WorldWideScience

Sample records for polarimetric thermal emission

  1. Toward automated face detection in thermal and polarimetric thermal imagery

    Science.gov (United States)

    Gordon, Christopher; Acosta, Mark; Short, Nathan; Hu, Shuowen; Chan, Alex L.

    2016-05-01

    Visible spectrum face detection algorithms perform pretty reliably under controlled lighting conditions. However, variations in illumination and application of cosmetics can distort the features used by common face detectors, thereby degrade their detection performance. Thermal and polarimetric thermal facial imaging are relatively invariant to illumination and robust to the application of makeup, due to their measurement of emitted radiation instead of reflected light signals. The objective of this work is to evaluate a government off-the-shelf wavelet based naïve-Bayes face detection algorithm and a commercial off-the-shelf Viola-Jones cascade face detection algorithm on face imagery acquired in different spectral bands. New classifiers were trained using the Viola-Jones cascade object detection framework with preprocessed facial imagery. Preprocessing using Difference of Gaussians (DoG) filtering reduces the modality gap between facial signatures across the different spectral bands, thus enabling more correlated histogram of oriented gradients (HOG) features to be extracted from the preprocessed thermal and visible face images. Since the availability of training data is much more limited in the thermal spectrum than in the visible spectrum, it is not feasible to train a robust multi-modal face detector using thermal imagery alone. A large training dataset was constituted with DoG filtered visible and thermal imagery, which was subsequently used to generate a custom trained Viola-Jones detector. A 40% increase in face detection rate was achieved on a testing dataset, as compared to the performance of a pre-trained/baseline face detector. Insights gained in this research are valuable in the development of more robust multi-modal face detectors.

  2. Searching for Jet Emission in LMXBs: A Polarimetric View

    Directory of Open Access Journals (Sweden)

    Maria Cristina Baglio

    2017-10-01

    Full Text Available We present results taken from a study aiming at detecting the emission from relativistic particles jets in neutron star-low mass X-ray binaries using optical polarimetric observations. First, we focus on a polarimetric study performed on the persistent LMXB 4U 0614+091. Once corrected for interstellar effects, we measured an intrinsic linear polarization in the r-band of ~3% at a 3σ confidence level. This is in-line with the observation of an infrared excess in the spectral energy distribution (SED of the source, reported in a previous work, which the authors linked to the optically thin synchrotron emission of a jet. We then present a study performed on the transitional millisecond pulsar PSR J1023+0038 during quiescence. We measured a linear polarization of 1.09 ± 0.27% and 0.90 ± 0.17% in the V and R bands, respectively. The phase-resolved polarimetric curve of the source in the R-band reveals a hint of a sinusoidal modulation at the source orbital period. The NIR -optical SED of the system did not suggest the presence of a jet. We conclude that the optical linear polarization observed for PSR J1023+0038 is possibly due to Thomson scattering with electrons in the disc, as also suggested by the hint of the modulation of the R-band linear polarization at the system orbital period.

  3. Polarimetric Emission of Rain Events: Simulation and Experimental Results at X-Band

    Directory of Open Access Journals (Sweden)

    Nuria Duffo

    2009-06-01

    Full Text Available Accurate models are used today for infrared and microwave satellite radiance simulations of the first two Stokes elements in the physical retrieval, data assimilation etc. of surface and atmospheric parameters. Although in the past a number of theoretical and experimental works have studied the polarimetric emission of some natural surfaces, specially the sea surface roughened by the wind (Windsat mission, very limited studies have been conducted on the polarimetric emission of rain cells or other natural surfaces. In this work, the polarimetric emission (four Stokes elements of a rain cell is computed using the polarimetric radiative transfer equation assuming that raindrops are described by Pruppacher-Pitter shapes and that their size distribution follows the Laws-Parsons law. The Boundary Element Method (BEM is used to compute the exact bistatic scattering coefficients for each raindrop shape and different canting angles. Numerical results are compared to the Rayleigh or Mie scattering coefficients, and to Oguchi’s ones, showing that above 1-2 mm raindrop size the exact formulation is required to model properly the scattering. Simulation results using BEM are then compared to the experimental data gathered with a X-band polarimetric radiometer. It is found that the depolarization of the radiation caused by the scattering of non-spherical raindrops induces a non-zero third Stokes parameter, and the differential phase of the scattering coefficients induces a non-zero fourth Stokes parameter.

  4. Thermal-Polarimetric and Visible Data Collection for Face Recognition

    Science.gov (United States)

    2016-09-01

    matching a thermal face image with visible spectrum face images for interoperability with existing biometric face databases and watch lists. One of the...Byrd KA Preview of the newly acquired NVESD-ARL multimodal face database. Proc SPIE DSS. 2013;8734. 10. Yuffa AJ, Gurton KP, Videen G. Appl Optics

  5. Meterwavelength Single-pulse Polarimetric Emission Survey. IV. The Period Dependence of Component Widths of Pulsars

    Science.gov (United States)

    Skrzypczak, Anna; Basu, Rahul; Mitra, Dipanjan; Melikidze, George I.; Maciesiak, Krzysztof; Koralewska, Olga; Filothodoros, Alexandros

    2018-02-01

    The core component width in normal pulsars, with periods (P) > 0.1 s, measured at the half-power point at 1 GHz, has a lower boundary line (LBL) that closely follows the P ‑0.5 scaling relation. This result is of fundamental importance for understanding the emission process and requires extended studies over a wider frequency range. In this paper we have carried out a detailed study of the profile component widths of 123 normal pulsars observed in the Meterwavelength Single-pulse Polarimetric Emission Survey at 333 and 618 MHz. The components in the pulse profile were separated into core and conal classes. We found that at both frequencies, the core, as well as the conal component widths versus period, had a LBL that followed the P ‑0.5 relation with a similar lower boundary. The radio emission in normal pulsars has been observationally shown to arise from a narrow range of heights around a few hundred kilometers above the stellar surface. In the past the P ‑0.5 relation has been considered as evidence for emission arising from last open dipolar magnetic field lines. We show that the P ‑0.5 dependence only holds if the trailing and leading half-power points of the component are associated with the last open field line. In such a scenario we do not find any physical motivation that can explain the P ‑0.5 dependence for both core and conal components as evidence for dipolar geometry in normal pulsars. We believe the period dependence is a result of a currently unexplained physical phenomenon.

  6. Meterwavelength Single-pulse Polarimetric Emission Survey. III. The Phenomenon of Nulling in Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Rahul; Mitra, Dipanjan; Melikidze, George I., E-mail: rahulbasu.astro@gmail.com [Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Szafrana 2, 65–516 Zielona Góra (Poland)

    2017-09-10

    A detailed analysis of nulling was conducted for the pulsars studied in the Meterwavelength Single-pulse Polarimetric Emission Survey. We characterized nulling in 36 pulsars including 17 pulsars where the phenomenon was reported for the first time. The most dominant nulls lasted for a short duration, less than five periods. Longer duration nulls extending to hundreds of periods were also seen in some cases. A careful analysis showed the presence of periodicities in the transition from the null to the burst states in 11 pulsars. In our earlier work, fluctuation spectrum analysis showed multiple periodicities in 6 of these 11 pulsars. We demonstrate that the longer periodicity in each case was associated with nulling. The shorter periodicities usually originate from subpulse drifting. The nulling periodicities were more aligned with the periodic amplitude modulation, indicating a possible common origin for both. The most prevalent nulls last for a single period and can be potentially explained using random variations affecting the plasma processes in the pulsar magnetosphere. On the other hand, longer-duration nulls require changes in the pair-production processes, which need an external triggering mechanism for the changes. The presence of periodic nulling puts an added constraint on the triggering mechanism, which also needs to be periodic.

  7. A theoretical and numerical study of polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum

    Science.gov (United States)

    Yueh, S. H.; Kwok, R.

    1993-01-01

    In this paper, theoretical and numerical results of the polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum are presented for the remote sensing of ocean and soil surfaces. The polarimetric scattered field for rough dielectric surfaces is derived to the second order by the small perturbation method (SPM). It is found that the second-order scattered field is coherent in nature, and its coefficients for different polarizations present the lowest-order corrections to the Fresnel reflection coefficients of the surfaces. In addition, the cross-polarized (HV and VH) components of the coherent fields are reciprocal and not zero for surfaces with anisotropic directional spectrum when the azimuth angle of the incident direction is not aligned with the symmetry directions of surfaces. In order to verify the energy conservation condition of the theoretical results, which is important if the theory is to be applied to the passive polarimetry of rough surfaces, a Monte Carlo simulation is performed to numerically calculate the polarimetric reflectivities of one-dimensional random rough surfaces which are generated with a prescribed power-law spectrum in the spectral domain and transformed to the spatial domain by the FFT. The surfaces simulated by this approach are periodic with the period corresponding to the low-wavenumber cutoff. To calculate the scattering from periodic dielectric surfaces, the authors present a new numerical technique which applies the Floquet theorem to reduce the problem to one period and does not require the evaluation of one-dimensional periodic Green's function used in the conventional method of moment formulation. Once the scattering coefficients are obtained, the polarimetric Stokes vectors for the emission from the random surfaces are then calculated according to the Kirchhoff's law and are illustrated as functions of relative azimuth observation and row directions. The second-order SPM is also

  8. Laboratory technique for quantitative thermal emissivity ...

    Indian Academy of Sciences (India)

    Emission of radiation from a sample occurs due to thermal vibration of its .... Quantitative thermal emissivity measurements of geological samples. 393. Figure 1. ...... tral mixture modeling: A new analysis of rock and soil types at the Viking ...

  9. Spectroscopic and polarimetric study of radio-quiet weak emission line quasars

    Science.gov (United States)

    Kumar, Parveen; Chand, Hum; Gopal-Krishna; Srianand, Raghunathan; Stalin, Chelliah Subramonian; Petitjean, Patrick

    2018-04-01

    A small subset of optically selected radio-quiet QSOs with weak or no emission lines may turn out to be the elusive radio-quiet BL Lac objects, or simply be radio-quiet QSOs with an infant/shielded broad line region (BLR). High polarisation (p > 3-4%), a hallmark of BL Lacs, can be used to test whether some optically selected ‘radio-quiet weak emission line QSOs’ (RQWLQs) show a fractional polarisation high enough to qualify as radio-quiet analogues of BL Lac objects. To check this possibility, we have made optical spectral and polarisation measurements of a sample of 19 RQWLQs. Out of these, only 9 sources show a non-significant proper motion (hence very likely extragalactic) and only two of them are found to have p > 1%. For these two RQWLQs, namely J142505.59+035336.2 and J154515.77+003235.2, we found the highest polarization to be 1.59±0.53%, which is again too low to classify them as (radio-quiet) BL Lacs, although one may recall that even genuine BL Lacs sometimes appear weakly polarised. We also present a statistical comparison of the optical spectral index, for a sample of 45 RQWLQs with redshift-luminosity matched control samples of 900 QSOs and an equivalent sample of 120 blazars, assembled from the literature. The spectral index distribution of RQWLQs is found to differ, at a high significance level, from that of blazars. This, too, is consistent with the common view that the mechanism of the central engine in RQWLQs, as a population, is close to that operating in normal QSOs and the primary difference between them is related to the BLR.

