexakisimidazole nitrate. Using polarized neutron diffraction and density functional theory modelling we have found for the complex, which crystallizes in the R3¯ spacegroup, a = b = 12.4898(3) Å, c = 14.5526(4) Å, α = γ = 90°, β = 120°, Z = 3, that spatially antisymmetric and spatially symmetric shaped regions of negative spin density, in the spin density map for manganese, are a result of quantum entanglement of the high spin d5 configuration due to dative imidazole- manganese π- donation and σ-bonding interactions respectively. We have found leakage of the entangled states for manganese observed as regions of positive spin density with spherical (3.758(2) μB) and non-spherical (1.242(3) μB) contributions. Our results, which are supportive of Einstein's theory of general relativity, provide evidence for the existence of a black hole spin density distribution at the origin of an electronic structure and also address the paradoxical views of entanglement and quantum mechanics. We have also found the complex, which is an insulator, to be suitable for spintronic studies.

  17. N-polar GaN/AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistor formed on sapphire substrate with minimal step bunching

    Science.gov (United States)

    Prasertsuk, Kiattiwut; Tanikawa, Tomoyuki; Kimura, Takeshi; Kuboya, Shigeyuki; Suemitsu, Tetsuya; Matsuoka, Takashi

    2018-01-01

    The metal-insulator-semiconductor (MIS) gate N-polar GaN/AlGaN/GaN high-electron-mobility transistor (HEMT) on a (0001) sapphire substrate, which can be expected to operate with lower on-resistance and more easily work on the pinch-off operation than an N-polar AlGaN/GaN HEMT, was fabricated. For suppressing the step bunching and hillocks peculiar in the N-polar growth, a sapphire substrate with an off-cut angle as small as 0.8° was introduced and an N-polar GaN/AlGaN/GaN HEMT without the step bunching was firstly obtained by optimizing the growth conditions. The previously reported anisotropy of transconductance related to the step was eliminated. The pinch-off operation was also realized. These results indicate that this device is promising.

  18. Optimization of extraction of phenolic compounds from flax shives by pressurized low-polarity water.

    Science.gov (United States)

    Kim, Jin-Woo; Mazza, G

    2006-10-04

    Pressurized low-polarity water (PLPW) extraction of phenolic compounds from flax shive was investigated using statistically based optimization and the "one-factor-at-a-time" method. Extraction variables examined using central composite design (CCD) included temperature, flow rate, and NaOH concentration of the extracting water. Extraction of phenolic compounds including p-hydroxybenzaldehyde, vanillic acid, syringic acid, vanillin, acetovanillone, and feruric acid was affected by temperature and NaOH concentration; and extraction of all phenolic compounds, except ferulic acid, increased with temperature and NaOH concentration of the extracting water. Flow rate had little effect on concentration of phenolic compounds at equilibrium, but the extraction rate at the early phase was higher for higher flow rates. The mechanism of PLPW extraction of flax shive phenolics was also investigated using a two-site kinetic model and a thermodynamic model. To determine the extraction mechanism, flow rate was varied from 0.3 to 4.0 mL/min while temperature and NaOH concentration were fixed at 180 degrees C and 0.47 M, respectively. The flow rate tests showed the extraction rates of total phenolic (TP) compounds increased with flow rate and can be described by a thermodynamic model. The results from the thermodynamic model demonstrated that a K(D) value of 30 agreed with the experimental data in the flow rate range of 0.3-4.0 mL/min. When the effect of the three independent variables was evaluated simultaneously using CCD, a maximum TP concentration of 5.8 g/kg of dry flax shive (DFS) was predicted from the combination of a high temperature (230.5 degrees C), a high initial concentration of NaOH (0.63 M), and a low flow rate (0.7 mL/min). Maximum TP concentration of 5.7 g/kg of DFS was obtained from extraction conditions of 180 degrees C, 0.3 or 0.5 mL/min, and 0.47 M NaOH at equilibrium. A second-order regression model generated by CCD predicted a maximum TP concentration of 5.8 g

  19. Effect of the dynamic core-electron polarization of CO molecules on high-order harmonic generation

    Science.gov (United States)

    Le, Cam-Tu; Hoang, Van-Hung; Tran, Lan-Phuong; Le, Van-Hoang

    2018-04-01

    We theoretically investigate the influence of dynamic core-electron polarization (DCeP) of CO molecules on high-order harmonic generation (HHG) by solving the time-dependent Schrödinger equation (TDSE) within the single-active-electron (SAE) approximation. The effect of DCeP is shown to depend strongly on the molecular orientation angle θ . Particularly, compared to the calculations without DCeP, the inclusion of this effect gives rise to an enhancement of harmonic intensity at θ =0° when the electric field aligns along the O-C direction and to a suppression at θ =180° when the field heads in the opposite direction. Meanwhile, when the electric field is perpendicular to the molecular axis, the effect is almost insignificant. The phenomenon is thought to be linked to the ionization process. However, this picture is not completed yet. By solving the TDSE within the SAE approximation and conducting a classical simulation, we are able to obtain the ionization probability as well as the ionization rate and prove that HHG, in fact, receives a major contribution from electrons ionized at only a certain time interval, rather than throughout the whole pulse propagation. Including DCeP, the variation of the ionization rate in this interval highly correlates to that of the HHG intensity. To better demonstrate the origin of this manifestation, we also show the alternation DCeP makes on the effective potential that corresponds to the observed change in the ionization rate and consequently the HHG intensity. Our results confirm previous studies' observations and, more importantly, provide the missing physical explanation. With the role of DCeP now better understood for the entire range of the orientation angle, this effect can be handled more conveniently for calculating the HHG of other targets.

  20. PF2fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps.

    Directory of Open Access Journals (Sweden)

    Radhakrishna Bettadapura

    2015-10-01

    Full Text Available There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data, and 3D reconstructed cryo-electron microscopy (3D EM maps (albeit at coarser resolution of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF(2 fit (Polar Fast Fourier Fitting for the best possible structural alignment of atomistic structures with 3D EM. While PF(2 fit enables only a rigid, six dimensional (6D alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF(2 fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF(2 fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF(2 fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF(2 fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search.

  1. Transverse electron polarization in the neutron decay - Direct search for scalar and tensor couplings in weak interaction

    Science.gov (United States)

    Bodek, Kazimierz

    2012-09-01

    The Standard Model (SM) predictions of T-violation for weak decays of systems built up of u and d quarks are by 7 to 10 orders of magnitude lower than the experimental accuracies attainable at present. It is a general presumption that time reversal phenomena are caused by a tiny admixture of exotic interaction terms. Therefore, weak decays provide a favorable testing ground in a search for such feeble forces. Physics with very slow, polarized neutrons has a great potential in this respect. An experiment seeking for small deviations from the SM in two observables, N and R, that are for the first time addressed experimentally in free neutron decay and that are exclusively sensitive to real and imaginary parts of the same linear combination of the scalar and tensor interaction coupling constants has been completed at the Paul Scherrer Institute, Villigen, Switzerland. The analysis of the experimental data has been completed recently leading to, among others, the best direct constraint for the imaginary part of the R-parity violating MSSM contribution. The success of the applied technique results in a new project devoted to the simultaneous measurement of seven correlation coefficients: H, L, N, R, S, U and V. Five of them (H, L, S, U and V) have never before been measured in weak decays. Such a systematic exploration of the transverse electron polarization will generate from the neutron decay alone a complete set of constraints for the real and imaginary parts of the weak scalar and tensor interactions on the level of 5 × 10-4 or better.

  2. Molecular diffusion of stable water isotopes in polar firn as a proxy for past temperatures

    Science.gov (United States)

    Holme, Christian; Gkinis, Vasileios; Vinther, Bo M.

    2018-03-01

    Polar precipitation archived in ice caps contains information on past temperature conditions. Such information can be retrieved by measuring the water isotopic signals of δ18O and δD in ice cores. These signals have been attenuated during densification due to molecular diffusion in the firn column, where the magnitude of the diffusion is isotopologue specific and temperature dependent. By utilizing the differential diffusion signal, dual isotope measurements of δ18O and δD enable multiple temperature reconstruction techniques. This study assesses how well six different methods can be used to reconstruct past surface temperatures from the diffusion-based temperature proxies. Two of the methods are based on the single diffusion lengths of δ18O and δD , three of the methods employ the differential diffusion signal, while the last uses the ratio between the single diffusion lengths. All techniques are tested on synthetic data in order to evaluate their accuracy and precision. We perform a benchmark test to thirteen high resolution Holocene data sets from Greenland and Antarctica, which represent a broad range of mean annual surface temperatures and accumulation rates. Based on the benchmark test, we comment on the accuracy and precision of the methods. Both the benchmark test and the synthetic data test demonstrate that the most precise reconstructions are obtained when using the single isotope diffusion lengths, with precisions of approximately 1.0 °C . In the benchmark test, the single isotope diffusion lengths are also found to reconstruct consistent temperatures with a root-mean-square-deviation of 0.7 °C . The techniques employing the differential diffusion signals are more uncertain, where the most precise method has a precision of 1.9 °C . The diffusion length ratio method is the least precise with a precision of 13.7 °C . The absolute temperature estimates from this method are also shown to be highly sensitive to the choice of fractionation factor

  3. Mass spectral characterisation of a polar, esterified fraction of an organic extract of an oil sands process water.

    Science.gov (United States)

    Rowland, S J; Pereira, A S; Martin, J W; Scarlett, A G; West, C E; Lengger, S K; Wilde, M J; Pureveen, J; Tegelaar, E W; Frank, R A; Hewitt, L M

    2014-11-15

    Characterising complex mixtures of organic compounds in polar fractions of heavy petroleum is challenging, but is important for pollution studies and for exploration and production geochemistry. Oil sands process-affected water (OSPW) stored in large tailings ponds by Canadian oil sands industries contains such mixtures. A polar OSPW fraction was obtained by silver ion solid-phase extraction with methanol elution. This was examined by numerous methods, including electrospray ionisation (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) and ultra-high-pressure liquid chromatography (uHPLC)/Orbitrap MS, in multiple ionisation and MS/MS modes. Compounds were also synthesised for comparison. The major ESI ionisable compounds detected (+ion mode) were C15-28 SO3 species with 3-7 double bond equivalents (DBE) and C27-28 SO5 species with 5 DBE. ESI-MS/MS collision-induced losses were due to water, methanol, water plus methanol and water plus methyl formate, typical of methyl esters of hydroxy acids. Once the fraction was re-saponified, species originally detected by positive ion MS, could be detected only by negative ion MS, consistent with their assignment as sulphur-containing hydroxy carboxylic acids. The free acid of a keto dibenzothiophene alkanoic acid was added to an unesterified acid extract of OSPW in known concentrations as a putative internal standard, but attempted quantification in this way proved unreliable. The results suggest the more polar acidic organic SO3 constituents of OSPW include C15-28  S-containing, alicyclic and aromatic hydroxy carboxylic acids. SO5 species are possibly sulphone analogues of these. The origin of such compounds is probably via further biotransformation (hydroxylation) of the related S-containing carboxylic acids identified previously in a less polar OSPW fraction. The environmental risks, corrosivity and oil flow assurance effects should be easier to assess, given that partial structures are now known

  4. [Scanning electron microscopy and light microscopy under polarized light of a submandibular salivary gland calculus].

    Science.gov (United States)

    Traini, T; Murmura, G; Giammaria, G; Ciavarelli, L; Caputi, S

    2001-05-01

    The salivary calculus is an ancient pathologic condition, called sublingual stone by Hyppocrates. It is well-defined from a anatomo-pathologic, diagnostic and topographic viewpoint, though some pathogenesis-related doubts still exist. This work aims at relating the micro-morpho-structural aspect of a salivary calculus of remarkable dimensions with the current calculogenetic hypotheses. A 1.1 g salivary calculus removed from the initial section of Wrthon s duct in the right-hand submandibular gland of a 42 year old male has been studied. Following the fixation in 4% buffered formalin and the inclusion in resin, it was serially sectioned in 15-20 micron slices. Some sections were coloured with toluidine blue O and acid fuchsin. The exeresis of the calculus was carried out intraorally, with marsupialization under local anesthesia. The analysis was performed using a SEM with backscattered electrons and a polarised and transmitted light microscope. The investigations have outlined the presence of various organic cores and a concentric, stratiform architecture interrupted by radial elements. The formation of this calculus may be due to mixed secondary lithiasis resulting from the formation of colloids and crystalloids.

  5. Polar Organic Compounds in Surface Waters Collected Near Lead-Zinc Mine and Milling Operations in Missouri

    Science.gov (United States)

    Rostad, C. E.; Schmitt, C. J.; Schumacher, J. G.; Leiker, T. J.

    2007-12-01

    Surface-water samples were collected near a lead mine and mill tailings about 70 miles southwest of St. Louis, Missouri, during the summer of 2006. The purpose of this sampling was to determine if polar organic compounds were present that could be a cause of documented negative impacts to biota downstream. Water samples contained relatively high concentrations of dissolved organic carbon for surface waters (greater than 20 mg/L), but were colorless, which precluded naturally occurring aquatic humic or fulvic acids. Previous analysis indicated that samples were devoid of pesticides and acid/base/neutral extractable semi-volatile organic compounds, such as polycyclic aromatic hydrocarbons. After isolation by three different types of solid phase extraction, samples were analyzed by electrospray ionization/mass spectrometry. Polar organic compounds commonly used in the milling process, such as alkyl xanthates, were not found; however, xanthate degradation products were detected. Most of the polar organic compounds identified contained sulfonate groups, which are characteristic of some of the reagents used in the milling process. Sulfonate compounds may have low sorption onto soil or sediments and be mobile in the aqueous environment.

  6. Epitaxial growth of ZnO Nanodisks with large exposed polar facets on nanowire arrays for promoting photoelectrochemical water splitting.

    Science.gov (United States)

    Chen, Haining; Wei, Zhanhua; Yan, Keyou; Bai, Yang; Zhu, Zonglong; Zhang, Teng; Yang, Shihe

    2014-11-01

    Single-crystalline and branched 1D arrays, ZnO nanowires/nanodisks (NWs/NDs) arrays, are fabricated to significantly enhance the performance of photoelectrochemical (PEC) water splitting. The epitaxial growth of the ZnO NDs with large exposed polar facets on ZnO NWs exhibits a laminated structure, which dramatically increases the light scattering capacity of the NWs arrays, especially in the wavelength region around 400 nm. The ND branching of the 1D arrays in the epitaxial fashion not only increase surface area and light utilization, but also support fast charge transport, leading to the considerable increase of photocurrent. Moreover, the tiny size NDs can facilitate charge separation and reduce charge recombination, while the large exposed polar facets of NDs reduce the external potential bias needed for water splitting. These advantages land the ZnO NWs/NDs arrays a four times higher power conversion efficiency than the ZnO NWs arrays. By sensitizing the ZnO NWs/NDs with CdS and CdSe quantum dots, the PEC performance can be further improved. This work advocates a trunk/leaf in forest concept for the single-crystalline NWs/NDs in array with enlarged exposure of polar facets, which opens the way for optimizing light harvesting and charge separation and transport, and thus the PEC water splitting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Evidence for Water Ie on the Moon: Results for Anomalous Polar Craters from the LRO Mini-RF Imaging Radar

    Science.gov (United States)

    Spudis, P.D.; Bussey, D. B. J.; Baloga, S. M.; Cahill, J. T. S.; Glaze, L. S.; Patterson, G. W.; Raney, R. K.; Thompson, T. W.; Thomson, B. J.; Ustinov, E. A.

    2013-01-01

    The Mini-RF radar instrument on the Lunar Reconnaissance Orbiter spacecraft mapped both lunar poles in two different RF wavelengths (complete mapping at 12.6 cm S-band and partial mapping at 4.2 cm X-band) in two look directions, removing much of the ambiguity of previous Earth- and spacecraft-based radar mapping of the Moon's polar regions. The poles are typical highland terrain, showing expected values of radar cross section (albedo) and circular polarization ratio (CPR). Most fresh craters display high values of CPR in and outside the crater rim; the pattern of these CPR distributions is consistent with high levels of wavelength-scale surface roughness associated with the presence of block fields, impact melt flows, and fallback breccia. A different class of polar crater exhibits high CPR only in their interiors, interiors that are both permanently dark and very cold (less than 100 K). Application of scattering models developed previously suggests that these anomalously high-CPR deposits exhibit behavior consistent with the presence of water ice. If this interpretation is correct, then both poles may contain several hundred million tons of water in the form of relatively "clean" ice, all within the upper couple of meters of the lunar surface. The existence of significant water ice deposits enables both long-term human habitation of the Moon and the creation of a permanent cislunar space transportation system based upon the harvest and use of lunar propellant.

  8. Evidence for Water Ice on the Moon: Results for Anomalous Polar Craters from the LRO Mini-RF Imaging Radar

    Science.gov (United States)

    Spudis, P. D.; Bussey, D. B. J.; Baloga, S. M.; Cahill, J. T. S.; Glaze, L. S.; Patterson, G. W.; Raney, R. K.; Thompson, T. W.; Thomson, B. J.; Ustinov, E. A.

    2013-01-01

    The Mini-RF radar instrument on the Lunar Reconnaissance Orbiter spacecraft mapped both lunar poles in two different RF wavelengths (complete mapping at 12.6 cm S-band and partial mapping at 4.2 cm X-band) in two look directions, removing much of the ambiguity of previous Earth- and spacecraft-based radar mapping of the Moon's polar regions. The poles are typical highland terrain, showing expected values of radar cross section (albedo) and circular polarization ratio (CPR). Most fresh craters display high values of CPR in and outside the crater rim; the pattern of these CPR distributions is consistent with high levels of wavelength-scale surface roughness associated with the presence of block fields, impact melt flows, and fallback breccia. A different class of polar crater exhibits high CPR only in their interiors, interiors that are both permanently dark and very cold (less than 100 K). Application of scattering models developed previously suggests that these anomalously high-CPR deposits exhibit behavior consistent with the presence of water ice. If this interpretation is correct, then both poles may contain several hundred million tons of water in the form of relatively "clean" ice, all within the upper couple of meters of the lunar surface. The existence of significant water ice deposits enables both long-term human habitation of the Moon and the creation of a permanent cislunar space transportation system based upon the harvest and use of lunar propellant.

  9. Multimission empirical ocean tide modeling for shallow waters and polar seas

    Science.gov (United States)

    Cheng, Yongcun; Andersen, Ole Baltazar

    2011-11-01

    A new global ocean tide model named DTU10 (developed at Technical University of Denmark) representing all major diurnal and semidiurnal tidal constituents is proposed based on an empirical correction to the global tide model FES2004 (Finite Element Solutions), with residual tides determined using the response method. The improvements are achieved by introducing 4 years of TOPEX-Jason 1 interleaved mission into existing 18 years (1993-2010) of primary joint TOPEX, Jason 1, and Jason 2 mission time series. Hereby the spatial distribution of observations are doubled and satellite altimetry should be able to recover twice the spatial variations of the tidal signal which is particularly important in shallow waters where the spatial scale of the tidal signal is scaled down. Outside the ±66° parallel combined Envisat, GEOSAT Follow-On, and ERS-2, data sets have been included to solve for the tides up to the ±82° parallel. A new approach to removing the annual sea level variations prior to estimating the residual tides significantly improved tidal determination of diurnal constituents from the Sun-synchronous satellites (e.g., ERS-2 and Envisat) in the polar seas. Extensive evaluations with six tide gauge sets show that the new tide model fits the tide gauge measurements favorably to other state of the art global ocean tide models in both the deep and shallow waters, especially in the Arctic Ocean and the Southern Ocean. One example is a comparison with 207 tide gauge data in the East Asian marginal seas where the root-mean-square agreement improved by 35.12%, 22.61%, 27.07%, and 22.65% (M2, S2, K1, and O1) for the DTU10 tide model compared with the FES2004 tide model. A similar comparison in the Arctic Ocean with 151 gauge data improved by 9.93%, 0.34%, 7.46%, and 9.52% for the M2, S2, K1, and O1 constituents, respectively.

