WorldWideScience

Sample records for polaritonic energy gap

  1. Coupled polaritonic band gaps in the anisotropic piezoelectric superlattices

    Science.gov (United States)

    Tang, Zheng-Hua; Jiang, Zheng-Sheng; Chen, Tao; Jiang, Chun-Zhi; Lei, Da-Jun; Huang, Jian-Quan; Qiu, Feng; Yao, Min; Huang, Xiao-Yi

    2018-01-01

    Anisotropic piezoelectric superlattices (APSs) with the periodic arrangement of polarized anisotropic piezoelectric domains in a certain direction are presented, in which the coupled polaritonic band gaps (CPBGs) can be obtained in the whole Brillouin Zone and the maximum relative bandwidth (band-gap sizes divided by their midgap frequencies) of 5.1% can be achieved. The general characteristics of the APSs are similar to those of the phononic crystals composed of two types of materials, with the main difference being the formation mechanism of the CPBGs, which originate from the couplings between lattice vibrations along two different directions and electromagnetic waves rather than from the periodical modulation of density and elastic constants. In addition, there are no lattice mismatches because the APSs are made of the same material. Thus, the APSs can also be extended to the construction of novel acousto-optic devices.

  2. Complete surface plasmon-polariton band gap and gap-governed waveguiding, bending and splitting

    Science.gov (United States)

    Wu, Fengqin; Han, Dezhuan; Hu, Xinhua; Liu, Xiaohan; Zi, Jian

    2009-05-01

    We show theoretically that a complete band gap for surface plasmon-polaritons (SPPs) can exist in a flat metal surface coated with a two-dimensional periodic array of dielectric cylinders. Based on the SPP band gap, gap-governed SPP waveguides, bends and splitters at telecom wavelengths can be achieved by introducing line defects. Numerical simulations show that the proposed SPP waveguides have a very low loss, while SPP bends and splitters can bend and split guided SPPs efficiently. The proposed SPP waveguides, bends and splitters could thus be exploited to construct compact integrated optical circuits in the emerging field of plasmonics.

  3. Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP

    CERN Document Server

    Tanabé, T; Nishizawa, J I; Saitô, K; Kimura, T

    2003-01-01

    High-power, wide-frequency-tunable terahertz waves were generated based on difference-frequency generation in GaP crystals with small-angle noncollinear phase matching. The tunable frequency range was as wide as 0.5-7 THz, and the peak power remained high, near 100 mW, over most of the frequency region. The tuning properties were well described by the dispersion relationship for the phonon-polariton mode of GaP up to 6 THz. We measured the spectra of crystal polyethylene and crystal quartz with high resolution using this THz-wave source.

  4. Surface plasmon polariton band gap structures: implications to integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Østergaard, John Erland

    2001-01-01

    Conventional photonic band gap (PBG) structures are composed of regions with periodic modulation of refractive index that do not allow the propagation of electromagnetic waves in a certain interval of wavelengths, i.e., that exhibit the PBG effect. The PBG effect is essentially an interference...... phenomenon related to strong multiple scattering of light in periodic media. The interest to the PBG structures has dramatically risen since the possibility of efficient waveguiding around a sharp corner of a line defect in the PBG structure has been pointed out. Given the perspective of integrating various...... PBG-based components within a few hundred micrometers, we realized that other two-dimensional waves, e.g., surface plasmon polaritons (SPPs), might be employed for the same purpose. The SPP band gap (SPPBG) has been observed for the textured silver surfaces by performing angular measurements...

  5. Cavity plasmon polaritons in monolayer graphene

    International Nuclear Information System (INIS)

    Kotov, O.V.; Lozovik, Yu.E.

    2011-01-01

    Plasmon polaritons in a new system, a monolayer doped graphene embedded in optical microcavity, are studied here. The dispersion law for lower and upper cavity plasmon polaritons is obtained. Peculiarities of Rabi splitting for the system are analyzed; particularly, role of Dirac-like spinor (envelope) wave functions in graphene and corresponding angle factors are considered. Typical Rabi frequencies for maximal (acceptable for Dirac-like electron spectra) Fermi energy and frequencies of polaritons near polariton gap are estimated. The plasmon polaritons in considered system can be used for high-speed information transfer in the THz region. -- Highlights: → Plasmon polaritons in a monolayer doped graphene embedded in optical microcavity, are studied here. → The dispersion law for lower and upper cavity plasmon polaritons is obtained. → Peculiarities of Rabi splitting for the system are analyzed. → Role of Dirac-like wave functions in graphene and corresponding angle factors are considered. → Typical Rabi frequencies and frequencies of polaritons near polariton gap are estimated.

  6. Photonic-band-gap architectures for long-lifetime room-temperature polariton condensation in GaAs quantum wells

    Science.gov (United States)

    Jiang, Jian-Hua; Vasudev, Pranai; John, Sajeev

    2017-10-01

    We describe AlGaAs photonic-crystal architectures that simultaneously realize strong exciton-photon coupling, long polariton lifetime, and room-temperature polariton Bose-Einstein condensation (BEC). Strong light trapping, induced by a 3D photonic band gap (PBG), leads to peak field intensity 20 times as large as that in an AlGaAs Fabry-Pérot microcavity and exciton-photon coupling as large as 20 meV (i.e., vacuum Rabi splitting 40 meV). The strong exciton-photon coupling, small polariton effective mass, and long polariton lifetime lead to possible realizations of equilibrium room-temperature BEC. We also consider the influence of polarization degeneracy and symmetry breaking in the ground state on the BEC-onset temperature and condensate fraction. Woodpile and slanted-pore PBG structures that break X-Y symmetry facilitate larger condensate fractions at moderate temperatures. The effects of electronic and photonic disorder are marginal, thanks to the 3D photonic band gap.

  7. Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Orlov, Alexey A.; Babicheva, Viktoriia E.

    2014-01-01

    We study theoretically the propagation of large-wave-vector waves (volume plasmon polaritons) in multilayer hyperbolic metamaterials with two levels of structuring. We show that when the parameters of a subwavelength metal-dielectric multilayer (substructure) are modulated (superstructured) on a ...

  8. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    Science.gov (United States)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  9. On the theory of three types of polaritons (phonon, exciton and plasmon polaritons)

    International Nuclear Information System (INIS)

    Ha, Duong Thi; Thuy, Dinh Thi; Hoa, Vo Thi; Van, Tran Thi Thanh; Viet, Nguyen Ai

    2017-01-01

    We have investigated the similarities and difference between three well-known types of polaritons: phonon polariton, exciton polariton and surface plasmon polariton. For first two types (phonon polariton and exciton polariton) the interaction between photon and media can be expressed via a longitudinal-transversal splitting (LT-splitting), while for third type of polariton (surface plasmon polariton) via the boundary condition. Considering an analogy of these three types of polaritons, an effective LT-splitting was introduced for surface plasmon polariton. We discuss a possible existence of an evanescent state in the band gap of polaritons. Finally, the Nambu broken symmetry theory and Anderson-Higgs mechanism are discussed for lower branch of these polaritons. (paper)

  10. Coherent Polariton Laser

    Science.gov (United States)

    Kim, Seonghoon; Zhang, Bo; Wang, Zhaorong; Fischer, Julian; Brodbeck, Sebastian; Kamp, Martin; Schneider, Christian; Höfling, Sven; Deng, Hui

    2016-01-01

    The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.

  11. Coherent Polariton Laser

    Directory of Open Access Journals (Sweden)

    Seonghoon Kim

    2016-03-01

    Full Text Available The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.

  12. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope

    KAUST Repository

    Govyadinov, Alexander A.

    2017-07-14

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  13. Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton.

    Science.gov (United States)

    Shi, Jinwei; Lin, Meng-Hsien; Chen, I-Tung; Mohammadi Estakhri, Nasim; Zhang, Xin-Quan; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alù, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    2017-06-26

    Atomically thin lateral heterostructures based on transition metal dichalcogenides have recently been demonstrated. In monolayer transition metal dichalcogenides, exciton energy transfer is typically limited to a short range (~1 μm), and additional losses may be incurred at the interfacial regions of a lateral heterostructure. To overcome these challenges, here we experimentally implement a planar metal-oxide-semiconductor structure by placing a WS 2 /MoS 2 monolayer heterostructure on top of an Al 2 O 3 -capped Ag single-crystalline plate. We find that the exciton energy transfer range can be extended to tens of microns in the hybrid structure mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, allowing cascaded exciton energy transfer from one transition metal dichalcogenides region supporting high-energy exciton resonance to a different transition metal dichalcogenides region in the lateral heterostructure with low-energy exciton resonance. The realized planar hybrid structure combines two-dimensional light-emitting materials with planar plasmonic waveguides and offers great potential for developing integrated photonic and plasmonic devices.Exciton energy transfer in monolayer transition metal dichalcogenides is limited to short distances. Here, Shi et al. fabricate a planar metal-oxide-semiconductor structure and show that exciton energy transfer can be extended to tens of microns, mediated by an exciton-surface-plasmon-polariton-exciton conversion mechanism.

  14. Propagation of long-range surface plasmon polaritons in photonic band gap structures

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, Thomas

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold fil embedded...... in polymer. Radiation is delivered to and from the PC structures with the help of LR-SPP guides that consist of 8 mm wide and 15 nm thick gold stripes attached to wide film sections (of the same thickness) covered with bumps (diameter ~300 nm, height up to 150 nm on each side of the film). We investigate......, is rather weak, so that the photonic bandgap effect might be expected to take place only for some particular propagation directions. Preliminary experiments on LR-SPP bending and splitting at large angles are reported, and further research directions are discussed....

  15. Zero-(n) non-Bragg gap plasmon-polariton modes and omni-reflectance in 1D metamaterial photonic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Agudelo-Arango, C; Mejia-Salazar, J R; Porras-Montenegro, N [Departamento de Fisica, Universidad del Valle, AA 25360, Cali (Colombia); Reyes-Gomez, E [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Oliveira, L E [Instituto de Fisica, UNICAMP, Campinas-SP, 13083-859 (Brazil)

    2011-06-01

    A theoretical study of the photonic band structure and transmission spectra for 1D periodic superlattices with an elementary cell composed of two layers of refractive indices n{sub a} and n{sub b}, which may take on positive as well as negative values, has been performed within the transfer-matrix approach. The dependence on the angle of incidence of the electromagnetic wave for excitation of plasmon-polaritons as well as the properties of the (n) = 0 gap were thoroughly investigated. Results are found for the generalized conditions that must be satisfied by the ratio a/b of the layer widths of metamaterial photonic superlattices, for both transverse electric and transverse magnetic polarizations, in order to have an omnidirectional (n) = 0 gap. The present study indicates new perspectives in the design and development of future optical devices.

  16. On the equivalence of two approaches in the exciton-polariton theory

    International Nuclear Information System (INIS)

    Ha Vinh Tan; Nguyen Toan Thang

    1983-02-01

    The polariton effect in the optical processes involving photons with energies near that of an exciton is investigated by the Bogolubov diagonalization and the Green function approaches in a simple model of the direct band gap semiconductor with the electrical dipole allowed transition. To take into account the non-resonant terms of the interaction Hamiltonian of the photon-exciton system the Green function approach derived by Nguyen Van Hieu is presented with the use of Green's function matrix technique analogous to that suggested by Nambu in the theory of superconductivity. It is shown that with the suitable choice of the phase factors the renormalization constants are equal to the diagonalization coefficients. The disperson of polaritons and the matrix elements of processes with the participation of polaritons are identically calculated by both methods. However the Green function approach has an advantage in including the damping effect of polaritons. (author)

  17. The physics of exciton-polariton condensates

    CERN Document Server

    Lagoudakis, Konstantinos

    2013-01-01

    In 2006 researchers created the first polariton Bose-Einstein condensate at 19K in the solid state. Being inherently open quantum systems, polariton condensates open a window into the unpredictable world of physics beyond the “fifth state of matter”: the limited lifetime of polaritons renders polariton condensates out-of-equilibrium and provides a fertile test-bed for non-equilibrium physics. This book presents an experimental investigation into exciting features arising from this non-equilibrium behavior. Through careful experimentation, the author demonstrates the ability of polaritons to synchronize and create a single energy delocalized condensate. Under certain disorder and excitation conditions the complete opposite case of coexisting spatially overlapping condensates may be observed. The author provides the first demonstration of quantized vortices in polariton condensates and the first observation of fractional vortices with full phase and amplitude characterization. Finally, this book investigate...

  18. Lieb polariton topological insulators

    Science.gov (United States)

    Li, Chunyan; Ye, Fangwei; Chen, Xianfeng; Kartashov, Yaroslav V.; Ferrando, Albert; Torner, Lluis; Skryabin, Dmitry V.

    2018-02-01

    We predict that the interplay between the spin-orbit coupling, stemming from the transverse electric-transverse magnetic energy splitting, and the Zeeman effect in semiconductor microcavities supporting exciton-polariton quasiparticles, results in the appearance of unidirectional linear topological edge states when the top microcavity mirror is patterned to form a truncated dislocated Lieb lattice of cylindrical pillars. Periodic nonlinear edge states are found to emerge from the linear ones. They are strongly localized across the interface and they are remarkably robust in comparison to their counterparts in honeycomb lattices. Such robustness makes possible the existence of nested unidirectional dark solitons that move steadily along the lattice edge.

  19. Coherence properties of a single-mode polariton laser

    Science.gov (United States)

    Kim, Seonghoon; Zhang, Bo; Wang, Zhaorong; Deng, Hui; Fischer, Julian; Brodbeck, Sebastian; Kamp, Martin; Schneider, Christian; Hofling, Sven; Univ of Michigan-Ann Arbor Collaboration; Univ of Wuerzberg Collaboration

    2016-05-01

    Exciton-polariton condensation is a promising low threshold coherent light source, namely a polariton laser. However, first- and second-order coherences of a polariton laser has been poor and not well understood in two dimensional microcavity systems. Here, we show experimentally that full second-order coherence is established in a single-mode polariton laser and maintained far above the lasing threshold. The coherence time of first-order coherence functions increases initially and then reduces as the number of polaritons in a ground state increases due to the polariton-polariton interaction. Moreover, a transition in spectral lineshape from Lorentzian to Gaussian was observed as the occupation number increases as a result of the large interaction energy. These results are in very good agreement with a single-mode atom laser theory. The single-mode polariton laser was realized by designing a subwavelength grating (SWG) mirror which provides strong lateral confinement for discrete polariton states and polarization-selective reflectance for lifted spin-degeneracy. The results would be important for making fully coherent polariton lasers, as well as nonlinear polariton devices.

  20. Realization of an all optical exciton-polariton router

    International Nuclear Information System (INIS)

    Marsault, Félix; Nguyen, Hai Son; Tanese, Dimitrii; Lemaître, Aristide; Galopin, Elisabeth; Sagnes, Isabelle; Amo, Alberto; Bloch, Jacqueline

    2015-01-01

    We report on the experimental realization of an all optical router for exciton-polaritons. This device is based on the design proposed by Flayac and Savenko [Appl. Phys. Lett. 103, 201105 (2013)], in which a zero-dimensional island is connected through tunnel barriers to two periodically modulated wires of different periods. Selective transmission of polaritons injected in the island, into either of the two wires, is achieved by tuning the energy of the island state across the band structure of the modulated wires. We demonstrate routing of ps polariton pulses using an optical control beam which controls the energy of the island quantum states, thanks to polariton-exciton interactions

  1. Terahertz optoelectronics with surface plasmon polariton diode.

    Science.gov (United States)

    Vinnakota, Raj K; Genov, Dentcho A

    2014-05-09

    The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonstrate a surface plasmon-polariton diode (SPPD) an optoelectronic switch that can operate at exceedingly large signal modulation rates. The SPPD uses heavily doped p-n junction where surface plasmon polaritons propagate at the interface between n and p-type GaAs and can be switched by an external voltage. The devices can operate at transmission modulation higher than 98% and depending on the doping and applied voltage can achieve switching rates of up to 1 THz. The proposed switch is compatible with the current semiconductor fabrication techniques and could lead to nanoscale semiconductor-based optoelectronics.

  2. Photonic Crystal Architecture for Room-Temperature Equilibrium Bose-Einstein Condensation of Exciton Polaritons

    Directory of Open Access Journals (Sweden)

    Jian-Hua Jiang

    2014-08-01

    Full Text Available We describe photonic crystal microcavities with very strong light-matter interaction to realize room-temperature, equilibrium, exciton-polariton Bose-Einstein condensation (BEC. This goal is achieved through a careful balance between strong light trapping in a photonic band gap (PBG and large exciton density enabled by a multiple quantum-well (QW structure with a moderate dielectric constant. This approach enables the formation of a long-lived, dense 10-μm-1-cm- scale cloud of exciton polaritons with vacuum Rabi splitting that is roughly 7% of the bare exciton-recombination energy. We introduce a woodpile photonic crystal made of Cd_{0.6}  Mg_{0.4}Te with a 3D PBG of 9.2% (gap-to-central-frequency ratio that strongly focuses a planar guided optical field on CdTe QWs in the cavity. For 3-nm QWs with 5-nm barrier width, the exciton-photon coupling can be as large as ℏΩ=55  meV (i.e., a vacuum Rabi splitting of 2ℏΩ=110  meV. The exciton-recombination energy of 1.65 eV corresponds to an optical wavelength of 750 nm. For N=106 QWs embedded in the cavity, the collective exciton-photon coupling per QW (ℏΩ/sqrt[N]=5.4  meV is much larger than the state-of-the-art value of 3.3 meV, for the CdTe Fabry-Pérot microcavity. The maximum BEC temperature is limited by the depth of the dispersion minimum for the lower polariton branch, over which the polariton has a small effective mass of approximately 10^{−5}m_{0}, where m_{0} is the electron mass in vacuum. By detuning the bare exciton-recombination energy above the planar guided optical mode, a larger dispersion depth is achieved, enabling room-temperature BEC. The BEC transition temperature ranges as high as 500 K when the polariton density per QW is increased to (11a_{B}^{−2}, where a_{B}≃3.5  nm is the exciton Bohr radius and the exciton-cavity detuning is increased to 30 meV. A high-quality PBG can suppress exciton radiative decay and enhance the polariton

  3. The energy gap and the fast reactor

    International Nuclear Information System (INIS)

    Hill, J.

    1977-01-01

    The background to the development of fast reactors is summarized. In Britain, the results of the many experiments performed, the operation of the Dounreay Fast Reactor for the past 18 years and the first year's operation of the larger Prototype Fast Reactor have all been very encouraging, in that they demonstrated that the performance corresponded well with predictions, breeding is possible, and the system is exceptionally stable in operation. The next step in fast reactor engineering is to build a full-scale fast reactor power station. There would seem to be little reason to expect more trouble than could reasonably be expected in constructing any large project of this general nature. However, from an engineering point of view continuity of experience is required. If a decision to build a commercial fast reactor were taken today there would be a 14-year gap between strating this and the start of the Prototype Fast Reactor. This is already much too long. From an environmental standpoint we have to demonstrate that we can manufacture and reprocess fast reacctor fuel for a substantial programme in a way that does not lead to pollution of the environment, and that plutonium-containing fuel can be transported in the quantities required in safety and in a way that does not attract terrorists or require a private army to ensure its security. Finally, we have to find a way to allow many countries to obtain the energy they need from fast reactors, without leading to the proliferation of nuclear weapons or weapons capability. (author)

  4. Microscopic approach to polaritons

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1981-01-01

    The interaction between excitons and light has been investigated in detail. The perturbational approach turns out to be invalid. However, an exact solution can be obtained directly from the Schrödinger equation for a fixed light field. This solution corresponds to a nonlinear optical response...... contrary to experimental experience. In order to remove this absurdity the semiclassical approach must be abandoned and the electromagnetic field quantized. A simple microscopic polariton model is then derived. From this the wave function for the interacting exciton-photon complex is obtained...... of light of the crystal. The introduction of damping smears out the excitonic spectra. The wave function of the polariton, however, turns out to be very independent of damping up to large damping values. Finally, this simplified microscopic polariton model is compared with the exact solutions obtained...

  5. Ultrafast Dynamics of Vibration-Cavity Polariton Modes

    Science.gov (United States)

    Owrutsky, Jeff; Dunkelberger, Adam; Fears, Kenan; Simpkins, Blake; Spann, Bryan

    Vibrational modes of polymers, liquids, and solvated compounds can couple to Fabry-Perot optical cavity modes, creating vibration-cavity polariton modes whose energy tunes with the cavity length and incidence angle. Here we report the pump-probe infrared spectroscopy of vibration-cavity polaritons in cavity-coupled W(CO)6. At very early times, we observe quantum beating between the two polariton states find an anomalously low degree of excitation. After the quantum beating, we directly observe spectroscopic signatures of excited-state absorption from both polariton modes and uncoupled reservoir modes. An analytical expression for cavity transmission reproduces these signatures. The upper polariton mode relaxes ten times more quickly than the uncoupled vibrational mode and the polariton lifetime depends on the angle of incidence of the infrared pulses. Coupling to an optical cavity gives a means of control of the lifetime of vibration-cavity polaritons and could have important implications for chemical reactivity in vibrationally excited molecules.

  6. Conductors with small Fermi energies and small gap energies

    International Nuclear Information System (INIS)

    Thorn, R.J.

    1993-01-01

    If the Fermi energy is of the order of meV's, the usual treatment of the density of free electrons is not valid, but use can be made of an averaged density of states that depends weakly on temperature, so that the temperature variation of the conductivity can be expressed by the equation: σ congruent CT (1-s) 1n{[(exp(βE f ) + 1)/2][exp(-β(E g - E f )) + 1)]} in which E f is the Fermi energy, E g is the top of the energy gap for thermal activation, s is the exponent of the temperature-dependent scattering. This equation serves to define a class of solids consisting of a microcomposite with a narrow conduction band for which E f of the order of ceV's or less and a thermal activated conduction for which E g is of the order of ceV's. It describes quantitatively the conductivity, σ(T;Δ, for YBa 2 Cu 3 O 7-Δ and σ(T;p) as the hydrostatic pressure p is varied for κ-(BEDT-TTF) 2 CuN(CN) 2 Br

  7. Polaritonic Rabi and Josephson Oscillations.

    Science.gov (United States)

    Rahmani, Amir; Laussy, Fabrice P

    2016-07-25

    The dynamics of coupled condensates is a wide-encompassing problem with relevance to superconductors, BECs in traps, superfluids, etc. Here, we provide a unified picture of this fundamental problem that includes i) detuning of the free energies, ii) different self-interaction strengths and iii) finite lifetime of the modes. At such, this is particularly relevant for the dynamics of polaritons, both for their internal dynamics between their light and matter constituents, as well as for the more conventional dynamics of two spatially separated condensates. Polaritons are short-lived, interact only through their material fraction and are easily detuned. At such, they bring several variations to their atomic counterpart. We show that the combination of these parameters results in important twists to the phenomenology of the Josephson effect, such as the behaviour of the relative phase (running or oscillating) or the occurence of self-trapping. We undertake a comprehensive stability analysis of the fixed points on a normalized Bloch sphere, that allows us to provide a generalized criterion to identify the Rabi and Josephson regimes in presence of detuning and decay.

  8. Competing role of Interactions in Synchronization of Exciton-Polariton condensates

    Science.gov (United States)

    Khan, Saeed; Tureci, Hakan E.

    We present a theoretical study of synchronization dynamics in incoherently pumped exciton-polariton condensates in coupled traps. Our analysis is based on an expansion in non-Hermitian modes that take into account the trapping potential and the pump-induced complex-valued potential. We find that polariton-polariton and reservoir-polariton interactions play competing roles in the emergence of a synchronized phase as pumping power is increased, leading to qualitatively different synchronized phases. Crucially, these interactions can also act against each other to hinder synchronization. We present a phase diagram and explain the general characteristics of these phases using a generalized Adler equation. Our work sheds light on dynamics strongly influenced by competing interactions particular to incoherently pumped exciton-polariton condensates, which can lead to interesting features in recently engineered polariton lattices. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

  9. Laser studies of polaritons

    International Nuclear Information System (INIS)

    Shen, Y.R.

    1990-01-01

    Polaritons describe the quanta of coupled photon-phonon modes in a crystal. It was well-known that propagation of an electromagnetic wave in a medium near resonance is governed by anomalous dispersion, but treating the wave as an elementary excitation in the medium was a new and important concept. First, photons (can be extended outside a medium) and phonons (restricted to existing inside a medium) are now treated on equal footing. Second, the medium-dressed propagating electromagnetic modes are taken as characteristic modes of the medium. Third, the coupled mode idea can be extended to many other interesting problems in condensed matter physics. The advent of lasers has greatly facilitated the study of polaritons. This paper describes the important advances in the past quarter century

  10. Energy bands and gaps near an impurity

    Czech Academy of Sciences Publication Activity Database

    Mihóková, Eva; Schulman, L. S.

    2016-01-01

    Roč. 380, č. 41 (2016), s. 3430-3433 ISSN 0375-9601 R&D Projects: GA ČR GA13-09876S Institutional support: RVO:68378271 Keywords : crystal structure * impurity * modeling * energy bands Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.772, year: 2016

  11. Performance gaps in energy consumption : household groups and building characteristics

    NARCIS (Netherlands)

    van den Brom, P.I.; Meijer, A.; Visscher, H.J.

    2017-01-01

    The difference between actual and calculated energy is called the ‘energy-performance gap’. Possible explanations for this gap are construction mistakes, improper adjusting of equipment, excessive simplification in simulation models and occupant behaviour. Many researchers and governmental

  12. Analysis of energy gap opening in graphene oxide

    International Nuclear Information System (INIS)

    Lundie, Mark; Tomić, Stanko; Šljivančanin, Željko

    2014-01-01

    The utilisation of graphene structures as photonics materials mandates that an optically active electronic energy gap be formed. Opening of a gap in graphene has been demonstrated by functionalisation with H, F, or O atoms, while experimental observations of graphene oxide have hinted at interesting optical properties, with the potential for absorption of visible light. As such, our analysis is focused on O functionalisation of graphene. We present results from extensive ab initio and hybrid DFT calculations, demonstrating the creation of an optically active gap.

  13. Closing the Gap GEF Experiences in Global Energy Efficiency

    CERN Document Server

    Yang, Ming

    2013-01-01

    Energy efficiency plays and will continue to play an important role in the world to save energy and mitigate greenhouse gas (GHG) emissions. However, little is known on how much additional capital should be invested to ensure using energy efficiently as it should be, and very little is known which sub-areas, technologies, and countries shall achieve maximum greenhouse gas emissions mitigation per dollar of investment in energy efficiency worldwide. Analyzing completed and slowly moving energy efficiency projects by the Global Environment Facility during 1991-2010, Closing the Gap: GEF Experiences in Global Energy Efficiency evaluates impacts of multi-billion-dollar investments in the world energy efficiency. It covers the following areas: 1.       Reviewing the world energy efficiency investment and disclosing the global energy efficiency gap and market barriers that cause the gap; 2.       Leveraging private funds with public funds and other resources in energy efficiency investments; using...

  14. Tidal stresses and energy gaps in microstate geometries

    Science.gov (United States)

    Tyukov, Alexander; Walker, Robert; Warner, Nicholas P.

    2018-02-01

    We compute energy gaps and study infalling massive geodesic probes in the new families of scaling, microstate geometries that have been constructed recently and for which the holographic duals are known. We find that in the deepest geometries, which have the lowest energy gaps, the geodesic deviation shows that the stress reaches the Planck scale long before the probe reaches the cap of the geometry. Such probes must therefore undergo a stringy transition as they fall into microstate geometry. We discuss the scales associated with this transition and comment on the implications for scrambling in microstate geometries.

  15. Femtosecond tunneling response of surface plasmon polaritons

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, Taekjip; Jensen, Jacob Riis

    1998-01-01

    We obtain femtosecond (200 fs) time resolution using a scanning tunneling microscope on surface plasmon polaritons (SPPs) generated by two 100 fs laser beams in total internal reflection geometry. The tunneling gap dependence of the signal clearly indicates the tunneling origin of the signal...... and suggests that nanometer spatial resolution can be obtained together with femtosecond temporal resolution. This fast response, in contrast to the picosecond decay time of SPPs revealed by differential reflectivity measurements, can be attributed to a coherent superposition of SPPs rectified at the tunneling...... junction. (C) 1998 American Institute of Physics. [S0003-6951(98)02223-2]....

  16. Magneto-electro-elastic polariton coupling in a periodic structure

    International Nuclear Information System (INIS)

    Piliposyan, D G; Ghazaryan, K B; Piliposian, G T

    2015-01-01

    Propagation of electro-magneto-acoustic waves in a magneto-electro-elastic (MEE) periodic structure has been investigated with a three phase coupling between mechanical, electric and magnetic fields in each constituent layer. Due to this coupling electromagnetic waves couple with lattice vibrations resulting in both dielectric and magnetic phonon–polaritons which couple via the magneto-electric effect. Propagation properties of acoustic longitudinal and transverse vibrations in this superlattice have been investigated. For longitudinal acoustic vibrations perpendicular to the poling direction, the coupling of piezoelectric and piezomagnetic polaritons results in a propagating mode. For transverse lattice vibrations with the coupled MEE wave propagating parallel to the poling direction, there is a coupled piezoelectric–piezomagnetic phonon polariton gap. The MEE superlattice produces either negative permittivity or negative permeability functions but not double negativity to result in negative refraction crystal. (paper)

  17. Development of Low Energy Gap and Fully Regioregular Polythienylenevinylene Derivative

    Directory of Open Access Journals (Sweden)

    Tanya M. S. David

    2014-01-01

    Full Text Available Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of polymers and also report synthesis and characterization of a specific example new polymer, a low energy gap, fully regioregular, terminal functionalized, and processable conjugated polymer poly-(3-dodecyloxy-2,5-thienylene vinylene or PDDTV. The polymer exhibited an optical energy gap of 1.46 eV based on the UV-vis-NIR absorption spectrum. The electrochemically measured highest occupied molecular orbital (HOMO level is −4.79 eV, resulting in the lowest unoccupied molecular orbital (LUMO level of −3.33 eV based on optical energy gap. The polymer was synthesized via Horner-Emmons condensation and is fairly soluble in common organic solvents such as tetrahydrofuran and chloroform with gentle heating. DSC showed two endothermic peaks at 67°C and 227°C that can be attributed to transitions between crystalline and liquid states. The polymer is thermally stable up to about 300°C. This polymer appears very promising for cost-effective solar cell applications.

  18. Global Gaps in Clean Energy RD and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This report seeks to inform decision makers seeking to prioritise RD&D investments in a time of financial uncertainty. It is an update of the December 2009 IEA report Global Gaps in Clean Energy Research, Development and Demonstration, which examined whether rates of LCET investment were sufficient to achieve shared global energy and environmental goals (IEA,2009). It discusses the impact of the green stimulus spending announcements, and provides private sector perspectives on priorities for government RD&D spending. Finally, it includes a revised assessment of the gaps in public RD&D, together with suggestions for possible areas for expanded international collaboration on specific LCETs. The conclusion re-affirms the first Global Gaps study finding that governments and industry need to dramatically increase their spending on RD&D for LCETs.

  19. Wind energy availability above gaps in a forest

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Mann, Jakob; Dellwik, Ebba

    2009-01-01

    installation strategies. The canopy-planetary boundary-layer model SCADIS is used to investigate the effect of forest gap size (within the diameter range of 3 - 75 tree heights, h) on wind energy related variables. A wind turbine was assumed with following features: the hub height and rotor diameter of 3.5h......There is a lack of data on availability of wind energy above a forest disturbed by clear-cuts, where a wind energy developer may find an opportunity to install a wind farm. Computational fluid dynamics (CFD) models can provide spatial patterns of wind and turbulence, and help to develop optimal...... and 3h, respectively; this provides the clearance between the rotor and ground of 2h which is similar to the value obtained by the rule of thumb. Spatial variations of wind energy production, the average wind speed shear and cumulative TKE inside the layer of 2h - 5h above the ground around the gaps...

  20. Robust Energy Hub Management Using Information Gap Decision Theory

    DEFF Research Database (Denmark)

    Javadi, Mohammad Sadegh; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    This paper proposes a robust optimization framework for energy hub management. It is well known that the operation of energy systems can be negatively affected by uncertain parameters, such as stochastic load demand or generation. In this regard, it is of high significance to propose efficient...... tools in order to deal with uncertainties and to provide reliable operating conditions. On a broader scale, an energy hub includes diverse energy sources for supplying both electrical load and heating/cooling demands with stochastic behaviors. Therefore, this paper utilizes the Information Decision Gap...

  1. Tunnelling determined superconducting energy gap of bulk single crystal aluminum

    International Nuclear Information System (INIS)

    Civiak, R.L.

    1974-01-01

    A procedure has been developed for fabricating Giaver tunnel junctions on bulk aluminum. Al-I-Ag junctions were prepared, where I is the naturally formed oxide on the polished, chemically treated aluminum surface. The aluminum energy gap was determined from tunneling conductance curves obtained from samples oriented in three different crystal directions, and as a function of magnetic field in each of these orientations. In contrast to the results of microwave absorption measurements on superconducting aluminum, no magnetic field dependence could be measured for either the average gap or the spread in gap values of the tunneling electrons. This is consistent with commonly accepted tunneling selection rules, and Garfunkel's interpretation of the microwave behavior which depended upon adjusting the energy spectrum of only the electrons traveling parallel to the surface in the presence of a magnetic field. The energy gaps measured for samples oriented in the 100, 110 and 111 directions are 3.52, 3.50 and 3.39 kT/sub c/, respectively. The trend in the anisotropy is the same as in the calculation of Leavens and Carbotte, however, the magnitude of the anisotropy is smaller than in their calculation and that which previous measurements have indicated

  2. Waveguiding with surface plasmon polaritons

    DEFF Research Database (Denmark)

    Han, Zhanghua; Bozhevolnyi, Sergey I.

    2014-01-01

    Surface plasmon polaritons (SPPs) are electromagnetic modes propagating along metal-dielectric interfaces. Various SPP modes can be supported by flat and curved, single and multiple surfaces, exhibiting remarkable properties, including the possibility of concentrating electromagnetic fields beyon...

  3. Gap filling strategies for long term energy flux data sets

    DEFF Research Database (Denmark)

    Falge, E.; Baldocchi, D.; Olson, R.

    2001-01-01

    At present a network of over 100 field sites are measuring carbon dioxide, water vapor and sensible heat fluxes between the biosphere and atmosphere, on a nearly continuous basis. Gaps in the long term measurements of evaporation and sensible heat flux must be filled before these data can be used...... for hydrological and meteorological applications. We adapted methods of gap filling for NEE (net ecosystem exchange of carbon) to energy fluxes and applied them to data sets available from the EUROFLUX and AmeriFlux eddy covariance databases. The average data coverage for the sites selected was 69% and 75......% for latent heat (lambdaE) and sensible heat (H). The methods were based on mean diurnal variations (half-hourly binned means of fluxes based on previous and subsequent days, MDV) and look-up tables for fluxes during assorted meteorological conditions (LookUp), and the impact of different gap filling methods...

  4. Public perceptions and information gaps in solar energy in Texas

    Science.gov (United States)

    Rai, Varun; Beck, Ariane L.

    2015-07-01

    Studying the behavioral aspects of the individual decision-making process is important in identifying and addressing barriers in the adoption of residential solar photovoltaic (PV). However, there is little systematic research focusing on these aspects of residential PV in Texas, an important, large, populous state, with a range of challenges in the electricity sector including increasing demand, shrinking reserve margins, constrained water supply, and challenging emissions reduction targets under proposed federal regulations. This paper aims to address this gap through an empirical investigation of a new survey-based dataset collected in Texas on solar energy perceptions and behavior. The results of this analysis offer insights into the perceptions and motivations influencing intentions and behavior toward solar energy in a relatively untapped market and help identify information gaps that could be targeted to alleviate key barriers to adopting solar, thereby enabling significant emissions reductions in the residential sector in Texas.

  5. Bose gas with generalized dispersion relation plus an energy gap

    Science.gov (United States)

    Solis, M. A.; Martinez, J. G.; Garcia, J.

    We report the critical temperature, the condensed fraction, the internal energy and the specific heat for a d-dimensional Bose gas with a generalized dispersion relation plus an energy gap, i.e., ɛ =ɛ0 for k = 0 and ɛ =ɛ0 + Δ +csks , for k > 0 , where ℏk is the particle momentum, ɛ0 the lowest particle energy, cs a constant with dimension of energy multiplied by a length to the power s > 0 . When Δ > 0 , a Bose-Einstein critical temperature Tc ≠ 0 exists for any d / s >= 0 at which the internal energy shows a peak and the specific heat shows a jump. The critical temperature and the specific heat jump increase as functions of the gap but they decrease as functions of d / s . Thermodynamic properties are ɛ0 independent since this is just a reference energy. For Δ = 0 we recover the results reported in Ref. [1]. V. C. Aguilera-Navarro, M. de Llano y M. A. Solís, Eur. J. Phys. 20, 177 (1999). We acknowledge partial support from Grants PAPIIT IN111613 and CONACyT 221030.

  6. Energy gap, clustering, and the Goldstone theorem in statistical mechanics

    International Nuclear Information System (INIS)

    Landau, L.; Perez, J.F.; Wreszinski, W.F.

    1981-03-01

    A Goldstone type theorem for a wide class of lattice and continuum quantum systems is proved, both for the ground state and at non-zero temperature. For the ground state (T=0) spontaneous breakdown of a continuous symmetry implies no energy gap. For non-zero temperature, spontaneous symmetry breakdown implies slow clustering (no L sup(1) clustering). The methods apply also to non-zero temperature classical systems. (Author) [pt

  7. Bistable Topological Insulator with Exciton-Polaritons

    Science.gov (United States)

    Kartashov, Yaroslav V.; Skryabin, Dmitry V.

    2017-12-01

    The functionality of many nonlinear and quantum optical devices relies on the effect of optical bistability. Using microcavity exciton-polaritons in a honeycomb arrangement of microcavity pillars, we report the resonance response and bistability of topological edge states. A balance between the pump, loss, and nonlinearity ensures a broad range of dynamical stability and controls the distribution of power between counterpropagating states on the opposite edges of the honeycomb lattice stripe. Tuning energy and polarization of the pump photons, while keeping their momentum constant, we demonstrate control of the propagation direction of the dominant edge state. Our results facilitate the development of practical applications of topological photonics.

  8. Bistability of Cavity Magnon Polaritons

    Science.gov (United States)

    Wang, Yi-Pu; Zhang, Guo-Qiang; Zhang, Dengke; Li, Tie-Fu; Hu, C.-M.; You, J. Q.

    2018-01-01

    We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.

  9. Bistability of Cavity Magnon Polaritons.

    Science.gov (United States)

    Wang, Yi-Pu; Zhang, Guo-Qiang; Zhang, Dengke; Li, Tie-Fu; Hu, C-M; You, J Q

    2018-02-02

    We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.

  10. Subharmonic energy-gap structure in superconducting weak links

    DEFF Research Database (Denmark)

    Flensberg, K.; Hansen, Jørn Bindslev; Octavio, M.

    1988-01-01

    We present corrected calculations of the subharmonic energy-gap structure using the model of Octavio, Tinkham, Blonder, and Klapwijk, which includes the effect of normal scattering in the weak link. We show that while the overall predictions of this model do not change qualitatively, the details...... of the predicted curves are different and in better agreement with experiment. We also present calculation of the current-voltage characteristics and of the excess currents for T=0, as the normal scattering parameter Z is varied. We also show how the calculation can be shortened using symmetry arguments...

  11. Nano structures of amorphous silicon: localization and energy gap

    Directory of Open Access Journals (Sweden)

    Z Nourbakhsh

    2013-10-01

    Full Text Available Renewable energy research has created a push for new materials; one of the most attractive material in this field is quantum confined hybrid silicon nano-structures (nc-Si:H embedded in hydrogenated amorphous silicon (a-Si:H. The essential step for this investigation is studying a-Si and its ability to produce quantum confinement (QC in nc-Si: H. Increasing the gap of a-Si system causes solar cell efficiency to increase. By computational calculations based on Density Functional Theory (DFT, we calculated a special localization factor, [G Allan et al., Phys. Rev. B 57 (1997 6933.], for the states close to HOMO and LUMO in a-Si, and found most weak-bond Si atoms. By removing these silicon atoms and passivating the system with hydrogen, we were able to increase the gap in the a-Si system. As more than 8% hydrogenate was not experimentally available, we removed about 2% of the most localized Si atoms in the almost tetrahedral a-Si system. After removing localized Si atoms in the system with 1000 Si atoms, and adding 8% H, the gap increased about 0.24 eV. Variation of the gap as a function of hydrogen percentage was in good agreement with the Tight –Binding results, but about 2 times more than its experimental value. This might come from the fact that in the experimental conditions, it does not have the chance to remove the most localized states. However, by improving the experimental conditions and technology, this value can be improved.

  12. New Class of Wide Energy Gap Benzotriimidazole Optical Materials

    Directory of Open Access Journals (Sweden)

    Jianmin Shi

    2017-10-01

    Full Text Available A new class of wide energy gap benzotriimidazole materials have been synthesized by a two-step condensation reaction. All of the benzotriimidazole compounds have π-π* absorption bands in the range of 250–400 nm. The photoluminescence (PL quantum efficiency of each benzotriimidazole depends strongly on the presence of electron withdrawing groups. PL quantum efficiencies of benzotriimidazoles without electron withdrawing groups were less than desirable (40–43%, while molecules with electron withdrawing groups displayed much stronger PL with efficiencies in the range of 73–75%. The electron withdrawing groups shift the emission to a longer wavelength, towards a more “true blue” color. This new class of benzotriimidazole optical materials could be used as electron-injecting and electron-transporting blue luminescence materials for potential organic light-emitting diode (OLED applications.

  13. Warping and interactions of vortices in exciton-polariton condensates

    Science.gov (United States)

    Toledo-Solano, M.; Mora-Ramos, M. E.; Figueroa, A.; Rubo, Y. G.

    2014-01-01

    We investigate the properties of the vortex singularities in two-component exciton-polariton condensates in semiconductor microcavities in the presence of transverse-electric-transverse-magnetic (TE-TM) splitting of the lower polariton branch. This splitting does not change qualitatively the basic (lemon and star) geometry of half-quantum vortices (HQVs), but results in warping of both the polarization field and the supercurrent streamlines around these entities. The TE-TM splitting has a pronounced effect on the HQV energies and interactions, as well as on the properties of integer vortices, especially on the energy of the hedgehog polarization vortex. The energy of this vortex can become smaller than the energies of HQVs. This leads to modification of the Berezinskii-Kosterlitz-Thouless transition from the proliferation of half-vortices to the proliferation of hedgehog-based vortex molecules.

  14. Vacuum Rabi splitting of exciton-polariton emission in an AlN film.

    Science.gov (United States)

    Li, Kongyi; Wang, Weiying; Chen, Zhanghai; Gao, Na; Yang, Weihuang; Li, Wei; Chen, Hangyang; Li, Shuping; Li, Heng; Jin, Peng; Kang, Junyong

    2013-12-19

    The vacuum Rabi splitting of exciton-polariton emission is observed in cathodoluminescence (CL) and photoluminescence spectra of an AlN epitaxial film. Atomic force microscopy and CL measurements show that the film has an atomically flat surface, high purity, and high crystal quality. By changing the temperature, anticrossing behavior between the upper and lower polariton branch can be obtained in low temperature with a Rabi splitting of 44 meV, in agreement with the calculation. This large energy splitting is caused by strong oscillator strength, intrinsically pure polarization in wurtzite AlN semiconductor, and high fraction of free exciton in the sample. These properties indicate that AlN can be a potential semiconductor for the further development of polariton physics and polariton-based novel devices.

  15. A study of the cavity polariton under strong excitation:dynamics and nonlinearities in II-VI micro-cavities

    International Nuclear Information System (INIS)

    Muller, Markus

    2000-01-01

    This work contains an experimental study of the photoluminescence dynamics of cavity polaritons in strong coupling micro-cavities based on II-VI semiconductor compounds. The small exciton size and the strong exciton binding energy in these materials allowed us to study the strong coupling regime between photon and exciton up to high excitation densities, exploring the linear and non-linear emission regimes. Our main experimental techniques are picosecond time-resolved and angular photoluminescence spectroscopy. In the linear regime and for a negative photon-exciton detuning, we observe a suppression of the polariton relaxation by the emission of acoustic phonons leading to a non-equilibrium polariton distribution on the lower branch. This 'bottleneck' effect, which has already been described for polaritons in bulk semiconductors, results from the pronounced photon like character of the polaritons near k(parallel) = 0 in this configuration. At high excitation densities, non-linear relaxation processes, namely final state stimulation of the relaxation and polariton-polariton scattering, bypass this bottleneck giving rise to a very rapid relaxation down to the bottom of the band. We show that this dramatic change in the relaxation dynamics is finally responsible of the super-linear increase of the polariton emission from these states. (author) [fr

  16. Urbach's rule derived from thermal fluctuations in the band-gap energy

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1978-01-01

    The exponential absorption edge (known as Urbach's rule) observed in most materials is interpreted in terms of thermal fluctuations in the band-gap energy. The main contribution to the temperature shift of the band-gap energy is due to the temperature-dependent self-energies of the electrons...... and holes interacting with the phonons. Since the phonon number is fluctuating in thermal equilibrium, the band-gap energy is also fluctuating resulting in an exponential absorption tail below the average band-gap energy. These simple considerations are applied to derive Urbach's rule at high temperatures...

  17. Monitoring polariton dynamics in the LHCII photosynthetic antenna in a microcavity by two-photon coincidence counting

    Science.gov (United States)

    Zhang, Zhedong; Saurabh, Prasoon; Dorfman, Konstantin E.; Debnath, Arunangshu; Mukamel, Shaul

    2018-02-01

    The relaxation dynamics of light-harvesting complex II in an optical cavity is explored theoretically by multidimensional photon coincidence counting spectroscopy. This technique reveals the dynamics in both single (e) and double (f) excitation bands. We study how the polariton dynamics are affected by coupling to photon modes and molecular vibrations described by a realistic spectral density at 77 K. Without the cavity, the e- and f-band energy transfer pathways are not clearly resolved due to the line broadening caused by fast exciton dephasing. The strong coupling to cavity photons results in well-resolved polariton modes. The hybrid nature of polaritons slows down their energy transfer rates.

  18. Cavity-polariton interaction mediated by coherent acoustic phonons in semiconductor microcavities

    DEFF Research Database (Denmark)

    de Lima, Mauricio; Hey, Rudolf; Santos, Paul

    (SAWs) in a GaAs QW embedded in a (Al,Ga)As/AlAs microcavity. The periodic modulation introduced by the phonons folds the cavity-polariton dispersion within a mini-Brillouin zone (MBZ) defined by the phonon wave vector ($k_\\mathrm{SAW}$). The appearance of well-defined mini-gaps at the edge of the MBZ...

  19. Ultranarrow polaritons in a semiconductor microcavity

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Borri, Paola; Langbein, Wolfgang

    2000-01-01

    We have achieved a record high ratio (19) of the Rabi splitting (3.6 meV) to the polariton linewidth (190 mu eV), in a semiconductor lambda microcavity with a single 25 nm GaAs quantum well at the antinode. The narrow polariton lines are obtained with a special cavity design which reduces...

  20. The Kohn-Sham gap, the fundamental gap and the optical gap: the Physical Meaning of Occupied and Virtual Kohn-Sham Orbital Energies

    NARCIS (Netherlands)

    Baerends, E.J.; Gritsenko, O.V.; van Meer, R.

    2013-01-01

    A number of consequences of the presence of the exchange-correlation hole potential in the Kohn-Sham potential are elucidated. One consequence is that the HOMO-LUMO orbital energy difference in the KS-DFT model (the KS gap) is not "underestimated" or even "wrong", but that it is physically expected

  1. Nontrivial Phase Coupling in Polariton Multiplets

    Directory of Open Access Journals (Sweden)

    H. Ohadi

    2016-08-01

    Full Text Available We investigate the phase coupling between spatially separated polariton condensates under nonresonant optical pulsed excitation. In the simple case of two condensates, we observe phase locking either in symmetric or antisymmetric states. We demonstrate that the coupling symmetry depends both on the separation distance and outflow velocity from the condensates. We interpret the observations through stimulated relaxation of polaritons to the phase configuration with the highest occupation. We derive an analytic criterion for the phase locking of a pair-polariton condensate and extend it to polariton multiplets. In the case of three condensates, we predict theoretically and observe experimentally either in-phase locking or the appearance of phase winding with phase differences of ±2π/3 between neighbors. The latter state corresponds to a vortex of winding number ±1 across the three polariton condensates.

  2. Energy Performance Certification of Faculty Buildings in Spain: The gap between estimated and real energy consumption

    International Nuclear Information System (INIS)

    Herrando, María; Cambra, David; Navarro, Marcos; Cruz, Lucio de la; Millán, Gema; Zabalza, Ignacio

    2016-01-01

    Highlights: • Most of the Faculty Buildings studied are within the average of CO 2 emissions. • Academic and Research buildings have a similar simulated energy consumption. • Several restrictions found in the official Energy Performance Certification tool. • Average deviation of 30% between estimated and real energy consumption. • Electrical equipment and user behaviour notably increase the energy performance gap. - Abstract: A systematic method has been established to perform and analyse in detail the Energy Performance Certification of 21 Faculty Buildings located at the University of Zaragoza (Spain), according to the transposition of Directive 2010/31/EU. First of all, the problem background and a review of the state-of-the-art of the energy certification in buildings is outlined, regarding both the actual state of the Government regulations and the studies undertaken in several countries to assess the energy performance of different types of buildings, residential and non-residential. A summary of the causes found in other studies for the discrepancies between the estimated (by simulation) and actual energy consumption is shown which is afterwards tested and compared with the results found in the present study. Thereafter, the method followed to undertake the buildings’ Energy Performance Certification is explained, and the main results found together with the discussion are detailed, comparing actual vs. estimated energy consumption in the different case studies and proposing reasons for these deviations. The energy consumption breakdown by uses for several buildings is also analysed, and potential improvements for the simulation software are assessed.

  3. Technical Barriers, Gaps,and Opportunities Related to Home Energy Upgrade Market Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marcus V.A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-11-01

    This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program.

  4. Estimation of CE–CVM energy parameters from miscibility gap data

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 28; Issue 2. Estimation of CE–CVM energy parameters from miscibility gap data. G Srinivasa Gupta G ... As a starting point, a method has been devised to estimate the values of energy parameters from consolute point (miscibility gap maximum) data. Empirical relations ...

  5. Surface plasmon polariton amplification in semiconductor-graphene-dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Dadoenkova, Yuliya S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Novgorod State University, Veliky Novgorod (Russian Federation); Donetsk Institute for Physics and Technology, Donetsk (Ukraine); Moiseev, Sergey G. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Ulyanovsk (Russian Federation); Abramov, Aleksei S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kadochkin, Aleksei S.; Zolotovskii, Igor O. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Institute of Nanotechnologies of Microelectronics of the Russian Academy of Sciences, 32A Leninskiy Prosp., 119991, Moscow (Russian Federation); Fotiadi, Andrei A. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Universite de Mons (Belgium)

    2017-05-15

    A mechanism of amplification of surface plasmon polaritons due to the transfer of electromagnetic energy from a drift current wave into a far-infrared surface wave propagating along a semiconductor-dielectric boundary in waveguide geometry is proposed. A necessary condition of the interaction of these waves is phase matching condition, i. e., when the phase velocity of the surface wave approaches the drift velocity of charge carriers. It is shown that in the spectral region of the surface plasmon polariton slowing-down its amplification coefficient can reach values substantially exceeding the ohmic loss coefficient of the surface wave in the structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Photonic bandgap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas

    2005-01-01

    Propagation of long-range surface plasmon polaritons (LR-SPPs) along periodically thickness-modulated metal stripes embedded in dielectric is studied both theoretically and experimentally for light wavelengths in the telecom range. We demonstrate that symmetric (with respect to the film surface) nm......-size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of -20 nm centered at 1550 nm. The possibilities...

  7. Gap filling strategies for long term energy flux data sets

    NARCIS (Netherlands)

    Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; Granier, A.; Gross, P.; Grünwald, T.; Hollinger, D.; Jensen, N.O.; Katul, G.; Keronen, P.; Kowalski, A.; Lai, C.T.; Law, B.E.; Meyers, T.; Moncrieff, J.; Moors, E.J.; Munger, J.W.; Pilegaard, K.; Rebmann, C.; Suyker, A.; Tenhunen, J.; Tu, K.

    2001-01-01

    At present a network of over 100 field sites are measuring carbon dioxide, water vapor and sensible heat fluxes between the biosphere and atmosphere, on a nearly continuous basis. Gaps in the long term measurements of evaporation and sensible heat flux must be filled before these data can be used

  8. Conduction bands and invariant energy gaps in alkali bromides

    NARCIS (Netherlands)

    Boer, P.K. de; Groot, R.A. de

    1998-01-01

    Electronic structure calculations of the alkali bromides LiBr, NaBr, KBr, RbBr and CsBr are reported. It is shown that the conduction band has primarily bromine character. The size of the band gaps of bromides and alkali halides in general is reinterpreted.

  9. Theoretical and experimental evidence for a nodal energy gap in MgB2

    Science.gov (United States)

    Agassi, Y. Dan; Oates, Daniel E.

    2017-11-01

    We present a phenomenological model that strongly suggests that the smaller of the two energy gaps in MgB2, the so-called π gap, contains nodal lines with a six-fold symmetry (i-wave). The model also indicates that the larger gap, the so-called σ gap, is conventional s-wave. The model is an extension of the BCS gap equation that accounts for the elastic anisotropy in MgB2 and the Coulomb repulsion. It is based on a phononic pairing mechanism and assumes no coupling between the two energy gaps in MgB2 at zero temperature. All of the parameters of the model, such as sound velocities and masses, are independently determined material constants. The results agree with a previous ad-hoc hypothesis that the π energy gap has six nodal lines. That hypothesis was motivated by low-temperature measurements of the surface impedance and intermodulation distortion in high-quality thin films. We briefly review experimental evidence in the literature that is relevant to the energy-gap symmetry. We find that the evidence from the literature for s-wave is inconclusive. Our finding is that the π gap has six nodal lines.

  10. A novel theoretical model for the temperature dependence of band gap energy in semiconductors

    Science.gov (United States)

    Geng, Peiji; Li, Weiguo; Zhang, Xianhe; Zhang, Xuyao; Deng, Yong; Kou, Haibo

    2017-10-01

    We report a novel theoretical model without any fitting parameters for the temperature dependence of band gap energy in semiconductors. This model relates the band gap energy at the elevated temperature to that at the arbitrary reference temperature. As examples, the band gap energies of Si, Ge, AlN, GaN, InP, InAs, ZnO, ZnS, ZnSe and GaAs at temperatures below 400 K are calculated and are in good agreement with the experimental results. Meanwhile, the band gap energies at high temperatures (T  >  400 K) are predicted, which are greater than the experimental results, and the reasonable analysis is carried out as well. Under low temperatures, the effect of lattice expansion on the band gap energy is very small, but it has much influence on the band gap energy at high temperatures. Therefore, it is necessary to consider the effect of lattice expansion at high temperatures, and the method considering the effect of lattice expansion has also been given. The model has distinct advantages compared with the widely quoted Varshni’s semi-empirical equation from the aspect of modeling, physical meaning and application. The study provides a convenient method to determine the band gap energy under different temperatures.

  11. The energy trilogy: An integrated sustainability model to bridge wastewater treatment plant energy and emissions gaps

    Science.gov (United States)

    Al-Talibi, A. Adhim

    An estimated 4% of national energy consumption is used for drinking water and wastewater services. Despite the awareness and optimization initiatives for energy conservation, energy consumption is on the rise owing to population and urbanization expansion and to commercial and industrial business advancement. The principal concern is since energy consumption grows, the higher will be the energy production demand, leading to an increase in CO2 footprints and the contribution to global warming potential. This research is in the area of energy-water nexus, focusing on wastewater treatment plant (WWTP) energy trilogy -- the group of three related entities, which includes processes: (1) consuming energy, (2) producing energy, and (3) the resulting -- CO2 equivalents. Detailed and measurable energy information is not readily obtained for wastewater facilities, specifically during facility preliminary design phases. These limitations call for data-intensive research approach on GHG emissions quantification, plant efficiencies and source reduction techniques. To achieve these goals, this research introduced a model integrating all plant processes and their pertinent energy sources. In a comprehensive and "Energy Source-to-Effluent Discharge" pattern, this model is capable of bridging the gaps of WWTP energy, facilitating plant designers' decision-making for meeting energy assessment, sustainability and the environmental regulatory compliance. Protocols for estimating common emissions sources are available such as for fuels, whereas, site-specific emissions for other sources have to be developed and are captured in this research. The dissertation objectives were met through an extensive study of the relevant literature, models and tools, originating comprehensive lists of processes and energy sources for WWTPs, locating estimation formulas for each source, identifying site specific emissions factors, and linking the sources in a mathematical model for site specific CO2 e

  12. Terahertz electrodynamics and superconducting energy gap of NbN

    Science.gov (United States)

    Sim, Kyung Ik; Jo, Young Chan; Ha, Taewoo; Kim, Jong Hyeon; Kim, Jae Hoon; Yamamori, Hirotake

    2017-11-01

    We have measured the transmission spectra of the conventional Bardeen-Cooper-Schrieffer (BCS) superconductor niobium nitride (NbN) thin films ( T c = 11 K) using terahertz time-domain spectroscopy (THz-TDS) over the spectral range of 10 - 110 cm -1 and the temperature range of 3.9 - 295 K. We extracted both the real part, σ1, and the imaginary part, σ2, of the optical conductivity, σ˜ = σ1 + iσ2, independently and simultaneously, without a Kramers-Kronig analysis. The superconducting gap Δ(T) was observed in the real part of the conductivity, σ1, below T c = 11 K with a maximum value of 2Δ(0) = 30 cm -1 and the gap ratio 2Δ(0)/ k B T c = 3.92.