  10. Thermally stimulated exoelectron emission from solid Xe

    International Nuclear Information System (INIS)

    Khyzhniy, I.V.; Grigorashchenko, O.N.; Savchenko, E.V.; Ponomarev, A.N.; Bondybey, V.E.

    2007-01-01

    Thermally-stimulated emission of exoelectrons and photons from solid Xe pre-irradiated by low-energy electrons were studied. A high sensitivity of thermally-stimulated luminescence (TSL) and thermally-stimulated exoelectron emission (TSEE) to sample prehistory was demonstrated. It was shown that electron traps in unannealed samples are characterized by much broader distribution of trap levels in comparison with annealed samples and their concentration exceeds in number that in annealed samples. Both phenomena, TSL and TSEE, were found to be triggered by release of electrons from the same kind of traps. The data obtained suggest a competition between two relaxation channels: charge recombination and electron transport terminated by TSL and TSEE. It was found that TSEE predominates at low temperatures while at higher temperatures TSL prevails. An additional relaxation channel, a photon-stimulated exoelectron emission pre-irradiated solid Xe, was revealed

  11. Emission Control Technologies for Thermal Power Plants

    Science.gov (United States)

    Nihalani, S. A.; Mishra, Y.; Juremalani, J.

    2018-03-01

    Coal thermal power plants are one of the primary sources of artificial air emissions, particularly in a country like India. Ministry of Environment and Forests has proposed draft regulation for emission standards in coal-fired power plants. This includes significant reduction in sulphur-dioxide, oxides of nitrogen, particulate matter and mercury emissions. The first step is to evaluate the technologies which represent the best selection for each power plant based on its configuration, fuel properties, performance requirements, and other site-specific factors. This paper will describe various technology options including: Flue Gas Desulfurization System, Spray Dryer Absorber (SDA), Circulating Dry Scrubber (CDS), Limestone-based Wet FGD, Low NOX burners, Selective Non Catalytic Reduction, Electrostatic Precipitator, Bag House Dust Collector, all of which have been evaluated and installed extensively to reduce SO2, NOx, PM and other emissions. Each control technology has its advantages and disadvantages. For each of the technologies considered, major features, potential operating and maintenance cost impacts, as well as key factors that contribute to the selection of one technology over another are discussed here.

  12. Radioactive emission from thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K [New South Wales Univ., Kensington (Australia). Dept. of Applied Mathematics

    1981-07-01

    Radioactive hazards of the emissions and wastes of thermal power plants arising from fuel impurities of uranium and thorium are discussed. The hazard due to radioactive emission is calculated for an average Australian bituminous coal which contains 2 ppm of U and 2.7 ppm of Th. When the dust removal efficiency of a coal-fired power plant is 99%, the radioactive hazard is greater than that of a nuclear reactor of the same electrical output. After 500 years the radioactive toxicity of the coal waste will be higher than that of fission products of a nuclear reactor and after 2,000 years it will exceed the toxicity of all the nuclear wastes including actinides. The results of a recent calculation are shown, according to which the radioactive hazard of a coal-fired power plant to the public is from several hundred to several tens of thousands of times higher than that of a total fuel cycle of plutonium. It is found that in some regions, such as Japan, the hazard due to /sup 210/Po through seafood could be considerable.

  13. Thermally emissive sensing materials for chemical spectroscopy analysis

    Science.gov (United States)

    Poole, Zsolt; Ohodnicki, Paul R.

    2018-05-08

    A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to the material.

  14. Pyxis handheld polarimetric imager

    Science.gov (United States)

    Chenault, David B.; Pezzaniti, J. Larry; Vaden, Justin P.

    2016-05-01

    The instrumentation for measuring infrared polarization signatures has seen significant advancement over the last decade. Previous work has shown the value of polarimetric imagery for a variety of target detection scenarios including detection of manmade targets in clutter and detection of ground and maritime targets while recent work has shown improvements in contrast for aircraft detection and biometric markers. These data collection activities have generally used laboratory or prototype systems with limitations on the allowable amount of target motion or the sensor platform and usually require an attached computer for data acquisition and processing. Still, performance and sensitivity have been steadily getting better while size, weight, and power requirements have been getting smaller enabling polarimetric imaging for a greater or real world applications. In this paper, we describe Pyxis®, a microbolometer based imaging polarimeter that produces live polarimetric video of conventional, polarimetric, and fused image products. A polarization microgrid array integrated in the optical system captures all polarization states simultaneously and makes the system immune to motion artifacts of either the sensor or the scene. The system is battery operated, rugged, and weighs about a quarter pound, and can be helmet mounted or handheld. On board processing of polarization and fused image products enable the operator to see polarimetric signatures in real time. Both analog and digital outputs are possible with sensor control available through a tablet interface. A top level description of Pyxis® is given followed by performance characteristics and representative data.

  15. Efficient polarimetric BRDF model.

    Science.gov (United States)

    Renhorn, Ingmar G E; Hallberg, Tomas; Boreman, Glenn D

    2015-11-30

    The purpose of the present manuscript is to present a polarimetric bidirectional reflectance distribution function (BRDF) model suitable for hyperspectral and polarimetric signature modelling. The model is based on a further development of a previously published four-parameter model that has been generalized in order to account for different types of surface structures (generalized Gaussian distribution). A generalization of the Lambertian diffuse model is presented. The pBRDF-functions are normalized using numerical integration. Using directional-hemispherical reflectance (DHR) measurements, three of the four basic parameters can be determined for any wavelength. This simplifies considerably the development of multispectral polarimetric BRDF applications. The scattering parameter has to be determined from at least one BRDF measurement. The model deals with linear polarized radiation; and in similarity with e.g. the facet model depolarization is not included. The model is very general and can inherently model extreme surfaces such as mirrors and Lambertian surfaces. The complex mixture of sources is described by the sum of two basic models, a generalized Gaussian/Fresnel model and a generalized Lambertian model. Although the physics inspired model has some ad hoc features, the predictive power of the model is impressive over a wide range of angles and scattering magnitudes. The model has been applied successfully to painted surfaces, both dull and glossy and also on metallic bead blasted surfaces. The simple and efficient model should be attractive for polarimetric simulations and polarimetric remote sensing.

  16. Crop Classification by Polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning; Svendsen, Morten Thougaard; Nielsen, Flemming

    1999-01-01

    Polarimetric SAR-data of agricultural fields have been acquired by the Danish polarimetric L- and C-band SAR (EMISAR) during a number of missions at the Danish agricultural test site Foulum during 1995. The data are used to study the classification potential of polarimetric SAR data using...

  17. Electron cyclotron emission from thermal plasmas

    International Nuclear Information System (INIS)

    Fidone, I.; Granata, G.

    1978-02-01

    Electron cyclotron radiation from a warm inhomogeneous plasma is investigated. A direct calculation of the emissive power of a plasma slab is performed using Rytov's method and the result is compared with the solution of the transfer equation. It is found that, for arbitrary directions of emission, the two results differ, which reflects the fact that Kirchhoff's law is not generally obeyed

  18. Thermal radio emission from the winds of single stars

    International Nuclear Information System (INIS)

    Abbott, D.C.

    1985-01-01

    Observations of thermal emission at radio wavelengths provides a powerful diagnostic of the rate of mass loss and temperature of the winds of early-type stars. Some winds are also strong sources of nonthermal emission. Case studies of known thermal and nonthermal sources provide empirical criteria for classifying the observed radio radiation. Mass loss rates are derived for 37 OB and Wolf-Rayet stars considered definite or probable thermal wind sources by these criteria. The rate of mass loss is strongly linked to stellar luminosity in OB stars and probably linked to stellar mass in Wolf-Rayet stars, with no measurable correlation with any other stellar property. A few late-type giants and supergiants also have detectable thermal emission, which arises from extended, accelerating, partially-ionized chromospheres. (orig.)

  19. Polarimetric neutron scattering

    International Nuclear Information System (INIS)

    Tasset, F.

    2001-01-01

    Polarimetric Neutron Scattering in introduced, both by, explaining methodological issues and the corresponding instrumental developments. After a short overview of neutron spin polarization and the neutron polarization 3d-vector a pictorial approach of the microscopic theory is used to show how a polarized beam interacts with lattice and magnetic Fourier components in a crystal. Examples are given of using Spherical Neutron Polarimetry (SNP) and the corresponding Cryopad polarimeter for the investigation of non-collinear magnetic structures. (R.P.)

  20. Comparison of polarimetric cameras

    Science.gov (United States)

    2017-03-01

    Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget , Paperwork Reduction Project (0704-0188...polarimetric camera, remote sensing, space systems 15. NUMBER OF PAGES 93 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18...2016. Hermann Hall, Monterey, CA. The next data in Figure 37. were collected on 01 December 2016 at 1226 PST on the rooftop of the Marriot Hotel in

  1. Acoustic emission from thermal-gradient cracks in UO2

    International Nuclear Information System (INIS)

    Kennedy, C.R.; Kupperman, D.S.; Wrona, B.J.

    1975-01-01

    A feasibility study has been conducted to evaluate the potential use of acoustic emission to monitor thermal-shock damage in direct electrical heating of UO 2 pellets. In the apparatus used for the present tests, two acoustic-emission sensors were placed on extensions of the upper and lower electrical feedthroughs. Commercially available equipment was used to accumulate acoustic-emission data. The accumulation of events displayed on a cathode-ray-tube screen indicates the total number of acoustic-emission events at a particular location within the pellet stack. These tests have indicated that acoustic emission can be used to monitor thermal-shock damage in UO 2 pellets subjected to direct-electrical heating. 8 references

  2. Sparse estimation of model-based diffuse thermal dust emission

    Science.gov (United States)

    Irfan, Melis O.; Bobin, Jérôme

    2018-03-01

    Component separation for the Planck High Frequency Instrument (HFI) data is primarily concerned with the estimation of thermal dust emission, which requires the separation of thermal dust from the cosmic infrared background (CIB). For that purpose, current estimation methods rely on filtering techniques to decouple thermal dust emission from CIB anisotropies, which tend to yield a smooth, low-resolution, estimation of the dust emission. In this paper, we present a new parameter estimation method, premise: Parameter Recovery Exploiting Model Informed Sparse Estimates. This method exploits the sparse nature of thermal dust emission to calculate all-sky maps of thermal dust temperature, spectral index, and optical depth at 353 GHz. premise is evaluated and validated on full-sky simulated data. We find the percentage difference between the premise results and the true values to be 2.8, 5.7, and 7.2 per cent at the 1σ level across the full sky for thermal dust temperature, spectral index, and optical depth at 353 GHz, respectively. A comparison between premise and a GNILC-like method over selected regions of our sky simulation reveals that both methods perform comparably within high signal-to-noise regions. However, outside of the Galactic plane, premise is seen to outperform the GNILC-like method with increasing success as the signal-to-noise ratio worsens.