  10. Development of On-Demand Non-Polar and Semi-Polar Bulk Gallium Nitride Materials for Next Generation Electronic and Optoelectrode Devices

    National Research Council Canada - National Science Library

    Fini, P

    2007-01-01

    ...) wafers that will act as seeds for subsequent GaN boule growth in Phase II. Inlustra developed non-polar a-plane and m-plane GaN films with smooth surfaces and minimal wafer bowing and cracking...

  11. High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert.

    Science.gov (United States)

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R; Vincent, Warwick F

    2013-01-01

    In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.

  12. High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert.

    Directory of Open Access Journals (Sweden)

    Blaire Steven

    Full Text Available In this study we report the bacterial diversity of biological soil crusts (biocrusts inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N. Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.

  13. Controlling electron quantum paths for generation of circularly polarized high-order harmonics by H2+ subject to tailored (ω , 2 ω ) counter-rotating laser fields

    Science.gov (United States)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2018-04-01

    Recently, studies of high-order harmonics (HHG) from atoms driven by bichromatic counter-rotating circularly polarized laser fields as a source of coherent circularly polarized extreme ultraviolet (XUV) and soft-x-ray beams in a tabletop-scale setup have received considerable attention. Here, we demonstrate the ability to control the electron recollisions giving three returns per one cycle of the fundamental frequency ω by using tailored bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields with a molecular target. The full control of the electronic pathway is first analyzed by a classical trajectory analysis and then extended to a detailed quantum study of H2+ molecules in bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields. The radiation spectrum contains doublets of left- and right-circularly polarized harmonics in the XUV ranges. We study in detail the below-, near-, and above-threshold harmonic regions and describe how excited-state resonances alter the ellipticity and phase of the generated harmonic peaks.

  14. Long-distance swimming by polar bears (Ursus maritimus) of the southern Beaufort Sea during years of extensive open water

    Science.gov (United States)

    2014-01-01

    Polar bears (Ursus maritimus Phipps, 1774) depend on sea ice for catching marine mammal prey. Recent sea-ice declines have been linked to reductions in body condition, survival, and population size. Reduced foraging opportunity is hypothesized to be the primary cause of sea-ice-linked declines, but the costs of travel through a deteriorated sea-ice environment also may be a factor. We used movement data from 52 adult female polar bears wearing Global Positioning System (GPS) collars, including some with dependent young, to document long-distance swimming (>50 km) by polar bears in the southern Beaufort and Chukchi seas. During 6 years (2004-2009), we identified 50 long-distance swims by 20 bears. Swim duration and distance ranged from 0.7 to 9.7 days (mean = 3.4 days) and 53.7 to 687.1 km (mean = 154.2 km), respectively. Frequency of swimming appeared to increase over the course of the study. We show that adult female polar bears and their cubs are capable of swimming long distances during periods when extensive areas of open water are present. However, long-distance swimming appears to have higher energetic demands than moving over sea ice. Our observations suggest long-distance swimming is a behavioral response to declining summer sea-ice conditions.

  15. Applying the polarity rapid assessment method to characterize nitrosamine precursors and to understand their removal by drinking water treatment processes.

    Science.gov (United States)

    Liao, Xiaobin; Bei, Er; Li, Shixiang; Ouyang, Yueying; Wang, Jun; Chen, Chao; Zhang, Xiaojian; Krasner, Stuart W; Suffet, I H Mel

    2015-12-15

    Some N-nitrosamines (NAs) have been identified as emerging disinfection by-products during water treatment. Thus, it is essential to understand the characteristics of the NA precursors. In this study, the polarity rapid assessment method (PRAM) and the classical resin fractionation method were studied as methods to fractionate the NA precursors during drinking water treatment. The results showed that PRAM has much higher selectivity for NA precursors than the resin approach. The normalized N-nitrosodimethylamine formation potential (NDMA FP) and N-nitrosodiethylamine (NDEA) FP of four resin fractions was at the same level as the average yield of the bulk organic matter whereas that of the cationic fraction by PRAM showed 50 times the average. Thus, the cationic fraction was shown to be the most important NDMA precursor contributor. The PRAM method also helped understand which portions of the NA precursor were removed by different water treatment processes. Activated carbon (AC) adsorption removed over 90% of the non-polar PRAM fraction (that sorbs onto the C18 solid phase extraction [SPE] cartridge) of NDMA and NDEA precursors. Bio-treatment removed 80-90% of the cationic fraction of PRAM (that is retained on the cation exchange SPE cartridge) and 40-60% of the non-cationic fractions. Ozonation removed 50-60% of the non-polar PRAM fraction of NA precursors and transformed part of them into the polar fraction. Coagulation and sedimentation had very limited removal of various PRAM fractions of NA precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Probing Anomalous WW γ and WWZ Couplings with Polarized Electron Beam at the LHeC and FCC-Ep Collider

    CERN Document Server

    Turk Cakir, I; Tasci, A T; Cakir, O

    2016-01-01

    We study the anomalous WWγ and WWZ couplings by calculating total cross sections of two processes at the LHeC with electron beam energy Ee=140 GeV and the proton beam energy Ep=7 TeV, and at the FCC-ep collider with the polarized electron beam energy Ee=80 GeV and the proton beam energy Ep=50 TeV. At the LHeC with electron beam polarization, we obtain the results for the difference of upper and lower bounds as (0.975, 0.118) and (0.285, 0.009) for the anomalous (∆κγ, λγ) and (∆κz, λz) couplings, respectively. As for FCC-ep collider, these bounds are obtained as (1.101, 0.065) and (0.320, 0.002) at an integrated luminosity of Lint=100 fb-1.

  17. Electron nonelastic scattering by confined and interface polar optical phonons in a modulation-doped AlGaAs/GaAs/AlGaAs quantum well

    CERN Document Server

    Pozela, K

    2001-01-01

    The calculations of electron scattering rates by polar optical (PO) phonons in an AlGaAs/GaAs/AlGaAs quantum well (QW) with a different width and doping level are performed. The electron-PO-phonon scattering mechanisms which are responsible for the alternate dependence of electron mobility on a QW width, as well as for the decrease of conductivity in the QW with increasing electron concentration are determined. It is shown that the degeneration of electron gas decreases the electron scattering rate by PO-phonon emission and increases the scattering rate by phonon absorption. The competition between the decrease of the intrasubband scattering and the increase of the intersubband scattering by PO-phonon absorption is responsible for the alternate changes of the mobility with a QW width

  18. Visualization of Excitonic Structure in the Fenna-Matthews-OlsonPhotosynthetic Complex by Polarization-Dependent Two-DimensionalElectronic Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Department of Chemistry, The University of Chicago; Department of Biology, Department of Chemistry, Washington University; Fleming, Graham; Read, Elizabeth L.; Schlau-Cohen, Gabriela S.; Engel, Gregory S.; Wen, Jianzhong; Blankenship, Robert E.; Fleming, Graham R.

    2008-05-26

    Photosynthetic light-harvesting proceeds by the collection and highly efficient transfer of energy through a network of pigment-protein complexes. Inter-chromophore electronic couplings and interactions between pigments and the surrounding protein determine energy levels of excitonic states and dictate the mechanism of energy flow. The excitonic structure (orientation of excitonic transition dipoles) of pigment-protein complexes is generally deduced indirectly from x-ray crystallography in combination with predictions of transition energies and couplings in the chromophore site basis. Here, we demonstrate that coarse-grained excitonic structural information in the form of projection angles between transition dipole moments can be obtained from polarization-dependent two-dimensional electronic spectroscopy of an isotropic sample, particularly when the nonrephasing or free polarization decay signal rather than the photon echo signal is considered. The method provides an experimental link between atomic and electronic structure and accesses dynamical information with femtosecond time resolution. In an investigation of the Fenna-Matthews-Olson complex from green sulfur bacteria, energy transfer connecting two particular exciton states in the protein is isolated as being the primary contributor to a cross peak in the nonrephasing 2D spectrum at 400 fs under a specific sequence of polarized excitation pulses. The results suggest the possibility of designing experiments using combinations of tailored polarization sequencesto separate and monitor individual relaxation pathways.

  19. Measurement of transverse emittance at the source of spin-polarized electrons at the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, Christian; Barday, Roman; Bonnes, Uwe; Eichhorn, Ralf; Enders, Joachim; Hessler, Christoph; Patalakha, Oleksandr; Platz, Markus; Poltoratska, Yuliya; Rick, Wolfgang [Institut fuer Kernphysik, TU Darmstadt (Germany); Ackermann, Wolfgang; Mueller, Wolfgang F.O.; Steiner, Bastian; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, TU Darmstadt (Germany)

    2008-07-01

    A new injector concept for 100 keV spin-polarized electrons (SPIN) at the S-DALINAC has been developed. The transverse emittance was measured for beam characterization. The emittance is a quantity concerning the quality of the beam, describing the phase space area. Determination of the emittance requires measurement of the beam profile and knowledge of the focal length of a beam focussing device. A wire scanner unit consisting of two 50 {mu}m diameter tungsten wires is used for the beam-profile measurement. Data analysis is performed by fitting a gaussian model distribution to estimate the 1{sigma} beam radius. Each determined beam width is correlated to the corresponding focal length of a magnetic lens, and a parabola fit is applied to calculate the parameters of the {sigma}-matrix. The square root of the determinant of the {sigma}-matrix defines the emittance. The results of the calculation are presented and the emittance is compared to theoretical estimates.

  20. Characterization of polarized electrons coming from helium post-discharge source; Caracterisation du faisceau d`electrons polarises issus d`une source a post-decharge d`helium

    Energy Technology Data Exchange (ETDEWEB)

    Zerhouni, R.O.

    1996-02-01

    The objective of this thesis is the characterization of the polarized electron source developed at Orsay and foreseen to be coupled to a cw accelerator for nuclear physics experiments. The principle of operation of this source relies on the chemo-ionization reaction between optically aligned helium triplet metastable atoms and CO{sub 2} molecules. The helium metastable atoms are generated by injection of purified helium into a 2,45 GHz micro-wave discharge. They are optically pumped using two beams of 1,083 micro-meter resonant radiation, one circularly and the other linearly polarized. Both beams are delivered by a high power LNA laser. The metastable atomic beam interacts with a dense (10{sup 13} cm {sup -3}) spin singlet CO{sub 2} target. A fraction of the produced polarized electrons is extracted and collimated by electrostatic optics. Either to the Mott polarimeter or to the Faraday cup in order to measure the electron polarization and extracted current. For current intensities of 100 micro-Amperes, the electronic polarization reaches 62 % and shows that this type of source has reached the same high competitive level as the most performing GaAs ones. Additionally, the optical properties of the extracted beam are found to be excellent. These properties (energy spread and emittance) reflect the electron energy distribution at the chemo-ionization region. The upper limit of the beam`s energy spread is 0.24 eV since this value characterizes our instrumental resolution. The average normalized emittance is found to be 0.6 pi mm-mrad. These values satisfy the requirements of most cw accelerators. All the measurements were performed at low electron beam transport energies (1 to 2 KeV). (author). 105 refs., 54 figs., 4 tabs.

  1. Biocatalytic photosynthesis with water as an electron donor.

    Science.gov (United States)

    Ryu, Jungki; Nam, Dong Heon; Lee, Sahng Ha; Park, Chan Beum

    2014-09-15

    Efficient harvesting of unlimited solar energy and its conversion into valuable chemicals is one of the ultimate goals of scientists. With the ever-increasing concerns about sustainable growth and environmental issues, numerous efforts have been made to develop artificial photosynthetic process for the production of fuels and fine chemicals, thus mimicking natural photosynthesis. Despite the research progress made over the decades, the technology is still in its infancy because of the difficulties in kinetic coupling of whole photocatalytic cycles. Herein, we report a new type of artificial photosynthesis system that can avoid such problems by integrally coupling biocatalytic redox reactions with photocatalytic water splitting. We found that photocatalytic water splitting can be efficiently coupled with biocatalytic redox reactions by using tetracobalt polyoxometalate and Rh-based organometallic compound as hole and electron scavengers, respectively, for photoexcited [Ru(bpy)3](2+). Based on these results, we could successfully photosynthesize a model chiral compound (L-glutamate) using a model redox enzyme (glutamate dehydrogenase) upon in situ photoregeneration of cofactors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. WATER TEMPERATURE and other data from USCGC POLAR STAR from 1989-11-02 to 1990-04-11 (NODC Accession 9000089)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected from ship Polar Star. The data was collected from November 2, 1989 to April 11, 1990 as part of project Deep...

  3. WATER TEMPERATURE and other data from USCGC POLAR STAR in the South Pacific Ocean from 1992-11-08 to 1993-04-12 (NODC Accession 9300068)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected in South Pacific Ocean as part of project Deep Freeze from ship POLAR STAR. The data was collected from November...

  4. Electron and ion angular distributions in resonant dissociative photoionization of H{sub 2} and D{sub 2} using linearly polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Jorge; MartIn, Fernando [Departamento de Quimica C-9, Universidad Autonoma de Madrid, 28049 Madrid (Spain)], E-mail: fernando.martin@uam.es

    2009-04-15

    We have evaluated fully differential electron angular distributions in H{sub 2} and D{sub 2} dissociative photoionization by using linearly polarized light of 20, 27 and 33 eV. At 20 eV, the distributions exhibit simple p-wave patterns, which is the signature of direct ionization through the X{sup 2}{sigma}{sub g}{sup +}(1s{sigma}{sub g}) channel. At 27 eV, where the Q{sub 1} autoionizing states are populated, we observe a similar pattern, except when the molecule is oriented perpendicularly to the polarization direction and the energy of the ejected electron is small. In contrast, at 33 eV, autoionization from the Q{sub 1} and Q{sub 2} states leads to interferences between the X{sup 2}{sigma}{sub g}{sup +}(1s{sigma}{sub g}) and {sup 2}{sigma}{sub u}{sup +}(2p{sigma}{sub u}) ionization channels that result in a strong asymmetry of the electron angular distributions along the molecular axis. This asymmetry changes rapidly with the energy of the ejected electron. Electron angular distributions integrated over all possible molecular orientations or ion angular distributions integrated over electron emission angle show no reminiscence of the above phenomena, but the corresponding asymmetry parameters dramatically change with electron and ion energies in the region of autoionizing states.

  5. Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface.

    Science.gov (United States)

    Joshua, Arjun; Ruhman, Jonathan; Pecker, Sharon; Altman, Ehud; Ilani, Shahal

    2013-06-11

    Controlling the coupling between localized spins and itinerant electrons can lead to exotic magnetic states. A novel system featuring local magnetic moments and extended 2D electrons is the interface between LaAlO3 and SrTiO3. The magnetism of the interface, however, was observed to be insensitive to the presence of these electrons and is believed to arise solely from extrinsic sources like oxygen vacancies and strain. Here we show the existence of unconventional electronic phases in the LaAlO3/SrTiO3 system pointing to an underlying tunable coupling between itinerant electrons and localized moments. Using anisotropic magnetoresistance and anomalous Hall effect measurements in a unique in-plane configuration, we identify two distinct phases in the space of carrier density and magnetic field. At high densities and fields, the electronic system is strongly polarized and shows a response, which is highly anisotropic along the crystalline directions. Surprisingly, below a density-dependent critical field, the polarization and anisotropy vanish whereas the resistivity sharply rises. The unprecedented vanishing of the easy axes below a critical field is in sharp contrast with other coupled magnetic systems and indicates strong coupling with the moments that depends on the symmetry of the itinerant electrons. The observed interplay between the two phases indicates the nature of magnetism at the LaAlO3/SrTiO3 interface as both having an intrinsic origin and being tunable.

  6. Relaxation dynamics of a polar solvent cage around a nonpolar electronically excited solvent probe. A subpicosecond laser study

    International Nuclear Information System (INIS)

    Mialocq, J.C.; Hebert, P.; Baldacchino, G.; Gustavsson, T.

    1993-01-01

    The aim of the present paper is to show that the LDS 751 unsymmetrical cyanine laser dye, highly polar in the ground state and non polar in the fluorescent excited singlet state, is a suitable solvent probe. Excitation of LDS 751 in a polar solvent with an ultrashort laser pulse suddenly annihilates the permanent dipole moment of the solute and suppresses the forces which orientate the nearby solvent molecules. The subpicosecond analysis of the Time-Dependent Fluorescence Stokes Shift (TDFSS) of LDS 751 thus enables to probe the relaxation of polar solvent molecules which can be considered as free of solute-solvent interactions. (author)

  7. Spin-polarized electron gas in Co2MSi/SrTiO3(M= Ti, V, Cr, Mn, and Fe) heterostructures

    KAUST Repository

    Nazir, S.

    2016-06-08

    Spin-polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non-polar band insulator SrTiO3. The structural relaxation at the interface turns out to depend systematically on the lattice mis- match. Charge transfer from the Heusler alloys (mainly the M 3d orbitals) to the Ti dxy orbitals of the TiO2 interface layer is found to gradually grow from M = Ti to Fe, resulting in an electron gas with increasing density of spin-polarized charge carriers. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  8. Site-specific hydration dynamics in the nonpolar core of a molten globule by dynamic nuclear polarization of water.

    Science.gov (United States)

    Armstrong, Brandon D; Choi, Jennifer; López, Carlos; Wesener, Darryl A; Hubbell, Wayne; Cavagnero, Silvia; Han, Songi

    2011-04-20

    Water-protein interactions play a direct role in protein folding. The chain collapse that accompanies protein folding involves extrusion of water from the nonpolar core. For many proteins, including apomyoglobin (apoMb), hydrophobic interactions drive an initial collapse to an intermediate state before folding to the final structure. However, the debate continues as to whether the core of the collapsed intermediate state is hydrated and, if so, what the dynamic nature of this water is. A key challenge is that protein hydration dynamics is significantly heterogeneous, yet suitable experimental techniques for measuring hydration dynamics with site-specificity are lacking. Here, we introduce Overhauser dynamic nuclear polarization at 0.35 T via site-specific nitroxide spin labels as a unique tool to probe internal and surface protein hydration dynamics with site-specific resolution in the molten globular, native, and unfolded protein states. The (1)H NMR signal enhancement of water carries information about the local dynamics of the solvent within ∼10 Å of a spin label. EPR is used synergistically to gain insights on local polarity and mobility of the spin-labeled protein. Several buried and solvent-exposed sites of apoMb are examined, each bearing a covalently bound nitroxide spin label. We find that the nonpoloar core of the apoMb molten globule is hydrated with water bearing significant translational dynamics, only 4-6-fold slower than that of bulk water. The hydration dynamics of the native state is heterogeneous, while the acid-unfolded state bears fast-diffusing hydration water. This study provides a high-resolution glimpse at the folding-dependent nature of protein hydration dynamics.

  9. Comparison of Electron Transmittance and Tunneling Current through a Trapezoidal Potential Barrier with Spin Polarization Consideration by using Analytical and Numerical Approaches

    Science.gov (United States)

    Nabila, Ezra; Noor, Fatimah A.; Khairurrijal

    2017-07-01

    In this study, we report an analytical calculation of electron transmittance and polarized tunneling current in a single barrier heterostructure of a metal-GaSb-metal by considering the Dresselhaus spin orbit effect. Exponential function, WKB method and Airy function were used in calculating the electron transmittance and tunneling current. A Transfer Matrix Method, as a numerical method, was utilized as the benchmark to evaluate the analytical calculation. It was found that the transmittances calculated under exponential function and Airy function is the same as that calculated under TMM method at low electron energy. However, at high electron energy only the transmittance calculated under Airy function approach is the same as that calculated under TMM method. It was also shown that the transmittances both of spin-up and spin-down conditions increase as the electron energy increases for low energies. Furthermore, the tunneling current decreases with increasing the barrier width.