  13. Energy gap subharmonic in characteristics of Y Ba2 Cu3 O7-x microbridges

    International Nuclear Information System (INIS)

    Pogrebnyakov, A.V.; Levinsen, M.T.; Sheng, Yu.K.; Frel'toft, T.

    1996-01-01

    The microbridges formed in thin epitaxial Y Ba 2 Cu 3 O 7-x films were investigated. The characteristics of the microbridges exhibited subharmonic gap structures corresponding to large (2Δ = 49 meV) and small (2Δ 2 = 10.3 meV) components of the energy gap at T = 4.2 K. The appearance of the subharmonic gap structures is attributed to the phenomenon of Andreev reflection

  14. Feature of the energy gap in YBa2 Cu3 O7 from break junction measurements

    International Nuclear Information System (INIS)

    Ekino, T.; Minami, T.; Fujii, H.

    1995-01-01

    Superconducting energy gap in YBa 2 Cu 3 O 7 have been investigated using break junctions. The tunneling conductance, dI/dV, at T=4.2 K shows no leakage around zero bias, while the gap edge peaks are broadened compared to the simple BCS density of states. These features suggest the spatial distribution of the energy gap or the anisotropic s-wave pairing. The observed largest gap value, determined by the peak-to-peak (p-p) separation in dI/dV, is 140 meV, which corresponds to the 4 δ p-p of an SIS junction. The observed tunneling density of states is fairly well expressed by the probability distribution of the energy gap using the BCS density of states

  15. Magnetic polarons in a nonequilibrium polariton condensate

    Science.gov (United States)

    Mietki, Paweł; Matuszewski, Michał

    2017-09-01

    We consider a condensate of exciton polaritons in a diluted magnetic semiconductor microcavity. Such a system may exhibit magnetic self-trapping in the case of sufficiently strong coupling between polaritons and magnetic ions embedded in the semiconductor. We investigate the effect of the nonequilibrium nature of exciton polaritons on the physics of the resulting self-trapped magnetic polarons. We find that multiple polarons can exist at the same time, and we derive a critical condition for self-trapping that is different from the one predicted previously in the equilibrium case. Using the Bogoliubov-de Gennes approximation, we calculate the excitation spectrum and provide a physical explanation in terms of the effective magnetic attraction between polaritons, mediated by the ion subsystem.

  16. Exciton-polaritons: In full flow

    Science.gov (United States)

    Stöferle, Thilo

    2017-09-01

    Flow without friction is a strange phenomenon usually seen in quantum fluids that are cooled to temperatures near absolute zero, but features of superfluidity have now been seen with polaritons at ambient conditions.

  17. Present state of the perception gap of nuclear energy between Japanese nuclear energy supplying region and an energy consuming region

    International Nuclear Information System (INIS)

    Ohnishi, Teruaki

    2002-01-01

    Public opinion surveys have been carried out since 1998 on what phase and on what extent of the perception of nuclear energy differs between Japanese dwelling in energy supplying region and an energy-consuming region. Southern Fukui rural district where 15 nuclear reactors are now installed and Osaka urban region of about 100 km apart from Fukui were selected as the respective targets for the energy supplying and consuming regions. Analyses of the data of about 3000 samples have revealed the followings. (1) The public in the nuclear energy supplying region are very friendly to nuclear energy so that only about 20 and 39 of the public are resistive to the general promotion of nuclear energy in Japan and to the construction of another nuclear reactor in their dwelling region, respectively. (2) On the other hand, in the energy-consuming region those respective fractions are 41 and 70 implying strong resistance to nuclear energy in the urban region. (3) Both the degree of interest in and the degree of knowledge on nuclear energy are very low, whereas the extent of fear to nuclear is high for the urban public. (4) Not only the fraction of the public who are satisfied with their present life, but the public fraction who is eagerly support the thought of return-to-nature are very high in the urban region. (5) On the other hand, in the energy supplying region, many peoples eagerly want their life to become more convenient than it is now, and 6) all those trends (I)-(5) are revealed more pronouncedly in the woman than the man. The perception gap of nuclear energy thus became clear between Japanese dwelling in rural and urban regions. On the basis of this knowledge, discussions on the nature of the so-called NIMBY will be made from the socio-psychological viewpoint and propositions will also be made on the methods to dissolve the perception gap of that soft. (author)

  18. Cavity polaritons in one-dimensional photonic crystals containing dye molecule-titanate nanosheet hybrids

    Science.gov (United States)

    Ishii, Kenta; Suzuki, Makoto; Chen, Changdong; Feng, Qi; Nakanishi, Shunsuke; Tsurumachi, Noriaki

    2014-02-01

    We investigated the optical properties of one dimensional photonic crystal (1D-PC) microcavity with a wedge-shaped cavity layer containing fluorescent pseudoisocyanine (PIC)-gelatin and nonfluorescent PIC-H1.07Ti1.73O4•nH2O (HTO) nanohybrids. In the case of the PIC-gelatin, the formation of cavity polaritons with a Rabi splitting energy of 49.2 meV was clearly observed. Contrary to our expectations, the formation of cavity polaritons in the case of the PIC-HTO nanohybrids was also observed, even though their splitting energy of 5.8 meV was small. Although different possible explanations were considered, at present, there is insufficient information to completely explain the phenomena. The formation of cavity polaritons with nonfluorescent excitons is indeed very rare and therefore interesting.

  19. Propagation and excitation of graphene plasmon polaritons

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Jeppesen, Claus

    2013-01-01

    We theoretically investigate the propagation of graphene plasmon polaritons in graphene nanoribbon waveguides and experimentally observe the excitation of the graphene plasmon polaritons in a continuous graphene monolayer. We show that graphene nanoribbon bends do not induce any additional loss...... and nanofocusing occurs in a tapered graphene nanoriboon, and we experimentally demonstrate the excitation of graphene plasmon polaritonss in a continuous graphene monolayer assisted by a two-dimensional subwavelength silicon grating....

  20. Plugging the Energy Efficiency Gap with Climate Finance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The role of International Financial Institutions (IFIs) and the Green Climate Fund to realise the potential of energy efficiency in developing countries. This report examines the current role of climate finance in funding EE projects and the potential to channel funds to relevant EE projects in developing countries under the new Green Climate Fund (GCF). The objectives of the report are to examine: 1) the share of climate finance currently being channelled to energy efficiency measures, and 2) how the design of climate finance can better facilitate energy efficiency projects. Improving energy efficiency (EE) can deliver a range of benefits such as improved air quality, enhanced economic competitiveness and, at the national scale, a higher degree of energy security. Significant improvements in energy efficiency in developing countries could provide greater opportunity for economic growth while also providing broader access to energy and related services even from limited energy resources. However, several barriers limit the scaling-up of funding of EE projects in developing countries (some are common also to developed countries). The report focuses primarily on public climate finance flows from 'north' to 'south', probing the current use of funds from multi-lateral development banks (MDBs), bi-lateral financial institutions (BFIs) and carbon markets for energy efficiency projects and the design of the future climate financial mechanisms such as the Green Climate Fund to encourage energy efficiency improvements in developing countries.

  1. Bridging the gap between energy and the environment

    International Nuclear Information System (INIS)

    Holland, Robert A.; Scott, Kate; Hinton, Emma D.; Austen, Melanie C.; Barrett, John; Beaumont, Nicola; Blaber-Wegg, Tina; Brown, Gareth; Carter-Silk, Eleanor; Cazenave, Pierre; Eigenbrod, Felix; Hiscock, Kevin; Hooper, Tara; Lovett, Andrew; Papathanasopoulou, Eleni

    2016-01-01

    Meeting the world’s energy demand is a major challenge for society over the coming century. To identify the most sustainable energy pathways to meet this demand, analysis of energy systems on which policy is based must move beyond the current primary focus on carbon to include a broad range of ecosystem services on which human well-being depends. Incorporation of a broad set of ecosystem services into the design of energy policy will differentiates between energy technology options to identify policy options that reconcile national and international obligations to address climate change and the loss of biodiversity and ecosystem services. In this paper we consider our current understanding of the implications of energy systems for ecosystem services and identify key elements of an assessment. Analysis must consider the full life cycle of energy systems, the territorial and international footprint, use a consistent ecosystem service framework that incorporates the value of both market and non-market goods, and consider the spatial and temporal dynamics of both the energy and environmental system. While significant methodological challenges exist, the approach we detail can provide the holistic view of energy and ecosystem services interactions required to inform the future of global energy policy. - Highlights: •Obligations for climate, biodiversity and ecosystem services must be aligned. •Ecosystem service based assessments of energy systems can inform energy policy. •Assessment to incorporate life cycle stages across spatial and temporal scales. •Implications for ecosystem services differentiate between energy options. •Pathways to decarbonisation should be identified based on such a holistic assessment.

  2. Anomalous dispersion of microcavity trion-polaritons

    Science.gov (United States)

    Dhara, S.; Chakraborty, C.; Goodfellow, K. M.; Qiu, L.; O'Loughlin, T. A.; Wicks, G. W.; Bhattacharjee, Subhro; Vamivakas, A. N.

    2018-02-01

    The strong coupling of excitons to optical cavities has provided new insights into cavity quantum electrodynamics as well as opportunities to engineer nanoscale light-matter interactions. Here we study the interaction between out-of-equilibrium cavity photons and both neutral and negatively charged excitons, by embedding a single layer of the atomically thin semiconductor molybdenum diselenide in a monolithic optical cavity based on distributed Bragg reflectors. The interactions lead to multiple cavity polariton resonances and anomalous band inversion for the lower, trion-derived, polariton branch--the central result of the present work. Our theoretical analysis reveals that many-body effects in an out-of-equilibrium setting result in an effective level attraction between the exciton-polariton and trion-polariton accounting for the experimentally observed inverted trion-polariton dispersion. Our results suggest a pathway for studying interesting regimes in quantum many-body physics yielding possible new phases of quantum matter as well as fresh possibilities for polaritonic device architectures.

  3. Overcoming the energy efficiency gap in India's household sector

    International Nuclear Information System (INIS)

    Reddy, B.S.

    2003-01-01

    Energy efficiency generates substantial financial savings while simultaneously improving environmental quality. Despite these benefits, developing countries like India are missing out on energy efficiency opportunities and instead concentrating on increased energy production. This paper identifies the efficient technologies in the household sector in India, and details their benefits to the consumer as well as to the society. It identifies the barriers that prevent the government from achieving its energy efficiency goals, analyses programs that addresses these barriers, and explores the creation of an institutional mechanism

  4. Plasmon polaritons in nanostructured graphene

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    2013-01-01

    Graphene has attracted considerable attention due to its unique electronic and optical properties. When graphene is electrically/chemically doped, it can support surface plasmon where the light propagates along the surface with a very short wavelength and an extremely small mode volume. The optical...... properties of graphene can be tuned by electrical gating, thus proving a promising way to realize a tunable plasmonic material. We firstly investigate the performance of bends and splitters in graphene nanoribbon waveguides, and show that bends and splitters do not induce any additional loss provided...... that the nanoribbon width is sub-wavelength. Then we experimentally demonstrate the excitation of graphene plasmon polaritons in a continuous graphene monolayer resting on a two-dimensional subwavelength silicon grating. The silicon grating is realized by a nanosphere lithography technique with a self...

  5. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  6. Energy Factors in Commercial Mortgages: Gaps and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coleman, Philip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wallace, Nancy [Univ. of California, Berkeley, CA (United States); Issler, Paulo [Univ. of California, Berkeley, CA (United States); Kolstad, Lenny [Inst. for Market Transformation, Washington, DC (United States); Sahadi, Robert [Inst. for Market Transformation, Washington, DC (United States)

    2016-09-01

    The commercial real estate mortgage market is enormous, with almost half a trillion dollars in deals originated in 2015. Relative to other energy efficiency financing mechanisms, very little attention has been paid to the potential of commercial mortgages as a channel for promoting energy efficiency investments. The valuation and underwriting elements of the business are largely driven by the “net operating income” (NOI) metric – essentially, rents minus expenses. While NOI ostensibly includes all expenses, energy factors are in several ways given short shrift in the underwriting process. This is particularly interesting when juxtaposed upon a not insignificant body of research revealing that there are in fact tangible benefits (such as higher valuations and lower vacancy and default rates) for energy-efficient and “green” commercial buildings. This scoping report characterizes the current status and potential interventions to promote greater inclusion of energy factors in the commercial mortgage process.

  7. Giant Rabi Splitting of Whispering Gallery Polaritons in GaN/InGaN Core-Shell Wire.

    Science.gov (United States)

    Gong, Su-Hyun; Ko, Suk-Min; Jang, Min-Ho; Cho, Yong-Hoon

    2015-07-08

    The hybrid nature of exciton polaritons opens up possibilities for developing a new concept nonlinear photonic device (e.g., polariton condensation, switching, and transistor) with great potential for controllability. Here, we proposed a novel type of polariton system resulting from strong coupling between a two-dimensional exciton and whispering gallery mode photon using a core-shell GaN/InGaN hexagonal wire. High quality, nonpolar InGaN multiple-quantum wells (MQWs) were conformally formed on a GaN core nanowire, which was spatially well matched with whispering gallery modes inside the wire. Both high longitudinal-transverse splitting of nonpolar MQWs and high spatial overlap with whispering gallery modes lead to unprecedented large Rabi splitting energy of ∼180 meV. This structure provides a robust polariton effect with a small footprint; thus, it could be utilized for a wide range of interesting applications.

  8. Energy band gap and optical transition of metal ion modified double crossover DNA lattices.

    Science.gov (United States)

    Dugasani, Sreekantha Reddy; Ha, Taewoo; Gnapareddy, Bramaramba; Choi, Kyujin; Lee, Junwye; Kim, Byeonghoon; Kim, Jae Hoon; Park, Sung Ha

    2014-10-22

    We report on the energy band gap and optical transition of a series of divalent metal ion (Cu(2+), Ni(2+), Zn(2+), and Co(2+)) modified DNA (M-DNA) double crossover (DX) lattices fabricated on fused silica by the substrate-assisted growth (SAG) method. We demonstrate how the degree of coverage of the DX lattices is influenced by the DX monomer concentration and also analyze the band gaps of the M-DNA lattices. The energy band gap of the M-DNA, between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), ranges from 4.67 to 4.98 eV as judged by optical transitions. Relative to the band gap of a pristine DNA molecule (4.69 eV), the band gap of the M-DNA lattices increases with metal ion doping up to a critical concentration and then decreases with further doping. Interestingly, except for the case of Ni(2+), the onset of the second absorption band shifts to a lower energy until a critical concentration and then shifts to a higher energy with further increasing the metal ion concentration, which is consistent with the evolution of electrical transport characteristics. Our results show that controllable metal ion doping is an effective method to tune the band gap energy of DNA-based nanostructures.

  9. Modulation of cavity-polaritons by surface acoustic waves

    DEFF Research Database (Denmark)

    de Lima, M. M.; Poel, Mike van der; Hey, R.

    2006-01-01

    We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations.......We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations....

  10. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Zahid; Lee, W.S.; Vishik, I.M.; Tanaka, K.; Lu, D.H.; Sasagawa, T.; Nagaosa, N.; Devereaux, T.P.; Hussain, Z.; Shen, Z.-X.

    2007-05-26

    he superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (Tc) in conventional BCS superconductors. In underdoped high-Tc superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above Tc (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above Tc is one of the central questions in high-Tc research3, 4, 5, 6, 7, 8. Although some experimental evidence suggests that the two gaps are distinct9, 10, 11, 12, 13, 14, 15, 16, 17, 18, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu?O bond direction (nodal direction), we found a gap that opens at Tc and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu?O bond direction (antinodal region) measured in earlier experiments19, 20, 21.

  11. Physical nature of volume plasmon polaritons in hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Kidwai, Omar; Sipe, J. E.

    2013-01-01

    We investigate electromagnetic wave propagation in multilayered metal-dielectric hyperbolic metamaterials (HMMs). We demonstrate that high-k propagating waves in HMMs are volume plasmon polaritons. The volume plasmon polariton band is formed by coupling of short-range surface plasmon polariton ex...... excitations in the individual metal layers....

  12. Plasmon-polariton modes of dense Au nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hongdan; Lemmens, Peter; Wulferding, Dirk; Cetin, Mehmet Fatih [IPKM, TU-BS, Braunschweig (Germany); Tornow, Sabine; Zwicknagl, Gertrud [IMP, TU-BS, Braunschweig (Germany); Krieg, Ulrich; Pfnuer, Herbert [IFP, LU Hannover (Germany); Daum, Winfried; Lilienkamp, Gerhard [IEPT, TU Clausthal (Germany); Schilling, Meinhard [EMG, TU-BS, Braunschweig (Germany)

    2011-07-01

    Using optical absorption and other techniques we study plasmon-polariton modes of dense Au nanowire arrays as function of geometrical parameters and coupling to molecular degrees of freedom. For this instance we electrochemically deposit Au nanowires in porous alumina with well controlled morphology and defect concentration. Transverse and longitudinal modes are observed in the absorption spectra resulting from the anisotropic plasmonic structure. The longitudinal mode shows a blue shift of energy with increasing length of the wires due to the more collective nature of this response. We compare our observations with model calculations and corresponding results on 2D Ag nanowire lattices.

  13. Energy gap of extended states in SiC-doped graphene nanoribbon: Ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoshi; Wu, Yong [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Shanghai Key Lab of Modern Optical System, Shanghai 200093 (China); Li, Zhongyao, E-mail: lizyusst@gmail.com [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Shanghai Key Lab of Modern Optical System, Shanghai 200093 (China); Gao, Yong [School of Science, Shanghai Second Polytechnic University, Shanghai 201209 (China)

    2017-04-01

    Highlights: • The gap of isolated ribbon is inversely proportional to the width of ribbon. • The gap of doped ribbon cannot be modeled by effective width approximation. • The fitted energy gap can match the experimental observations. • The doping results in a spin-polarized metallic-like band structure. - Abstract: The energy gap of extended states in zigzag graphene nanoribbons (ZGNRs) was examined on the basis of density-functional theory. In isolated ZGNRs, the energy gap is inversely proportional to the width of ribbon. It agrees well with the results from the Dirac equation in spin-unpolarized ZGNRs, although the considered ZGNRs have spin-polarized edges. However, the energy gap in SiC-doped ZGNRs cannot be modeled by effective width approximation. The doping also lifts the spin-degenerate of edge states and results in a metallic-like band structure near the Fermi level in SiC-doped ZGNRs. Our calculations may be helpful for understanding the origin of the reported single-channel ballistic transport in epitaxial graphene nanoribbons.

  14. Two methods for decreasing the flexibility gap in national energy systems

    International Nuclear Information System (INIS)

    Batas Bjelić, Ilija; Rajaković, Nikola; Krajačić, Goran; Duić, Neven

    2016-01-01

    More variable renewable energy sources and energy efficiency measures create an additional flexibility gap and require a novel energy planning method for sustainable national energy systems. The firstly presented method uses only EnergyPLAN tool in order to decrease the flexibility gap in a national energy system. Generic Optimization program (GenOpt ® ) is an optimization program for the minimization of a cost function that is evaluated by an external simulation program, such as EnergyPLAN, which was used as the second method in this research. Successful strategies to decrease the flexibility gap are verified on the case of the Serbian national energy system using two methods for its structure design: (1) the iterative method, based on heuristics and manual procedure of using only EnergyPLAN, and (2) the optimization method, based on soft-linking of EnergyPLAN with GenOpt ® . The latter method, named EPOPT (EnergyPlan-genOPT), found the solution for the structure of the sustainable national energy system at the total cost of 8190 M€, while the iterative method was only able to find solutions at the cost in the range of 8251–8598 M€ by targeting only one sustainability goal. The advantages of the EPOPT method are its accuracy, user-friendliness and minimal costs, are valuable for planners. - Highlights: • Heuristic and optimization method for sustainable national energy system structure. • The same input assumptions resulting in different energy system structure. • Both methods are successful in decreasing of the flexibility gap. • The EPOPT method advantages are in the speed, accuracy and planner comfort. • Advanced method for the sustainable national energy policy planning.

  15. Development of an Abort Gap Monitor for High-Energy Proton Rings

    International Nuclear Information System (INIS)

    Beche, J.-F.; Byrd, J.; De Santis, S.; Denes, P.; Placidi, M.; Turner, W.; Zolotorev, M.

    2004-01-01

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the 'abort gap', and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitor based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider

  16. Development of an abort gap monitor for high-energy proton rings

    International Nuclear Information System (INIS)

    Beche, Jean-Francois; Byrd, John; De Santis, Stefano; Denes, Peter; Placidi, Massimo; Turner, William; Zolotorev, Max

    2004-01-01

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the ''abort gap'' and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitor based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider

  17. Temperature dependence of the optical energy gap and thermoelectric studies of ? crystals

    Science.gov (United States)

    Gamal, G. A.

    1998-02-01

    A single crystal of 0268-1242/13/2/005/img2 was prepared by a new crystal growth technique. The interband absorption coefficients were measured, near the fundamental absorption edge, as a function of the wavelength of the incident photons at various temperatures. The energy gap 0268-1242/13/2/005/img3 is temperature dependent and the absorption edge shifts to lower energy values with increasing temperature. The energy gap, at room temperature, was found to be 2.24 eV. The dependence of the energy gap on temperature is linear in the temperature range 77 to 300 K with a negative temperature coefficient 0268-1242/13/2/005/img4 equal to 0268-1242/13/2/005/img5. The thermoelectric phenomenon is also investigated. On the basis of a two-band model the results are discussed.

  18. Electrostatic energy harvesting device with out-of-the-plane gap closing scheme

    DEFF Research Database (Denmark)

    Wang, Fei; Hansen, Ole

    2014-01-01

    In this paper, we report on an electrostatic energy harvester with an out-of-the-plane gap closing scheme. Using advanced MEMS technology, energy harvesting devices formed by a four wafer stack are batch fabricated and fully packaged at wafer scale. A spin coated CYTOP polymer is used both...

  19. Electrostatic energy harvesting device with out-of-the-plane gap closing scheme

    DEFF Research Database (Denmark)

    Wang, Fei; Hansen, Ole

    2013-01-01

    In this paper, we report on an electrostatic energy harvester with an out-of-the-plane gap closing scheme. Using advanced MEMS technology, energy harvesting devices with a four wafer stack are batch fabricated and fully packaged at wafer scale. CYTOP polymer is used both as an electret material...

  20. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo; Yanagisawa, Susumu [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan)

    2015-09-14

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operates unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.

  1. The Potential United Kingdom Energy Gap and Creep Life Prediction Methodologies

    Science.gov (United States)

    Evans, Mark

    2013-01-01

    The United Kingdom faces a looming energy gap with around 20 pct of its generating capacity due for closure in the next 10 to 15 years as a result of plant age and new European legislation on environmental protection and safety at work. A number of solutions exist for this problem including the use of new materials so that new plants can operate at higher temperatures, new technologies related to carbon capture and gasification, development of renewable resources, and less obviously the use of accurate models for predicting creep life. This article reviews, with illustrations, some of the more applicable and successful creep prediction methodologies used by academics and industrialists and highlights how these techniques can help alleviate the looming energy gap. The role that these approaches can play in solving the energy gap is highlighted throughout.

  2. In situ measurement of the energy gap of a semiconductor using a microcontroller-based system

    International Nuclear Information System (INIS)

    Mukaro, R; Taele, B M; Tinarwo, D

    2006-01-01

    This paper describes a microcontroller-based laboratory technique for automatic in situ measurement of the energy gap of germanium. The design is based on the original undergraduate laboratory experiment in which students manually measure the variation of the reverse saturation current of a germanium diode with temperature using a current-to-voltage converter. After collecting the results students later analyse them to determine the energy gap of the semiconductor. The objective of this work was to introduce interfacing and computerized measurement systems in the undergraduate laboratory. The microcontroller-based data acquisition system and its implementation in automatic in situ measurement of the band gap of germanium diode is presented. The system which uses an LM335 temperature sensor for measuring temperature transmits the measured data to the computer via the RS232 serial port while a C++ software program developed to run on the computer monitors the serial port for incoming information sent by the microcontroller. This information is displayed on the computer screen as it comes and automatically saved to a data file. Once all the data are received, the computer performs least-squares fit to the data to compute the energy gap which is displayed on the screen together with its error estimate. For the IN34A germanium diode used the value of the energy gap obtained was 0.50 ± 0.02 eV

  3. Modeling US Adult Obesity Trends: A System Dynamics Model for Estimating Energy Imbalance Gap

    Science.gov (United States)

    Rahmandad, Hazhir; Huang, Terry T.-K.; Bures, Regina M.; Glass, Thomas A.

    2014-01-01

    Objectives. We present a system dynamics model that quantifies the energy imbalance gap responsible for the US adult obesity epidemic among gender and racial subpopulations. Methods. We divided the adult population into gender–race/ethnicity subpopulations and body mass index (BMI) classes. We defined transition rates between classes as a function of metabolic dynamics of individuals within each class. We estimated energy intake in each BMI class within the past 4 decades as a multiplication of the equilibrium energy intake of individuals in that class. Through calibration, we estimated the energy gap multiplier for each gender–race–BMI group by matching simulated BMI distributions for each subpopulation against national data with maximum likelihood estimation. Results. No subpopulation showed a negative or zero energy gap, suggesting that the obesity epidemic continues to worsen, albeit at a slower rate. In the past decade the epidemic has slowed for non-Hispanic Whites, is starting to slow for non-Hispanic Blacks, but continues to accelerate among Mexican Americans. Conclusions. The differential energy balance gap across subpopulations and over time suggests that interventions should be tailored to subpopulations’ needs. PMID:24832405

  4. Mind the gap. Quantifying principal-agent problems in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    Energy efficiency presents a unique opportunity to address three energy-related challenges in IEA member countries: energy security, climate change, and economic development. Yet an energy-efficiency gap exists between actual and optimal energy use. That is, significant cost-effective energy efficiency potential is wasted because market barriers prevent countries from achieving optimal levels. Market barriers take many forms, from inadequate access to capital, isolation from price signals, information asymmetry, and split-incentives. Though many studies have reported the existence of such market barriers, none so far have attempted to quantify the magnitude of their effect on energy use and efficiency. This publication is an unprecedented attempt to quantify the size of one of the most pervasive barriers to energy efficiency - principal-agent problems, or in common parlance, variations on the 'landlord-tenant' problem. In doing so, the book provides energy analysts and economists with unique insights into the amount of energy affected by principal-agent problems. Using an innovative methodology applied to eight case studies (covering commercial and residential sectors, and end-use appliances) from five different IEA countries, the analysis identifies over 3,800 PJ/year of affected energy use - that is, around 85% of the annual energy use of a country the size of Spain. The book builds on these findings to suggest a range of possible policy solutions that can reduce the impact of principal-agent problems and help policy makers mind the energy efficiency gap.

  5. Implementing energy efficiency policy in Croatia: Stakeholder interactions for closing the gap

    International Nuclear Information System (INIS)

    Bukarica, Vesna; Robić, Slavica

    2013-01-01

    Despite the substantial efforts made to develop sound energy efficiency policies, the desired effects in terms of achieved energy savings are lacking. This phenomenon is known as the energy efficiency gap and has been extensively investigated in the literature. Barrier models to explain the gap are primarily oriented towards the technical aspects of energy efficiency and often disregard its social aspects. The aim of our research was to identify the social structures that play a prominent role in moving society towards greater energy efficiency, to investigate their perceptions of the levers for and brakes to greater participation in the implementation of energy efficiency measures and to provide recommendations for policy enhancement. Four groups of stakeholders were identified: public institutions, businesses, civil society organisations and the media. A survey was administered to 93 representatives of these groups in Croatia. The results indicate that to encourage the society to adopt energy efficiency improvements, it is crucial for public institutions to play a leading role with the support of strong and visible political commitment. The level of benefit recognition among all groups is weak, which together with the slow progression of dialogue between and within the analysed groups is preventing full policy uptake. - Highlights: • We analyse attitudes of Croatian stakeholders towards energy efficiency. • Responses are gathered from public institutions, businesses, CSOs and media. • Lacking political will and public dialogue dominantly cause and maintain the gap. • Participative policy making and clear leadership in implementing are needed

  6. Supersonic exciton gratings: coherent inter-polariton scattering in semiconductor microcavities

    DEFF Research Database (Denmark)

    Birkedal, Dan; Vadim, Lyssenko; Hvam, Jørn Märcher

    2002-01-01

    We report on a coherent nonlinear phenomenon in a semiconductor microcavity (SMC), which has no parallel for QW excitons. When two different polariton modes of the SMC are impulsively excited they undergo normal mode oscillations (NMOs) with coherent energy exchange between the exciton and the ca......We report on a coherent nonlinear phenomenon in a semiconductor microcavity (SMC), which has no parallel for QW excitons. When two different polariton modes of the SMC are impulsively excited they undergo normal mode oscillations (NMOs) with coherent energy exchange between the exciton...... and the cavity mode. In our experiment the two polaritons are excited with slightly different angles resulting in a travelling wave exciton grating. When a test polariton mode is excited it will scatter in the travelling grating producing amplitude modulation sidebands. This phenomenon produces a transient four......-wave mixing (TFWM) signal, which is shifted in frequency from that of the test beam by the NMO frequency, in our case, in the THz range corresponding to a grating velocity = 1 /spl times/ 10/sup 7/ m/s, which is four orders of magnitude larger than the sound velocity. The sample under investigation is a Ga...

  7. Energy Gap in the Aetiology of Body Weight Gain and Obesity: A Challenging Concept with a Complex Evaluation and Pitfalls

    Directory of Open Access Journals (Sweden)

    Yves Schutz

    2014-01-01

    Full Text Available The concept of energy gap(s is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity is not constant, may fade out with time if the initial conditions are maintained, and depends on the ‘efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s can be estimated by at least two methods, i.e. i assessment by longitudinal overfeeding studies, imposing (by design an initial positive energy imbalance gap; ii retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both is clouded by a high level of uncertainty.

  8. Refracting surface plasmon polaritons with nanoparticle arrays

    DEFF Research Database (Denmark)

    Radko, I.P.; Evlyukhin, A.B.; Boltasseva, Alexandra

    2008-01-01

    Refraction of surface plasmon polaritons (SPPs) by various structures formed by a 100-nm-period square lattice of gold nanoparticles on top of a gold film is studied by leakage radiation microscopy. SPP refraction by a triangular-shaped nanoparticle array indicates that the SPP effective refractive...... to design nanoparticle arrays for specific applications requiring in-plane SPP manipulation....

  9. Electrical Excitation of Surface Plasmon Polaritons

    NARCIS (Netherlands)

    Loon, R.V.A. van

    2009-01-01

    A surface plasmon polariton (SPP) is an electromagnetic wave propagating at the interface between a metal and a dielectric material. The two-dimensional confinement of SPPs and the tunability of their dispersion enable optical functionality that cannot be achieved with regular dielectrics. Several

  10. Surface Plasmon Polaritons Probed with Cold Atoms

    DEFF Research Database (Denmark)

    Kawalec, Tomasz; Sierant, Aleksandra; Panas, Roman

    2017-01-01

    We report on an optical mirror for cold rubidium atoms based on a repulsive dipole potential created by means of a modified recordable digital versatile disc. Using the mirror, we have determined the absolute value of the surface plasmon polariton (SPP) intensity, reaching 90 times the intensity...

  11. Technical Barriers, Gaps, and Opportunities Related to Home Energy Upgrade Market Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, M. V. A.

    2011-11-01

    This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program. The objective of this report is to outline the technical1 barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's (DOE) Building America program. This information will be used to provide guidance for new research necessary to enable the success of the approaches. Investigation for this report was conducted via publications related to home energy upgrade market delivery approaches, and a series of interviews with subject matter experts (contractors, consultants, program managers, manufacturers, trade organization representatives, and real estate agents). These experts specified technical barriers and gaps, and offered suggestions for how the technical community might address them. The potential benefits of home energy upgrades are many and varied: reduced energy use and costs; improved comfort, durability, and safety; increased property value; and job creation. Nevertheless, home energy upgrades do not comprise a large part of the overall home improvement market. Residential energy efficiency is the most complex climate intervention option to deliver because the market failures are many and transaction costs are high (Climate Change Capital 2009). The key reasons that energy efficiency investment is not being delivered are: (1) The opportunity is highly fragmented; and (2) The energy efficiency assets are nonstatus, low-visibility investments that are not properly valued. There are significant barriers to mobilizing the investment in home energy upgrades, including the 'hassle factor' (the time and effort required to identify and secure improvement works), access to financing, and the

  12. Invariant 'eigen-operator' of the square of Schroedinger operator for deriving energy-level gap

    International Nuclear Information System (INIS)

    Fan Hongyi; Li Chao

    2004-01-01

    We propose the conception of invariant 'eigen-operator' of the square of the Schroedinger operator, which can be used to derive energy-level gap formulas for some dynamic Hamiltonians. We list some examples, coupled oscillators models and the degenerate amplifier, etc., to demonstrate the feasibility of this approach

  13. The singlet-triplet energy gap in divalent three, five and seven ...

    African Journals Online (AJOL)

    The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn AND Pb) ... Nuclear independent chemical shifts (NICS) calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed.

  14. Exciton-polariton condensation in transition metal dichalcogenide bilayer heterostructure

    Science.gov (United States)

    Lee, Ki Hoon; Jeong, Jae-Seung; Min, Hongki; Chung, Suk Bum

    For the bilayer heterostructure system in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon coupling can lead to the emergence of quasiparticles consisting of the spatially indirect exciton and cavity photons known as dipolariton, which can form the Bose-Einstein condensate above a threshold density. Additional physics comes into play when each layer of the bilayer system consists of the transition metal dichalcogenide (TMD) monolayer. The TMD monolayer band structure in the low energy spectrum has two valley components with nontrivial Berry phase, which gives rise to a selection rule in the exciton-polariton coupling, e.g. the exciton from one (the other) valley can couple only to the clockwise (counter-clockwise) polarized photon. We investigate possible condensate phases of exciton-polariton in the bilayer TMD microcavity changing relevant parameters such as detuning, excitation density and interlayer distance. This work was supported in part by the Institute for Basic Science of Korea (IBS) under Grant IBS-R009-Y1 and by the National Research Foundation of Korea (NRF) under the Basic Science Research Program Grant No. 2015R1D1A1A01058071.

  15. A bi-annular-gap magnetorheological energy absorber for shock and vibration mitigation

    Science.gov (United States)

    Bai, Xian-Xu; Wereley, Norman M.; Choi, Young-Tai; Wang, Dai-Hua

    2012-04-01

    For semi-active shock and vibration mitigation systems using magnetorheological energy absorbers (MREAs), the minimization of the field-off damper force of the MREA at high speed is of particular significance because the damper force due to the viscous damping at high speed becomes too excessive and thus the controllable dynamic force range that is defined by the ratio of the field-on damper force to the field-off damper force is significantly reduced. In this paper, a bi-annular-gap MREA with an inner-set permanent magnet is proposed to decrease the field-off damper force at high speed while keeping appropriate dynamic force range for improving shock and vibration mitigation performance. In the bi-annular-gap MREA, two concentric annular gaps are configured in parallel so as to decrease the baseline damper force and both magnetic activation methods using the electromagnetic coil winding and the permanent magnet are used to keep holding appropriate magnetic intensity in these two concentric annular gaps in the consideration of failure of the electric power supply. An initial field-on damper force is produced by the magnetic field bias generated from the inner-set permanent magnet. The initial damper force of the MREA can be increased (or decreased) through applying positive (or negative) current to the electromagnetic coil winding inside the bi-annular-gap MREA. After establishing the analytical damper force model of the bi-annular-gap MREA using a Bingham-plastic nonlinear fluid model, the principle and magnetic properties of the MREA are analytically validated and analyzed via electromagnetic finite element analysis (FEA). The performance of the bi-annular-gap MREA is also theoretically compared with that of a traditional single-annular- gap MREA with the constraints of an identical volume by the performance matrix, such as the damper force, dynamic force range, and Bingham number with respect to different excitation velocities.

  16. Extending the high-order-harmonic spectrum using surface plasmon polaritons

    Science.gov (United States)

    Ebadian, H.; Mohebbi, M.

    2017-08-01

    Nanoparticle assisted high-order-harmonic generation by low-intensity ultrashort laser pulses in hydrogen atomic gas is studied. This work is based on surface plasmon-polariton coupling in metal-insulator-metal structures. The necessary laser intensity is provided by enhancement of the incident laser power in the vicinity of bowtie nanoparticles installed on an insulator-metal structure. The inhomogeneous electric field distribution in the Au nanobowtie gap region is investigated. Simulations show that the insulator layer installed on the Au metal film that supports the plasmon-polariton interactions has a dramatic effect on the field enhancement factor. High-order-harmonic generation cutoffs for different arrangements are calculated and results show that the metal-insulator-metal structure is an excellent device for high-order-harmonic generation purposes. Also, the harmonic cutoff order is extended to more than 170, which is a considerable value and will be an efficient source for extreme ultraviolet radiation.

  17. Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser

    KAUST Repository

    Das, Ayan

    2011-08-01

    We report ultralow threshold polariton lasing from a single GaN nanowire strongly coupled to a large-area dielectric microcavity. The threshold carrier density is 3 orders of magnitude lower than that of photon lasing observed in the same device, and 2 orders of magnitude lower than any existing room-temperature polariton devices. Spectral, polarization, and coherence properties of the emission were measured to confirm polariton lasing. © 2011 American Physical Society.

  18. Spin-Orbit Coupling for Photons and Polaritons in Microstructures

    Directory of Open Access Journals (Sweden)

    V. G. Sala

    2015-03-01

    Full Text Available We use coupled micropillars etched out of a semiconductor microcavity to engineer a spin-orbit Hamiltonian for photons and polaritons in a microstructure. The coupling between the spin and orbital momentum arises from the polarization-dependent confinement and tunneling of photons between adjacent micropillars arranged in the form of a hexagonal photonic molecule. It results in polariton eigenstates with distinct polarization patterns, which are revealed in photoluminescence experiments in the regime of polariton condensation. Thanks to the strong polariton nonlinearities, our system provides a photonic workbench for the quantum simulation of the interplay between interactions and spin-orbit effects, particularly when extended to two-dimensional lattices.

  19. Phonon-induced enhancement of the energy gap and critical current of superconducting aluminum films

    International Nuclear Information System (INIS)

    Seligson, D.; Clarke, J.

    1983-01-01

    Enhancements of the energy gap Δ and the critical current I/sub c/ have been induced in thin superconducting aluminum films near the transition temperature T/sub c/ by pulses of phonons at approximately 9 GHz. In terms of the change in temperature Vertical BardeltaT/T/sub c/Vertical Bar necessary to produce the same enhancement in equilibrium, the gap enhancement increased smoothly with phonon power at fixed temperature and decreasing temperature at fixed phonon power; however, very close to T/sub c/ the enhancement rolled off. At relatively low phonon powers, the data were in good agreement with the theory of Eckern, Schmid, Schmutz, and Schoen, but at higher power levels the data fell markedly below the predictions of the theory. The critical-current enhancements in terms of Vertical BardeltaT/T/sub c/Vertical Bar were always larger than the gap enhancements at the same temperature and phonon power. At fixed phonon power the critical-current enhancements were nearly independent of temperature, except very close to T/sub c/ where the enhancement became small. The inclusion of the nonequilibrium quasiparticle distribution and the kinetic energy of the supercurrent in the theory relating the critical-current enhancement to the gap enhancement did not resolve the discrepancies between the two enhancements. It appears likely that there is an additional mechanism for critical-current enhancement that has not yet been identified

  20. Factors responsible for the stability and the existence of a clean energy gap of a silicon nanocluster

    International Nuclear Information System (INIS)

    Liu, Lei; Jayanthi, C. S.; Wu, Shi-Yu

    2001-01-01

    We present a critical theoretical study of electronic properties of silicon nanoclusters, in particular the roles played by symmetry, relaxation, and hydrogen passivation on the stability, the gap states and the energy gap of the system using the order N [O(N)] nonorthogonal tight-binding molecular dynamics and the local analysis of electronic structure. We find that for an unrelaxed cluster with its atoms occupying the regular tetrahedral network, the presence of undistorted local bonding configuration is sufficient for the appearance of a small clean energy gap. However, the energy gap of the unrelaxed cluster does not start at the highest occupied molecular orbital (HOMO). In fact, between the HOMO and the lower edge of the energy gap, localized dangling bond states are found. With hydrogen passivation, the localized dangling bond states are eliminated, resulting in a wider and clean energy gap. Relaxation of these hydrogen passivated clusters does not alter either the structure or the energy gap appreciably. However, if the silicon clusters are allowed to relax first, the majority of the dangling bonds are eliminated but additional defect states due to bond distortion appear, making the energy gap dirty. Hydrogen passivation of these relaxed clusters will further eliminate most of the remnant dangling bonds but no appreciable effect on the defect states associated with bond distortions will take place, thus still resulting in a dirty gap. For the hydrogen-passivated Si N nanoclusters with no bond distortion and no overall symmetry, we have studied the variation of the energy gap as a function of size of the cluster for N in the range of 80< N<6000. The dependence of the energy gap on the size shows similar behavior to that for silicon nanoclusters with no bond distortion but possessing overall symmetry

  1. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    Science.gov (United States)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of electron density for na individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closet neighbors reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  2. Temperature and concentration dependence af energy gap and refrective index in certain mixed crystals and semiconductors

    Science.gov (United States)

    Reddy, R. R.; Kumar, M. Ravi; Rao, T. V. R.

    1993-02-01

    Variations of energy gap ( Eg) and refractive index ( n) with the concentration have been studied through a set of simple empirical equations proposed in the case of certain mixed crystals of technological importance. Similarly, another set of equations has been proposed to explain the temperature dependence of the energy gap in semiconductors such as GaS, GaSe, GaTe, SnS 2 and SnSe 2. The results obtained in both cases are found to be in excellent agreement with the experimental values. The proposed equations are proved to be simple and advantageous over others in the sense that less computational work is involved in the calculations of Eg and n.

  3. Exciton Polaritons in Microcavities New Frontiers

    CERN Document Server

    Sanvitto, Daniele

    2012-01-01

    In the past decade, there has been a burst of new and fascinating physics associated to the unique properties of two-dimensional exciton polaritons, their recent demonstration of condensation under non-equilibrium conditions and all the related quantum phenomena, which have stimulated extensive research work. This monograph summarizes the current state of the art of research on exciton polaritons in microcavities: their interactions, fast dynamics, spin-dependent phenomena, temporal and spatial coherence, condensation under non-equilibrium conditions, related collective quantum phenomena and most advanced applications. The monograph is written by the most active authors who have strongly contributed to the advances in this area. It is of great interests to both physicists approaching this subject for the first time, as well as a wide audience of experts in other disciplines who want to be updated on this fast moving field.

  4. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures

    Science.gov (United States)

    Nellis, W. J.; Mitchell, A. C.; Mccandless, P. C.; Erskine, D. J.; Weir, S. T.

    1992-01-01

    Electrical conductivities were measured for liquid D2 and H2 shock compressed to pressures of 10-20 GPa (100-200 kbar), molar volumes near 8 cu cm/mol, and calculated temperatures of 2900-4600 K. The semiconducting energy gap derived from the conductivities is 12 eV, in good agreement with recent quasi-particle calculations and with oscillator frequencies measured in diamond-anvil cells.

  5. Localized magnetic polaritons in thin flims

    International Nuclear Information System (INIS)

    Lima, N.P.

    1985-01-01

    In this thesis we study the localized retarted modes (polaritons) in a ferromagnetic slab. For this we used the linear response theory to obtain the dispersion relations of the bulk, surface and guided modes, for a geometry more general than the Voigt's one. We got both the Green functions in the Voight geometry and the power spectra of these modes. Finally, we show that these Green functions fulfill the correct general symmetry requirements. (author) [pt

  6. Enhanced Second-Order Nonlinearity for THz Generation by Resonant Interaction of Exciton-Polariton Rabi Oscillations with Optical Phonons

    Science.gov (United States)

    Rojan, Katharina; Léger, Yoan; Morigi, Giovanna; Richard, Maxime; Minguzzi, Anna

    2017-09-01

    Semiconductor microcavities in the strong-coupling regime exhibit an energy scale in the terahertz (THz) frequency range, which is fixed by the Rabi splitting between the upper and lower exciton-polariton states. While this range can be tuned by several orders of magnitude using different excitonic media, the transition between both polaritonic states is dipole forbidden. In this work, we show that, in cadmium telluride microcavities, the Rabi-oscillation-driven THz radiation is actually active without the need for any change in the microcavity design. This feature results from the unique resonance condition which is achieved between the Rabi splitting and the phonon-polariton states and leads to a giant enhancement of the second-order nonlinearity.

  7. Plasmon-excitonic polaritons in superlattices

    Science.gov (United States)

    Kosobukin, V. A.

    2017-05-01

    A theory for propagation of polaritons in superlattices with resonant plasmon-exciton coupling is presented. A periodical superlattice consists of a finite number of cells with closely located a quantum well and a monolayer of metal nanoparticles. Under study is the spectrum of hybrid modes formed of the quasitwo- dimensional excitons of quantum wells and the dipole plasmons of metal particles. The problem of electrodynamics is solved by the method of Green's functions with taking account of the resonant polarization of quantum wells and nanoparticles in a self-consistent approximation. The effective polarizability of spheroidal particles occupying a square lattice is calculated with taking into consideration the local-field effect of dipole plasmons of the layer and their images caused by the excitonic polarization of nearest quantum well. Optical reflection spectra of superlattices with GaAs/AlGaAs quantum wells and silver particles are numerically analyzed. Special attention is paid to the superradiant regime originated in the Bragg diffraction of polaritons in superlattice. Superradiance is investigated separately for plasmons and excitons, and then for hybrid plasmonexcitonic polaritons. It is demonstrated that the broad spectrum of reflectance associated with plasmons depends on the number of cells in superlattice, and it has a narrow spectral dip in the range of plasmon-excitonic Rabi splitting.

  8. Exciton-polariton in graphene nano-ribbon embedded In semiconductor microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Shojaei, S., E-mail: s_shojaei@tabrizu.ac.ir; Imannezhad, S.

    2016-03-15

    In this paper, we investigated coupling of confined photons in the semiconductor microcavity consists of Distributed Bragg Reflectors (DBR) (Si{sub 3}N{sub 4}/SiO{sub 2} and AlAs/Al{sub 0.1}Ga{sub 0.9}As) with excitons of gapped Armchair Graphene NanoRibbon (A-GNR) that placed at the maximum of electric field amplitude inside the semiconductor microcavity. Our calculations show that the coupling between GNR's exciton and confined photon modes and appearance of vacuum Rabi splitting (VRS), is possible. By the means of Transfer Matrix Method (TMM) we obtain angle dependent reflectance spectrum and Upper, Lower Polariton Branches (UPB&LPB) for the structure. Clear anticrossing between the neutral exciton and the cavity modes with a splitting of about 3 meV obtained that can be enhanced in double-GNR. While, our calculations certify the formation of graphene based exciton-polariton, propose the enhancement of VRS by optimization of relevant parameters to implement the graphene based cavity polaritons in optoelectronic devices.

  9. Focal point analysis of the singlet-triplet energy gap of octacene and larger acenes.

    Science.gov (United States)

    Hajgató, Balázs; Huzak, Matija; Deleuze, Michael S

    2011-08-25

    A benchmark theoretical study of the electronic ground state and of the vertical and adiabatic singlet-triplet (ST) excitation energies of n-acenes (C(4n+2)H(2n+4)) ranging from octacene (n = 8) to undecacene (n = 11) is presented. The T1 diagnostics of coupled cluster theory and further energy-based criteria demonstrate that all investigated systems exhibit predominantly a (1)A(g) singlet closed-shell electronic ground state. Singlet-triplet (S(0)-T(1)) energy gaps can therefore be very accurately determined by applying the principle of a focal point analysis (FPA) onto the results of a series of single-point and symmetry-restricted calculations employing correlation consistent cc-pVXZ basis sets (X = D, T, Q, 5) and single-reference methods [HF, MP2, MP3, MP4SDQ, CCSD, and CCSD(T)] of improving quality. According to our best estimates, which amount to a dual extrapolation of energy differences to the level of coupled cluster theory including single, double, and perturbative estimates of connected triple excitations [CCSD(T)] in the limit of an asymptotically complete basis set (cc-pV∞Z), the S(0)-T(1) vertical (adiabatic) excitation energies of these compounds amount to 13.40 (8.21), 10.72 (6.05), 8.05 (3.67), and 7.10 (2.58) kcal/mol, respectively. In line with the absence of Peierls distortions (bond length alternations), extrapolations of results obtained at this level for benzene (n = 1) and all studied n-acenes so far (n = 2-11) indicate a vanishing S(0)-T(1) energy gap, in the limit of an infinitely large polyacene, within an uncertainty of 1.5 kcal/mol (0.06 eV). Lacking experimental values for the S(0)-T(1) energy gaps of n-acenes larger than hexacene, comparison is made with recent optical and electrochemical determinations of the HOMO-LUMO band gap. Further issues such as scalar relativistic, core correlation, and diagonal Born-Oppenheimer corrections (DBOCs) are tentatively examined. © 2011 American Chemical Society

  10. Energy efficiency in existing buildings: investment gap, incentives and supporting measures

    International Nuclear Information System (INIS)

    Varenio, Celine

    2012-01-01

    This PhD dissertation focuses on energy efficiency policies in housing. It aims at evaluating the effectiveness of public incentives designed to increase household's investment in energy efficiency of their dwelling. To reach this objective this research combines the two key dimensions of ex-post evaluation, i.e. summary and formative dimensions. The first one aims at knowing the effectiveness of public policies whereas the other one targets to understand what the public policies' consequences are and to identify ways for improvement. To reach this purpose, the research follows four steps. Firstly, it requires a detailed analysis to understand the origins of the energy efficiency gap. This gap can be explained by markets failures, consequences of bounded rationality and coordination problem between stakeholders, especially in multi-family dwellings. Secondly, the argument progresses by drawing a parallel between results from normative analysis and from observations of actual level of investments in thermal retrofit actions. It aims at identifying investment households' criteria and then at understanding how barriers to energy efficiency raise. Thirdly, thanks to the inventory of these various energy efficiency barriers it becomes possible to examine if the incentives currently implemented in France can remove them all. It appears that the national policy does not significantly reduce the energy efficiency gap. On the one hand, some barriers remain because no tool has been proposed to overcome them. On the other hand, some barriers are only partially eliminated because the practical use of tools differs from their theoretical design. Finally, using the analysis of retrofitting programs implemented on the Grenoble area this research assesses the effectiveness of additional incentives. The objective is to know to what extent these 'reinforced' policies remove barriers still existing after national tools implementation. From these four

  11. Optical band gap energy and ur bach tail of CdS:Pb2+ thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, M.; Juarez, H.; Pacio, M. [Universidad Autonoma de Puebla, Instituto de Ciencias, Centro de Investigacion en Dispositivos Semiconductores, Av. 14 Sur, Col. Jardines de San Manuel, Ciudad Universitaria, Puebla, Pue. (Mexico); Gutierrez, R.; Chaltel, L.; Zamora, M.; Portillo, O. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, Laboratorio de Materiales, Apdo. Postal 1067, 72001 Puebla, Pue. (Mexico); Mathew, X., E-mail: osporti@yahoo.mx [UNAM, Instituto de Energias Renovables, Temixco, Morelos (Mexico)

    2016-11-01

    Pb S-doped CdS nano materials were successfully synthesized using chemical bath. Transmittance measurements were used to estimate the optical band gap energy. Tailing in the band gap was observed and found to obey Ur bach rule. The diffraction X-ray show that the size of crystallites is in the ∼33 nm to 12 nm range. The peaks belonging to primary phase are identified at 2θ = 26.5 degrees Celsius and 2θ = 26.00 degrees Celsius corresponding to CdS and Pb S respectively. Thus, a shift in maximum intensity peak from 2θ = 26.4 to 28.2 degrees Celsius is clear indication of possible transformation of cubic to hexagonal phase. Also peaks at 2θ = 13.57, 15.9 degrees Celsius correspond to lead perchlorate thiourea. The effects on films thickness and substrate doping on the band gap energy and the width on tail were investigated. Increasing doping give rise to a shift in optical absorption edge ∼0.4 eV. (Author)

  12. Dispersion relation for localized magnetic polaritons propagating at ...

    Indian Academy of Sciences (India)

    Abstract. Localized magnetic polaritons are investigated in the systems consisting of two magnetic superlattices, coupled by a ferromagnetic contact layer. The general dis- persion relation for localized magnetic polaritons are derived in the framework of the electromagnetic wave theory in the Voigt geometry by the 'transfer' ...

  13. An efficient zero-order description of the fine structure in the infrared reflection band of cubic ionic crystals and the phonon-polariton dispersion using Lorentz gauge

    Science.gov (United States)

    Meskers, Stefan C. J.

    2018-03-01

    The reflection of infrared light by ionic crystals with cubic symmetry such as lithium fluoride, LiF, is analyzed in terms of phonon-polaritons. In contrast to the conventional view on phonon-polaritons that uses the Coulomb gauge and assumes a purely local dielectric response of the material, we here develop an alternative description making use of the Lorentz gauge. This involves retarded interactions between charges, implying a non-local response of the material to electromagnetic radiation. The resulting new phonon-polariton dispersion relation features polaritons with negative group velocity in the frequency range in between the transverse (ωT) and longitudinal frequency (ωL). By contrast, the conventional description predicts, in zero order, the absence of any propagating polaritons in the frequency interval between ωT and ωL. The new dispersion relation provides an efficient, zero-order description of the fine structure within the reststrahlen band of LiF. The local minimum near the middle of the reflectance band is due to excitation of a phonon-polariton whose energy and momentum matches that of the incoming photon. The Lorentz gauge description can also describe off-normal reflection and accounts for the experimentally observed widening of the reflection band with increasing angle of incidence.

  14. Closing the gap between short- and long-term scenarios for nuclear energy

    International Nuclear Information System (INIS)

    Toth, F. L.; Rogner, H.-H.

    2005-01-01

    Many scenarios published in recent years explore the driving forces and assess plausible ranges of global energy use and the resources they draw on. Some scenarios (e.g., OECD IEA, Organization for Economic Co-operation and Development International Energy Agency, 2004) focus on the next decade or two and project the evolution of world energy demand, supply as well as the resources, technologies, and prices to match them. Other scenarios (e.g., the Special Report on Emissions Scenarios, SRES, prepared by the Intergovernmental Panel on Climate Change, IPCC, 2000) explore the long term with a view to resource availability and depletion, technological transformations, and environmental concerns, predominantly climate change. A persistent gap (see Figure 1) can be observed in the projections for nuclear energy: near-term scenarios typically project a flat or slightly declining contribution of nuclear energy to the world energy supply whereas medium- and long-term scenarios anticipate significant increases. The magnitude of the gap between the OECD IEA (2002) projections and the median of the 40 IPCC SRES scenarios for the year 2020 amounts to almost 300 GWe installed capacity. Reasons for the gap originate in the differences between the analytical frameworks (including projection techniques) adopted by the short- and long-term studies. Another, closely related reason is the difference in the underlying assumptions, particularly their relations to recent trends and the current situation. In addition, near-term projections are heavily influenced by the social context (perceived unpopularity or outright rejection of nuclear power after Chernobyl), political factors (government pronouncements and policies at the national level, diplomacy and balancing of national positions at international organizations), economic aspects (energy market deregulation and liberalization unveiling excess capacities; financial risks), technology matters (the role of learning, definition of

  15. Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe 2

    KAUST Repository

    Zhang, Chendong

    2015-09-21

    By using a comprehensive form of scanning tunneling spectroscopy, we have revealed detailed quasi-particle electronic structures in transition metal dichalcogenides, including the quasi-particle gaps, critical point energy locations, and their origins in the Brillouin zones. We show that single layer WSe surprisingly has an indirect quasi-particle gap with the conduction band minimum located at the Q-point (instead of K), albeit the two states are nearly degenerate. We have further observed rich quasi-particle electronic structures of transition metal dichalcogenides as a function of atomic structures and spin-orbit couplings. Such a local probe for detailed electronic structures in conduction and valence bands will be ideal to investigate how electronic structures of transition metal dichalcogenides are influenced by variations of local environment.

  16. High throughput light absorber discovery, Part 2: Establishing structure–band gap energy relationships

    International Nuclear Information System (INIS)

    Suram, Santosh K.; Newhouse, Paul F.; Zhou, Lan; Van Campen, Douglas G.; Mehta, Apurva; Gregoire, John M.

    2016-01-01

    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4 V 1.5 Fe 0.5 O 10.5 as a light absorber with direct band gap near 2.7 eV. Here, the strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platform for identifying new optical materials.

  17. Charged Polaron Polaritons in an Organic Semiconductor Microcavity

    Science.gov (United States)

    Cheng, Chiao-Yu; Dhanker, Rijul; Gray, Christopher L.; Mukhopadhyay, Sukrit; Kennehan, Eric R.; Asbury, John B.; Sokolov, Anatoliy; Giebink, Noel C.