  3. Apparatus and method for transient thermal infrared emission spectrometry

    Science.gov (United States)

    McClelland, John F.; Jones, Roger W.

    1991-12-24

    A method and apparatus for enabling analysis of a solid material (16, 42) by applying energy from an energy source (20, 70) top a surface region of the solid material sufficient to cause transient heating in a thin surface layer portion of the solid material (16, 42) so as to enable transient thermal emission of infrared radiation from the thin surface layer portion, and by detecting with a spectrometer/detector (28, 58) substantially only the transient thermal emission of infrared radiation from the thin surface layer portion of the solid material. The detected transient thermal emission of infrared radiation is sufficiently free of self-absorption by the solid material of emitted infrared radiation, so as to be indicative of characteristics relating to molecular composition of the solid material.

  4. Charting thermal emission variability at Pele, Janus Patera and Kanehekili Fluctus with the Galileo NIMS Io Thermal Emission Database (NITED)

    Science.gov (United States)

    Davies, Ashley Gerard; Veeder, Glenn J.; Matson, Dennis L.; Johnson, Torrence V.

    2012-09-01

    Using the NIMS Io Thermal Emission Database (NITED), a collection of over 1000 measurements of radiant flux from Io’s volcanoes (Davies, A.G. et al. [2012]. Geophys. Res. Lett. 39, L01201. doi:10.1029/2011GL049999), we have examined the variability of thermal emission from three of Io’s volcanoes: Pele, Janus Patera and Kanehekili Fluctus. At Pele, the 5-μm thermal emission as derived from 28 night time observations is remarkably steady at 37 ± 10 GW μm-1, re-affirming previous analyses that suggested that Pele an active, rapidly overturning silicate lava lake. Janus Patera also exhibits relatively steady 5-μm thermal emission (≈20 ± 3 GW μm-1) in the four observations where Janus is resolved from nearby Kanehekili Fluctus. Janus Patera might contain a Pele-like lava lake with an effusion rate (QF) of ≈40-70 m3 s-1. It should be a prime target for a future mission to Io in order to obtain data to determine lava eruption temperature. Kanehekili Fluctus has a thermal emission spectrum that is indicative of the emplacement of lava flows with insulated crusts. Effusion rate at Kanehekili Fluctus dropped by an order of magnitude from ≈95 m3 s-1 in mid-1997 to ≈4 m3 s-1 in late 2001.

  5. Thermal history regulates methylbutenol basal emission rate in Pinus ponderosa.

    Science.gov (United States)

    Gray, Dennis W; Goldstein, Allen H; Lerdau, Manuel T

    2006-07-01

    Methylbutenol (MBO) is a 5-carbon alcohol that is emitted by many pines in western North America, which may have important impacts on the tropospheric chemistry of this region. In this study, we document seasonal changes in basal MBO emission rates and test several models predicting these changes based on thermal history. These models represent extensions of the ISO G93 model that add a correction factor C(basal), allowing MBO basal emission rates to change as a function of thermal history. These models also allow the calculation of a new emission parameter E(standard30), which represents the inherent capacity of a plant to produce MBO, independent of current or past environmental conditions. Most single-component models exhibited large departures in early and late season, and predicted day-to-day changes in basal emission rate with temporal offsets of up to 3 d relative to measured basal emission rates. Adding a second variable describing thermal history at a longer time scale improved early and late season model performance while retaining the day-to-day performance of the parent single-component model. Out of the models tested, the T(amb),T(max7) model exhibited the best combination of day-to-day and seasonal predictions of basal MBO emission rates.

  6. Modification of Thermal Emission via Metallic Photonic Crystals

    International Nuclear Information System (INIS)

    Norris, David J.; Stein, Andreas; George, Steven M.

    2012-01-01

    Photonic crystals are materials that are periodically structured on an optical length scale. It was previously demonstrated that the glow, or thermal emission, of tungsten photonic crystals that have a specific structure - known as the 'woodpile structure' - could be modified to reduce the amount of infrared radiation from the material. This ability has implications for improving the efficiency of thermal emission sources and for thermophotovoltaic devices. The study of this effect had been limited because the fabrication of metallic woodpile structures had previously required a complex fabrication process. In this project we pursued several approaches to simplify the fabrication of metallic photonic crystals that are useful for modification of thermal emission. First, we used the self-assembly of micrometer-scale spheres into colloidal crystals known as synthetic opals. These opals can then be infiltrated with a metal and the spheres removed to obtain a structure, known as an inverse opal, in which a three-dimensional array of bubbles is embedded in a film. Second, we used direct laser writing, in which the focus of an infrared laser is moved through a thin film of photoresist to form lines by multiphoton polymerization. Proper layering of such lines can lead to a scaffold with the woodpile structure, which can be coated with a refractory metal. Third, we explored a completely new approach to modified thermal emission - thin metal foils that contain a simple periodic surface pattern, as shown in Fig. 1. When such a foil is heated, surface plasmons are excited that propagate along the metal interface. If these waves strike the pattern, they can be converted into thermal emission with specific properties.

  7. Emission and thermal performance upgrade through advanced control backfit

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, A.K. [Stone & Webster Engineering Corporation, Boston, MA (United States)

    1994-12-31

    Reducing emission and improving thermal performance of currently operating power plants is a high priority. A majority of these power plants are over 20 years old with old control systems. Upgrading the existing control systems with the latest technology has many benefits, the most cost beneficial are the reduction of emission and improving thermal performance. The payback period is usually less than two years. Virginia Power is installing Stone & Webster`s NO{sub x} Emissions Advisor and Advanced Steam Temperature Control systems on Possum Point Units 3 and 4 to achieve near term NO{sub x} reductions while maintaining high thermal performance. Testing has demonstrated NO{sub x} reductions of greater than 20 percent through the application of NO{sub x} Emissions Advisor on these units. The Advanced Steam Temperature Control system which has been operational at Virginia Power`s Mt. Storm Unit 1 has demonstrated a signification improvement in unit thermal performance and controllability. These control systems are being combined at Units 3 and 4 to reduce NO{sub x} emissions and achieve improved unit thermal performance and control response with the existing combustion hardware. Installation has been initiated and is expected to be completed by the spring of 1995. Possum Point Power Station Units 3 and 4 are pulverized coal, tangentially fired boilers producing 107 and 232 MW and have a distributed control system and a PC based performance monitoring system. The installation of the advanced control and automation system will utilize existing control equipment requiring the addition of several PCs and PLC.

  8. A polarimetric survey of symbiotic stars

    International Nuclear Information System (INIS)

    Schulte-Ladbeck, R.E.; Magalhaes, A.M.; Magalhaes, A.M.

    1990-01-01

    We present optical and near-infrared linear polarization observations of 24 symbiotic stars, 14 observed with polarimetry for the first time. In combination with published data, we find that ∼ 50% of the symbiotics observed polarimetrically show evidence for intrinsic polarization. We discuss the results in the light of previous observations and comment on the temporal variability and wavelength dependence of the polarization. Dust scattering is identified as the dominant mechanism producing polarization in symbiotic stars. While we cannot exclude that some symbiotic systems are completely engulfed in their dust shells our data indicate that the Hα emission line may originate from outside of the dust-scattering envelopes in some systems

  9. Thermal conductivity and emissivity measurements of uranium carbides

    International Nuclear Information System (INIS)

    Corradetti, S.; Manzolaro, M.; Andrighetto, A.; Zanonato, P.; Tusseau-Nenez, S.

    2015-01-01

    Highlights: • Thermal conductivity and emissivity measurements of uranium carbides were performed. • The tested materials are candidates as targets for radioactive ion beam production. • The results are correlated with the materials composition and microstructure. - Abstract: Thermal conductivity and emissivity measurements on different types of uranium carbide are presented, in the context of the ActiLab Work Package in ENSAR, a project within the 7th Framework Program of the European Commission. Two specific techniques were used to carry out the measurements, both taking place in a laboratory dedicated to the research and development of materials for the SPES (Selective Production of Exotic Species) target. In the case of thermal conductivity, estimation of the dependence of this property on temperature was obtained using the inverse parameter estimation method, taking as a reference temperature and emissivity measurements. Emissivity at different temperatures was obtained for several types of uranium carbide using a dual frequency infrared pyrometer. Differences between the analyzed materials are discussed according to their compositional and microstructural properties. The obtainment of this type of information can help to carefully design materials to be capable of working under extreme conditions in next-generation ISOL (Isotope Separation On-Line) facilities for the generation of radioactive ion beams.

  10. Control of Several Emissions during Olive Pomace Thermal Degradation

    Directory of Open Access Journals (Sweden)

    Teresa Miranda

    2014-10-01

    Full Text Available Biomass plays an important role as an energy source, being an interesting alternative to fossil fuels due to its environment-friendly and sustainable characteristics. However, due to the exposure of customers to emissions during biomass heating, evolved pollutants should be taken into account and controlled. Changing raw materials or mixing them with another less pollutant biomass could be a suitable step to reduce pollution. This work studied the thermal behaviour of olive pomace, pyrenean oak and their blends under combustion using thermogravimetric analysis. It was possible to monitor the emissions released during the process by coupling mass spectrometry analysis. The experiments were carried out under non-isothermal conditions at the temperature range 25–750 °C and a heating rate of 20 °C·min−1. The following species were analysed: aromatic compounds (benzene and toluene, sulphur emissions (sulphur dioxide, 1,4-dioxin, hydrochloric acid, carbon dioxide and nitrogen oxides. The results indicated that pollutants were mainly evolved in two different stages, which are related to the thermal degradation steps. Thus, depending on the pollutant and raw material composition, different emission profiles were observed. Furthermore, intensity of the emission profiles was related, in some cases, to the composition of the precursor.

  11. Thermally excited proton spin-flip laser emission in tokamaks

    International Nuclear Information System (INIS)

    Arunasalam, V.; Greene, G.J.

    1993-07-01

    Based on statistical thermodynamic fluctuation arguments, it is shown here for the first time that thermally excited spin-flip laser emission from the fusion product protons can occur in large tokamak devices that are entering the reactor regime of operation. Existing experimental data from TFTR supports this conjecture, in the sense that these measurements are in complete agreement with the predictions of the quasilinear theory of the spin-flip laser

  12. Standoff laser-induced thermal emission of explosives

    Science.gov (United States)

    Galán-Freyle, Nataly Y.; Pacheco-Londoño, Leonardo C.; Figueroa-Navedo, Amanda; Hernandez-Rivera, Samuel P.