  10. Study of the motion of electrons in non polar classical liquids. Measurement of Hall effect and f.i.r. search for low energy traps. Progress report

    International Nuclear Information System (INIS)

    1981-01-01

    Progress is reported on experiments aimed at the measurement of the Hall mobility of injected electrons in classical non polar insulating liquids and the optical absorption associated with electrons captured by shallow traps in the liquefied rare gases. Theoretical work aimed at a better understanding of the trapping kinetics of electrons by SF 6 and O 2 dissolved in rare gas liquids was also carried out. Its conclusion is that the electric field dependence of the trapping probability can be explained, basically without adjustable parameters, by considering the Poole-Frenkel-Schotky ionization of the excited state of the traps. From the analysis of published data on the motion of electrons in liquid ethane it is tentatively concluded that at low temperatures the trapping of electrons in the liquid involves a Jahn-Teller like distortion of a single ethane molecule while at higher temperatures it is necessary to consider a small molecular cluster, possibly made up of 2 molecules

  11. The effect of gap fluctuations on interacting and non-interacting polarization for nano-superconducting grains in electron- and hole-doped cuprates

    Science.gov (United States)

    Afzali, R.; Alizadeh, A.

    2017-12-01

    The behavior of non-interacting and interacting polarization under influence of fluctuations of the superconducting gap with D-wave symmetry and under consideration of the gap dependence on nano- grain size is obtained in terms of the frequency, temperature and the size at zero and finite temperatures for rectangular cuprate nano-superconducting grains. By using Eliashberg equations and applying the relations of the fermionic dispersion for the hole-doped and electron-doped cuprates, we numerically compute the real part of size-dependent polarization for both types of cuprates. We show that the peak of real part of polarization moves to higher frequency by including the additional fluctuating part of gap (or the nano-size effect). Also, we obtain the temperatures for different frequencies, in which the effect of gap fluctuations fades. In the case of size-dependent gap, there is a critical frequency; for frequencies lower (higher) than the critical frequency, the nano-effect weakens (improves) the superconducting state. Moreover, it is concluded that the real part of polarization for hole- doped cuprates in terms of the grain size has more significant amount in comparison with electron-doped ones.

  12. Methane excess production in oxygen-rich polar water and a model of cellular conditions for this paradox

    Science.gov (United States)

    Damm, E.; Thoms, S.; Beszczynska-Möller, A.; Nöthig, E. M.; Kattner, G.

    2015-09-01

    Summer sea ice cover in the Arctic Ocean has undergone a reduction in the last decade exposing the sea surface to unforeseen environmental changes. Melting sea ice increases water stratification and induces nutrient limitation, which is also known to play a crucial role in methane formation in oxygenated surface water. We report on an excess of methane in the marginal ice zone in the western Fram Strait. Our study is based on measurements of oxygen, methane, DMSP, nitrate and phosphate concentrations as well as on phytoplankton composition and light transmission, conducted along the 79°N oceanographic transect, in the western part of the Fram Strait and in Northeast Water Polynya region off Greenland. Between the eastern Fram Strait, where Atlantic water enters from the south and the western Fram Strait, where Polar water enters from the north, different nutrient limitations occurred and consequently different bloom conditions were established. Ongoing sea ice melting enhances the environmental differences between both water masses and initiates regenerated production in the western Fram Strait. We show that in this region methane is in situ produced while DMSP (dimethylsulfoniopropionate) released from sea ice may serve as a precursor for the methane formation. The methane production occured despite high oxygen concentrations in this water masses. As the metabolic activity (respiration) of unicellular organisms explains the presence of anaerobic conditions in the cellular environment we present a theoretical model which explains the maintenance of anaerobic conditions for methane formation inside bacterial cells, despite enhanced oxygen concentrations in the environment.

  13. Analysis of enamel microbiopsies in shed primary teeth by Scanning Electron Microscopy (SEM) and Polarizing Microscopy (PM)

    Energy Technology Data Exchange (ETDEWEB)

    Costa de Almeida, Glauce Regina; Molina, Gabriela Ferian; Meschiari, Cesar Arruda [Department of Morphology, Stomatology and Physiology, Dental School of Ribeirao Preto, University of Sao Paulo - FORP/USP, Av. do Cafe, S/N, Monte Alegre, CEP 14040-904, Ribeirao Preto, SP (Brazil); Barbosa de Sousa, Frederico [Department of Morphology, Dental School of Joao Pessoa, Federal University of Paraiba - UFPB, Av Castelo Branco - Campus I, CEP 58.059-900, Joao Pessoa, PB (Brazil); Gerlach, Raquel Fernanda, E-mail: rfgerlach@forp.usp.br [Department of Morphology, Stomatology and Physiology, Dental School of Ribeirao Preto, University of Sao Paulo - FORP/USP, Av. do Cafe, S/N, Monte Alegre, CEP 14040-904, Ribeirao Preto, SP (Brazil)

    2009-09-01

    The aims of this study were 1) to verify how close to the theoretically presumed areas are the areas of enamel microbiopsies carried out in vivo or in exfoliated teeth; 2) to test whether the etching solution penetrates beyond the tape borders; 3) to test whether the etching solution demineralizes the enamel in depth. 24 shed upper primary central incisors were randomly divided into two groups: the Rehydrated Teeth Group and the Dry Teeth Group. An enamel microbiopsy was performed, and the enamel microbiopsies were then analyzed by Scanning Electron Microscopy (SEM) and Polarizing Microscopy (PM). Quantitative birefringence measurements were performed. The 'true' etched area was determined by measuring the etched enamel using the NIH Image analysis program. Enamel birefringence was compared using the paired t test. There was a statistically significant difference when the etched areas in the Rehydrated teeth were compared with those of the Dry teeth (p = 0.04). The etched areas varied from - 11.6% to 73.5% of the presumed area in the Rehydrated teeth, and from 6.6% to 61.3% in the Dry teeth. The mean percentage of variation in each group could be used as a correction factor for the etched area. Analysis of PM pictures shows no evidence of in-depth enamel demineralization by the etching solution. No statistically significant differences in enamel birefringence were observed between values underneath and outside the microbiopsy area in the same tooth, showing that no mineral loss occurred below the enamel superficial layer. Our data showed no evidence of in-depth enamel demineralization by the etching solution used in the enamel microbiopsy proposed for primary enamel. This study also showed a variation in the measured diameter of the enamel microbiopsy in nineteen teeth out of twenty four, indicating that in most cases the etching solution penetrated beyond the tape borders.

  14. Detection of Calcium Crystals in Knee Osteoarthritis Synovial Fluid: A Comparison Between Polarized Light and Scanning Electron Microscopy.

    Science.gov (United States)

    Frallonardo, Paola; Oliviero, Francesca; Peruzzo, Luca; Tauro, Leonardo; Scanu, Anna; Galozzi, Paola; Ramonda, Roberta; Punzi, Leonardo

    2016-10-01

    The identification of calcium crystals in synovial fluid (SF) of patients with osteoarthritis (OA) represents an important step in understanding the role of these crystals in synovial inflammation and disease progression. This study aimed to investigate the presence of calcium pyrophosphate (CPP) and basic calcium phosphate (BCP) crystals in SF collected from patients with symptomatic knee OA by scanning electron microscopy (SEM) coupled to x-ray energy dispersive spectroscopy, compensated polarized light microscopy (CPLM), and alizarin red staining. Seventy-four patients with knee OA were included in the study. Synovial fluid samples were collected after arthrocentesis and examined under CPLM for the assessment of CPP crystals. Basic calcium phosphate crystals were evaluated by alizarin red staining. All the samples were examined by SEM. The concordance between the 2 techniques was evaluated by Cohen κ agreement coefficient. Calcium pyrophosphate and BCP crystals were found, respectively, in 23 (31.1%) and 13 (17.5%) of 74 OA SFs by SEM analysis. Calcium pyrophosphate crystals were identified in 23 (31.1%) of 74 samples by CPLM, whereas BCP crystals were suspected in 27 (36.4%) of 74 samples. According to κ coefficient, the concordance between CPLM and SEM was 0.83 for CPP, and that between alizarin red and SEM was 0.68 for BCP. The results of our study showed a high level of concordance between the 2 microscope techniques as regards CPP crystal identification and a lower agreement for BCP crystals. Although this finding highlights the difficulty in identifying BCP crystals by alizarin red staining, the use of SEM remains unsuitable to apply in the clinical setting. Because of the in vitro inflammatory effect of BCP crystals, further work on their analysis in SF could provide important information about the OA process.

  15. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohashi, Teruo, E-mail: teruo.kohashi.fc@hitachi.com; Motai, Kumi [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Nishiuchi, Takeshi; Hirosawa, Satoshi [Magnetic Materials Research Laboratory, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  16. Improved linearity in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with nonlinear polarization dielectric

    International Nuclear Information System (INIS)

    Gao, Tao; Xu, Ruimin; Kong, Yuechan; Zhou, Jianjun; Kong, Cen; Dong, Xun; Chen, Tangsheng

    2015-01-01

    We demonstrate highly improved linearity in a nonlinear ferroelectric of Pb(Zr 0.52 Ti 0.48 )-gated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT). Distinct double-hump feature in the transconductance-gate voltage (g m -V g ) curve is observed, yielding remarkable enhancement in gate voltage swing as compared to MIS-HEMT with conventional linear gate dielectric. By incorporating the ferroelectric polarization into a self-consistent calculation, it is disclosed that in addition to the common hump corresponding to the onset of electron accumulation, the second hump at high current level is originated from the nonlinear polar nature of ferroelectric, which enhances the gate capacitance by increasing equivalent dielectric constant nonlinearly. This work paves a way for design of high linearity GaN MIS-HEMT by exploiting the nonlinear properties of dielectric

  17. Improved linearity in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with nonlinear polarization dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Tao [Fundamental Science on EHF Laboratory, University of Electronic Science and Technology of China (UESTC), Chengdu 611731 (China); Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016 (China); Xu, Ruimin [Fundamental Science on EHF Laboratory, University of Electronic Science and Technology of China (UESTC), Chengdu 611731 (China); Kong, Yuechan, E-mail: kycfly@163.com; Zhou, Jianjun; Kong, Cen; Dong, Xun; Chen, Tangsheng [Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016 (China)

    2015-06-15

    We demonstrate highly improved linearity in a nonlinear ferroelectric of Pb(Zr{sub 0.52}Ti{sub 0.48})-gated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT). Distinct double-hump feature in the transconductance-gate voltage (g{sub m}-V{sub g}) curve is observed, yielding remarkable enhancement in gate voltage swing as compared to MIS-HEMT with conventional linear gate dielectric. By incorporating the ferroelectric polarization into a self-consistent calculation, it is disclosed that in addition to the common hump corresponding to the onset of electron accumulation, the second hump at high current level is originated from the nonlinear polar nature of ferroelectric, which enhances the gate capacitance by increasing equivalent dielectric constant nonlinearly. This work paves a way for design of high linearity GaN MIS-HEMT by exploiting the nonlinear properties of dielectric.

  18. Improved linearity in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with nonlinear polarization dielectric

    Science.gov (United States)

    Gao, Tao; Xu, Ruimin; Kong, Yuechan; Zhou, Jianjun; Kong, Cen; Dong, Xun; Chen, Tangsheng

    2015-06-01

    We demonstrate highly improved linearity in a nonlinear ferroelectric of Pb(Zr0.52Ti0.48)-gated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT). Distinct double-hump feature in the transconductance-gate voltage (gm-Vg) curve is observed, yielding remarkable enhancement in gate voltage swing as compared to MIS-HEMT with conventional linear gate dielectric. By incorporating the ferroelectric polarization into a self-consistent calculation, it is disclosed that in addition to the common hump corresponding to the onset of electron accumulation, the second hump at high current level is originated from the nonlinear polar nature of ferroelectric, which enhances the gate capacitance by increasing equivalent dielectric constant nonlinearly. This work paves a way for design of high linearity GaN MIS-HEMT by exploiting the nonlinear properties of dielectric.

  19. Population alignment collisional radiative model for helium-like carbon. Polarization of emission lines and anisotropy of the electron velocity distribution function in plasmas

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Fujimoto, Takashi; Zhang, Honglin; Kilcrease, David P.; Csanak, George; Berrington, Keith A.

    2003-08-01

    The polarization of emission lines from a plasma carries information about the anisotropic velocity distribution of electrons in the plasma, and thus polarization spectroscopy can give information that is inaccessible by other methods. We have developed a comprehensive population-alignment collisional-radiative (PACR) model code for helium-like carbon CV ions. This code is intended to correlate quantitatively the observed polarization of emission lines from the ions in a plasma with the anisotropy of the electron velocity distribution function. Specifically, the longitudinal alignment of CV triplet emission lines for the 1s2s 3 S 1 - 1s2p 3 P 1,2 ) transitions are studied by this PACR model. The predominant process which produces alignment in the 1s2p 3 P 1,2 levels is the alignment production from the ground state, 1s 21 S 1 and from the metastable level, 1s2s 3 S 1 . The alignment-production fluxes from these levels are in the opposite directions in the temperature range of practical interest, depending on the electron density n e . When n e > 10 16 m -3 , the alignment-production flux from the metastable level is larger than that from the ground state. An anisotropic electron velocity distribution function that has higher values in the axial (toroidal) direction than in the radial (poloidal) direction produces negative longitudinal alignment of the emission lines, i.e., higher intensity of the linear polarized component in the radial direction than that in the axial direction. (author)

  20. Models for the transport of low energy electrons in water and the yield of hydrated electrons at early times

    International Nuclear Information System (INIS)

    Brenner, D.J.; Miller, J.H.; Ritchie, R.H.; Bichsel, H.

    1985-01-01

    An insulator model with four experimental energy bands was used to fit the optical properties of liquid water and to extend these data to non-zero momentum transfer. Inelastic mean free paths derived from this dielectric response function provided the basic information necessary to degrade high energy electrons to the subexcitation energy domain. Two approaches for the transport of subexcitation electrons were investigated. (i) Gas phase cross sections were used to degrade subexcitation electrons to thermal energy and the thermalization lengths were scaled to unit density. (ii) Thermalization lengths were estimated by age-diffusion theory with a stopping power deduced from the data on liquid water and transport cross sections derived from elastic scattering in water vapor. Theoretical ranges were compared to recent experimental results. A stochastic model was used to calculate the rapid diffusion and reaction of hydrated electrons with other radiolysis products. The sensitivity of the calculated yields to the model assumptions and comparison with experimental data are discussed

  1. Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization

    Science.gov (United States)

    Maurya, PK; Balbarini, N.; Møller, I.; Rønde, V.; Christiansen, AV; Bjerg, PL; Auken, E.; Fiandaca, G.

    2018-01-01

    At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In the present study, we have developed a new approach for characterizing contaminated sites through time-domain spectral induced polarization. The new approach is based on: 1) spectral inversion of the induced polarization data through a re-parameterization of the Cole-Cole model, which disentangles the electrolytic bulk conductivity from the surface conductivity for delineating the contamination plume; 2) estimation of hydraulic permeability directly from the inverted parameters using a laboratory-derived empirical equation without any calibration; 3) the use of the geophysical imaging results for supporting the geological modeling and planning of drilling campaigns.

  2. Nonlinear dynamics of circularly polarized laser pulse propagating in a magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons distributions

    Energy Technology Data Exchange (ETDEWEB)

    Etemadpour, R.; Dorranian, D., E-mail: doran@srbiau.ac.ir [Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sepehri Javan, N. [Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil (Iran, Islamic Republic of)

    2016-05-15

    The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.

  3. Ultrafast transient-absorption of the solvated electron in water

    International Nuclear Information System (INIS)

    Kimura, Y.; Alfano, J.C.; Walhout, P.K.; Barbara, P.F.

    1994-01-01

    Ultrafast near infrared (NIR)-pump/variable wavelength probe transient-absorption spectroscopy has been performed on the aqueous solvated electron. The photodynamics of the solvated electron excited to its p-state are qualitatively similar to previous measurements of the dynamics of photoinjected electrons at high energy. This result confirms the previous interpretation of photoinjected electron dynamics as having a rate-limiting bottleneck at low energies presumably involving the p-state

  4. Spin-polarized semiconductors: tuning the electronic structure of graphene by introducing a regular pattern of sp3 carbons on the graphene plane.

    Science.gov (United States)

    Jing, Long; Huang, Ping; Zhu, Huarui; Gao, Xueyun

    2013-01-28

    First-principles calculations (generalized gradient approximation, density functional therory (DFT) with dispersion corrections, and DFT plus local atomic potential) are carried out on the stability and electronic structures of superlattice configurations of nitrophenyl diazonium functionalized graphene with different coverage. In the calculations, the stabilities of these structures are strengthened significantly since van der Waals interactions between nitrophenyl groups are taken into account. Furthermore, spin-polarized and wider-bandgap electronic structures are obtained when the nitrophenyl groups break the sublattice symmetry of the graphene. The unpaired quasi-localized p electrons are responsible for this itinerant magnetism. The results provide a novel approach to tune graphene's electronic structures as well as to form ferromagnetic semiconductive graphene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Transport-limited water splitting at ion-selective interfaces during concentration polarization

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Peder; Bruus, Henrik

    2014-01-01

    We present an analytical model of salt- and water-ion transport across an ion-selective interface based on an assumption of local equilibrium of the water-dissociation reaction. The model yields current-voltage characteristics and curves of water-ion current versus salt-ion current, which are in ...

  6. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    Directory of Open Access Journals (Sweden)

    Miklos Blaho

    Full Text Available The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt and species (mayflies, dolichopodids, tabanids. (ii Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries than matt black finish. (iii The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a matt car-paints are highly polarization reflecting, and (b these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  7. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    Science.gov (United States)

    Blaho, Miklos; Herczeg, Tamas; Kriska, Gyorgy; Egri, Adam; Szaz, Denes; Farkas, Alexandra; Tarjanyi, Nikolett; Czinke, Laszlo; Barta, Andras; Horvath, Gabor

    2014-01-01

    The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i) The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt) and species (mayflies, dolichopodids, tabanids). (ii) Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries) than matt black finish. (iii) The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a) matt car-paints are highly polarization reflecting, and (b) these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  8. Removal of Chromophore-proximal Polar Atoms Decreases Water Content and Increases Fluorescence in a Near Infrared Phytofluor

    Directory of Open Access Journals (Sweden)

    Heli eLehtivuori

    2015-11-01

    Full Text Available Genetically encoded fluorescent markers have revolutionized cell and molecular biology due to their biological compatibility, controllable spatiotemporal expression, and photostability. To achieve in vivo imaging in whole animals, longer excitation wavelength probes are needed due to the superior ability of near infrared light to penetrate tissues unimpeded by absorbance from biomolecules or autofluorescence of water. Derived from near infrared-absorbing bacteriophytochromes, phytofluors are engineered to fluoresce in this region of the electromagnetic spectrum, although high quantum yield remains an elusive goal. An invariant aspartate residue is of utmost importance for photoconversion in native phytochromes, presumably due to the proximity of its backbone carbonyl to the pyrrole ring nitrogens of the biliverdin (BV chromophore as well as the size and charge of the side chain. We hypothesized that the polar interaction network formed by the charged side chain may contribute to the decay of the excited state via proton transfer. Thus, we chose to further probe the role of this amino acid by removing all possibility for polar interactions with its carboxylate side chain by incorporating leucine instead. The resultant fluorescent protein, WiPhy2, maintains BV binding, monomeric status, and long maximum excitation wavelength while minimizing undesirable protoporphyrin IXα binding in cells. A crystal structure and time-resolved fluorescence spectroscopy reveal that water near the BV chromophore is excluded and thus validate our hypothesis that removal of polar interactions leads to enhanced fluorescence by increasing the lifetime of the excited state. This new phytofluor maintains its fluorescent properties over a broad pH range and does not suffer from photobleaching. WiPhy2 achieves the best compromise to date between high fluorescence quantum yield and long illumination wavelength in this class of fluorescent proteins.