    2018-01-01

    We report strong coupling between light and polaron optical excitations in a doped organic semiconductor microcavity at room temperature. Codepositing MoO3 and the hole transport material 4, 4' -cyclohexylidenebis[N , N -bis(4-methylphenyl)benzenamine] introduces a large hole density with a narrow linewidth optical transition centered at 1.8 eV and an absorption coefficient exceeding 104 cm-1 . Coupling this transition to a Fabry-Pérot cavity mode yields upper and lower polaron polariton branches that are clearly resolved in angle-dependent reflectivity with a vacuum Rabi splitting ℏ ΩR>0.3 eV . This result establishes a path to electrically control polaritons in organic semiconductors and may lead to increased polariton-polariton Coulombic interactions that lower the threshold for nonlinear phenomena such as polariton condensation and lasing.

  18. Two-dimensional infrared spectroscopy of vibrational polaritons.

    Science.gov (United States)

    Xiang, Bo; Ribeiro, Raphael F; Dunkelberger, Adam D; Wang, Jiaxi; Li, Yingmin; Simpkins, Blake S; Owrutsky, Jeffrey C; Yuen-Zhou, Joel; Xiong, Wei

    2018-04-19

    We report experimental 2D infrared (2D IR) spectra of coherent light-matter excitations--molecular vibrational polaritons. The application of advanced 2D IR spectroscopy to vibrational polaritons challenges and advances our understanding in both fields. First, the 2D IR spectra of polaritons differ drastically from free uncoupled excitations and a new interpretation is needed. Second, 2D IR uniquely resolves excitation of hybrid light-matter polaritons and unexpected dark states in a state-selective manner, revealing otherwise hidden interactions between them. Moreover, 2D IR signals highlight the impact of molecular anharmonicities which are applicable to virtually all molecular systems. A quantum-mechanical model is developed which incorporates both nuclear and electrical anharmonicities and provides the basis for interpreting this class of 2D IR spectra. This work lays the foundation for investigating phenomena of nonlinear photonics and chemistry of molecular vibrational polaritons which cannot be probed with traditional linear spectroscopy.

  19. Low-energy electronic excitations and band-gap renormalization in CuO

    Science.gov (United States)

    Rödl, Claudia; Ruotsalainen, Kari O.; Sottile, Francesco; Honkanen, Ari-Pekka; Ablett, James M.; Rueff, Jean-Pascal; Sirotti, Fausto; Verbeni, Roberto; Al-Zein, Ali; Reining, Lucia; Huotari, Simo

    2017-05-01

    Combining nonresonant inelastic x-ray scattering experiments with state-of-the-art ab initio many-body calculations, we investigate the electronic screening mechanisms in strongly correlated CuO in a large range of energy and momentum transfers. The excellent agreement between theory and experiment, including the low-energy charge excitations, allows us to use the calculated dynamical screening as a safe building block for many-body perturbation theory and to elucidate the crucial role played by d -d excitations in renormalizing the band gap of CuO. In this way we can dissect the contributions of different excitations to the electronic self-energy which is illuminating concerning both the general theory and this prototypical material.

  20. Can the energy gap in the protein-ligand binding energy landscape be used as a descriptor in virtual ligand screening?

    Directory of Open Access Journals (Sweden)

    Arsen V Grigoryan

    Full Text Available The ranking of scores of individual chemicals within a large screening library is a crucial step in virtual screening (VS for drug discovery. Previous studies showed that the quality of protein-ligand recognition can be improved using spectrum properties and the shape of the binding energy landscape. Here, we investigate whether the energy gap, defined as the difference between the lowest energy pose generated by a docking experiment and the average energy of all other generated poses and inferred to be a measure of the binding energy landscape sharpness, can improve the separation power between true binders and decoys with respect to the use of the best docking score. We performed retrospective single- and multiple-receptor conformation VS experiments in a diverse benchmark of 40 domains from 38 therapeutically relevant protein targets. Also, we tested the performance of the energy gap on 36 protein targets from the Directory of Useful Decoys (DUD. The results indicate that the energy gap outperforms the best docking score in its ability to discriminate between true binders and decoys, and true binders tend to have larger energy gaps than decoys. Furthermore, we used the energy gap as a descriptor to measure the height of the native binding phase and obtained a significant increase in the success rate of near native binding pose identification when the ligand binding conformations within the boundaries of the native binding phase were considered. The performance of the energy gap was also evaluated on an independent test case of VS-identified PKR-like ER-localized eIF2α kinase (PERK inhibitors. We found that the energy gap was superior to the best docking score in its ability to more highly rank active compounds from inactive ones. These results suggest that the energy gap of the protein-ligand binding energy landscape is a valuable descriptor for use in VS.

  1. Conductance modulation in Weyl semimetals with tilted energy dispersion without a band gap

    Science.gov (United States)

    Yesilyurt, Can; Siu, Zhuo Bin; Tan, Seng Ghee; Liang, Gengchiau; Jalil, Mansoor B. A.

    2017-06-01

    We investigate the tunneling conductance of Weyl semimetal with tilted energy dispersion by considering electron transmission through a p-n-p junction with one-dimensional electric and magnetic barriers. In the presence of both electric and magnetic barriers, we found that a large conductance gap can be produced with the aid of tilted energy dispersion without a band gap. The origin of this effect is the shift of the electron wave-vector at barrier boundaries caused by (i) the pseudo-magnetic field induced by electrical potential, i.e., a newly discovered feature that is only possible in the materials possessing tilted energy dispersion, (ii) the real magnetic field induced by a ferromagnetic layer deposited on the top of the system. We use a realistic barrier structure applicable in current nanotechnology and analyze the temperature dependence of the tunneling conductance. The new approach presented here may resolve a major problem of possible transistor applications in topological semimetals, i.e., the absence of normal backscattering and gapless band structure.

  2. Low-voltage polariton electroluminescence from an ultrastrongly coupled organic light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Gubbin, Christopher R.; Maier, Stefan A. [Experimental Solid State Group, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Kéna-Cohen, Stéphane, E-mail: s.kena-cohen@polymtl.ca [Department of Engineering Physics, École Polytechnique de Montréal, Montréal, Quebec H3C 3A7 (Canada)

    2014-06-09

    We demonstrate electroluminescence from Frenkel molecular excitons ultrastrongly coupled to photons of a metal-clad microcavity containing a 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl)fluorene emissive layer. Thin layers of molybdenum oxide and 4,7-diphenyl-1,10-phenanthroline are used as hole and electron injection layers, respectively. The fabricated devices exhibit an electroluminescence threshold of 3.1 V, a value that is below the bare exciton energy. This result is found to be independent of detuning and consistent with a two-step process for polariton formation. Moreover, we investigate the quantum efficiency of carrier to polariton to photon conversion and obtain an external quantum efficiency of 0.1% for the fabricated structures, an improvement of 5 orders of magnitude over previous reports.

  3. Subharmonic energy-gap structure and heating effects in superconducting niobium point contacts

    DEFF Research Database (Denmark)

    Flensberg, K.; Hansen, Jørn Bindslev

    1989-01-01

    We present experimental data of the temperature-dependent subharmonic energy-gap structure (SGS) in the current-voltage (I-V) curves of superconducting niobium point contacts. The observed SGS is modified by heating effects. We construct a model of the quasiparticle conductance of metallic...... superconducting weak links that includes the heating effects self-consistently. Our model is combined with that of Octavio, Blonder, Klapwijk, and Tinkham [Phys. Rev. B 27, 6739 (1983)], which is based on the idea of multiple Andreev scattering in the contact. The shape and the temperature variation...

  4. Imaging exciton-polariton transport in MoSe2 waveguides

    Science.gov (United States)

    Hu, F.; Luan, Y.; Scott, M. E.; Yan, J.; Mandrus, D. G.; Xu, X.; Fei, Z.

    2017-06-01

    The exciton-polariton (EP), a half-light and half-matter quasiparticle, is potentially an important element for future photonic and quantum technologies. It provides both strong light-matter interactions and long-distance propagation that is necessary for applications associated with energy or information transfer. Recently, strongly coupled cavity EPs at room temperature have been demonstrated in van der Waals (vdW) materials due to their strongly bound excitons. Here, we report a nano-optical imaging study of waveguide EPs in MoSe2, a prototypical vdW semiconductor. The measured propagation length of the EPs is sensitive to the excitation photon energy and reaches over 12 µm. The polariton wavelength can be conveniently altered from 600 nm down to 300 nm by controlling the waveguide thickness. Furthermore, we found an intriguing back-bending polariton dispersion close to the exciton resonance. The observed EPs in vdW semiconductors could be useful in future nanophotonic circuits operating in the near-infrared to visible spectral regions.

  5. Bridging technology gaps in realizing goals towards peaceful uses of nuclear energy

    International Nuclear Information System (INIS)

    Mohanty, P.R.; Haldar, T.K.

    2009-01-01

    India is committed towards peaceful uses of Nuclear Energy and Nuclear Power occupies its centre stage. In the nuclear fuel cycle, apart from the fuel material itself, the programme needs a host of other materials in specific physical and chemical form. In this context, Heavy Water Board, a constituent unit of DAE, initiated technology development campaigns centering around three broad areas, i.e Specialty chemicals like organo-phosphorus solvents; solvent extraction technology including suitable equipment for use as liquid-liquid contacting device; and stable isotope like Boron-10. In a short span of about 7 years, it has successfully developed, demonstrated and deployed these technologies. This article gives an overview of these activities and the strategy adopted towards bridging technology gaps in realizing goals towards peaceful uses of Nuclear Energy. (author)

  6. Closing data gaps for LCA of food products: estimating the energy demand of food processing.

    Science.gov (United States)

    Sanjuán, Neus; Stoessel, Franziska; Hellweg, Stefanie

    2014-01-21

    Food is one of the most energy and CO2-intensive consumer goods. While environmental data on primary agricultural products are increasingly becoming available, there are large data gaps concerning food processing. Bridging these gaps is important; for example, the food industry can use such data to optimize processes from an environmental perspective, and retailers may use this information for purchasing decisions. Producers and retailers can then market sustainable products and deliver the information demanded by governments and consumers. Finally, consumers are increasingly interested in the environmental information of foods in order to lower their consumption impacts. This study provides estimation tools for the energy demand of a representative set of food process unit operations such as dehydration, evaporation, or pasteurization. These operations are used to manufacture a variety of foods and can be combined, according to the product recipe, to quantify the heat and electricity demand during processing. In combination with inventory data on the production of the primary ingredients, this toolbox will be a basis to perform life cycle assessment studies of a large number of processed food products and to provide decision support to the stakeholders. Furthermore, a case study is performed to illustrate the application of the tools.

  7. Light modulators and deflectors based on polariton effects

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1981-01-01

    The possibility of constructing light modulators and deflectors based on polariton effects is considered. The polariton is a mixed complex consisting of a superposition of a one-photon state and a crystal excitation state. By influencing the crystal excitation state by means of external fields......, the polariton, and hence the photon part, can be deflected or modulated. The connection with geometrical optics is established, and it is shown that the deflection is due to a gradient in the refraction index created by the applied external field. Several examples with electric, magnetic, and stress fields...

  8. Resonant Magnon-Phonon Polaritons in a Ferrimagnet

    Science.gov (United States)

    2000-09-29

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11604 TITLE: Resonant Magnon -Phonon Polaritons in a Ferrimagnet...part numbers comprise the compilation report: ADP011588 thru ADP011680 UNCLASSIFIED 75 Resonant Magnon -Phonon Polaritons in a Ferrimagnet I. E...susceptibilities X"aa and X’m << X’m appear, where 77 xem - DPx igEo0 i_ Xxy - hy- C1 (0)2 _ 00t2) 4= -7• 4 3. Phonon and magnon polaritons We solve the

  9. Bragg polaritons in a ZnSe-based unfolded microcavity at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sebald, K.; Rahman, SK. S.; Cornelius, M.; Kaya, T.; Gutowski, J. [Semiconductor Optics, Institute of Solid State Physics, University of Bremen, 28334 Bremen (Germany); Klein, T.; Gust, A.; Hommel, D. [Semiconductor Epitaxy, Institute of Solid State Physics, University of Bremen, 28334 Bremen (Germany); Klembt, S. [Institut Néel, Université Grenoble Alpes and CNRS, B.P. 166, 38042 Grenoble (France)

    2016-03-21

    In this contribution, we present strong coupling of ZnSe quantum well excitons to Bragg modes resulting in the formation of Bragg polariton eigenstates, characterized by a small effective mass in comparison to a conventional microcavity. We observe an anticrossing of the excitonic and the photonic component in our sample being a clear signature for the strong-coupling regime. The anticrossing is investigated by changing the detuning between the excitonic components and the Bragg mode. We find anticrossings between the first Bragg mode and the heavy- as well as light-hole exciton, respectively, resulting in three polariton branches. The observed Bragg-polariton branches are in good agreement with theoretical calculations. The strong indication for the existence of strong coupling is traceable up to a temperature of 200 K, with a Rabi-splitting energy of 24 meV and 13 meV for the Bragg mode with the heavy- and light-hole exciton, respectively. These findings demonstrate the advantages of this sample configuration for ZnSe-based devices for the strong coupling regime.

  10. Caffeine-containing energy drinks: beginning to address the gaps in what we know.

    Science.gov (United States)

    Sorkin, Barbara C; Coates, Paul M

    2014-09-01

    Energy drinks are relatively new to the United States but are the fastest growing segment of the beverage market. Humans have a long history of consuming caffeine in traditional beverages, such as cocoa, coffee, tea, and yerba maté, but 2 workshops held at the Institute of Medicine (http://www.iom.edu/Activities/Nutrition/PotentialHazardsCaffeineSupplements/2013-AUG-05.aspx) and the NIH (http://ods.od.nih.gov/News/EnergyDrinksWorkshop2013.aspx) in 2013 highlighted many critical gaps in understanding the biologic and behavioral effects of the mixtures of caffeine, vitamins, herbs, sugar or other sweeteners, and other ingredients that typify caffeine-containing energy drinks (CCEDs). For example, different surveys over the same 2010–2012 timeframe report discrepant prevalence of CCED use by teenagers, ranging from 10.3% in 13–17 y olds to >30% of those in grades 10 and 12. Understanding of functional interactions between CCED ingredients, drivers of use, and biologic and behavioral effects is limited. The 4 speakers in the Experimental Biology 2014 symposium titled “Energy Drinks: Current Knowledge and Critical Research Gaps” described recent progress by their groups in extending our understanding of prevalence of CCED use, sources of caffeine in the United States, drivers of CCED use, and behavioral correlations and effects of CCEDs, including effects on attractiveness of both alcoholic and non-alcoholic beverages.

  11. Phonon-induced enhancements of the energy gap and critical current in superconducting aluminum

    International Nuclear Information System (INIS)

    Seligson, D.

    1983-01-01

    The enhancement of the energy gap, Δ, and critical current, i/sub c/, in superconducting aluminum thin films were under the influence of 8 to 10 GHz phonons. The phonons were generated by piezoelectric transduction of a 1 kW microwave pulse of about 1 μsec duration. By means of a quartz delay line, the phonons were allowed to enter the aluminum only after the microwaves had long since disappeared. The critical current was measured in long narrow Al strips, in which the current flow is 1-dimensional and well described by Ginsburg-Landau theory. To measure Δ the Al film was used as one electrode in a superconductor-insulator-superconductor tunnel junction whose current-voltage characteristic gave Δ directly. For the measurements of i/sub c/, the total critical current was measured in the presence of the phonon perturbation. For the measurements of Δ the change of Δ away from its equilibrium value was measured. In both cases the first measurements of enhancement of these macroscopic variables under phonon irradiation is reported. The gap-enhancement was found to be in good agreement with theory, but only for relatively and surprisingly low input power. The critical current measurements are predicted to be in rough agreement with the Δ measurements but this was not observed

  12. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    Science.gov (United States)

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-09

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials.

  13. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    International Nuclear Information System (INIS)

    Adame, J.; Warzel, S.

    2015-01-01

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM

  14. Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors

    Science.gov (United States)

    Jiang, Zeyu; Liu, Zhirong; Li, Yuanchang; Duan, Wenhui

    2017-06-01

    Using first-principles G W Bethe-Salpeter equation calculations and the k .p theory, we unambiguously show that for two-dimensional (2D) semiconductors, there exists a robust linear scaling law between the quasiparticle band gap (Eg) and the exciton binding energy (Eb), namely, Eb≈Eg/4 , regardless of their lattice configuration, bonding characteristic, as well as the topological property. Such a parameter-free universality is never observed in their three-dimensional counterparts. By deriving a simple expression for the 2D polarizability merely with respect to Eg, and adopting the screened hydrogen model for Eb, the linear scaling law can be deduced analytically. This work provides an opportunity to better understand the fantastic consequence of the 2D nature for materials, and thus offers valuable guidance for their property modulation and performance control.

  15. Direct evidence of reduced dynamic scattering in the lower polariton of a semiconductor microcavity

    DEFF Research Database (Denmark)

    Borri, Paola; Jensen, Jacob Riis; Langbein, Wolfgang

    2000-01-01

    The temperature dependent linewidths of homogeneously broadened GaAs/AlxGa1 - xAs microcavity polaritons are investigated. The linewidths of the lower, middle, and upper polariton resonances are measured directly from reflection spectra at normal incidence (k(parallel to) = 0). The Linewidth...... of the lower polariton is found to be smaller than the linewidths of the middle and upper polaritons at all investigated temperatures ranging from 11 to 100 K, The results clearly show the reduction of dynamic scattering processes in the lower polariton compared to the middle and upper polaritons, in agreement...

  16. High-performance gap-closing vibrational energy harvesting using electret-polarized dielectric oscillators

    Science.gov (United States)

    Feng, Yue; Yu, Zejie; Han, Yanhui

    2018-01-01

    In conventional gap-closing electret-biased electrostatic energy harvesting (EEEH) schemes, electrets with a very low ratio of electret thickness to permittivity are in great demand to allow the attainment of high power output. However, in practice, pursuing such a low ratio introduces unwanted burdens on the electret stability and therefore the reliability of the EEEH devices. In this paper, we propose a dielectric-oscillator-based electrostatic EH (DEEH) scheme as an alternative approach to harvesting electret-biased electrostatic energy. This approach permits the fabrication of an electret-free closed EH circuit. The DEEH architecture directly collects the electrical energy exclusively through the oscillating dielectric body and thus completely circumvents the restrictions imposed by the electret parameters (thickness and permittivity) on power generation. Significantly, without considering the electret thickness and permittivity, both theoretical analysis and experiments have verified the effectiveness of this DEEH strategy, and a high figure of merit (on the order of 10-8 mW cm-2 V-2 Hz-1) was achieved for low-frequency movements.

  17. Wind Energy Industry Eagle Detection and Deterrents: Research Gaps and Solutions Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Karin [National Renewable Energy Lab. (NREL), Golden, CO (United States); DeGeorge, Elise [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-13

    The Bald and Golden Eagle Protection Act (BGEPA) prohibits the 'take' of these birds. The act defines take as to 'pursue, shoot, shoot at, poison, wound, kill, capture, trap, collect, destroy, molest or disturb.' The 2009 Eagle Permit Rule (74 FR 46836) authorizes the U.S. Fish and Wildlife Service (USFWS) to issue nonpurposeful (i.e., incidental) take permits, and the USFWS 2013 Eagle Conservation Plan Guidance provides a voluntary framework for issuing programmatic take permits to wind facilities that incorporate scientifically supportable advanced conservation practices (ACPs). Under these rules, the Service can issue permits that authorize individual instances of take of bald and golden eagles when the take is associated with, but not the purpose of, an otherwise lawful activity, and cannot practicably be avoided. To date, the USFWS has not approved any ACPs, citing the lack of evidence for 'scientifically supportable measures.' The Eagle Detection and Deterrents Research Gaps and Solutions Workshop was convened at the National Renewable Energy Laboratory in December 2015 with a goal to comprehensively assess the current state of technologies to detect and deter eagles from wind energy sites and the key gaps concerning reducing eagle fatalities and facilitating permitting under the BGEPA. During the workshop, presentations and discussions focused primarily on existing knowledge (and limitations) about the biology of eagles as well as technologies and emerging or novel ideas, including innovative applications of tools developed for use in other sectors, such as the U.S. Department of Defense and aviation. The main activity of the workshop was the breakout sessions, which focused on the current state of detection and deterrent technologies and novel concepts/applications for detecting and minimizing eagle collisions with wind turbines. Following the breakout sessions, participants were asked about their individual impressions of the

  18. Polariton Bose condensate in an open system: Ab initio approach

    Science.gov (United States)

    Elistratov, A. A.; Lozovik, Yu. E.

    2018-01-01

    In the framework of path-integral formalism and Keldysh technique for a nonequilibrium system we explore the kinetics of the polariton condensate in a quantum well embedded in an optical microcavity. We take into account pumping and leakage of excitons and photons. We make an ab initio derivation of the equations governing the dynamics of the condensates and reservoirs and show that the real open polariton system has a non-Markovian character at times comparable to the Rabi oscillation period.

  19. Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials.

    Science.gov (United States)

    Dickson, Wayne; Beckett, Stephen; McClatchey, Christina; Murphy, Antony; O'Connor, Daniel; Wurtz, Gregory A; Pollard, Robert; Zayats, Anatoly V

    2015-10-21

    Surface plasmon polaritons usually exist on a few suitable plasmonic materials; however, nanostructured plasmonic metamaterials allow a much broader range of optical properties to be designed. Here, bottom-up and top-down nanostructuring are combined, creating hyperbolic metamaterial-based photonic crystals termed hyperbolic polaritonic crystals, allowing free-space access to the high spatial frequency modes supported by these metamaterials. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optical bistability and multistability in polaritonic materials doped with nanoparticles

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    We investigate the optical bistability and multistability in polaritonic materials doped with nanoparticles inside an optical ring cavity. It is found that the optical bistability and multistability can be easily controlled by adjusting the corresponding parameters of the system properly. The effect of the dipole–dipole interaction has also been included in the formulation, which leads to interesting phenomena. Our scheme opens up the possibility of controling the optical bistability and multistability in polaritonic materials doped with nanoparticles. (letter)

  1. Seeding Dynamics of Nonlinear Polariton Emission from a Microcavity

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Langbein, Wolfgang Werner; Jensen, Jacob Riis

    2000-01-01

    Summary form only given. The dynamics of polaritons in microcavity samples is presently under intense debate, in particular whether or not the so-called Boser action is possible. In this work, we investigate a λ cavity with a homogeneously broadened 25 nm GaAs quantum well at the antinode...... at a temperature of 10 K. We can thus inject well-defined polariton populations in k-space revealing how different initial and final state populations may influence the dynamics....

  2. Self-excited plasmon polaritons in counterstreaming quantum plasmas

    Science.gov (United States)

    Moslem, W. M.; Lazar, M.; Sabry, R.; Shukla, P. K.

    2009-12-01

    The effect of counterstreaming on the quantum plasmon-polariton excitation is examined. For this purpose, the dispersion relation describing a counterstreaming quantum plasma system has been derived. Solutions are displayed numerically and analyzed for different values of the quantum parameters and the streaming electrons. It is found that the quantum effects and the two-stream instability are relevant for the self-consistently excited surface plasmon polaritons.

  3. Forbidden energy band gap in diluted a-Ge1−xSix:N films

    International Nuclear Information System (INIS)

    Guarneros, C.; Rebollo-Plata, B.; Lozada-Morales, R.; Espinosa-Rosales, J.E.; Portillo-Moreno, J.; Zelaya-Angel, O.

    2012-01-01

    By means of electron gun evaporation Ge 1−x Si x :N thin films, in the entire range 0 ≤ x ≤ 1, were prepared on Si (100) and glass substrates. The initial vacuum reached was 6.6 × 10 −4 Pa, then a pressure of 2.7 × 10 −2 Pa of high purity N 2 was introduced into the chamber. The deposition time was 4 min. Crucible-substrate distance was 18 cm. X-ray diffraction patterns indicate that all the films were amorphous (a-Ge 1−x Si x :N). The nitrogen concentration was of the order of 1 at% for all the films. From optical absorption spectra data and by using the Tauc method the energy band gap (E g ) was calculated. The Raman spectra only reveal the presence of Si-Si, Ge-Ge, and Si-Ge bonds. Nevertheless, infrared spectra demonstrate the existence of Si-N and Ge-N bonds. The forbidden energy band gap (E g ) as a function of x in the entire range 0 ≤ x ≤ 1 shows two well defined regions: 0 ≤ x ≤ 0.67 and 0.67 ≤ x ≤ 1, due to two different behaviors of the band gap, where for x > 0.67 exists an abruptly change of E g (x). In this case E g (x) versus x is different to the variation of E g in a-Ge 1−x Si x and a-Ge 1−x Si x :H. This fact can be related to the formation of Ge 3 N 4 and GeSi 2 N 4 when x ≤ 0.67, and to the formation of Si 3 N 4 and GeSi 2 N 4 for 0.67 ≤ x. - Highlights: ► Nitrogen doped amorphous Ge 1-x Si x thin films are grown by electron gun technique. ► Nitrogen atoms on E g of the a-Ge 1-x Si x films in the 0 £ x £ 1 range are analyzed. ► Variation in 0 £ x £ 1 range shows a warped change of E g in 1.0 – 3.6 eV range. ► The change in E g (x) behavior when x ∼ 0.67 was associated with Ge 2 SiN 4 presence.

  4. Predicting energy consumption and savings in the housing stock: A performance gap analysis in the Netherlands

    Directory of Open Access Journals (Sweden)

    Dasa Majcen

    2016-03-01

    Full Text Available Research methods  The research used several large datasets, about dwellings theoretical energy performance, most of which were related to energy label certificates. All the datasets containing theoretical performance were merged with actual energy data. In addition to that, some were also enriched with socioeconomic and behaviour related data from Statistics Netherlands (CBS or from surveys which were designed for the purpose of this research. Simple descriptive statistics were used to compare average theoretical and actual consumptions. Advanced statistical tests were used for detecting correlations, followed by several regression analyses. In a separate scenario study, the resulting averages of both theoretical and actual consumptions were extrapolated nation-wide in order to be compared with the existing policy targets. Due to low predictive power of the variables in regression analyses, a sensitivity analysis of the theoretical gas use was performed on six assumptions made in the theoretical calculation to show how an increment in one of the assumptions affects the final theoretical gas consumption and whether this can explain the performance gap. Last but not least, longitudinal data of the social housing dwelling stock between 2010 and 2013 was analysed, focusing on dwellings that had undergone renovation. The goal was to find out whether the theoretical reduction of consumption materialised and to what extent. A comparison of the actual reduction of different renovation measures was made in order to show what renovation practices lower the consumptions most effectively. The discrepancies between actual and theoretical heating energy consumption in Dutch dwellings. Discrepancies between theoretical and actual gas and electricity consumption On average, the total theoretical primary energy use seems to be in accordance with actual primary energy consumption but when looking at more detailed data, one can see that the contribution of gas to

  5. A Palm Size Micron-gap ThermoPhoto Voltaic (MTPV) Energy Converter

    National Research Council Canada - National Science Library

    DiMatteo, Robert

    2002-01-01

    The goal of this project was to demonstrate that enhanced photovoltaic cell output can be achieved as a function of the physical gap between emitter and receiver in a Micron-gap ThermoPhotoVoltaic (MTPV) system...

  6. Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory.

    Science.gov (United States)

    Huang, Ying; Rong, Chunying; Zhang, Ruiqin; Liu, Shubin

    2017-01-01

    Wave function theory (WFT) and density functional theory (DFT)-the two most popular solutions to electronic structure problems of atoms and molecules-share the same origin, dealing with the same subject yet using distinct methodologies. For example, molecular orbitals are artifacts in WFT, whereas in DFT, electron density plays the dominant role. One question that needs to be addressed when using these approaches to appreciate properties related to molecular structure and reactivity is if there is any link between the two. In this work, we present a piece of strong evidence addressing that very question. Using five polymeric systems as illustrative examples, we reveal that using quantities from DFT such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, Onicescu information energy, Rényi entropy, etc., one is able to accurately evaluate orbital-related properties in WFT like frontier orbital energies and the HOMO (highest occupied molecular orbital)/LUMO (lowest unoccupied molecular orbital) gap. We verified these results at both the whole molecule level and the atoms-in-molecules level. These results provide compelling evidence suggesting that WFT and DFT are complementary to each other, both trying to comprehend the same properties of the electronic structure and molecular reactivity from different perspectives using their own characteristic vocabulary. Hence, there should be a bridge or bridges between the two approaches.

  7. Electronic properties of graphene nano-flakes: Energy gap, permanent dipole, termination effect, and Raman spectroscopy

    International Nuclear Information System (INIS)

    Singh, Sandeep Kumar; Peeters, F. M.; Neek-Amal, M.

    2014-01-01

    The electronic properties of graphene nano-flakes (GNFs) with different edge passivation are investigated by using density functional theory. Passivation with F and H atoms is considered: C N c X N x (X = F or H). We studied GNFs with 10 c c , (ii) topological defects (pentagon and heptagon) break the symmetry of the GNFs and enhance the electric polarization, (iii) the mutual interaction of bilayer GNFs can be understood by dipole-dipole interaction which were found sensitive to the relative orientation of the GNFs, (iv) the permanent dipoles depend on the edge terminated atom, while the energy gap is independent of it, and (v) the presence of heptagon and pentagon defects in the GNFs results in the largest difference between the energy of the spin-up and spin-down electrons which is larger for the H-passivated GNFs as compared to F-passivated GNFs. Our study shows clearly the effect of geometry, size, termination, and bilayer on the electronic properties of small GNFs. This study reveals important features of graphene nano-flakes which can be detected using Raman spectroscopy

  8. Effects of gap distance and working gas on energy spectra of electrons in atmospheric pressure plasma jets

    Science.gov (United States)

    Chen, Xinxian; Tan, Zhenyu; Liu, Yadi; Li, Xiaotong; Pan, Jie; Wang, Xiaolong

    2018-03-01

    This work presents an investigation on the effects of the gap distance and working gas on the energy spectra of electrons (ESEs) in the atmospheric pressure plasma jets, and the corresponding mechanisms are also analyzed in detail based on the energy conservation of electrons in the development of discharge. The investigation is carried out by means of the numerical simulation based on a particle-in-cell Monte Carlo collision model and gives the following results. There are the same characteristics of the spatiotemporal evolution of the energy spectrum of electrons for the considered gap distances below 1 cm. For each gap distance, there is a characteristic time (CT) in the evolution of ESE. Before the CT, the peak value of ESE decreases, the peak position shifts toward high energy, and the distribution of ESE becomes wider and wider, but the reverse is true after the CT. With the decrease in the gap distance, the CT of ESE decreases, and the average energy of electrons (AEEs) increases. Small gap distance leads to both smaller peak value of ESE and the peak position shifting toward high energy. This effect reaches its most prominent level at about 0.16 ns and then becomes evidently weak after 0.5 ns, staying at a nearly stable state where the differences between the ESEs due to different gap distances are very small. In contrast with argon, the ESE in helium is of low peak value and large distribution range, and the corresponding AEE is obviously large. These differences originate mainly from the obviously different thresholds and frequencies of inelastic collisions in argon and helium.

  9. Bridging the energy gap through small and medium sized nuclear reactors in India

    International Nuclear Information System (INIS)

    Srivastava, R.

    1987-01-01

    India is the only country in the world which is employing small sized nuclear reactors for its nuclear power programme. It has now embarked on a programme of augmenting the contribution of the nuclear power by way of employing both medium and small sized nuclear reactors in the next 15 years. This paper discusses the Indian experience and its efforts for industrial mobilisation for rapidly constructing 235/500 MWe nuclear reactor units in a period of about 8 to 9 years. The current energy situation in India and this context the near term role of nuclear power for supplementing the existing sources of commercial energy have been evaluated. Nuclear power has reached such a stage of maturity whereby it has now become a commercially viable source of electricity and it could be utilised on large scale to bridge the energy gap. At present six reactor units of 210/235 MWe capacity are in operation and eight more are in different stages of construction. While we are continuing with the construction of 235 MWe units, a programme of being pursued to construct 550 MWe capacity reactor units from midnineties onwards. This has become possible with the strengthening of regional electricity grids and simultaneous efforts undertaken for augmentation of fuel supply, heavy water production and industrial infrastructure. For a developing country like India, implementation of a sizable nuclear power programme has posed certain special challenges as major inputs are required to be made available with indigeneous efforts. This paper discusses such challenges and presents the ways and means adopted to surmount them. Other developing countries with conditions comparable to those in India could benefit from Indian experience in this regard. This paper also proposes India's willingness to cooperate with other countries for exchange of information and assistance in terms of technical knowhow. (author)

  10. Energy Behavior Change and Army Net Zero Energy; Gaps in the Army’s Approach to Changing Energy Behavior

    Science.gov (United States)

    2014-06-13

    messenger approach provides only self-reinforcing information. Related is the eighth problem, which is human nature that supports complacency by only...Sustainability, and energy conservation programs. For example, the Army National Guard maintains a sustainability Facebook page as does the Assistant 67

  11. Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy

    Directory of Open Access Journals (Sweden)

    Sung Heo

    2015-07-01

    Full Text Available The band gap and defect states of MgO thin films were investigated by using reflection electron energy loss spectroscopy (REELS and high-energy resolution REELS (HR-REELS. HR-REELS with a primary electron energy of 0.3 keV revealed that the surface F center (FS energy was located at approximately 4.2 eV above the valence band maximum (VBM and the surface band gap width (EgS was approximately 6.3 eV. The bulk F center (FB energy was located approximately 4.9 eV above the VBM and the bulk band gap width was about 7.8 eV, when measured by REELS with 3 keV primary electrons. From a first-principles calculation, we confirmed that the 4.2 eV and 4.9 eV peaks were FS and FB, induced by oxygen vacancies. We also experimentally demonstrated that the HR-REELS peak height increases with increasing number of oxygen vacancies. Finally, we calculated the secondary electron emission yields (γ for various noble gases. He and Ne were not influenced by the defect states owing to their higher ionization energies, but Ar, Kr, and Xe exhibited a stronger dependence on the defect states owing to their small ionization energies.

  12. Image of the Energy Gap Anisotropy in the Vibrational Spectum of a High Temperature Superconductor

    OpenAIRE

    Flatte, Michael E.

    1992-01-01

    We present a new method of determining the anisotropy of the gap function in layered high-Tc superconductors. Careful inelastic neutron scattering measurements at low temperature of the phonon dispersion curves in the (100) direction in La_(1.85)Sr_(.15)CuO_4 would determine whether the gap is predominately s-wave or d-wave. We also propose an experiment to determine the gap at each point on a quasi-two-dimensional Fermi surface.

  13. Direct Local Measurement of the Superconducting Energy Gap of Nb doped SrTiO3

    Science.gov (United States)

    Ha, Jeonghoon; Khalsa, Guru; Natterer, Fabian; Baek, Hongwoo; Cullen, William G.; Kuk, Young; Stroscio, Joseph A.

    Strontium titanate (STO) is a perovskite metal oxide insulator that can be electron doped by substitution of Ti or Sr sites with Nb or La, respectively, or by oxygen vacancies. When doped to high electron densities with concentration in the range of 5x1019 cm- 3 to 2x1020 cm-3, STO becomes superconducting with a transition temperature below 400 mK, at a value highly dependent on the doping concentration. Previous observations were made on bulk crystals or films of doped STO by measuring the transitions in resistivity, magnetic susceptibility or thermal conductivity as a function of temperature or magnetic field. In this work, we use an ultra-low temperature scanning tunneling microscope(STM) to investigate the local electronic structure of the surface of Nb doped STO. The tunneling spectra taken at a sample temperature of ~10 mK reveal a BCS energy gap of Δ = 40 ueV. Temperature and magnetic field dependent tunneling measurements show a critical temperature of ~250 mK and upper critical field of ~0.07 T. This is the first report of direct measurement of superconducting STO using an STM.

  14. Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations

    OpenAIRE

    Einollahzadeh, H.; Dariani, R. S.; Fazeli, S. M.

    2015-01-01

    In this paper, we consider the optimum coordinate of the penta-graphene. Penta-graphene is a new stable carbon allotrope which is stronger than graphene. Here, we compare the band gap of penta-graphene with various density functional theory (DFT) methods. We plot the band structure of penta-graphene which calculated with the generalized gradient approximation functional, about Fermi energy.

  15. Pseudo-invariant Eigen-operator for Deriving Energy-Level Gap for Jaynes-Cummings Model

    International Nuclear Information System (INIS)

    Fan Hongyi; Da Cheng

    2006-01-01

    We extend the concept of invariant eigen-operator to pseudo-invariant eigen-operator case through analyzing the standard Jaynes-Cummings model. We find the pseudo-invariant eigen-operator in terms of supersymmetric generators of this model, which diretly leads to the energy-level gap for Jaynes-Cummings Hamiltonian.

  16. Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers: Reducing the Singlet–Triplet Energy Gap

    KAUST Repository

    Freeman, David M. E.

    2017-06-09

    The presence of energetically low-lying triplet states is a hallmark of organic semiconductors. Even though they present a wealth of interesting photophysical properties, these optically dark states significantly limit optoelectronic device performance. Recent advances in emissive charge-transfer molecules have pioneered routes to reduce the energy gap between triplets and

  17. Ultralow-loss polaritons in isotopically pure boron nitride

    Science.gov (United States)

    Giles, Alexander J.; Dai, Siyuan; Vurgaftman, Igor; Hoffman, Timothy; Liu, Song; Lindsay, Lucas; Ellis, Chase T.; Assefa, Nathanael; Chatzakis, Ioannis; Reinecke, Thomas L.; Tischler, Joseph G.; Fogler, Michael M.; Edgar, J. H.; Basov, D. N.; Caldwell, Joshua D.

    2018-02-01

    Conventional optical components are limited to size scales much larger than the wavelength of light, as changes to the amplitude, phase and polarization of the electromagnetic fields are accrued gradually along an optical path. However, advances in nanophotonics have produced ultrathin, so-called `flat' optical components that beget abrupt changes in these properties over distances significantly shorter than the free-space wavelength. Although high optical losses still plague many approaches, phonon polariton (PhP) materials have demonstrated long lifetimes for sub-diffractional modes in comparison to plasmon-polariton-based nanophotonics. We experimentally observe a threefold improvement in polariton lifetime through isotopic enrichment of hexagonal boron nitride (hBN). Commensurate increases in the polariton propagation length are demonstrated via direct imaging of polaritonic standing waves by means of infrared nano-optics. Our results provide the foundation for a materials-growth-directed approach aimed at realizing the loss control necessary for the development of PhP-based nanophotonic devices.

  18. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    Science.gov (United States)

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics.

  19. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Joshua A. [Oak Ridge National; Riddle, Matthew E. [Argonne; Graziano, Diane J. [Argonne; Das, Sujit [Oak Ridge National; Upadhyayula, Venkata K. K. [Northwestern University, Evanston 60208, Illinois, United States; Masanet, Eric [Northwestern University, Evanston 60208, Illinois, United States; Cresko, Joe [U.S. Department

    2015-08-12

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015–2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2–20 billion GJ depending on market adoption dynamics.

  20. Endogenous implementation of technology gap in energy optimization models-a systematic analysis within TIMES G5 model

    International Nuclear Information System (INIS)

    Rout, Ullash K.; Fahl, Ulrich; Remme, Uwe; Blesl, Markus; Voss, Alfred

    2009-01-01

    Evaluation of global diffusion potential of learning technologies and their timely specific cost development across regions is always a challenging issue for the future technology policy preparation. Further the process of evaluation gains interest especially by endogenous treatment of energy technologies under uncertainty in learning rates with technology gap across the regions in global regional cluster learning approach. This work devised, implemented, and examined new methodologies on technology gaps (a practical problem), using two broad concepts of knowledge deficit and time lag approaches in global learning, applying the floor cost approach methodology. The study was executed in a multi-regional, technology-rich and long horizon bottom-up linear energy system model on The Integrated MARKAL EFOM System (TIMES) framework. Global learning selects highest learning technologies in maximum uncertainty of learning rate scenario, whereas any form of technology gap retards the global learning process and discourages the technologies deployment. Time lag notions of technology gaps prefer heavy utilization of learning technologies in developed economies for early reduction of specific cost. Technology gaps of any kind should be reduced among economies through the promotion and enactment of various policies by governments, in order to utilize the technological resources by mass deployment to combat ongoing climate change.

  1. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    International Nuclear Information System (INIS)

    Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J.; Han, Z.; Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E.

    2014-01-01

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature

  2. Surface polaritons in grating composed of left-handed materials

    Science.gov (United States)

    Tiwari, D. C.; Premlal, P. L.; Chaturvedi, Vandana

    2018-01-01

    In this work, we developed a unique mathematical model to solve dispersion relation for surface polaritons (SPs) in artificial composite materials grating. Here, we have taken two types of materials for analysis. In the first case, the grating composed of epsilon-negative (ENG) material and air interface. In second case, grating composed of left-handed materials (LHMs) and ENG medium interface is considered. The dispersion curves of both p and s polarized SPs modes are obtained analytically. In the case of ENG grating and air interface, polaritons dispersion curves exist for p-polarization only, whereas for LHM grating and ENG medium interface, the polaritons dispersion curves for both p and s polarization are observed.

  3. Influence of Superconducting Leads Energy Gap on Electron Transport Through Double Quantum Dot by Markovian Quantum Master Equation Approach

    International Nuclear Information System (INIS)

    Afsaneh, E.; Yavari, H.

    2014-01-01

    The superconducting reservoir effect on the current carrying transport of a double quantum dot in Markovian regime is investigated. For this purpose, a quantum master equation at finite temperature is derived for the many-body density matrix of an open quantum system. The dynamics and the steady-state properties of the double quantum dot system for arbitrary bias are studied. We will show that how the populations and coherencies of the system states are affected by superconducting leads. The energy parameter of system contains essentially four contributions due to dots system-electrodes coupling, intra dot coupling, two quantum dots inter coupling and superconducting gap. The coupling effect of each energy contribution is applied to currents and coherencies results. In addition, the effect of energy gap is studied by considering the amplitude and lifetime of coherencies to get more current through the system. (author)

  4. Nickel(II-oxaloyldihydrazone complexes: Characterization, indirect band gap energy and antimicrobial evaluation

    Directory of Open Access Journals (Sweden)

    Ayman H. Ahmed

    2016-12-01

    Full Text Available A series of oxaloyldihydrazone ligands was prepared essentially by the usual condensation reaction between oxaloyldihydrazide and different aldehydes e.g. salicylaldehyde, 2-hydroxy-1-naphthaldehyde, 2-hydroxyacetophenone and 2-methoxy-benzaldehyde in 1:2 M ratio. The formed compounds were purified to give bis(salicylaldehydeoxaloyldihydrazone (L1, bis(2-hydroxy-1-naphthaldehydeoxaloyldihydrazone (L2, bis(2-hydroxyacetophenoneoxaloyldihydrazone(L3 and bis(2-methoxy-benzaldehydeoxaloyldihydrazone (L4. All the oxaloyldihydrazones (L1–L4 and their relevant solid nickel(II complexes have been prepared and structurally characterized on the basis of the elemental analyses, spectral (UV–vis, IR, mass and 1H NMR, magnetism and thermal (TG measurements. The dihydrazones coordinate to the metal center forming mononuclear complexes with L1, L3 and L4 in addition to binuclear complex with L2. The metal center prefers tetrahedral stereochemistry upon chelation. The optical indirect band gap energy for all compounds underlies the range of semiconductor materials. The prepared ligands and their metal complexes have been assayed for their antimicrobial activity against fungi as well as Gram-positive and Gram-negative bacteria. The resulting data indicate the ability of the investigated compounds to inhibit the growth of some micro-organisms, where L2 showed the highest activity among all the compounds. Minimum inhibitory concentration (MIC of L2 against the growth of five micro-organisms was determined which gives better response against Aspergillus fumigatus and Bacillis subtilis compared with some selected standard drugs.

  5. Influence of two photon absorption induced free carriers on coherent polariton and phonon generation in ZnTe crystals

    Science.gov (United States)

    Kamaraju, N.; Kumar, Sunil; Freysz, Eric; Sood, A. K.

    2010-05-01

    Combination of femtosecond Kerr, two photon absorption, and impulsive stimulated Raman scattering (ISRS) experiments have been carried out to investigate the effect of pulse energy and crystal temperature on the generation of coherent polaritons and phonons in ⟨110⟩ cut ZnTe single crystals of three different resistivities. We demonstrate that the effect of two photon induced free carriers on the creation of both the polaritons and phonons is largest at 4 K where the free carrier lifetime is enhanced. The temperature dependant ISRS on high and low purity ZnTe crystals allows us to unambiguously assign the phonon mode at 3.5 THz to the longitudinal acoustic mode at X-point in the Brillouin zone, LA(X).

  6. Continuous multispectral imaging of surface phonon polaritons on silicon carbide with an external cavity quantum cascade laser

    Science.gov (United States)

    Dougakiuchi, Tatsuo; Kawada, Yoichi; Takebe, Gen

    2018-03-01

    We demonstrate the continuous multispectral imaging of surface phonon polaritons (SPhPs) on silicon carbide excited by an external cavity quantum cascade laser using scattering-type scanning near-field optical microscopy. The launched SPhPs were well characterized via the confirmation that the theoretical dispersion relation and measured in-plane wave vectors are in excellent agreement in the entire measurement range. The proposed scheme, which can excite and observe SPhPs with an arbitrary wavelength that effectively covers the spectral gap of CO2 lasers, is expected to be applicable for studies of near-field optics and for various applications based on SPhPs.

  7. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

    KAUST Repository

    Zhang, Ying

    2017-06-15

    We demonstrated a structure with periodic cylinders arranged bilaterally and a thin dielectric layer covered inside that supports bound modes of surface plasmon polaritons at terahertz frequencies. This structure can confine the surface plasmon polaritons in the lateral direction, and at the same time reduce the field expansion into space. We examined and explored the characteristics of several different structures using scanning near-field terahertz microscopy. The proposed designs pave a novel way to terahertz waveguiding and may have important applications in the development of flexible, wideband and compact photonic circuits operating at terahertz frequencies.

  8. Nonreciprocal optical propagation by magnetic tamm plasmon polaritons

    Science.gov (United States)

    Ren, Xiaobin; Ren, Kun; He, Yumeng

    2018-01-01

    We have proposed and realized nonreciprocal light propagation by a structure consisting of graphene photonic crystal and magneto-optical semiconductor. The nonreciprocal transmission is caused by magnetic Tamm plasmon polaritons which exit on the interface of graphene photonic crystal and magneto-optical material. Transmission spectrum is investigated to analyze the influence of structural parameters, external magnetic field, and graphene chemical potential on magnetic Tamm plasmon polaritons. We show that it is possible to realize active control on unidirectional light by altering external magnetic field and graphene chemical potential. And one-way transmission can be easily switched from forward to backward propagation.

  9. Polaritons dispersion in a composite ferrite-semiconductor structure near gyrotropic-nihility state

    Energy Technology Data Exchange (ETDEWEB)

    Tuz, Vladimir R., E-mail: tvr@rian.kharkov.ua

    2016-12-01

    In the context of polaritons in a ferrite-semiconductor structure which is influenced by an external static magnetic field, the gyrotropic-nihility can be identified from the dispersion equation related to bulk polaritons as a particular extreme state, at which the longitudinal component of the corresponding constitutive tensor and bulk constant simultaneously acquire zero. Near the frequency of the gyrotropic-nihility state, the conditions of branches merging of bulk polaritons, as well as an anomalous dispersion of bulk and surface polaritons are found and discussed. - Highlights: • Gyrotropic-nihility state is identified from the dispersion equation related to bulk polaritons in a magnetic-semiconductor superlattice. • The conditions of branches merging of bulk polaritons are found. • An anomalous dispersion of bulk and surface polaritons is found and discussed.

  10. Polaritons dispersion in a composite ferrite-semiconductor structure near gyrotropic-nihility state

    International Nuclear Information System (INIS)

    Tuz, Vladimir R.

    2016-01-01

    In the context of polaritons in a ferrite-semiconductor structure which is influenced by an external static magnetic field, the gyrotropic-nihility can be identified from the dispersion equation related to bulk polaritons as a particular extreme state, at which the longitudinal component of the corresponding constitutive tensor and bulk constant simultaneously acquire zero. Near the frequency of the gyrotropic-nihility state, the conditions of branches merging of bulk polaritons, as well as an anomalous dispersion of bulk and surface polaritons are found and discussed. - Highlights: • Gyrotropic-nihility state is identified from the dispersion equation related to bulk polaritons in a magnetic-semiconductor superlattice. • The conditions of branches merging of bulk polaritons are found. • An anomalous dispersion of bulk and surface polaritons is found and discussed.

  11. MgB2 energy gap determination by scanning tunnelling spectroscopy

    International Nuclear Information System (INIS)

    Heitmann, T W; Bu, S D; Kim, D M; Choi, J H; Giencke, J; Eom, C B; Regan, K A; Rogado, N; Hayward, M A; He, T; Slusky, J S; Khalifah, P; Haas, M; Cava, R J; Larbalestier, D C; Rzchowski, M S

    2004-01-01

    We report scanning tunnelling spectroscopy (STS) measurements of the gap properties of both ceramic MgB 2 and c-axis oriented epitaxial MgB 2 thin films. Both show a temperature dependent zero bias conductance peak and evidence for two superconducting gaps. We report tunnelling spectroscopy of superconductor-insulator-superconductor (S-I-S) junctions formed in two ways in addition to normal metal-insulator-superconductor (N-I-S) junctions. We find a gap δ = 2.2-2.8 meV, with spectral features and temperature dependence that are consistent between S-I-S junction types. In addition, we observe evidence of a second, larger gap, δ 7.2 meV, consistent with a proposed two-band model

  12. Excitonic polaritons of zinc diarsenide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Stamov, I.G. [T.G. Shevchenko State University of Pridnestrovie, Tiraspol, Republic of Moldova (Moldova, Republic of); Zalamai, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Dorogan, A. [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of)

    2017-02-01

    Excitonic polaritons of ZnAs{sub 2} single crystals had been investigated. Parameters of singlet excitons with Г{sub 2}¯(z) symmetry and orthoexcitons 2Г{sub 1}¯(y)+Г{sub 2}¯(x) had been determined. Spectral dependencies of ordinary and extraordinary dispersion of refractive index had been calculated using interferential reflection and transmittance spectra. It was shown, that A excitonic series were due to hole (V{sub 1}) and electron (C{sub 1}) bands. The values of effective masses of electrons (m{sub c}{sup *}=0.10 m{sub 0}) and holes (m{sub v1}{sup *}=0.89 m{sub 0}) had been estimated. It was revealed that the hole mass m{sub v1}{sup *} changes from 1.03 m{sub 0} to 0.55 m{sub 0} at temperature increasing from 10 K up to 230 K and that the electron mass m{sub c}{sup *} does not depend on temperature. The integral absorption A (eV cm{sup −1}) of the states n=1, 2 and 3 of Г{sub 2}¯(z) excitons depends on the A{sub n}≈n{sup −3} equality, which it is characteristic for S-type excitonic functions. Temperature dependences of the integral absorption of ground states for Г{sub 2}¯(z) and Г{sub 2}¯(Ñ…) excitons differ. The ground states of B and C excitons formed by V{sub 3} – C{sub 1} and V{sub 4} – C{sub 1} bands and its parameters had been determined.

  13. Soft mode and energy gap in spin wave spectrum for a second order orientation phase transition. AFMR in YFe3

    International Nuclear Information System (INIS)

    Balbashov, A.M.; Berezin, A.G.; Gufan, Yu.M.; Kolyadko, G.S.; Marchukov, P.Yu.; Rudashevskij, E.G.

    1987-01-01

    A pronounced energy gap of a nonmagnetoelastic origin is observed experimentally in the spectrum of the low-frequency (quasiferromagnetic) antiferromagnetic resonance branch during a second order spin-flip phase transition in an external magnetic field directed along the a axis of the rhombic weak ferromagnetic YFeO 3 . From the theory developed which takes into account the susceptibility along the antiferromagnetism axis and dissipation processes, it follows that beside the usual AFMR oscillatory branches there should also be a relaxation mode which is ''soft'' fo the given transition. The magnitude of the energy gaps, the values of the kinetic coefficients, Dzyaloshinsky field strengths and ratio of the longitudinal susceptibility to the transverse susceptibility are determined by analyzing the experimental data obtained in fields up to 130 kOe in the frequency range from 60 to 400 GHz at room temperature

  14. Inelastic neutron scattering in the spin wave energy gap of the polydomain γ-Mn(12%Ge) alloy

    International Nuclear Information System (INIS)

    Jankowska-Kisielinska, J.; Mikke, K.

    1999-01-01

    The subject of the present experiment was the investigation of the inelastic neutron scattering (INS) for energy transfers lower than and close to the energy gap of the spin wave spectrum for long wavelengths. The aim was a search for the excitations at the magnetic Brillouin zone (MBZ) boundary in polydomain Mn(12%Ge) alloy. The present measurements were performed by a 3-axis spectrometer at Maria Reactor at IEA in Swierk. We observed the INS in the polydomain Mn(12%Ge) alloy for energies smaller than and close to the energy gap value of the spin wave spectrum at room temperature. The observed intensity can be treated as a sum of intensity of neutrons scattered on spin waves around magnetic Brillouin zone centre and that of neutrons scattered on fluctuations at the zone boundary. The intensity of both components for energies 2-6 MeV was found to be of the same order. For higher energies spin waves around magnetic zone centre dominate. (author)

  15. Subharmonic energy gap structure in the Josephson radiation at 35 GHz from a superconducting thin-film microbridge

    DEFF Research Database (Denmark)

    Hansen, Jørn Bindslev; Levinsen, M. T.; Lindelof, Poul Erik

    1979-01-01

    Nonresonant detection of the Josephson radiation 35 GHz from a superconducting thin-film microbridge is reported. The high frequency and the accuracy of these measurements lead to a new important observation: subharmonic energy gap structure in the detected integral power. The maximum integral po...... power measured was as large as 8×10−11 W. Applied Physics Letters is copyrighted by The American Institute of Physics....

  16. Variation of the energy gap of the SbSI crystals at ferroelectric phase transition

    International Nuclear Information System (INIS)

    Audzijonis, A.; Zaltauskas, R.; Zigas, L.; Vinokurova, I.V.; Farberovich, O.V.; Pauliukas, A.; Kvedaravicius, A.

    2006-01-01

    Variation of the forbidden gap of SbSI crystals in the phase transition region is analyzed on the pseudopotential method for antiferroelectric and ferroelectric phase. The band gap at several special points of the Brillouin zone and some characteristic parameters of the band are considered. During the phase transition, the most significant changes are observed with the valence band top at points Q, C, R, H, E and with the conduction band bottom at points H, T and E of the Brillouin zone. At the ferroelectric phase transition, the valence and conduction bands change due to displacement of Sb and S atoms with respect to I and with respect to each other as a result of order-disorder and displacement-type transition. The obtained band gap values agree quite well with the experiment. This is apparently due to application of neutral rather than ionic atomic functions and inclusion of sufficiently many plane waves in the basis set for calculation

  17. The Correlation between the Energy Gap and the Pseudogap Temperature in Cuprates: The YCBCZO and LSHCO Case

    Directory of Open Access Journals (Sweden)

    R. Szczȩśniak

    2015-01-01

    Full Text Available The paper analyzes the influence of the hole density, the out-of-plane or in-plane disorder, and the isotopic oxygen mass on the zero temperature energy gap (2Δ(0 Y1-xCaxBa2Cu1-yZny3O7-δ (YCBCZO and La1.96-xSrxHo0.04CuO4 (LSHCO superconductors. It has been found that the energy gap is visibly correlated with the value of the pseudogap temperature (T⋆. On the other hand, no correlation between 2Δ(0 and the critical temperature (TC has been found. The above results mean that the value of the dimensionless ratio 2Δ0/kBTC can vary very strongly together with the chemical composition, while the parameter 2Δ(0/kBT⋆ does not change significantly. In the paper, the analytical formula which binds the zero temperature energy gap and the pseudogap temperature has been also presented.

  18. Model Evidence of a Superconducting State with a Full Energy Gap in Small Cuprate Islands

    Science.gov (United States)

    Black-Schaffer, Annica M.; Golubev, Dmitri S.; Bauch, Thilo; Lombardi, Floriana; Fogelström, Mikael

    2013-05-01

    We investigate subdominant order parameters stabilizing at low temperatures in nanoscale high-Tc cuprate islands, motivated by the recent observation of a fully gapped state in nanosized YBa2Cu3O7-δ [D. Gustafsson et al., Nature Nanotech. 8, 25 (2013)]. Using complementary quasiclassical and tight-binding Bogoliubov-de Gennes methods, we show on distinctly different properties dependent on the symmetry being dx2-y2+is or dx2-y2+idxy. We find that a surface-induced dx2-y2+is phase creates a global spectroscopic gap which increases with an applied magnetic field, consistent with experimental observation.

  19. Infrared surface phonon polariton waveguides on SiC Substrate

    Science.gov (United States)

    Yang, Yuchen; Manene, Franklin M.; Lail, Brian A.

    2015-08-01

    Surface plasmon polariton (SPP) waveguides harbor many potential applications at visible and near-infrared (NIR) wavelengths. However, dispersive properties of the metal in the waveguide yields weakly coupled and lossy plasmonic modes in the mid and long wave infrared range. This is one of the major reasons for the rise in popularity of surface phonon polariton (SPhP) waveguides in recent research and micro-fabrication pursuit. Silicon carbide (SiC) is a good candidate in SPhP waveguides since it has negative dielectric permittivity in the long-wave infrared (LWIR) spectral region, indicative that coupling to surface phonon polaritons is realizable. Introducing surface phonon polaritons for waveguiding provides good modal confinement and enhanced propagation length. A hybrid waveguide structure at long-wave infrared (LWIR) is demonstrated in which an eigenmode solver approach in Ansys HFSS was applied. The effect of a three layer configuration i.e., silicon wire on a benzocyclobutene (BCB) dielectric slab on SiC, and the effects of varying their dimensions on the modal field distribution and on the propagation length, is presented.