    2013-05-01

    A laser mediated methodology for remote thermal excitation of analytes followed by standoff IR detection is proposed. The goal of this study was to determine the feasibility of using laser induced thermal emission (LITE) from vibrationally excited explosives residues deposited on surfaces to detect explosives remotely. Telescope based FT-IR spectral measurements were carried out to examine substrates containing trace amounts of threat compounds used in explosive devices. The highly energetic materials (HEM) used were PETN, TATP, RDX, TNT, DNT and ammonium nitrate with concentrations from 5 to 200 μg/cm2. Target substrates of various thicknesses were remotely heated using a high power CO2 laser, and their mid-infrared (MIR) thermally stimulated emission spectra were recorded. The telescope was configured from reflective optical elements in order to minimize emission losses in the MIR frequencies and to provide optimum overall performance. Spectral replicas were acquired at a distance of 4 m with an FT-IR interferometer at 4 cm- 1 resolution and 10 scans. Laser power was varied from 4-36 W at radiation exposure times of 10, 20, 30 and 60 s. CO2 laser powers were adjusted to improve the detection and identification of the HEM samples. The advantages of increasing the thermal emission were easily observed in the results. Signal intensities were proportional to the thickness of the coated surface (a function of the surface concentration), as well as the laser power and laser exposure time. For samples of RDX and PETN, varying the power and time of induction of the laser, the calculated low limit of detections were 2 and 1 μg/cm2, respectively.

  13. Environmental emissions control programs at Lambton TGS [Thermal Generating Station

    International Nuclear Information System (INIS)

    Kalvins, A.K.

    1992-01-01

    Ontario Hydro's air emissions control programs at Lambton thermal generating station, both committed and planned, are reviewed, and their potential impacts on emissions, effluents and wastes are discussed. Control technologies examined include flue gas conditioning, wet limestone scrubbing, combustion process modifications, urea injection, and selective catalytic reduction. The implementation of these technologies has the potential to create new solid and liquid waste disposal problems, the full extent of which is often not realized at the process selection stage. For example, selective noncatalytic reduction using urea injection can lead to increased CO emissions, escape of unreacted ammonia from the stack at levels of 5-50 ppM, increase in N 2 O emissions, contamination of fly ash, gypsum and waste water with ammonia, and an increase in CO 2 emissions of less than 0.4% due to increased power consumption. Optimum performance of the air emissions control systems, with minimum negative impact on the environment, requires consideration of the impact of these systems on all waste streams. 11 refs., 3 figs., 1 tab

  14. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    Science.gov (United States)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  15. Thermal emission characteristics of a graded index semitransparent medium

    International Nuclear Information System (INIS)

    Huang Yong; Dong Sujun; Yang Min; Wang Jun

    2008-01-01

    This paper develops a numerical model for thermal radiative transfer in a two-dimensional semitransparent graded index medium. A piecewise continuous refractive index model, the linear refractive index bar model, is presented. This model is established based on three hypotheses, and has a higher precision than the bar model used previously. This paper also studies the thermal emission from a two-dimensional graded index medium, which is scattering or non-scattering. We find that it can present an obvious pattern of directional distribution at times. The refractive index distribution and absorption coefficient are the two main influential factors. This finding differs from the common belief that thermal sources, such as the incandescent filament of a light bulb, emit a quasi-isotropic light. The finding also suggests that there maybe other important applications of artificial GRIN materials

  16. Dual-Polarimetric Radar-Based Tornado Debris Paths Associated with EF-4 and EF-5 Tornadoes over Northern Alabama During the Historic Outbreak of 27 April 2011

    Science.gov (United States)

    Carey, Lawrence D.; Schultz, Chrstopher J.; Schultz, Elise V.; Petersen, Walter A.; Gatlin, Patrick N.; Knupp, Kevin R.; Molthan, Andrew L.; Jedlovec, Gary J.; Darden, Christopher B.

    2012-01-01

    An historic tornado and severe weather outbreak devastated much of the southeastern United States between 25 and 28 April 2011. On 27 April 2011, northern Alabama was particularly hard hit by a large number of tornadoes, including several that reached EF-4 and EF-5 on the Enhanced Fujita damage scale. In northern Alabama alone, there were approximately 100 fatalities and hundreds of more people who were injured or lost their homes during the havoc caused by these violent tornadic storms. Two long-track and violent (EF-4 and EF-5) tornadoes occurred within range of the University of Alabama in Huntsville (UAHuntsville) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). A unique capability of dual-polarimetric radar is the near-real time identification of lofted debris associated with ongoing tornadoes on the ground. The focus of this paper is to analyze the dual-polarimetric radar-inferred tornado debris signatures and identify the associated debris paths of the long-track EF-4 and EF-5 tornadoes near ARMOR. The relative locations of the debris and damage paths for each tornado will be ascertained by careful comparison of the ARMOR analysis with NASA MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite imagery of the tornado damage scenes and the National Weather Service tornado damage surveys. With the ongoing upgrade of the WSR-88D (Weather Surveillance Radar 1988 Doppler) operational network to dual-polarimetry and a similar process having already taken place or ongoing for many private sector radars, dual-polarimetric radar signatures of tornado debris promise the potential to assist in the situational awareness of government and private sector forecasters and emergency managers during tornadic events. As such, a companion abstract (Schultz et al.) also submitted to this conference explores The use of dual-polarimetric tornadic debris

  17. Thermal and non-thermal emission from NGC 1275(3C84)

    International Nuclear Information System (INIS)

    Gear, W.K.; Robson, E.I.; Gee, G.; Nolt, I.G.

    1985-01-01

    Millimetre, submillimetre, far- and near-infrared observations of the unusual galaxy NGC 1275 are presented. After subtraction of the near-infrared stellar contamination of the surrounding galaxy the non-stellar emission at these wavelengths is investigated. It is concluded that the millimetre-wave and near-infrared emission is synchrotron radiation from a very compact component. It is shown that the emission at wavelengths from 10-400 μm is dominated by thermal emission with a spectrum very similar to NGC 1068. It is shown that the material for star formation in NGC 1275 is almost certainly being provided by accretion in a cooling flow from the Perseus intracluster gas with only approx. 2 per cent of the accreting mass forming OBA stars. (author)

  18. Photoacoustic emission from Au nanoparticles arrayed on thermal insulation layer.

    Science.gov (United States)

    Namura, Kyoko; Suzuki, Motofumi; Nakajima, Kaoru; Kimura, Kenji

    2013-04-08

    Efficient photoacoustic emission from Au nanoparticles on a porous SiO(2) layer was investigated experimentally and theoretically. The Au nanoparticle arrays/porous SiO(2)/SiO(2)/Ag mirror sandwiches, namely, local plasmon resonators, were prepared by dynamic oblique deposition (DOD). Photoacoustic measurements were performed on the local plasmon resonators, whose optical absorption was varied from 0.03 (3%) to 0.95 by varying the thickness of the dielectric SiO(2) layer. The sample with high absorption (0.95) emitted a sound that was eight times stronger than that emitted by graphite (0.94) and three times stronger than that emitted by the sample without the porous SiO(2) layer (0.93). The contribution of the porous SiO(2) layer to the efficient photoacoustic emission was analyzed by means of a numerical method based on a one-dimensional heat transfer model. The result suggested that the low thermal conductivity of the underlying porous layer reduces the amount of heat escaping from the substrate and contributes to the efficient photoacoustic emission from Au nanoparticle arrays. Because both the thermal conductivity and the spatial distribution of the heat generation can be controlled by DOD, the local plasmon resonators produced by DOD are suitable for the spatio-temporal modulation of the local temperature.

  19. From photoluminescence to thermal emission: Thermally-enhanced PL (TEPL) for efficient PV (Conference Presentation)

    Science.gov (United States)

    Manor, Assaf; Kruger, Nimrod; Martin, Leopoldo L.; Rotschild, Carmel

    2016-09-01

    The Shockley-Queisser efficiency limit of 40% for single-junction photovoltaic (PV) cells is mainly caused by the heat dissipation accompanying the process of electro-chemical potential generation. Concepts such as solar thermo-photovoltaics (STPV) aim to harvest this heat loss by the use of a primary absorber which acts as a mediator between the sun and the PV, spectrally shaping the light impinging on the cell. However, this approach is challenging to realize due to the high operating temperatures of above 2000K required in order to generate high thermal emission fluxes. After over thirty years of STPV research, the record conversion efficiency for STPV device stands at 3.2% for 1285K operating temperature. In contrast, we recently demonstrated how thermally-enhanced photoluminescence (TEPL) is an optical heat-pump, in which photoluminescence is thermally blue-shifted upon heating while the number of emitted photons is conserved. This process generates energetic photon-rates which are comparable to thermal emission in significantly reduced temperatures, opening the way for a TEPL based energy converter. In such a device, a photoluminescent low bandgap absorber replaces the STPV thermal absorber. The thermalization heat induces a temperature rise and a blue-shifted emission, which is efficiently harvested by a higher bandgap PV. We show that such an approach can yield ideal efficiencies of 70% at 1140K, and realistic efficiencies of almost 50% at moderate concentration levels. As an experimental proof-of-concept, we demonstrate 1.4% efficient TEPL energy conversion of an Nd3+ system coupled to a GaAs cell, at 600K.

  20. Thermal emission from interstellar dust in and near the Pleiades

    International Nuclear Information System (INIS)

    White, R.E.

    1989-01-01

    IRAS survey coadds for a 8.7 deg x 4.3 deg field near the Pleiades provide evidence for dynamical interaction between the cluster and the surrounding interstellar medium. The far-infrared images show large region of faint emission with bright rims east of the cluster, suggestive of a wake. Images of the far-infrared color temperature and 100 micron optical depth reveal temperature maxima and optical depth minima near the bright cluster stars, as well as a strong optical depth peak at the core of the adjacent CO cloud. Models for thermal dust emission near the stars indicate that most of the apparent optical depth minima near stars are illusory, but also provide indirect evidence for small interaction between the stars and the encroaching dust cloud

  1. Thermal emission from interstellar dust in and near the Pleiades

    Science.gov (United States)

    White, Richard E.

    1989-01-01

    IRAS survey coadds for a 8.7 deg x 4.3 deg field near the Pleiades provide evidence for dynamical interaction between the cluster and the surrounding interstellar medium. The far-infrared images show large region of faint emission with bright rims east of the cluster, suggestive of a wake. Images of the far-infrared color temperature and 100 micron optical depth reveal temperature maxima and optical depth minima near the bright cluster stars, as well as a strong optical depth peak at the core of the adjacent CO cloud. Models for thermal dust emission near the stars indicate that most of the apparent optical depth minima near stars are illusory, but also provide indirect evidence for small interaction between the stars and the encroaching dust cloud.