  9. Actinobacterial community structure in the Polar Frontal waters of the Southern Ocean of the Antarctica using Geographic Information System (GIS: A novel approach to study Ocean Microbiome

    Directory of Open Access Journals (Sweden)

    P. Sivasankar

    2018-04-01

    Full Text Available Integration of microbiological data and geographical locations is necessary to understand the spatiotemporal patterns of the microbial diversity of an ecosystem. The Geographic Information System (GIS to map and catalogue the data on the actinobacterial diversity of the Southern Ocean waters was completed through sampling and analysis. Water samples collected at two sampling stations viz. Polar Front 1 (Station 1 and Polar Front 2 (Station 2 during 7th Indian Scientific Expedition to the Indian Ocean Sector of the Southern Ocean (SOE-2012-13 were used for analysis. At the outset, two different genera of Actinobacteria were recorded at both sampling stations. Streptomyces was the dominanted with the high score (> 60%, followed by Nocardiopsis (< 30% at both the sampling stations-Polar Front 1 and Polar Front 2-along with other invasive genera such as Agrococcus, Arthrobacter, Cryobacterium, Curtobacterium, Microbacterium, Marisediminicola, Rhodococcus and Kocuria. This data will help to discriminate the diversity and distribution pattern of the Actinobacteria in the Polar Frontal Region of the Southern Ocean waters. It is a novel approach useful for geospatial cataloguing of microbial diversity from extreme niches and in various environmental gradations. Furthermore, this research work will act as the milestone for bioprospecting of microbial communities and their products having potential applications in healthcare, agriculture and beneficial to mankind. Hence, this research work would have significance in creating a database on microbial communities of the Antarctic ecosystem. Keywords: Antarctica, Marine actinobacteria, Southern ocean, GIS, Polar Frontal waters, Microbiome

  10. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments.

    Science.gov (United States)

    Wang, Ruixue; Chen, Ya; Xu, Zhenming

    2015-05-19

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate) and organic materials (polarizing film and liquid crystal). The organic materials should be removed first since containing polarizing film and liquid crystal is to the disadvantage of the indium recycling process. In the present study, an efficient and environmentally friendly process to obtain acetic acid from waste LCD panels by sub/supercritical water treatments is investigated. Furthermore, a well-founded reaction mechanism is proposed. Several highlights of this study are summarized as follows: (i) 99.77% of organic matters are removed, which means the present technology is quite efficient to recycle the organic matters; (ii) a yield of 78.23% acetic acid, a quite important fossil energy based chemical product is obtained, which can reduce the consumption of fossil energy for producing acetic acid; (iii) supercritical water acts as an ideal solvent, a requisite reactant as well as an efficient acid-base catalyst, and this is quite significant in accordance with the "Principles of Green Chemistry". In a word, the organic matters of waste LCD panels are recycled without environmental pollution. Meanwhile, this study provides new opportunities for alternating fossil-based chemical products for sustainable development, converting "waste" into "fossil-based chemicals".

  11. Electron density in surface barrier discharge emerging at argon/water interface: quantification for streamers and leaders

    Science.gov (United States)

    Cvetanović, Nikola; Galmiz, Oleksandr; Synek, Petr; Zemánek, Miroslav; Brablec, Antonín; Hoder, Tomáš

    2018-02-01

    Optical emission spectroscopy, fast intensified CCD imaging and electrical measurements were applied to investigate the basic plasma parameters of surface barrier discharge emerging from a conductive water electrode. The discharge was generated at the triple-line interface of atmospheric pressure argon gas and conductive water solution at the fused silica dielectrics using a sinusoidal high-voltage waveform. The spectroscopic methods of atomic line broadening and molecular spectroscopy were used to determine the electron densities and the gas temperature in the active plasma. These parameters were obtained for both applied voltage polarities and resolved spatially. Two different spectral signatures were identified in the spatially resolved spectra resulting in electron densities differing by two orders of magnitude. It is shown that two discharge mechanisms take a place: the streamer and the leader one, with electron densities of 1014 and 1016 cm‑3, respectively. This spectroscopic evidence is supported by the combined diagnostics of electrical current measurements and phase-resolved intensified CCD camera imaging.

  12. Effect of polarization Coulomb field scattering on low temperature electron mobility in strained AlGaN/AlN/GaN heterostructure field-effect transistors

    Science.gov (United States)

    Liu, Yan; Lin, Zhao-Jun; Yang, Ming; Luan, Chong-Biao; Wang, Yu-Tang; Lv, Yuan-Jie; Feng, Zhi-Hong

    2016-12-01

    The electron mobility of the AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with the ratio of the gate length to the drain-to-source distance being less than 1/2 has been studied in the temperature range 100 ˜ 300 K. The measured electron mobility at each testing temperature is obtained by using the capacitance-voltage (C-V) and current-voltage (I-V) characteristics measured at the corresponding temperature, and the theoretically calculated temperature-dependent electron mobility is determined by Matthiessen’s law, which includes five kinds of important scattering mechanisms. For the prepared sample, the measured electron mobility with respect to the two-dimensional electron gas (2DEG) density was observed to increase to a peak point first and then decrease at each testing temperature. By comparing the measured electron mobility with the theoretically calculated value, the changing trend of the electron mobility at each testing temperature was found to be mainly determined by polarization Coulomb field (PCF) scattering. Particularly at lower temperature, PCF scattering plays a more significant role in the changing trend of the electron mobility.

  13. Circulation and seasonal evolution of polar waters south of Australia: implications for iron fertilization of the Southern Ocean

    Science.gov (United States)

    Trull, Tom; Rintoul, Stephen R.; Hadfield, Mark; Abraham, Edward R.

    The Southern Ocean Iron Release Experiment (SOIREE) was carried out in late summer (February 1999) south of Australia (61°S, 140°E). This region of the southern Antarctic Zone (AZ-S), between the southern branch of the Polar Front (PF) and the southern front of the Antarctic Circumpolar Current (SAACF), is characterized by weak currents and is remote from the influence of sea-ice or coastal waters. The SOIREE site exhibits high nutrient concentrations year-round (phosphate, nitrate and silicate remain above 10 μM), low chlorophyll accumulations (production is complete. No increase in carbon export occurred during the SOIREE 13-day observation period. The seasonal cycles of mixed-layer development and low biomass accumulation at the SOIREE site are representative of most of the region between the PF and the SACCF, i.e. between ˜54 and ˜62°S, and to a lesser extent the Polar Frontal Zone. However, north of ˜59°S surface waters are depleted in silica by mid-summer (as occurs year-round north of the Subantarctic Front). A different response to iron fertilization is likely under these conditions, possibly the promotion of lightly silicified diatoms and non-siliceous organisms, whose ability to export carbon is uncertain. The SOIREE fertilized waters are likely to have remained at the surface in the AZ-S throughout the winter. In general, carbon sequestration by subduction of iron-enhanced biomass accumulations is unlikely south of the SAF, except in very limited regions. Moreover, intermediate water masses formed in the Southern Ocean sink with little pre-formed silicate, so that the "silica pump" is already working at close to maximal capacity. Therefore, in the absence of significant changes in community structure or algal physiology, which increase the ratio of carbon export to silicate export, increased iron supply is unlikely to increase the magnitude of carbon sequestration.

  14. Determination of polar pharmaceuticals in sewage water of Greece by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Koutsouba, V; Heberer, Th; Fuhrmann, B; Schmidt-Baumler, K; Tsipi, D; Hiskia, A

    2003-04-01

    Sewage influents and effluents of different urban areas of Greece, were analyzed for polar pharmaceutical residues, used in human medicine. Drugs investigated were the anti-inflammatory drugs diclofenac and ibuprofen, the metabolite of the drugs clofibrates used as blood lipid regulators, clofibric acid and the analgesics phenazone and propyphenazone. Analysis was carried out using capillary gas chromatography-mass spectrometry with selected ion monitoring. The method used was involved solid phase extraction (C(18)) and derivatization with pentafluorobenzyl bromide. Diclofenac was detected in every sewage effluent sample.

  15. Rode's iterative calculation of surface optical phonon scattering limited electron mobility in N-polar GaN devices

    International Nuclear Information System (INIS)

    Ghosh, Krishnendu; Singisetti, Uttam

    2015-01-01

    N-polar GaN channel mobility is important for high frequency device applications. Here, we report theoretical calculations on the surface optical (SO) phonon scattering rate of two-dimensional electron gas (2DEG) in N-polar GaN quantum well channels with high-k dielectrics. Rode's iterative calculation is used to predict the scattering rate and mobility. Coupling of the GaN plasmon modes with the SO modes is taken into account and dynamic screening is employed under linear polarization response. The effect of SO phonons on 2DEG mobility was found to be small at >5 nm channel thickness. However, the SO mobility in 3 nm N-polar GaN channels with HfO 2 and ZrO 2 high-k dielectrics is low and limits the total mobility. The SO scattering for SiN dielectric on GaN was found to be negligible due to its high SO phonon energy. Using Al 2 O 3 , the SO phonon scattering does not affect mobility significantly only except the case when the channel is too thin with a low 2DEG density

  16. Polarization and charge-transfer effect on the transport properties in two-dimensional electron gases/LaNiO3 heterostructure

    Science.gov (United States)

    Chen, M. J.; Ning, X. K.; Wang, Z. J.; Liu, P.; Wang, S. F.; Wang, J. L.; Fu, G. S.; Ma, S.; Liu, W.; Zhang, Z. D.

    2018-01-01

    The film thickness dependent transport properties of the LaNiO3 (LNO) layer epitaxially grown on LaAlO3/SrTiO3 (LAO) 2-dimensional electronic gas (2DEG) have been investigated. The ultrathin LNO films grown on the 2DEG have a sheet resistance below the values of h/e2 in all temperature ranges. The electron density is enhanced by more than one order of magnitude by capping LNO films. X-ray photoelectron spectroscopy shows that the interface undergoes unambiguous charge transfer and electronic reconstruction, leading to modulation doping of such atomically engineered complex oxide heterointerfaces. The polar-catastrophe of the 2DEG is directly linked to the electronic structure and transport properties of the LNO. The transport properties can be well modulated by the thickness of the LAO in the 2DEG, and the data can be well fitted with the polar-catastrophe scenario. These results suggest a general approach to tunable functional films in oxide heterostructures with the 2DEG.

  17. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification

    Science.gov (United States)

    Södergren, A. Helena; McDonald, Adrian J.; Bodeker, Gregory E.

    2017-11-01

    We examine the effects of non-linear interactions between surface albedo, water vapor and cloud cover (referred to as climate variables) on amplified warming of the polar regions, using a new energy balance model. Our simulations show that the sum of the contributions to surface temperature changes due to any variable considered in isolation is smaller than the temperature changes from coupled feedback simulations. This non-linearity is strongest when all three climate variables are allowed to interact. Surface albedo appears to be the strongest driver of this non-linear behavior, followed by water vapor and clouds. This is because increases in longwave radiation absorbed by the surface, related to increases in water vapor and clouds, and increases in surface absorbed shortwave radiation caused by a decrease in surface albedo, amplify each other. Furthermore, our results corroborate previous findings that while increases in cloud cover and water vapor, along with the greenhouse effect itself, warm the polar regions, water vapor also significantly warms equatorial regions, which reduces polar amplification. Changes in surface albedo drive large changes in absorption of incoming shortwave radiation, thereby enhancing surface warming. Unlike high latitudes, surface albedo change at low latitudes are more constrained. Interactions between surface albedo, water vapor and clouds drive larger increases in temperatures in the polar regions compared to low latitudes. This is in spite of the fact that, due to a forcing, cloud cover increases at high latitudes and decreases in low latitudes, and that water vapor significantly enhances warming at low latitudes.

  18. Ultrasensitive determination of highly polar trimethyl phosphate in environmental water by molecularly imprinted polymeric fiber headspace solid-phase microextraction.

    Science.gov (United States)

    Cai, Cuicui; Zhang, Pengcheng; Deng, Jiali; Zhou, Hongbin; Cheng, Jing

    2018-03-01

    A sensitive, accurate, and cost effective method for the quantification of trimethyl phosphate, which is highly polar and volatile, in environmental water is presented. Trimethyl phosphate was headspace solid-phase microextracted on a molecularly imprinted polymeric fiber, and then the fiber was thermally desorbed in the gas chromatograph injector, and the compound was determined. The trimethyl phosphate imprinted polymeric fiber was prepared by copolymerization in a fused silica capillary tube and obtained by removal of the wall of fused silica capillary tube. The monolithic fiber displayed good selectivity toward trimethyl phosphate among its structural analogues. It was thermally stable up to 320°C so that it can withstand the high temperature of the gas chromatograph injector for desorption. The factors influencing the performance of its headspace solid-phase microextraction were studied. Under the optimal conditions, the method for quantification of trimethyl phosphate in environmental water was well developed. It exhibited significant linearity, the lowest limit of quantification to date, and good recoveries. Using this method, trimethyl phosphate was detected in five out of seven environmental water samples at concentration levels from 0.28 to 1.22 μg/L, illustrating the heavy pollution of trimethyl phosphate in environmental water. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ultrashort x-ray pulse generation by nonlinear Thomson scattering of a relativistic electron with an intense circularly polarized laser pulse

    Directory of Open Access Journals (Sweden)

    F. Liu

    2012-07-01

    Full Text Available The nonlinear Thomson scattering of a relativistic electron with an intense laser pulse is calculated numerically. The results show that an ultrashort x-ray pulse can be generated by an electron with an initial energy of 5 MeV propagating across a circularly polarized laser pulse with a duration of 8 femtosecond and an intensity of about 1.1×10^{21}  W/cm^{2}, when the detection direction is perpendicular to the propagation directions of both the electron and the laser beam. The optimal values of the carrier-envelop phase and the intensity of the laser pulse for the generation of a single ultrashort x-ray pulse are obtained and verified by our calculations of the radiation characteristics.

  20. Polarization memory of blue and red luminescence from nanocrystalline porous silicon treated by high-pressure water vapor annealing

    International Nuclear Information System (INIS)

    Gelloz, B.; Koyama, H.; Koshida, N.

    2008-01-01

    The polarization memory (PM) effect in the blue and red photoluminescence (PL) of p-type porous Si (PS) treated by high-pressure water vapor annealing (HWA) has been investigated. HWA induces a significant blue PL emission at about 450 nm, together with a drastic enhancement of the red PL intensity. The polarization memory of the red emission band is anisotropic and is in agreement with emission from quantum sized Si nanocrystals, whereas that of the blue band is high and isotropic, indicating an emission mechanism related to localized states in the amorphous Si oxide surrounding the Si skeleton of the PS layer after HWA. HWA does not induce any blue emission in PS that was electrochemically oxidized (ECO) beforehand because the electrochemically grown oxide tends to prevent the formation of blue-emitting amorphous oxide upon HWA. The PM of ECO-PS at low emission energies is anisotropic, but in a direction 45 deg. rotated compared to that of PS treated by HWA. This unique behavior may be related to the electrical nature of electrochemical oxidation. HWA increases the PM of ECO-PS. This could be attributed to the enhanced passivation induced by HWA

  1. Water remediation based on oil adsorption using polar and non polar nanoparticles; Tratamiento de agua basado en la adsorción de crudo en nanopartículas polares y no polares

    Directory of Open Access Journals (Sweden)

    Maricelly Martinez Aguilar

    2013-06-01

    Full Text Available An important oil production impact is the increase of environmental pollution due to discharge of water formation. This paper presents a study of oil adsorption onto hydrophobic silica, i.e., silica nanoparticles impregnated with Colombian vacuum residue (VR at 2 and 4 wt% and onto zeolite and impregnated zeolite nanoparticles (2 and 4wt% of VR to reduce the amount of O/W emulsion. The Langmuir and Freundlich adsorption models were used to fit the experimental information of the adsorption isotherms. Initial crude oil concentration ranges from 200 to 2000 mg/l. Oil concentration, after adsorption, was determined by using an UV-vis spectrophotometer. The highest oil removal was obtained with impregnated silica nanoparticles, yielding values of 200 mg/g, with 100% oil removal, 9 mg/g more than the value obtained by modified zeolite of 191 mg/g at the same initial concentration. Pseudo-first-order and pseudo-second-order models were used to fit the experimental data of the adsorption kinetics, with better results for the pseudo-second order model.

  2. Pair Approximation for Polarization Interaction and Adiabatic Nuclear and Electronic Sampling Method for Fluids with Dipole Polarizability

    Czech Academy of Sciences Publication Activity Database

    Předota, Milan; Cummings, P. T.; Chialvo, A. A.

    2002-01-01

    Roč. 100, č. 16 (2002), s. 2703-2717 ISSN 0026-8976 Grant - others:DE(US) AC05-00OR22725 Keywords : polarization interaction * Monte Carlo Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.617, year: 2002

  3. Impact of Molecular Orientation and Packing Density on Electronic Polarization in the Bulk and at Surfaces of Organic Semiconductors

    KAUST Repository

    Ryno, Sean

    2016-05-16

    The polarizable environment surrounding charge carriers in organic semiconductors impacts the efficiency of the charge transport process. Here, we consider two representative organic semiconductors, tetracene and rubrene, and evaluate their polarization energies in the bulk and at the organic-vacuum interface using a polarizable force field that accounts for induced-dipole and quadrupole interactions. Though both oligoacenes pack in a herringbone motif, the tetraphenyl substituents on the tetracene backbone of rubrene alter greatly the nature of the packing. The resulting change in relative orientations of neighboring molecules is found to reduce the bulk polarization energy of holes in rubrene by some 0.3 eV when compared to tetracene. The consideration of model organic-vacuum interfaces highlights the significant variation in the electrostatic environment for a charge carrier at a surface although the net change in polarization energy is small; interestingly, the environment of a charge even just one layer removed from the surface can be viewed already as representative of the bulk. Overall, it is found that in these herringbone-type layered crystals the polarization energy has a much stronger dependence on the intralayer packing density than interlayer packing density.

  4. Broadband measurements of electron cyclotron emission in TFTR [Tokamak Fusion Test Reactor] using a quasi-optical light collection system and a polarizing Michelson interferometer

    International Nuclear Information System (INIS)

    Stauffer, F.J.; Boyd, D.A.; Cutler, R.C.; Diesso, M.; McCarthy, M.P.; Montague, J.; Rocco, R.

    1988-04-01

    For the past three years, a Fourier transform spectrometer diagnostic system, employing a fast-scanning polarizing Michelson interferometer, has been operating on the TFTR tokamak at Princeton Plasma Physics Laboratory. It is used to measure the electron cyclotron emission spectrum over the range 2.5 to 18 cm/sup /minus/1/ (75-540 GHz) with a resolution of 0.123 cm/sup /minus/1/(3.7 GHz), at a rate of 72 spectra per second. The quasi-optical system for collecting the light and transporting it through the interferometer to the detector has been designed using the concepts of both Gaussian and geometrical optics in order to produce a system that is efficient over the entire spectral range. The commerical Michelson interferometer was custom-made for this project and is at the state of the art for this type of specialized instrument. Various pre-installation and post-installation tests of the optical system and the interferometer were performed and are reported here. An error propagation analysis of the absolute calibration process is given. Examples of electron cyclotron emission spectra measured in two polarization directions are given, and electron temperature profiles derived from each of them are compared. 34 refs., 17 figs

  5. Broadband measurements of electron cyclotron emission in TFTR (Tokamak Fusion Test Reactor) using a quasi-optical light collection system and a polarizing Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, F.J.; Boyd, D.A.; Cutler, R.C.; Diesso, M.; McCarthy, M.P.; Montague, J.; Rocco, R.