  20. Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Nikolajsen, Thomas; Leosson, Kristjan

    2005-01-01

    New optical waveguide technology for integrated optics, based on propagation of long-range surface plasmon polaritons (LR-SPPs) along metal stripes embedded in dielectric, is presented. Guiding and routing of electromagnetic radiation along nanometer-thin and micrometer-wide gold stripes embedded...

  1. A silicon-based electrical source for surface plasmon polaritons

    NARCIS (Netherlands)

    Walters, Robert J.; van Loon, Rob V.A.; Brunets, I.; Schmitz, Jurriaan; Polman, Albert

    2009-01-01

    This work demonstrates the fabrication of a silicon-based electrical source for surface plasmon polaritons (SPPs) at low temperatures using silicon nanocrystal doped alumina within a metal-insulator-metal (MIM) waveguide geometry. The fabrication method uses established microtechnology processes

  2. Organic nanofiber-loaded surface plasmon-polariton waveguides

    DEFF Research Database (Denmark)

    Radko, Ilya; Fiutowski, Jacek; Tavares, Luciana

    2011-01-01

    We demonstrate the use of organic nanofibers, composed of self-assembled organic molecules, as a dielectric medium for dielectric-loaded surface plasmon polariton waveguides at near-infrared wavelengths. We successfully exploit a metallic grating coupler to excite the waveguiding mode and charact...

  3. Surface plasmon polariton propagation in organic nanofiber based plasmonic waveguides

    DEFF Research Database (Denmark)

    Leißner, Till; Lemke, Christoph; Jauernik, Stephan

    2013-01-01

    Plasmonic wave packet propagation is monitored in dielectric-loaded surface plasmon polariton waveguides realized from para-hexaphenylene nanofibers deposited onto a 60 nm thick gold film. Using interferometric time resolved two-photon photoemission electron microscopy we are able to determine ph...

  4. Plasmon polaritons in cubic lattices of spherical metallic nanoparticles

    Science.gov (United States)

    Lamowski, Simon; Mann, Charlie-Ray; Hellbach, Felicitas; Mariani, Eros; Weick, Guillaume; Pauly, Fabian

    2018-03-01

    We theoretically investigate plasmon polaritons in cubic lattices of spherical metallic nanoparticles. The nanoparticles, each supporting triply-degenerate localized surface plasmons, couple through the Coulomb dipole-dipole interaction, giving rise to collective plasmons that extend over the whole metamaterial. The latter hybridize with photons forming plasmon polaritons, which are the hybrid light-matter eigenmodes of the system. We derive general analytical expressions to evaluate both plasmon and plasmon-polariton dispersions and the corresponding eigenstates. These are obtained within a Hamiltonian formalism, which takes into account retardation effects in the dipolar interaction between the nanoparticles and considers the dielectric properties of the nanoparticles as well as their surrounding. Within this model we predict polaritonic splittings in the near-infrared to the visible range of the electromagnetic spectrum that depend on polarization, lattice symmetry, and wave-vector direction. Finally, we show that the predictions of our model are in excellent quantitative agreement with conventional finite-difference frequency-domain simulations, but with the advantages of analytical insight and significantly reduced computational cost.

  5. Surface plasmon polariton modulator with optimized active layer

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    A multilayered waveguide, which supports surface plasmon polaritons, is considered as an absorption modulator. The waveguide core consists of a silicon nitride layer and ultrathin layer with the varied carrier density embedded between two silver plates, which also serve as electrodes. Under apply...

  6. Executive summary of NIH workshop on the Use and Biology of Energy Drinks: Current Knowledge and Critical Gaps.

    Science.gov (United States)

    Sorkin, Barbara C; Camp, Kathryn M; Haggans, Carol J; Deuster, Patricia A; Haverkos, Lynne; Maruvada, Padma; Witt, Ellen; Coates, Paul M

    2014-10-01

    Sales of energy drinks in the United States reached $12.5 billion in 2012. Emergency department visits related to consumption of these products have increased sharply, and while these numbers remain small relative to product sales, they raise important questions regarding biological and behavioral effects. Although some common ingredients of energy drinks have been extensively studied (e.g., caffeine, B vitamins, sugars, inositol), data on other ingredients (e.g., taurine) are limited. Summarized here are data presented elsewhere in this issue on the prevalence and patterns of caffeine-containing energy drink use, the effects of these products on alertness, fatigue, cognitive functions, sleep, mood, homeostasis, as well as on exercise physiology and metabolism, and the biological mechanisms mediating the observed effects. There are substantial data on the effects of some energy drink ingredients, such as caffeine and sugars, on many of these outcomes; however, even for these ingredients many controversies and gaps remain, and data on other ingredients in caffeine-containing energy drinks, and on ingredient interactions, are sparse. This summary concludes with a discussion of critical gaps in the data and potential next steps. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  7. Executive summary of NIH workshop on the Use and Biology of Energy Drinks: Current Knowledge and Critical Gaps

    Science.gov (United States)

    Sorkin, Barbara C; Camp, Kathryn M; Haggans, Carol J; Deuster, Patricia A; Haverkos, Lynne; Maruvada, Padma; Witt, Ellen; Coates, Paul M

    2014-01-01

    Sales of energy drinks in the United States reached $12.5 billion in 2012. Emergency department visits related to consumption of these products have increased sharply, and while these numbers remain small relative to product sales, they raise important questions regarding biological and behavioral effects. Although some common ingredients of energy drinks have been extensively studied (e.g., caffeine, B vitamins, sugars, inositol), data on other ingredients (e.g., taurine) are limited. Summarized here are data presented elsewhere in this issue on the prevalence and patterns of caffeine-containing energy drink use, the effects of these products on alertness, fatigue, cognitive functions, sleep, mood, homeostasis, as well as on exercise physiology and metabolism, and the biological mechanisms mediating the observed effects. There are substantial data on the effects of some energy drink ingredients, such as caffeine and sugars, on many of these outcomes; however, even for these ingredients many controversies and gaps remain, and data on other ingredients in caffeine-containing energy drinks, and on ingredient interactions, are sparse. This summary concludes with a discussion of critical gaps in the data and potential next steps. PMID:25293538

  8. New Method for the Development of Plasmonic Metal-Semiconductor Interface Layer: Polymer Composites with Reduced Energy Band Gap

    Directory of Open Access Journals (Sweden)

    Shujahadeen B. Aziz

    2017-01-01

    Full Text Available Silver nanoparticles within a host polymer of chitosan were synthesized by using in situ method. Ultraviolet-visible spectroscopy was then carried out for the prepared chitosan : silver triflate (CS : AgTf samples, showing a surface plasmonic resonance (SPR peak at 420 nm. To prepare polymer composites with reduced energy band gap, different amounts of alumina nanoparticles were incorporated into the CS : AgTf solution. In the present work, the results showed that the reduced silver nanoparticles and their adsorption on wide band gap alumina (Al2O3 particles are an excellent approach for the preparation of polymer composites with small optical band gaps. The optical dielectric loss parameter has been used to determine the band gap experimentally. The physics behind the optical dielectric loss were interpreted from the viewpoint of quantum mechanics. From the quantum-mechanics viewpoint, optical dielectric loss was also found to be a complex equation and required lengthy numerical computation. From the TEM investigation, the adsorption of silver nanoparticles on alumina has been observed. The optical micrograph images showed white spots (silver specks with different sizes on the surface of the films. The second semicircle in impedance Cole-Cole plots was found and attributed to the silver particles.

  9. Effects of dynamical paths on the energy gap and the corrections to the free energy in path integrals of mean-field quantum spin systems

    Science.gov (United States)

    Koh, Yang Wei

    2018-03-01

    In current studies of mean-field quantum spin systems, much attention is placed on the calculation of the ground-state energy and the excitation gap, especially the latter, which plays an important role in quantum annealing. In pure systems, the finite gap can be obtained by various existing methods such as the Holstein-Primakoff transform, while the tunneling splitting at first-order phase transitions has also been studied in detail using instantons in many previous works. In disordered systems, however, it remains challenging to compute the gap of large-size systems with specific realization of disorder. Hitherto, only quantum Monte Carlo techniques are practical for such studies. Recently, Knysh [Nature Comm. 7, 12370 (2016), 10.1038/ncomms12370] proposed a method where the exponentially large dimensionality of such systems is condensed onto a random potential of much lower dimension, enabling efficient study of such systems. Here we propose a slightly different approach, building upon the method of static approximation of the partition function widely used for analyzing mean-field models. Quantum effects giving rise to the excitation gap and nonextensive corrections to the free energy are accounted for by incorporating dynamical paths into the path integral. The time-dependence of the trace of the time-ordered exponential of the effective Hamiltonian is calculated by solving a differential equation perturbatively, yielding a finite-size series expansion of the path integral. Formulae for the first excited-state energy are proposed to aid in computing the gap. We illustrate our approach using the infinite-range ferromagnetic Ising model and the Hopfield model, both in the presence of a transverse field.

  10. New surface plasmon polariton waveguide based on GaN nanowires

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    Full Text Available Lasers are nowadays widely used in industry, in hospitals and in many devices that we have at home. Random laser development is challenging given its high threshold and low integration. Surface plasmon polariton (SPP can improve random laser characteristics because of its ability to control diffraction. In this study, we establish a random laser structural model with silicon-based parcel GaN nanowires. The GaN nanowire gain and enhanced surface plasmon increase population inversion level. Our laser model is based on random particle scattering feedback mechanism, nanowire use, and surface plasmon enhancement effect, which causes stochastic laser emergence. Analysis shows that the SPP mode and nanowire waveguides coupled in the dielectric layer of low refractive index can store light energy like a capacitor under low refractive index clearance. The waveguide mode field area and limiting factors show that the modeled laser can achieve sub-wavelength constraints of the output light field. We also investigate emergent laser performance for a more limited light field capacity and lower threshold. Keywords: Random laser, Surface plasmon polariton, Feedback mechanism, Low threshold, Subwavelength constraints

  11. Bloch Surface Waves for MoS2 Emission Coupling and Polariton Systems

    Directory of Open Access Journals (Sweden)

    Giovanni Lerario

    2017-11-01

    Full Text Available Due to their extraordinary quality factor and extreme sensitivity to surface perturbations, Bloch surface waves (BSW have been widely investigated for sensing applications so far. Over the last few years, on-chip control of optical signals through BSW has experienced a rapidly-expanding interest in the scientific community, attesting to BSW’s position at the forefront towards on-chip optical operations. The backbone of on-chip optical devices requires the choice of integrated optical sources with peculiar optic/optoelectronic properties, the efficient in-plane propagation of the optical signal and the possibility to dynamic manipulate the signal through optical or electrical driving. In this paper, we discuss our approach in addressing these requirements. Regarding the optical source integration, we demonstrate the possibility to couple the MoS2 mono- and bi-layers emission—when integrated on top of a 1D photonic crystal—to a BSW. Afterward, we review our results on BSW-based polariton systems (BSWP. We show that the BSWPs combine long-range propagation with energy tuning of their dispersion through polariton–polariton interactions, paving the way for logic operations.

  12. Thickness-dependent dispersion parameters, energy gap and nonlinear refractive index of ZnSe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Deo [School of Computer Science & Engineering, Faculty of Engineering, SMVD University, Kakryal, Katra 182320, J& K (India); Shaaban, E.R., E-mail: esam_ramadan2008@yahoo.com [Physics Department, Faculty of Science, Al-Azhar University, Assiut 71542 (Egypt); Shapaan, M. [Department of Physics, Faculty of Science, Al-Azahar University, Cairo (Egypt); Mohamed, S.H. [Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); Othman, A.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Verma, K.D., E-mail: kdverma1215868@gmail.com [Material Science Research Laboratory, Department of Physics, S. V. College, Aligarh 202001, U.P. (India)

    2016-08-15

    Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the energy gap were calculated. • Dispersion parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluated in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the energy gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy dispersion relationship over the whole spectra range. Additionally, the dispersion of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.

  13. Phase diagram of the hexagonal lattice quantum dimer model: Order parameters, ground-state energy, and gaps

    Science.gov (United States)

    Schlittler, Thiago M.; Mosseri, Rémy; Barthel, Thomas

    2017-11-01

    The phase diagram of the quantum dimer model on the hexagonal (honeycomb) lattice is computed numerically, extending on earlier work by Moessner, Sondhi, and Chandra. The different ground state phases are studied in detail using several local and global observables. In addition, we analyze imaginary-time correlation functions to determine ground state energies as well as gaps to the first excited states. This leads in particular to a confirmation that the intermediary so-called plaquette phase is gapped. On the technical side, we describe an efficient world-line quantum Monte Carlo algorithm with improved cluster updates that increase acceptance probabilities by taking account of potential terms of the Hamiltonian during the cluster construction. The Monte Carlo simulations are supplemented with variational computations.

  14. Band gap opening in strongly compressed diamond observed by x-ray energy loss spectroscopy

    International Nuclear Information System (INIS)

    Gamboa, E. J.; Fletcher, L. B.; Lee, H. J.; MacDonald, M. J.; Zastrau, U.; Gauthier, M.; Gericke, D. O.; Vorberger, J.; Granados, E.; Hastings, J. B.; Glenzer, S. H.

    2016-01-01

    The extraordinary mechanical and optical properties of diamond are the basis of numerous technical applications and make diamond anvil cells a premier device to explore the high-pressure behavior of materials. However, at applied pressures above a few hundred GPa, optical probing through the anvils becomes difficult because of the pressure-induced changes of the transmission and the excitation of a strong optical emission. Such features have been interpreted as the onset of a closure of the optical gap in diamond, and can significantly impair spectroscopy of the material inside the cell. In contrast, a comparable widening has been predicted for purely hydrostatic compressions, forming a basis for the presumed pressure stiffening of diamond and resilience to the eventual phase change to BC8. We here present the first experimental evidence of this effect at geo-planetary pressures, exceeding the highest ever reported hydrostatic compression of diamond by more than 200 GPa and any other measurement of the band gap by more than 350 GPa. We here apply laser driven-ablation to create a dynamic, high pressure state in a thin, synthetic diamond foil together with frequency-resolved x-ray scattering as a probe. The frequency shift of the inelastically scattered x-rays encodes the optical properties and, thus, the behavior of the band gap in the sample. Using the ultra-bright x-ray beam from the Linac Coherent Light Source (LCLS), we observe an increasing direct band gap in diamond up to a pressure of 370 GPa. This finding points to the enormous strains in the anvils and the impurities in natural Type Ia diamonds as the source of the observed closure of the optical window. Our results demonstrate that diamond remains an insulating solid to pressures approaching its limit strength.

  15. Band gap opening in strongly compressed diamond observed by x-ray energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa, E. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fletcher, L. B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lee, H. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); MacDonald, M. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Michigan, Ann Arbor, MI (United States); Zastrau, U. [High-Energy Density Science Group, Hamburg (Germany); Gauthier, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gericke, D. O. [Univ. of Warwick (United Kingdom); Vorberger, J. [Helmholtz Association of German Research Centres, Dresden (Germany); Granados, E. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hastings, J. B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Glenzer, S. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-01-25

    The extraordinary mechanical and optical properties of diamond are the basis of numerous technical applications and make diamond anvil cells a premier device to explore the high-pressure behavior of materials. However, at applied pressures above a few hundred GPa, optical probing through the anvils becomes difficult because of the pressure-induced changes of the transmission and the excitation of a strong optical emission. Such features have been interpreted as the onset of a closure of the optical gap in diamond, and can significantly impair spectroscopy of the material inside the cell. In contrast, a comparable widening has been predicted for purely hydrostatic compressions, forming a basis for the presumed pressure stiffening of diamond and resilience to the eventual phase change to BC8. We here present the first experimental evidence of this effect at geo-planetary pressures, exceeding the highest ever reported hydrostatic compression of diamond by more than 200 GPa and any other measurement of the band gap by more than 350 GPa. We here apply laser driven-ablation to create a dynamic, high pressure state in a thin, synthetic diamond foil together with frequency-resolved x-ray scattering as a probe. The frequency shift of the inelastically scattered x-rays encodes the optical properties and, thus, the behavior of the band gap in the sample. Using the ultra-bright x-ray beam from the Linac Coherent Light Source (LCLS), we observe an increasing direct band gap in diamond up to a pressure of 370 GPa. This finding points to the enormous strains in the anvils and the impurities in natural Type Ia diamonds as the source of the observed closure of the optical window. Our results demonstrate that diamond remains an insulating solid to pressures approaching its limit strength.

  16. Phonon-induced enhancements of the energy gap and critical current in superconducting aluminum

    International Nuclear Information System (INIS)

    Seligson, D.

    1983-05-01

    8 to 10 GHz phonons were generated by piezoelectric transduction of a microwave and by means of a quartz delay line, were allowed to enter the aluminum only after the microwaves had long since disappeared. The maximum enhancements detected were [deltaT/T/sub c/] = -0.07, for i/sub c/ and [deltaT/T/sub c/] = -0.03 for Δ. The power- and temperature-dependence (0.82 less than or equal to T/T/sub c/ less than or equal to 0.994) of the enhancements were compared with the prediction of a theory given by Eliashberg. The gap-enhancement was in good agreement with the theory only for low input lower. The critical current measurements are predicted to be in rough agreement with the Δ measurements but this was not observed. The magnitude of the critical current enhancements was typically more than twice the observed gap enhancements. The measured critical current enhancement was relatively independent of temperature whereas the gap enhancement decreased rapidly as the temperature was lowered

  17. Phonon-induced enhancements of the energy gap and critical current in superconducting aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Seligson, D.

    1983-05-01

    8 to 10 GHz phonons were generated by piezoelectric transduction of a microwave and by means of a quartz delay line, were allowed to enter the aluminum only after the microwaves had long since disappeared. The maximum enhancements detected were (deltaT/T/sub c/) = -0.07, for i/sub c/ and (deltaT/T/sub c/) = -0.03 for ..delta... The power- and temperature-dependence (0.82 less than or equal to T/T/sub c/ less than or equal to 0.994) of the enhancements were compared with the prediction of a theory given by Eliashberg. The gap-enhancement was in good agreement with the theory only for low input lower. The critical current measurements are predicted to be in rough agreement with the ..delta.. measurements but this was not observed. The magnitude of the critical current enhancements was typically more than twice the observed gap enhancements. The measured critical current enhancement was relatively independent of temperature whereas the gap enhancement decreased rapidly as the temperature was lowered.

  18. Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium.

    Science.gov (United States)

    Sun, Yongbao; Wen, Patrick; Yoon, Yoseob; Liu, Gangqiang; Steger, Mark; Pfeiffer, Loren N; West, Ken; Snoke, David W; Nelson, Keith A

    2017-01-06

    The experimental realization of Bose-Einstein condensation (BEC) with atoms and quasiparticles has triggered wide exploration of macroscopic quantum effects. Microcavity polaritons are of particular interest because quantum phenomena such as BEC and superfluidity can be observed at elevated temperatures. However, polariton lifetimes are typically too short to permit thermal equilibration. This has led to debate about whether polariton condensation is intrinsically a nonequilibrium effect. Here we report the first unambiguous observation of BEC of optically trapped polaritons in thermal equilibrium in a high-Q microcavity, evidenced by equilibrium Bose-Einstein distributions over broad ranges of polariton densities and bath temperatures. With thermal equilibrium established, we verify that polariton condensation is a phase transition with a well-defined density-temperature phase diagram. The measured phase boundary agrees well with the predictions of basic quantum gas theory.

  19. Possible explanations for the gap between calculated and measured energy consumption of new houses

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen; Knudsen, Henrik N.

    2017-01-01

    The overall aim to reduce CO2 emissions has brought the energy requirements for new houses into focus. The question is whether the stepwise tightening of the energy requirements for new houses has had the expected impact on the actual realized energy consumption. In the news media, headlines......’s “careless” energy behavior. However, this may not be the full explanation and there may be other reasons for the difference. Or more specifically: Does the theoretical calculated energy demand, based on standard assumptions and without taking into account the effect of variations in e.g. hot water...

  20. Investigations on a nano-scale periodical waveguide structure taking surface plasmon polaritons into consideration

    International Nuclear Information System (INIS)

    Liu Weihao; Zhong Renbin; Zhou Jun; Zhang Yaxin; Hu Min; Liu Shenggang

    2012-01-01

    Detailed theoretical analysis and computer simulations on the electromagnetic characteristics of a nano-scale periodical waveguide structure, taking surface plasmon polaritons (SPPs) into consideration, are carried out in this paper. The results show that SPPs will significantly influence the electromagnetic characteristics of the structure. When the operation frequency is in a certain band—the ‘radial confinement band’, neither radial surface plasmon waves nor guided waves, which both will lead to radial energy loss, can be excited in the structure. And the electromagnetic waves are completely confined within the longitudinal waveguide and propagate along it with little attenuation. The radial energy loss is then significantly reduced. These results are of great significance not only for increasing the efficiency of the radiation sources based on the nano-scale periodical waveguide structure but also for the development of high-efficiency waveguides and wide-band filters in the infrared and visible light regimes. (paper)

  1. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities

    Science.gov (United States)

    Graf, Arko; Held, Martin; Zakharko, Yuriy; Tropf, Laura; Gather, Malte C.; Zaumseil, Jana

    2017-09-01

    Exciton-polaritons are hybrid light-matter particles that form upon strong coupling of an excitonic transition to a cavity mode. As bosons, polaritons can form condensates with coherent laser-like emission. For organic materials, optically pumped condensation was achieved at room temperature but electrically pumped condensation remains elusive due to insufficient polariton densities. Here we combine the outstanding optical and electronic properties of purified, solution-processed semiconducting (6,5) single-walled carbon nanotubes (SWCNTs) in a microcavity-integrated light-emitting field-effect transistor to realize efficient electrical pumping of exciton-polaritons at room temperature with high current densities (>10 kA cm-2) and tunability in the near-infrared (1,060 nm to 1,530 nm). We demonstrate thermalization of SWCNT polaritons, exciton-polariton pumping rates ~104 times higher than in current organic polariton devices, direct control over the coupling strength (Rabi splitting) via the applied gate voltage, and a tenfold enhancement of polaritonic over excitonic emission. This powerful material-device combination paves the way to carbon-based polariton emitters and possibly lasers.

  2. Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime

    Directory of Open Access Journals (Sweden)

    Bryan Nelsen

    2013-11-01

    Full Text Available We report new results of Bose-Einstein condensation of polaritons in specially designed microcavities with a very high quality factor, on the order of 10^{6}, giving polariton lifetimes of the order of 100 ps. When the polaritons are created with an incoherent pump, a dissipationless, coherent flow of the polaritons occurs over hundreds of microns, which increases as density increases. At high density, this flow is suddenly stopped, and the gas becomes trapped in a local potential minimum, with strong coherence.

  3. The dynamics of a polariton dimer in a disordered coupled array of cavities

    Science.gov (United States)

    Aiyejina, Abuenameh; Andrews, Roger

    2018-03-01

    We investigate the effect of disorder in the laser intensity on the dynamics of dark-state polaritons in an array of 20 cavities, each containing an ensemble of four-level atoms that is described by a Bose-Hubbard Hamiltonian. We examine the evolution of the polariton number in the cavities starting from a state with either one or two polaritons in one of the cavities. For the case of a single polariton without disorder in the laser intensity, we calculate the wavefunction of the polariton and find that it disperses away from the initial cavity with time. The addition of disorder results in minimal suppression of the dispersal of the wavefunction. In the case of two polaritons with an on-site repulsion to hopping strength ratio of 20, we find that the polaritons form a repulsively bound state or dimer. Without disorder the dimer wavefunction disperses similarly to the single polariton wavefunction but over a longer time period. The addition of sufficiently strong disorder results in localization of the polariton dimer. The localization length is found to be described by a power law with exponent - 1.31. We also find that we can localise the dimer at any given time by switching on the disorder.

  4. The energy gap at Z=64 and its implications for the structure of excited states in the A approximately 150

    International Nuclear Information System (INIS)

    Broda, R.

    1980-01-01

    The experimental results are presented indicating the existence of the energy gap in the single particle level sequence at proton number Z=64. Studied experimentally yrast states of the 64 146 Gd 82 closed core nucleus and of the neighbouring nuclei are interpreted within the framework of the spherical shell model. The consideration of the simple shell model multiparticle configurations is suggested to explain the observed frequent appearance of the high-spin isomers in nuclei of the A approximately 150 region. Emphasized is the role of the octupole excitations in the level structures of considered nuclei and some aspects of the coupling of octupole vibrations with valence nucleons are discussed. (author)

  5. Innovative High Energy Density Storage in Nano Vacuum Tubes (NVTs) designed for Small Leakage Current with Enhanced Coulomb Blockade in Nano Gaps, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's various Space Mission Directorate seek to develop technology to fulfill the technology gap and to enable missions with the unique high energy density charge...

  6. Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation

    Science.gov (United States)

    Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian

    2016-01-01

    We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.

  7. Weak superconducting pairing and a single isotropic energy gap in stoichiometric LiFeAs.

    Science.gov (United States)

    Inosov, D S; White, J S; Evtushinsky, D V; Morozov, I V; Cameron, A; Stockert, U; Zabolotnyy, V B; Kim, T K; Kordyuk, A A; Borisenko, S V; Forgan, E M; Klingeler, R; Park, J T; Wurmehl, S; Vasiliev, A N; Behr, G; Dewhurst, C D; Hinkov, V

    2010-05-07

    We report superconducting (SC) properties of stoichiometric LiFeAs (T(c)=17 K) studied by small-angle neutron scattering (SANS) and angle-resolved photoemission (ARPES). Although the vortex lattice exhibits no long-range order, well-defined SANS rocking curves indicate better ordering than in chemically doped 122 compounds. The London penetration depth lambda(ab)(0)=210+/-20 nm, determined from the magnetic field dependence of the form factor, is compared to that calculated from the ARPES band structure with no adjustable parameters. The temperature dependence of lambda(ab) is best described by a single isotropic SC gap Delta(0)=3.0+/-0.2 meV, which agrees with the ARPES value of Delta(0)(ARPES)=3.1+/-0.3 meV and corresponds to the ratio 2Delta/k(B)T(c)=4.1+/-0.3, approaching the weak-coupling limit predicted by the BCS theory. This classifies LiFeAs as a weakly coupled single-gap superconductor.

  8. Estimation of CE–CVM energy parameters from miscibility gap data

    Indian Academy of Sciences (India)

    Unknown

    using CE–CVM free energy functions for bcc and fcc structures in the tetrahedron and tetrahedron– octahedron approximations, respectively. ... CVM formulations for disordered binary bcc (Ackerman. *Author for correspondence ... function of the model energy parameters (ei), the macro- scopic variables (composition, xB ...

  9. Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds

    International Nuclear Information System (INIS)

    Dorenbos, Pieter

    2013-01-01

    Employing data from luminescence spectroscopy, the inter 4f-electron Coulomb repulsion energy U(6, A) in Eu 2+/3+ impurities together with the 5d-centroid energy shift ϵ c (1,3+,A) in Ce 3+ impurities in 40 different fluoride, chloride, bromide, iodide, oxide, sulfide, and nitride compounds has been determined. This work demonstrates that the chemical environment A affects the two energies in a similar fashion; a fashion that follows the anion nephelauxetic sequence F, O, Cl, Br, N, I, S, Se. One may then calculate U(6, A) from well established and accurate ϵ c (1,3+,A) values which are then used as input to the chemical shift model proposed in Dorenbos (2012) [19]. As output it provides the chemical shift of 4f-electron binding energy and therewith the 4f-electron binding energy relative to the vacuum energy. In addition this method provides a tool to routinely establish the binding energy of electrons at the top of the valence band (work function) and the bottom of the conduction band (electron affinity) throughout the entire family of inorganic compounds. How the electronic structure of the compound and lanthanide impurities therein change with type of compound and type of lanthanide is demonstrated. -- Highlights: ► A relationship between 5d centroid shift and 4f-electron Coulomb repulsion energy is established. ► Information on the absolute 4f-electron binding energy of lanthanides in 40 compounds is provided. ► A new tool to determine absolute binding energies of electrons in valence and conduction bands is demonstrated

  10. Hybrid polaritons in a resonant inorganic/organic semiconductor microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Höfner, M., E-mail: mhoefner@physik.hu-berlin.de; Sadofev, S.; Henneberger, F. [Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr.15, 12489 Berlin (Germany); Kobin, B.; Hecht, S. [Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin (Germany)

    2015-11-02

    We demonstrated the strong coupling regime in a hybrid inorganic-organic microcavity consisting of (Zn,Mg)O quantum wells and ladder-type oligo(p-phenylene) molecules embedded in a polymer matrix. A Fabry-Pérot cavity is formed by an epitaxially grown lower ZnMgO Bragg reflector and a dielectric mirror deposited atop of the organic layer. A clear anticrossing behavior of the polariton branches related to the Wannier-Mott and Frenkel excitons, and the cavity photon mode with a Rabi-splitting reaching 50 meV, is clearly identified by angular-dependent reflectivity measurements at low temperature. By tailoring the structural design, an equal mixing with weights of about 0.3 for all three resonances is achieved for the middle polariton branch at an incidence angle of about 35°.

  11. Two-Dimensional Superfluidity of Exciton Polaritons Requires Strong Anisotropy

    Directory of Open Access Journals (Sweden)

    Ehud Altman

    2015-02-01

    Full Text Available Fluids of exciton polaritons, excitations of two-dimensional quantum wells in optical cavities, show collective phenomena akin to Bose condensation. However, a fundamental difference from standard condensates stems from the finite lifetime of these excitations, which necessitates continuous driving to maintain a steady state. A basic question is whether a two-dimensional condensate with long-range algebraic correlations can exist under these nonequilibrium conditions. Here, we show that such driven two-dimensional Bose systems cannot exhibit algebraic superfluid order except in low-symmetry, strongly anisotropic systems. Our result implies, in particular, that recent apparent evidence for Bose condensation of exciton polaritons must be an intermediate-scale crossover phenomenon, while the true long-distance correlations fall off exponentially. We obtain these results through a mapping of the long-wavelength condensate dynamics onto the anisotropic Kardar-Parisi-Zhang equation.

  12. Tunable polaritonic molecules in an open microcavity system

    Energy Technology Data Exchange (ETDEWEB)

    Dufferwiel, S.; Li, Feng, E-mail: f.li@sheffield.ac.uk; Giriunas, L.; Walker, P. M.; Skolnick, M. S.; Krizhanovskii, D. N., E-mail: d.krizhanovskii@sheffield.ac.uk [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Trichet, A. A. P.; Smith, J. M. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom)

    2015-11-16

    We experimentally demonstrate tunable coupled cavities based upon open access zero-dimensional hemispherical microcavities. The modes of the photonic molecules are strongly coupled with quantum well excitons forming a system of tunable polaritonic molecules. The cavity-cavity coupling strength, which is determined by the degree of modal overlap, is controlled through the fabricated centre-to-centre distance and tuned in-situ through manipulation of both the exciton-photon and cavity-cavity detunings by using nanopositioners to vary the mirror separation and angle between them. We demonstrate micron sized confinement combined with high photonic Q-factors of 31 000 and lower polariton linewidths of 150 μeV at resonance along with cavity-cavity coupling strengths between 2.5 meV and 60 μeV for the ground cavity state.

  13. Surface-PlasmonoDielectric-polaritonic devices and systems

    Science.gov (United States)

    None, None

    2013-06-25

    There is provided a structure for supporting propagation of surface plasmon polaritons. The structure includes a plasmonic material region and a dielectric material region, disposed adjacent to a selected surface of the plasmonic material region. At least one of the plasmonic material region and the dielectric material region have a dielectric permittivity distribution that is specified as a function of depth through the corresponding material region. This dielectric permittivity distribution is selected to impose prespecified group velocities, v.sub.gj, on a dispersion relation for a surface polaritonic mode of the structure for at least one of a corresponding set of prespecified frequencies, .omega..sub.j, and corresponding set of prespecified wavevectors, where j=1 to N.

  14. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Sung [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Song, Taewon [Energy lab, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Lee, Dongho, E-mail: dhlee0333@gmail.com; Nam, Junggyu [PV Development Team, Energy Solution Business Division, Samsung SDI, 467 Beonyeong-ro, Cheonan-si, Chungcheongnam-do 331-330 (Korea, Republic of); Kang, Hee Jae [Department of Physics, Chungbuk National University, Gaesin-dong, Heungdeok-gu, Cheongju, 361-763 (Korea, Republic of); Choi, Pyung-Ho; Choi, Byoung-Deog, E-mail: bdchoi@skku.edu [College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.

  15. Direct band gap measurement of Cu(In,Ga)(Se,S)2 thin films using high-resolution reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Heo, Sung; Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su; Song, Taewon; Lee, Dongho; Nam, Junggyu; Kang, Hee Jae; Choi, Pyung-Ho; Choi, Byoung-Deog

    2015-01-01

    To investigate the band gap profile of Cu(In 1−x ,Ga x )(Se 1−y S y ) 2 of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth

  16. Raman scattering with strongly coupled vibron-polaritons

    Science.gov (United States)

    Strashko, Artem; Keeling, Jonathan

    2016-08-01

    Strong coupling between cavity photons and molecular vibrations can lead to the formation of vibron-polaritons. In a recent experiment with PVAc molecules in a metal-metal microcavity [Shalabney et al., Angew. Chem., Int. Ed. 54, 7971 (2015), 10.1002/anie.201502979], such a coupling was observed to enhance the Raman scattering probability by several orders of magnitude. Inspired by this, we theoretically analyze the effect of strong photon-vibron coupling on the Raman scattering amplitude of organic molecules. This problem has recently been addressed by del Pino, Feist, and Garcia-Vidal [J. Phys. Chem. C 119, 29132 (2015), 10.1021/acs.jpcc.5b11654] using exact numerics for a small number of molecules. In this paper we derive compact analytic results for any number of molecules, also including the ultrastrong-coupling regime. Our calculations predict a division of the Raman signal into upper and lower polariton modes, with some enhancement to the lower polariton Raman amplitude due to the mode softening under strong coupling.

  17. Energy gaps, effective masses and ionicity of AlxGa1-xSb ternary semiconductor alloys

    Science.gov (United States)

    Bouarissa, N.; Boucenna, M.; Saib, S.; Siddiqui, S. A.

    2017-12-01

    A pseudopotential calculation of the electronic structure of AlxGa1-xSb ternary alloys in the zinc-blende structure has been performed. The compositional dependence of energy gaps, electron and heavy hole effective masses and ionicity of the material system of interest have been examined and discussed. Special attention has been given to the effect of the alloy disorder on the direct (Γ-Γ) bandgap energy. It is found that all features of interest vary monotonically with increasing the Al concentration x. Besides, bandgap bowing parameters and extent of the direct-to-indirect bandgap transition have been determined. Our findings agree generally well with the data reported in the literature. Trends in ionicity are found to be consistent with the Phillips ionicity scale.

  18. Effects of anisotropic potentials on the energy gap of Bose gas

    Directory of Open Access Journals (Sweden)

    F Nabipoor

    2010-09-01

    Full Text Available We investigate the effect of dipole-dipole and quadrapole- quadrapole interaction of a weakly interacting Bose gas near the transition temperature on the energy spectra of the thermal and condensate parts. We use the two fluid model and mean field approximation. We show that the effects of the condensate part on the shift of energy is greater than the case of contact potential

  19. Energy-gap dynamics of a superconductor NbN studied by time-resolved terahertz spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Matthias; Leiderer, Paul [Dept. of Physics and Center for Appl. Photonics, Univ. of Konstanz (Germany); Kabanov, Viktor V. [Zukunftskolleg, Univ. of Konstanz, (Germany); Gol' tsman, Gregory [Moscow State Ped. Univ., Moscow (Russian Federation); Helm, Manfred [Helmholtz-Zentrum, Dresden-Rossendorf (Germany); Demsar, Jure [Dept. of Physics and Center for Appl. Photonics, Univ. of Konstanz (Germany); Zukunftskolleg, Univ. of Konstanz, (Germany)

    2012-07-01

    Using time-resolved terahertz (THz) spectroscopy we performed direct studies of the photoinduced suppression and recovery of the SC gap in a conventional SC NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the important microscopic constants: the Cooper pair-breaking rate via phonon absorption and the bare quasiparticle recombination rate. From the latter we were able to extract the dimensionless electron-phonon coupling constant, {lambda}=1.1{+-}0.1, in excellent agreement with theoretical estimates. The technique also allowed us to determine the absorbed energy required to suppress SC, which in NbN equals the thermodynamic condensation energy (in cuprates the two differ by an order of magnitude). Finally, we present the first studies of dynamics following resonant excitation with intense narrow band THz pulses tuned to above and below the superconducting gap. These suggest an additional process, particularly pronounced near T{sub c}, that could be attributed to amplification of SC via effective quasiparticle cooling.

  20. The effect of carbon nanotubes functionalization on the band-gap energy of TiO2-CNT nanocomposite

    Science.gov (United States)

    Shahbazi, Hessam; Shafei, Alireza; Sheibani, Saeed

    2018-01-01

    In this paper the morphology and structure of TiO2-CNT nanocomposite powder obtained by an in situ sol-gel process were investigated. The synthesized nanocomposite powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectance spectroscopy (DRS). The effect of functionalizing of CNT on the properties was studied. XRD results showed amorphous structure before calcination. Also, anatase phase TiO2 was formed after calcination at 400 °C. The SEM results indicate different distributions of TiO2 on CNTs. As a result, well dispersed TiO2 microstructure on the surface of CNTs was observed after functionalizing, while compact and large aggregated particles were found without functionalizing. The average thickness of uniform and well-defined coated TiO2 layer was in the range of 30-40 nm. The DRS results have determined the reflective properties and band gap energies of nanocomposite powders and have shown that functionalizing of CNTs caused the change of band-gap energy from 2.98 to 2.87 eV.

  1. Mass-polariton theory of light in dispersive media

    Science.gov (United States)

    Partanen, Mikko; Tulkki, Jukka

    2017-12-01

    We have recently shown that the electromagnetic pulse in a medium is made of mass-polariton (MP) quasiparticles, which are quantized coupled states of the field and an atomic mass density wave (MDW) [M. Partanen et al., Phys. Rev. A 95, 063850 (2017), 10.1103/PhysRevA.95.063850]. In this work, we generalize the MP theory of light for dispersive media assuming that absorption and scattering losses are very small. Following our previous work, we present two different approaches to the coupled state of light: (1) the MP quasiparticle theory, which is derived by only using the fundamental conservation laws and the Lorentz transformation; (2) the classical optoelastic continuum dynamics (OCD), which is a generalization of the electrodynamics of continuous media to include the dynamics of the medium under the influence of optical forces. We show that the total momentum and the transferred mass of the light pulse can be determined in a straightforward way if we know the field energy of the pulse and the dispersion relation of the medium. In analogy to the nondispersive case, we also find unambiguous correspondence between the MP and OCD theories. For the coupled MP state of a single photon and the medium, we obtain the total MP momentum pMP=npℏ ω /c , where np is the phase refractive index. The field's share of the MP momentum is equal to pfield=ℏ ω /(ngc ) , where ng is the group refractive index and the share of the MDW is equal to pMDW=pMP-pfield . Thus, as in a nondispersive medium, the total momentum of the MP is equal to the Minkowski momentum and the field's share of the momentum is equal to the Abraham momentum. We also show that the correspondence between the MP and OCD models and the conservation of momentum at interfaces gives an unambiguous formula for the optical force. The dynamics of the light pulse and the related MDW lead to nonequilibrium of the medium and to relaxation of the atomic density by sound waves in the same way as for nondispersive media

  2. Terahertz instability of surface optical-phonon polaritons that interact with surface plasmon polaritons in the presence of electron drift

    International Nuclear Information System (INIS)

    Sydoruk, O.; Solymar, L.; Shamonina, E.; Kalinin, V.

    2010-01-01

    Traveling-wave interaction between optical phonons and electrons drifting in diatomic semiconductors has potential for amplification and generation of terahertz radiation. Existing models of this interaction were developed for infinite materials. As a more practically relevant configuration, we studied theoretically a finite semiconductor slab surrounded by a dielectric. This paper analyzes the optical-phonon instability in the slab including the Lorentz force and compares it to the instability in an infinite material. As the analysis shows, the slab instability occurs because of the interaction of surface optical-phonon polaritons with surface plasmon polaritons in the presence of electron drift. The properties of the instability depend on the slab thickness when the thickness is comparable to the wavelength. For large slab thicknesses, however, the dispersion relation of the slab is similar to that of an infinite material, although the coupling is weaker. The results could be used for the design of practical terahertz traveling-wave oscillators and amplifiers.

  3. Challenges and gaps for energy planning models in the developing-world context

    Science.gov (United States)

    Debnath, Kumar Biswajit; Mourshed, Monjur

    2018-03-01

    Energy planning models (EPMs) support multi-criteria assessments of the impact of energy policies on the economy and environment. Most EPMs originated in developed countries and are primarily aimed at reducing greenhouse gas emissions while enhancing energy security. In contrast, most, if not all, developing countries are predominantly concerned with increasing energy access. Here, we review thirty-four widely used EPMs to investigate their applicability to developing countries and find an absence of consideration of the objectives, challenges, and nuances of the developing context. Key deficiencies arise from the lack of deliberation of the low energy demand resulting from lack of access and availability of supply. Other inadequacies include the lack of consideration of socio-economic nuances such as the prevalence of corruption and resulting cost inflation, the methods for adequately addressing the shortcomings in data quality, availability and adequacy, and the effects of climate change. We argue for further research on characterization and modelling of suppressed demand, climate change impacts, and socio-political feedback in developing countries, and the development of contextual EPMs.

  4. Eddy Covariance Measurements Over a Maize Field: The Contribution of Minor Flux Terms to the Energy Balance Gap

    Science.gov (United States)

    Smidt, J.; Ingwersen, J.; Streck, T.

    2015-12-01

    The lack of energy balance closure is a long-standing problem in eddy covariance (EC) measurements. The energy balance equation is defined as Rn - G = H + λE, where Rn is net radiation, G is the ground heat flux, H is the sensible heat flux and λE is the latent heat flux. In most cases of energy imbalance, either Rn is overestimated or the ground heat and turbulent fluxes are underestimated. Multiple studies have shown that calculations, incorrect instrument installation/calibration and measurement errors alone do not entirely account for this imbalance. Rather, research is now focused on previously neglected sources of heat storage in the soil, biomass and air beneath the EC station. This project examined the potential of five "minor flux terms" - soil heat storage, biomass heat storage, energy consumption by photosynthesis, air heat storage and atmospheric moisture change, to further close the energy balance gap. Eddy covariance measurements were conducted at a maize (Zea mays) field in southwest Germany during summer 2014. Soil heat storage was measured for six weeks at 11 sites around the field footprint. Biomass and air heat storage were measured for six subsequent weeks at seven sites around the field footprint. Energy consumption by photosynthesis was calculated using the CO2 flux data. Evapotranspiration was calculated using the water balance method and then compared to the flux data processed with three post-closure methods: the sensible heat flux, the latent heat flux and the Bowen ratio post-closure methods. An energy balance closure of 66% was achieved by the EC station measurements over the entire investigation period. During the soil heat flux campaign, EC station closure was 74.1%, and the field footprint soil heat storage contributed 3.3% additional closure. During the second minor flux term measurement period, closure with the EC station data was 91%. Biomass heat storage resulted in 1.1% additional closure, the photosynthesis flux closed the gap

  5. Circuit QED Simulation of Interacting Bosons with Microwave Polaritons

    Science.gov (United States)

    Girvin, Steven

    2012-02-01

    A polariton is a coherent superposition of a photon and an electronic excitation such as an exciton. Polaritons can have very low mass (associated with the photon component) and repulsive interactions (associated with the exciton component). Recent experimental progress has observed Bose-Einstein condensation and superfluidity in polaritons in semiconductor quantum wells. In this talk I will discuss the possibility that many-body physics and quantum phase transitions of interacting polaritons [1-3] can be observed in arrays of microwave resonators containing superconducting qubits [4-6]. If the qubits are not far-detuned from the cavities, the natural excitations are coherent superpositions of cavity and qubit excitations and they have interactions acquired from the anharmonicity of the qubits. These interactions can lead to quantum phase transitions in the limit of weak dissipation. It may even be possible to simulate the fractional quantum Hall effect for bosons by coupling the polaritons between sites using superconducting structures which act as `circulators' that break time-reversal and charge-conjugation symmetry. In light of recent progress in achieving very long-coherence times for superconducting qubits and strong qubit coupling to microwave photons, experimental prospects for observing quantum phase transitions in microwave resonator lattices will be described. [4pt] [1] A. D. Greentree, et al., Nat. Phys. 2, 856 (2006).[0pt] [2] M. J. Hartmann et al., Nat. Phys. 2, 849 (2006).[0pt] [3] D. G. Angelakis, M. F. Santos, and S. Bose, Phys. Rev. A 76, 031805 (2007).[0pt] [4] J. Koch and K. Le Hur, Phys. Rev. A 80, 023811 (2009).[0pt] [5] `Time-reversal symmetry breaking in circuit-QED based photon lattices,'Jens Koch, Andrew A. Houck, Karyn Le Hur, and S. M. Girvin, Phys. Rev. A 82, 043811 (2010).[0pt] [6] `Synthetic gauge fields and homodyne transmission in Jaynes-Cummings lattices,' A. Nunnenkamp, Jens Koch, and S. M. Girvin, New J. Phys. 13 095008 (2011).

  6. Energy distribution of interface state density in Si band gap of ...

    African Journals Online (AJOL)

    The energy distribution of interface states density, Dit, in the Si bandgap of Hafnium silicate based Metal-Oxide-Semiconductor Capacitors (MOS-C) has been studied using the alternating current (ac) conductance method. The interface trap density was higher in the upper half of the bandgap than in the lower half.

  7. Electron Energy Distribution in Hotspots of Cygnus A:Filling the Gap with Spitzer Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Stawarz, L.; Cheung, C.C.; Harris, D.E.; Ostrowski, M.

    2007-03-06

    Here we present Spitzer Space Telescope imaging of Cyg A with the Infrared Array Camera at 4.5 {micro}m and 8.0 {micro}m, resulting in the detection of the high-energy tails or cut-offs in the synchrotron spectra for all four hotspots of this archetype radio galaxy. When combined with the other data collected (and re-analyzed) from the literature, our observations allow for detailed modeling of the broad-band (radio-to-X-ray) emission for the brightest spots A and D. We confirm that the X-ray flux detected previously from these features is consistent with the synchrotron self-Compton radiation for the magnetic field intensity B {approx} 170 {micro}G in spot A, and B {approx} 270 {micro}G in spot D. We also find that the energy density of the emitting electrons is most likely larger by a factor of a few than the energy density of the hotspots magnetic field. We construct energy spectra of the radiating ultrarelativistic electrons. We find that for both hotspots A and D these spectra are consistent with a broken power-law extending from at least 100MeV up to {approx} 100GeV, and that the spectral break corresponds almost exactly to the proton rest energy of {approx} 1GeV. We argue that the shape of the electron continuum most likely reflects two different regimes of the electron acceleration process taking place at mildly relativistic shocks, rather than resulting from radiative cooling and/or absorption e.ects. In this picture the protons inertia defines the critical energy for the hotspot electrons above which Fermi-type acceleration processes may play a major role, but below which the operating acceleration mechanism has to be of a different type. At energies {approx}> 100 GeV, the electron spectra cut-off/steepen again, most likely as a result of spectral aging due to radiative loss effects. We discuss several implications of the presented analysis for the physics of extragalactic jets.

  8. Electron Energy Distribution in Hotspots of Cygnus A:Filling the Gap with Spitzer Space Telescope

    International Nuclear Information System (INIS)

    Stawarz, L.; Cheung, C.C.; Harris, D.E.; Ostrowski, M.

    2007-01-01

    Here we present Spitzer Space Telescope imaging of Cyg A with the Infrared Array Camera at 4.5 (micro)m and 8.0 (micro)m, resulting in the detection of the high-energy tails or cut-offs in the synchrotron spectra for all four hotspots of this archetype radio galaxy. When combined with the other data collected (and re-analyzed) from the literature, our observations allow for detailed modeling of the broad-band (radio-to-X-ray) emission for the brightest spots A and D. We confirm that the X-ray flux detected previously from these features is consistent with the synchrotron self-Compton radiation for the magnetic field intensity B ∼ 170 (micro)G in spot A, and B ∼ 270 (micro)G in spot D. We also find that the energy density of the emitting electrons is most likely larger by a factor of a few than the energy density of the hotspots magnetic field. We construct energy spectra of the radiating ultrarelativistic electrons. We find that for both hotspots A and D these spectra are consistent with a broken power-law extending from at least 100MeV up to ∼ 100GeV, and that the spectral break corresponds almost exactly to the proton rest energy of ∼ 1GeV. We argue that the shape of the electron continuum most likely reflects two different regimes of the electron acceleration process taking place at mildly relativistic shocks, rather than resulting from radiative cooling and/or absorption e.ects. In this picture the protons inertia defines the critical energy for the hotspot electrons above which Fermi-type acceleration processes may play a major role, but below which the operating acceleration mechanism has to be of a different type. At energies ∼> 100 GeV, the electron spectra cut-off/steepen again, most likely as a result of spectral aging due to radiative loss effects. We discuss several implications of the presented analysis for the physics of extragalactic jets

  9. Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2015-06-01

    Full Text Available The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength of thermal radiation. Using a rigorous fluctuational electrodynamics approach, we predict that ultra-thin films of plasmonic materials can be used to dramatically enhance near-field heat transfer. The total spectrally integrated film-to-film heat transfer is over an order of magnitude larger than between the same materials in bulk form and also exceeds the levels achievable with polar dielectrics such as SiC. We attribute this enhancement to the significant spectral broadening of radiative heat transfer due to coupling between surface plasmon polaritons (SPPs on both sides of each thin film. We show that the radiative heat flux spectrum can be further shaped by the choice of the substrate onto which the thin film is deposited. In particular, substrates supporting surface phonon polaritons (SPhP strongly modify the heat flux spectrum owing to the interactions between SPPs on thin films and SPhPs of the substrate. The use of thin film phase change materials on polar dielectric substrates allows for dynamic switching of the heat flux spectrum between SPP-mediated and SPhP-mediated peaks.

  10. The gap between plan and practice : Actual energy performance of the zero-energy refurbishment of a terraced house

    NARCIS (Netherlands)

    Xexakis, G.; Van den Dobbelsteen, A.A.J.F.

    2015-01-01

    Prêt-à-Loger, TU Delft’s entry to the Solar Decathlon Europe 2014 (SDE2014), demonstrated the conversion of a common terraced house to energy neutrality, whilst adding value to its living quality. The house was retrofitted according to principles of smart & bioclimatic design, using local

  11. Excitation of fluorescent nanoparticles by channel plasmon polaritons propagating in V-grooves

    DEFF Research Database (Denmark)

    Cuesta, Irene Fernandez; Nielsen, Rasmus Bundgaard; Boltasseva, Alexandra

    2009-01-01

    Recently, it has been proven that light can be squeezed into metallic channels with subwavelength lateral dimensions. Here, we present the study of the propagation of channel plasmon polaritons confined in gold V-grooves, filled with fluorescent particles. In this way, channel plasmon polaritons......-diameter beads, we show the possibility of individual excitation, what may have applications to develop very sensitive biosensors....

  12. Isolated energy level in the band gap of Yb2Si2O7 identified by electron energy-loss spectroscopy

    Science.gov (United States)

    Ogawa, Takafumi; Kobayashi, Shunsuke; Wada, Masashi; Fisher, Craig A. J.; Kuwabara, Akihide; Kato, Takeharu; Yoshiya, Masato; Kitaoka, Satoshi; Moriwake, Hiroki

    2016-05-01

    We report the detection of an isolated energy level in the band gap of crystalline Yb2Si2O7 in the low-energy-loss region of its electron energy-loss (EEL) spectrum, obtained using a monochromated scanning transmission electron microscope. The experimental results are corroborated by first-principles calculations of the theoretical EEL spectrum. The calculations reveal that unoccupied Yb 4 f orbitals constitute an isolated energy level about 1 eV below the conduction band minimum (CBM), resulting in a terrace about 1 eV wide at the band edge of the EEL spectrum. In the case of Yb2O3 , no band edge terrace is present because the unoccupied f level lies just below the CBM. We also examined optical absorption properties of Yb2Si2O7 using UV-vis diffuse reflectance spectroscopy, which shows that the isolated energy level could not be detected in the band edge of the obtained absorbance spectrum. These findings demonstrate the utility of low-loss EEL spectroscopy with high energy resolution for probing semilocalized electronic features.

  13. Closing the Energy Efficiency Gap: A study linking demographics with barriers to adopting energy efficiency measures in the home

    International Nuclear Information System (INIS)

    Pelenur, Marcos J.; Cruickshank, Heather J.

    2012-01-01

    This paper presents a study which linked demographic variables with barriers affecting the adoption of domestic energy efficiency measures in large UK cities. The aim was to better understand the ‘Energy Efficiency Gap’ and improve the effectiveness of future energy efficiency initiatives. The data for this study was collected from 198 general population interviews (1.5–10 min) carried out across multiple locations in Manchester and Cardiff. The demographic variables were statistically linked to the identified barriers using a modified chi-square test of association (first order Rao–Scott corrected to compensate for multiple response data), and the effect size was estimated with an odds-ratio test. The results revealed that strong associations exist between demographics and barriers, specifically for the following variables: sex; marital status; education level; type of dwelling; number of occupants in household; residence (rent/own); and location (Manchester/Cardiff). The results and recommendations were aimed at city policy makers, local councils, and members of the construction/retrofit industry who are all working to improve the energy efficiency of the domestic built environment. -- Highlights: ► 7 demographic variables linked to 8 barriers to adopting energy efficiency measures. ► A modified chi-square test for association was used (first order Rao–Scott corrected). ► Results revealed strong associations between most of the demographics and barriers. ► Data was collected from 198 interviews in the UK cities of Manchester and Cardiff. ► Specific recommendations are presented for regional policy makers and industry.

  14. Gap energy studied by optical transmittance in lead iodide monocrystals grown by Bridgman's Method

    Directory of Open Access Journals (Sweden)

    Veissid N.

    1999-01-01

    Full Text Available The bandgap energy as a function of temperature has been determined for lead iodide. The monocrystal was obtained in a vacuum sealed quartz ampoule inside a vertical furnace by Bridgman's method. The optical transmittance measurement enables to evaluate the values of Eg. By a fitting procedure of Eg as a function of temperature is possible to extract the parameters that govern its behavior. The variation of Eg with temperature was determined as: Eg(T = Eg(0 - aT2/(a + T, with: Eg(0 = (2.435 ± 0.008 eV, a = (8.7 ± 1.3 x 10-4 eV/K and a = (192 ± 90 K. The bandgap energy of lead iodide at room temperature was found to be 2.277 ± 0.007 eV.

  15. Role of surface energy on the morphology and optical properties of GaP micro & nano structures grown on polar and non-polar substrates

    Science.gov (United States)

    Roychowdhury, R.; Kumar, Shailendra; Wadikar, A.; Mukherjee, C.; Rajiv, K.; Sharma, T. K.; Dixit, V. K.

    2017-10-01

    Role of surface energy on the morphology, crystalline quality, electronic structure and optical properties of GaP layer grown on Si (001), Si (111), Ge (111) and GaAs (001) is investigated. GaP layers are grown on four different substrates under identical growth kinetics by metal organic vapour phase epitaxy. The atomic force microscopy images show that GaP layer completely covers the surface of GaAs substrate. On the other hand, the surfaces of Si (001), Si (111), Ge (111) substrates are partially covered with crystallographically morphed GaP island type micro and nano-structures. Origin of these crystallographically morphed GaP island is explained by the theoretical calculation of surface energy of the layer and corresponding substrates respectively. The nature of GaP island type micro and nano-structures and layers are single crystalline with existence of rotational twins on Si and Ge (111) substrates which is confirmed by the phi, omega and omega/2theta scans of high resolution x-ray diffraction. The electronic valence band offsets between the GaP and substrates have been determined from the valence band spectra of ultraviolet photoelectron spectroscopy. The valence electron plasmon of GaP are investigated by studying the energy values of Ga (3d) core level along with loss peaks in the energy dependent photoelectron spectra. The peak observed within the range of 3-6 eV from the Ga (3d) core level in the photoelectron spectra are associated to inter band transitions as their energy values are estimated from the pseudo dielectric function by the spectroscopic ellipsometry.

  16. Suppression of quadrupole polariton generation due to large &(3)circ; effect in Cu2O

    Science.gov (United States)

    Mani, Shahin; Jang, Joon; Ketterson, John

    2010-03-01

    Cuprous oxide (Cu2O) is a dipole-forbidden semiconductor exhibiting a vanishing second-order nonlinear susceptibility and a large third-order nonlinear response.^1 We employ resonant two-photon excitation to create quadrupole polaritons in this semiconductor aiming at the Bose-Einstein condensation of polaritons. Generally, to observe this quantum phase transition, high optical excitations at low temperature is essential. Using a Z-scan setup, we explore the resonant two- photon generation of polaritons in Cu2O at 2K. Our results suggest that the third-harmonic generation of the incident light severely limits the polariton density at high excitation levels. Based on the measured nonlinear optical parameters, the experimentally achievable polariton density is estimated. [1] S. Mani, J. I. Jang, and J. B. Ketterson, Opt. Lett. 34, 2817 (2009).