  2. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  3. Modelling of non-thermal electron cyclotron emission during ECRH

    International Nuclear Information System (INIS)

    Tribaldos, V.; Krivenski, V.

    1990-01-01

    The existence of suprathermal electrons during Electron Cyclotron Resonance Heating experiments in tokamaks is today a well established fact. At low densities the creation of large non-thermal electron tails affects the temperature profile measurements obtained by 2 nd harmonic, X-mode, low-field side, electron cyclotron emission. At higher densities suprathermal electrons can be detected by high-field side emission. In electron cyclotron current drive experiments a high energy suprathermal tail, asymmetric in v, is observed. Non-Maxwellian electron distribution functions are also typically observed during lower-hybrid current drive experiments. Fast electrons have been observed during ionic heating by neutral beams as well. Two distinct approaches are currently used in the interpretation of the experimental results: simple analytical models which reproduce some of the expected non-Maxwellian characteristics of the electron distribution function are employed to get a qualitative picture of the phenomena; sophisticated numerical Fokker-Planck calculations give the electron distribution function from which the emission spectra are computed. No algorithm is known to solve the inverse problem, i.e. to compute the electron distribution function from the emitted spectra. The proposed methods all relay on the basic assumption that the electron distribution function has a given functional dependence on a limited number of free parameters, which are then 'measured' by best fitting the experimental results. Here we discuss the legitimacy of this procedure. (author) 7 refs., 5 figs

  4. Spectral characterization of surface emissivities in the thermal infrared

    Science.gov (United States)

    Niclòs, Raquel; Mira, Maria; Valor, Enric; Caselles, Diego; García-Santos, Vicente; Caselles, Vicente; Sánchez, Juan M.

    2015-04-01

    Thermal infrared (TIR) remote sensing trends to hyperspectral sensors on board satellites in the last decades, e.g., the current EOS-MODIS and EOS-ASTER and future missions like HyspIRI, ECOSTRESS, THIRSTY and MISTIGRI. This study aims to characterize spectrally the emissive properties of several surfaces, mostly soils. A spectrometer ranging from 2 to 16 μm, D&P Model 102, has been used to measure samples with singular spectral features, e.g. a sandy soil rich in gypsum sampled in White Sands (New Mexico, USA), salt samples, powdered quartz, and powdered calcite. These samples were chosen for their role in the assessment of thermal emissivity of soils, e.g., the calcite and quartz contents are key variables for modeling TIR emissivities of bare soils, along with soil moisture and organic matter. Additionally, the existence of large areas in the world with abundance of these materials, some of them used for calibration/validation activities of satellite sensors and products, makes the chosen samples interesting. White Sands is the world's largest gypsum dune field encompassing 400 km^2; the salt samples characterize the Salar of Uyuni (Bolivia), the largest salt flat in the world (up to 10,000 km^2), as well as the Jordanian and Israeli salt evaporation ponds at the south end of the Dead Sea, or the evaporation lagoons in Aigües-Mortes (France); and quartz is omnipresent in most of the arid regions of the world such as the Algodones Dunes or Kelso Dunes (California, USA), with areas around 700 km2 and 120 km^2, respectively. Measurements of target leaving radiance, hemispherical radiance reflected by a diffuse reflectance panel, and the radiance from a black body at different temperatures were taken to obtain thermal spectra with the D&P spectrometer. The good consistency observed between our measurements and laboratory spectra of similar samples (ASTER and MODIS spectral libraries) indicated the validity of the measurement protocol. Further, our study showed the

  5. Emission of Polychlorinated Naphthalenes during Thermal Related Processes

    Science.gov (United States)

    Liu, Guorui; Zheng, Minghui; Du, Bing; Liu, Wenbin; Zhang, Bing; Xiao, Ke

    2010-05-01

    Due to the structural similarity of polychlorinated naphthalenes (PCNs) to those of dioxins, PCNs exhibit toxicological properties similar to dioxins (Olivero-Verbel et al., 2004). Based on their high toxicity, persistence, bioaccumulation, and long-distance transmission, PCNs were also selected as a candidate POP for the UN-ECE (United Nations Economic Commission for Europe) POP protocol (Lerche et al., 2002). In addition, some studies suggested that PCNs contributed a greater proportion of the dioxin-like activity than polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) contributed in some locations (Kannan et al., 1998). However, the identification and quantitation for PCN sources are very scarce compared with PCDD/Fs. Understanding the emission levels and developing the emission inventory of PCNs is important for regulatory and source reduction purposes. In this study, several potential sources were preliminarily investigated for PCN release. Coking process (CP), iron ore sintering (IOS), and electric arc furnace steel making units (AF) were selected due to their huge activity level of industrial production in China. Municipal solid waste incineration (MSWI) and medical waste incineration (MWI) were also investigated because of the possible high concentration of PCNs in stack gas. Two plants were investigated for each thermal related process, except for MWI with one incinerator was investigated. The stack gas samples were collected by automatic isokinetic sampling system (Isostack Basic, TCR TECORA, Milan Italy). Isotope dilution high resolution gas chromatography coupled with high resolution mass spectrometry (HRGC/HRMS) technique was used for the identification and quantitation of PCN congeners. The concentrations of PCNs from the selected thermal processes were determined in this study. The average concentrations of total PCNs were 26 ng Nm-3 for CP, 65 ng Nm-3 for IOS, 720 ng Nm-3 for AF, 443 ng Nm-3 for MSWI, and

  6. Prospects for Detecting Thermal Emission from Terrestrial Exoplanets with JWST

    Science.gov (United States)

    Kreidberg, Laura

    2018-01-01

    A plethora of nearby, terrestrial exoplanets has been discovered recently by ground-based surveys. Excitingly, some of these are in the habitable zones of their host stars, and may be hospitable for life. However, all the planets orbit small, cool stars and have considerably different irradiation environments from the Earth, making them vulnerable to atmospheric escape, erosion and collapse. Atmosphere characterization is therefore critical to assessing the planets' habitability. I will discuss possible JWST thermal emission measurements to determine the atmospheric properties of nearby terrestrial planets. I will focus on prospects for detecting physically motivated atmospheres for planets orbiting LHS 1140, GJ 1132, and TRAPPIST-1. I will also discuss the potential for using phase curve observations to determine whether an atmosphere has survived on the non-transiting planet Proxima b.

  7. MODIS on-orbit thermal emissive bands lifetime performance

    Science.gov (United States)

    Madhavan, Sriharsha; Wu, Aisheng; Chen, Na; Xiong, Xiaoxiong

    2016-05-01

    MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 μm - 14.4 μm, of which wavelengths ranging from 3.7 μm - 14. 4 μm cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.

  8. The NASA Polarimetric Radar (NPOL)

    Science.gov (United States)

    Petersen, Walter A.; Wolff, David B.

    2013-01-01

    Characteristics of the NASA NPOL S-band dual-polarimetric radar are presented including its operating characteristics, field configuration, scanning capabilities and calibration approaches. Examples of precipitation science data collections conducted using various scan types, and associated products, are presented for different convective system types and previous field campaign deployments. Finally, the NASA NPOL radar location is depicted in its home base configuration within the greater Wallops Flight Facility precipitation research array supporting NASA Global Precipitation Measurement Mission ground validation.

  9. A fiber-optic polarimetric demonstration kit

    International Nuclear Information System (INIS)

    Eftimov, T; Dimitrova, T L; Ivanov, G

    2012-01-01

    A simple and multifunctional fiber-optic polarimetric kit on the basis of highly birefringent single-mode fibers is presented. The fiber-optic polarimetric kit allows us to perform the following laboratory exercises: (i) fiber excitation and the measurement of numerical aperture, (ii) polarization preservation and (iii) obtain polarization-sensitive fiberized interferometers.

  10. Multi-Color QWIP FPAs for Hyperspectral Thermal Emission Instruments

    Science.gov (United States)

    Soibel, Alexander; Luong, Ed; Mumolo, Jason M.; Liu, John; Rafol, Sir B.; Keo, Sam A.; Johnson, William; Willson, Dan; Hill, Cory J.; Ting, David Z.-Y.; hide

    2012-01-01

    Infrared focal plane arrays (FPAs) covering broad mid- and long-IR spectral ranges are the central parts of the spectroscopic and imaging instruments in several Earth and planetary science missions. To be implemented in the space instrument these FPAs need to be large-format, uniform, reproducible, low-cost, low 1/f noise, and radiation hard. Quantum Well Infrared Photodetectors (QWIPs), which possess all needed characteristics, have a great potential for implementation in the space instruments. However a standard QWIP has only a relatively narrow spectral coverage. A multi-color QWIP, which is compromised of two or more detector stacks, can to be used to cover the broad spectral range of interest. We will discuss our recent work on development of multi-color QWIP for Hyperspectral Thermal Emission Spectrometer instruments. We developed QWIP compromising of two stacks centered at 9 and 10.5 ?m, and featuring 9 grating regions optimized to maximize the responsivity in the individual subbands across the 7.5-12 ?m spectral range. The demonstrated 1024x1024 QWIP FPA exhibited excellent performance with operability exceeding 99% and noise equivalent differential temperature of less than 15 mK across the entire 7.5-12 ?m spectral range.

  11. Polarimetric Edge Detector Based on the Complex Wishart Distribution

    DEFF Research Database (Denmark)

    Skriver, Henning; Schou, Jesper; Nielsen, Allan Aasbjerg

    2001-01-01

    polarimetric edge detector provides a constant false alarm rate and it utilizes the full polarimetric information. The edge detector has been applied to polarimetric SAR data from the Danish dual-frequency, airborne polarimetric SAR, EMISAR. The results show clearly an improved edge detection performance...