    1988-04-01

    For the past three years, a Fourier transform spectrometer diagnostic system, employing a fast-scanning polarizing Michelson interferometer, has been operating on the TFTR tokamak at Princeton Plasma Physics Laboratory. It is used to measure the electron cyclotron emission spectrum over the range 2.5 to 18 cm/sup /minus/1/ (75-540 GHz) with a resolution of 0.123 cm/sup /minus/1/(3.7 GHz), at a rate of 72 spectra per second. The quasi-optical system for collecting the light and transporting it through the interferometer to the detector has been designed using the concepts of both Gaussian and geometrical optics in order to produce a system that is efficient over the entire spectral range. The commerical Michelson interferometer was custom-made for this project and is at the state of the art for this type of specialized instrument. Various pre-installation and post-installation tests of the optical system and the interferometer were performed and are reported here. An error propagation analysis of the absolute calibration process is given. Examples of electron cyclotron emission spectra measured in two polarization directions are given, and electron temperature profiles derived from each of them are compared. 34 refs., 17 figs.

  6. Direct and indirect electron precipitation effect on nitric oxide in the polar middle atmosphere, using a full-range energy spectrum

    Science.gov (United States)

    Smith-Johnsen, Christine; Nesse Tyssøy, Hilde; Hendrickx, Koen; Orsolini, Yvan; Kishore Kumar, Grandhi; Ødegaard, Linn-Kristine Glesnes; Sandanger, Marit Irene; Stordal, Frode; Megner, Linda

    2017-08-01

    In April 2010, a coronal mass ejection and a corotating interaction region on the Sun resulted in an energetic electron precipitation event in the Earth's atmosphere. We investigate direct and indirect nitric oxide (NO) response to the electron precipitation. By combining electron fluxes from the Total Energy Detector and the Medium Energy Proton and Electron Detector on the National Oceanic and Atmospheric Administration's Polar-orbiting Operational Environmental Satellites, we obtain a continuous energy spectrum covering 1-750 keV. This corresponds to electrons depositing their energy at atmospheric altitudes 60-120 km. Based on the electron energy deposition, taking into account loss due to photolysis, the accumulated NO number density is estimated. When compared to NO measured at these altitudes by the Solar Occultation for Ice Experiment instrument on board the Aeronomy of Ice in the Mesosphere satellite, the NO direct effect was detected down to 55 km. The main variability at these altitudes is, however, dominated by the indirect effect, which is downward transported NO. We estimate the source of this descending NO to be in the upper mesosphere at ˜75-90 km.

  7. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  8. Understanding dynamics of Martian winter polar vortex with “improved” moist-convective shallow water model

    Science.gov (United States)

    Rostami, M.; Zeitlin, V.

    2017-12-01

    We show how the properties of the Mars polar vortex can be understood in the framework of a simple shallow-water type model obtained by vertical averaging of the adiabatic “primitive” equations, and “improved” by inclusion of thermal relaxation and convective fluxes due to the phase transitions of CO 2, the major constituent of the Martian atmosphere. We perform stability analysis of the vortex, show that corresponding mean zonal flow is unstable, and simulate numerically non-linear saturation of the instability. We show in this way that, while non-linear adiabatic saturation of the instability tends to reorganize the vortex, the diabatic effects prevent this, and thus provide an explanation of the vortex form and longevity.

  9. Guests of Differing Polarities Provide Insight into Structural Requirements for Templates of Water-Soluble Nano-Capsules

    Science.gov (United States)

    Gibb, Corinne L. D.; Gibb, Bruce C.

    2009-01-01

    Guests covering a range of polarities were examined for their ability to bind to a water-soluble cavitand and trigger its assembly into a supramolecular capsule. Specifically the guests examined were: tridecane 2, 1-dodecanol 3, 2-nonyloxy ethanol (ethylene glycol monononyl ether) 4, 2-(2-hexyloxyethoxy) ethanol (Di(ethylene glycol) hexyl ether) 5, 2-[2-(2 propoxyethoxy)ethoxy] ethanol (Tri(ethylene glycol) propyl ether 6, and bis [2-(2-hydroxyethoxy)ethyl] ether (tetra(ethylene glycol)) 7. In this series, guest 6 proved to signify the boundary between assembly and the formation of 2:1 complexes, and simple 1:1 complexation. Thus, guests 2–5 formed relatively kinetically stable capsules, guest 6 formed a capsule that was unstable relative to the NMR timescale, and guest 7 formed a simple 1:1 complex. PMID:20606762

  10. Analytical polarization calculations beyond SLIM

    International Nuclear Information System (INIS)

    Barber, D.P.

    1989-01-01

    A comparison is made between the theories of Bell and Leinaas and of Derbenev and Kondratenko for the spin polarization in electron storage rings. A calculation of polarization in HERA using the program SMILE of Mane is presented

  11. The Case for Tetrahedral Oxy-subhydride (TOSH Structures in the Exclusion Zones of Anchored Polar Solvents Including Water

    Directory of Open Access Journals (Sweden)

    Klaus Oehr

    2014-11-01

    Full Text Available We hypothesize a mechanistic model of how negatively-charged exclusion zones (EZs are created. While the growth of EZs is known to be associated with the absorption of ambient photonic energy, the molecular dynamics giving rise to this process need greater elucidation. We believe they arise due to the formation of oxy-subhydride structures (OH−(H2O4 with a tetrahedral (sp3 (OH−(H2O3 core. Five experimental data sets derived by previous researchers were assessed in this regard: (1 water-derived EZ light absorbance at specific infrared wavelengths, (2 EZ negative potential in water and ethanol, (3 maximum EZ light absorbance at 270 nm ultraviolet wavelength, (4 ability of dimethyl sulphoxide but not ether to form an EZ, and (5 transitory nature of melting ice derived EZs. The proposed tetrahedral oxy-subhydride structures (TOSH appear to adequately account for all of the experimental evidence derived from water or other polar solvents.

  12. The development of a wide band dynamic polarization spectrometer. Applications to the study of spectra due to electronic spin interactions with free nitroxide radicals in the solid phase

    International Nuclear Information System (INIS)

    Jouve, Hubert

    1970-01-01

    A dynamic polarization spectrometer working over the 2-8 GHz range is described. An inverse and anisotropic Overhauser effect is obtained with nitroxide free radicals in the solid phase. This effect is studied as a function of the frequency for a group of nitroxide free radicals which exhibit very different exchange interactions. The results show that the effective spectral density of the interactions between electronic spins is very intense at low frequencies. At low temperature a considerable decrease in the effect is observed. This is explained by a saturation of the exchange reservoir. (author) [fr

  13. Measurement and Modelling of Phase Equilibrium of Oil - Water - Polar Chemicals

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup

    with the measurement of newexperimental data, but through the development of new experimental equipment for the study ofmulti-phase equilibrium. In addition to measurement of well-defined systems, LLE have beenmeasured for North Sea oils with MEG and water. The work can be split up into two parts: Experimental: VLE......-waterflooding process act primarily as thickeners. The main purpose of this work, focusing on the phase equilibrium of complex systems containingthermodynamic gas hydrate inhibitors, is to give a solid contribution in bridging the existing gaps inwhat experimental data is concerned. This was achieved not just...... systems presented, confirming the quality of theequipment. The equipment is used for measurement of VLE for several systems of interest; methane+ water, methane + methanol, methane + methanol + water and methane + MEG. Details dealing with the design, assembling and testing of new experimental equipment...

  14. Enhanced adsorption of phenol from water by a novel polar post-crosslinked polymeric adsorbent

    International Nuclear Information System (INIS)

    Zeng Xiaowei; Fan Yunge; Wu Guolin; Wang Chunhong; Shi Rongfu

    2009-01-01

    A novel post-crosslinked polymeric adsorbent PDM-2 was prepared by Friedel-Crafts reaction of pendant vinyl groups without external crosslinking agent. Both the specific surface area and the pore volume of starting copolymer PDM-1 increased significantly after post-crosslinking. Batch adsorption runs of phenol from aqueous solution onto PDM-1 and PDM-2 were investigated. Commercial macroporous resins XAD-4 and AB-8 were chosen as the comparison. Experimental results showed that isotherms of phenol adsorption onto these four polymeric adsorbents could be represented by Freundlich model reasonably. PDM-2 exhibited higher adsorption capacity of phenol than other three adsorbents, which resulted from synergistic effect of larger specific surface area and polar groups on the network. The adsorption process for phenol was proved to be exothermic and spontaneous in nature. Thermodynamic parameters such as Gibb's free energy (ΔG), change in enthalpy (ΔH) and change in entropy (ΔS) were calculated. Kinetics studies indicated that phenol uptake onto PDM-1 and PDM-2 followed the pseudo-second order model and the intraparticle diffusion process was a rate-controlling step. Column adsorption runs demonstrated that nearly 100% regeneration efficiency for PDM-2 by 3 BV industrial alcohol and the adsorbate phenol can be easily recovered by further distilling. Continuous column adsorption-regeneration cycles indicated negligible capacity loss of PDM-2 during operation.

  15. Experimental and analytical analysis of polarization and water transport behaviors of hydrogen alkaline membrane fuel cell

    Science.gov (United States)

    Huo, Sen; Zhou, Jiaxun; Wang, Tianyou; Chen, Rui; Jiao, Kui

    2018-04-01

    Experimental test and analytical modeling are conducted to investigate the operating behavior of an alkaline electrolyte membrane (AEM) fuel cell fed by H2/air (or O2) and explore the effect of various operating pressures on the water transfer mechanism. According to the experimental test, the cell performance is greatly improved through increasing the operating pressure gradient from anode to cathode which leads to significant liquid water permeation through the membrane. The high frequency resistance of the A901 alkaline membrane is observed to be relatively stable as the operating pressure varies based on the electrochemical impedance spectroscopy (EIS) method. Correspondingly, based on the modeling prediction, the averaged water content in the membrane electrode assembly (MEA) does not change too much which leads to the weak variation of membrane ohmic resistance. This reveals that the performance enhancement should give the credit to better electro-chemical reaction kinetics for both the anode and cathode, also prone by the EIS results. The reversion of water back diffusion direction across the membrane is also observed through analytical solution.

  16. Utilization of high energy electron beam in the treatment of drinking and waste water

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Borrely, S.I.; Morita, D.M.

    1991-08-01

    Samples of drinking water and waste water were irradiated using high energy electron beam with doses from 0.37kGy to 100kGy. Preliminary data show the removal of about 100% tri halomethanes (THM) in drinking water (concentration from 2.7 μg/1 to 45μg/1, 90% of the color of the Public Owned Wastewater Treatment Plant effluent and 87% of oil and grease of the cutting fluid waste water. (author)

  17. Optical absorption of carbon nanotube diodes: Strength of the electronic transitions and sensitivity to the electric field polarization

    Science.gov (United States)

    Mencarelli, Davide; Pierantoni, Luca; Rozzi, Tullio

    2008-03-01

    Aim of this work is to model electrostatically doped carbon nanotubes (CNT), which have recently proved to perform as ideal PN diodes, also showing photovoltaic properties. The new model is able to predict the optical absorption of semiconducting CNT as function of size and chirality. We justify theoretically, for the first time, the experimentally observed capability of CNTs to detect and select not only a well defined set of frequencies, as resulting from their discrete band structure, but also the polarization of the incident radiation. The analysis develops from an approach proposed in a recent contribution. The periodic structure of CNTs is formally modeled as a photonic crystal, that is characterized by means of numerical simulators. Longitudinal and transverse components of the electric field are shown to excite distinct interband transitions between well defined energy levels. Equivalently, for a given energy of the incident radiation, absorption may show polarization ratios strongly exceeding unity.

  18. Electron at the Surface of Water: Dehydrated or Not?

    Czech Academy of Sciences Publication Activity Database

    Uhlig, Frank; Maršálek, Ondřej; Jungwirth, Pavel

    2013-01-01

    Roč. 4, č. 2 (2013), s. 338-343 ISSN 1948-7185 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : hydrated electron * surface solvation * ab initio molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.687, year: 2013

  19. Insight into electronic, mechanical and transport properties of quaternary CoVTiAl: Spin-polarized DFT + U approach

    Energy Technology Data Exchange (ETDEWEB)

    Yousuf, Saleem, E-mail: nengroosaleem17@gmail.com; Gupta, D.C., E-mail: sosfizix@gmail.com

    2017-07-15

    Highlights: • 100% spin-polarized material important for the application in spintronics. • It is ferromagnetic and ductile in nature. • Shows semiconducting behavior with a band gap of 1.06 eV. • Possibly efficient high temperature thermoelectric material. - Abstract: We present a preliminary investigation of band structure and thermoelectric properties of new quaternary CoVTiAl Heusler alloy. Structural, magnetic property and 100% spin polarization of equiatomic CoVTiAl predicts ferromagnetic stable ground state. Band profile outlines the indirect semiconducting behavior in spin down channel with band gap of 1.06 eV, and the magnetic moment of 3 µ{sub B} in accordance with Slater-Pauling rule. To evaluate the accuracy of different approximations in predicting thermoelectric properties, the comparison with available experimental data is made which shows fair agreement for the transport coefficients. The high temperature (800 K) positive Seebeck coefficient of 73.71 µV/K describes the p-type character of the material with high efficiency due to highly influential semiconducting behavior around the Fermi level. Considering the combination of 100% spin-polarization, high Seebeck coefficient and large figure of merit, ferromagnetic semiconducting CoVTiAl may prove as a potential candidate for high temperature thermoelectrics and an ideal spin source material for spintronic applications.

  20. Ice Water Classification Using Statistical Distribution Based Conditional Random Fields in RADARSAT-2 Dual Polarization Imagery

    Science.gov (United States)

    Zhang, Y.; Li, F.; Zhang, S.; Hao, W.; Zhu, T.; Yuan, L.; Xiao, F.

    2017-09-01

    In this paper, Statistical Distribution based Conditional Random Fields (STA-CRF) algorithm is exploited for improving marginal ice-water classification. Pixel level ice concentration is presented as the comparison of methods based on CRF. Furthermore, in order to explore the effective statistical distribution model to be integrated into STA-CRF, five statistical distribution models are investigated. The STA-CRF methods are tested on 2 scenes around Prydz Bay and Adélie Depression, where contain a variety of ice types during melt season. Experimental results indicate that the proposed method can resolve sea ice edge well in Marginal Ice Zone (MIZ) and show a robust distinction of ice and water.

  1. ICE WATER CLASSIFICATION USING STATISTICAL DISTRIBUTION BASED CONDITIONAL RANDOM FIELDS IN RADARSAT-2 DUAL POLARIZATION IMAGERY

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2017-09-01

    Full Text Available In this paper, Statistical Distribution based Conditional Random Fields (STA-CRF algorithm is exploited for improving marginal ice-water classification. Pixel level ice concentration is presented as the comparison of methods based on CRF. Furthermore, in order to explore the effective statistical distribution model to be integrated into STA-CRF, five statistical distribution models are investigated. The STA-CRF methods are tested on 2 scenes around Prydz Bay and Adélie Depression, where contain a variety of ice types during melt season. Experimental results indicate that the proposed method can resolve sea ice edge well in Marginal Ice Zone (MIZ and show a robust distinction of ice and water.

  2. Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization

    DEFF Research Database (Denmark)

    Maurya, P. K.; Balbarini, Nicola; Møller, I.

    2018-01-01

    -permeability clay layer from a shallow aquifer. No contamination was expected in this part of the confined aquifer, and confirmation wells were drilled in the zone of increased water electrical conductivity derived from the geophysical results. Water samples from the new wells showed elevated concentrations......At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In this study, we have developed a new approach for characterizing contaminated sites through time......) estimation of hydraulic permeability directly from the inverted parameters using a laboratory-derived empirical equation without any calibration; (3) the use of the geophysical imaging results for supporting the geological modelling and planning of drilling campaigns. The new approach was tested on a data...

  3. Use of water stable isotopes in climatology and paleoclimatology illustrated from polar ice cores studies

    International Nuclear Information System (INIS)

    Jouzel, J.; Lorius, C.

    1994-01-01

    The isotopic content of ancient waters (deuterium and oxygen 18) gives a key access to past climatic changes. An essentially linear relationship exists between the isotopic content of a precipitation and the temperature of the site (at least for medium and high latitudes). This link between water isotope atmospheric cycle and climate is presented through various isotopic models and illustrated from the deuterium profile obtained along the Vostok ice core in East Antarctica. This 2 km record which covers a full glacial-interglacial cycle (160000 years) confirms the existence of a link between insolation changes and climate (Milankovitch theory). It shows also that the greenhouse effect has played a role in glacial-interglacial changes in amplifying this orbital forcing. (authors). 10 figs., 23 refs

  4. Electron tomography of (In,Ga)N insertions in GaN nanocolumns grown on semi-polar (112{sup -}2) GaN templates

    Energy Technology Data Exchange (ETDEWEB)

    Niehle, M., E-mail: niehle@pdi-berlin.de; Trampert, A., E-mail: trampert@pdi-berlin.de [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Albert, S.; Bengoechea-Encabo, A.; Calleja, E. [ISOM and Departamento de Ingeniería Electrónica, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2015-03-01

    We present results of scanning transmission electron tomography on GaN/(In,Ga)N/GaN nanocolumns (NCs) that grew uniformly inclined towards the patterned, semi-polar GaN(112{sup -}2) substrate surface by molecular beam epitaxy. For the practical realization of the tomographic experiment, the nanocolumn axis has been aligned parallel to the rotation axis of the electron microscope goniometer. The tomographic reconstruction allows for the determination of the three-dimensional indium distribution inside the nanocolumns. This distribution is strongly interrelated with the nanocolumn morphology and faceting. The (In,Ga)N layer thickness and the indium concentration differ between crystallographically equivalent and non-equivalent facets. The largest thickness and the highest indium concentration are found at the nanocolumn apex parallel to the basal planes.

  5. From urban municipalities to polar bioremediation: the characterisation and contribution of biogenic minerals for water treatment.

    Science.gov (United States)

    Freidman, Benjamin L; Northcott, Kathy A; Thiel, Peta; Gras, Sally L; Snape, Ian; Stevens, Geoff W; Mumford, Kathryn A

    2017-06-01

    Minerals of biological origin have shown significant potential for the separation of contaminants from water worldwide. This study details the contribution of biologically derived minerals to water treatment operations, with a focus on filtration media from urban municipalities and remote cold regions. The results support biofilm-embedded iron and manganese to be the building blocks of biogenic mineral development on activated carbon and nutrient-amended zeolites. The presence of similar iron and manganese oxidising bacterial species across all filter media supports the analogous morphologies of biogenic minerals between sites and suggests that biological water treatment processes may be feasible across a range of climates. This is the first time the stages of biogenic mineral formation have been aligned with comprehensive imaging of the biofilm community and bacterial identification; especially with respect to cold regions. Where biogenic mineral formation occurs on filter media, the potential exists for enhanced adsorption for a range of organic and inorganic contaminants and improved longevity of filter media beyond the adsorption or exchange capacities of the raw material.