  17. Bloch oscillations of quasispin polaritons in a magneto-optically controlled atomic ensemble

    International Nuclear Information System (INIS)

    Jiang, Chang; Lu, Jing; Zhou, Lan

    2012-01-01

    We consider the propagation of quantized polarized light in a magneto-optically-manipulated atomic ensemble with a tripod configuration. A polariton formalism is applied when the medium is subjected to a washboard magnetic field under electromagnetically-induced transparency. The dark-state polariton with multiple components is achieved. We analyze the quantum dynamics of the dark-state polariton using experimental data from the rubidium D1-line. It is found that one component propagates freely, however the wave packet trajectory of the other component performs Bloch oscillations. -- Highlights: ► We study the wave–particle dualism of quasiparticles in a magneto-optical medium. ► We generate a “spin”-component dark-state polariton. ► Magnetic fields lead to oscillation and free propagation of a dark-state polariton. ► Our approach shows the role of entanglement of degrees of freedom of photons.

  18. Bloch oscillations of quasispin polaritons in a magneto-optically controlled atomic ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chang [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China); Lu, Jing, E-mail: lujing@hunnu.edu.cn [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China); Zhou, Lan [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China)

    2012-10-01

    We consider the propagation of quantized polarized light in a magneto-optically-manipulated atomic ensemble with a tripod configuration. A polariton formalism is applied when the medium is subjected to a washboard magnetic field under electromagnetically-induced transparency. The dark-state polariton with multiple components is achieved. We analyze the quantum dynamics of the dark-state polariton using experimental data from the rubidium D1-line. It is found that one component propagates freely, however the wave packet trajectory of the other component performs Bloch oscillations. -- Highlights: ► We study the wave–particle dualism of quasiparticles in a magneto-optical medium. ► We generate a “spin”-component dark-state polariton. ► Magnetic fields lead to oscillation and free propagation of a dark-state polariton. ► Our approach shows the role of entanglement of degrees of freedom of photons.

  19. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes.

    Science.gov (United States)

    Gao, Bin; Jiang, Jun; Wu, ZiYu; Luo, Yi

    2008-02-28

    We report hybrid density functional theory calculations for electronic structures of hydrogen-terminated finite single-walled carbon nanotubes (6,5) and (8,3) up to 100 nm in length. Gap states that are mainly arisen from the hydrogen-terminated edges have been found in (8,3) tubes, but their contributions to the density of states become invisible when the tube is longer than 10 nm. The electronic structures of (6,5) and (8,3) tubes are found to be converged around 20 nm. The calculated band-gap energies of 100 nm long nanotubes are in good agreement with experimental results. The valence band structures of (6,5), (8,3), as well as (5,5) tubes are also investigated by means of ultraviolet photoelectron spectra (UPS), x-ray emission spectroscopy (XES), and the resonant inelastic x-ray scattering (RIXS) spectra theoretically. The UPS, XES and RIXS spectra become converged already at 10 nm. The length-dependent oscillation behavior is found in the RIXS spectra of (5,5) tubes, indicating that the RIXS spectra may be used to determine the size and length of metallic nanotubes. Furthermore, the chiral dependence observed in the simulated RIXS spectra suggests that RIXS spectra could be a useful technique for the determination of chirality of carbon nanotubes.

  20. Phosphorene for energy and catalytic application—filling the gap between graphene and 2D metal chalcogenides

    Science.gov (United States)

    Jain, Rishabh; Narayan, Rekha; Padmajan Sasikala, Suchithra; Lee, Kyung Eun; Jung, Hong Ju; Ouk Kim, Sang

    2017-12-01

    Phosphorene, a newly emerging graphene analogous 2D elemental material of phosphorous atoms, is unique on the grounds of its natural direct band gap opening, highly anisotropic and extraordinary physical properties. This review highlights the current status of phosphorene research in energy and catalytic applications. The initial part illustrates the typical physical properties of phosphorene, which successfully bridge the prolonged gap between graphene and 2D metal chalcogenides. Various synthetic methods available for black phosphorus (BP) and the exfoliation/growth techniques for single to few-layer phosphorene are also overviewed. The latter part of this review details the working mechanisms and performances of phosphorene/BP in batteries, supercapacitors, photocatalysis, and electrocatalysis. Special attention has been paid to the research efforts to overcome the inherent shortcomings faced by phosphorene based devices. The relevant device performances are compared with graphene and 2D metal chalcogenides based counterparts. Furthermore, the underlying mechanism behind the unstable nature of phosphorene under ambient condition is discussed along with the various approaches to avoid ambient degradation. Finally, comments are offered for the future prospective explorations and outlook as well as challenges lying in the road ahead for phosphorene research.

  1. Solvent effect on bell-shaped energy gap dependence for charge transfer triplet exciplexes

    Science.gov (United States)

    Levin, P. P.; Raghavan, P. K. N.

    1991-08-01

    The decay kinetics of charge transfer triplet exciplexes—radical ion pairs formed by electron transfer from aromatic amines to the quinones in the triplet excited states in benzene, ethyl acetate and tert-amyl alcohol was studied by laser photolysis. The bell-shaped dependence for the intersystem electron transfer becomes more pronounced and narrow with the increasing polarity of the medium, which may be explained in terms of the single quantum mode approximation within the non-adiabatic multiphonon electron transfer theory by means of the decrease in the vibrational frequency of the quantum mode and in the quantum reorganization energy.

  2. Anisotropic energy gaps of iron-based superconductivity from intraband quasiparticle interference in LiFeAs.

    Science.gov (United States)

    Allan, M P; Rost, A W; Mackenzie, A P; Xie, Yang; Davis, J C; Kihou, K; Lee, C H; Iyo, A; Eisaki, H; Chuang, T-M

    2012-05-04

    If strong electron-electron interactions between neighboring Fe atoms mediate the Cooper pairing in iron-pnictide superconductors, then specific and distinct anisotropic superconducting energy gaps Δ(i)(k) should appear on the different electronic bands i. Here, we introduce intraband Bogoliubov quasiparticle scattering interference (QPI) techniques for determination of Δ(i)(k) in such materials, focusing on lithium iron arsenide (LiFeAs). We identify the three hole-like bands assigned previously as γ, α(2), and α(1), and we determine the anisotropy, magnitude, and relative orientations of their Δ(i)(k). These measurements will advance quantitative theoretical analysis of the mechanism of Cooper pairing in iron-based superconductivity.

  3. Benchmark theoretical study of the ionization energies, electron affinities and singlet-triplet energy gaps of azulene, phenanthrene, pyrene, chrysene and perylene

    Energy Technology Data Exchange (ETDEWEB)

    Huzak, M. [Theoretical Chemistry and Molecular Modelling, Hasselt University, Agoralaan, Gebouw D, B-3590 Diepenbeek (Belgium); Hajgato, B. [General Chemistry Division, Free University of Brussels (VUB), Pleinlaan 2, B-1050 Brussels (Belgium); Deleuze, M.S., E-mail: michael.deleuze@uhasselt.be [Theoretical Chemistry and Molecular Modelling, Hasselt University, Agoralaan, Gebouw D, B-3590 Diepenbeek (Belgium)

    2012-10-08

    Highlights: Black-Right-Pointing-Pointer Electronic properties of aromatic hydrocarbons are computed at benchmark levels. Black-Right-Pointing-Pointer Electron correlation has a very strong influence on the computed results. Black-Right-Pointing-Pointer The role of structural relaxation and zero-point vibrations is highlighted. Black-Right-Pointing-Pointer We approach chemical accuracy, using the principles of a focal point analysis. -- Abstract: The vertical and adiabatic singlet-triplet energy gaps, electron affinities and ionization energies of azulene, phenanthrene, pyrene, chrysene, and perylene are computed by applying the principles of a focal point analysis onto a series of single-point calculations at the level of Hartree-Fock theory, second-, third-, and fourth-order Moller-Plesset perturbation theory, as well as coupled cluster theory including single, double and perturbative triple excitations, in conjunction with correlation consistent basis sets of improving quality. Results are supplemented with an extrapolation to the limit of an asymptotically complete basis set. According to our best estimates, azulene, phenanthrene, pyrene, chrysene, and perylene exhibit adiabatic singlet-triplet energy gaps of 1.79, 2.92, 2.22, 2.79 and 1.71 eV, respectively. In the same order, the corresponding adiabatic electron affinities (EAs) amount to 0.71, -0.08, -0.40, 0.24, and 0.87 eV, whereas benchmark values equal to 7.43, 8.01, 7.48, 7.66 and 7.15 eV, are found for the adiabatic ionization energies.

  4. The need to bridge the gap between science and technology in energy for a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Cabrita, Isabel; Bongardt, A; Gulyurtlu, I; Joyce, A.

    2007-07-01

    According to studies developed by Intergovernmental Panel of Climate Change (IPCC), the earth's temperature has been increasing and, although there is some degree of uncertainty, the human influence is believed to significantly contribute to this as a result of activities that lead to the release of greenhouse gases. The energy sector is considered as a significant share of the overall balance. In spite of efforts taken by various countries, the situation is that technology development has not responded to the challenge so rapidly as expected and fast enough to meet needs to diversify energy resources to substitute carbon intensive fossil fuels at competitive prices and, simultaneously, CO2 removal and storage still need to reach application phase, on a large scale. New paths and new approaches have to be considered. The paper assesses the need to bridge knowledge created by basic research with its application, taking technology development to deployment, and the specificity of one country, Portugal, on the path chosen to tackle this issue. (auth)

  5. Superconducting energy gap distribution in c-axis oriented MgB sub 2 thin film from point contact study

    CERN Document Server

    Naidyuk, Yu G; Tyutrina, L V; Bobrov, N L; Chubov, P N; Kang, W N; Hyeong Jin Kim; Eun Mi Choi; Sung Ik Lee

    2002-01-01

    The voltage dependent differential resistance dV/dI(V) curves of metallic point contacts between MgB sub 2 thin film and Ag, which exhibit clear Andreev reflection connected with the superconducting gap are analyzed. About one half of the curves show the presence of a second larger gap. The histogram of the double gap distribution reveals distinct maxima at 2.4 and 7 MeV. The double gap distribution is in qualitative agreement with the distribution of gap values over the Fermi surface calculated previously. These observations prove a widely discussed multi-gap scenario for MgB sub 2

  6. Excitations of surface plasmon polaritons by attenuated total reflection, revisited

    International Nuclear Information System (INIS)

    Barchesi, D.; Otto, A.

    2013-01-01

    Many textbooks and review papers are devoted to plasmonics based on a selection of the numerous bibliography. But none describes the details of the first culmination of plasmonics in 1968, when surface plasmons become a field of optics. The coupling of light with the surface plasmon leads to the surface plasmon polariton (SPP). Therefore, the authors chose to associate historical insight (not avoiding a personal touch), a modern mathematical formulation of the excitation of the SPP by attenuated total reflection (ATR), considered as well understood since decades, and experimental applications since 1969, including recent developments.

  7. Dispersion of strongly confined channel plasmon polariton modes

    DEFF Research Database (Denmark)

    Zenin, Vladimir; Volkov, Valentyn S.; Han, Zhanghua

    2011-01-01

    We report on experimental (by use of scanning near-field optical microscopy) and theoretical investigations of strongly confined (∼λ/5) channel plasmon polariton (CPP) modes propagating at telecom wavelengths (1425–1630 nm) along V-grooves cut in a gold film. The main CPP characteristics (mode...... index, width, and propagation length) are determined directly from the experimental near-field images and compared to theoretical results obtained using an analytic description of CPP modes supported by (infinitely deep) V-grooves and finite-element simulations implemented in COMSOL....

  8. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  9. Directional coupling in channel plasmon-polariton waveguides

    DEFF Research Database (Denmark)

    Zenin, Volodymyr; Volkov, Valentyn S.; Han, Zhanghua

    2012-01-01

    We investigate directional couplers (DCs) formed by channel plasmon-polariton (CPP) waveguides (CPPWs). DCs comprising 5-µm-offset S-bends and 40-µm-long parallel CPPWs with different separations (0.08, 0.25, 0.5 and 2 µm) between V-groove channels are fabricated by using a focused ion-beam (FIB)...... gradually deteriorates with the increase of separation between V-grooves and practically vanishes for the separation of 2 µm. The DC-CPPW characteristics observed are found in good agreement with finite-element method (implemented in COMSOL) simulations....

  10. Harmonics Generation by Surface Plasmon Polaritons on Single Nanowires.

    Science.gov (United States)

    de Hoogh, Anouk; Opheij, Aron; Wulf, Matthias; Rotenberg, Nir; Kuipers, L

    2016-08-17

    We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing.

  11. Directional couplers using long-range surface plasmon polariton waveguides

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Bozhevolnyi, Sergey I.

    2006-01-01

    We present an experimental study of guiding and routing of electromagnetic radiation along the nanometer-thin and micrometer-wide gold stripes embedded in a polymer via excitation of long-range surface plasmon polaritons (LR-SPPs) in a very broad wavelength range from 1000 to 1650 mn. For straight....... The transmission spectra of LR-SPP-based directional couplers are presented demonstrating an efficient (similar to 30 dB) separation of different telecom wavelength bands. Various possibilities for dynamic control of wavelength division/multiplexing with LRSPP-based directional couplers that utilize the thermo...

  12. Application of back-propagation artificial neural network (ANN) to predict crystallite size and band gap energy of ZnO quantum dots

    Science.gov (United States)

    Pelicano, Christian Mark; Rapadas, Nick; Cagatan, Gerard; Magdaluyo, Eduardo

    2017-12-01

    Herein, the crystallite size and band gap energy of zinc oxide (ZnO) quantum dots were predicted using artificial neural network (ANN). Three input factors including reagent ratio, growth time, and growth temperature were examined with respect to crystallite size and band gap energy as response factors. The generated results from neural network model were then compared with the experimental results. Experimental crystallite size and band gap energy of ZnO quantum dots were measured from TEM images and absorbance spectra, respectively. The Levenberg-Marquardt (LM) algorithm was used as the learning algorithm for the ANN model. The performance of the ANN model was then assessed through mean square error (MSE) and regression values. Based on the results, the ANN modelling results are in good agreement with the experimental data.

  13. Topological order and thermal equilibrium in polariton condensates

    Science.gov (United States)

    Caputo, Davide; Ballarini, Dario; Dagvadorj, Galbadrakh; Sánchez Muñoz, Carlos; de Giorgi, Milena; Dominici, Lorenzo; West, Kenneth; Pfeiffer, Loren N.; Gigli, Giuseppe; Laussy, Fabrice P.; Szymańska, Marzena H.; Sanvitto, Daniele

    2018-02-01

    The Berezinskii-Kosterlitz-Thouless phase transition from a disordered to a quasi-ordered state, mediated by the proliferation of topological defects in two dimensions, governs seemingly remote physical systems ranging from liquid helium, ultracold atoms and superconducting thin films to ensembles of spins. Here we observe such a transition in a short-lived gas of exciton-polaritons, bosonic light-matter particles in semiconductor microcavities. The observed quasi-ordered phase, characteristic for an equilibrium two-dimensional bosonic gas, with a decay of coherence in both spatial and temporal domains with the same algebraic exponent, is reproduced with numerical solutions of stochastic dynamics, proving that the mechanism of pairing of the topological defects (vortices) is responsible for the transition to the algebraic order. This is made possible thanks to long polariton lifetimes in high-quality samples and in a reservoir-free region. Our results show that the joint measurement of coherence both in space and time is required to characterize driven-dissipative phase transitions and enable the investigation of topological ordering in open systems.

  14. Interplay between electric and magnetic effect in adiabatic polaritonic systems

    KAUST Repository

    Alabastri, Alessandro

    2013-01-01

    We report on the possibility of realizing adiabatic compression of polaritonic wave on a metallic conical nano-structure through an oscillating electric potential (quasi dynamic regime). By comparing this result with an electromagnetic wave excitation, we were able to relate the classical lighting-rod effect to adiabatic compression. Furthermore, we show that while the magnetic contribution plays a marginal role in the formation of adiabatic compression, it provides a blue shift in the spectral region. In particular, magnetic permeability can be used as a free parameter for tuning the polaritonic resonances. The peculiar form of adiabatic compression is instead dictated by both the source and the metal permittivity. The analysis is performed by starting from a simple electrostatic system to end with the complete electromagnetic one through intermediate situations such as the quasi-electrostatic and quasi-dynamic regimes. Each configuration is defined by a particular set of equations which allows to clearly determine the individual role played by the electric and magnetic contribution in the generation of adiabatic compression. We notice that these findings can be applied for the realization of a THz nano-metric generator. © 2013 Optical Society of America.

  15. The collective emission of electromagnetic waves from astrophysical jets - Luminosity gaps, BL Lacertae objects, and efficient energy transport

    Science.gov (United States)

    Baker, D. N.; Borovsky, Joseph E.; Benford, Gregory; Eilek, Jean A.

    1988-01-01

    A model of the inner portions of astrophysical jets is constructed in which a relativistic electron beam is injected from the central engine into the jet plasma. This beam drives electrostatic plasma wave turbulence, which leads to the collective emission of electromagnetic waves. The emitted waves are beamed in the direction of the jet axis, so that end-on viewing of the jet yields an extremely bright source (BL Lacertae object). The relativistic electron beam may also drive long-wavelength electromagnetic plasma instabilities (firehose and Kelvin-Helmholtz) that jumble the jet magnetic field lines. After a sufficient distance from the core source, these instabilities will cause the beamed emission to point in random directions and the jet emission can then be observed from any direction relative to the jet axis. This combination of effects may lead to the gap turn-on of astrophysical jets. The collective emission model leads to different estimates for energy transport and the interpretation of radio spectra than the conventional incoherent synchrotron theory.

  16. Black guillemot ecology in relation to tidal stream energy generation: An evaluation of current knowledge and information gaps.

    Science.gov (United States)

    Johnston, Daniel T; Furness, Robert W; Robbins, Alexandra M C; Tyler, Glen; Taggart, Mark A; Masden, Elizabeth A

    2018-03-01

    The black guillemot Cepphus grylle has been identified as a species likely to interact with marine renewable energy devices, specifically tidal turbines, with the potential to experience negative impacts. This likelihood is primarily based on the species being a diving seabird, and an inshore, benthic forager often associating with tidal streams. These behavioural properties may bring them into contact with turbine blades, or make them susceptible to alterations to tidal current speed, and/or changes in benthic habitat structure. We examine the knowledge currently available to assess the potential impacts of tidal stream turbines on black guillemot ecology, highlight knowledge gaps and make recommendations for future research. The key ecological aspects investigated include: foraging movements, diving behaviour, seasonal distribution, other sources of disturbance and colony recovery. Relating to foraging behaviour, between studies there is heterogeneity in black guillemot habitat use in relation to season, tide, diurnal cycles, and bathymetry. Currently, there is also little knowledge regarding the benthic habitats associated with foraging. With respect to diving behaviour, there is currently no available research regarding how black guillemots orientate and manoeuvre within the water column. Black guillemots are considered to be a non-migratory species, however little is known about their winter foraging range and habitat. The effect of human disturbance on breeding habitat and the metapopulation responses to potential mortalities are unknown. It is clear further understanding of black guillemot foraging habitat and behaviour is needed to provide renewable energy developers with the knowledge to sustainably locate tidal turbines and mitigate their impacts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Terahertz surface plasmon-polaritons in one-dimensional graphene based Fibonacci photonic superlattices

    Science.gov (United States)

    Namdar, Abdolrahman; Feizollahi Onsoroudi, Rana; Khoshsima, Habib; Sahrai, Mostafa

    2018-03-01

    The surface plasmon-polaritons in one-dimensional graphene-based Fibonacci photonic superlattices in the terahertz frequency range have been theoretically investigated. Our numerical study shows that surface plasmon-polaritons can be realized in both transverse electric and transverse magnetic polarizations. It is shown that these modes are manageable by varying the quasi-periodic generation orders which play a critical role in the occurrence of surface modes. In addition, the effect of thickness of cap layer and chemical potential of graphene sheets on surface plasmon-polaritons and their electric field distribution are studied. We have verified the excitation of surface plasmon-polaritons by using the attenuated total reflection method. This inspection confirms that all the predicted surface modes in the dispersion curves are actually excitable with this method.

  18. Generation of Bessel Surface Plasmon Polaritons in a Finite-Thickness Metal Film

    Directory of Open Access Journals (Sweden)

    S. N. Kurilkina

    2013-01-01

    Full Text Available A theory of generation of low- and high-index Bessel surface plasmon polaritons and their superposition in a metal film of a finite thickness is developed. Correct analytical expressions are obtained for the field of two families of Bessel surface plasmon polariton modes formed inside and outside the metal layer. The intensity distribution near the boundary of the layer has been calculated and analyzed. A scheme for the experimental realization of a superposition of Bessel surface plasmon polaritons is suggested. Our study demonstrates that it is feasible to use the superposition of Bessel surface plasmon polaritons as a virtual tip for near-field optical microscopy with a nanoscale resolution.

  19. Electrically Injected Polariton Lasing from a GaAs-Based Microcavity under Magnetic Field

    KAUST Repository

    Bhattacharya, Pallab

    2012-01-01

    Suppression of relaxation bottleneck and subsequent polariton lasing is observed in a GaAs-based microcavity under the application of a magnetic field. The threshold injection current density is 0.32 A/cm2 at 7 Tesla.

  20. Bistability and self-oscillations effects in a polariton-laser semiconductor microcavity

    International Nuclear Information System (INIS)

    Cotta, E A; Matinaga, F M

    2007-01-01

    We report an experimental observation of polaritonic optical bistability of the laser emission in a planar semiconductor microcavity with a 100 0 A GaAs single quantum well in the strong-coupling regime. The bistability curves show crossings that indicate a competition between a Kerr-like effect induced by the polariton population and thermal effects. Associated with the bistability, laser-like emission occurs at the bare cavity mode

  1. Polariton solitons and nonlinear localized states in a one-dimensional semiconductor microcavity

    Science.gov (United States)

    Chen, Ting-Wei; Cheng, Szu-Cheng

    2018-01-01

    This paper presents numerical studies of cavity polariton solitons (CPSs) in a resonantly pumped semiconductor microcavity with an imbedded spatial defect. In the bistable regime of the well-known homogeneous polariton condensate, with proper incident wave vector and pump strength, bright and/or dark cavity solitons can be found in the presence of a spatially confined potential. The minimum pump strength required to observe the CPSs or nonlinear localized states in this parametric pump scheme is therefore reported.

  2. Photonic bandgap structures for guiding of long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Leosson, K.; Nikolajsen, T.; Boltasseva, Alexandra

    2003-01-01

    We present the first observations of long-range plasmon polariton guiding in photonic bandgap structures. The transmission of waveguide structures is characterized at telecommunication wavelengths and a propagation loss below 4 dB/mm is determined.......We present the first observations of long-range plasmon polariton guiding in photonic bandgap structures. The transmission of waveguide structures is characterized at telecommunication wavelengths and a propagation loss below 4 dB/mm is determined....

  3. Retrofit Planning for the Performance Gap: Results of a Workshop on Addressing Energy, Health and Comfort Needs in a Protected Building

    Directory of Open Access Journals (Sweden)

    Eugene Mohareb

    2017-08-01

    Full Text Available Research on the performance gap suggests that the actual energy consumption in buildings can be twice as much as expected from modelled estimates. Energy models rely on predictive indicators and assumptions that are usually done at the design stage, without acknowledging behavioral patterns of actual users, amongst other uncertain elements. Moreover, in the context of the performance gap, it is evident that energy efficiency is overemphasized while other key issues such as health and comfort of occupants associated with indoor air quality, noise levels etc., have been less stressed and discussed. This paper discusses physical measurements of indoor temperature in a case study building at the University of Cambridge and reports findings of a workshop with researchers, building professionals and graduate students working on environmental performance in the built environment. The workshop addressed research issues related to energy, comfort and health (couched in terms of thermal performance, used as a means to understand the complexities of and trade-off between different aspects of sustainable buildings. Retrofit measures were suggested while considering how to balance energy and comfort needs, with some these measures being modelled to determine their efficacy. This research concludes with a reflection on how to implement these retrofit measures in a manner that addresses the performance gap.

  4. Dynamics of polaritons in semiconductor microcavities near instability thresholds

    International Nuclear Information System (INIS)

    He, Peng-Bin

    2012-01-01

    A theoretical study is presented on the dynamics of polaritons in semiconductor microcavities near parametric instability thresholds. With upward or downward ramp of optical pump, different instability modes emerge in parameter space defined by damping and detuning. According to these modes, stationary short-wave, stationary periodic, oscillatory periodic, and oscillatory uniform parametric instabilities are distinguished. By multiple scale expansion, the dynamics near threshold can be described by a critical mode with a slowly varying amplitude for the last three instabilities. Furthermore, it is found that the evolutions of their amplitudes are governed by real or complex Ginzburg–Landau equations. -- Highlights: ► Phase diagrams for different instability in extended parameter space. ► Different instability modes near thresholds. ► Different envelop equations near thresholds obtained by multi-scale expansion.

  5. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying

    2017-12-11

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  6. Pass-band reconfigurable spoof surface plasmon polaritons

    Science.gov (United States)

    Zhang, Hao Chi; He, Pei Hang; Gao, Xinxin; Tang, Wen Xuan; Cui, Tie Jun

    2018-04-01

    In this paper, we introduce a new scheme to construct the band-pass tunable filter based on the band-pass reconfigurable spoof surface plasmon polaritons (SPPs), whose cut-off frequencies at both sides of the passband can be tuned through changing the direct current (DC) bias of varactors. Compared to traditional technology (e.g. microstrip filters), the spoof SPP structure can provide more tight field confinement and more significant field enhancement, which is extremely valuable for many system applications. In order to achieve this scheme, we proposed a specially designed SPP filter integrated with varactors and DC bias feeding structure to support the spoof SPP passband reconfiguration. Furthermore, the full-wave simulated result verifies the outstanding performance on both efficiency and reconfiguration, which has the potential to be widely used in advanced intelligent systems.

  7. Plasmon-polaritonic bands in sequential doped graphene superlattices

    Science.gov (United States)

    Ramos-Mendieta, Felipe; Palomino-Ovando, Martha; Hernández-López, Alejandro; Fuentecilla-Cárcamo, Iván

    Doped graphene has the extraordinary quality of supporting two types of surface excitations that involve electric charges (the transverse magnetic surface plasmons) or electric currents (the transverse electric modes). We have studied numerically the collective modes that result from the coupling of surface plasmons in doped graphene multilayers. By use of structured supercells with fixed dielectric background and inter layer separation, we found a series of plasmon-polaritonic bands of structure dependent on the doping sequence chosen for the graphene sheets. Periodic and quasiperiodic sequences for the graphene chemical potential have been studied. Our results show that transverse magnetic bands exist only in the low frequency regime but transverse electric bands arise within specific ranges of higher frequencies. Our calculations are valid for THz frequencies and graphene sheets with doping levels between 0.1 eV and 1.2 eV have been considered. AHL and IFC aknowledge fellowship support from CONACYT México.

  8. Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves

    Science.gov (United States)

    Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-08-01

    The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.

  9. Influence of size effect and electron correlation to the energy band gap of CuFeO2 and AgFeO2

    Science.gov (United States)

    Ong, Khuong; Bai, Kewu; Blaha, Peter; Wu, Ping

    2007-03-01

    We have calculated the electronic structure of delafossite type oxides CuFeO2 and AgFeO2 using the Full Potential Linearlized Augmented Plane Wave (FP-LAPW) method within Perdew-Burke-Ernzerhof Generalized-Gradient Approximation (PBE-GGA). A metallic state instead of true insulating state is obtained for CuFeO2 and AgFeO2. The insulating state is reproduced when electron correlations have been taken into account. An effective Hubbard parameter for Fe, Ueff=7.86eV, has been derived based on an ab initio constraint calculation. This value is an over estimation for the optical band gaps of CuFeO2 and most probably for AgFeO2 as well. One reasonable Ueff has been derived by comparing between computational and experimental X-Ray emission spectra. The energy band gap of CuFeO2 and AgFeO2 within the PBE-GGA+U is found as charge transfer gap. Theoretical optical band gaps δ0=1.30eV, δ1=2.06eV, and δ2=3.20eV for CuFeO2 are quite compatible with experimental data. For AgFeO2 an optical band gap δ0=1.90eV has been predicted. The size effect is considered as the origin of the increase in optical and energy band gaps of AgFeO2 in comparison with CuFeO2.

  10. Ultrathin Au film on polymer surface for surface plasmon polariton waveguide application

    Science.gov (United States)

    Liu, Tong; Ji, Lanting; He, Guobing; Sun, Xiaoqiang; Wang, Fei; Zhang, Daming

    2017-11-01

    Formation of laterally continuous ultrathin gold films on polymer substrates is a technological challenge. In this work, the vacuum thermal evaporation method is adopted to form continuous Au films in the thickness range of 7-17 nm on polymers of Poly(methyl-methacrylate-glycidly-methacrylate) and SU-8 film surface without using the adhesion or metallic seeding layers. Absorption spectrum, scanning electron microscope and atomic force microscope images are used to characterize the Au film thickness, roughness and optical loss. The result shows that molecular-scale structure, surface energy and electronegativity have impacts on the Au film morphology on polymers. Wet chemical etching is used to fabricate 7-nm thick Au stripes embedded in polymer claddings. These long-range surface plasmon polariton waveguides demonstrate the favorable morphological configurations and cross-sectional states. Through the end-fire excitation method, propagation losses of 6-μm wide Au stripes are compared to theoretical values and analyzed from practical film status. The smooth, patternable gold films on polymer provide potential applications to plasmonic waveguides, biosensing, metamaterials and optical antennas.

  11. Surface Plasmon Polariton-Assisted Long-Range Exciton Transport in Monolayer Semiconductor Lateral Heterostructure

    Science.gov (United States)

    Shi, Jinwei; Lin, Meng-Hsien; Chen, Yi-Tong; Estakhri, Nasim Mohammadi; Tseng, Guo-Wei; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alã¹, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    Recently, two-dimensional (2D) semiconductor heterostructures, i.e., atomically thin lateral heterostructures (LHSs) based on transition metal dichalcogenides (TMDs) have been demonstrated. In an optically excited LHS, exciton transport is typically limited to a rather short spatial range ( 1 micron). Furthermore, additional losses may occur at the lateral interfacial regions. Here, to overcome these challenges, we experimentally implement a planar metal-oxide-semiconductor (MOS) structure by placing a monolayer of WS2/MoS2 LHS on top of an Al2O3 capped Ag single-crystalline plate. We found that the exciton transport range can be extended to tens of microns. The process of long-range exciton transport in the MOS structure is confirmed to be mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, which allows a cascaded energy transfer process. Thus, the planar MOS structure provides a platform seamlessly combining 2D light-emitting materials with plasmonic planar waveguides, offering great potential for developing integrated photonic/plasmonic functionalities.

  12. Coupling between surface plasmon polaritons and transverse electric polarized light via L-shaped nano-apertures.

    Science.gov (United States)

    Yang, Jing; Hu, Chuang; Wen, Qiuling; Zhao, Chenglong; Zhang, Jiasen

    2015-03-15

    Given that plasmonic fields are intrinsically transverse magnetic (TM), coupling surface plasmon polaritons (SPPs) and transverse electric (TE) polarized light, especially at nanoscale, remain challenging. We propose the use of L-shaped nano-apertures to overcome this fundamental limitation and enable coupling between SPPs and TE polarized light. Polarization conversion originates from the interference of two resonant modes excited in the nano-apertures and the nearly 180° phase retardation between them. The experiments show that both TE-to-plasmon and plasmon-to-TE couplings can be implemented at the subwavelength scale. This discovery provides great freedom when manipulating light based on SPPs at the nanoscale and helps in using the energy of TE polarized light.

  13. Squeezed mode conversion in hybrid plasmon polariton waveguide using spin-coated silver film.

    Science.gov (United States)

    Ha, Thi-Vu-Anh; Park, Hae-Ryeong; Son, Jung-Han; Lee, Myung-Hyun

    2012-07-01

    We designed, fabricated, and characterized a hybrid surface plasmon polariton waveguide (SPP_wg) for mode conversion. The 20-nm-thick silver SPP_wg was fabricated via spin-coating with an aqueous silver ionic complex solution. The structure of the SPP_wg consists of a straight Insulator-Metal-Insulator waveguide (IMl_wg), a lateral tapered Insulator-Metal-Insulator-Metal-Insulator waveguide (tapered_IMIMI_wg), and a straight IMIMI waveguide (IMIMI_wg). An s0 mode size of 12.90 microm x 8.08 microm at a 6-microm-wide IMI_wg was excited by a butt-coupling method at a wavelength of 1550 nm. The s0 mode was converted into an Ss0 mode size of 8.08 microm x 5.65 microm at a 3-microm-wide IMIMI_wg. The mode size was squeezed by approximately 2/3 via a 15-microm-long lateral tapered_IMIMI_wg with a 500-nm-thick central insulator. The coupling loss for mode conversion between the straight IMI_wg and the straight IMIMI_wg was 5.49 dB. The hybrid SPP_wg for mode conversion has the potential to bridge the gap between micron and sub-micron scales in nano plasmonic integrated circuits. In addition, the use of the spin coating method is very cost-effective because films are formed at a low temperature in a short period of time without the need for a vacuum system.

  14. Huge operation by energy gap of novel narrow band gap Tl1-x In1-x B x Se2 (B = Si, Ge): DFT, x-ray emission and photoconductivity studies

    Science.gov (United States)

    Piasecki, M.; Myronchuk, G. L.; Zamurueva, O. V.; Khyzhun, O. Y.; Parasyuk, O. V.; Fedorchuk, A. O.; Albassam, A.; El-Naggar, A. M.; Kityk, I. V.

    2016-02-01

    It is shown that narrow band gap semiconductors Tl1-x In1-x GexSe2 are able effectively to vary the values of the energy gap. DFT simulations of the principal bands during the cationic substitutions is done. Changes of carrier transport features is explored. Relation with the changes of the near the surface states is explored . Comparison on a common energy scale of the x-ray emission Se Kβ 2 bands, representing energy distribution of the Se 4p states, indicates that these states contribute preliminary to the top of the valence band. The temperature dependence of electrical conductivity and spectral dependence photoconductivity for the Tl1-x In1-x Ge x Se2 and Tl1-x In1-x Si x Se2 single crystals were explored and compared with previously reported Tl1-x In1-x Sn x Se2. Based on our investigations, a model of centre re-charging is proposed. Contrary to other investigated crystals in Tl1-x In1-x Ge x Se2 single crystals for x = 0.1 we observe extraordinarily enormous photoresponse, which exceed more than nine times the dark current. X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces of Tl1-x In1-x GexSe2 (x = 0.1 and 0.2) single crystals have been studied. These results indicate that the relatively low hygroscopicity of the studied single crystals is typical for the Tl1-x In1-x Ge x Se2 crystals, a property that is very important for handling these quaternary selenides as infrared materials operating at ambient conditions.

  15. A detailed analysis of the energy levels configuration existing in the band gap of supersaturated silicon with titanium for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, E.; Dueñas, S.; Castán, H.; García, H.; Bailón, L. [Dept. de Electricidad y Electrónica, Universidad de Valladolid, Paseo de Belén 15, 47011 Valladolid (Spain); Montero, D.; García-Hernansanz, R.; García-Hemme, E.; González-Díaz, G. [Dept. de Física Aplicada III (Electricidad y Electrónica), Univ. Complutense de Madrid, 28040 Madrid (Spain); CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Olea, J. [CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Instituto de Energía Solar, E.T.S.I. de Telecomunicación, Univ. Politécnica de Madrid, 28040 Madrid (Spain)

    2015-12-28

    The energy levels created in supersaturated n-type silicon substrates with titanium implantation in the attempt to create an intermediate band in their band-gap are studied in detail. Two titanium ion implantation doses (10{sup 13 }cm{sup -2} and 10{sup 14 }cm{sup -2}) are studied in this work by conductance transient technique and admittance spectroscopy. Conductance transients have been measured at temperatures of around 100 K. The particular shape of these transients is due to the formation of energy barriers in the conduction band, as a consequence of the band-gap narrowing induced by the high titanium concentration. Moreover, stationary admittance spectroscopy results suggest the existence of different energy level configuration, depending on the local titanium concentration. A continuum energy level band is formed when titanium concentration is over the Mott limit. On the other hand, when titanium concentration is lower than the Mott limit, but much higher than the donor impurity density, a quasi-continuum energy level distribution appears. Finally, a single deep center appears for low titanium concentration. At the n-type substrate, the experimental results obtained by means of thermal admittance spectroscopy at high reverse bias reveal the presence of single levels located at around E{sub c}-425 and E{sub c}-275 meV for implantation doses of 10{sup 13 }cm{sup −2} and 10{sup 14 }cm{sup −2}, respectively. At low reverse bias voltage, quasi-continuously distributed energy levels between the minimum of the conduction bands, E{sub c} and E{sub c}-450 meV, are obtained for both doses. Conductance transients detected at low temperatures reveal that the high impurity concentration induces a band gap narrowing which leads to the formation of a barrier in the conduction band. Besides, the relationship between the activation energy and the capture cross section values of all the energy levels fits very well to the Meyer-Neldel rule. As it is known

  16. Numerical modeling of exciton-polariton Bose-Einstein condensate in a microcavity

    Science.gov (United States)

    Voronych, Oksana; Buraczewski, Adam; Matuszewski, Michał; Stobińska, Magdalena

    2017-06-01

    A novel, optimized numerical method of modeling of an exciton-polariton superfluid in a semiconductor microcavity was proposed. Exciton-polaritons are spin-carrying quasiparticles formed from photons strongly coupled to excitons. They possess unique properties, interesting from the point of view of fundamental research as well as numerous potential applications. However, their numerical modeling is challenging due to the structure of nonlinear differential equations describing their evolution. In this paper, we propose to solve the equations with a modified Runge-Kutta method of 4th order, further optimized for efficient computations. The algorithms were implemented in form of C++ programs fitted for parallel environments and utilizing vector instructions. The programs form the EPCGP suite which has been used for theoretical investigation of exciton-polaritons. Catalogue identifier: AFBQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD-3 No. of lines in distributed program, including test data, etc.: 2157 No. of bytes in distributed program, including test data, etc.: 498994 Distribution format: tar.gz Programming language: C++ with OpenMP extensions (main numerical program), Python (helper scripts). Computer: Modern PC (tested on AMD and Intel processors), HP BL2x220. Operating system: Unix/Linux and Windows. Has the code been vectorized or parallelized?: Yes (OpenMP) RAM: 200 MB for single run Classification: 7, 7.7. Nature of problem: An exciton-polariton superfluid is a novel, interesting physical system allowing investigation of high temperature Bose-Einstein condensation of exciton-polaritons-quasiparticles carrying spin. They have brought a lot of attention due to their unique properties and potential applications in polariton-based optoelectronic integrated circuits. This is an out-of-equilibrium quantum system confined

  17. Tuning the near-gap electronic structure of Cu2O by anion-cation co-doping for enhanced solar energy conversion

    Science.gov (United States)

    Si, Yuan; Yang, Hao-Ming; Wu, Hong-Yu; Huang, Wei-Qing; Yang, Ke; Peng, Ping; Huang, Gui-Fang

    2017-01-01

    Doping is an effective strategy to tune the electronic properties of semiconductors, but some side effects caused by mono-doping degrade the specific performance of matrixes. As a model system to minimize photoproduced electron-hole pairs recombination by anion-cation co-doping, we investigate the electronic structures and optical properties of (Fe+N) co-doped Cu2O using the first-principles calculations. Compared to the case of mono-doping, the FeCuNO (a Fe (N) atom substituting a Cu (O) atom) co-doping reduces the energy cost of doping as a consequence of the charge compensation between the iron and nitrogen impurities, which eliminates the isolated levels (induced by mono-dopant) in the band gap. Interestingly, it is found that the contributions of different host atoms (Cu and O) away from anion (N) and cation (Fe) dopants to the variation of near band gap electronic structure of the co-doped Cu2O are different. Moreover, co-doping reduces the band gap and increases the visible-light absorption of Cu2O. Both band gap reduction and low recombination rate are critical elements for efficient light-to-current conversion in co-doped semiconductor photocatalysts. These findings raise the prospect of using co-doped Cu2O with specifically engineered electronic properties in a variety of solar applications.

  18. Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces

    Science.gov (United States)

    Gonçalves, P. A. D.; Bertelsen, L. P.; Xiao, Sanshui; Mortensen, N. Asger

    2018-01-01

    The realization and control of polaritons is of paramount importance in the prospect of novel photonic devices. Here, we investigate the emergence of plasmon-exciton polaritons in hybrid structures consisting of a two-dimensional transition-metal dichalcogenide (TMDC) deposited onto a metal substrate or coating a metallic thin film. We determine the polaritonic spectrum and show that, in the former case, the addition of a top dielectric layer and, in the latter case, the thickness of the metal film can be used to tune and promote plasmon-exciton interactions well within the strong-coupling regime. Our results demonstrate that Rabi splittings exceeding 100 meV can readily be achieved in planar dielectric/TMDC/metal structures under ambient conditions. We thus believe that this Rapid Communication provides a simple and intuitive picture to tailor strong coupling in plexcitonics with potential applications for engineering compact photonic devices with tunable optical properties.

  19. Nano-imaging and nano-spectroscopy of tunable surface phonon polaritons in hexagonal boron nitride

    Science.gov (United States)

    Dai, Siyuan; Fei, Zhe; Ma, Qiong; Rodin, Aleksandr; Wagner, Martin; McLeod, Alexander; Liu, Mengkun; Gannett, Will; Regan, William; Thiemens, Mark; Dominguez, Gerardo; Castro Neto, Antonio; Zettl, Alex; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael; Basov, Dimitri

    2014-03-01

    Van der Waals crystals such as graphene, topological insulators, cuprate high-temperature superconductors, and many other layered structures reveal a rich variety of enigmatic electronic, photonic and magnetic properties. We report infrared (IR) nano-imaging of surface phonon polaritons in a prototypical van-der-Waals crystal: hexagonal boron nitride (hBN). In the setting of an antenna-based IR spectroscopic nanoscope, we accomplished launching, detecting, and real space imaging of the polaritonic waves. We were able to alter both the wavelength and the amplitude of such waves by varying the number of crystal layers in our specimens. We demonstrated a new nano-photonics method for mapping the polariton dispersion. The dispersion is shown to be governed by the crystal thickness according to a scaling law that persists down to a few monolayers. Our results point to novel functionalities of van-der-Waals crystals as reconfigurable nano-photonic materials.

  20. Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy

    OpenAIRE

    Beck, Matthias; Klammer, M.; Lang, S.; Leiderer, Paul; Kabanov, Viktor V.; Goltsman, Gregory; Demsar, Jure

    2011-01-01

    Using time-domain Terahertz spectroscopy we performed direct studies of the photoinduced suppression and recovery of the superconducting gap in a conventional BCS superconductor NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the bare quasiparticle recombination rate, the Cooper pair-breaking rate and the electron-phonon coupling constant, \\la...

  1. A Low-Energy-Gap Thienochrysenocarbazole Dye for Highly Efficient Mesoscopic Titania Solar Cells: Understanding the Excited State and Charge Carrier Dynamics.

    Science.gov (United States)

    Wang, Junting; Xie, Xinrui; Weng, Guorong; Yuan, Yi; Zhang, Jing; Wang, Peng

    2018-03-23

    Maintaining both a high external quantum efficiency and a large open-circuit photovoltage of dye-sensitized solar cells (DSSCs) is a crucial challenge in the process of developing narrow-energy-gap dyes for the capture of infrared solar photons. Herein, we report two donor-acceptor organic dyes, C294 and C295, with a polycyclic heteroaromatic unit, 6,11-dihydrothieno[3',2':8,9]chryseno[10,11,12,1-bcdefg]carbazole (TCC), as the central module of the electron donor, and ethylbenzothiadiazole-benzioc acid as the electron acceptor. The interfacial charge recombination was successfully mitigated by introducing an additional branched aliphatic chain in C295. Furthermore, the O⋅⋅⋅S nonbonding interaction between the oxygen atom of the alkoxy group and the sulfur atom of the thiophene in C295 controlled the conformation of C295, resulting in a narrow energy-gap. Time-resolved spectroscopic measurements on C294 and the model dye C272 indicated that the elevation of the HOMO energy level decreased the kinetics and yield of hole injection owing to a reduction in the driving force and that the shortened excited-state lifetime caused by the narrowing of the energy gap was unfavorable for electron injection. By fine tuning the composition of the electrolyte, C294 and C295 eventually achieved high power conversion efficiencies of 11.5 % and 12.4 %, respectively, under full sunlight of air mass 1.5 global conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Measurement of the c-axis optical reflectance of AFe2As2 (A=Ba, Sr) single crystals: evidence of different mechanisms for the formation of two energy gaps.

    Science.gov (United States)

    Chen, Z G; Dong, T; Ruan, R H; Hu, B F; Cheng, B; Hu, W Z; Zheng, P; Fang, Z; Dai, X; Wang, N L

    2010-08-27

    We present the c-axis optical reflectance measurement on single crystals of BaFe2As2 and SrFe2As2, the parent compounds of FeAs based superconductors. Different from the ab-plane optical response where two distinct energy gaps were observed in the spin-density-wave (SDW) state, only the smaller energy gap could be seen clearly for E∥c axis. The very pronounced energy gap structure seen at a higher energy scale for E∥ab plane is almost invisible. We propose a novel picture for the band structure evolution across the SDW transition and suggest different driving mechanisms for the formation of the two energy gaps.

  3. Plasmon polaritons in the near infrared on fluorine doped tin oxide films.

    Science.gov (United States)

    Dominici, Lorenzo; Michelotti, Francesco; Brown, Thomas M; Reale, Andrea; Di Carlo, Aldo

    2009-06-08

    Here we investigate plasmon polaritons in fluorine doped tin oxide (FTO) films. By fitting reflectance and transmittance measurements as a function of wavelength lambda epsilon [1.0microm, 2.5microm] we derive a Drude dispersion relation of the free electrons in the transparent conducting oxide films. Then we compute the dispersion curves for the bulk and surface modes together with a reflectance map over an extended wavelength region (lambda==>10microm). Although the surface polariton dispersion for a single FTO/air interface when neglecting damping should appear clearly in the plots in the considered region (since it is supposedly far and isolated from other resonances), a complex behaviour can arise. This is due to different characteristic parameters, such as the presence of a finite extinction coefficient, causing an enlargement and backbending of the feature, and the low film thickness, via coupling between the modes from both the glass/FTO and FTO/air interfaces. Taking into account these effects, computations reveal a general behaviour for thin and absorbing conducting films. They predict a thickness dependent transition region between the bulk polariton and the surface plasmon branches as previously reported for indium tin oxide. Finally, attenuated total reflection measurements vs the incidence angle are performed over single wavelengths lines R(theta) (lambda= 0.633,0.830,1.300,1.550microm) and over a two dimensional domain R(theta,lambda) in the near infrared region lambda epsilon [1.45microm, 1.59microm]. Both of these functions exhibit a feature which is attributed to a bulk polariton and not to a surface plasmon polariton on the basis of comparison with spectrophotometer measurements and modeling. The predicted range for the emergence of a surface plasmon polariton is found to be above lambda >or= 2.1microm, while the optimal film thickness for its observation is estimated to be around 200nm.

  4. Wireless Communication with Nanoplasmonic Data Carriers: Macroscale Propagation of Nanophotonic Plasmon Polaritons Probed by Near-Field Nanoimaging.

    Science.gov (United States)

    Cohen, Moshik; Abulafia, Yossi; Lev, Dmitry; Lewis, Aaron; Shavit, Reuven; Zalevsky, Zeev

    2017-09-13

    The ability to control the energy flow of light at the nanoscale is fundamental to modern communication and big-data technologies, as well as quantum information processing schemes. However, since photons are diffraction-limited, efforts of confining them to dimensions of integrated electronics have so far proven elusive. A promising way to facilitate nanoscale manipulation of light is through plasmon polaritons-coupled excitations of photons and charge carriers. These tightly confined hybrid waves can facilitate compression of optical functionalities to the nanoscale but suffer from huge propagation losses that limit their use to mostly subwavelength scale applications. With only weak evidence of macroscale plasmon polaritons, propagation has recently been reported theoretically and indirectly, no experiments so far have directly resolved long-range propagating optical plasmons in real space. Here, we launch and detect nanoscale optical signals, for record distances in a wireless link based on novel plasmonic nanotransceivers. We use a combination of scanning probe microscopies to provide high resolution real space images of the optical near fields and investigate their long-range propagation principles. We design our nanotransceivers based on a high-performance nanoantenna, Plantenna, hybridized with channel plasmon waveguides with a cross-section of 20 nm × 20 nm, and observe propagation for distances up to 1000 times greater than the plasmon wavelength. We experimentally show that our approach hugely outperforms both waveguide and wireless nanophotonic links. This successful alliance between Plantenna and plasmon waveguides paves the way for new generations of optical interconnects and expedites long-range interaction between quantum emitters and photomolecular devices.

  5. Knowledge Gaps

    DEFF Research Database (Denmark)

    Lyles, Marjorie; Pedersen, Torben; Petersen, Bent

    2003-01-01

    , assimilating, and utilizing knowledge - are crucial determinants ofknowledge gap elimination. In contrast, the two factors deemed essential in traditionalinternationalization process theory - elapsed time of operations and experientiallearning - are found to have no or limited effect.Key words......: Internationalization, knowledge gap, absorptive capacity, learning box....

  6. Spin-injection-induced gain anisotropy in a polariton diode laser

    Science.gov (United States)

    Bhattacharya, Aniruddha; Bhattacharya, Pallab

    2018-02-01

    Optical effects arising from spin-induced gain anisotropy such as threshold reduction and emission intensity enhancement, hitherto unobserved in electrically injected polariton lasers, are predicted theoretically for a bulk GaN-based exciton-polariton diode laser operated with electrical injection of spin-polarized electrons. These phenomena are deduced from a simplified spin-dependent rate equation model. We also demonstrate an electrical excitation scheme, which can amplify the degree of a deterministic circular polarization of the output emission by an order of magnitude, compared to the injected electron spin polarization, above threshold.

  7. Polariton Resonances for Ultrastrong Coupling Cavity Optomechanics in GaAs/AlAs Multiple Quantum Wells.

    Science.gov (United States)

    Jusserand, B; Poddubny, A N; Poshakinskiy, A V; Fainstein, A; Lemaitre, A

    2015-12-31

    Polariton-mediated light-sound interaction is investigated through resonant Brillouin scattering experiments in GaAs/AlAs multiple-quantum wells. Photoelastic coupling enhancement at exciton-polariton resonance reaches 10(5) at 30 K as compared to a typical bulk solid room temperature transparency value. When applied to GaAs based cavity optomechanical nanodevices, this result opens the path to huge displacement sensitivities and to ultrastrong coupling regimes in cavity optomechanics with couplings g(0) in the range of 100 GHz.

  8. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satel......Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...

  9. Wavelength-selective and diffuse infrared thermal emission mediated by magnetic polaritons from silicon carbide metasurfaces

    Science.gov (United States)

    Yang, Yue; Taylor, Sydney; Alshehri, Hassan; Wang, Liping

    2017-07-01

    In the present study, we experimentally demonstrate the spectrally coherent and diffuse thermal emission by exciting magnetic polaritons in SiC metasurfaces fabricated by the focused ion beam technique. Spectral emittance characterized by using an infrared microscope coupled to a Fourier transform spectrometer clearly shows a wavelength-selective emission peak as high as 0.8. Numerical simulations including emittance spectra and contour plot of electromagnetic field distribution were carried out to verify and understand the underlying mechanism of magnetic polaritons. The metasurfaces were further shown to be direction and polarization independent. The results would facilitate metasurfaces for applications like radiative thermal management and infrared sensing.

  10. Exciton-polaritons in cuprous oxide: Theory and comparison with experiment

    Science.gov (United States)

    Schweiner, Frank; Ertl, Jan; Main, Jörg; Wunner, Günter; Uihlein, Christoph

    2017-12-01

    The observation of giant Rydberg excitons in cuprous oxide (Cu2O ) up to a principal quantum number of n =25 by T. Kazimierczuk et al. [Nature (London) 514, 343 (2014), 10.1038/nature13832] inevitably raises the question whether these quasiparticles must be described within a multipolariton framework since excitons and photons are always coupled in the solid. In this paper we present the theory of exciton-polaritons in Cu2O . To this end we extend the Hamiltonian which includes the complete valence-band structure, the exchange interaction, and the central-cell corrections effects, and which has been recently deduced by F. Schweiner et al. [Phys. Rev. B 95, 195201 (2017), 10.1103/PhysRevB.95.195201], for finite values of the exciton momentum ℏ K . We derive formulas to calculate not only dipole but also quadrupole oscillator strengths when using the complete basis of F. Schweiner et al., which has recently been proven as a powerful tool to calculate exciton spectra. Very complex polariton spectra for the three orientations of K along the axes [001 ] , [110 ] , and [111 ] of high symmetry are obtained and a strong mixing of exciton states is reported. The main focus is on the 1 S ortho-exciton-polariton, for which pronounced polariton effects have been measured in experiments. We set up a 5 ×5 matrix model, which accounts for both the polariton effect and the K -dependent splitting, and which allows treating the anisotropic polariton dispersion for any direction of K . We especially discuss the dispersions for K being oriented in the planes perpendicular to [1 1 ¯0 ] and [111 ] , for which experimental transmission spectra have been measured. Furthermore, we compare our results with experimental values of the K -dependent splitting, the group velocity, and the oscillator strengths of this exciton-polariton. The results are in good agreement. This proves the validity of the 5 ×5 matrix model as a useful theoretical model for further investigations on the 1 S

  11. Long-range surface-plasmon-polariton excitation at the quantum level

    International Nuclear Information System (INIS)

    Ballester, D.; Tame, M. S.; Kim, M. S.; Lee, C.; Lee, J.

    2009-01-01

    We provide the quantum-mechanical description of the excitation of long-range surface-plasmon polaritons (LRSPPs) on thin metallic strips. The excitation process consists of an attenuated-reflection setup, where efficient photon-to-LRSPP wave-packet transfer is shown to be achievable. For calculating the coupling, we derive the first quantization of LRSPPs in the polaritonic regime. We study quantum statistics during propagation and characterize the performance of photon-to-LRSPP quantum state transfer for single-photons, photon-number states, and photonic coherent superposition states.

  12. Controlled switching between quantum states in the exciton-polariton condensate

    Science.gov (United States)

    Lukoshkin, V. A.; Kalevich, V. K.; Afanasiev, M. M.; Kavokin, K. V.; Tsintzos, S. I.; Savvidis, P. G.; Hatzopoulos, Z.; Kavokin, A. V.

    2016-03-01

    Optically controlled switching between modes of a polariton laser having different symmetries has been demonstrated experimentally. The microscopic shift of the optical excitation spot dramatically changes the shape of the polariton condensate formed in a cylindrical micropillar on the basis of the planar semiconductor microcavity. Switching between the ring and lobed condensate is achieved owing to the violation of the cylindrical symmetry of the effective potential formed by the lateral surface of the pillar and by the cloud of incoherent excitons created by optical pumping.

  13. Magnetoelectrically coupled polariton excitation in a plasmonic crystal composed of nanorod dimers

    International Nuclear Information System (INIS)

    Zhou, L; Tang, X M; Zhang, Y; Zhu, Y Y; Huang, C P

    2012-01-01

    In this work, the long wavelength optical properties of a plasmonic crystal, composed of gold nanorod dimers arranged parallel, have been studied. Due to the strong coupling between incident light and the oscillation of free electrons inside nanorod dimers, the magnetically induced and/or magnetoelectrically coupled plasmonic polaritons can be excited. A theoretical demonstration has been proposed and coupled equations that show similar profiles to the Huang-Kun equations for ionic crystals have been deduced, indicating the constitutive abnormalities and polaritonic bandgap effect. The analogy between the magnetoelectrically coupled metamaterials and ionic crystals may shed light on physical explanations, as well as constitutive parameter retrieval, for the magnetoelectric metamaterials. (paper)

  14. Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Volkov, V.S.; Nielsen, Rasmus Bundgaard

    2008-01-01

    We report on subwavelength plasmon-polariton guiding by triangular metal wedges at telecom wavelengths. A high-quality fabrication procedure for making gold wedge waveguides, which is also mass- production compatible offering large-scale parallel fabrication of plasmonic components, is developed....... Using scanning near-field optical imaging at the wavelengths in the range of 1.43 - 1.52 µm, we demonstrate low-loss (propagation length ~ 120 µm) and well-confined (mode width ≅ 1.3 µm) wedge plasmon-polariton guiding along triangular 6-µm-high and 70.5°- angle gold wedges. Experimental observations...

  15. Gap Resolution

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-25

    Gap Resolution is a software package that was developed to improve Newbler genome assemblies by automating the closure of sequence gaps caused by repetitive regions in the DNA. This is done by performing the follow steps:1) Identify and distribute the data for each gap in sub-projects. 2) Assemble the data associated with each sub-project using a secondary assembler, such as Newbler or PGA. 3) Determine if any gaps are closed after reassembly, and either design fakes (consensus of closed gap) for those that closed or lab experiments for those that require additional data. The software requires as input a genome assembly produce by the Newbler assembler provided by Roche and 454 data containing paired-end reads.

  16. Gap junctions.

    Science.gov (United States)

    Goodenough, Daniel A; Paul, David L

    2009-07-01

    Gap junctions are aggregates of intercellular channels that permit direct cell-cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology.

  17. Forward energy flow, central charged-particle multiplicities, and pseudorapidity gaps in W and Z boson events from pp collisions at $\\sqrt{s}= 7$ TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei; et al.