  12. Noise Characterization and Performance of MODIS Thermal Emissive Bands

    Science.gov (United States)

    Madhavan, Sriharsha; Xiong, Xiaoxiong; Wu, Aisheng; Wenny, Brian; Chiang, Kwofu; Chen, Na; Wang, Zhipeng; Li, Yonghong

    2016-01-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is a premier Earth-observing sensor of the early 21st century, flying onboard the Terra (T) and Aqua (A) spacecraft. Both instruments far exceeded their six-year design life and continue to operate satisfactorily for more than 15 and 13 years, respectively. The MODIS instrument is designed to make observations at nearly a 100% duty cycle covering the entire Earth in less than two days. The MODIS sensor characteristics include a spectral coverage from 0.41micrometers to 14.4 micrometers, of which those wavelengths ranging from 3.7 micrometers to 14.4 micrometers cover the thermal infrared region which is interspaced in 16 thermal emissive bands (TEBs). Each of the TEB contains ten detectors which record samples at a spatial resolution of 1 km. In order to ensure a high level of accuracy for the TEB-measured top-of-atmosphere radiances, an onboard blackbody (BB) is used as the calibration source. This paper reports the noise characterization and performance of the TEB on various counts. First, the stability of the onboard BB is evaluated to understand the effectiveness of the calibration source. Next, key noise metrics such as the noise equivalent temperature difference and the noise equivalent dn difference (NEdN) for the various TEBs are determined from multiple temperature sources. These sources include the nominally controlled BB temperature of 290 K for T-MODIS and 285 K for A-MODIS, as well as a BB warm up-cool down cycle that is performed over a temperature range from roughly 270 to 315 K. The space-view port that measures the background signal serves as a viable cold temperature source for measuring noise. In addition, a well characterized Earth-view target, the Dome Concordia site located in the Antarctic plateau, is used for characterizing the stability of the sensor, indirectly providing a measure of the NEdN. Based on this rigorous characterization, a list of the noisy and inoperable detectors for

  13. Power electronics solution to dust emissions from thermal power plants

    Directory of Open Access Journals (Sweden)

    Vukosavić Slobodan

    2010-01-01

    Full Text Available Thermal power stations emit significant amounts of fly ash and ultra fine particles into the atmosphere. Electrostatic precipitators (ESP or electro filters remove flying ashes and fine particles from the flue gas before passing the gas into the chimney. Maximum allowable value of dust is 50 mg/m3 and it requires that the efficiency of the ESPs better than 99 %, which calls for an increase of active surface of the electrodes, hence increasing the filter volume and the weight of steel used for the filter. In previous decades, electrostatic precipitators in thermal power plants were fed by thyristor controlled, single phase fed devices having a high degree of reliability, but with a relatively low collection efficiency, hence requiring large effective surface of the collection plates and a large weight of steel construction in order to achieve the prescribed emission limits. Collection efficiency and energy efficiency of the electrostatic precipitator can be increased by applying high frequency high voltage power supply (HF HV. Electrical engineering faculty of the University of Belgrade (ETF has developed technology and HF HV equipment for the ESP power supply. This solution was subjected to extensive experimental investigation at TE Morava from 2008 to 2010. High frequency power supply is proven to reduce emission two times in controlled conditions while increasing energy efficiency of the precipitator, compared to the conventional thyristor controlled 50Hz supply. Two high frequency high voltage unit AR70/1000 with parameters 70 kV and 1000 mA are installed at TE Morava and thoroughly testes. It was found that the HF HV power supply of the ESP at TE Morava increases collection efficiency so that emission of fine particles and flying ashes are halved, brought down to only 50 % of the emissions encountered with conventional 50 Hz thyristor driven power supplies. On the basis of this study, conclusion is drawn that the equipment comprising HF HV

  14. Emissions, energy return and economics from utilizing forest residues for thermal energy compared to onsite pile burning

    Science.gov (United States)

    Greg Jones; Dan Loeffler; Edward Butler; Woodam Chung; Susan Hummel

    2010-01-01

    The emissions from delivering and burning forest treatment residue biomass in a boiler for thermal energy were compared with onsite disposal by pile-burning and using fossil fuels for the equivalent energy. Using biomass for thermal energy reduced carbon dioxide emissions on average by 39 percent and particulate matter emissions by 89 percent for boilers with emission...

  15. Passive Polarimetric Information Processing for Target Classification

    Science.gov (United States)

    Sadjadi, Firooz; Sadjadi, Farzad

    Polarimetric sensing is an area of active research in a variety of applications. In particular, the use of polarization diversity has been shown to improve performance in automatic target detection and recognition. Within the diverse scope of polarimetric sensing, the field of passive polarimetric sensing is of particular interest. This chapter presents several new methods for gathering in formation using such passive techniques. One method extracts three-dimensional (3D) information and surface properties using one or more sensors. Another method extracts scene-specific algebraic expressions that remain unchanged under polariza tion transformations (such as along the transmission path to the sensor).

  16. Polarimetric Segmentation Using Wishart Test Statistic

    DEFF Research Database (Denmark)

    Skriver, Henning; Schou, Jesper; Nielsen, Allan Aasbjerg

    2002-01-01

    A newly developed test statistic for equality of two complex covariance matrices following the complex Wishart distribution and an associated asymptotic probability for the test statistic has been used in a segmentation algorithm. The segmentation algorithm is based on the MUM (merge using moments......) approach, which is a merging algorithm for single channel SAR images. The polarimetric version described in this paper uses the above-mentioned test statistic for merging. The segmentation algorithm has been applied to polarimetric SAR data from the Danish dual-frequency, airborne polarimetric SAR, EMISAR...

  17. Status of thermal power generation in India-Perspectives on capacity, generation and carbon dioxide emissions

    International Nuclear Information System (INIS)

    Ghosh, Subhodip

    2010-01-01

    India's reliance on fossil-fuel based electricity generation has aggravated the problem of high carbon dioxide (CO 2 ) emissions from combustion of fossil fuels, primarily coal, in the country's energy sector. The objective of this paper is to analyze thermal power generation in India for a four-year period and determine the net generation from thermal power stations and the total and specific CO 2 emissions. The installed generating capacity, net generation and CO 2 emissions figures for the plants have been compared and large generators, large emitters, fuel types and also plant vintage have been identified. Specific emissions and dates of commissioning of plants have been taken into account for assessing whether specific plants need to be modernized. The focus is to find out areas and stations which are contributing more to the total emissions from all thermal power generating stations in the country and identify the overall trends that are emerging.

  18. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B. (ENEA, Frascati (Italy). Centro Ricerche Energia); Marcus, F.B.; Conroy, S.; Jarvis, O.N.; Loughlin, M.J.; Sadler, G.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking); Adams, J.M.; Watkins, N. (AEA Industrial Technology, Harwell (United Kingdom))

    1993-10-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T[sub i], and ion thermal diffusivity, [chi][sub i], are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author).

  19. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    International Nuclear Information System (INIS)

    Esposito, B.

    1993-01-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T i , and ion thermal diffusivity, χ i , are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author)

  20. Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance

    Directory of Open Access Journals (Sweden)

    Mikhail A. Kats

    2013-10-01

    Full Text Available We experimentally demonstrate that a thin (approximately 150-nm film of vanadium dioxide (VO_{2} deposited on sapphire has an anomalous thermal emittance profile when heated, which arises because of the optical interaction between the film and the substrate when the VO_{2} is at an intermediate state of its insulator-metal transition (IMT. Within the IMT region, the VO_{2} film comprises nanoscale islands of the metal and dielectric phases and can thus be viewed as a natural, disordered metamaterial. This structure displays “perfect” blackbodylike thermal emissivity over a narrow wavelength range (approximately 40  cm^{-1}, surpassing the emissivity of our black-soot reference. We observe large broadband negative differential thermal emittance over a >10 °C range: Upon heating, the VO_{2}-sapphire structure emits less thermal radiation and appears colder on an infrared camera. Our experimental approach allows for a direct measurement and extraction of wavelength- and temperature-dependent thermal emittance. We anticipate that emissivity engineering with thin-film geometries comprising VO_{2} and other thermochromic materials will find applications in infrared camouflage, thermal regulation, and infrared tagging and labeling.

  1. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  2. On the Absence of Non-thermal X-Ray Emission around Runaway O Stars

    Energy Technology Data Exchange (ETDEWEB)

    Toalá, J. A. [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617, Taiwan (China); Oskinova, L. M. [Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States)

    2017-04-01

    Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ -ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations of AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.

  3. ASTEROID POLARIMETRIC DATABASE V6.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko and S.V. Vasiliev of Karazin Kharkiv National...

  4. Novel Polarimetric SAR Interferometry Algorithms, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  5. Full-energy-chain analysis of greenhouse gas emissions for solar thermal electric power generation systems

    International Nuclear Information System (INIS)

    Norton, B.; Lawson, W.R.

    1997-01-01

    Technical attributes and environmental impacts of solar thermal options for centralized electricity generation are discussed. In particular, the full-energy-chain, including embodied energy and energy production, is considered in relation to greenhouse gas emission arising from solar thermal electricity generation. Central receiver, parabolic dish, parabolic trough and solar pond systems are considered. (author)

  6. Volcanism on Io: The Galileo NIMS Io Thermal Emission Database (NITED)

    Science.gov (United States)

    Davies, A. G.; Veeder, G. J.; Matson, D. L.; Johnson, T. V.

    2011-12-01

    In order to determine the magnitude of thermal emission from Io's volcanoes and variability with time at local, regional and global scales, we have calculated the 4.7 or 5 μm radiant flux for every hot spot in every Galileo Near Infrared Mapping Spectrometer (NIMS) observation obtained during the Galileo mission between June 1996 and October 2001. The resulting database contains over 1000 measurements of radiant flux, corrected for emission angle, range to target, and, where necessary, incident sunlight. Io's volcanoes produce the most voluminous and most powerful eruptions in the Solar System [1] and NIMS was the ideal instrument for measuring thermal emission from these volcanoes (see [1, 2]). NIMS covered the infrared from 0.7 to 5.2 μm, so measurement of hot spot thermal emission at ~5 μm was possible even in daytime observations. As part of a campaign to quantify magnitude and variability of volcanic thermal emission [1, 3-5] we examined the entire NIMS dataset (196 observations). The resulting NIMS Io Thermal Emission Database (NITED) allows the charting of 5-μm thermal emission at individual volcanoes, identifying individual eruption episodes, and enabling the comparison of activity at different hot spots [e.g., 6] and different regions of Io. Some ionian hot spots were detected only once or twice by NIMS (e.g., Ah Peku Patera, seen during I32), but most were detected many times (e.g., Culann, Tupan and Zamama, [6]). For example, the database contains over 40 observations of Loki Patera (some at high emission angle, and two partial observations). There are 55 observations of Pele. The 27 nighttime observations of Pele show a remarkably steady 5-μm radiant flux of 35 ± 12 GW/μm. There are 34 observations of Pillan, which erupted violently in 1997. Although in many observations low spatial resolution makes it difficult to separate hot spot pairs such as Susanoo Patera and Mulungu Patera; Tawhaki Patera and Hi'iaka Patera; and Janus Patera and Kanehekili

  7. Te(R,t) Measurements using Electron Bernstein Wave Thermal Emission on NSTX

    International Nuclear Information System (INIS)

    Diem, S.J.; Taylor, G.; Efthimion, P.C.; LeBlanc, B.P.; Carter, M.; Caughman, J.; Wilgen, J.B.; Harvey, R.W.; Preinhaelter, J.; Urban, J.