  6. SI-traceable and dynamic reference gas mixtures for water vapour at polar and high troposphere atmospheric levels

    Science.gov (United States)

    Guillevic, Myriam; Pascale, Céline; Mutter, Daniel; Wettstein, Sascha; Niederhauser, Bernhard

    2017-04-01

    In the framework of METAS' AtmoChem-ECV project, new facilities are currently being developed to generate reference gas mixtures for water vapour at concentrations measured in the high troposphere and polar regions, in the range 1-20 µmol/mol (ppm). The generation method is dynamic (the mixture is produced continuously over time) and SI-traceable (i.e. the amount of substance fraction in mole per mole is traceable to the definition of SI-units). The generation process is composed of three successive steps. The first step is to purify the matrix gas, nitrogen or synthetic air. Second, this matrix gas is spiked with the pure substance using a permeation technique: a permeation device contains a few grams of pure water in liquid form and loses it linearly over time by permeation through a membrane. In a third step, to reach the desired concentration, the first, high concentration mixture exiting the permeation chamber is then diluted with a chosen flow of matrix gas with one or two subsequent dilution steps. All flows are piloted by mass flow controllers. All parts in contact with the gas mixture are passivated using coated surfaces, to reduce adsorption/desorption processes as much as possible. The mixture can eventually be directly used to calibrate an analyser. The standard mixture produced by METAS' dynamic setup was injected into a chilled mirror from MBW Calibration AG, the designated institute for absolute humidity calibration in Switzerland. The used chilled mirror, model 373LX, is able to measure frost point and sample pressure and therefore calculate the water vapour concentration. This intercomparison of the two systems was performed in the range 4-18 ppm water vapour in synthetic air, at two different pressure levels, 1013.25 hPa and 2000 hPa. We present here METAS' dynamic setup, its uncertainty budget and the first results of the intercomparison with MBW's chilled mirror.

  7. DESY: HERA polarization

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The new HERA electron-proton collider at DESY in Hamburg achieved the first luminosity for electron-proton collisions on 19 October last year. Only one month later, on 20 November, HERA passed another important milestone with the observation of transverse electron polarization

  8. Hierarchical super-structure identified by polarized light microscopy, electron microscopy and nanoindentation: Implications for the limits of biological control over the growth mode of abalone sea shells

    Directory of Open Access Journals (Sweden)

    Schneider Andreas S

    2012-09-01

    Full Text Available Abstract Background Mollusc shells are commonly investigated using high-resolution imaging techniques based on cryo-fixation. Less detailed information is available regarding the light-optical properties. Sea shells of Haliotis pulcherina were embedded for polishing in defined orientations in order to investigate the interface between prismatic calcite and nacreous aragonite by standard materialographic methods. A polished thin section of the interface was prepared with a defined thickness of 60 μm for quantitative birefringence analysis using polarized light and LC-PolScope microscopy. Scanning electron microscopy images were obtained for comparison. In order to study structural-mechanical relationships, nanoindentation experiments were performed. Results Incident light microscopy revealed a super-structure in semi-transparent regions of the polished cross-section under a defined angle. This super-structure is not visible in transmitted birefringence analysis due to the blurred polarization of small nacre platelets and numerous organic interfaces. The relative orientation and homogeneity of calcite prisms was directly identified, some of them with their optical axes exactly normal to the imaging plane. Co-oriented "prism colonies" were identified by polarized light analyses. The nacreous super-structure was also visualized by secondary electron imaging under defined angles. The domains of the super-structure were interpreted to consist of crystallographically aligned platelet stacks. Nanoindentation experiments showed that mechanical properties changed with the same periodicity as the domain size. Conclusions In this study, we have demonstrated that insights into the growth mechanisms of nacre can be obtained by conventional light-optical methods. For example, we observed super-structures formed by co-oriented nacre platelets as previously identified using X-ray Photo-electron Emission Microscopy (X-PEEM [Gilbert et al., Journal of the

  9. Spin-polarized structural, elastic, electronic and magnetic properties of half-metallic ferromagnetism in V-doped ZnSe

    Energy Technology Data Exchange (ETDEWEB)

    Monir, M. El Amine.; Baltache, H. [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria); Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria); Ahmed, Waleed K. [ERU, Faculty of Engineering, United Arab Emirates University, Al Ain (United Arab Emirates); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University of Setif, 19000 Setif (Algeria); Omran, S. Bin [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Seddik, T. [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria)

    2015-01-15

    Based on first principles spin-polarized density functional theory, the structural, elastic electronic and magnetic properties of Zn{sub 1−x}V{sub x}Se (for x=0.25, 0.50, 0.75) in zinc blende structure have been studied. The investigation was done using the full-potential augmented plane wave method as implemented in WIEN2k code. The exchange-correlation potential was treated with the generalized gradient approximation PBE-GGA for the structural and elastic properties. Moreover, the PBE-GGA+U approximation (where U is the Hubbard correlation terms) is employed to treat the “d” electrons properly. A comparative study between the band structures, electronic structures, total and partial densities of states and local moments calculated within both GGA and GGA+U schemes is presented. The analysis of spin-polarized band structure and density of states shows the half-metallic ferromagnetic character and are also used to determine s(p)-d exchange constants N{sub 0}α (conduction band ) and N{sub 0}β (valence band) due to Se(4p)–V(3d) hybridization. It has been clearly evidence that the magnetic moment of V is reduced from its free space change value of 3 µ{sub B} and the minor atomic magnetic moment on Zn and Se are generated. - Highlights: • Half metallicity origins by doping V in ZnSe. • PBE-GGA+U approximation is employed to treat the “d” electrons properly. • s(p)-d Exchange constants N{sub 0}α (conduction band ) and N{sub 0}β (valence band) are due to Se(4p)-V(3d) hybridization.

  10. Assessing the Impact of Climate Change on Land-Water-Ecosystem Quality in Polar and Mountainous Regions: A New Interregional Project (INT5153)

    International Nuclear Information System (INIS)

    Dercon, Gerd; Gerardo-Abaya, Jane; Mavlyudov, Bulat

    2014-01-01

    The INT5153 project aims to improve the understanding of the impact of climate change on fragile polar and mountainous ecosystems on both a local and global scale for their better management and conservation. Seven core and five related benchmark sites have been selected from different global regions for specific assessments of the impact of climate change with the following expected outcomes and outputs: Outcomes: • Improved understanding of the impact of climate change on the cryosphere in polar and mountainous ecosystems and its effects on landwater- ecosystem quality at both local and global scales. • Recommendations for improvement of regional policies for soil and agricultural water management, conservation, and environmental protection in polar and mountainous regions. Outputs: • Specific strategies to minimize the adverse effects of, and adapt to, reduced seasonal snow and glacier covered areas on land-water-ecosystem quality in polar and mountain regions across the world. • Enhanced interregional network of laboratories and institutions competent in the assessment of climate change impacts on the cryosphere and land-water-ecosystem quality, using isotopic and nuclear techniques. • Increased number of young scientists trained in the use of isotope and nuclear techniques to assess the impact of climate change on the cryosphere and land-water-ecosystem quality in polar and mountainous ecosystems. • Platform/database with global access for continuing work and monitoring of impact of climate change on fragile polar and mountainous ecosystems at local and global scales, as well as for communicating findings to policy makers and communities. • Improved understanding of the effects of climate change disseminated through appropriate publications, policy briefs, and through a dedicated internet platform. • Methodologies and protocols for investigations in specific ecosystems and conservation/adaptation measures for agriculture areas

  11. Material and device studies for the development of ultra-violet light emitting diodes (UV-LEDS) along polar, non-polar and semi-polar directions

    Science.gov (United States)

    Chandrasekaran, Ramya

    Over the past few years, significant effort was dedicated to the development of ultraviolet light emitting diodes (UV-LEDs) for a variety of applications. Such applications include chemical and biological detection, water purification and solid-state lighting. III-Nitride LEDs based on multiple quantum wells (MQWs) grown along the conventional [0001] (polar) direction suffer from the quantum confined Stark effect (QCSE), due to the existence of strong electric fields that arise from spontaneous and piezoelectric polarization. Thus, there is strong motivation to develop MQW-based III-nitride LED structures grown along non-polar and semi-polar directions. The goal of this dissertation is to develop UV-LEDs along the [0001] polar and [11 2¯ 0] non-polar directions by the method of Molecular Beam Epitaxy (MBE). The polar and non-polar LEDs were grown on the C-plane and R-plane sapphire substrates respectively. This work is a combination of materials science studies related to the nucleation, growth and n- and p-type doping of III-nitride films on these two substrates, as well as device studies related to fabrication and characterization of UV-LEDs. It was observed that the crystallographic orientation of the III-nitride films grown on R-plane sapphire depends strongly on the kinetic conditions of growth of the Aluminum Nitride (AIN) buffer. Specifically, growth of the AIN buffer under group III-rich conditions leads to nitride films having the (11 2¯ 0) non polar planes parallel to the sapphire surface, while growth of the buffer under nitrogen rich conditions leads to nitride films with the (11 2¯ 6) semi-polar planes parallel to the sapphire surface. The electron concentration and mobility for the films grown along the polar, non-polar and semi-polar directions were investigated. P-type doping of Gallium Nitride (GaN) films grown on the nonpolar (11 2¯ 0) plane do not suffer from polarity inversion and thus the material was doped p-type with a hole concentration

  12. Study of interface barrier of SiNx/GaN interface for nitrogen-polar GaN based high electron mobility transistors

    Science.gov (United States)

    Nidhi, Rajan, Siddharth; Keller, Stacia; Wu, Feng; DenBaars, Steven P.; Speck, James S.; Mishra, Umesh K.

    2008-06-01

    The SiNx/GaN interface barrier height for N-polar GaN based metal-insulator-semiconductor high electron mobility transistors (MISHEMTs) was investigated. N-polar SiNx/GaN/AlGaN/GaN MISHEMT structures with different GaN cap thicknesses were grown by metal-organic chemical vapor deposition. The properties of the SiNx/GaN interface are of critical importance to device operation and modeling in these devices. An analytical expression for the pinch-off voltage of the HEMT was obtained, and capacitance-voltage (C-V) measurements with different Schottky metals were used to extract the barrier height. The Fermi level at the interface was found to be pinned at approximately 1 eV with respect to GaN conduction band edge, irrespective of the work function of the gate metal. Hall measurements of the two-dimensional electron gas density were found to corroborate the predicted interface barrier height. An approximate value for interface charge causing this pinning was calculated to be 4.5×1012 cm-2.

  13. Solar-blind AlxGa1-xN/AlN/SiC photodiodes with a polarization-induced electron filter

    Science.gov (United States)

    Rodak, L. E.; Sampath, A. V.; Gallinat, C. S.; Chen, Y.; Zhou, Q.; Campbell, J. C.; Shen, H.; Wraback, M.

    2013-08-01

    Heterogeneous n-III-nitride/i-p silicon carbide (SiC) photodetectors have been demonstrated that enable the tailoring of the spectral response in the solar blind region below 280 nm. The negative polarization induced charge at the aluminum gallium nitride (AlxGa1-xN)/aluminum nitride (AlN) interface in conjunction with the positive polarization charge at the AlN/SiC interface creates a large barrier to carrier transport across the interface that results in the selective collection of electrons photoexcited to the Γ and L valleys of SiC while blocking the transport of electrons generated in the M valley. In addition, the AlxGa1-xN alloys act as transparent windows that enhance the collection of carriers generated by high energy photons in the fully depleted SiC absorption regions. These two factors combine to create a peak external quantum efficiency of 76% at 242 nm, along with a strong suppression of the long-wavelength response from 260 nm to 380 nm.

  14. Theoretical predictions for the polarization of the J = 0 - 1 neonlike germanium X-ray laser line in the presence of a directed beam of hot electrons

    International Nuclear Information System (INIS)

    Inal, M.K.; Dubau, J.; Cornille, M.

    1998-01-01

    The polarization of the neonlike germanium J = 0 - 1 laser line, which would arise from the existence of a directed beam of hot electrons in the amplifying plasma, is theoretically investigated. The relative populations of the magnetic sublevels in the lower J = 1 laser level have been determined by allowing for the processes of direct excitation from the 2p 6 ground level and collisional de-excitation from the upper J = 0 laser level. Elastic collisions leading to transitions between the M J = 0 and M J =1 sublevels within the lower level of the lasing line have also been taken into account. The required elastic and inelastic collision strengths for transitions between magnetic sublevels have been computed in a semi-relativistic distorted-wave approximation, for incident electron energies up to 15 keV. Our calculations predict a rather low degree of polarization for the J = 0 - 1 line, although the elastic collisions are found to play a negligibly small role in the redistribution of magnetic sublevel populations. (author)

  15. Polarization at the SLC

    Energy Technology Data Exchange (ETDEWEB)

    Moffeit, K.C.

    1988-10-01

    The Stanford Linear collider was designed to accommodate polarized electron beams. Longitudinally polarized electrons colliding with unpolarized positrons at a center of mass energy near the Z/sup 0/ mass can be used as novel and sensitive probes of the electroweak process. A gallium arsenide based photon emission source will provide a beam of longitudinally polarized electrons of about 45 percent polarization. A system of bend magnets and a superconducting solenoid will be used to rotate the spins so that the polarization is preserved while the 1.21 GeV electrons are stored in the damping ring. Another set of bend magnets and two superconducting solenoids orient the spin vectors so that longitudinal polarization of the electrons is achieved at the collision point with the unpolarized positrons. A system to monitor the polarization based on Moller and Compton scattering will be used. Nearly all major components have been fabricated and tested. Subsystems of the source and polarimeters have been installed, and studies are in progress. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. 8 refs., 16 figs., 1 tab.

  16. Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat

    Science.gov (United States)

    Durner, G.M.; Whiteman, J.P.; Harlow, H.J.; Amstrup, Steven C.; Regehr, E.V.; Ben-David, M.

    2011-01-01

    Polar bears (Ursus maritimus) prefer to live on Arctic sea ice but may swim between ice floes or between sea ice and land. Although anecdotal observations suggest that polar bears are capable of swimming long distances, no data have been available to describe in detail long distance swimming events or the physiological and reproductive consequences of such behavior. Between an initial capture in late August and a recapture in late October 2008, a radio-collared adult female polar bear in the Beaufort Sea made a continuous swim of 687 km over 9 days and then intermittently swam and walked on the sea ice surface an additional 1,800 km. Measures of movement rate, hourly activity, and subcutaneous and external temperature revealed distinct profiles of swimming and walking. Between captures, this polar bear lost 22% of her body mass and her yearling cub. The extraordinary long distance swimming ability of polar bears, which we confirm here, may help them cope with reduced Arctic sea ice. Our observation, however, indicates that long distance swimming in Arctic waters, and travel over deep water pack ice, may result in high energetic costs and compromise reproductive fitness. ?? 2011 US Government.

  17. Spin-polarized relativistic linear-muffin-tin-orbital method: Volume-dependent electronic structure and magnetic moment of plutonium

    International Nuclear Information System (INIS)

    Solovyev, I.V.; Liechtenstein, A.I.; Gubanov, V.A.; Antropov, V.P.; Andersen, O.K.

    1991-01-01

    The linear-muffin-tin-orbital method is generalized to the case of relativistic and spin-polarized self-consistent band calculations. Our formalism is analogous to the standard orthogonal--linear-muffin-tin-orbital formalism, except that the potential functions and the potential parameters are now matrices. The method is used to perform density-functional calculations for fcc plutonium with different atomic volumes. The formation of spin and orbital magnetic moments, as well as the changes in the energy bands for volume changes corresponding to the α-δ transition, are investigated. The calculated magnetic moments agree quite well with the experimental ones

  18. Holographic Measurements of Electron-Beam Dose Distributions Around Inhomogeneities in Water

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1976-01-01

    Dose distribution measurements made in a small quartz cell filled with water, and with an Al rod placed in the water are reported. The cell was irradiated vertically from above with monoenergetic 3 MeV electrons from a Van de Graaff accelerator. The holographic interferometric method previously...

  19. Polarization at SLC

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs

  20. VESPA-22: a ground-based microwave spectrometer for long-term measurements of polar stratospheric water vapor

    Science.gov (United States)

    Mevi, Gabriele; Muscari, Giovanni; Bertagnolio, Pietro Paolo; Fiorucci, Irene; Pace, Giandomenico

    2018-02-01

    The new ground-based 22 GHz spectrometer, VESPA-22 (water Vapor Emission Spectrometer for Polar Atmosphere at 22 GHz) measures the 22.23 GHz water vapor emission line with a bandwidth of 500 MHz and a frequency resolution of 31 kHz. The integration time for a measurement ranges from 6 to 24 h, depending on season and weather conditions. Water vapor spectra are collected using the beam-switching technique. VESPA-22 is designed to operate automatically with little maintenance; it employs an uncooled front-end characterized by a receiver temperature of about 180 K and its quasi-optical system presents a full width at half maximum of 3.5°. Every 30 min VESPA-22 measures also the sky opacity using the tipping curve technique. The instrument calibration is performed automatically by a noise diode; the emission temperature of this element is estimated twice an hour by observing alternatively a black body at ambient temperature and the sky at an elevation of 60°. The retrieved profiles obtained inverting 24 h integration spectra present a sensitivity larger than 0.8 from about 25 to 75 km of altitude during winter and from about 30 to 65 km during summer, a vertical resolution from about 12 to 23 km (depending on altitude), and an overall 1σ uncertainty lower than 7 % up to 60 km altitude and rapidly increasing to 20 % at 75 km. In July 2016, VESPA-22 was installed at the Thule High Arctic Atmospheric Observatory located at Thule Air Base (76.5° N, 68.8° W), Greenland, and it has been operating almost continuously since then. The VESPA-22 water vapor mixing ratio vertical profiles discussed in this work are obtained from 24 h averaged spectra and are compared with version 4.2 of concurrent Aura/Microwave Limb Sounder (MLS) water vapor vertical profiles. In the sensitivity range of VESPA-22 retrievals, the intercomparison from July 2016 to July 2017 between VESPA-22 dataset and Aura/MLS dataset convolved with VESPA-22 averaging kernels shows an average difference

  1. A new water-based topical carrier with polar skin-lipids

    Directory of Open Access Journals (Sweden)

    Ringstad Lovisa

    2006-05-01

    Full Text Available Abstract A new water-based topical formulation is presented that aims at providing good penetration properties for both lipophilic and hydrophilic drugs with as small a disturbance of the skin barrier function as possible. The formulation contains dispersed lipids in a ratio resembling that of human skin. The capacity to deliver is addressed in this first study while the mild effect on skin will be presented later. Three variations of the lipid formulation were investigated by use of pigskin in vitro diffusion cell. The hydrophilic 5(6-carboxyfluorescein (CF and the lipophilic acridine orange 10-nonyl bromide (AO were used as model drug substances. The results showed that the delivery properties of the new formulation exceeded that of the references (vaseline and xanthan gum gel. The effect was largest for lipophilic AO where all lipid matrix formulations were superior in amount detected in the skin. The results for the hydrophilic CF were also promising. Especially efficient was the lipid formulation containing the non-ionic adjuvants tetra ethylene glycol monododecyl ether and polyoxyethylene 23 dodecyl ether. The additional in vivo study suggests that the used in vitro model has qualitative bearing on relevant in vivo situations.

  2. Degradation of pollutants and elimination of pathogens of waste water by adsorption of accelerated electrons

    International Nuclear Information System (INIS)

    Martinez M, I.

    1991-10-01

    This report presents a position of the pollutants degradation of the industrial residual waters, it intends a method that consists on making pass residual water, treated biologically by a packed column with activated carbon. The carbon retains the pollutants and the water goes out with a purity that allows the reuse. In simultaneous form to the adsorption of pollutants are made pass electrons through the column of carbon, the electrons will destroy to the polluting adsorbed in the carbon; the pollutants degrade until CO 2 that escapes as gas. The active sites of the carbon are empty and clever to be occupied by other pollutants. This process is continuous and it is repeated while water is passing by the column and electrons through this. (Author)

  3. Electron beam absorption in solid and in water phantoms: depth scaling and energy-range relations

    International Nuclear Information System (INIS)

    Grosswendt, B.; Roos, M.