    2012-01-01

    A study of forward energy flow and central charged-particle multiplicity in events with W and Z bosons decaying into leptons is presented. The analysis uses a sample of 7 TeV pp collisions, corresponding to an integrated luminosity of 36 inverse picobarns, recorded by the CMS experiment at the LHC. The observed forward energy depositions, their correlations, and the central charged-particle multiplicities are not well described by the available non-diffractive soft-hadron production models. A study of about 300 events with no significant energy deposited in one of the forward calorimeters, corresponding to a pseudorapidity gap of at least 1.9 units, is also presented. An indication for a diffractive component in these events comes from the observation that the majority of the charged leptons from the (W/Z) decays are found in the hemisphere opposite to the gap. When fitting the signed lepton pseudorapidity distribution of these events with predicted distributions from an admixture of diffractive (POMPYT) and non-diffractive (PYTHIA) Monte Carlo simulations, the diffractive component is determined to be (50.0 +/- 9.3 (stat.) +/- 5.2 (syst.))%.

  18. Effect of the doping on the energy of direct and indirect optical gap of KSr2Nb5O15 nanopowders

    International Nuclear Information System (INIS)

    Lanfredi, S.; Silva, G.D.; Genova, D.H.M.; Bellucci, F.S.; Constantino, C.J.L.; Nobre, M.A.L.

    2009-01-01

    Lead-free ferroelectric oxides with tetragonal tungsten bronze TTB type structure have exhibited several applications in recent piezoelectric/dielectric technologies. In TTB niobates, the cationic specie and its distribution exhibit strong influence on the electrical and optical proprieties. Solid solution development from transition-metals cations doping occurs on the niobium site allowing an intrinsic-ferro electricity modulation. In this work, the effect of the concentration of nickel cations on the semiconductor properties of KSr 2 Nb 5 O 15 nanoparticles was investigated by invisible spectroscopy via gap energy determination. Single phase and nanocrystalline powders of KSr 2 NixNb 5 -xO 15 -σ with x = 0.75 and 1 was prepared by high energy ball milling. Powders were characterized by x-ray diffraction. Increase in temperature of calcination leads to decreasing of the gap energy. The influence of concentration of Ni 3+ in the semiconductor character of KSr 2 NixNb 5 -xO 15 -σ is discussed based on the thermal evolution of structural parameters. (author)

  19. Forward Energy Flow, Central Charged-Particle Multiplicities, and Pseudorapidity Gaps in W and Z Boson Events from pp Collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Trauner, Christine; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Benucci, Leonardo; De Wolf, Eddi A; Janssen, Xavier; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Marage, Pierre Edouard; Raval, Amita; Thomas, Laurent; Vander Marcken, Gil; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Cimmino, Anna; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; Ceard, Ludivine; Cortina Gil, Eduardo; De Favereau De Jeneret, Jerome; Delaere, Christophe; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; Brito, Lucas; De Jesus Damiao, Dilson; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Melo Da Costa, Eliza; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Darmenov, Nikolay; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Dimitrov, Anton; Hadjiiska, Roumyana; Karadzhinova, Aneliya; Kozhuharov, Venelin; Litov, Leander; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Hektor, Andi; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Wyslouch, Bolek; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Lomidze, David; Anagnostou, Georgios; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Ata, Metin; Dietz-Laursonn, Erik; Erdmann, Martin; Hebbeker, Thomas; Heidemann, Carsten; Hinzmann, Andreas; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Lingemann, Joschka; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Bontenackels, Michael; Davids, Martina; Duda, Markus; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Heydhausen, Dirk; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Rosin, Michele; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Tomaszewska, Justyna; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schröder, Matthias; Schum, Torben; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Bauer, Julia; Berger, Joram; Buege, Volker; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Katkov, Igor; Komaragiri, Jyothsna Rani; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Renz, Manuel; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Zhukov, Valery; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Petrakou, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Sikler, Ferenc; Veres, Gabor Istvan; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Choudhary, Brajesh C; Gupta, Pooja; Kumar, Ashok; Kumar, Arun; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mehta, Pourus; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giunta, Marina; Grandi, Claudio; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Baesso, Paolo; Berzano, Umberto; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Santocchia, Attilio; Taroni, Silvia; Valdata, Marisa; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Sigamani, Michael; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Marone, Matteo; Maselli, Silvia; Migliore, Ernesto; Mila, Giorgia; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Ji Hyun; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Polujanskas, Mindaugas; Sabonis, Tomas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Tam, Jason; Butler, Philip H; Doesburg, Robert; Silverwood, Hamish; Ahmad, Muhammad; Ahmed, Ijaz; Ansari, Muhammad Hamid; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Brona, Grzegorz; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Nayak, Aruna; Pela, Joao; Ribeiro, Pedro Quinaz; Seixas, Joao; Varela, Joao; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Gavrilov, Vladimir; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cepeda, Maria; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Bona, Marcella; Breuker, Horst; Bunkowski, Karol; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Georgiou, Georgios; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gouzevitch, Maxime; Govoni, Pietro; Gowdy, Stephen; Guiducci, Luigi; Hansen, Magnus; Hartl, Christian; Harvey, John; Hegeman, Jeroen; Hegner, Benedikt; Hoffmann, Hans Falk; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Lecoq, Paul; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Maurisset, Aurelie; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiropulu, Maria; Stoye, Markus; Tropea, Paola; Tsirou, Andromachi; Vichoudis, Paschalis; Voutilainen, Mikko; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Caminada, Lea; Casal, Bruno; Chanon, Nicolas; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Martinez Ruiz del Arbol, Pablo; Milenovic, Predrag; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Schmidt, Alexander; Snoek, Hella; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Volpe, Roberta; Wu, Jing-Han; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Demir, Durmus; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Özbek, Melih; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Clement, Emyr; Cussans, David; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Hartley, Dominic; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Camanzi, Barbara; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Worm, Steven; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; MacEvoy, Barry C; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Teodorescu, Liliana; Hatakeyama, Kenichi; Liu, Hongxuan; Henderson, Conor; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Friis, Evan; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Rutherford, Britney; Salur, Sevil; Schwarz, Thomas; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Veelken, Christian; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Duris, Joseph; Erhan, Samim; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Babb, John; Chandra, Avdhesh; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Feng; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Shen, Benjamin C; Stringer, Robert; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Shin, Kyoungha; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Henriksson, Kristofer; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Liu, Yao; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Ryd, Anders; Saelim, Michael; Salvati, Emmanuele; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cooper, William; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jensen, Hans; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Limon, Peter; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Pivarski, James; Pordes, Ruth; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Goldberg, Sean; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Prescott, Craig; Remington, Ronald; Rinkevicius, Aurelijus; Schmitt, Michael Houston; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M; Dorney, Brian; Guragain, Samir; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kunde, Gerd J; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Silvestre, Catherine; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Wan, Zongru; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Jindal, Pratima; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Gu, Jianhui; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Safdi, Ben; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Garfinkel, Arthur F; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Liu, Chang; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Orbaker, Douglas; Petrillo, Gianluca; Sakumoto, Willis; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Atramentov, Oleksiy; Barker, Anthony; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Patel, Rishi; Richards, Alan; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Safonov, Alexei; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Weinberger, Michael; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Mane, Poonam; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Issah, Michael; Johns, Willard; Johnston, Cody; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goadhouse, Stephen; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Belknap, Donald; Bellinger, James Nugent; Carlsmith, Duncan; Dasu, Sridhara; Efron, Jonathan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Parker, William; Reeder, Don; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua; Weinberg, Marc

    2012-01-20

    A study of forward energy flow and central charged-particle multiplicity in events with W and Z bosons decaying into leptons is presented. The analysis uses a sample of 7 TeV pp collisions, corresponding to an integrated luminosity of 36 inverse picobarns, recorded by the CMS experiment at the LHC. The observed forward energy depositions, their correlations, and the central charged-particle multiplicities are not well described by the available non-diffractive soft-hadron production models. A study of about 300 events with no significant energy deposited in one of the forward calorimeters, corresponding to a pseudorapidity gap of at least 1.9 units, is also presented. An indication for a diffractive component in these events comes from the observation that the majority of the charged leptons from the (W/Z) decays are found in the hemisphere opposite to the gap. When fitting the signed lepton pseudorapidity distribution of these events with predicted distributions from an admixture of diffractive (POMPYT) and ...

  20. Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy.

    Science.gov (United States)

    Beck, M; Klammer, M; Lang, S; Leiderer, P; Kabanov, V V; Gol'tsman, G N; Demsar, J

    2011-10-21

    Using time-domain terahertz spectroscopy we performed direct studies of the photoinduced suppression and recovery of the superconducting gap in a conventional BCS superconductor NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the bare quasiparticle recombination rate, the Cooper pair-breaking rate and the electron-phonon coupling constant, λ=1.1±0.1, which is in excellent agreement with theoretical estimates. © 2011 American Physical Society

  1. Energy Band Gap, Intrinsic Carrier Concentration and Fermi Level of CdTe Bulk Crystal between 304 K and 1067 K

    Science.gov (United States)

    Su, Ching-Hua

    2007-01-01

    Optical transmission measurements were performed on CdTe bulk single crystal. It was found that when a sliced and polished CdTe wafer was used, a white film started to develop when the sample was heated above 530 K and the sample became opaque. Therefore, a bulk crystal of CdTe was first grown in the window area by physical vapor transport; the optical transmission was then measured and from which the energy band gap was derived between 304 and 1067 K. The band gaps of CdTe can be fit well as a function of temperature using the Varshini expression: Eg (e V) = 1.5860 - 5.9117xl0(exp -4) T(sup 2)/(T + 160). Using the band gap data, the high temperature electron-hole equilibrium was calculated numerically by assuming the Kane's conduction band structure and a heavy-hole parabolic valance band. The calculated intrinsic carrier concentrations agree well with the experimental data reported previously. The calculated intrinsic Fermi levels between 270 and 1200 K were also presented.

  2. Surface plasmon polariton-induced hot carrier generation for photocatalysis.

    Science.gov (United States)

    Ahn, Wonmi; Ratchford, Daniel C; Pehrsson, Pehr E; Simpkins, Blake S

    2017-03-02

    Non-radiative plasmon decay in noble metals generates highly energetic carriers under visible light irradiation, which opens new prospects in the fields of photocatalysis, photovoltaics, and photodetection. While localized surface plasmon-induced hot carrier generation occurs in diverse metal nanostructures, inhomogeneities typical of many metal-semiconductor plasmonic nanostructures hinder predictable control of photocarrier generation and therefore reproducible carrier-mediated photochemistry. Here, we generate traveling surface plasmon polaritons (SPPs) at the interface between a noble metal/titanium dioxide (TiO 2 ) heterostructure film and aqueous solution, enabling simultaneous optical and electrochemical interrogation of plasmon-mediated chemistry in a system whose resonance may be continuously tuned via the incident optical excitation angle. To the best of our knowledge, this is the first experimental demonstration of SPP-induced hot carrier generation for photocatalysis. We found electrochemical photovoltage and photocurrent responses as SPP-induced hot carriers drive both solution-based oxidation of methanol and the anodic half-reaction of photoelectrochemical water-splitting in sodium hydroxide solution. A strong excitation angle dependence and linear power dependence in the electrochemical photocurrent confirm that the photoelectrochemical reactions are SPP-driven. SPP-generated hot carrier chemistry was recorded on gold and silver and with two different excitation wavelengths, demonstrating potential for mapping resonant charge transfer processes with this technique. These results will provide the design criteria for a metal-semiconductor hybrid system with enhanced hot carrier generation and transport, which is important for the understanding and application of plasmon-induced photocatalysis.

  3. Controlling Propagation Properties of Surface Plasmon Polariton at Terahertz Frequency

    Science.gov (United States)

    Gupta, Barun

    Despite great scientific exploration since the 1900s, the terahertz range is one of the least explored regions of electromagnetic spectrum today. In the field of plasmonics, texturing and patterning allows for control over electromagnetic waves bound to the interface between a metal and the adjacent dielectric medium. The surface plasmon-polaritons (SPPs) display unique dispersion characteristics that depend upon the plasma frequency of the medium. In the long wavelength regime, where metals are highly conductive, such texturing can create an effective medium that can be characterized by an effective plasma frequency that is determined by the geometrical parameters of the surface structure. The terahertz (THz) spectral range offers unique opportunities to utilize such materials. This thesis describes a number of terahertz plasmonic devices, both passive and active, fabricated using different techniques. As an example, inkjet printing is exploited for fabricating two-dimensional plasmonic devices. In this case, we demonstrated the terahertz plasmonic structures in which the conductivity of the metallic film is varied spatially in order to further control the plasmonic response. Using a commercially available inkjet printers, in which one cartridge is filled with conductive silver ink and a second cartridge is filled with resistive carbon ink, computer generated drawings of plasmonic structures are printed in which the individual printed dots can have differing amounts of the two inks, thereby creating a spatial variation in the conductivity. The inkjet printing technique is limited to the two-dimensional structurers. In order to expand the capability of printing complex terahertz devices, which cannot otherwise be fabricated using standard fabricating techniques, we employed 3D printing techniques. 3D printing techniques using polymers to print out the complex structures. In the realm of active plasmonic devices, a wide range of innovative approaches have been

  4. Study of inter-strip gap effects and efficiency for full energy detection of double sided silicon strip detectors

    International Nuclear Information System (INIS)

    Fisichella, M.; Forneris, J.; Grassi, L.

    2015-01-01

    We performed a characterization of Double Sided Silicon Strip Detectors (DSSSD) with the aim to carry out a systematic study of the inter-strip effects on the energy measurement of charged particles. The dependence of the DSSSD response on ion, energy and applied bias has been investigated. (author)

  5. Offshore Resource Assessment and Design Conditions: A Data Requirements and Gaps Analysis for Offshore Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Dennis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frame, Caitlin [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Gill, Carrie [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Hanson, Howard [Florida Atlantic Univ., Boca Raton, FL (United States); Moriarty, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Powell, Mark [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Shaw, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilczak, Jim [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Wynne, Jason [Energetics, Columbia, MD (United States)

    2012-03-01

    The offshore renewable energy industry requires accurate meteorological and oceanographic (“metocean”) data for evaluating the energy potential, economic viability, and engineering requirements of offshore renewable energy projects. It is generally recognized that currently available metocean data, instrumentation, and models are not adequate to meet all of the stakeholder needs on a national scale. Conducting wind and wave resource assessments and establishing load design conditions requires both interagency collaboration as well as valuable input from experts in industry and academia. Under the Department of Energy and Department of Interior Memorandum of Understanding, the Resource Assessment and Design Condition initiative supports collaborative national efforts by adding to core atmospheric and marine science knowledge relevant to offshore energy development. Such efforts include a more thorough understanding and data collection of key metocean phenomena such as wind velocity and shear; low-level jets; ocean, tidal, and current velocities; wave characteristics; geotechnical data relating to surface and subsurface characteristics; seasonal and diurnal variations; and the interaction among these conditions. Figure 1 presents a graphical representation of some metocean phenomena that can impact offshore energy systems. This document outlines the metocean observations currently available; those that are not available; and those that require additional temporal-spatial coverage, resolution, or processing for offshore energy in an effort to gather agreed-upon, needed observations.

  6. Fine structure and energy spectrum of exciton in direct band gap cubic semiconductors with degenerate valence bands

    International Nuclear Information System (INIS)

    Nguyen Toan Thang; Nguyen Ai Viet; Nguyen Que Huong

    1987-06-01

    The influence of the cubic structure on the energy spectrum of direct exciton is investigated, using the new method suggested by Nguyen Van Hieu and co-workers. Explicit expressions of the exciton energy levels 1S, 2S and 2P are derived. A comparison with the experiments and the other theory is done for ZnSe. (author). 10 refs, 1 fig., 2 tabs

  7. Energy dispersive x-ray diffraction from Ge, GaAs, GaP, and AlSb at high pressures using synchrotron radiation

    International Nuclear Information System (INIS)

    Baublitz, M.A. Jr.

    1982-01-01

    The practicality of energy dispersive X-ray diffraction from high pressure powder specimens using synchrotron radiation has been demonstrated. Reasonable quantitative agreement has been obtained between the experimental diffraction data and the theoretical relative integrated intensities of the diffraction lines for known structures under rather hydrostatic pressure conditions. Pressure-induced structural phase transitions in Ge, GaAs, GaP, and AlSb have been studied in some detail with this energy dispersive diffraction method. Ge transforms to the beta-Sn tetragonal structure as previously observed by Jamieson, but the transition pressure is 80 +- 5 kbars, a somewhat lower value than generally reported. GaAs exhibits an orthorhombic structure above 172 +- 7 kbars, GaP a tetragonal structure above 215 +- 8 kbars, and AlSb an orthorhombic structure above 77 +- 5 kbars. Although the space groups of these latter three high pressure polymorphs have not been determined unequivocally, mainly due to the apparent presence of crystalline defects, some possible models are described for these high pressure structures. Lastly, a comparison of the existing phase transition data with the theoretical diagrams of Zunger, based on pseudopotential length scales, indicates that it may be possible to predict the high pressure polymorphs of crystals with diamond or cubic zincblende structures at ambient conditions

  8. High Excitation Efficiency of Channel Plasmon Polaritons in Tailored, UV-Lithography-Defined V-Grooves

    DEFF Research Database (Denmark)

    Smith, Cameron; Thilsted, Anil Haraksingh; Garcia-Ortiz, Cesar E.

    2014-01-01

    We demonstrate >50% conversion of light to V-groove channel plasmon-polaritons (CPPs) via compact waveguide-termination mirrors. Devices are fabricated using UV-lithography and crystallographic silicon etching. The V-shape is tailored by thermal oxidation to support confined CPPs....

  9. Multi-Periodic Photonic Hyper-Crystals: Volume Plasmon Polaritons and the Purcell Effect

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Iorsh, I. V.; Orlov, A. A.

    2014-01-01

    We theoretically demonstrate superior degree of control over volume plasmon polariton propagation and the Purcell effect in multi-period (4-layer unit cell) plasmonic multilayers, which can be viewed as multiscale hyperbolic metamaterials or multi-periodic photonic hyper-crystals. © 2014 OSA....

  10. Visualising Berry phase and diabolical points in a quantum exciton-polariton billiard.

    Science.gov (United States)

    Estrecho, E; Gao, T; Brodbeck, S; Kamp, M; Schneider, C; Höfling, S; Truscott, A G; Ostrovskaya, E A

    2016-11-25

    Diabolical points (spectral degeneracies) can naturally occur in spectra of two-dimensional quantum systems and classical wave resonators due to simple symmetries. Geometric Berry phase is associated with these spectral degeneracies. Here, we demonstrate a diabolical point and the corresponding Berry phase in the spectrum of hybrid light-matter quasiparticles-exciton-polaritons in semiconductor microcavities. It is well known that sufficiently strong optical pumping can drive exciton-polaritons to quantum degeneracy, whereby they form a macroscopically populated quantum coherent state similar to a Bose-Einstein condensate. By pumping a microcavity with a spatially structured light beam, we create a two-dimensional quantum billiard for the exciton-polariton condensate and demonstrate a diabolical point in the spectrum of the billiard eigenstates. The fully reconfigurable geometry of the potential walls controlled by the optical pump enables a striking experimental visualization of the Berry phase associated with the diabolical point. The Berry phase is observed and measured by direct imaging of the macroscopic exciton-polariton probability densities.

  11. Time-resolved detection of surface plasmon polaritons with a scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, T.; Jensen, Jacob Riis

    1998-01-01

    We present the time-resolved detection of surface plasmon polaritons with an STM. The results indicate that the time resolved signal is due to rectification of coherently superimposed plasmon voltages. The comparison with differential reflectivity measurements shows that the tip itself influences...

  12. Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Bertelsen, L. P.; Xiao, Sanshui

    2018-01-01

    substrate or coating a metallic thin film. We determine the polaritonic spectrum and show that, in the former case, the addition of a top dielectric layer and, in the latter case, the thickness of the metal film can be used to tune and promote plasmon-exciton interactions well within the strong...

  13. Dispersion Anisotropy of Plasmon–Exciton–Polaritons in Lattices of Metallic Nanoparticles

    NARCIS (Netherlands)

    Ramezani, M.; Halpin, A.; Feist, J.; van Hoof, N.; Fernández-Domínguez, A. I.; Garcia-Vidal, F. J.; Rivas, Gomez

    2018-01-01

    When the electromagnetic modes supported by plasmonic-based cavities interact strongly with molecules located within the cavity, new hybrid states known as plasmon–exciton–polaritons (PEPs) are formed. The properties of PEPs, such as group velocity, effective mass, and lifetime, depend on the

  14. Data transmission in long-range dielectric-loaded surface plasmon polariton waveguides

    DEFF Research Database (Denmark)

    Kharitonov, S.; Kiselev, R.; Kumar, Ashwani

    2014-01-01

    We demonstrate the data transmission of 10 Gbit/s on-off keying modulated 1550 nm signal through a long-range dielectric-loaded surface plasmon polariton waveguide structure with negligible signal degradation. In the experiment the bit error rate penalties do not exceed 0.6 dB over the 15 nm...

  15. Guiding of long-range surface plasmon polaritons along channels in periodic arrays of scatterers

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Hvam, Jørn Märcher; Nikolajsen, T.

    2004-01-01

    We investigate waveguiding of long-range surface plasmon polaritons in periodic arrays of scatterers at telecommunication wavelengths. A propagation loss of approximately 6 dB/mm and a coupling loss of 0.5 dB is reported for 8-ìm-wide channels....

  16. Populating the Large-Wavevector Realm: Bloch Volume Plasmon Polaritons in Hyperbolic and Extremely Anisotropic Metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Babicheva, Viktoriia; Orlov, A. A.

    2014-01-01

    Optics of hyperbolic metamaterials is revisited in terms of large-wavevector waves, evanescent in isotropic media but propagating in presence of extreme anisotropy. Identifying the physical nature of these waves as Bloch volume plasmon polaritons, we derive their existence conditions and outline ...

  17. The complex dispersion relation of surface plasmon polaritons at gold/para-hexaphenylene interfaces

    DEFF Research Database (Denmark)

    Lemke, Christoph; Leißner, Till; Klick, Alwin

    2014-01-01

    Two-photon photoemission electron microscopy (2P-PEEM) is used to measure the real and imaginary part of the dispersion relation of surface plasmon polaritons at different interface systems. A comparison of calculated and measured dispersion data for a gold/vacuum interface demonstrates...

  18. Regional energy efficiency, carbon emission performance and technology gaps in China: A meta-frontier non-radial directional distance function analysis

    International Nuclear Information System (INIS)

    Yao, Xin; Zhou, Hongchen; Zhang, Aizhen; Li, Aijun

    2015-01-01

    At present, China is the largest primary energy consumer and carbon emitter in the world. Meantime, China is a large transitional economy with significant regional gaps. Against such backgrounds, the calculated results of energy and carbon performance indicators may be biased, without considering heterogeneity across regions. To this end, after incorporating region-heterogeneity, this paper provides detailed information, regarding energy efficiency, carbon emission performance and the potential of carbon emission reductions from regional perspectives, which may be important and useful for policy makers. Our main findings are as follows. Firstly, there is significant group-heterogeneity across regions in China, in terms of energy efficiency and carbon emission performance. Secondly, there are no considerable differences between total-factor and single-factor performance indices, since there is limited substitutability between energy inputs and other production inputs. Finally, significant carbon emission reductions can be made by “catching up” for regions with low energy efficiency and carbon emission performance. Looking ahead, the Chinese government should adopt measures to promote improvements in terms of energy efficiency and carbon emission performance in the short term. -- Highlights: •We adopt a meta-frontier non-radial directional distance function analysis. •We provide detailed information regarding energy and carbon emission performance. •We find that there is significant region-heterogeneity in China. •There are no large differences between total- and single-factor performance indices. •It can make great contributions to carbon emission reductions by “catching up”

  19. Wide-Gap Chalcopyrites

    CERN Document Server

    Siebentritt, Susanne

    2006-01-01

    Chalcopyrites, in particular those with a wide band gap, are fascinating materials in terms of their technological potential in the next generation of thin-film solar cells and in terms of their basic material properties. They exhibit uniquely low defect formation energies, leading to unusual doping and phase behavior and to extremely benign grain boundaries. This book collects articles on a number of those basic material properties of wide-gap chalcopyrites, comparing them to their low-gap cousins. They explore the doping of the materials, the electronic structure and the transport through interfaces and grain boundaries, the formation of the electric field in a solar cell, the mechanisms and suppression of recombination, the role of inhomogeneities, and the technological role of wide-gap chalcopyrites.

  20. Exciton-polariton dynamics in quantum dot-cavity system

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Antonio F.; Lima, William J.; Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica

    2012-07-01

    Full text: One of the basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. This imply in know all sources of decoherence and elaborate ways to avoid them. In recent work, A. Laucht et al. [1] presented detailed theoretical and experimental investigations of electrically tunable single quantum dot (QD) - photonic crystal (PhC) nanocavity systems operating in the strong coupling regime of the light matter interaction. Unlike previous studies, where the exciton-cavity spectral detuning was varied by changing the lattice temperature, or by the adsorption of inert gases at low temperatures, they employ the quantum confined Stark-effect to electro-optically control the exciton-cavity detuning. The new built device enabled them to systematically probe the emission spectrum of the strongly coupled system as a function of external control parameters, as for example the incoherent excitation power density or the lattice temperature. Those studies reveal for the first time insights in dephasing mechanisms of 0D exciton polaritons [1]. In another study [2], using a similar device, they investigate the coupling between two different QDs with a single cavity mode. In both works, incoherent pumping was used, but for quantum information, coherent and controlled excitations are necessary. Here, we theoretically investigate the dynamics a single quantum dot inside a cavity under coherent pulse excitation and explore a wide range of parameters, as for example, the exciton-cavity detunings, the excitation power, the spontaneous decay, and pure dephasing. We use density matrix formalism in the Lindblad form, and we solve it numerically. Our results show that coherent excitation can be used to probe strong coupling between exciton and cavity mode by monitoring the exciton Rabi oscillation as function of the cavity detuning. This can give new insights for future experimental measurement focusing on quantum

  1. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are

  2. Star junctions and watermelons of pure or random quantum Ising chains: finite-size properties of the energy gap at criticality

    Science.gov (United States)

    Monthus, Cécile

    2015-06-01

    We consider M  ⩾  2 pure or random quantum Ising chains of N spins when they are coupled via a single star junction at their origins or when they are coupled via two star junctions at the their two ends leading to the watermelon geometry. The energy gap is studied via a sequential self-dual real-space renormalization procedure that can be explicitly solved in terms of Kesten variables containing the initial couplings and and the initial transverse fields. In the pure case at criticality, the gap is found to decay as a power-law {ΔM}\\propto {{N}-z(M)} with the dynamical exponent z(M)=\\frac{M}{2} for the single star junction (the case M   =   2 corresponds to z   =   1 for a single chain with free boundary conditions) and z(M)   =   M  -  1 for the watermelon (the case M   =   2 corresponds to z   =   1 for a single chain with periodic boundary conditions). In the random case at criticality, the gap follows the Infinite Disorder Fixed Point scaling \\ln {ΔM}=-{{N}\\psi}g with the same activated exponent \\psi =\\frac{1}{2} as the single chain corresponding to M   =   2, and where g is an O(1) random positive variable, whose distribution depends upon the number M of chains and upon the geometry (star or watermelon).

  3. Bridging the knowledge gap: An analysis of Albert Einstein's popularized presentation of the equivalence of mass and energy.

    Science.gov (United States)

    Kapon, Shulamit

    2014-11-01

    This article presents an analysis of a scientific article written by Albert Einstein in 1946 for the general public that explains the equivalence of mass and energy and discusses the implications of this principle. It is argued that an intelligent popularization of many advanced ideas in physics requires more than the simple elimination of mathematical formalisms and complicated scientific conceptions. Rather, it is shown that Einstein developed an alternative argument for the general public that bypasses the core of the formal derivation of the equivalence of mass and energy to provide a sense of derivation based on the history of science and the nature of scientific inquiry. This alternative argument is supported and enhanced by variety of explanatory devices orchestrated to coherently support and promote the reader's understanding. The discussion centers on comparisons to other scientific expositions written by Einstein for the general public. © The Author(s) 2013.

  4. Assessing the Needs and Gaps of Building Information Technologies for Energy Retrofit of Historic Buildings in the Korean Context

    Directory of Open Access Journals (Sweden)

    Sean Hay Kim

    2018-04-01

    Full Text Available Most domestic modern buildings from the early 1900s have been constructed as heavy mass, and for many years have relied on passive measures for climate control. Since effective passive measures eventually reduce the heating and cooling loads, thus also reducing the system size, passive and hybrid measures are the most preferred Energy Conservation Measures (ECMs. In addition, the domestic situation and climate are additional constraints in energy retrofit decision making, such as a shorter budget and time, poor maintenance history, and uncertainties in vernacular lifestyle. For this reason, the performance improvement and side-effects prior to installing ECMs should be predictable, particularly in case the originality can be damaged. This complexity confirms that simulation-based Measurement and Verification (M&V would better suit the energy retrofit of domestic historic buildings. However, many domestic investors still believe re-construction has a larger economic value than restoration. Therefore, they are even unwilling to invest in more time than a preset audit period—typically less than a week. Although simulation-based M&V is theoretically favored for retrofit decision making, its process including collecting data, modeling and analysis, and evaluating and designing ECMs could still be too demanding to domestic practitioners. While some manual, repetitive, error-prone works exist in the conventional retrofit process and simulation-based M&V, it is proposed here that enhanced Building Information Technology (BIT is able to simplify, automate, and objectify, at least the critical steps of the retrofit project. The aim of this study is to find an efficient and effective energy retrofit strategy for domestic historic buildings that appeals to both domestic investors and practitioners by testing selective BIT tools on an actual historic building. This study concludes with the suggestion that software vendors are asked to develop enhanced

  5. Comprehensive three-dimensional analysis of surface plasmon polariton modes at uniaxial liquid crystal-metal interface.

    Science.gov (United States)

    Yen, Yin-Ray; Lee, Tsun-Hsiun; Wu, Zheng-Yu; Lin, Tsung-Hsien; Hung, Yu-Ju

    2015-12-14

    This paper describes the derivation of surface plasmon polariton modes associated with the generalized three-dimensional rotation of liquid crystal molecules on a metal film. The calculated dispersion relation was verified by coupling laser light into surface plasmon polariton waves in a one-dimensional grating device. The grating-assisted plasmon coupling condition was consistent with the formulated k(spp) value. This provides a general rule for the design of liquid-crystal tunable plasmonic devices.

  6. Energy band structure calculations based on screened Hartree-Fock exchange method: Si, AlP, AlAs, GaP, and GaAs.

    Science.gov (United States)

    Shimazaki, Tomomi; Asai, Yoshihiro

    2010-06-14

    The screening effect on the Hartree-Fock (HF) exchange term plays a key role in the investigation of solid-state materials by first-principles electronic structure calculations. We recently proposed a novel screened HF exchange potential, in which the inverse of the dielectric constant represents the fraction of the HF exchange term incorporated into the potential. We demonstrated that this approach can be used to reproduce the energy band structure of diamond well [T. Shimazaki and Y. Asai, J. Chem. Phys. 130, 164702 (2009)]. In the present paper, we report that the screened HF exchange method is applicable to other semiconductors such as silicon, AlP, AlAs, GaP, and GaAs.

  7. Superconducting pairing symmetry and energy gaps of the two-orbital t-t'-J-J' model: comparisons with the ARPES experiments in iron pnictides.

    Science.gov (United States)

    Lu, Feng; Zou, Liang-Jian

    2009-06-24

    Motivated by the discovery of the iron-based superconductors, we present the theoretical results on the superconducting phase diagram, the temperature-dependent Fermi surface structures in normal state and the angle-resolved photoemission spectroscopy (ARPES) character of quasiparticles of the two-orbital t-t'-J-J' model. In the reasonable physical parameter region of LaFeAsO(1-x)F(x), we find the superconducting phase is stable, and the pairing symmetry is weakly anisotropic and nodeless d(x(2)-ηy(2))+S(x(2)y(2))-wave, qualitatively in agreement with the ARPES experiments in iron pnictide superconductors. Nevertheless, the two ratios of the energy gaps to T(c) deviate from the ARPES data, suggesting that a more elaborate theoretical model is needed.

  8. Observations of cavity polaritons in one-dimensional photonic crystals containing a liquid-crystalline semiconductor based on perylene bisimide units

    Science.gov (United States)

    Sakata, T.; Suzuki, M.; Yamamoto, T.; Nakanishi, S.; Funahashi, M.; Tsurumachi, N.

    2017-10-01

    We investigated the optical transmission properties of one-dimensional photonic crystal (1D-PC) microcavity structures containing the liquid-crystalline (LC) perylene tetracarboxylic bisimide (PTCBI) derivative. We fabricated the microcavity structures for this study by two different methods and observed the cavity polaritons successfully in both samples. For one sample, since the PTCBI molecules were aligned in the cavity layer of the 1D-PC by utilizing a friction transfer method, vacuum Rabi splitting energy was strongly dependent on the polarization of the incident light produced by the peculiar optical features of the LC organic semiconductor. For the other sample, we did not utilize the friction transfer method and did not observe such polarization dependence. However, we did observe a relatively large Rabi splitting energy of 187 meV, probably due to the improvement of optical confinement effect.

  9. Ultrafast optical studies of phonon polaritons, squeezed modes and high frequency diamagnetism in metamaterials

    Science.gov (United States)

    Bianchini, Andrea

    The coupling of the electromagnetic field with polar lattice vibrations of a solid, which gives rise to what is traditionally known as phonon polaritons, is investigated both through spontaneous and stimulated Raman scattering. Experimental results relative to polariton modes excited in several semiconductors are presented to explore their dependence on the crystal symmetry, temperature, excitation wavelength and measuring techniques. In GaAs we find discrepancies between spontaneous and Impulsive Stimulated Raman Scattering (ISRS) which are attributed to the presence of free carriers interacting with the electric field of the longitudinal phonon mode. In CraSe, we successfully excite two distinct frequencies of the lower phonon polariton branch. In the transparent regime, this is accomplished combining in the same experiment backward and forward scattering, the latter one induced by the beam reflected at the back surface of the sample. Moreover, it is shown how the reduced value of the scattering cross section retrieved in the time domain experiments is attributable to the polariton field spatial distribution, estimated in accordance with the Cherenkov radiation theory. In CdSe we identify another polariton mode that is present whenever the dielectric constant of a medium becomes negative: the surface plasmon polariton. Besides coherent phonons, squeezed phonons are studied. discussing their generation and detection in regard to the ISRS theory. In particular we introduce a novel phenomenon, named "phonon echo", occurring whenever a squeezed phonon field is induced in a crystal through a double pump excitation. Simulations are shown to validate the theoretical predictions and pave the way to future experiments. Shifting to the metamaterial field, we consider a viable technique to achieve artificial diamagnetism (the magnetic permeability mu is < 1). The proposed approach is based on the well established sphere-in-a-host model that is thoroughly described with

  10. Doping and temperature dependence of the superconducting energy gap in the electron-doped cuprate Pr{sub 2-x}Ce{sub x}CuO{sub 4-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Diamant, I., E-mail: diamanti@post.tau.ac.i [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, 69978 Tel-Aviv (Israel); Greene, R.L. [Center for Nanophysics and Advanced Materials, Physics Department, University of Maryland, College Park, MD 20743 (United States); Dagan, Y. [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, 69978 Tel-Aviv (Israel)

    2010-12-15

    In hole-doped cuprate superconductors at low carrier concentrations two energy scales are identified: the superconducting energy gap and the pseudogap. The relation between these energy scales is still a puzzle. In these compounds a measurement of the energy gap is not necessarily a probe of the order parameter. In the electron-doped cuprates the pseudogap does not obscure the superconducting state. Consequently, the superconducting gap can be studied directly in a tunneling experiment. Here we show that by studying superconductor/insulator/superconductor planar tunnel junctions we are able to map the behavior of the gap amplitude for the entire (doping-temperature) phase diagram of the electron-doped cuprate superconductor Pr{sub 2-x}Ce{sub x}CuO{sub 4-{delta}}. The superconducting gap, {Delta}, shows a BCS-like temperature dependence even for extremely low carrier concentrations. Moreover, {Delta} follows the doping dependence of T{sub c}. We can therefore conclude that there is a single superconducting energy scale in the electron-doped cuprates.

  11. Direct generation of graphene plasmonic polaritons at THz frequencies via four wave mixing in the hybrid graphene sheets waveguides.

    Science.gov (United States)

    Sun, Yu; Qiao, Guofu; Sun, Guodong

    2014-11-17

    A compact waveguide incorporating a high-index nano-ridge sandwiched between graphene sheets is proposed for the direct generation of graphene plasmonic polaritons (GSPs) via four wave mixing (FWM). The proposed waveguide supports GSP modes at the THz frequencies and photonic modes at the infrared wavelengths. Due to the strong confinement of coupled graphene sheets, the GSP modes concentrate in the high-index nano-ridge far below the diffraction limit, which improves integral overlap with the photonic modes and greatly facilitates the FWM process. To cope with the ultra-high effective refractive of the GSP modes, an alternative energy conservation diagram is selected for the degenerated FWM, which corresponds to one pump photon transfers its energy to two signal photons and one GSP photon. The single mode condition of the generated symmetric GSP modes is analyzed by the effective index method to suppress the undesired conversion. Due to the unique tunability of GSPs, the phase matching condition can be satisfied by tuning the chemical potential of the graphene sheets employing external gates. The FWM pumped at 1,550 nm with a peak power of 1 kW is theoretically investigated by solving the modified coupled mode equations. The generated GSP power reaches its maximum up to 67 W at a propagation distance of only 43.7 μm. The proposed waveguide have a great potential for integrated chip-scale GSP source.

  12. Closing the experience gap in the field of PV energy with training of social, technical, financial and business management skills

    Energy Technology Data Exchange (ETDEWEB)

    Bopp, G.; Goelz, S.; Holz, F.; Roth, W.; Vogt, G. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    2004-07-01

    Education, training and awareness raising is recognised to be a main task for the development of markets and technologies. One reason for the failure of many projects and programs of rural electrification attributes to the lack of knowledge, training and competence of participating people at all levels. (International Energy Agency IEA, 2003). All these alerting experiences advise that different accompanying measures have to be considered in line with designing and implementing solar power systems. Both in grid coupled and off-grid markets cultural, social, economical, organisational, and financial aspects have to be incorporated (Will and Vogt, 2003). Various competencies and skills are required to plan, implement, commission, and promote solar power systems. Therefore the substantial objective of this article is to illustrate the spectrum of relevant training topics, to report from current state of knowledge in two exemplary markets and to describe the profit of customised training programs. (orig.)

  13. Infrared studies of the superconducting energy gap and normal-state dynamics of the high-Tc superconductor YBa2Cu3O7

    International Nuclear Information System (INIS)

    Schlesinger, Z.; Collins, R.T.; Holtzberg, F.; Feild, C.; Koren, G.; Gupta, A.

    1990-01-01

    A detailed study of infrared properties (reflectivity, conductivity, and dielectric response), emphasizing reproducible results from fully oxygenated YBa 2 Cu 3 O 7 crystals (T c congruent 93 K) and films, is presented. The extrapolated values of σ 1 (ω) at low frequency are roughly consistent with the measured temperature-dependent dc resistivity. Although not well understood, this infrared conductivity can be interpreted in terms of a frequency-dependent scattering rate of ∼kT+ℎω, with a low-frequency mass enhancement of roughly 2 to 4 associated with a carrier-spin related interaction. Infrared measurements polarized along the c axis suggest a conductivity anisotropy of roughly 40:1 near T c in the normal state. In the superconducting state an energy scale of 2Δ c congruent 3kT c is suggested by c-axis polarized measurements, while a much larger characteristic energy of 2Δ a-b congruent 8kT c is evident in the (a-b)-plane conductivity. From the area missing from the conductivity up to this very large gap, a reasonable estimate (congruent 1700 A) for the (a-b)-plane penetration depth is obtained. Evidence for non-BCS temperature dependence, strong pair breaking scattering, and possible fluctuation effects is discussed. A comparison to infrared data from Bi 2 Sr 2 CaCu 2 O 8-y shows a similarly large energy scale, 2Δ a-b congruent 8kT c ; for the cubic Ba 0.6 K 0.4 BiO 3 superconductor a more conventional energy scale, 2Δ congruent 4kT c is observed

  14. Unidirectional transmission based on polarization conversion and excitation of magnetic or surface polaritons

    Directory of Open Access Journals (Sweden)

    Xiaohu Wu

    2017-07-01

    Full Text Available We propose in this work combing a uniaxial crystal slab with a one-dimensional grating to realize unidirectional transmission (UDT. The physical mechanism for the UDT is attributed to polarization conversion with uniaxial crystal slab and excitation of magnetic polaritons (MPs or surface plasmon polaritons (SPPs in the grating region. Numerical simulations were performed by taking hexagonal boron nitride as the uniaxial crystal. The results reveal that UDT can be achieved for both TE and TM waves in the mid-infrared and the optical regions if the grating material is respectively selected as silicon carbide (SiC and silver (Ag with properly chosen values of the structure’s geometric parameters. This work may provide important guidelines for design of novel unidirectional transmission devices.

  15. Surface plasmon polariton assisted red shift in excitonic emission of semiconductor microflowers

    Science.gov (United States)

    Parameswaran, Chithra; Warrier, Anita R.; Bingi, Jayachandra; Vijayan, C.

    2014-10-01

    We report on the study of metal nanoparticle-semiconductor hybrid system composed of β-indium sulfide (β-In2S3) and gold (Au) nanoparticles. β-In2S3 micron sized flower like structures (˜1 μm) and Au nanoparticles (˜10 nm) were synthesized by chemical route. These Au nanoparticles have surface plasmon resonance at ˜ 520 nm. We study the influence of Au surface plasmon polaritons on the radiative properties of the β-In2S3 microflowers. As a result of the coupling between the surface plasmon polaritons and the excitons there is a red shift ˜ 50 nm in emission spectrum of hybrid β-In2S3-Au system. Such hybrid systems provide scope for a control on the optical properties of semiconductor microstructures, thus rendering them suitable for specific device applications in optoelectronics and photovoltaics.

  16. Polariton condensation in a strain-compensated planar microcavity with InGaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Cilibrizzi, Pasquale; Askitopoulos, Alexis, E-mail: Alexis.Askitopoulos@soton.ac.uk; Silva, Matteo; Lagoudakis, Pavlos G. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Bastiman, Faebian; Clarke, Edmund [EPSRC National Centre for III-V Technologies, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Zajac, Joanna M.; Langbein, Wolfgang [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom)

    2014-11-10

    The investigation of intrinsic interactions in polariton condensates is currently limited by the photonic disorder of semiconductor microcavity structures. Here, we use a strain compensated planar GaAs/AlAs{sub 0.98}P{sub 0.02} microcavity with embedded InGaAs quantum wells having a reduced cross-hatch disorder to overcome this issue. Using real and reciprocal space spectroscopic imaging under non-resonant optical excitation, we observe polariton condensation and a second threshold marking the onset of photon lasing, i.e., the transition from the strong to the weak-coupling regime. Condensation in a structure with suppressed photonic disorder is a necessary step towards the implementation of periodic lattices of interacting condensates, providing a platform for on chip quantum simulations.

  17. Approximate solutions for half-dark solitons in spinor non-equilibrium Polariton condensates

    Energy Technology Data Exchange (ETDEWEB)

    Pinsker, Florian, E-mail: florian.pinsker@gmail.com

    2015-11-15

    In this work I generalize and apply an analytical approximation to analyze 1D states of non-equilibrium spinor polariton Bose–Einstein condensates (BEC). Solutions for the condensate wave functions carrying black solitons and half-dark solitons are presented. The derivation is based on the non-conservative Lagrangian formalism for complex Ginzburg–Landau type equations (cGLE), which provides ordinary differential equations for the parameters of the dark soliton solutions in their dynamic environment. Explicit expressions for the stationary dark soliton solution are stated. Subsequently the method is extended to spin sensitive polariton condensates, which yields ordinary differential equations for the parameters of half-dark solitons. Finally a stationary case with explicit expressions for half-dark solitons is presented.

  18. Toward quantum state tomography of a single polariton state of an atomic ensemble

    DEFF Research Database (Denmark)

    Christensen, S.L.; Béguin, J.B.; Sørensen, H.L.

    2013-01-01

    We present a proposal and a feasibility study for the creation and quantum state tomography of a single polariton state of an atomic ensemble. The collective non-classical and non-Gaussian state of the ensemble is generated by detection of a single forward-scattered photon. The state is subsequen...... the feasibility of the proposed method for the detection of a non-classical and non-Gaussian state of the mesoscopic atomic ensemble. This work represents the first attempt at hybrid discrete-continuous variable quantum state processing with atomic memories.......We present a proposal and a feasibility study for the creation and quantum state tomography of a single polariton state of an atomic ensemble. The collective non-classical and non-Gaussian state of the ensemble is generated by detection of a single forward-scattered photon. The state...

  19. Coupling characteristics of dielectric-loaded surface plasmon polariton waveguides: a simple method of analysis.

    Science.gov (United States)

    Srivastava, Triranjita; Kumar, Arun

    2009-11-01

    A simple method to obtain the coupling characteristics of a directional coupler consisting of two dielectric-loaded surface plasmon polariton waveguides is reported. The method is found to give accurate results in comparison with the widely used effective index method. Theoretical results are also found to match excellently with recently reported measurements on coupling lengths in such waveguides [Opt. Lett.34, 310 (2009)OPLEDP0146-959210.1364/OL.34.000310].

  20. Contribution of Structure and Morphology of Design Constituents to Performance Improvement of Multilayer Polaritonic Photodetector

    Directory of Open Access Journals (Sweden)

    O. B. Yastrubchak

    2003-10-01

    Full Text Available This paper is devoted to estimate contribution of structure and morphology of the individual design constituents to performance improvement of multilayer polaritonic photodetector (optochemical sensor. Surface plasmon resonance (SPR in the surface barrier heterostructure (SBH with the corrugated interface is used as the basic principle underlying the device operation. The demonstration of correlation of the contribution with the enhanced SBH features was performed through the adequate characterization tool.

  1. Local excitation of surface plasmon polaritons by second-harmonic generation in crystalline organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The excited SPPs are characterized using angle-resolved leakage radiation....... This is explained both as a consequence of approaching the peak of the fibers nonlinear response at the wavelength 772 nm, and as a consequence of better coupling to SPPs due to their stronger confinement. © 2012 Optical Society...

  2. Effect of chemical and isotope substitution in LiH crystals on polariton emission

    International Nuclear Information System (INIS)

    Plekhanov, V.G.

    1994-01-01

    Measurements of fine structure of phonon-free line of free exciton radiation in mixed crystals LiH x F 1-x (o x D 1-x (O x F 1-x crystals a sharp increase in the intensity of phonon-free line of free exciton radiation as compared with its LO repetitions is observed. The experimental results suggest manifestation of polariton effects in mixed crystals produced on the basis of lithium hydride. 17 refs., 2 figs

  3. On-Demand Dark Soliton Train Manipulation in a Spinor Polariton Condensate

    KAUST Repository

    Pinsker, F.

    2014-04-10

    We theoretically demonstrate the generation of dark soliton trains in a one-dimensional exciton-polariton condensate within experimentally accessible schemes. In particular, we show that the frequency of the train can be finely tuned fully optically or electrically to provide a stable and efficient output signal modulation. Taking the polarization of the condensate into account, we elucidate the possibility of forming on-demand half-soliton trains. © 2014 American Physical Society.

  4. Controllable structuring of exciton-polariton condensates in cylindrical pillar microcavities

    Science.gov (United States)

    Kalevich, V. K.; Afanasiev, M. M.; Lukoshkin, V. A.; Solnyshkov, D. D.; Malpuech, G.; Kavokin, K. V.; Tsintzos, S. I.; Hatzopoulos, Z.; Savvidis, P. G.; Kavokin, A. V.

    2015-01-01

    We observe condensation of exciton polaritons in quantum states composed of concentric rings when exciting cylindrical pillar GaAs/AlGaAs microcavities nonresonantly by a focused laser beam normally incident at the center of the pillar. The number of rings depends on the pumping intensity and the pillar size, and may achieve 5 in the pillar of 40 μ m diameter. Breaking the axial symmetry when moving the excitation spot away from the pillar center leads to transformation of the rings into a number of bright lobes corresponding to quantum states with nonzero angular momenta. The number of lobes, their shape, and location are dependent on the spot position. We describe the out-of-equilibrium condensation of polaritons in the states with different principal quantum numbers and angular momenta with a formalism based on Boltzmann-Gross-Pitaevskii equations accounting for repulsion of polaritons from the exciton reservoir formed at the excitation spot and their spatial confinement by the pillar boundary.

  5. Diversiform hybrid-polarization surface plasmon polaritons in a dielectric–metal metamaterial

    Directory of Open Access Journals (Sweden)

    Q. Zhang

    2017-04-01

    Full Text Available Hybrid-polarization surface plasmon polaritons (HSPPs at the interface between an isotropic medium and a one-dimensional metal–dielectric metamaterial (MM were discussed, where the metal-layer permittivity was described with the improved Drude model. From the obtained dispersion equations, we predicated five types of HSPPs. One type is the Dyakonov-like surface polariton and another type is the tradition-like surface polarton. The others are new types of HSPPs. We establish a numerical simulation method of the attenuated total reflection (ATR measurement to examine these HSPPs. The results from the ATR spectra are consistent with those from the dispersion equations and indicate the different polarization features of these HSPPs. The numerical results also demonstrate that the observation of each type of HSPPs requires different conditions dictated by the material parameters and the polarization direction of incident light used in the ATR spectra. These results may further widen the space of potential applications of surface plasmon polaritons.

  6. Hybrid Surface Plasmon Polariton Modes of Subwavelength Nanowire Resonators

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Duggen, Lars; Willatzen, Morten

    2015-01-01

    -localized gap plasmon mode are studied depending on the vacuum wavelength. In order to directly compare resonators, where metal and semiconductor nanowires are employed, we consider the two resonators, both including silver slab and magnesium fluoride gap region, as is shown in figure. The two compared......We perform Comsol simulations of two types of hybrid plasmonic resonator configurations, similar to those proposed for nanowire plasmonic laser in [1] and [2]. In both references the nanowire - based plasmonic resonators are studied, which overall sizes are larger than the wavelength in vacuum....... However, it is advantageous for the nanolaser to have subwavelength sizes at least in two dimensions. Therefore, we study the two configurations and the hybrid mode behavior in the case, where resonator sizes are smaller than the half of the wavelength in vacuum. First, we assume finite dimensions...

  7. A highly efficient surface plasmon polaritons excitation achieved with a metal-coupled metal-insulator-metal waveguide

    Directory of Open Access Journals (Sweden)

    Hongyan Yang

    2014-12-01

    Full Text Available We propose a novel metal-coupled metal-insulator-metal (MC-MIM waveguide which can achieve a highly efficient surface plasmon polaritons (SPPs excitation. The MC-MIM waveguide is formed by inserting a thin metal film in the insulator of an MIM. The introduction of the metal film, functioning as an SPPs coupler, provides a space for the interaction between SPPs and a confined electromagnetic field of the intermediate metal surface, which makes energy change and phase transfer in the metal-dielectric interface, due to the joint action of incomplete electrostatic shielding effect and SPPs coupling. Impacts of the metal film with different materials and various thickness on SPPs excitation are investigated. It is shown that the highest efficient SPPs excitation is obtained when the gold film thickness is 60 nm. The effect of refractive index of upper and lower symmetric dielectric layer on SPPs excitation is also discussed. The result shows that the decay value of refractive index is 0.3. Our results indicate that this proposed MC-MIM waveguide may offer great potential in designing a new SPPs source.

  8. Comment on 'Nanoscale mapping of optical band gaps using monochromated electron energy loss spectroscopy' by Zhan, Granerød, Venkatachalapathy, Johansen, Jensen, Kuznetsov and Prytz in Nanotechnology 28 (2017) 105703.

    Science.gov (United States)

    Walther, Thomas

    2018-02-19

    Comment on ‘Nanoscale mapping of optical band gaps using monochromated electron energy loss spectroscopy’ by Zhan, Granerød, Venkatachalapathy, Johansen, Jensen, Kuznetsov and Prytz in Nanotechnology 28 (2017) 105703 by Thomas Walther, Department,of Electronic & Electrical Enginenering, University of Sheffield, Sheffield, UK. © 2018 IOP Publishing Ltd.

  9. Modeling energy band gap of doped TiO2 semiconductor using homogeneously hybridized support vector regression with gravitational search algorithm hyper-parameter optimization

    Science.gov (United States)

    Owolabi, Taoreed O.; Akande, Kabiru O.; Olatunji, Sunday O.; Aldhafferi, Nahier; Alqahtani, Abdullah

    2017-11-01

    Titanium dioxide (TiO2) semiconductor is characterized with a wide band gap and attracts a significant attention for several applications that include solar cell carrier transportation and photo-catalysis. The tunable band gap of this semiconductor coupled with low cost, chemical stability and non-toxicity make it indispensable for these applications. Structural distortion always accompany TiO2 band gap tuning through doping and this present work utilizes the resulting structural lattice distortion to estimate band gap of doped TiO2 using support vector regression (SVR) coupled with novel gravitational search algorithm (GSA) for hyper-parameters optimization. In order to fully capture the non-linear relationship between lattice distortion and band gap, two SVR models were homogeneously hybridized and were subsequently optimized using GSA. GSA-HSVR (hybridized SVR) performs better than GSA-SVR model with performance improvement of 57.2% on the basis of root means square error reduction of the testing dataset. Effect of Co doping and Nitrogen-Iodine co-doping on band gap of TiO2 semiconductor was modeled and simulated. The obtained band gap estimates show excellent agreement with the values reported from the experiment. By implementing the models, band gap of doped TiO2 can be estimated with high level of precision and absorption ability of the semiconductor can be extended to visible region of the spectrum for improved properties and efficiency.

  10. TE and TM modes polaritons in multilayer system comprise of a PML-type magnetoelectric multiferroics and ferroelectrics

    International Nuclear Information System (INIS)

    Gunawan, Vincensius; Widiyandari, Hendri

    2016-01-01

    In this paper, we report our study on both bulk and surface polaritons generated in Multilayer system. The multilayer consists of ferroelectric and multiferroic with canted spins structure. The effective medium approximation is employed to derive the dispersion relation for both bulk and surface modes. Surface and bulk polaritons are calculated numerically for the case of Transverse electric (TE) and Transverse magnetic (TM) modes. Example results are presented using parameters appropriate for BaMnF 4 /BaAl 2 O 4 . We found in both TE and TM modes, that the region where the surface modes may exist is affected by the volume fraction of the multiferroics. The region of the surface modes decrease when the volume fraction of the multiferroic is reduced. This region decrement suppress the surface polariton curves which result in shortening the surface modes curves. (paper)

  11. Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe_{5}

    Directory of Open Access Journals (Sweden)

    R. Wu

    2016-05-01

    Full Text Available Two-dimensional topological insulators with a large bulk band gap are promising for experimental studies of quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap two-dimensional topological insulator candidates, none of them have been experimentally demonstrated to have a full gap, which is crucial for quantum spin Hall effect. Here, by combining scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal that ZrTe_{5} crystal hosts a large full gap of ∼100  meV on the surface and a nearly constant density of states within the entire gap at the monolayer step edge. These features are well reproduced by our first-principles calculations, which point to the topologically nontrivial nature of the edge states.

  12. Enhanced energy transfer by near-field coupling of a nanostructured metamaterial with a graphene-covered plate

    Science.gov (United States)

    Chang, Jui-Yung; Yang, Yue; Wang, Liping

    2016-11-01

    Coupled surface plasmon/phonon polaritons and hyperbolic modes are known to enhance radiative transfer across nanometer vacuum gaps but usually require identical materials. It becomes crucial to achieve strong near-field energy transfer between dissimilar materials for applications like near-field thermophotovoltaic and thermal rectification. In this work, we theoretically demonstrate enhanced near-field radiative transfer between a nanostructured metamaterial emitter and a graphene-covered planar receiver. Strong near-field coupling with two orders of magnitude enhancement in the spectral heat flux is achieved at the gap distance of 20 nm. By carefully selecting the graphene chemical potential and doping levels of silicon nanohole emitter and silicon plate receiver, the total near-field radiative heat flux can reach about 500 times higher than the far-field blackbody limit between 400 K and 300 K. The physical mechanism is elucidated by the near-field surface plasmon coupling with fluctuational electrodynamics and dispersion relations. The effects of graphene chemical potential, emitter and receiver doping levels, and vacuum gap distance on the near-field coupling and radiative energy transfer are analyzed in detail.

  13. Closing the gap between socioeconomic and financial implications of residential and community level hydrogen-based energy systems: Incentives needed for a bridge to the future

    Science.gov (United States)

    Verduzco, Laura E.

    benefits and costs of hydrogen-based alternatives, H2POWER compares the financial and socioeconomic costs of home and neighborhood refueling units to a baseline of "conventional" sources of residential electricity, space heat, water heat, and vehicle fuel. The model can also calculate the "gap" between the financial cost of the technology and the environmental cost of the externalities that are generated using conventional energy sources. H2POWER is a flexible, user-friendly tool that allows the user to specify different production pathways, supplemental power sources (renewable and non-renewable), component characteristics, electricity mixes, and other analysis parameters in order to customize the results to specific projects. The model has also built-in default values for each of the input fields based on national averages, standard technology specifications and input from experts.