    2006-01-01

    The National Spherical Torus Experiment (NSTX) routinely studies overdense plasmas with n e of (1-5) x 10 19 m -3 and total magnetic field of e measurement. A significant upgrade to the previous NSTX EBW emission diagnostic to measure thermal EBW emission via the oblique B-X-O mode conversion process has been completed. The new EBW diagnostic consists of two remotely steerable, quad-ridged horn antennas, each of which is coupled to a dual channel radiometer. Fundamental (8-18 GHz) and second and third harmonic (18-40 GHz) thermal EBW emission and polarization measurements can be obtained simultaneously.

  8. Variable Emissive Smart Radiator for Dynamic Thermal Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Trending towards reduced power and mass budget on satellites with a longer mission life, there is a need for a reliable thermal control system that is more efficient...

  9. Programmable thermal emissivity structures based on bioinspired self-shape materials

    Science.gov (United States)

    Athanasopoulos, N.; Siakavellas, N. J.

    2015-12-01

    Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable - and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (ɛEff_H/ɛEff_L) equal to 28.

  10. Hard x ray imaging and the relative contribution of thermal and nonthermal emission in flares

    International Nuclear Information System (INIS)

    Holman, G.D.

    1986-01-01

    The question of whether the impulsive 25 to 100 keV x ray emission from solar flares is thermal or nonthermal has been a long-standing controversy. Both thermal and nonthermal (beam) models have been developed and applied to the hard x ray data. It now seems likely that both thermal and nonthermal emission have been observed at hard x ray energies. The Hinotori classification scheme, for example, is an attempt to associate the thermal-nonthermal characteristics of flare hard x ray emission with other flare properties. From a theoretical point of view, it is difficult to generate energetic, nonthermal electrons without dumping an equal or greater amount of energy into plasma heating. On the other hand, any impulsive heating process will invariably generate at least some nonthermal particles. Hence, strictly speaking, although thermal or nonthermal emission may dominate the hard x ray emission in a given energy range for a given flare, there is no such thing as a purely thermal or nonthermal flare mechanism

  11. Polarimetric Signatures from a Crop Covered Land Surface Measured by an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    This paper describes preliminary results from field measurements of polarimetric azimuth signatures with the EMIRAD L-band polarimetric radiometer, performed over a land test site at the Institut National de la Recherche Agronomique in Avignon, France. Scans of 180 degrees in azimuth were carried...

  12. The Swift BAT Perspective on Non-Thermal Emission in HIFLUGCS Galaxy Clusters

    Science.gov (United States)

    Wik, Daniel R.

    2011-01-01

    The search for diffuse non-thermal, inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been underway for many years, with most detections being either of low significance or controversial. Until recently, comprehensive surveys of hard X-ray emission from clusters were not possible; instead, individually proposed-for. long observations would be collated from the archive. With the advent of the Swift BAT all sky survey, any c1u,;ter's emission above 14 keV can be probed with nearly uniform sensitivity. which is comparable to that of RXTE, Beppo-SAX, and Suzaku with the 58-month version of the survey. In this work. we search for non-thermal excess emission above the exponentially decreasing, high energy thermal emission in the flux-limited HIFLUGCS sample. The BAT emission from many of the detected clusters is marginally extended; we are able to extract the total flux for these clusters using fiducial models for their spatial extent. To account for thermal emission at BAT energies, XMM-Newton EPIC spectra are extracted from coincident spatial regions so that both the thermal and non-thermal spectral components can be determined simultaneou,;ly in joint fits. We find marginally significant IC components in 6 clusters, though after closer inspection and consideration of systematic errors we are unable to claim a clear detection in any of them. The spectra of all clusters are also summed to enhance a cumulative non-thermal signal not quite detectable in individual clusters. After constructing a model based on single temperature

  13. Wall temperature measurements using a thermal imaging camera with temperature-dependent emissivity corrections

    International Nuclear Information System (INIS)

    McDaid, Chloe; Zhang, Yang

    2011-01-01

    A methodology is presented whereby the relationship between temperature and emissivity for fused quartz has been used to correct the temperature values of a quartz impingement plate detected by an SC3000 thermal imaging camera. The methodology uses an iterative method using the initial temperature (obtained by assuming a constant emissivity) to find the emissivity values which are then put into the thermal imaging software and used to find the subsequent temperatures, which are used to find the emissivities, and so on until converged. This method is used for a quartz impingement plate that has been heated under various flame conditions, and the results are compared. Radiation losses from the plate are also calculated, and it is shown that even a slight change in temperature greatly affects the radiation loss. It is a general methodology that can be used for any wall material whose emissivity is a function of temperature

  14. Thermal emissivity analysis of a GEMINI 8-meter telescopes design

    Science.gov (United States)

    St. Clair Dinger, Ann

    1993-01-01

    The GEMINI 8-meter Telescopes Project is designing twin 8-meter telescopes to be located in Hawaii and Chile. The GEMINI telescopes will have interchangeable secondary mirrors for use in the visible and IR. The APART/PADE program is being used to evaluate the effective IR emissivity of the IR configuration plus enclosure as a function of mirror contamination at three IR wavelengths. The goal is to design a telescope whose effective IR emissivity is no more than 2 percent when the mirrors are clean.

  15. Performance evaluation of four directional emissivity analytical models with thermal SAIL model and airborne images.

    Science.gov (United States)

    Ren, Huazhong; Liu, Rongyuan; Yan, Guangjian; Li, Zhao-Liang; Qin, Qiming; Liu, Qiang; Nerry, Françoise

    2015-04-06

    Land surface emissivity is a crucial parameter in the surface status monitoring. This study aims at the evaluation of four directional emissivity models, including two bi-directional reflectance distribution function (BRDF) models and two gap-frequency-based models. Results showed that the kernel-driven BRDF model could well represent directional emissivity with an error less than 0.002, and was consequently used to retrieve emissivity with an accuracy of about 0.012 from an airborne multi-angular thermal infrared data set. Furthermore, we updated the cavity effect factor relating to multiple scattering inside canopy, which improved the performance of the gap-frequency-based models.

  16. Dual-Polarimetric Radar-Based Tornado Debris Signatures and Paths Associated with Tornadoes Over Northern Alabama During the Historic Outbreak of 27 April 2011

    Science.gov (United States)

    Carey, Lawrence D.; Schultz, Christopher J.; Schultz, Elise V.; Petersen, Walter A.; Gatlin, Patrick N.; Knupp, Kevin R.; Molthan, Andrew L.; Jedloved, Gary J.; Carcione, Brian C.; Darden, Christopher B.; hide

    2012-01-01

    A historic tornado and severe weather outbreak devastated much of the southeastern United States between 25 and 28 April 2011. On 27 April 2011, northern Alabama was particularly hard hit by 40 tornadoes, including 6 that reached EF-4 to EF-5 on the Enhanced Fujita damage scale. In northern Alabama alone, there were approximately 100 fatalities and hundreds of people who were injured or lost their homes during the havoc caused by these violent tornadic storms. Many of these tornadoes occurred within range of the University of Alabama in Huntsville (UAHuntsville) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). A unique capability of dual-polarimetric radar is the near-real time identification of lofted debris associated with ongoing tornadoes. The focus of this paper is to analyze the dual-polarimetric radar-inferred tornado debris signatures in 6 tornadoes in North Alabama on April 27, 2011. Several of these debris signatures were disseminated in real-time to the NWS Huntsville and local media to confirm storm spotter reports, confidence to enhance wording within warnings, and accurately pinpoint the locations of tornadoes for residents downstream of the storm. Also, the debris signature locations were used in post-event storm surveys to help locate areas of damage in regions where damage went unreported, or to help separate tornado tracks that were in close proximity to each other. Furthermore, the relative locations of the debris and damage paths for long track EF-4 and EF-5 tornadoes will be ascertained by careful comparison of the ARMOR analysis with NASA MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite imagery of the tornado damage scenes and the National Weather Service tornado damage surveys.

  17. Thermal Electron Bernstein Wave Emission Measurements on NST

    Czech Academy of Sciences Publication Activity Database

    Diem, S.J.; Taylor, G.; Efthimion, P.; LeBlanc, B.P.; Philips, C.K.; Caughman, J.; Wilgen, J.B.; Harvey, R.W.; Preinhaelter, Josef; Urban, Jakub

    2006-01-01

    Roč. 51, č. 7 (2006), s. 134 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics/48th./. Philadelphia, Pennsylvania , 30.10.2006-3.11.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * MAST * NSTX Subject RIV: BL - Plasma and Gas Discharge Physics http://www.aps.org/meet/DPP06/baps/all_DPP06.pdf

  18. Mercury emissions control technologies for mixed waste thermal treatment

    International Nuclear Information System (INIS)

    Chambers, A.; Knecht, M.; Soelberg, N.; Eaton, D.

    1997-01-01

    EPA has identified wet scrubbing at low mercury feedrates, as well as carbon adsorption via carbon injection into the offgas or via flow through fixed carbon beds, as control technologies that can be used to meet the proposed Maximum Achievable Control Technology (MACT) rule limit for mercury emissions from hazardous waste incinerators. DOE is currently funding demonstrations of gold amalgamation that may also control mercury to the desired levels. Performance data from a variety of sources was reviewed to determine ranges of achievable mercury control. Preliminary costs were estimated for using these technologies to control mercury emissions from mixed waste incineration. Mercury emissions control for mixed waste incineration may need to be more efficient than for incineration of other hazardous wastes because of higher mercury concentrations in some mixed waste streams. However, mercury control performance data for wet scrubbing and carbon adsorption is highly variable. More information is needed to demonstrate control efficiencies that are achievable under various design and operating conditions for wet scrubbing, carbon adsorption, and gold amalgamation technologies. Given certain assumptions made in this study, capital costs, operating costs, and lifecycle costs for carbon injection, carbon beds, and gold amalgamation generally vary for different assumed mercury feedrates and for different offgas flowrates. Assuming that these technologies can in fact provide the necessary mercury control performance, each of these technologies may be less costly than the others for certain mercury feedrates and the offgas flowrates

  19. On-line monitoring on thermal shock damage of ceramics using acoustic emission

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Lee, Joon Hyun; Song, Sang Hun

    1999-01-01

    The objective of this paper is to investigate the degree of the thermal shock damage on alumina ceramic using acoustic emission technique. For this purpose, alumina ceramic specimen was heated in the elastic furnace and then was quenched into the water tank. When the specimen was quenched into water tank, a lot of micro-cracks were generated on the surface of specimen due to the thermal shock damage. In this study, acoustic emission technique was used to evaluate the elastic waves generated by the crack initiation and propagation on the surface of specimen. It was found that when the micro-crack was initiated on the surface of specimen, AE signals were the higher in amplitude than those of bubbling effect and crack propagation. A lot of AE events were generated at the first thermal shock, the number of AE events decreased gradually as the thermal shock cycle increased.