    1989-01-01

    In electron dosimetry energy parameters are used with values evaluated from ranges in water. The electron ranges in water may be deduced from ranges measured in solid phantoms. Several procedures recommended by national and international organisations differ both in the scaling of the ranges and in the energy-range relations for water. Using the Monte Carlo method the application of different procedures for electron energies below 10 MeV is studied for different phantom materials. It is shown that deviations in the range scaling and in the energy-range relations for water may accumulate to give energy errors of several per cent. In consequence energy-range relations are deduced for several solid phantom materials which enable a single-step energy determination. (author)

  4. Transmission electron microscopy characterization of photocatalysts for water splitting

    DEFF Research Database (Denmark)

    Cavalca, Filippo; Laursen, Anders Bo; Dahl, Søren

    , it is necessary to understand the fundamentals of their reaction mechanisms, chemical behavior, structure and morphology before, during and after reaction using in situ investigations. Here, we focus on the in situ characterization of photocatalysts [1] in an environmental transmission electron microscope (ETEM......) [2]. Such fundamental insight can be used for further material optimization with respect to performance and stability [3]. In this work, we combine conventional TEM analysis of photocatalysts with environmental TEM (ETEM) and photoactivation using light. A novel type of TEM specimen holder...... that enables in situ illumination is developed to study light-induced phenomena in photoactive materials at the nanoscale under working conditions. Our experiments are aimed at exposing a specimen to light and detecting resulting microstructural and chemical changes using in situ TEM techniques...

  5. Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes**

    Science.gov (United States)

    Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Fleig, Jürgen; Klötzer, Bernhard

    2015-01-01

    In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6Sr0.4FeO3−δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe0 on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity. PMID:25557533

  6. Study of an efficient application of the tagged bremsstrahlung in double-polarization experiments in the GeV range and the use of the inelastic electron scattering under extremely forward angles as alternative to the tagged bremsstrahlung

    International Nuclear Information System (INIS)

    Konrad, M.

    2006-03-01

    For the preparation of photonic probes for hadron physics the determination of energy and polarization of the photons is essential. In this dissertation in a first part a possibility of the determination of the degree of polarization by use of the asymmetry observables is presented. In a second part a possibility isd discussed to perform an energy and polarization tagging of nearly real photons in electron scattering under small Q 2 . By this method it should be possible to tag billions of photons per second

  7. Four-Component Polarization Propagator Calculations of Electron Excitations: Spectroscopic Implications of Spin-Orbit Coupling Effects.

    Science.gov (United States)

    Pernpointner, Markus; Visscher, Lucas; Trofimov, Alexander B

    2018-02-05

    A complete implementation of the polarization propagator based on the Dirac-Coulomb Hamiltonian is presented and applied to excitation spectra of various systems. Hereby the effect of spin-orbit coupling on excitation energies and transition moments is investigated in detail. The individual perturbational contributions to the transition moments could now be separately analyzed for the first time and show the relevance of one- and two-particle terms. In some systems different contributions to the transition moments partially cancel each other and do not allow for simple predictions. For the outer valence spectrum of the H 2 Os(CO) 4 complex a detailed final state analysis is performed explaining the sensitivity of the excitation spectrum to spin-orbit effects. Finally, technical issues of handling double group symmetry in the relativistic framework and methodological aspects of our parallel implementation are discussed.

  8. Device for geophysical prospecting of ore deposits. [for deposits featuring electronic conductivity; based on polarization curves to determine electrochemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Ryss, J.M.; Bakhtin, J.G.; Chamaev, V.N.; Panteleimonov, V.M.

    1976-03-30

    A device is described for geophysical prospecting of ore deposits, wherein the supply circuit is made up of a direct-current source provided with apparatus for changing current intensity, a main current-carrying electrode having electrical contact with an ore body, and an auxiliary current-carrying electrode electrically connected with the medium enclosing said ore body. Connected in said supply circuit at the main current carrying electrode is a current intensity detector connected whereto is a series circuit made up of a compensating voltage generator, a summing unit and a unit for measuring the potentials of electrochemical reactions on the surface of the ore body. A recording unit is connected to the unit for setting values of the potentials of electrochemical reactions and to record in the form of polarization curves the relationships between the set potentials of electrochemical reactions on the surface of the ore body and the currents flowing through the surface of that body. (DDA)

  9. The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: the neXT generation

    Science.gov (United States)

    Engelmann, Ronny; Kanitz, Thomas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Skupin, Annett; Wandinger, Ulla; Komppula, Mika; Stachlewska, Iwona S.; Amiridis, Vassilis; Marinou, Eleni; Mattis, Ina; Linné, Holger; Ansmann, Albert

    2016-04-01

    The atmospheric science community demands autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from the EARLINET community, involvement in worldwide field campaigns, and international institute collaborations within the last 10 years. Here we present recent changes of the setup of the portable multiwavelength Raman and polarization lidar PollyXT and discuss the improved capabilities of the system by means of a case study. The latest system developments include an additional near-range receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization ratio at 355 and 532 nm. Quality improvements were achieved by systematically following the EARLINET guidelines and the international PollyNET quality assurance developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows for 24/7 monitoring of the atmospheric state with PollyXT.

  10. Cationic-surfactant transfer facilitated by DNA adsorbed on a polarized 1,2-dichloroethane/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Osakai, T [Department of Chemistry, Faculty of Science, Kobe University, Nada, Kobe 657-8501 (Japan); Komatsu, H [Department of Chemistry, Faculty of Science, Kobe University, Nada, Kobe 657-8501 (Japan); Goto, M [Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395 (Japan)

    2007-09-19

    The voltammetric behaviour of high-molecular-weight DNA at a polarized 1,2-dichloroethane/water (DCE/W) interface was investigated in the presence of a cationic surfactant, dimethyldistearylammonium in DCE. A well-developed adsorption wave was obtained for salmon sperm DNA (purified) and herring sperm DNA (commercial and purified). The peak current showed a Langmuir-type dependence on the DNA concentration. The half-peak width was relatively small ({approx}30 mV). To explain the voltammetric behaviour, a reaction model was proposed, in which the transfer of surfactant ions from DCE to W is facilitated by DNA adsorbed on the DCE/W interface. Theoretical simulation of the voltammetric wave was performed by assuming a Frumkin isotherm for the DNA-surfactant binding. When the interaction parameter g{sup '} was set to be 2, the theoretical value (38 mV) for the half-peak width was closest to the experimental value of {approx}30 mV. The g{sup '} value of 2 suggested that there were strongly attractive interactions among the surfactant ions on DNA.

  11. On magnetospheric electron impact ionisation and dynamics in Titan's ram-side and polar ionosphere – a Cassini case study

    Directory of Open Access Journals (Sweden)

    G. R. Lewis

    2007-11-01

    Full Text Available We present data from the sixth Cassini flyby of Titan (T5, showing that the magnetosphere of Saturn strongly interacts with the moon's ionosphere and exo-ionosphere. A simple electron ionisation model provides a reasonable agreement with the altitude structure of the ionosphere. Furthermore, we suggest that the dense and cold exo-ionosphere (from the exobase at 1430 km and outward to several Titan radii from the surface can be explained by magnetospheric forcing and other transport processes whereas exospheric ionisation by impacting low energy electrons seems to play a minor role.

  12. A voltammetric electronic tongue as tool for water quality monitoring in wastewater treatment plants.

    Science.gov (United States)

    Campos, Inmaculada; Alcañiz, Miguel; Aguado, Daniel; Barat, Ramón; Ferrer, José; Gil, Luis; Marrakchi, Mouna; Martínez-Mañez, Ramón; Soto, Juan; Vivancos, José-Luis

    2012-05-15

    The use of a voltammetric electronic tongue as tool for the prediction of concentration levels of certain water quality parameters from influent and effluent wastewater from a Submerged Anaerobic Membrane Bioreactor pilot plant applied to domestic wastewater treatment is proposed here. The electronic tongue consists of a set of noble (Au, Pt, Rh, Ir, and Ag) and non-noble (Ni, Co and Cu) electrodes that were housed inside a stainless steel cylinder which was used as the body of the electronic tongue system. As a previous step an electrochemical study of the response of the ions sulphate, orthophosphate, acetate, bicarbonate and ammonium was carried out in water using the electrodes contained in the electronic tongue. The second part of the work was devoted to the application of the electronic tongue to the characterization of the influent and effluent waters from the wastewater treatment plant. Partial Least Squares analysis was used to obtain a correlation between the data from the tongue and the pollution parameters measured in the laboratory such as soluble chemical oxygen demand (CODs), soluble biological oxygen demand (BODs), ammonia (NH(4)-N), orthophosphate (PO(4)-P), Sulphate (SO(4)-S), acetic acid (HAC) and alkalinity (Alk). A total of 28 and 11 samples were used in the training and the validation steps, respectively, for both influent and effluent water samples. The electronic tongue showed relatively good predictive power for the determination of BOD, COD, NH(4)-N, PO(4)-P, SO(4)-S, and Alk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Measurements of absorbed energy distributions in water from pulsed electron beams

    International Nuclear Information System (INIS)

    Devanney, J.A.

    1974-01-01

    An evaluation of the use of a holographic interferometer to measure the energy deposition as a function of depth in water from pulsed electron beams, together with a brief description of the interferometer and the technique of generating a hologram are presented. The holographic interferometer is used to measure the energy deposition as a function of depth in water from various pulsed beams of monoenergetic electrons in the energy range from 1.0 to 2.5 MeV. These results are compared to those computed by using a Monte Carlo radiation transport code, ETRAN-15, for the same electron energies. After the discrepancies between the measured and computed results are evaluated, reasonable agreement is found between the measured and computed absorbed energy distributions as a function of depth in water. An evalutation of the response of the interferometer as a function of electron intensities is performed. A comparison among four energy deposition curves that result from the irradiation of water with pulsed electron beams from a Febetron accelerator, model 705, is presented. These pulsed beams were produced by the same vacuum diode with the same charging voltage. The results indicate that the energy distribution of the electrons in the pulsed beam is not always constant. A comparison of the energy deposition curves that result from the irradiation of water with electron pulses from different vacuum diodes but the same charging voltage is presented. These results indicate again that the energy distribution of the electrons in the pulsed beam may vary between vacuum diodes. These differences would not be realized by using a totally absorbing metal calorimeter and Faraday Cup

  14. Optical properties of InN nanocolumns: Electron accumulation at InN non-polar surfaces and dependence on the growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Segura-Ruiz, J.; Cantarero, A. [Materials Science Institute, University of Valencia (Spain); Garro, N. [Materials Science Institute, University of Valencia (Spain); Fundacio General de la Universitat de Valencia, Valencia (Spain); Iikawa, F. [Instituto de Fisica ' ' Gleb Wataghin' ' , UNICAMP, Campinas-SP (Brazil); Denker, C.; Malindretos, J.; Rizzi, A. [IV. Physikalisches Institut, Georg-August Universitaet Goettingen (Germany)

    2009-06-15

    InN nanocolumns grown by plasma-assisted molecular beam epitaxy have been studied by photoluminescence (PL) and photoluminescence excitation (PLE). The PL peak energy was red-shifted with respect to the PLE onset and both energies were higher than the low temperature band-gap reported for InN. PL and PLE experiments for different excitation and detection energies indicated that the PL peaks were homogeneously broadened. This overall phenomenology has been attributed to the effects of an electron accumulation layer present at the non-polar surfaces of the InN nanocolumns. Variations in the growth conditions modify the edge of the PLE spectra and the PL peak energies evidencing that the density of free electrons can be somehow controlled by the growth parameters. It was observed that In-BEP and substrate temperature leading to shorter In diffusion lengths diminished the effects of the electron accumulation layer on the optical properties. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Optical properties of InN nanocolumns: Electron accumulation at InN non-polar surfaces and dependence on the growth conditions

    International Nuclear Information System (INIS)

    Segura-Ruiz, J.; Cantarero, A.; Garro, N.; Iikawa, F.; Denker, C.; Malindretos, J.; Rizzi, A.

    2009-01-01

    InN nanocolumns grown by plasma-assisted molecular beam epitaxy have been studied by photoluminescence (PL) and photoluminescence excitation (PLE). The PL peak energy was red-shifted with respect to the PLE onset and both energies were higher than the low temperature band-gap reported for InN. PL and PLE experiments for different excitation and detection energies indicated that the PL peaks were homogeneously broadened. This overall phenomenology has been attributed to the effects of an electron accumulation layer present at the non-polar surfaces of the InN nanocolumns. Variations in the growth conditions modify the edge of the PLE spectra and the PL peak energies evidencing that the density of free electrons can be somehow controlled by the growth parameters. It was observed that In-BEP and substrate temperature leading to shorter In diffusion lengths diminished the effects of the electron accumulation layer on the optical properties. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Study of the motion of electrons in non polar classical liquids. Measurement of Hall effect and f.i.r. search for low energy traps: progress report

    International Nuclear Information System (INIS)

    1981-01-01

    During the last year the first measurements were obtained of the Hall mobility of electrons injected in an insulating non polar liquid (tetramethyl silane). The resulting Hall mobility appears to be approx. 10% higher than the drift mobility measured on the same sample. We are completing a data acquisition system to be able to correct for several experimental errors that became apparent due, e.g., to the random fluctuations of accelerator current, the nonhomogeneity of the applied electric fields, etc. Theoretical work aimed at the understanding of the observed electric field induced increase of the electron capture rate constant by N 2 O dissolved in Ar and Xe was carried out. Similarly to the conclusions reached in the case of O 2 and SF 6 the Stark effect is responsible for the electric field induced changes of the capture probability. Finally a large portion of the equipment necessary for the f.i.r. photoconductivity experiment was constructed. During its testing it became obvious that changes of design were needed because the major source of noise is not expected to be detector noise but instead, shot noise associated with the main electron current

  17. Barrier reduction via implementation of InGaN interlayer in wafer-bonded current aperture vertical electron transistors consisting of InGaAs channel and N-polar GaN drain

    International Nuclear Information System (INIS)

    Kim, Jeonghee; Laurent, Matthew A.; Li, Haoran; Lal, Shalini; Mishra, Umesh K.

    2015-01-01

    This letter reports the influence of the added InGaN interlayer on reducing the inherent interfacial barrier and hence improving the electrical characteristics of wafer-bonded current aperture vertical electron transistors consisting of an InGaAs channel and N-polar GaN drain. The current-voltage characteristics of the transistors show that the implementation of N-polar InGaN interlayer effectively reduces the barrier to electron transport across the wafer-bonded interface most likely due to its polarization induced downward band bending, which increases the electron tunneling probability. Fully functional wafer-bonded transistors with nearly 600 mA/mm of drain current at V GS  = 0 V and L go  = 2 μm have been achieved, and thus demonstrate the feasibility of using wafer-bonded heterostructures for applications that require active carrier transport through both materials

  18. Electronic structure and polar catastrophe at the surface of LixCoO2 studied by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Okamoto, Y.; Matsumoto, R.; Yagihara, T.; Iwai, C.; Miyoshi, K.; Takeuchi, J.; Horiba, K.; Kobayashi, M.; Ono, K.; Kumigashira, H.; Saini, N. L.; Mizokawa, T.

    2017-09-01

    We report an angle-resolved photoemission spectroscopy (ARPES) study of LixCoO2 single crystals which have a hole-doped CoO2 triangular lattice. Similar to NaxCoO2 , the Co 3 d a1 g band crosses the Fermi level with strongly renormalized band dispersion while the Co 3 d eg' bands are fully occupied in LixCoO2 (x =0.46 and 0.71). At x =0.46 , the Fermi surface area is consistent with the bulk hole concentration indicating that the ARPES result represents the bulk electronic structure. On the other hand, at x =0.71 , the Fermi surface area is larger than the expectation which can be associated with the inhomogeneous distribution of Li reported in the previous scanning tunneling microscopy study by Iwaya et al. [Phys. Rev. Lett. 111, 126104 (2013), 10.1103/PhysRevLett.111.126104]. However, the Co 3 d peak is systematically shifted towards the Fermi level with hole doping excluding phase separation between hole rich and hole poor regions in the bulk. Therefore, the deviation of the Fermi surface area at x =0.71 can be attributed to hole redistribution at the surface avoiding polar catastrophe. The bulk Fermi surface of Co 3 d a1 g is very robust around x =0.5 even in the topmost CoO2 layer due to the absence of the polar catastrophe.

  19. Polarized laser selective excitation and electron paramagnetic resonance of Er3+ centers in SrLaAlO4 crystals

    NARCIS (Netherlands)

    Wells, J. P. R.; Yamaga, M.; Mosses, R. W.; Han, T. P. J.; Gallagher, H. G.; Yosida, T.

    2000-01-01

    The crystal growth and optical and magnetic spectroscopies of perovskite phase, strontium lanthanium aluminate (SrLaAlO4) doped with trivalent erbium ape reported. Electron paramagnetic resonance of SrLaAlO4:1% Er3+ identifies two distinct Er3+ ion centers in this material: a tetragonal (C-4v)

  20. Strain effects on the spin polarized electron gas in ABO3/SrTiO3 (A = Pr, Nd and B = Al, Ga) heterostructures

    KAUST Repository

    Nazir, Safdar

    2013-04-11

    The spin polarized two dimensional electron gas in the correlated ABO3/SrTiO3 (A = Pr, Nd and B = Al, Ga) heterostructures is investigated by ab-initio calculations using density functional theory. Structural relaxation shows a strong buckling at and near the TiO2 terminated n-type interface (IFs) due to significant TiO6 octahedral distortions. We find in all cases, metallic states in a very narrow region of the SrTiO3, in agreement with experimental results. We demonstrate that the interface magnetism strongly reacts to the magnitude of the lattice strain. The orbital occupations and, hence, the charge carrier density change systematically as a function of the lattice mismatch between the component materials.

  1. Electrical properties of N-polar AlGaN/GaN high electron mobility transistors grown on SiC by metalorganic chemical vapor deposition

    Science.gov (United States)

    Brown, David F.; Chu, Rongming; Keller, Stacia; DenBaars, Steven P.; Mishra, Umesh K.

    2009-04-01

    N-polar high electron mobility transistors (HEMTs) were fabricated from GaN/AlGaN/GaN heterostructures grown on n-type vicinal C-face SiC substrates by metalorganic chemical vapor deposition. The heterostructures had a sheet charge density and mobility of 6.6×1012 cm-2 and 1370 cm2 V-1 s-1, respectively. HEMTs with a gate length of 0.7 μm had a peak transconductance of 135 mS/mm, a peak drain current of 0.65 A/mm, and a three-terminal breakdown voltage greater than 150 V. At a drain bias of 20 V, the current-gain and power-gain cutoff frequencies with the pad capacitances de-embedded were 17 and 33 GHz, respectively.

  2. Electronic-structure origin of the anisotropic thermopower of nanolaminated Ti3SiC2 determined by polarized x-ray spectroscopy and Seebeck measurements

    Science.gov (United States)

    Magnuson, Martin; Mattesini, Maurizio; Nong, Ngo Van; Eklund, Per; Hultman, Lars

    2012-05-01

    Nanolaminated materials exhibit characteristic magnetic, mechanical, and thermoelectric properties, with large contemporary scientific and technological interest. Here we report on the anisotropic Seebeck coefficient in nanolaminated Ti3SiC2 single-crystal thin films and trace the origin to anisotropies in element-specific electronic states. In bulk polycrystalline form, Ti3SiC2 has a virtually zero Seebeck coefficient over a wide temperature range. In contrast, we find that the in-plane (basal ab) Seebeck coefficient of Ti3SiC2, measured on single-crystal films, has a substantial and positive value of 4-6 μV/K. Employing a combination of polarized angle-dependent x-ray spectroscopy and density functional theory we directly show electronic structure anisotropy in inherently nanolaminated Ti3SiC2 single-crystal thin films as a model system. The density of Ti 3d and C 2p states at the Fermi level in the basal ab plane is about 40% higher than along the c axis. The Seebeck coefficient is related to electron and hole-like bands close to the Fermi level, but in contrast to ground state density functional theory modeling, the electronic structure is also influenced by phonons that need to be taken into account. Positive contribution to the Seebeck coefficient of the element-specific electronic occupations in the basal plane is compensated by 73% enhanced Si 3d electronic states across the laminate plane that give rise to a negative Seebeck coefficient in that direction. Strong phonon vibration modes with three to four times higher frequency along the c axis than along the basal ab plane also influence the electronic population and the measured spectra by the asymmetric average displacements of the Si atoms. These results constitute experimental evidence explaining why the average Seebeck coefficient of Ti3SiC2 in polycrystals is negligible over a wide temperature range. This allows the origin of anisotropy in physical properties of nanolaminated materials to be traced

  3. Impact of electronic faucets and water quality on the occurrence of Pseudomonas aeruginosa in water: a multi-hospital study.