  14. The Gap Within the Gap

    Directory of Open Access Journals (Sweden)

    Katherine Michelmore

    2017-02-01

    Full Text Available Gaps in educational achievement between high- and low-income children are growing. Administrative data sets maintained by states and districts lack information about income but do indicate whether a student is eligible for subsidized school meals. We leverage the longitudinal structure of these data sets to develop a new measure of economic disadvantage. Half of eighth graders in Michigan are eligible for a subsidized meal, but just 14% have been eligible for subsidized meals in every grade since kindergarten. These children score 0.94 standard deviations below those who are never eligible for meal subsidies and 0.23 below those who are occasionally eligible. There is a negative, linear relationship between grades spent in economic disadvantage and eighth-grade test scores. This is not an exposure effect; the relationship is almost identical in third-grade, before children have been exposed to varying years of economic disadvantage. Survey data show that the number of years that a child will spend eligible for subsidized lunch is negatively correlated with her or his current household income. Years eligible for subsidized meals can therefore be used as a reasonable proxy for income. Our proposed measure can be used to estimate heterogeneous effects in program evaluations, to improve value-added calculations, and to better target resources.

  15. Quantum many-body simulation using monolayer exciton-polaritons in coupled-cavities

    Science.gov (United States)

    Wang, Hai-Xiao; Zhan, Alan; Xu, Ya-Dong; Chen, Huan-Yang; You, Wen-Long; Majumdar, Arka; Jiang, Jian-Hua

    2017-11-01

    Quantum simulation is a promising approach to understanding complex strongly correlated many-body systems using relatively simple and tractable systems. Photon-based quantum simulators have great advantages due to the possibility of direct measurements of multi-particle correlations and ease of simulating non-equilibrium physics. However, interparticle interaction in existing photonic systems is often too weak, limiting the potential for quantum simulation. Here we propose an approach to enhance the interparticle interaction using exciton-polaritons in MoS2 monolayer quantum dots embedded in 2D photonic crystal microcavities. Realistic calculation yields optimal repulsive interaction in the range of 1-10 meV—more than an order of magnitude greater than the state-of-the-art value. Such strong repulsive interaction is found to emerge neither in the photon-blockade regime for small quantum dot nor in the polariton-blockade regime for large quantum dot, but in the crossover between the two regimes with a moderate quantum-dot radius around 20 nm. The optimal repulsive interaction is found to be largest in MoS2 among commonly used optoelectronic materials. Quantum simulation of strongly correlated many-body systems in a finite chain of coupled cavities and its experimental signature are studied via the exact diagonalization of the many-body Hamiltonian. A method to simulate 1D superlattices for interacting exciton-polariton gases in serially coupled cavities is also proposed. Realistic considerations on experimental realizations reveal advantages of transition metal dichalcogenide monolayer quantum dots over conventional semiconductor quantum emitters.

  16. Closing the gap? Top-down versus bottom-up projections of China's regional energy use and CO2 emissions

    DEFF Research Database (Denmark)

    Dai, Hancheng; Mischke, Peggy; Xie, Xuxuan

    2016-01-01

    and demographic trends as well as a carbon tax pathway, we explore how both models respond to these identical exogenous inputs. Then a soft-linking methodology is applied to "narrow the gap" between the results computed by these models. We find for example that without soft-linking, China's baseline CO2 emissions...... might range from 15-20Gt in 2050, while soft-linking models results in 17Gt. Reasons for the results gap between the models are discussed subsequently, such as model structure and statistical inputs. At a sectoral level, the gap can be mainly traced to China's future coal use in electricity production...

  17. Guiding spoof surface plasmon polaritons by infinitely thin grooved metal strip

    Directory of Open Access Journals (Sweden)

    Xiang Wan

    2014-04-01

    Full Text Available In this paper, the propagation characteristics of spoof surface plasmon polaritons (SPPs on infinitely thin corrugated metal strips are theoretically analyzed. Compared with the situations of infinitely thick lateral thickness, the infinitely thin lateral thickness leads to lower plasma frequency according to the analyses. The propagation lengths and the binding capacity of the spoof SPPs are evaluated based on the derived dispersion equation. The effects of different lateral thicknesses are also investigated. At the end, a surface wave splitter is presented using infinitely thin corrugated metal strip. Other functional planar or flexible devices can also be designed using these metal strips in microwave or terahertz regimes.

  18. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface.

    Science.gov (United States)

    Kubo, Atsushi; Pontius, Niko; Petek, Hrvoje

    2007-02-01

    A movie of the dispersive and dissipative propagation of surface plasmon polariton (SPP) wave packets at a silver/vacuum interface is recorded by the interferometric time-resolved photoemission electron microscopy with 60 nm spatial resolution and 330 as frame interval. The evolution of SPP wave packets is imaged through a two-path interference created by a pair of 10 fs phase correlated pump-probe light pulses at 400 nm. The wave packet evolution is simulated using the complex dielectric function of silver.

  19. Interplay of nonlocal response, damping, and low group velocity in surface-plasmon polaritons

    DEFF Research Database (Denmark)

    Raza, Søren; Mortensen, N. Asger

    2016-01-01

    The miniaturization of metal structures down to the nanoscale has been accompanied with several recent studies demonstrating plasmonic effects not explainable by classical electromagnetic theory. Describing the optical properties of materials solely through the bulk dielectric function has been...... augmented with quantum mechanical corrections, such as the electron spill-out effect and nonlocal response. Here, we discuss the latter and its implications on the waveguiding characteristics, such as dispersion and group velocity, of the surface-plasmon polariton mode supported at a metal-air interface....

  20. Interplay of nonlocal response, damping, and low group velocity in surface-plasmon polaritons

    Science.gov (United States)

    Raza, Søren; Mortensen, N. Asger

    2016-03-01

    The miniaturization of metal structures down to the nanoscale has been accompanied with several recent studies demonstrating plasmonic effects not explainable by classical electromagnetic theory. Describing the optical properties of materials solely through the bulk dielectric function has been augmented with quantum mechanical corrections, such as the electron spill-out effect and nonlocal response. Here, we discuss the latter and its implications on the waveguiding characteristics, such as dispersion and group velocity, of the surface-plasmon polariton mode supported at a metal-air interface.

  1. Observation of long-lived polariton states in semiconductor microcavities across the parametric threshold.

    Science.gov (United States)

    Ballarini, D; Sanvitto, D; Amo, A; Viña, L; Wouters, M; Carusotto, I; Lemaitre, A; Bloch, J

    2009-02-06

    The excitation spectrum around the pump-only stationary state of a polariton optical parametric oscillator in semiconductor microcavities is investigated by time-resolved photoluminescence. The response to a weak pulsed perturbation in the vicinity of the idler mode is directly related to the lifetime of the elementary excitations. A dramatic increase of the lifetime is observed for a pump intensity approaching and exceeding the optical parametric oscillator threshold. The observations can be explained in terms of a critical slowing down of the dynamics upon approaching the threshold and the following appearance of a soft Goldstone mode in the spectrum.

  2. Propagation of long-range surface plasmon polaritons in photonic crystals

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, T.

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold film embedded...... structures, is rather weak, so that the photonic bandgap effect might be expected to take place only for some particular propagation directions. Preliminary experiments on LR-SPP bending and splitting at large angles are reported, and further research directions are discussed....

  3. Stable gray soliton pinned by a defect in a microcavity-polariton condensate.

    Science.gov (United States)

    Chen, Ting-Wei; Hsieh, Wen-Feng; Cheng, Szu-Cheng

    2015-09-21

    We study the spatially localized dark state, called dark soliton, in a one-dimensional system of the non-resonantly pumped microcavity-polariton condensate (MPC). From the recent work by Xue and Matuszewski [Phys. Rev. Lett. 112, 216401 (2014)], we know that the dark soliton in the pure MPC system is unstable. But we find that a dark soliton pinned by a defect in the impure MPC becomes a gray soliton and can be stabilized by the presence of a defect. Moreover, the stable regime of the gray soliton is given in terms of the defect strength and pump parameter.

  4. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    George, David; Lowell, David; Mao, Michelle; Hassan, Safaa; Philipose, Usha [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Li, Li; Jiang, Yan; Cui, Jingbiao [Department of Physics and Materials Science, University of Memphis, Memphis, Tennessee 38152 (United States); Ding, Jun; Zhang, Hualiang [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Lin, Yuankun [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States)

    2016-07-28

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  5. Observation of surface-plasmon-polariton transmission through a silver film sputtered on a photorefractive substrate

    International Nuclear Information System (INIS)

    Chen Jing; Li Yudong; Lu Wenqiang; Qi Jiwei; Cui Guoxin; Liu Hongbing; Xu Jingjun; Sun Qian

    2007-01-01

    The diffraction of holographic gratings in a photorefractive iron-doped lithium niobate (LiNbO 3 :Fe) crystal, on which surface a silver film was sputtered, was experimentally investigated. Besides the Bragg diffraction, an additional diffraction was observed. The experimental results present evidence of surface-plasmon-polariton (SPP) transmission through the silver film on the photorefractive substrate. The excitation of SPPs is speculated to be due to the corrugations of the silver film, which are caused by the photorefractive and the converse piezoelectric effect in the LiNbO3:Fe sample

  6. A type of all-optical logic gate based on graphene surface plasmon polaritons

    Science.gov (United States)

    Wu, Xiaoting; Tian, Jinping; Yang, Rongcao

    2017-11-01

    In this paper, a novel type of all-optical logic device based on graphene surface plasmon polaritons (GSP) is proposed. By utilizing linear interference between the GSP waves propagating in the different channels, this new structure can realize six different basic logic gates including OR, XOR, NOT, AND, NOR, and NAND. The state of ;ON/OFF; of each input channel can be well controlled by tuning the optical conductivity of graphene sheets, which can be further controlled by changing the external gate voltage. This type of logic gate is compact in geometrical sizes and is a potential block in the integration of nanophotonic devices.

  7. Propagation of long-range surface plasmon polaritons in photonic crystals

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, T.

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold film embedded......) into the investigated PC structures. Using a self-consistent description based on the Green'S function formalism, we simulate numerically the LR-SPP transmission through and reflection from finite-size PC structures consisting of finite-size scatterers, as well as the LR-SPP guiding along line defects...

  8. Strong coupling and polariton lasing in Te based microcavities embedding (Cd,Zn)Te quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Rousset, J.-G., E-mail: j-g.rousset@fuw.edu.pl; Piętka, B.; Król, M.; Mirek, R.; Lekenta, K.; Szczytko, J.; Borysiuk, J.; Suffczyński, J.; Kazimierczuk, T.; Goryca, M.; Smoleński, T.; Kossacki, P.; Nawrocki, M.; Pacuski, W. [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warszawa (Poland)

    2015-11-16

    We report on properties of an optical microcavity based on (Cd,Zn,Mg)Te layers and embedding (Cd,Zn)Te quantum wells. The key point of the structure design is the lattice matching of the whole structure to MgTe, which eliminates the internal strain and allows one to embed an arbitrary number of unstrained quantum wells in the microcavity. We evidence the strong light-matter coupling regime already for the structure containing a single quantum well. Embedding four unstrained quantum wells results in further enhancement of the exciton-photon coupling and the polariton lasing in the strong coupling regime.

  9. Surface plasmon polariton excitation by second harmonic generation in single organic nanofibers

    DEFF Research Database (Denmark)

    Simesen, Paw; Søndergaard, Thomas; Skovsen, Esben

    2015-01-01

    Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in individual aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The SH-SPP generation is considered theoretically and investigated...... experimentally with angular-resolved leakage radiation spectroscopy for normal incidence of the excitation beam. Both measurements and simulations show asymmetric excitation of left- and right-propagating SH-SPPs, which is explained as an effect of fiber molecules being oriented at an angle relative...... to the silver film surface....

  10. Resonant Rayleigh scattering of exciton-polaritons in multiple quantum wells

    DEFF Research Database (Denmark)

    Malpuech, Guillaume; Kavokin, Alexey; Langbein, Wolfgang Werner

    2000-01-01

    A theoretical concept of resonant Rayleigh scattering (RRS) of exciton-polaritons in multiple quantum wells (QWs) is presented. The optical coupling between excitons in different QWs can strongly affect the RRS dynamics, giving rise to characteristic temporal oscillations on a picosecond scale....... Bragg and anti-Bragg arranged QW structures with the same excitonic parameters are predicted to have drastically different RRS spectra. Experimental data on the RRS from multiple QWs show the predicted strong temporal oscillations at small scattering angles, which are well explained by the presented...... theory....

  11. Mapping surface plasmon polariton propagation via counter-propagating light pulses

    DEFF Research Database (Denmark)

    Lemke, Christoph; Leißner, Till; Jauernik, Stephan

    2012-01-01

    interface recorded in a counter-propagating pump-probe geometry. In comparison to former work this approach provides a very intuitive real-time access to the SPP wave packet. The quantitative analysis of the PEEM data enables us to determine in a rather direct manner the propagation characteristics......In an interferometric time-resolved photoemission electron microscopy (ITR-PEEM) experiment, the near-field associated with surface plasmon polaritons (SPP) can be locally sensed via interference with ultrashort laser pulses. Here, we present ITR-PEEM data of SPP propagation at a gold vacuum...

  12. Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Bozhevolnyi, Sergey I.; Søndergaard, Thomas

    2005-01-01

    We design, fabricate and investigate compact Z-add-drop (ZAD) filters for long-range surface plasmon polaritons (LR-SPPs) at telecom wavelengths. The ZAD filter for LR-SPPs consists of two ridge gratings formed by periodic gold thickness modulation at the intersections of three zigzag-crossed gold...... stripes embedded in polymer. We investigate influence of the grating length and crossing angle on the filter characteristics and demonstrate a 10o-ZAD filter based on 80-mm-long gratings that exhibit a 15-dB dip (centered at ~1.55 mm) in transmission of the direct arm along with the corresponding ~13-nm...

  13. Theoretical reexamination of the cross conversion between surface plasmon polaritons and quasi-cylindrical waves.

    Science.gov (United States)

    Li, Guangyuan; Cai, Lin; Xiao, Feng; Xu, Anshi

    2010-10-01

    The cross conversion between surface plasmon polaritons (SPPs) and quasi-cylindrical waves (CWs) is theoretically reexamined. Except for the CW-to-SPP conversion, we find the SPP-to-CW conversion, as well as the reflection and transmission of the CW, plays an indispensable role in the interaction between SPPs and light via periodic grooves. The completeness of the whole scattering coefficients is emphasized by an SPP-CW model proposed to quantitatively predict the SPP excitation efficiency for any number of periodic grooves.

  14. Quantum theory of the electronic and optical properties of low-dimensional semiconductor systems

    Science.gov (United States)

    Lau, Wayne Heung

    This thesis examines the electronic and optical properties of low-dimensional semiconductor systems. A theory is developed to study the electron-hole generation-recombination process of type-II semimetallic semiconductor heterojunctions based on a 3 x 3 k·p matrix Hamiltonian (three-band model) and an 8 x 8 k·p matrix Hamiltonian (eight-band model). A novel electron-hole generation and recombination process, which is called activationless generation-recombination process, is predicted. It is demonstrated that the current through the type-II semimetallic semiconductor heterojunctions is governed by the activationless electron-hole generation-recombination process at the heterointerfaces, and that the current-voltage characteristics are essentially linear. A qualitative agreement between theory and experiments is observed. The numerical results of the eight-band model are compared with those of the threeband model. Based on a lattice gas model, a theory is developed to study the influence of a random potential on the ionization equilibrium conditions for bound electron-hole pairs (excitons) in III--V semiconductor heterostructures. It is demonstrated that ionization equilibrium conditions for bound electron-hole pairs change drastically in the presence of strong disorder. It is predicted that strong disorder promotes dissociation of excitons in III--V semiconductor heterostructures. A theory of polariton (photon dressed by phonon) spontaneous emission in a III--V semiconductor doped with semiconductor quantum dots (QDs) or quantum wells (QWs) is developed. For the first time, superradiant and subradiant polariton spontaneous emission phenomena in a polariton-QD (QW) coupled system are predicted when the resonance energies of the two identical QDs (QWs) lie outside the polaritonic energy gap. It is also predicted that when the resonance energies of the two identical QDs (QWs) lie inside the polaritonic energy gap, spontaneous emission of polariton in the polariton

  15. Investigation of an energy-gap model for photoacoustic O{sub 2}A-band spectra: H{sub 2}O calibration near 7180 cm{sup -1}

    Energy Technology Data Exchange (ETDEWEB)

    Vess, E.M.; Anderson, C.N.; Awadalla, V.E.; Estes, E.J.; Jeon, C.; Wallace, C.J.; Hu, X.F. [Department of Chemistry and Biochemistry, James Madison University, MSC 4501, Harrisonburg, VA 22807 (United States); Havey, D.K., E-mail: haveydk@jmu.edu [Department of Chemistry and Biochemistry, James Madison University, MSC 4501, Harrisonburg, VA 22807 (United States)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer We investigate an energy transfer model for photoacoustic measurements of the O{sub 2}A-band. Black-Right-Pointing-Pointer We measure the response of a photoacoustic spectrometer for known quantities of H{sub 2}O and O{sub 2}. Black-Right-Pointing-Pointer We fit multiple theoretical spectral line profiles to the data. Black-Right-Pointing-Pointer We bind the relative uncertainty of the energy transfer model to less than 1%. Black-Right-Pointing-Pointer We demonstrate that speed-dependence is an important line shape effect for these experiments. - Abstract: A photoacoustic spectrometer is used to evaluate the accuracy of an energy-gap model for collisional energy transfer. For photoacoustic measurements involving the b{sup 1}{Sigma}{sub g}{sup +} Leftwards-Arrow X{sup 3}{Sigma}{sub g}{sup -} transition of molecular oxygen the conversion of photon energy to thermal energy is inefficient and proceeds through the a{sup 1}{Delta}{sub g} state. This results in attenuation of the photoacoustic signal. The magnitude of the attenuation can be predicted with an energy-gap model whose accuracy has been previously confirmed to within 3 {+-} 5%. However, this prior result does not rule out incomplete rotational relaxation of O{sub 2} in the a{sup 1}{Delta}{sub g} state. In this study, high-resolution spectra of H{sub 2}O in air are used to calibrate the photoacoustic spectrometer. This work binds the relative uncertainty in the energy-gap relaxation factor for O{sub 2}A-band photoacoustic signals to be approximately 1%. During one acoustic cycle, this result implies negligible collisional relaxation to the X{sup 3}{Sigma}{sub g}{sup -} state of O{sub 2} and nearly complete collisional relaxation to the a{sup 1}{Delta}{sub g} state.

  16. sup 7 sup 5 As NQR/NMR study of successive phase transitions and energy gap formation in Kondo semiconductor CeRhAs

    CERN Document Server

    Matsumura, M; Takabatake, T; Tsuji, S; Tou, H; Sera, M

    2003-01-01

    sup 7 sup 5 As NQR/NMR studies were performed to investigate the successive phase transitions found recently, the gap formation and their interplay in a Kondo semiconductor CeRhAs. NQR/NMR spectra in their respective phases change, reflecting lattice modulation modes, q sub 1 = (0, 1/2, 1/2), q sub 2 = (0, 1/3, 1/3) and q sub 3 = (1/3, 0, 0). In particular for well-resolved three NQR lines corresponding to the q sub 3 mode in the lowest temperature phase, the nuclear spin-lattice relaxation rate (T sub 1 T) sup - sup 1 shows an activation type T-dependence, suggesting a gap opening over the entire Fermi surface, in contrast to the V-shaped gap in isostructural CeNiSn and CeRhSn. The evaluated gap of 272 K and the bandwidth of about 4000 K are one order of magnitude larger than those in CeNiSn and CeRhSb. A lattice modulation forms a gap different from the V-shaped gap. (author)

  17. Bloch-Surface-Polariton-Based Hybrid Nanowire Structure for Subwavelength, Low-Loss Waveguiding

    Directory of Open Access Journals (Sweden)

    Weijing Kong

    2018-03-01

    Full Text Available Surface plasmon polaritons (SPPs have been thoroughly studied in the past decades for not only sensing but also waveguiding applications. Various plasmonic device structures have been explored due to their ability to confine their optical mode to the subwavelength level. However, with the existence of metal, the large ohmic loss limits the propagation distance of the SPP and thus the scalability of such devices. Therefore, different hybrid waveguides have been proposed to overcome this shortcoming. Through fine tuning of the coupling between the SPP and a conventional waveguide mode, a hybrid mode could be excited with decent mode confinement and extended propagation distance. As an effective alternative of SPP, Bloch surface waves have been re-investigated more recently for their unique advantages. As is supported in all-dielectric structures, the optical loss for the Bloch surface wave is much lower, which stands for a much longer propagating distance. Yet, the confinement of the Bloch surface wave due to the reflections and refractions in the multilayer structure is not as tight as that of the SPP. In this work, by integrating a periodic multilayer structure that supports the Bloch surface wave with a metallic nanowire structure, a hybrid Bloch surface wave polariton could be excited. With the proposed hybrid nanowire structure, a hybrid mode is demonstrated with the deep subwavelength mode confinement and a propagation distance of tens of microns.

  18. Chiral Modes at Exceptional Points in Exciton-Polariton Quantum Fluids.

    Science.gov (United States)

    Gao, T; Li, G; Estrecho, E; Liew, T C H; Comber-Todd, D; Nalitov, A; Steger, M; West, K; Pfeiffer, L; Snoke, D W; Kavokin, A V; Truscott, A G; Ostrovskaya, E A

    2018-02-09

    We demonstrate the generation of chiral modes-vortex flows with fixed handedness in exciton-polariton quantum fluids. The chiral modes arise in the vicinity of exceptional points (non-Hermitian spectral degeneracies) in an optically induced resonator for exciton polaritons. In particular, a vortex is generated by driving two dipole modes of the non-Hermitian ring resonator into degeneracy. Transition through the exceptional point in the space of the system's parameters is enabled by precise manipulation of real and imaginary parts of the closed-wall potential forming the resonator. As the system is driven to the vicinity of the exceptional point, we observe the formation of a vortex state with a fixed orbital angular momentum (topological charge). This method can be extended to generate higher-order orbital angular momentum states through coalescence of multiple non-Hermitian spectral degeneracies. Our Letter demonstrates the possibility of exploiting nontrivial and counterintuitive properties of waves near exceptional points in macroscopic quantum systems.

  19. Chiral Modes at Exceptional Points in Exciton-Polariton Quantum Fluids

    Science.gov (United States)

    Gao, T.; Li, G.; Estrecho, E.; Liew, T. C. H.; Comber-Todd, D.; Nalitov, A.; Steger, M.; West, K.; Pfeiffer, L.; Snoke, D. W.; Kavokin, A. V.; Truscott, A. G.; Ostrovskaya, E. A.

    2018-02-01

    We demonstrate the generation of chiral modes-vortex flows with fixed handedness in exciton-polariton quantum fluids. The chiral modes arise in the vicinity of exceptional points (non-Hermitian spectral degeneracies) in an optically induced resonator for exciton polaritons. In particular, a vortex is generated by driving two dipole modes of the non-Hermitian ring resonator into degeneracy. Transition through the exceptional point in the space of the system's parameters is enabled by precise manipulation of real and imaginary parts of the closed-wall potential forming the resonator. As the system is driven to the vicinity of the exceptional point, we observe the formation of a vortex state with a fixed orbital angular momentum (topological charge). This method can be extended to generate higher-order orbital angular momentum states through coalescence of multiple non-Hermitian spectral degeneracies. Our Letter demonstrates the possibility of exploiting nontrivial and counterintuitive properties of waves near exceptional points in macroscopic quantum systems.

  20. Dynamics of vortices in polariton quantum fluids : From full vortices, to half vortices and vortex pairs

    Science.gov (United States)

    Deveaud-Plédran, Benoit

    2012-02-01

    Polariton quantum fluids may be created both spontaneously through a standard phase transition towards a Bose Einstein condensate, or may be resonantly driven with a well-defined speed. Thanks to the photonic component of polaritons, the properties of the quantum fluid may be accessed rather directly with in particular the possibility of detained interferometric studies. Here, I will detail the dynamics of vortices, obtained with a picosecond time resolution, in different configurations, with in particular their phase dynamics. I will show in particular the dynamics the dynamics of spontaneous creation of a vortex, the dissociation of a full vortex into two half vortices as well as the dynamics of the dissociation of a dark soliton line into a street of pairs of vortices. Work done at EPFL by a dream team of Postdocs PhD students and collaborators: K. Lagoudakis, G. Nardin, T. Paraiso, G. Grosso, F. Manni, Y L'eger, M. Portella Oberli, F. Morier-Genoud and the help of our friend theorists V, Savona, M. Vouters and T. Liew.

  1. Physics of quantum fluids. New trends and hot topics in atomic and polariton condensates

    Energy Technology Data Exchange (ETDEWEB)

    Bramati, Alberto [Paris Univ. (France). Laboratoire Kastler Brossel; Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France); Modugno, Michele (eds.) [IKERBASQUE, Bilbao (Spain); Univ. del Pais Vasco, Bilbao (Spain). Dept. de Fisica Teorica e Historia de la Ciencia

    2013-10-01

    Provides an overview of the field of quantum fluids. Presents analogies and differences between polariton and atomic quantum fluids. With contributions from the major actors in the field. Explains a new type of quantum fluid with specific characteristics. The study of quantum fluids, stimulated by the discovery of superfluidity in liquid helium, has experienced renewed interest after the observation of Bose-Einstein condensation (BEC) in ultra-cold atomic gases and the observation a new type of quantum fluid with specific characteristics derived from its intrinsic out-of-equilibrium nature. The main objective of this book is to take a snapshot of the state-of-the-art of this fast moving field with a special emphasis on the hot topics and new trends. Bringing together the most active specialists of the two areas (atomic and polaritonic quantum fluids), we expect that this book will facilitate the exchange and the collaboration between these two communities working on subjects with very strong analogies.

  2. Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Young Chul [Inha Univ., Incheon (Korea, Republic of). Dept. of Physics; Luk, Ting S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Robert Ellis, A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klem, John F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brener, Igal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies

    2014-09-29

    Here, we utilize the unique dispersion properties of leaky plasmon polaritons in epsilon-near-zero (ENZ) thin films to demonstrate thermal radiation control. Owing to its highly flat dispersion above the light line, a thermally excited leaky wave at the ENZ frequency out-couples into free space without any scattering structures, resulting in a narrowband, wide-angle, p-polarized thermal emission spectrum. We demonstrate this idea by measuring angle- and polarization-resolved thermal emission spectra from a single layer of unpatterned, doped semiconductors with deep-subwavelength film thickness (d/λ0 ~ 6 ×10-3, where d is the film thickness and λ0 is the free space wavelength). We show that this semiconductor ENZ film effectively works as a leaky wave thermal radiation antenna, which generates far-field radiation from a thermally excited mode. The use of semiconductors makes the radiation frequency highly tunable by controlling doping densities and also facilitates device integration with other components. Therefore, this leaky plasmon polariton emission from semiconductor ENZ films provides an avenue for on-chip control of thermal radiation.

  3. When polarons meet polaritons: Exciton-vibration interactions in organic molecules strongly coupled to confined light fields

    Science.gov (United States)

    Wu, Ning; Feist, Johannes; Garcia-Vidal, Francisco J.

    2016-11-01

    We present a microscopic semianalytical theory for the description of organic molecules interacting strongly with a cavity mode. Exciton-vibration coupling within the molecule and exciton-cavity interaction are treated on an equal footing by employing a temperature-dependent variational approach. The interplay between strong exciton-vibration coupling and strong exciton-cavity coupling gives rise to a hybrid ground state, which we refer to as the lower polaron polariton. Explicit expressions for the ground-state wave function, the zero-temperature quasiparticle weight of the lower polaron polariton, the photoluminescence line strength, and the mean number of vibrational quanta are obtained in terms of the optimal variational parameters. The dependence of these quantities upon the exciton-cavity coupling strength reveals that strong cavity coupling leads to an enhanced vibrational dressing of the cavity mode, and at the same time a vibrational decoupling of the dark excitons, which in turn results in a lower polaron polariton resembling a single-mode dressed bare lower polariton in the strong-coupling regime. Thermal effects on several observables are briefly discussed.

  4. Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs)

    DEFF Research Database (Denmark)

    Zektzer, Roy; Desiatov, Boris; Mazurski, Noa

    2015-01-01

    We demonstrate the design, fabrication and experimental characterization of long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs) that are compatible with complementary metal-oxide semiconductor (CMOS) technology. The demonstrated waveguides feature good mode confinement...

  5. Radiative Heat Transfer with Nanowire/Nanohole Metamaterials for Thermal Energy Harvesting Applications

    Science.gov (United States)

    Chang, Jui-Yung

    Recently, nanostructured metamaterials have attracted lots of attentions due to its tunable artificial properties. In particular, nanowire/nanohole based metamaterials which are known of the capability of large area fabrication were intensively studied. Most of the studies are only based on the electrical responses of the metamaterials; however, magnetic response, is usually neglected since magnetic material does not exist naturally within the visible or infrared range. For the past few years, artificial magnetic response from nanostructure based metamaterials has been proposed. This reveals the possibility of exciting resonance modes based on magnetic responses in nanowire/nanohole metamaterials which can potentially provide additional enhancement on radiative transport. On the other hand, beyond classical far-field radiative heat transfer, near-field radiation which is known of exceeding the Planck's blackbody limit has also become a hot topic in the field. This PhD dissertation aims to obtain a deep fundamental understanding of nanowire/nanohole based metamaterials in both far-field and near-field in terms of both electrical and magnetic responses. The underlying mechanisms that can be excited by nanowire/nanohole metamaterials such as electrical surface plasmon polariton, magnetic hyperbolic mode, magnetic polariton, etc., will be theoretically studied in both far-field and near-field. Furthermore, other than conventional effective medium theory which only considers the electrical response of metamaterials, the artificial magnetic response of metamaterials will also be studied through parameter retrieval of far-field optical and radiative properties for studying near-field radiative transport. Moreover, a custom-made AFM tip based metrology will be employed to experimentally study near-field radiative transfer between a plate and a sphere separated by nanometer vacuum gaps in vacuum. This transformative research will break new ground in nanoscale radiative heat

  6. Transient increase of the energy gap of superconducting NbN thin films excited by resonant narrow-band terahertz pulses.

    Science.gov (United States)

    Beck, M; Rousseau, I; Klammer, M; Leiderer, P; Mittendorff, M; Winnerl, S; Helm, M; Gol'tsman, G N; Demsar, J

    2013-06-28

    Observations of radiation-enhanced superconductivity have thus far been limited to a few type-I superconductors (Al, Sn) excited at frequencies between the inelastic scattering rate and the superconducting gap frequency 2Δ/h. Utilizing intense, narrow-band, picosecond, terahertz pulses, tuned to just below and above 2Δ/h of a BCS superconductor NbN, we demonstrate that the superconducting gap can be transiently increased also in a type-II dirty-limit superconductor. The effect is particularly pronounced at higher temperatures and is attributed to radiation induced nonthermal electron distribution persisting on a 100 ps time scale.

  7. Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap

    Science.gov (United States)

    Lim, Mikyung; Song, Jaeman; Kim, Jihoon; Lee, Seung S.; Lee, Ikjin; Lee, Bong Jae

    2018-05-01

    The present work successfully achieves a strong enhancement in performance of a near-field thermophotovoltaic (TPV) system operating at low temperature and large-vacuum-gap width by introducing a hyperbolic-metamaterial (HMM) emitter, multilayered graphene, and an Au-backside reflector. Design variables for the HMM emitter and the multilayered-graphene-covered TPV cell are optimized for maximizing the power output of the near-field TPV system with the genetic algorithm. The near-field TPV system with the optimized configuration results in 24.2 times of enhancement in power output compared with that of the system with a bulk emitter and a bare TPV cell. Through the analysis of the radiative heat transfer together with surface-plasmon-polariton (SPP) dispersion curves, it is found that coupling of SPPs generated from both the HMM emitter and the multilayered-graphene-covered TPV cell plays a key role in a substantial increase in the heat transfer even at a 200-nm vacuum gap. Further, the backside reflector at the bottom of the TPV cell significantly increases not only the conversion efficiency, but also the power output by generating additional polariton modes which can be readily coupled with the existing SPPs of the HMM emitter and the multilayered-graphene-covered TPV cell.

  8. Anisotropic excitation of surface plasmon polaritons on a metal film by a scattering-type scanning near-field microscope with a non-rotationally-symmetric probe tip

    Directory of Open Access Journals (Sweden)

    Walla Frederik

    2018-01-01

    Full Text Available We investigated the excitation of surface plasmon polaritons on gold films with the metallized probe tip of a scattering-type scanning near-field optical microscope (s-SNOM. The emission of the polaritons from the tip, illuminated by near-infrared laser radiation, was found to be anisotropic and not circularly symmetric as expected on the basis of literature data. We furthermore identified an additional excitation channel via light that was reflected off the tip and excited the plasmon polaritons at the edge of the metal film. Our results, while obtained for a non-rotationally-symmetric type of probe tip and thus specific for this situation, indicate that when an s-SNOM is employed for the investigation of plasmonic structures, the unintentional excitation of surface waves and anisotropic surface wave propagation must be considered in order to correctly interpret the signatures of plasmon polariton generation and propagation.

  9. Effect of the doping on the energy of direct and indirect optical gap of KSr{sub 2}Nb{sub 5}O{sub 15} nanopowders; Estudo da influencia da dopagem na energia de gap direto e indireto de nanopos de KSr{sub 2}Nb{sub 5}O{sub 15}

    Energy Technology Data Exchange (ETDEWEB)

    Lanfredi, S.; Silva, G.D.; Genova, D.H.M.; Bellucci, F.S.; Constantino, C.J.L.; Nobre, M.A.L., E-mail: silvania@fct.unesp.b [Universidade Estadual Paulista (LaCCeF/DFQB/UNESP), Presidente Prudente, SP (Brazil). Dept. de Fisica, Quimica e Biologia. Lab. de Compositos e Ceramicas Funcionais

    2009-07-01

    Lead-free ferroelectric oxides with tetragonal tungsten bronze TTB type structure have exhibited several applications in recent piezoelectric/dielectric technologies. In TTB niobates, the cationic specie and its distribution exhibit strong influence on the electrical and optical proprieties. Solid solution development from transition-metals cations doping occurs on the niobium site allowing an intrinsic-ferro electricity modulation. In this work, the effect of the concentration of nickel cations on the semiconductor properties of KSr{sub 2}Nb{sub 5}O{sub 15} nanoparticles was investigated by invisible spectroscopy via gap energy determination. Single phase and nanocrystalline powders of KSr{sub 2}NixNb{sub 5}-xO{sub 15}-{sigma} with x = 0.75 and 1 was prepared by high energy ball milling. Powders were characterized by x-ray diffraction. Increase in temperature of calcination leads to decreasing of the gap energy. The influence of concentration of Ni{sup 3+} in the semiconductor character of KSr{sub 2}NixNb{sub 5}-xO{sub 15}-{sigma} is discussed based on the thermal evolution of structural parameters. (author)

  10. Band gap engineering of Cu3FexSn(1-x)S4: A potential absorber material for solar energy

    Science.gov (United States)

    Nazari, P.; Yazdani, A.; Shadrokh, Z.; Abdollahi Nejand, B.; Farahani, N.; Seifi, R.

    2017-12-01

    In this work, band gap engineering of quaternary chalcogenides with the general formula of Cu2FexSn(1-x)S4 was conducted by substituting Sn atoms with Fe atoms. The morphology and crystalline structure of the synthesized nanostructured powder were studied by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD), respectively. Optical properties of the nanostructured powder were studied by UV-Vis spectroscopy. The results indicate that substitution of Sn atoms with Fe atoms could transfer the tetragonal structure of CTS to tetragonal CFTS structure. The 1.54 eV band gap reached in 80 at.% replacement of Sn atoms with Fe atoms resulting in a tetragonal Cu2FeSnS4 flower-like structure. Moreover, by loading smaller amount of Fe atoms up to 20 at.%, no Fe atoms incorporation in CTS structure was observed.

  11. Quantum simulations with photons and polaritons merging quantum optics with condensed matter physics

    CERN Document Server

    2017-01-01

    This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative sett...

  12. Rabi oscillations of surface plasmon polaritons in graphene-pair arrays.

    Science.gov (United States)

    Wang, Feng; Qin, Chengzhi; Wang, Bing; Ke, Shaolin; Long, Hua; Wang, Kai; Lu, Peixiang

    2015-11-30

    We investigate the Bloch mode conversion of surface plasmon polaritons in a periodic array of graphene pairs with each consisting of two separated parallel graphene sheets. The employment of graphene pair as a unit cell in the array yields two Bloch modes belonging to different bands. By periodically modulating the permittivity of dielectrics between graphene along the propagation direction, the interband transitions occur and the modes will alternatively couple to each other, similar to traditional Rabi oscillations in quantum systems. The indirect Rabi oscillations can also be observed through introducing transverse modulation momentum. The period of Rabi oscillations can be optimized by taking advantage of the flexible tunability of graphene. The study suggests that the structure have applications in optical switches and mode converters operating on deep-subwavelength scale.

  13. Reflection of light by anisotropic molecular crystals including exciton-polaritons and spatial dispersion.

    Science.gov (United States)

    Meskers, Stefan C J; Lakhwani, Girish

    2016-11-21

    A theory for the reflection of light by molecular crystals is described, which reproduces the minimum within the reflection band that is observed experimentally. The minimum in reflection is related to the excitation of polaritons in the crystal. The theory involves reformulation of the boundary conditions for electromagnetic waves at the interface between vacuum and material. The material is modeled by a cubic lattice of oriented Lorentz oscillators. By requiring uniformity of gauge of the electromagnetic potential across the interface between vacuum and the dipole lattice, the need for additional boundary conditions is obviated. The frequency separation between the maxima in reflectance on both sides of the minimum allows for the extraction of a plasma frequency. The plasma frequencies extracted from reflection spectra are compared to the plasma frequencies calculated directly from structural data on the crystals and the oscillator strengths of the constituent molecules. A good agreement between extracted and calculated plasma frequency is obtained for a set of 11 dye molecules.

  14. Third-harmonic generation at a silver/vacuum interface using surface plasmon polaritons.

    Science.gov (United States)

    Guo, Yan; Deutsch, Miriam

    2014-07-01

    We present an analytical study of a third-harmonic generation process by surface plasmon polaritons at a Kerr-nonlinear-metal/dielectric interface. Using a planar silver/vacuum interface, we obtain a solution to the frequency-tripling process, showing a semibound third-harmonic surface wave. Unlike the fundamental surface-bound mode, the nonlinear signal radiates into the metal, while remaining bound at the dielectric side of the interface. The propagation of the tripled frequency wave into the metal is generally lossy, except within a narrow range of ultraviolet frequencies, where it is minimally attenuated. The latter is enabled by a transparency window that is unique to the permittivity of silver.

  15. Many-body dynamics of driven-dissipative Rydberg cavity polaritons

    Science.gov (United States)

    Pistorius, Tim; Fan, Jingtao; Weimer, Hendrik

    2017-04-01

    The usage of photons as long-range information carriers has greatly increased the interest in systems with nonlinear optical properties in recent years. The nonlinearity is easily achievable in Rydberg mediums through the strong van der Waals interaction which makes them one of the best candidates for such a system. Here, we propose a way to analyze the steady state solutions of a Rydberg medium in a cavity through the combination of the variational principle for open quantum systems and the P-distribution of the density matrix. To get a better understanding of the many-body-dynamics a transformation into the polariton picture is performed and investigated. Volkswagen Foundation, Deutsche Forschungsgemeinschaft.

  16. Physics of quantum fluids new trends and hot topics in atomic and polariton condensates

    CERN Document Server

    Modugno, Michele

    2013-01-01

    The study of quantum fluids, stimulated by the discovery of superfluidity in liquid helium, has experienced renewed interest after the observation of Bose-Einstein condensation (BEC) in ultra-cold atomic gases and the observation a new type of quantum fluid with specific characteristics derived from its intrinsic out-of-equilibrium nature. The main objective of this book is to take a snapshot of the state-of-the-art of this fast moving field with a special emphasis on the hot topics and new trends. Bringing together the most active specialists of the two areas (atomic and polaritonic quantum fluids), we expect that this book will facilitate the exchange and the collaboration between these two communities working on subjects with very strong analogies.

  17. Engineering optical gradient force from coupled surface plasmon polariton modes in nanoscale plasmonic waveguides

    Science.gov (United States)

    Lu, Jiahui; Wang, Guanghui

    2016-11-01

    We explore the dispersion properties and optical gradient forces from mutual coupling of surface plasmon polariton (SPP) modes at two interfaces of nanoscale plasmonic waveguides with hyperbolic metamaterial cladding. With Maxwell’s equations and Maxwell stress tensor, we calculate and compare the dispersion relation and optical gradient force for symmetric and antisymmetric SPP modes in two kinds of nanoscale plasmonic waveguides. The numerical results show that the optical gradient force between two coupled hyperbolic metamaterial waveguides can be engineered flexibly by adjusting the waveguide structure parameters. Importantly, an alternative way to boost the optical gradient force is provided through engineering the hyperbolic metamaterial cladding of suitable orientation. These special optical properties will open the door for potential optomechanical applications, such as optical tweezers and actuators. Project supported by the National Natural Science Foundation of China (Grant No. 11474106) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313439).

  18. Solitary waves of surface plasmon polariton via phase shifts under Doppler broadening and Kerr nonlinearity

    Science.gov (United States)

    Ahmad, S.; Ahmad, A.; Bacha, B. A.; Khan, A. A.; Abdul Jabar, M. S.

    2017-12-01

    Surface Plasmon Polaritons (SPPs) are theoretically investigated at the interface of a dielectric metal and gold. The output pulse from the dielectric is used as the input pulse for the generation of SPPs. The SPPs show soliton-like behavior at the interface. The solitary form of a SPP is maintained under the effects of Kerr nonlinearity, Doppler broadening and Fresnel dragging whereas its phase shift is significantly modified. A 0.3radian phase shift is calculated in the presence of both Kerr nonlinearity and Fresnel dragging in the absence of plasma motion. The phase shift is enhanced to 60radian due to the combined effect of Doppler broadening, Kerr nonlinearity and Fresnel dragging. The results may have significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster and sensing technology.

  19. Integrated-Optics Components Utilizing Long-Range Surface Plasmon Polaritons

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra

    2004-01-01

    This thesis describes a new class of components for integrated optics, based on the propagation of long-range surface plasmon polaritons (LR-SPPs) along metal stripes embedded in a dielectric. These novel components can provide guiding of light as well as coupling and splitting from/into a number...... fabricated and optically characterized. At 1570 nm, coupling lengths of 1.9 and 0.8 mm are found for directional couplers with waveguides separated 4 and 0 µm, respectively. LR-SPP-based waveguides and waveguide components are modeled using the effective-refractive-index method and a good agreement...... with experimental results is obtained. The interaction of LR-SPPs with photonic crystals (PCs) is also studied. The PC structures are formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold film. The LR-SPP transmission through...

  20. Tamm-plasmon polaritons in one-dimensional photonic quasi-crystals.

    Science.gov (United States)

    Shukla, Mukesh Kumar; Das, Ritwick

    2018-02-01

    We present an investigation to ascertain the existence of Tamm-plasmon-polariton-like modes in one-dimensional (1D) quasi-periodic photonic systems. Photonic bandgap formation in quasi-crystals is essentially a consequence of long-range periodicity exhibited by multilayers and, thus, it can be explained using the dispersion relation in the Brillouin zone. Defining a "Zak"-like topological phase in 1D quasi-crystals, we propose a recipe to ascertain the existence of Tamm-like photonic surface modes in a metal-terminated quasi-crystal lattice. Additionally, we also explore the conditions of efficient excitation of such surface modes along with their dispersion characteristics.

  1. Numerical study of propagation properties of surface plasmon polaritons in nonlinear media

    KAUST Repository

    Sagor, Rakibul Hasan

    2016-03-29

    We present a time-domain algorithm for simulating nonlinear propagation of surface plasmon polaritons (SPPs) in chalcogenide glass. Due to the high non-linearity property and strong dispersion and confinement chalcogenide glasses are widely known as ultrafast nonlinear materials. We have used the finite difference time domain (FDTD) method to develop the simulation algorithm for the current analysis. We have modeled the frequency dependent dispersion properties and third order nonlinearity property of chalcogenide glass utilizing the general polarization algorithm merged in the auxiliary differential equation (ADE) method. The propagation dynamics of the whole structure with and without third order nonlinearity property of chalcogenide glass have been simulated and the effect of nonlinearity on the propagation properties of SPP has been investigated. © 2016 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

  2. Compact surface structures for the efficient excitation of surface plasmon-polaritons

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz, S.; Mendez, E.R. [Division de Fisica Applicada, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, BC (Mexico); Macias, D.; Salas-Montiel, R.; Adam, P.M. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP-2060, 10010 Troyes Cedex (France)

    2012-06-15

    We present calculations of the efficiency of excitation of surface plasmon-polaritons (SPPs) with surface structures illuminated by focussed beams. First, it is shown that the low reflectivity observed with broad highly directional beams and periodic gratings does not necessarily imply an efficient coupling to SPPs. We then consider the coupling through surface features like steps, grooves and angled steps, and calculate efficiency maps for these structures as functions of the parameters that define them. Finally, we explore the possibilities of improving the coupling efficiency using periodic structures consisting of a small number of rectangular grooves. We find that a surface section with a length of about four wavelengths can couple as much as 45% of the incident light into a directional SPP. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Ultraviolet Beam Focusing in Gallium Arsenide by Direct Excitation of Surface Plasmon Polaritons

    Directory of Open Access Journals (Sweden)

    Senfeng Lai

    2015-01-01

    Full Text Available This paper proposed that ultraviolet beam could be focused by gallium arsenide (GaAs through direct excitation of surface plasmon polaritons. Both theoretical analysis and computer simulation showed that GaAs could be a reasonably good plasmonic material in the air in the deep ultraviolet waveband. With a properly designed bull’s eye structure etched in GaAs, the ultraviolet electric field could be enhanced to as high as 20 times the incident value, and the full-width-half-maximum (FWHM of the light beam could be shrunk from ~48° to ~6°. As a plasmonic material, GaAs was compared to Ag and Al. Within the studied ultraviolet waveband, the field enhancement in GaAs was much stronger than Ag but not as high as Al.

  4. Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence.

    Science.gov (United States)

    Takeuchi, K; Yamamoto, N

    2011-06-20

    A cathodoluminescence technique using a 200-keV transmission electron microscope revealed the dispersion patterns of surface plasmon polaritons (SPPs) in a two-dimensional plasmonic crystal with cylindrical hole arrays. The dispersion curves of the SPP modes involving the Γ point were derived from the angle-resolved spectrum patterns. The contrast along the dispersion curves changed with the polarization direction of the emitted light due to the property of the SPP modes. The SPP modes at the Γ point were identified from the photon maps, which mimicked standing SPP waves in a real space. The beam-scan spectral images across the plasmonic crystal edge clearly demonstrated the dependence of the SPP to light conversion efficiency on the emission angle and polarization of light.

  5. A model for the energy band gap of GaSbxAs1-x and InSbxAs1-x in the whole composition range

    Science.gov (United States)

    Zhao, Chuan-Zhen; Ren, He-Yu; Wei, Tong; Wang, Sha-Sha; Wang, Jun

    2018-04-01

    The band gap evolutions of GaSbxAs1-x and InSbxAs1-x in the whole composition range are investigated. It is found that the band gap evolutions of GaSbxAs1-x and InSbxAs1-x are determined by two factors. One is the impurity-host interaction in the As-rich and Sb-rich composition ranges. The other is the intraband coupling within the conduction band and separately within the valence band in the moderate composition range. Based on the band gap evolutions of GaSbxAs1-x and InSbxAs1-x, a model is established. In addition, it is found that the impurity-host interaction is determined by not only the mismatches in size and electronegativity between the introduced atoms in the host material and the anions of the host material, but also the difference in electronegativity between the introduced atoms in the host material and the cations of the host material.

  6. Electronic properties of doped gapped graphene

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, Hamze, E-mail: hamze.mousavi@gmail.com [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Nano Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of)

    2013-04-01

    One of the carbon atoms in each Bravais lattice unit cell of pristine graphene plane is substituted by a foreign atom leading to a band gap in the density of states of the system. Then, the gapped graphene is randomly doped by another impurity. The density of states, electronic heat capacity and electrical conductivity of the gapped and doped gapped graphene are investigated within random tight-binding Hamiltonian model and Green's function formalism. The results show that by presence of impurities in the gapped graphene the band gap moves towards lower (higher) values of energy when dopants act as acceptors (donors). The heat capacity decreases (increases) before (after) the Schottky anomaly as well. It is also found that the electrical conductivity of the doped gapped graphene reduces on all ranges of temperature.

  7. Photonic band gap materials

    Science.gov (United States)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  8. Finding the gaps

    Science.gov (United States)

    Stoneham, A. M.

    Much of the pioneering work on radiation damage was based on very simple potentials. Potentials are now much more sophisticated and accurate. Self-consistent molecular dynamics is routine for adiabatic energy surfaces, at least for modest numbers of atoms and modest timescales. This means that non-equilibrium nuclear processes can be followed dynamically. It might also give the illusion that any damage process can be modelled with success. Sadly, this is not yet so. This paper discusses where the gaps lie, and specifically three groups of challenges. The first challenge concerns electronic excited states. The second challenge concerns timescales, from femtoseconds to tens of years. The third challenge concerns length scales, and the link between microscopic (atomistic) and mesoscopic (microstructural) scales. The context of these challenges is materials modification by excitation: the removal of material, the modification of bulk or surface material, the altering of rates of processes or changing of branching ratios, and damage, good or bad.

  9. Charting service quality gaps

    OpenAIRE

    Cândido, Carlos; Morris, D. S.

    2000-01-01

    Some of the most influential models in the service management literature (Parasuraman et al., 1985; Grönroos, 1990) focus on the concept of service quality gap (SQG). Parasuraman et al. (1985) define a pioneering model with five SQGs, the concepts of which are amplified in Brogowicz et al.’s (1990) model. The latter has five types of encompassing gaps: information and feedback-related gaps; design-related gaps; implementation-related gaps; communication-related gaps; and customers’ perception...

  10. Energy gap evolution across the superconductivity dome in single crystals of (Ba1−xKx)Fe2As2

    Science.gov (United States)

    Cho, Kyuil; Kończykowski, Marcin; Teknowijoyo, Serafim; Tanatar, Makariy A.; Liu, Yong; Lograsso, Thomas A.; Straszheim, Warren E.; Mishra, Vivek; Maiti, Saurabh; Hirschfeld, Peter J.; Prozorov, Ruslan

    2016-01-01

    The mechanism of unconventional superconductivity in iron-based superconductors (IBSs) is one of the most intriguing questions in current materials research. Among non-oxide IBSs, (Ba1−xKx)Fe2As2 has been intensively studied because of its high superconducting transition temperature and fascinating evolution of the superconducting gap structure from being fully isotropic at optimal doping (x ≈ 0.4) to becoming nodal at x > 0.8. Although this marked evolution was identified in several independent experiments, there are no details of the gap evolution to date because of the lack of high-quality single crystals covering the entire K-doping range of the superconducting dome. We conducted a systematic study of the London penetration depth, λ(T), across the full phase diagram for different concentrations of point-like defects introduced by 2.5-MeV electron irradiation. Fitting the low-temperature variation with the power law, Δλ ~ Tn, we find that the exponent n is the highest and the Tc suppression rate with disorder is the smallest at optimal doping, and they evolve with doping being away from optimal, which is consistent with increasing gap anisotropy, including an abrupt change around x ≃ 0.8, indicating the onset of nodal behavior. Our analysis using a self-consistent t-matrix approach suggests the ubiquitous and robust nature of s± pairing in IBSs and argues against a previously suggested transition to a d-wave state near x = 1 in this system. PMID:27704046

  11. Energy gap evolution across the superconductivity dome in single crystals of (Ba1-xK x )Fe2As2.

    Science.gov (United States)

    Cho, Kyuil; Kończykowski, Marcin; Teknowijoyo, Serafim; Tanatar, Makariy A; Liu, Yong; Lograsso, Thomas A; Straszheim, Warren E; Mishra, Vivek; Maiti, Saurabh; Hirschfeld, Peter J; Prozorov, Ruslan

    2016-09-01

    The mechanism of unconventional superconductivity in iron-based superconductors (IBSs) is one of the most intriguing questions in current materials research. Among non-oxide IBSs, (Ba 1- x K x )Fe 2 As 2 has been intensively studied because of its high superconducting transition temperature and fascinating evolution of the superconducting gap structure from being fully isotropic at optimal doping ( x ≈ 0.4) to becoming nodal at x > 0.8. Although this marked evolution was identified in several independent experiments, there are no details of the gap evolution to date because of the lack of high-quality single crystals covering the entire K-doping range of the superconducting dome. We conducted a systematic study of the London penetration depth, λ( T ), across the full phase diagram for different concentrations of point-like defects introduced by 2.5-MeV electron irradiation. Fitting the low-temperature variation with the power law, Δλ ~ T n , we find that the exponent n is the highest and the T c suppression rate with disorder is the smallest at optimal doping, and they evolve with doping being away from optimal, which is consistent with increasing gap anisotropy, including an abrupt change around x ≃ 0.8, indicating the onset of nodal behavior. Our analysis using a self-consistent t -matrix approach suggests the ubiquitous and robust nature of s ± pairing in IBSs and argues against a previously suggested transition to a d -wave state near x = 1 in this system.

  12. Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities.

    Science.gov (United States)

    Laucht, A; Hauke, N; Villas-Bôas, J M; Hofbauer, F; Böhm, G; Kaniber, M; Finley, J J

    2009-08-21

    We present a combined experimental and theoretical study of the emission spectrum of zero dimensional nanocavity polaritons in electrically tunable single dot nanocavities. Such devices allow us to vary the dot-cavity detuning in situ and probe the emission spectrum under well-controlled conditions of lattice temperature and incoherent excitation level. Our results show that the observation of a double peak in the emission spectrum is not an unequivocal signature of strong coupling. Moreover, by comparing our results with theory, we extract the effective vacuum Rabi splitting, the pure dephasing rate, and their dependence on the incoherent optical pumping power and lattice temperature. Our study highlights how coupling to the lattice and dynamical fluctuations in the solid-state environment influence the coherence properties of quantum dot microcavity polaritons and, sometimes, may mask the occurrence of strong coupling.

  13. Superconducting gap anomaly in heavy fermion systems

    Indian Academy of Sciences (India)

    Within this approximation the equation for the superconducting gap is derived, which depends on the effective position of the energy level of the -electrons relative to the Fermi level. The latter in turn depends on the occupation probability f of the -electrons. The gap equation is solved self-consistently with the equation ...

  14. Optical response and excitons in gapped graphene

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Jauho, Antti-Pekka; Pedersen, K.

    2009-01-01

    Graphene can be rendered semiconducting via energy gaps introduced in a variety of ways, e.g., coupling to substrates, electrical biasing, or nanostructuring. To describe and compare different realizations of gapped graphene we propose a simple two-band model in which a "mass" term is responsible...

  15. Gap and channeled plasmons in tapered grooves: a review

    DEFF Research Database (Denmark)

    Smith, C. L. C.; Stenger, Nicolas; Kristensen, Anders

    2015-01-01

    Tapered metallic grooves have been shown to support plasmons - electromagnetically coupled oscillations of free electrons at metal-dielectric interfaces - across a variety of configurations and V-like profiles. Such plasmons may be divided into two categories: gap-surface plasmons (GSPs) that are......Tapered metallic grooves have been shown to support plasmons - electromagnetically coupled oscillations of free electrons at metal-dielectric interfaces - across a variety of configurations and V-like profiles. Such plasmons may be divided into two categories: gap-surface plasmons (GSPs......) that are confined laterally between the tapered groove sidewalls and propagate either along the groove axis or normal to the planar surface, and channeled plasmon polaritons (CPPs) that occupy the tapered groove profile and propagate exclusively along the groove axis. Both GSPs and CPPs exhibit an assortment...... platform to explore the fundamental science of plasmon excitations and their interactions. In this Review, we provide a research status update of plasmons in tapered grooves, starting with a presentation of the theory and important features of GSPs and CPPs, and follow with an overview of the broad range...

  16. Behind the Pay Gap

    Science.gov (United States)

    Dey, Judy Goldberg; Hill, Catherine

    2007-01-01

    Women have made remarkable gains in education during the past three decades, yet these achievements have resulted in only modest improvements in pay equity. The gender pay gap has become a fixture of the U.S. workplace and is so ubiquitous that many simply view it as normal. "Behind the Pay Gap" examines the gender pay gap for college graduates.…

  17. Influence of metal deposition on exciton-surface plasmon polariton coupling in GaAs/AlAs/GaAs core-shell nanowires studied with time-resolved cathodoluminescence.

    Science.gov (United States)

    Estrin, Yevgeni; Rich, Daniel H; Kretinin, Andrey V; Shtrikman, Hadas

    2013-04-10

    The coupling of excitons to surface plasmon polaritons (SPPs) in Au- and Al-coated GaAs/AlAs/GaAs core-shell nanowires, possessing diameters of ~100 nm, was probed using time-resolved cathodoluminescence (CL). Excitons were generated in the metal coated nanowires by injecting a pulsed high-energy electron beam through the thin metal films. The Purcell enhancement factor (FP) was obtained by direct measurement of changes in the temperature-dependent radiative lifetime caused by the nanowire exciton-SPP coupling and compared with a model that takes into account the dependence of FP on the distance from the metal film and the thickness of the film covering the GaAs nanowires.

  18. Evidence and knowledge gaps for the association between energy drink use and high-risk behaviors among adolescents and young adults.

    Science.gov (United States)

    Arria, Amelia M; Bugbee, Brittany A; Caldeira, Kimberly M; Vincent, Kathryn B

    2014-10-01

    Sales of energy drinks have increased rapidly since their introduction to the marketplace in the 1990s. Despite the health concerns raised about these beverages, which are often highly caffeinated, surprisingly little data are available to estimate the prevalence of their use. This review presents the results of secondary data analyses of a nationally representative data set of schoolchildren in the United States and reviews the available research on the association between energy drink use and risk-taking behaviors. Approximately one-third of the students surveyed were recent users of energy drinks, with substantial variation by age, sex, and race/ethnicity. Among the health and safety concerns related to energy drinks and their consumption is the possible potentiation of risk-taking behaviors. The review of available research reveals that, although there does appear to be a strong and consistent positive association between the use of energy drinks and risk-taking behavior, all but one of the available studies used cross-sectional designs, thereby limiting the ability to make inferences about the temporal nature of the association. Thus, more research is needed to understand the nature of this association and how energy drinks, particularly those containing caffeine, might impact adolescent health and safety, especially given the high prevalence of their use among youth. © 2014 International Life Sciences Institute.

  19. Minding the gap

    Directory of Open Access Journals (Sweden)

    Mia Carlberg

    2013-12-01

    Full Text Available The plan for the Round table session was to focus on organizational and social/cultural differences between librarians and faculty with the aim to increase our awareness of the differences when we try to find ways to cooperate within the academy or school. This may help us to sort things out, experience acceptance and take adequate actions, saving energy and perhaps be less frustrated.  The questions that the workshop addressed were: What is in the gap between librarians and faculty when dealing with information literacy? How can we fill the gap? Participants discussed this in detail with the aim of together finding ways to understand it better and make it possible to find ways to fill this gap. By defining it and thereby making it easier to work out a strategy for future action to improve the teaching of information literacy, including listing possible, impossible or nearly impossible ways. The springboard to the discussion was extracted from some projects that the workshop leader has been engaged in since 2009. The first example is a research circle where Uppsala University Library used action research to observe and understand the process when we had the opportunity to implement information literacy classes with progression in an undergraduate program. What worked well? What did not? Why? This work was described together with other examples from Uppsala University to an international panel working with quality issues. What did they think of our work? May this change the ways we are working? How? Another example is an ongoing joint project where librarians and faculty members are trying to define ways to increase the cooperation between the library and faculty and make this cooperation sustainable. Recent experience from this was brought to the discussion.   There are an overwhelming number of papers written in this field. A few papers have inspired these ideas. One article in particular: Christiansen, L., Stombler, M. & Thaxton, L. (2004. A

  20. Crimea and the quest for energy and military hegemony in the Black Sea region: governance gap in a contested geostrategic zone

    NARCIS (Netherlands)

    Blockmans, S.

    2015-01-01

    Russia’s annexation of Crimea and its destabilization of Eastern Ukraine have radically altered the European security order, with the Black Sea region becoming an acutely contested geostrategic zone. Russia’s strategic interests in the Black Sea region, especially in terms of energy and military

  1. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.

    Science.gov (United States)

    Chen, Shumei; Li, Guixin; Lei, Dangyuan; Cheah, Kok Wai

    2013-10-07

    Plasmonic analogues of Rabi-splitting have been extensively studied in various metallic nanosystems hybridized with semiconductor quantum dots, nanocrystals and organic molecules, with a focus on the splitting energy gap where surface plasmon polaritons (SPPs) strongly couple with excitons. Similar strong coupling also occurs for individual metallic nanoparticles locating inside a photonic microcavity or nearby a waveguide due to the strong interaction between localized surface plasmons and photonic modes in the near-infrared wavelength range. In this work we study experimentally and theoretically the strong coupling between propagating SPPs and the Fabry-Perot (F-P) cavity mode in a metallic nanoparticle array-nanocavity hybrid system in the visible spectral range. The strong modal hybridization created giant modal anti-crossing which can be considered as the classical phenomenon of Rabi splitting i.e. a Rabi-analogue. In addition to the observation of a giant Rabi-analogue splitting energy of 148 meV at the strong coupling regime, we also reveal highly-efficient energy exchange between SPP and F-P modes at the low frequency dispersion branch through detailed numerical near-field studies and experimental phase delay analysis. The observed efficient mode conversion in the investigated plasmonic nanocavity is useful for designing novel nanophotonic devices, in which conventional photonic components need to be integrated with miniaturized plasmonic devices or vice versa.

  2. The Coupling Effects of Surface Plasmon Polaritons and Magnetic Dipole Resonances in Metamaterials

    Science.gov (United States)

    Liu, Bo; Tang, Chaojun; Chen, Jing; Yan, Zhendong; Zhu, Mingwei; Sui, Yongxing; Tang, Huang

    2017-11-01

    We numerically investigate the coupling effects of surface plasmon polaritons (SPPs) and magnetic dipole (MD) resonances in metamaterials, which are composed of an Ag nanodisk array and a SiO2 spacer on an Ag substrate. The periodicity of the Ag nanodisk array leads to the excitation of SPPs at the surface of the Ag substrate. The near-field plasmon interactions between individual Ag nanodisks and the Ag substrate form MD resonances. When the excitation wavelengths of SPPs are tuned to approach the position of MD resonances by changing the array period of Ag nanodisks, SPPs and MD resonances are coupled together into two hybridized modes, whose positions can be well predicted by a coupling model of two oscillators. In the strong coupling regime of SPPs and MD resonances, the hybridized modes exhibit an obvious anti-crossing, resulting into an interesting phenomenon of Rabi splitting. Moreover, the magnetic fields under the Ag nanodisks are greatly enhanced, which may find some potential applications, such as magnetic nonlinearity.

  3. Electromagnetically Induced Transparency in Circuit Quantum Electrodynamics with Nested Polariton States

    Science.gov (United States)

    Long, Junling; Ku, H. S.; Wu, Xian; Gu, Xiu; Lake, Russell E.; Bal, Mustafa; Liu, Yu-xi; Pappas, David P.

    2018-02-01

    Quantum networks will enable extraordinary capabilities for communicating and processing quantum information. These networks require a reliable means of storage, retrieval, and manipulation of quantum states at the network nodes. A node receives one or more coherent inputs and sends a conditional output to the next cascaded node in the network through a quantum channel. Here, we demonstrate this basic functionality by using the quantum interference mechanism of electromagnetically induced transparency in a transmon qubit coupled to a superconducting resonator. First, we apply a microwave bias, i.e., drive, to the qubit-cavity system to prepare a Λ -type three-level system of polariton states. Second, we input two interchangeable microwave signals, i.e., a probe tone and a control tone, and observe that transmission of the probe tone is conditional upon the presence of the control tone that switches the state of the device with up to 99.73% transmission extinction. Importantly, our electromagnetically induced transparency scheme uses all dipole allowed transitions. We infer high dark state preparation fidelities of >99.39 % and negative group velocities of up to -0.52 ±0.09 km /s based on our data.

  4. Strategies for leukemic biomarker detection using long-range surface plasmon-polaritons

    Science.gov (United States)

    Krupin, O.; Wang, C.; Berini, P.

    2014-09-01

    The suitability and use of long-range surface plasmon-polaritons for leukemic biomarker detection is discussed. A novel optical biosensor comprised of gold straight waveguides embedded in CYTOP with an etched microfluidic channel was tested for detecting leukemia in patient serum. Gold surface functionalization involved the interaction of protein G (PG) with antibodies by first adsorbing PG on bare gold and then antibodies (Immunoglobulin G, IgG). Differentiation between healthy and leukemia patients was based on the difference in ratios of Ig kappa (Igκ) and Ig lambda (Igλ) light chains in both serums. The ratio for a normal patient is ~1.4 - 2, whereas for a leukemia patient this ratio is altered. As a receptor (primary antibodies), goat anti-human anti-IgGκ and anti-IgGλ were used to functionalize the surface. Diluted normal and leukemia patient serums were tested over the aforementioned surfaces. The ratios of mass surface densities of IgGκ:IgGλ for normal serum (NS) and patient serum (PS) were found to be 1.55 and 1.92 respectively.

  5. The Coupling Effects of Surface Plasmon Polaritons and Magnetic Dipole Resonances in Metamaterials.

    Science.gov (United States)

    Liu, Bo; Tang, Chaojun; Chen, Jing; Yan, Zhendong; Zhu, Mingwei; Sui, Yongxing; Tang, Huang

    2017-11-09

    We numerically investigate the coupling effects of surface plasmon polaritons (SPPs) and magnetic dipole (MD) resonances in metamaterials, which are composed of an Ag nanodisk array and a SiO 2 spacer on an Ag substrate. The periodicity of the Ag nanodisk array leads to the excitation of SPPs at the surface of the Ag substrate. The near-field plasmon interactions between individual Ag nanodisks and the Ag substrate form MD resonances. When the excitation wavelengths of SPPs are tuned to approach the position of MD resonances by changing the array period of Ag nanodisks, SPPs and MD resonances are coupled together into two hybridized modes, whose positions can be well predicted by a coupling model of two oscillators. In the strong coupling regime of SPPs and MD resonances, the hybridized modes exhibit an obvious anti-crossing, resulting into an interesting phenomenon of Rabi splitting. Moreover, the magnetic fields under the Ag nanodisks are greatly enhanced, which may find some potential applications, such as magnetic nonlinearity.

  6. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    Science.gov (United States)

    Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.; Andersen, Sebastian K. H.; Roberts, Alexander S.; Radko, Ilya P.; Smith, Cameron L. C.; Kristensen, Anders; Bozhevolnyi, Sergey I.

    2016-02-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes.

  7. Intersubband surface plasmon polaritons in all-semiconductor planar plasmonic resonators

    Science.gov (United States)

    ZałuŻny, M.

    2018-01-01

    We theoretically discuss properties of intersubband surface plasmon polaritons (ISPPs) supported by the system consisting of a multiple quantum well (MQW) slab embedded into planar resonator with highly doped semiconducting claddings playing the role of cavity mirrors. Symmetric structures, where the MQW slab occupies the whole space between the claddings and asymmetric structures, where the MQW occupy only half of the space between mirrors, are considered. We focus mainly on the nearly degenerate structures where intersubband frequency is close to frequency of the surface plasmon of the mirrors. The ISPP characteristics are calculated numerically using a semiclassical approach based on the transfer matrix formalism and the effective-medium approximation. The claddings are described by the lossless Drude model. The possibility of engineering the dispersion of the ISPP branches is demonstrated. In particular, for certain parameters of the asymmetric structures we observe the formation of the multimode ISPP branches with two zero group velocity points. We show that the properties of the ISPP branches are reasonably well interpreted employing quasiparticle picture provided that the concept of the mode overlap factor is generalized, taking into account the dispersive character of the mirrors. In addition to this, we demonstrate that the lossless dispersion characteristics of the ISPP branches obtained in the paper are consistent with the angle-resolved reflection-absorption spectra of the GaAlAs-based realistic plasmonic resonators.

  8. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu

    2018-01-12

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  9. Ultrafast self-action of surface-plasmon polaritons at an air/metal interface

    Science.gov (United States)

    Baron, Alexandre; Hoang, Thang B.; Fang, Chao; Mikkelsen, Maiken H.; Smith, David R.

    2015-05-01

    We investigate both theoretically and experimentally the nonlinear propagation of surface-plasmon polaritons (SPP) on a single air/metal interface. Inspired by nonlinear dielectric waveguide theory, we analytically derive a model that describes the nonlinear propagation of SPPs, thus bridging the description of plasmonic and dielectric waveguides. The model, the numerical simulations, and the experiments, which are carried out in the 100 fs regime, reveal that the SPP undergoes strong ultrafast self-action which manifests itself through self-induced absorption. Our observations are consistent with a large, bulk, third-order nonlinear susceptibility (χ(3 )) of gold and provide a self-consistent theory of self-action of SPPs at an air/metal interface. Experimentally, we find Im {χ-(3 )} ˜3 ×10-16m2/V2 . These findings have important implications in the nonlinear physics of plasmonics and metamaterials as they provide evidence that nonlinear absorption has a significant effect on the propagation of SPPs excited by intense optical pulses. This self-action is also expected to affect the anomalous absorption of light near subwavelength structures as well as the strength of desirable nonlinear processes such as third-harmonic generation and four-wave mixing, which will inevitably compete with nonlinear absorption.

  10. Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides

    Directory of Open Access Journals (Sweden)

    Zhijie Ma

    2017-11-01

    Full Text Available We present a highly sensitive microfluidic sensing technique for the terahertz (THz region of the electromagnetic spectrum based on spoof surface plasmon polaritons (SPPs. By integrating a microfluidic channel in a spoof SPP waveguide, we take advantage of these highly confined electromagnetic modes to create a platform for dielectric sensing of liquids. Our design consists of a domino waveguide, that is, a series of periodically arranged rectangular metal blocks on top of a metal surface that supports the propagation of spoof SPPs. Through numerical simulations, we demonstrate that the transmission of spoof SPPs along the waveguide is extremely sensitive to the refractive index of a liquid flowing through a microfluidic channel crossing the waveguide to give an interaction volume on the nanoliter scale. Furthermore, by taking advantage of the insensitivity of the domino waveguide’s fundamental spoof SPP mode to the lateral width of the metal blocks, we design a tapered waveguide able to achieve further confinement of the electromagnetic field. Using this approach, we demonstrate the highly sensitive detection of individual subwavelength micro-particles flowing in the liquid. These results are promising for the creation of spoof SPP based THz lab-on-a-chip microfluidic devices that are suitable for the analysis of biological liquids such as proteins and circulating tumour cells in buffer solution.

  11. Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides

    Science.gov (United States)

    Ma, Zhijie; Hanham, Stephen M.; Arroyo Huidobro, Paloma; Gong, Yandong; Hong, Minghui; Klein, Norbert; Maier, Stefan A.

    2017-11-01

    We present a highly sensitive microfluidic sensing technique for the terahertz (THz) region of the electromagnetic spectrum based on spoof surface plasmon polaritons (SPPs). By integrating a microfluidic channel in a spoof SPP waveguide, we take advantage of these highly confined electromagnetic modes to create a platform for dielectric sensing of liquids. Our design consists of a domino waveguide, that is, a series of periodically arranged rectangular metal blocks on top of a metal surface that supports the propagation of spoof SPPs. Through numerical simulations, we demonstrate that the transmission of spoof SPPs along the waveguide is extremely sensitive to the refractive index of a liquid flowing through a microfluidic channel crossing the waveguide to give an interaction volume on the nanoliter scale. Furthermore, by taking advantage of the insensitivity of the domino waveguide's fundamental spoof SPP mode to the lateral width of the metal blocks, we design a tapered waveguide able to achieve further confinement of the electromagnetic field. Using this approach, we demonstrate the highly sensitive detection of individual subwavelength micro-particles flowing in the liquid. These results are promising for the creation of spoof SPP based THz lab-on-a-chip microfluidic devices that are suitable for the analysis of biological liquids such as proteins and circulating tumour cells in buffer solution.

  12. Surface plasmon polaritons in a semi-bounded degenerate plasma: Role of spatial dispersion and collisions

    International Nuclear Information System (INIS)

    Tyshetskiy, Yu.; Kompaneets, R.; Vladimirov, S. V.

    2012-01-01

    Surface plasmon polaritons (SPPs) in a semi-bounded degenerate plasma (e.g., a metal) are studied using the quasiclassical mean-field kinetic model, taking into account the spatial dispersion of the plasma (due to quantum degeneracy of electrons) and electron-ion (electron-lattice, for metals) collisions. SPP dispersion and damping are obtained in both retarded (ω/k z ∼c) and non-retarded (ω/k z ≪c) regions, as well as in between. It is shown that the plasma spatial dispersion significantly affects the properties of SPPs, especially at short wavelengths (less than the collisionless skin depth, λ ≲ c/ω pe ). Namely, the collisionless (Landau) damping of SPPs (due to spatial dispersion) is comparable to the purely collisional (Ohmic) damping (due to electron-lattice collisions) in a wide range of SPP wavelengths, e.g., from λ∼20 nm to λ∼0.8 nm for SPP in gold at T = 293 K and from λ∼400 nm to λ∼0.7 nm for SPPs in gold at T = 100 K. The spatial dispersion is also shown to affect, in a qualitative way, the dispersion of SPPs at short wavelengths λ ≲ c/ω pe .

  13. Tunable optical response at the plasmon-polariton frequency in dielectric-graphene-metamaterial systems

    Science.gov (United States)

    Calvo-Velasco, D. M.; Porras-Montenegro, N.

    2018-04-01

    By using the scattering matrix formalism, it is studied the optical properties of one dimensional photonic crystals made of multiple layers of dielectric and uniaxial anisotropic single negative electric metamaterial with Drude type responses, with inclusions of graphene in between the dielectric-dielectric interfaces (DGMPC). The transmission spectra for transverse electric (TE) and magnetic (TM) polarization are presented as a function of the incidence angle, the graphene chemical potential, and the metamaterial plasma frequencies. It is found for the TM polarization the tunability of the DGMPC optical response with the graphene chemical potential, which can be observed by means of transmission or reflexion bands around the metamaterial plasmon-polariton frequency, with bandwidths depending on both the incidence angle and the metamaterial plasma frequency. Also, the transmission band is observed when losses in the metamaterial slabs are considered for finite systems. The conditions for the appearance of these bands are shown analytically. We consider this work contributes to open new possibilities to the design of photonic devices with DGMPCs.

  14. Power monitoring in dielectric-loaded surface plasmon-polariton waveguides.

    Science.gov (United States)

    Kumar, Ashwani; Gosciniak, Jacek; Andersen, Thomas B; Markey, Laurent; Dereux, Alain; Bozhevolnyi, Sergey I

    2011-02-14

    We report on propagating mode power monitoring in dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) by measuring the resistance of gold stripes supporting the DLSPPW mode propagation. Inevitable absorption of the DLSPPW mode in metal causes an increase in the stripe temperature and, thereby, in its resistance whose variations are monitored with an external Wheatstone bridge being accurately balanced in the absence of radiation in a waveguide. The investigated waveguide configuration consists of a 1-µm-thick and 10-µm-wide polymer ridges tapered laterally to a 1-µm-wide ridge placed on a 50-nm-thin and 4-µm-wide gold stripe, all supported by a magnesium fluoride substrate. Using single-mode polarization-maintaining fiber for in- and out-coupling of radiation, DLSPPW mode power monitoring at telecom wavelengths is realized with the responsivities of up to ~1.8 µV/µW (showing weak wavelength dependence) being evaluated for a bias voltage of 1 V.

  15. Surface plasmon polariton enhanced ultrathin nano-structured CdTe solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Luk, Ting S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Fofang, Nche T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Cruz-Campa, Jose L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Frank, Ian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Campione, Salvatore [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies

    2014-08-21

    Here, we demonstrate numerically that two-dimensional arrays of ultrathin CdTe nano-cylinders on Ag can serve as an effective broadband anti-reflection structure for solar cell applications. Such devices exhibit strong absorption properties, mainly in the CdTe semiconductor regions, and can produce short-circuit current densities of 23.4 mA/cm2, a remarkable number in the context of solar cells given the ultrathin dimensions of our nano-cylinders. The strong absorption is enabled via excitation of surface plasmon polaritons (SPPs) under plane wave incidence. In particular, we identified the key absorption mechanism as enhanced fields of the SPP standing waves residing at the interface of CdTe nano-cylinders and Ag. We compare the performance of Ag, Au, and Al substrates, and observe significant improvement when using Ag, highlighting the importance of using low-loss metals. Although we use CdTe here, the proposed approach is applicable to other solar cell materials with similar absorption properties.

  16. Plasmon polariton enhanced mid-infrared photodetectors based on Ge quantum dots in Si

    Science.gov (United States)

    Yakimov, A. I.; Kirienko, V. V.; Bloshkin, A. A.; Armbrister, V. A.; Dvurechenskii, A. V.

    2017-10-01

    Quantum dot based infrared (IR) photodetectors (QDIPs) have the potential to provide meaningful advances to the next generation of imaging systems due to their sensitivity to normal incidence radiation, large optical gain, low dark currents, and high operating temperature. SiGe-based QDIPs are of particular interest as they are compatible with silicon integration technology but suffer from the low absorption coefficient and hence small photoresponse in the mid-wavelength IR region. Here, we report on the plasmonic enhanced Ge/Si QDIPs with tailorable wavelength optical response and polarization selectivity. Ge/Si heterostructures with self-assembled Ge quantum dots are monolithically integrated with periodic two-dimensional arrays of subwavelength holes (2DHAs) perforated in gold films to convert the incident electromagnetic IR radiation into the surface plasmon polariton (SPP) waves. The resonant responsivity of the plasmonic detector at a wavelength of 5.4 μm shows an enhancement of up to thirty times over a narrow spectral bandwidth (FWHM = 0.3 μm), demonstrating the potentiality of this approach for the realization of high-performance Ge/Si QDIPs that require high spectral resolution. The possibility of the polarization-sensitive detection in Ge/Si QDIPs enhanced with a stretched-lattice 2DHA is reported. The excitation of SPP modes and the near-field components are investigated with the three-dimensional finite-element frequency-domain method. The role that plasmonic electric field plays in QDIP enhancement is discussed.

  17. Pseudo-gap and superconducting condensate energies in the infrared spectra of Pr-doped YBa2Cu3O7

    International Nuclear Information System (INIS)

    Lobo, R.P.S.M.; Bontemps, N.; Racah, D.; Dagan, Y.; Deutscher, G.

    2001-01-01

    The (a,b)-plane infrared and visible conductivity (30-30000 cm -1 ) of a 40% praseodymium-substituting yttrium YBa 2 Cu 3 O 7 film displays a loss of spectral weight over two separate energy ranges when lowering the temperature. A first loss of spectral weight is present in the range 300-800 cm -1 from room temperature down to 40 K (T c =35 K). A further distinct spectral weight diminution appears in the superconducting phase at frequencies below 200 cm -1 . This diminution can be observed due to the high signal-to-noise ratio allowed by the large area of the thin film. We propose that the lower energy loss of spectral weight reflects the formation and the properties of the superconducting condensate. (orig.)

  18. Bridging the Gap

    DEFF Research Database (Denmark)

    Kramer Overgaard, Majken; Broeng, Jes; Jensen, Monika Luniewska

    Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ventures.......Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ventures....

  19. Beryllium and boron decoration form planar tetracoordinate carbon strips at the edge of BCN nanoribbons result in energy gap opposite variation and third-order nonlinear optical response improvement

    Science.gov (United States)

    Zhang, Minyi; Song, Jinshuai; Lu, Qianqian; Wei, Jing; Wu, Peng; Li, Chunsen

    2017-10-01

    Planar tetracoordinate carbon (ptC) with intriguing planar bond structure has triggered great attentions. In this work, B/Be-terminated decoration form armchair hybridized boron nitride and graphene nanoribbons with ptC structure (ptC-aBCNNRs) are investigated theoretically for third-order nonlinear optical (NLO) response by employing time-dependent density functional theory combined with sum-over-states method. Our calculations reveal Be and B decorated on ptC-aBCNNRs would result in opposite variation of energy gaps, and strongly enhance the NLO response in different third-order NLO processes. The strong third-order NLO response predicted for ptC-aBCNNRs is originated from the charge redistribution induced by ptC structure and hexagonal-BN ribbon insertion.

  20. Fullerene-Free Organic Solar Cells with an Efficiency of 10.2% and an Energy Loss of 0.59 eV Based on a Thieno[3,4-c]Pyrrole-4,6-dione-Containing Wide Band Gap Polymer Donor.

    Science.gov (United States)

    Hadmojo, Wisnu Tantyo; Wibowo, Febrian Tri Adhi; Ryu, Du Yeol; Jung, In Hwan; Jang, Sung-Yeon

    2017-09-27

    Although the combination of wide band gap polymer donors and narrow band gap small-molecule acceptors achieved state-of-the-art performance as bulk heterojunction (BHJ) active layers for organic solar cells, there have been only several of the wide band gap polymers that actually realized high-efficiency devices over >10%. Herein, we developed high-efficiency, low-energy-loss fullerene-free organic solar cells using a weakly crystalline wide band gap polymer donor, PBDTTPD-HT, and a nonfullerene small-molecule acceptor, ITIC. The excessive intermolecular stacking of ITIC is efficiently suppressed by the miscibility with PBDTTPD-HT, which led to a well-balanced nanomorphology in the PBDTTPD-HT/ITIC BHJ active films. The favorable optical, electronic, and energetic properties of PBDTTPD-HT with respect to ITIC achieved panchromatic photon-to-current conversion with a remarkably low energy loss (0.59 eV).

  1. Optical momentum and angular momentum in complex media: from the Abraham–Minkowski debate to unusual properties of surface plasmon-polaritons

    Science.gov (United States)

    Bliokh, Konstantin Y.; Bekshaev, Aleksandr Y.; Nori, Franco

    2017-12-01

    We examine the momentum and angular momentum (AM) properties of monochromatic optical fields in dispersive and inhomogeneous isotropic media, using the Abraham- and Minkowski-type approaches, as well as the kinetic (Poynting-like) and canonical (with separate spin and orbital degrees of freedom) pictures. While the kinetic Abraham–Poynting momentum describes the energy flux and the group velocity of the wave, the Minkowski-type quantities, with proper dispersion corrections, describe the actual momentum and AM carried by the wave. The kinetic Minkowski-type momentum and AM densities agree with phenomenological results derived by Philbin. Using the canonical spin–orbital decomposition, previously used for free-space fields, we find the corresponding canonical momentum, spin and orbital AM of light in a dispersive inhomogeneous medium. These acquire a very natural form analogous to the Brillouin energy density and are valid for arbitrary structured fields. The general theory is applied to a non-trivial example of a surface plasmon-polariton (SPP) wave at a metal-vacuum interface. We show that the integral momentum of the SPP per particle corresponds to the SPP wave vector, and hence exceeds the momentum of a photon in the vacuum. We also provide the first accurate calculation of the transverse spin and orbital AM of the SPP. While the intrinsic orbital AM vanishes, the transverse spin can change its sign depending on the SPP frequency. Importantly, we present both macroscopic and microscopic calculations, thereby proving the validity of the general phenomenological results. The microscopic theory also predicts a transverse magnetization in the metal (i.e. a magnetic moment for the SPP) as well as the corresponding direct magnetization current, which provides the difference between the Abraham and Minkowski momenta.

  2. Optical momentum and angular momentum in complex media: from the Abraham-Minkowski debate to unusual properties of surface plasmon-polaritons

    Science.gov (United States)

    Y Bliokh, Konstantin; Y Bekshaev, Aleksandr; Nori, Franco

    2017-12-01

    We examine the momentum and angular momentum (AM) properties of monochromatic optical fields in dispersive and inhomogeneous isotropic media, using the Abraham- and Minkowski-type approaches, as well as the kinetic (Poynting-like) and canonical (with separate spin and orbital degrees of freedom) pictures. While the kinetic Abraham-Poynting momentum describes the energy flux and the group velocity of the wave, the Minkowski-type quantities, with proper dispersion corrections, describe the actual momentum and AM carried by the wave. The kinetic Minkowski-type momentum and AM densities agree with phenomenological results derived by Philbin. Using the canonical spin-orbital decomposition, previously used for free-space fields, we find the corresponding canonical momentum, spin and orbital AM of light in a dispersive inhomogeneous medium. These acquire a very natural form analogous to the Brillouin energy density and are valid for arbitrary structured fields. The general theory is applied to a non-trivial example of a surface plasmon-polariton (SPP) wave at a metal-vacuum interface. We show that the integral momentum of the SPP per particle corresponds to the SPP wave vector, and hence exceeds the momentum of a photon in the vacuum. We also provide the first accurate calculation of the transverse spin and orbital AM of the SPP. While the intrinsic orbital AM vanishes, the transverse spin can change its sign depending on the SPP frequency. Importantly, we present both macroscopic and microscopic calculations, thereby proving the validity of the general phenomenological results. The microscopic theory also predicts a transverse magnetization in the metal (i.e. a magnetic moment for the SPP) as well as the corresponding direct magnetization current, which provides the difference between the Abraham and Minkowski momenta.

  3. Bridging a Cultural Gap

    Science.gov (United States)

    Leviatan, Talma

    2008-01-01

    There has been a broad wave of change in tertiary calculus courses in the past decade. However, the much-needed change in tertiary pre-calculus programmes--aimed at bridging the gap between high-school mathematics and tertiary mathematics--is happening at a far slower pace. Following a discussion on the nature of the gap and the objectives of a…

  4. Energy

    International Nuclear Information System (INIS)

    Meister, F.; Ott, F.

    2002-01-01

    This chapter gives an overview of the current energy economy in Austria. The Austrian political aims of sustainable development and climate protection imply a reorientation of the Austrian energy policy as a whole. Energy consumption trends (1993-1998), final energy consumption by energy carrier (indexed data 1993-1999), comparative analysis of useful energy demand (1993 and 1999) and final energy consumption of renewable energy sources by sector (1996-1999) in Austria are given. The necessary measures to be taken in order to reduce the energy demand and increased the use of renewable energy are briefly mentioned. Figs. 5. (nevyjel)

  5. Red organic light-emitting diodes based on wide band gap emitting material as the host utilizing two-step energy transfer

    International Nuclear Information System (INIS)

    Haq Khizarul; Shanpeng Liu; Khan, M A; Jiang, X Y; Zhang, Z L; Zhu, W Q

    2008-01-01

    We demonstrated efficient red organic light-emitting diodes based on a host emitting system of 9,10-di(2-naphthyl)anthracene (ADN) co-doped with 4-(dicyano-methylene)-2-t-butyle-6- (1,1,7,7-tetramethyl-julolidyl-9-enyl)-4H-pyran (DCJTB) as a red dopant and 2,3,6,7- tetrahydro-1,1,7,7-tetramethyl-1H,5H,1 1H-10(2-benzothiazolyl)-quinolizine-[9,9a,1gh] coumarin (C545T) as an assistant dopant. The typical device structure was glass substrate/ITO/4,4',4''-tris(N-3-methylphenyl-N-phenylamino) triphenylamine(m-MTDATA)/N,N'-bis-(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB)/[ADN: DCJTB: C545T/Alq 3 /LiF/Al]. It was found that C545T dopant did not emit by itself but did assist the energy transfer from the host (ADN) to the red emitting dopant. The red OLEDs realized by this approach not only enhanced the emission color, but also significantly improved the EL efficiency. The EL efficiency reached 3.5 cd A −1 at a current density of 20 mA cm −2 , which is enhanced by three times compared with devices where the emissive layer is composed of the DCJTB doped ADN. The saturated red emission was obtained with CIE coordinates (x = 0.618, y = 0.373) at 621 nm, and the device driving voltage is decreased as much as 38%. We attribute these improvements to the assistant dopant (C545T), which leads to the more efficient energy transfer from ADN to DCJTB. These results indicate that the co-doped system is a promising method for obtaining high-efficiency red OLEDs

  6. Time-domain analysis of surface-plasmon-polariton propagation in Ag nano-films using a generalized polarization approach

    KAUST Repository

    Al-Jabr, Ahmad

    2010-01-01

    A time-domain analysis of the propagation properties of surface-plasmon-polaritons (SPP) in Silver nanostructures is presented. The analysis is based on a simulation algorithm that unifies the formulation of different dispersion models and multi-pole relations into one form. The main objective of this work is to perform a comparative analysis between different dispersion models used for Silver, including Debye, Drude and multi-pole Lorentz-Drude models. The quantities that are used in the comparison are the SPP propagation length and propagation speed. Experimental results reported in literature are used to support the conclusions.

  7. Non-reciprocity and topology in optics: one-way road for light via surface magnon polariton

    Science.gov (United States)

    Ochiai, Tetsuyuki

    2015-01-01

    We show how non-reciprocity and topology are used to construct an optical one-way waveguide in the Voigt geometry. First, we present a traditional approach of the one-way waveguide of light using surface polaritons under a static magnetic field. Second, we explain a recent discovery of a topological approach using photonic crystals with the magneto-optical coupling. Third, we present a combination of the two approaches, toward a broadband one-way waveguide in the microwave range. PMID:27877739

  8. Leakage radiation spectroscopy of organic nanofibers on metal films: evidence for exciton-surface plasmon polariton interaction

    DEFF Research Database (Denmark)

    Jozefowski, Leszek; Fiutowski, Jacek; Bordo, Vladimir

    2012-01-01

    technqiue, domains of mutually parallel oriented organic nanofibers were initially grown under high-vacuum conditions by molecularbeam epitaxy onto a cleaved muscovite mica substrate and afterwards transferred onto a silver film prepared on the glass carrier. The sample placed on a flat side of a hemisphere...... dependent angle above the critical angle. By analyzing this dispersion curve one can argue that it originates from the interaction between the nanofiber excitons and surface plasmon polaritons of the metal film.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading...

  9. Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach

    International Nuclear Information System (INIS)

    Kurihara, Kazuyoshi; Otomo, Akira; Syouji, Atsushi; Takahara, Junichi; Suzuki, Koji; Yokoyama, Shiyoshi

    2007-01-01

    Analytic solutions to the superfocusing modes of surface plasmon polaritons in a conical geometry are theoretically studied using an ingenious method called the quasi-separation of variables. This method can be used to look for fundamental solutions to the wave equation for a field that must satisfy boundary conditions at all points on the continuous surface of tapered geometries. The set of differential equations exclusively separated from the wave equation can be consistently solved in combination with perturbation methods. This paper presents the zeroth-order perturbation solution of conical superfocusing modes with azimuthal symmetry and graphically represents them in electric field-line patterns

  10. Rapidity gaps in jet events at DΦ

    International Nuclear Information System (INIS)

    Zylberstejn, A.

    1996-01-01

    Preliminary results from the Dφ experiment on jet production with rapidity gaps in pp-bar collisions are presented. A class of di-jet events with a forward rapidity gap is observed at center-of-mass energies √s = 1800 GeV and 630 GeV. The number of events with rapidity gaps at both centre-of-mass energies is significantly greater than the expectation from multiplicity fluctuations and is consistent with a hard single diffractive process. A class of events with two forward gaps and central di-jets is also observed at 1800 GeV. This topology is consistent with hard double pomeron exchange. We also present results on the observation of a class of events with low particle multiplicity between jets, attributable to the exchange of a strongly-interacting color-singlet. (author)

  11. Energy

    International Nuclear Information System (INIS)

    Meister, F.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of energy production, energy conversion, atomic energy and renewable energy. The development of the energy consumption in Austria for the years 1993 to 1999 is given for the different energy types. The development of the use of renewable energy sources in Austria is given, different domestic heat-systems are compared, life cycles and environmental balance are outlined. (a.n.)

  12. LHC Abort Gap Monitoring and Cleaning

    CERN Document Server

    Meddahi, M; Boccardi, A; Butterworth, A; Fisher, A S; Gianfelice-Wendt, E; Goddard, B; Hemelsoet, G H; Höfle, W; Jacquet, D; Jaussi, M; Kain, V; Lefevre, T; Shaposhnikova, E; Uythoven, J; Valuch, D

    2010-01-01

    Unbunched beam is a potentially serious issue in the LHC as it may quench the superconducting magnets during a beam abort. Unbunched particles, either not captured by the RF system at injection or leaking out of the RF bucket, will be removed by using the existing damper kickers to excite resonantly the particles in the abort gap. Following beam simulations, a strategy for cleaning the abort gap at different energies was proposed. The plans for the commissioning of the beam abort gap cleaning are described and first results from the beam commissioning are presented.

  13. Protein-energy malnutrition developing after global brain ischemia induces an atypical acute-phase response and hinders expression of GAP-43.

    Science.gov (United States)

    Smith, Shari E; Figley, Sarah A; Schreyer, David J; Paterson, Phyllis G

    2014-01-01

    Protein-energy malnutrition (PEM) is a common post-stroke problem. PEM can independently induce a systemic acute-phase response, and pre-existing malnutrition can exacerbate neuroinflammation induced by brain ischemia. In contrast, the effects of PEM developing in the post-ischemic period have not been studied. Since excessive inflammation can impede brain remodeling, we investigated the effects of post-ischemic malnutrition on neuroinflammation, the acute-phase reaction, and neuroplasticity-related proteins. Male, Sprague-Dawley rats were exposed to global forebrain ischemia using the 2-vessel occlusion model or sham surgery. The sham rats were assigned to control diet (18% protein) on day 3 after surgery, whereas the rats exposed to global ischemia were assigned to either control diet or a low protein (PEM, 2% protein) diet. Post-ischemic PEM decreased growth associated protein-43, synaptophysin and synaptosomal-associated protein-25 immunofluorescence within the hippocampal CA3 mossy fiber terminals on day 21, whereas the glial response in the hippocampal CA1 and CA3 subregions was unaltered by PEM. No systemic acute-phase reaction attributable to global ischemia was detected in control diet-fed rats, as reflected by serum concentrations of alpha-2-macroglobulin, alpha-1-acid glycoprotein, haptoglobin, and albumin. Acute exposure to the PEM regimen after global brain ischemia caused an atypical acute-phase response. PEM decreased the serum concentrations of albumin and haptoglobin on day 5, with the decreases sustained to day 21. Serum alpha-2-macroglobulin concentrations were significantly higher in malnourished rats on day 21. This provides the first direct evidence that PEM developing after brain ischemia exerts wide-ranging effects on mechanisms important to stroke recovery.

  14. The fluctuating gap model

    International Nuclear Information System (INIS)

    Cao, Xiaobin

    2011-01-01

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T c in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the quasi

  15. The fluctuating gap model

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiaobin

    2011-01-15

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T{sub c} in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the

  16. Pure and silver (2.5-40 vol%) modified TiO2 thin films deposited by radio frequency magnetron sputtering at room temperature: Surface topography, energy gap and photo-induced hydrophilicity

    International Nuclear Information System (INIS)

    Meng, Fanming; Lu, Fei

    2010-01-01

    Ag-TiO 2 nanostructured thin films with silver volume fraction of 0-40% were deposited on silicon and quartz substrates by radio frequency (RF) magnetron sputtering. The phase structure, surface composition, surface topography, optical properties, and hydrophilicity of the films were characterized by X-ray diffractometer, X-ray photoelectron energy spectrometer, atomic force microscope, ultraviolet-visible spectrophotometer, and water contact angle apparatus. The relation of hydrophilic property and silver content was studied in detail. It was found that silver content influences microstructure of TiO 2 thin films, and silver in the films is metallic Ag (Ag 0 ). Hydrophilic behavior of the films increases with the increase of silver content up to 5 vol% Ag and then decreases. A suitable amount (around 5 vol% Ag) of silver addition can significantly enhance the hydrophilicity of TiO 2 films. The hydrophilic behavior of the films is discussed in terms of the synergic effects of defective site, energy gap, surface roughness, and grain size.

  17. Dielectric dispersion and energy band gap of Bi{sub 1.5−x}Sm{sub x}Zn{sub 0.92}Nb{sub 1.5}O{sub 6.92} solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Qasrawi, A.F., E-mail: aqasrawi@atilim.edu.tr [Department of Physics, Arab-American University, Jenin, West Bank, Palestine (Country Unknown); Group of Physics, Faculty of Engineering, Atilim University, 06836 Ankara (Turkey); Mergen, A. [Metallurgical and Materials Engineering Department, Marmara University, 34722 Istanbul (Turkey)

    2014-05-01

    The optical transmittance and reflectance spectra of samarium doped bismuth–zinc–niobium-oxide (BZN) pyrochlore ceramics are investigated in the wavelength range of 200–1050 nm (200–1500 THz). The Sm content in the Bi{sub 1.5−x}Sm{sub x}Zn{sub 0.92}Nb{sub 1.5}O{sub 6.92} solid solution significantly alters the optical properties. Therefore, increasing the Sm doping ratio from x=0.10 to x=0.13 decreased the indirect forbidden energy band gap from 3.60 to 3.05 eV. In addition, above 350 THz, increasing the Sm content decreases the dielectric constant values and alters the dielectric dispersion parameters. The dielectric spectra which were evaluated in the frequency range of 200–1500 THz reflected a sharp decrease in the dielectric constant with increasing frequency down to 358 THz. The spectra reflected a resonance peak at this frequency. Such resonance spectrum is promising for technological applications as it is close to the illumination of 870 nm IR lasers that are used in optical communications. The calculated oscillator (E{sub o}) and dispersion (E{sub d}) energies near that critical range (375–425 THz) reflected an increase in both E{sub o} and E{sub d} with increasing Sm content.

  18. Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics

    Directory of Open Access Journals (Sweden)

    Suárez Isaac

    2017-02-01

    Full Text Available In this work, the unique optical properties of surface plasmon polaritons (SPPs, i.e. subwavelength confinement or strong electric field concentration, are exploited to demonstrate the propagation of light signal at 600 nm along distances in the range from 17 to 150 μm for Au nanostripes 500 nm down to 100 nm wide (30 nm of height, respectively, both theoretically and experimentally. A low power laser is coupled into an optical fiber tip that is used to locally excite the photoluminescence of colloidal quantum dots (QDs dispersed in their surroundings. Emitted light from these QDs is generating the SPPs that propagate along the metal waveguides. Then, the above-referred propagation lengths were directly extracted from this novel experimental technique by studying the intensity of light decoupled at the output edge of the waveguide. Furthermore, an enhancement of the propagation length up to 0.4 mm is measured for the 500-nm-wide metal nanostripe, for which this effect is maximum. For this purpose, a simultaneous excitation of the same QDs dispersed in poly(methyl methacrylate waveguides integrated with the metal nanostructures is performed by end-fire coupling an excitation laser energy as low as 1 KW/cm2. The proposed mechanism to explain such enhancement is a non-linear interference effect between dielectric and plasmonic (supermodes propagating in the metal-dielectric structure, which can be apparently seen as an effective amplification or compensation effect of the gain material (QDs over the SPPs, as previously reported in literature. The proposed system and the method to create propagating SPPs in metal waveguides can be of interest for the application field of sensors and optical communications at visible wavelengths, among other applications, using plasmonic interconnects to reduce the dimensions of photonic chips.

  19. 2D surface optical lattice formed by plasmon polaritons with application to nanometer-scale molecular deposition.

    Science.gov (United States)

    Yin, Yanning; Xu, Supeng; Li, Tao; Yin, Yaling; Xia, Yong; Yin, Jianping

    2017-08-10

    Surface plasmon polaritons, due to their tight spatial confinement and high local intensity, hold great promises in nanofabrication which is beyond the diffraction limit of conventional lithography. Here, we demonstrate theoretically the 2D surface optical lattices based on the surface plasmon polariton interference field, and the potential application to nanometer-scale molecular deposition. We present the different topologies of lattices generated by simple configurations on the substrate. By explicit theoretical derivations, we explain their formation and characteristics including field distribution, periodicity and phase dependence. We conclude that the topologies can not only possess a high stability, but also be dynamically manipulated via changing the polarization of the excitation laser. Nanometer-scale molecular deposition is simulated with these 2D lattices and discussed for improving the deposition resolution. The periodic lattice point with a width resolution of 33.2 nm can be obtained when the fullerene molecular beam is well-collimated. Our study can offer a superior alternative method to fabricate the spatially complicated 2D nanostructures, with the deposition array pitch serving as a reference standard for accurate and traceable metrology of the SI length standard.

  20. Manipulation of surface plasmon polariton propagation on isotropic and anisotropic two-dimensional materials coupled to boron nitride heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Inampudi, Sandeep; Nazari, Mina; Forouzmand, Ali; Mosallaei, Hossein, E-mail: hosseinm@coe.neu.edu [Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 (United States)

    2016-01-14

    We present a comprehensive analysis of surface plasmon polariton dispersion characteristics associated with isotropic and anisotropic two-dimensional atomically thin layered materials (2D sheets) coupled to h-BN heterostructures. A scattering matrix based approach is presented to compute the electromagnetic fields and related dispersion characteristics of stacked layered systems composed of anisotropic 2D sheets and uniaxial bulk materials. We analyze specifically the surface plasmon polariton (SPP) dispersion characteristics in case of isolated and coupled two-dimensional layers with isotropic and anisotropic conductivities. An analysis based on residue theorem is utilized to identify optimum optical parameters (surface conductivity) and geometrical parameters (separation between layers) to maximize the SPP field at a given position. The effect of type and degree of anisotropy on the shapes of iso-frequency curves and propagation characteristics is discussed in detail. The analysis presented in this paper gives an insight to identify optimum setup to enhance the SPP field at a given position and in a given direction on the surface of two-dimensional materials.

  1. Transformation of the spectrum of TM polaritons of a 1D magnetic photonic crystal under conditions of the quadratic electro-optic effect

    International Nuclear Information System (INIS)

    Kulagin, D. V.; Savchenko, A. S.; Tarasenko, S. V.

    2008-01-01

    Conditions under which quadratic magneto-optical interaction leads to a number of features in the conditions of localization and propagation of collective magnetic TM polaritons are determined by the example of a 1D magnetic superlattice of the easy-axis-antiferromagnet-nonmagnetic-insulator type, in which the easy magnetization axis is orthogonal to the applied external dc electric field.

  2. Energy

    International Nuclear Information System (INIS)

    Bobin, J.L.

    1996-01-01

    Object of sciences and technologies, energy plays a major part in economics and relations between nations. Jean-Louis Bobin, physicist, analyses the relations between man and energy and wonders about fears that delivers nowadays technologies bound to nuclear energy and about the fear of a possible shortage of energy resources. (N.C.). 17 refs., 14 figs., 2 tabs

  3. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  4. Energy density and energy flow of surface waves in a strongly magnetized graphene

    Science.gov (United States)

    Moradi, Afshin

    2018-01-01

    General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.

  5. Gap length distributions by PEPR

    International Nuclear Information System (INIS)

    Warszawer, T.N.

    1980-01-01

    Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)

  6. Effects of phosphorus-doping on energy band-gap, structural, surface, and photocatalytic characteristics of emulsion-based sol-gel derived TiO{sub 2} nano-powder

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, Ibram, E-mail: ibramganesh@arci.res.in

    2017-08-31

    Highlights: • Reported a novel route to synthesize high specific surface area P-doped TiO{sub 2} nano-powder photocatalysts. • Established methylene blue dye-sensitization mechanism of TiO{sub 2} photocatalyst. • Established the effects of methylene blue adsorption on the surface, structural and photocatalytic activity of P-doped TiO{sub 2}. • Established true quantum efficiency determination method for TiO{sub 2} photocatalysis. - Abstract: Different amounts of phosphorus (P)-doped TiO{sub 2} (PDT) nano-powders (P = 0–10 wt.%) were synthesized by following a new emulsion-based sol-gel (EBSG) route and calcined at 400 °C–800 °C for 6 h. These calcined PDT powders were then thoroughly characterized by means of XRD, XPS, SEM, FT-IR, FT-Raman, DRS, BET surface area, zeta-potential, cyclic-voltammetry and photocatalytic evaluation using methylene blue (MB) as a model-pollutant and established the effects of phosphorous doping on structural, surface, band-gap energy, and photocatalytic characteristics of TiO{sub 2} nano-powder formed in EBSG route. The characterization results suggest that the EBSG derived TiO{sub 2} nano-powder after calcination at 400 °C for 6 h is in the form of anatase phase when it was doped with <8 wt.% P, and it is in the amorphous state when doped with >8 wt.% P. Furthermore, these EBSG derived PDT powders own high negative zeta-potentials, high specific surface areas (up to >250 m{sup 2}/g), and suitable band-gap energies (<3.34 eV). Surprisingly, these PDT powders exhibit very high MB adsorption (up to 50%) from its aqueous 0.01 mM, 0.02 mM and 0.03 mM solutions during 30 min stirring in the dark, whereas, the commercial Degussa P-25 TiO{sub 2} nano-powder shows no adsorption. Among various photocatalysts investigated in this study, the 1 wt.% P-doped TiO{sub 2} nano-powder formed in EBSG route exhibited the highest photocatalytic activity for MB degradation reaction.

  7. Surface Plasmon Polariton Resonance of Gold, Silver, and Copper Studied in the Kretschmann Geometry: Dependence on Wavelength, Angle of Incidence, and Film Thickness

    Science.gov (United States)

    Takagi, Kentaro; Nair, Selvakumar V.; Watanabe, Ryosuke; Seto, Keisuke; Kobayashi, Takayoshi; Tokunaga, Eiji

    2017-12-01

    Surface plasmon polariton (SPP) resonance spectra for noble metals (Au, Ag, and Cu) were comprehensively studied in the Kretschmann attenuated total reflection (ATR) geometry, in the wavelength (λ) range from 300 to 1000 nm with the angle of incidence (θ) ranging from 45 to 60° and the film thickness (d) ranging from 41 to 76 nm. The experimental plasmon resonance spectra were reproduced by a calculation that included the broadening effects as follows: (1) the imaginary part of the bulk dielectric constant, (2) the thickness-dependent radiative coupling of the SPP at the metal-air interface to the prism, (3) the lack of conservation of the wavevector parallel to the interface kx(k||) caused by the surface roughness, (4) scanning λ at a fixed θ (changing both energy and kx at the same time) over the SPP dispersion relation. For Au and Ag, the experimental results were in good agreement with the calculated results using the bulk dielectric constants, showing no film thickness dependence of the plasmon resonance energy. A method to extract the true width of the plasmon resonance from raw ATR spectra is proposed and the results are rigorously compared with those expected from the bulk dielectric function given in the literature. For Au and Ag, the width increases with energy, in agreement with that expected from the relaxation of bulk free electrons including the electron-electron interaction, but there is clear evidence of extra broadening, which is more significant for thinner films, possibly due to relaxation pathways intrinsic to plasmons near the interface. For Cu, the visibility of the plasmon resonance critically depends on the evaporation conditions, and low pressures and fast deposition rates are required. Otherwise, scattering from the surface roughness causes considerable broadening of the plasmon resonance, resulting in an apparently fixed resonance energy without clear incident angle dependence. For Cu, the observed plasmon dispersion agrees well with

  8. Semantic Gaps Are Dangerous

    DEFF Research Database (Denmark)

    Ejstrup, Michael; le Fevre Jakobsen, Bjarne

    Semantic gaps are dangerous Language adapts to the environment where it serves as a tool to communication. Language is a social agreement, and we all have to stick to both grammaticalized and non-grammaticalized rules in order to pass information about the world around us. As such language develops...... unpolite language and tend to create dangerous relations where specialy language creates problems and trouble that could be avoided if we had better language tools at hand. But we have not these tools of communication, and we are in a situation today where media and specially digital and social media......, supported by new possibilities of migration, create dangerous situations. How can we avoid these accidental gaps in language and specially the gaps in semantic and metaphoric tools. Do we have to keep silent and stop discusing certain isues, or do we have other ways to get acces to sufficient language tools...

  9. Where are the Gaps?

    Science.gov (United States)

    Stoneham, Marshall

    Reading a Handbook like this gives a vivid picture of the enormous vigour and power of materials modelling. One is tempted to believe that we can answer all the questions materials technology might pose. Even if that were partly true, we should be identifying just what we do not know how to do. Some gaps will be depend on new hardware and software, especially when modelling quantum systems. Some gaps will be recognised only after some social or technological change has brought them into focus. Among the developments likely to stimulate innovation could be novel nanoelectronics, or the fields where physics meets biology. Still further gaps exist because we have been slaves to fashion, and have been drawn away from unpopular (roughly translating as "too difficult") fields; examples might include excited state spectroscopy, or electrical breakdown.

  10. Bridging Lithuania's energy gap / Adam Mullett

    Index Scriptorium Estoniae

    Mullett, Adam

    2008-01-01

    Leedu peab leidma võimalusi, kuidas leevendada pärast Ignalina tuumaelektrijaama sulgemist tekkivat energia defitsiiti. Võimalik on alternatiivenergia kasutamine, Rootsi ja Baltimaade vahelise elektrikaabli rajamine ning uue tuumaelektrijaama ehitamine

  11. The longevity gender gap

    DEFF Research Database (Denmark)

    Aviv, Abraham; Shay, Jerry; Christensen, Kaare

    2005-01-01

    In this Perspective, we focus on the greater longevity of women as compared with men. We propose that, like aging itself, the longevity gender gap is exceedingly complex and argue that it may arise from sex-related hormonal differences and from somatic cell selection that favors cells more...... resistant to the ravages of time. We discuss the interplay of these factors with telomere biology and oxidative stress and suggest that an explanation for the longevity gender gap may arise from a better understanding of the differences in telomere dynamics between men and women....

  12. Bridge the Gap

    DEFF Research Database (Denmark)

    Marselis, Randi

    2017-01-01

    This article focuses on photo projects organised for teenage refugees by the Society for Humanistic Photography (Berlin, Germany). These projects, named Bridge the Gap I (2015), and Bridge the Gap II (2016), were carried out in Berlin and brought together teenagers with refugee and German-majorit...... was produced – and sometimes not produced - within the projects. The importance of memory work in the context of refugee resettlement is often overlooked, but is particularly relevant when cultural encounters are organised in museums and exhibition galleries....

  13. Missing the gap

    DEFF Research Database (Denmark)

    Tanggaard, Lene; Glaveanu, Vlad Petre

    by the premise that difference and gaps are places where creative learning is intensified (Glaveanu & Gillespie, 2015). The public discourse around education is often concerned with minding or avoiding the gap by making education more relevant for or similar to the labour market, but what if facilitating...... creative learning at the borders need not minimize differences, but handle and learn from them? If not, schools and educational institutions risk becoming bad copies of the labour marked instead of enabling students to enter the market with something new, something radically dissimilar from what...

  14. Energy

    CERN Document Server

    Robertson, William C

    2002-01-01

    Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...

  15. Estimating Gender Wage Gaps

    Science.gov (United States)

    McDonald, Judith A.; Thornton, Robert J.

    2011-01-01

    Course research projects that use easy-to-access real-world data and that generate findings with which undergraduate students can readily identify are hard to find. The authors describe a project that requires students to estimate the current female-male earnings gap for new college graduates. The project also enables students to see to what…

  16. 'Mind the Gap!'

    DEFF Research Database (Denmark)

    Persson, Karl Gunnar

    This paper challenges the widely held view that sharply falling real transport costs closed the transatlantic gap in grain prices in the second half of the 19th century. Several new results emerge from an analysis of a new data set of weekly wheat prices and freight costs from New York to UK mark...

  17. Parametric study of dielectric loaded surface plasmon polariton add-drop filters for hybrid silicon/plasmonic optical circuitry

    Science.gov (United States)

    Dereux, A.; Hassan, K.; Weeber, J.-C.; Djellali, N.; Bozhevolnyi, S. I.; Tsilipakos, O.; Pitilakis, A.; Kriezis, E.; Papaioannou, S.; Vyrsokinos, K.; Pleros, N.; Tekin, T.; Baus, M.; Kalavrouziotis, D.; Giannoulis, G.; Avramopoulos, H.

    2011-01-01

    Surface plasmons polaritons are electromagnetic waves propagating along the surface of a conductor. Surface plasmons photonics is a promising candidate to satisfy the constraints of miniaturization of optical interconnects. This contribution reviews an experimental parametric study of dielectric loaded surface plasmon waveguides ring resonators and add-drop filters within the perspective of the recently suggested hybrid technology merging plasmonic and silicon photonics on a single board (European FP7 project PLATON "Merging Plasmonic and Silicon Photonics Technology towards Tb/s routing in optical interconnects"). Conclusions relevant for dielectric loaded surface plasmon switches to be integrated in silicon photonic circuitry will be drawn. They rely on the opportunity offered by plasmonic circuitry to carry optical signals and electric currents through the same thin metal circuitry. The heating of the dielectric loading by the electric current enables to design low foot-print thermo-optical switches driving the optical signal flow.

  18. Deep-subwavelength light routing in nanowire-loaded surface plasmon polariton waveguides: an alternative to the hybrid guiding scheme

    International Nuclear Information System (INIS)

    Bian, Yusheng; Gong, Qihuang

    2013-01-01

    Nanowire-loaded surface plasmon polariton waveguide is an extremely simple structure that can be naturally formed by directly dropping a dielectric cylinder onto a metallic substrate. However, despite the substantial emphasis devoted to its hybrid plasmonic counterparts, this waveguiding structure has been paid little attention to so far. Here in this paper, through comprehensive numerical analysis, we reveal that such a configuration can be leveraged to achieve deep-subwavelength field confinement with mode area more than one order of magnitude smaller than that of the conventional hybrid waveguide, while maintaining a moderate attenuation with propagation distance over tens of microns. Two-dimensional parameter mapping concerning physical dimension, shape and material of the nanowire as well as the refractive index of the cladding has disclosed the wide-range existence nature of this plasmonic mode and the feasibility to further balance its confinement and loss. (paper)

  19. Theoretical analysis of stimulated polariton scattering from the A1-symmetry modes of KNbO3 crystal

    Science.gov (United States)

    Li, Zhong-yang; Wang, Meng-tao; Wang, Si-lei; Yuan, Bin; Xu, De-gang; Yao, Jian-quan

    2017-09-01

    Stimulated polariton scattering (SPS) based on noncollinear phase matching scheme from the A1-symmetry modes of KNbO3 crystal is investigated for generating terahertz (THz) wave. Frequency tuning characteristics of THz wave by varying the phase matching angle and pump wavelength are analyzed. The expression of the effective parametric gain length under the noncollinear phase matching condition is deduced. Parametric gain and absorption characteristics of THz wave in KNbO3 are theoretically simulated. The characteristics of KNbO3 for parametric oscillator (TPO) are compared with those of MgO:LiNbO3. The analysis results indicate that KNbO3 is an excellent optical crystal for TPO to enhance the output of THz wave.

  20. Energies

    International Nuclear Information System (INIS)

    2003-01-01

    In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)