    Science.gov (United States)

    Charron, Dominique; Bédard, Emilie; Lalancette, Cindy; Laferrière, Céline; Prévost, Michèle

    2015-03-01

    To compare Pseudomonas aeruginosa prevalence in electronic and manual faucets and assess the influence of connecting pipes and water quality. Faucets in 4 healthcare centers in Quebec, Canada. Water samples from 105 electronic, 90 manual, and 14 foot-operated faucets were analyzed for P. aeruginosa by culture and enzymatic detection, and swab samples from drains and aerators were analyzed by culture. Copper and residual chlorine concentrations, temperature, and flow rate were measured. P. aeruginosa concentrations were analyzed in 4 consecutive volumes of cold water and a laboratory study was conducted on copper pipes and flexible hoses. P. aeruginosa contamination was found in drains more frequently (51%) than in aerators (1%) or water (culture: 4%, enzyme detection: 16%). Prevalence in water samples was comparable between manual (14%) and 2 types of electronic faucets (16%) while higher for foot-operated faucets (29%). However, type 2 electronic faucets were more often contaminated (31%) than type 1 (14%), suggesting that faucet architecture and mitigated volume (30 mL vs 10 mL) influence P. aeruginosa growth. Concentrations were 100 times higher in the first 250 mL than after flushing. Flexible hoses were more favorable to P. aeruginosa growth than copper and a temperature of 40°C led to higher counts. The types of faucets and connecting pipes, flow rate, and water quality are important parameters influencing the prevalence and the concentrations of P. aeruginosa in faucets. High concentrations of P. aeruginosa in the first 250 mL suggest increased risk of exposure when using the first flush.

  4. Separation of three polar compounds from Rheum tanguticum by high-speed countercurrent chromatography with an ethyl acetate/glacial acetic acid/water system.

    Science.gov (United States)

    Chen, Tao; Wang, Ping; Wang, Nana; Sun, Chongyang; Yang, Xue; Li, Hongmei; Zhou, Guoying; Li, Yulin

    2018-01-13

    The separation of polar compounds by high-speed countercurrent chromatography is still regarded as a challenge. In this study, an efficient strategy for the separation of three polar compounds from Rheum tanguticum has been successfully conducted by using high-speed countercurrent chromatography. X-5 macroporous resin chromatography was used for the fast enrichment of the target compounds. Then, the target fraction was directly introduced into high-speed countercurrent chromatography for separation using ethyl acetate/glacial acetic acid/water (100:1:100, v/v/v) as the solvent system. Consequently, three polar compounds including gallic acid, catechin, and gallic acid 4-O-β-d-(6'-O-galloyl) glucoside were obtained with purities higher than 98%. The results showed glacial acetic acid could be such an appropriate regulator for the ethyl acetate/water system. This study provides a reference for the separation of polar compounds from natural products by high-speed countercurrent chromatography. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Accurate measurement of electron beam polarization using Compton effect at TJNAF for the experiments G{sup p}{sub E} and N-{delta}; Mesure precise de la polarisation du faisceau d'electrons a TJNAF par polarimetrie compton pour les experiences G{sup p}{sub E} et N-{delta}

    Energy Technology Data Exchange (ETDEWEB)

    Escoffier, St

    2001-10-01

    This work deals with electron beam polarization measurements using Compton effect at TJNAF, for experiments of the proton electromagnetic form factors measurement and for nucleon response functions determination in the pion electroproduction reaction near the {delta}(1232) region. The Compton polarimeter, whose principle is built on elastic electron-photon scattering, was designed and built around a high finesse Fabry-Perot cavity (finesse = 25000). The incident Nd:YAG laser power is amplified by an optical cavity which provides a luminosity such as the statistical uncertainty on the electron polarization measurement is at the level of 1% in one hour. Using Pound-Drever method, laser frequency is locked on one of interferometer resonance frequencies. Circularly photon polarization inside the optical cavity was measured to be 99.6+/-0.45%. The electron beam polarization is deduced from the measurements of the photon polarization, experimental asymmetry and analysing power of our detector. The analysing power is determined by a measurement of the response function of the photon detector, composed of 25 PbWO{sub 4} crystals, thanks to coincidence events detected with the electron detector made up of 4 plans of 48 silicon strips. Measurement uncertainties come meanly from detector's response function modelling, pile up effect and photon beam polarization. Total relative uncertainty on the electron beam polarization measurement is about 1.4% for 40 minutes data taking. Moreover, the Compton polarimeter allows to estimate the electron helicity difference between two polarization reversals. This effect was found compatible with zero at 0.3%. (author)

  6. Spatial profiles of electron and metastable atom densities in positive polarity fast ionization waves sustained in helium

    International Nuclear Information System (INIS)

    Weatherford, Brandon R.; Barnat, E. V.; Xiong, Zhongmin; Kushner, Mark J.

    2014-01-01

    Fast ionization waves (FIWs), often generated with high voltage pulses over nanosecond timescales, are able to produce large volumes of ions and excited states at moderate pressures. The mechanisms of FIW propagation were experimentally and computationally investigated to provide insights into the manner in which these large volumes are excited. The two-dimensional structure of electron and metastable densities produced by short-pulse FIWs sustained in helium were measured using laser-induced fluorescence and laser collision-induced fluorescence diagnostics for times of 100–120 ns after the pulse, as the pressure was varied from 1 to 20 Torr. A trend of center-peaked to volume-filling to wall-peaked electron density profiles was observed as the pressure was increased. Instantaneous FIW velocities, obtained from plasma-induced emission, ranged from 0.1 to 3 × 10 9  cm s −1 , depending on distance from the high voltage electrode and pressure. Predictions from two-dimensional modeling of the propagation of a single FIW correlated well with the experimental trends in electron density profiles and wave velocity. Results from the model show that the maximum ionization rate occurs in the wavefront, and the discharge continues to propagate forward after the removal of high voltage from the powered electrode due to the potential energy stored in the space charge. As the pressure is varied, the radial distribution of the ionization rate is shaped by changes in the electron mean free path, and subsequent localized electric field enhancement at the walls or on the centerline of the discharge.

  7. Polarization of Bremsstrahlung

    International Nuclear Information System (INIS)

    Miller, J.

    1957-01-01

    The numerical results for the polarization of Bremsstrahlung are presented. The multiple scattering of electrons in the target is taken into account. The angular-and photon energy dependences are seen on the curves for an incident 25 MeV electron energy. (Author) [fr

  8. Verification of surface polarity of O-face ZnO(0 0 0 1{sup Macron }) by quantitative modeling analysis of Auger electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Su, C.W., E-mail: cwsu@mail.ncyu.edu.tw [Department of Electrophysics, National Chiayi University, 300 Syuefu Rd., Chiayi 60004, Taiwan (China); Huang, M.S.; Tsai, T.H.; Chang, S.C. [Department of Electrophysics, National Chiayi University, 300 Syuefu Rd., Chiayi 60004, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Quantitative Auger intensity ratios to predict macroscopic surface type to Zn-face or O-face can be obtained using hard sphere model and considering electron mean free paths. Black-Right-Pointing-Pointer Calculation of electron signals from 6-layer depth is the best condition in estimating Auger intensity ratios. Black-Right-Pointing-Pointer The ratio deviated from the estimation reference after surface treated by annealing or sputtering is classified to Zn-rich or O-rich surface. Black-Right-Pointing-Pointer A Zn-rich surface may exist on an O-face surface. Black-Right-Pointing-Pointer Surface type of a composite material can be quickly obtained by quantitative analysis of Auger intensity ratio. - Abstract: Is crystalline ZnO(0 0 0 1{sup Macron }) O-face surface believed to be enriched by Zn atoms? This study may get the answer. We proposed a simplified model to simulate surface concentration ratio on (0 0 0 1{sup Macron })-O or (0 0 0 1)-Zn surface based on the hard-sphere model. The simulation ratio was performed by integrating electron signals from the assumed Auger emission, in which the electron mean free path and relative atomic layer arrangements inside the different polarity ZnO crystal surface were considered as relevant parameters. After counting more than 100 experimental observations of Zn/O ratios, the high frequency peak ratio was found at around 0.428, which was near the value predicted by the proposed model using the IMFP database. The ratio larger than the peak value corresponds to that observed in the annealed samples. A downward trend of the ratio evaluated on the post-sputtering sample indicates the possibility of a Zn-enriched phase appearing on the annealed O-face surface. This phenomenon can further elucidate the O-deficiency debate on most ZnO materials.

  9. The use of electron beam accelerator for the treatment of drinking water and wastewater in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Borrely, S.I.; Silva, B.L.

    1995-01-01

    Brazil started a research program using high-energy electrons from accelerators for treating drinking water and wastewater in 1991. The objective is to study the potential use of this technique for disinfection of domestic wastewater, chemical degradation of dyes, phenols, oils and greases in industrial wastewater and reduction of trihalomethanes (THM's) concentration in drinking water. An Electron Beam Accelerator, 1.5MeV -25mA from Radiation Dynamics Inc., was used for all experiments. A pilot plant designed to treat up to 3m 3 /h was built. (author)

  10. The use of electron beam accelerator for the treatment of drinking water and wastewater in Brazil

    Science.gov (United States)

    Sampa, M. H. O.; Borrely, S. I.; Silva, B. L.; Vieira, J. M.; Rela, P. R.; Calvo, W. A. P.; Nieto, R. C.; Duarte, C. L.; Perez, H. E. B.; Somessari, E. S.; Lugão, A. B.

    1995-09-01

    Brazil started a research program using high-energy electrons from accelerators for treating drinking water and wastewater in 1991. The objective is to study the potential use of this technique for disinfection of domestic wastewater, chemical degradation of dyes, phenols, oils and greases in industrial wastewater and reduction of trihalomethanes (THM's) concentration in drinking water. An Electron Beam Accelerator, 1.5MeV-25mA from Radiation Dynamics Inc., was used for all experiments. A pilot plant designed to treat up to 3m3/h was built.

  11. The use of electron beam accelerator for the treatment of drinking water and wastewater in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Borrely, S.I.; Silva, B.L.

    1995-01-01

    Brazil started a research program using high-energy electrons from accelerators for treating drinking water and wastewater in 1991. The objective is to study the potential use of this technique for disinfection of domestic wastewater, chemical degradation of dyes, phenols, oils and greases in industrial wastewater and reduction of trihalomethanes (THM's) concentration in drinking water. An Electron Beam Accelerator, 1.5MeV - 25mA from Radiation Dynamics Inc., was used for all experiments. A pilot plant designed to treat up to 3m 3 /h was built. (author)

  12. Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Nordlund, Dennis; Odelius, Michael; Bluhm, Hendrik; Ogasawara, Hirohito; Pettersson, Lars G.M.; Nilsson, Anders

    2008-04-29

    We present valence photoelectron emission spectra of liquid water in comparison with gas-phase water, ice close to the melting point, low temperature amorphous and crystalline ice. All aggregation states have major electronic structure changes relative to the free molecule, with rehybridization and development of bonding and anti-bonding states accompanying the hydrogen bond formation. Sensitivity to the local structural order, most prominent in the shape and splitting of the occupied 3a{sub 1} orbital, is understood from the electronic structure averaging over various geometrical structures, and reflects the local nature of the orbital interaction.

  13. Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colson, Steven D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Laufer, Allan H [US Department of Energy Office of Science Office of Basic Energy Sciences; Ray, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-06-10

    On September 26–28, 2002, a workshop entitled “Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry” was held to assess new research opportunities in electron-driven processes and radical chemistry in aqueous systems. Of particular interest was the unique and complex role that the structure of water plays in influencing these processes. Novel experimental and theoretical approaches to solving long-standing problems in the field were explored. A broad selection of participants from universities and the national laboratories contributed to the workshop, which included scientific and technical presentations and parallel sessions for discussions and report writing.

  14. Electron-induced chemistry of methyl chloride caged within amorphous solid water

    Science.gov (United States)

    Horowitz, Yonatan; Asscher, Micha

    2013-10-01

    The interaction of low energy electrons (1.0-25 eV) with methyl-chloride (CD3Cl) molecules, caged within Amorphous Solid Water (ASW) films, 10-120 monolayer (ML) thick, has been studied on top of a Ru(0001) substrate under Ultra High Vacuum (UHV) conditions. While exposing the ASW film to 3 eV electrons a static electric field up to 8 × 108 V/m is developed inside the ASW film due to the accumulation of trapped electrons that produce a plate capacitor voltage of exactly 3 V. At the same time while the electrons continuously strike the ASW surface, they are transmitted through the ASW film at currents of ca. 3 × 10-7 A. These electrons transiently attach to the caged CD3Cl molecules leading to C-Cl bond scission via Dissociative Electron Attachment (DEA) process. The electron induced dissociation cross sections and product formation rate constants at 3.0 eV incident electrons at ASW film thicknesses of 10 ML and 40 ML were derived from model simulations supported by Thermal Programmed Desorption (TPD) experimental data. For 3.0 eV electrons the CD3Cl dissociation cross section is 3.5 × 10-16 cm2, regardless of ASW film thickness. TPD measurements reveal that the primary product is deuterated methane (D3CH) and the minor one is deuterated ethane (C2D6).

  15. A Monte Carlo calculation of subexcitation and vibrationally-relaxing electron spectra in irradiated liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Cobut, V.; Frongillo, Y.; Jay-Gerin, J.-P. (Sherbrooke Univ., PQ (Canada). Faculte de Medecine); Patau, J.-P. (Toulouse-3 Univ., 31 (France))

    1992-12-01

    An energy spectrum of ''subexcitation electrons'' produced in liquid water by electrons with initial energies of a few keV is obtained by using a Monte Carlo transport simulation calculation. It is found that the introduction of vibrational-excitation cross sections leads to the appearance of a sharp peak in the probability density function near the electronic-excitation threshold. Electrons contributing to this peak are shown to be more naturally described if a novel energy spectrum, that we propose to name ''vibrationally-relaxing electron'' spectrum, is introduced. The corresponding distribution function is presented, and an empirical expression of it is given. (author).

  16. Electron-induced hydrogen loss in uracil in a water cluster environment

    International Nuclear Information System (INIS)

    Smyth, M.; Kohanoff, J.; Fabrikant, I. I.

    2014-01-01

    Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A ′ -resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons

  17. Marine phytoplankton temperature versus growth responses from polar to tropical waters--outcome of a scientific community-wide study.

    Directory of Open Access Journals (Sweden)

    Philip W Boyd

    Full Text Available "It takes a village to finish (marine science these days" Paraphrased from Curtis Huttenhower (the Human Microbiome project The rapidity and complexity of climate change and its potential effects on ocean biota are challenging how ocean scientists conduct research. One way in which we can begin to better tackle these challenges is to conduct community-wide scientific studies. This study provides physiological datasets fundamental to understanding functional responses of phytoplankton growth rates to temperature. While physiological experiments are not new, our experiments were conducted in many laboratories using agreed upon protocols and 25 strains of eukaryotic and prokaryotic phytoplankton isolated across a wide range of marine environments from polar to tropical, and from nearshore waters to the open ocean. This community-wide approach provides both comprehensive and internally consistent datasets produced over considerably shorter time scales than conventional individual and often uncoordinated lab efforts. Such datasets can be used to parameterise global ocean model projections of environmental change and to provide initial insights into the magnitude of regional biogeographic change in ocean biota in the coming decades. Here, we compare our datasets with a compilation of literature data on phytoplankton growth responses to temperature. A comparison with prior published data suggests that the optimal temperatures of individual species and, to a lesser degree, thermal niches were similar across studies. However, a comparison of the maximum growth rate across studies revealed significant departures between this and previously collected datasets, which may be due to differences in the cultured isolates, temporal changes in the clonal isolates in cultures, and/or differences in culture conditions. Such methodological differences mean that using particular trait measurements from the prior literature might introduce unknown errors and bias into

  18. In situ study by polarization modulated Fourier transform infrared spectroscopy of the structure and orientation of lipids and amphipathic peptides at the air-water interface

    OpenAIRE

    Cornut, I.; Desbat, B.; Turlet, J.M.; Dufourcq, J.

    1996-01-01

    Free amphipathic peptides and peptides bound to dimyristoylphosphatidylcholine (DMPC) were studied directly at the air/water interface using polarization modulation infrared reflection absorption spectroscopy (PMIRRAS). Such differential reflectivity measurements proved to be a sensitive and efficient technique to investigate in situ the respective conformations and orientations of lipid and peptide molecules in pure and mixed films. Data obtained for melittin, a natural hemolytic peptide, ar...

  19. Polarization optics of the Brewster's dark patch visible on water surfaces versus solar height and sky conditions: theory, computer modeling, photography, and painting.

    Science.gov (United States)

    Takács, Péter; Barta, András; Pye, David; Horváth, Gábor

    2017-10-20

    When the sun is near the horizon, a circular band with approximately vertically polarized skylight is formed at 90° from the sun, and this skylight is only weakly reflected from the region of the water surface around the Brewster's angle (53° from the nadir). Thus, at low solar heights under a clear sky, an extended dark patch is visible on the water surface when one looks toward the north or south quarter perpendicular to the solar vertical. In this work, we study the radiance distribution of this so-called Brewster's dark patch (BDP) in still water as functions of the solar height and sky conditions. We calculate the pattern of reflectivity R of a water surface for a clear sky and obtain from this idealized situation the shape of the BDP. From three full-sky polarimetric pictures taken about a clear, a partly cloudy, and an overcast sky, we determine the R pattern and compose from that synthetic color pictures showing how the radiance distribution of skylight reflected at the water surface and the BDPs would look under these sky conditions. We also present photographs taken without a linearly polarizing filter about the BDP. Finally, we show a 19th century painting on which a river is seen with a dark region of the water surface, which can be interpreted as an artistic illustration of the BDP.

  20. Spin-polarized electron tunneling in bcc FeCo/MgO/FeCo(001) magnetic tunnel junctions.

    Science.gov (United States)

    Bonell, F; Hauet, T; Andrieu, S; Bertran, F; Le Fèvre, P; Calmels, L; Tejeda, A; Montaigne, F; Warot-Fonrose, B; Belhadji, B; Nicolaou, A; Taleb-Ibrahimi, A

    2012-04-27

    In combining spin- and symmetry-resolved photoemission, magnetotransport measurements and ab initio calculations we detangled the electronic states involved in the electronic transport in Fe(1-x)Co(x)(001)/MgO/Fe(1-x)Co(x)(001) magnetic tunnel junctions. Contrary to previous theoretical predictions, we observe a large reduction in TMR (from 530 to 200% at 20 K) for Co content above 25 atomic% as well as anomalies in the conductance curves. We demonstrate that these unexpected behaviors originate from a minority spin state with Δ(1) symmetry that exists below the Fermi level for high Co concentration. Using angle-resolved photoemission, this state is shown to be a two-dimensional state that occurs at both Fe(1-x)Co(x)(001) free surface, and more importantly at the interface with MgO. The combination of this interface state with the peculiar density of empty states due to chemical disorder allows us to describe in details the complex conduction behavior in this system.