  20. Nitrogen oxides emissions from thermal power plants in china: current status and future predictions.

    Science.gov (United States)

    Tian, Hezhong; Liu, Kaiyun; Hao, Jiming; Wang, Yan; Gao, Jiajia; Qiu, Peipei; Zhu, Chuanyong

    2013-10-01

    Increasing emissions of nitrogen oxides (NOx) over the Chinese mainland have been of great concern due to their adverse impacts on regional air quality and public health. To explore and obtain the temporal and spatial characteristics of NOx emissions from thermal power plants in China, a unit-based method is developed. The method assesses NOx emissions based on detailed information on unit capacity, boiler and burner patterns, feed fuel types, emission control technologies, and geographical locations. The national total NOx emissions in 2010 are estimated at 7801.6 kt, of which 5495.8 kt is released from coal-fired power plant units of considerable size between 300 and 1000 MW. The top provincial emitter is Shandong where plants are densely concentrated. The average NOx-intensity is estimated at 2.28 g/kWh, markedly higher than that of developed countries, mainly owing to the inadequate application of high-efficiency denitrification devices such as selective catalytic reduction (SCR). Future NOx emissions are predicted by applying scenario analysis, indicating that a reduction of about 40% by the year 2020 can be achieved compared with emissions in 2010. These results suggest that NOx emissions from Chinese thermal power plants could be substantially mitigated within 10 years if reasonable control measures were implemented effectively.

  1. Energetic electron propagation in the decay phase of non-thermal flare emission

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jing; Yan, Yihua [Key Laboratory of Solar Activities, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Tsap, Yuri T., E-mail: huangj@nao.cas.cn [Crimean Astrophysical Observatory of Kyiv National Taras Shevchenko University, 98409 Crimea, Nauchny (Ukraine)

    2014-06-01

    On the basis of the trap-plus-precipitation model, the peculiarities of non-thermal emission in the decay phase of solar flares have been considered. The calculation formulas for the escape rate of trapped electrons into the loss cone in terms of time profiles of hard X-ray (HXR) and microwave (MW) emission have been obtained. It has been found that the evolution of the spectral indices of non-thermal emission depend on the regimes of the pitch angle diffusion of trapped particles into the loss cone. The properties of non-thermal electrons related to the HXR and MW emission of the solar flare on 2004 November 3 are studied with Nobeyama Radioheliograph, Nobeyama Radio Polarimeters, RHESSI, and Geostationary Operational Environmental Satellite observations. The spectral indices of non-thermal electrons related to MW and HXR emission remained constant or decreased, while the MW escape rate as distinguished from that of the HXRs increased. This may be associated with different diffusion regimes of trapped electrons into the loss cone. New arguments in favor of an important role of the superstrong diffusion for high-energy electrons in flare coronal loops have been obtained.

  2. Thermal and Nonthermal Emissions of a Composite Flare Derived from NoRH and SDO Observations

    Science.gov (United States)

    Lee, Jeongwoo; White, Stephen M.; Jing, Ju; Liu, Chang; Masuda, Satoshi; Chae, Jongchul

    2017-12-01

    Differential emission measure (DEM) derived from the extreme ultraviolet (EUV) lines of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory is used in the analysis of a solar flare observed by the Nobeyama Radioheliograph (NoRH). The target was a composite event consisting of an impulsive flare, SOL2015-06-21T01:42 (GOES class M2.0), and a gradual flare, SOL2015-06-21T02:36 (M2.6), for which separation of thermal plasma heating from nonthermal particle acceleration was of major interest. We have calculated the thermal free-free intensity maps with the AIA-derived DEM and compared them against the observed NoRH maps to attribute the difference to the nonthermal component. In this way, we were able to locate three distinct sources: the major source with thermal and nonthermal components mixed, a nonthermal source devoid of thermal particles, and a thermal source lacking microwave emission. Both the first and the second nonthermal sources produced impulsively rising 17 GHz intensities and moved away from the local magnetic polarization inversion lines in correlation with the flare radiation. In contrast, the thermal sources stay in fixed locations and show temporal variations of the temperature and emission measure uncorrelated with the flare radiation. We interpret these distinct properties as indicating that nonthermal sources are powered by magnetic reconnection and thermal sources passively receive energy from the nonthermal donor. The finding of these distinct properties between thermal and nonthermal sources demonstrates the microwave and EUV emission measure combined diagnostics.

  3. Strategies for emission reduction from thermal power plants.

    Science.gov (United States)

    Prisyazhniuk, Vitaly A

    2006-07-01

    Major polluters of man's environment are thermal power stations (TPS) and power plants, which discharge into the atmosphere the basic product of carbon fuel combustion, CO2, which results in a build-up of the greenhouse effect and global warm-up of our planet's climate. This paper is intended to show that the way to attain environmental safety of the TPS and to abide by the decisions of the Kyoto Protocol lies in raising the efficiency of the heat power stations and reducing their fuel consumption by using nonconventional thermal cycles. Certain equations have been derived to define the quantitative interrelationship between the growth of efficiency of the TPS, decrease in fuel consumption and reduction of discharge of dust, fuel combustion gases, and heat into the environment. New ideas and new technological approaches that result in raising the efficiency of the TPS are briefly covered: magneto-hydrodynamic resonance, the Kalina cycle, and utilizing the ambient heat by using, as the working medium, low-boiling substances.

  4. Science data collection with polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Woelders, Kim; Madsen, Søren Nørvang

    1996-01-01

    Discusses examples on the use of polarimetric SAR in a number of Earth science studies. The studies are presently being conducted by the Danish Center for Remote Sensing. A few studies of the European Space Agency's EMAC programme are also discussed. The Earth science objectives are presented......, and the potential of polarimetric SAR is discussed and illustrated with data collected by the Danish airborne EMISAR system during a number of experiments in 1994 and 1995. The presentation will include samples of data acquired for the different studies...

  5. Global freshwater thermal emissions from steam-electric power plants with once-through cooling systems

    International Nuclear Information System (INIS)

    Raptis, Catherine E.; Pfister, Stephan

    2016-01-01

    Large quantities of heat are rejected into freshwater bodies from power plants employing once-through cooling systems, often leading to temperature increases that disturb aquatic ecosystems. The objective of this work was to produce a high resolution global picture of power-related freshwater thermal emissions and to analyse the technological, geographical and chronological patterns behind them. The Rankine cycle was systematically solved for ∼2400 generating units with once-through cooling systems, distinguishing between simple and cogenerative cycles, giving the rejected heat as a direct output. With large unit sizes, low efficiencies, and high capacity factors, nuclear power plants reject 3.7 GW heat into freshwater on average, contrasting with 480 MW rejected from coal and gas power plants. Together, nuclear and coal-fuelled power plants from the 1970s and 1980s account for almost 50% of the rejected heat worldwide, offering motivation for their phasing out in the future. Globally, 56% of the emissions are rejected into rivers, pointing to potential areas of high thermal pollution, with the rest entering lakes and reservoirs. The outcome of this work can be used to further investigate the identified thermal emission hotspots, and to calculate regionalized water temperature increase and related impacts in environmental, energy-water nexus studies and beyond. - Highlights: • The thermodynamic cycles of ∼2400 power units with once-through cooling were solved. • Global freshwater heat emissions depend on technology, geography & chronology. • Half the global emissions come from nuclear and coal plants from the 70s & 80s. • Hotspots of freshwater thermal emissions were identified globally. • Global georeferenced emissions are available for use in water temperature models.

  6. Spitzer observations of the thermal emission from WASP-43b

    Energy Technology Data Exchange (ETDEWEB)

    Blecic, Jasmina; Harrington, Joseph; Stevenson, Kevin B.; Hardy, Ryan A.; Cubillos, Patricio E.; Hardin, Matthew; Bowman, Oliver; Nymeyer, Sarah [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); Madhusudhan, Nikku [Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Anderson, David R.; Hellier, Coel; Smith, Alexis M. S. [Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Cameron, Andrew Collier, E-mail: jasmina@physics.ucf.edu [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom)

    2014-02-01

    WASP-43b is one of the closest-orbiting hot Jupiters, with a semimajor axis of a = 0.01526 ± 0.00018 AU and a period of only 0.81 days. However, it orbits one of the coolest stars with a hot Jupiter (T {sub *} = 4520 ± 120 K), giving the planet a modest equilibrium temperature of T {sub eq} = 1440 ± 40 K, assuming zero Bond albedo and uniform planetary energy redistribution. The eclipse depths and brightness temperatures from our jointly fit model are 0.347% ± 0.013% and 1670 ± 23 K at 3.6 μm and 0.382% ± 0.015% and 1514 ± 25 K at 4.5 μm. The eclipse timings improved the estimate of the orbital period, P, by a factor of three (P = 0.81347436 ± 1.4 × 10{sup –7} days) and put an upper limit on the eccentricity (e=0.010{sub −0.007}{sup +0.010}). We use our Spitzer eclipse depths along with four previously reported ground-based photometric observations in the near-infrared to constrain the atmospheric properties of WASP-43b. The data rule out a strong thermal inversion in the dayside atmosphere of WASP-43b. Model atmospheres with no thermal inversions and fiducial oxygen-rich compositions are able to explain all the available data. However, a wide range of metallicities and C/O ratios can explain the data. The data suggest low day-night energy redistribution in the planet, consistent with previous studies, with a nominal upper limit of about 35% for the fraction of energy incident on the dayside that is redistributed to the nightside.

  7. Diagnosis of the local thermal equilibrium by optical emission spectroscopy in the evolution of electric discharge

    International Nuclear Information System (INIS)

    Valdivia B, R.; Pacheco S, J.; Pacheco P, M.; Ramos F, F.; Cruz A, A.; Velazquez P, S.

    2008-01-01

    In this work applies the technique of optical emission spectroscopy to diagnose the temperature of the species generated in plasma in the transition to glow discharge arc. Whit this diagnosis is possible to determine the local thermal equilibrium conditions of the discharge. (Author)

  8. Status of electron temperature and density measurement with beam emission spectroscopy on thermal helium at TEXTOR

    NARCIS (Netherlands)

    Schmitz, O.; Beigman, I. L.; Vainshtein, L. A.; Schweer, B.; Kantor, M.; Pospieszczyk, A.; Xu, Y.; Krychowiak, M.; Lehnen, M.; Samm, U.; Unterberg, B.

    2008-01-01

    Beam emission spectroscopy on thermal helium is used at the TEXTOR tokamak as a reliable method to obtain radial profiles of electron temperature T-e(r, t) and electron density ne(r, t). In this paper the experimental realization of this method at TEXTOR and the status of the atomic physics employed

  9. Self-scheduling and bidding strategies of thermal units with stochastic emission constraints

    International Nuclear Information System (INIS)

    Laia, R.; Pousinho, H.M.I.; Melíco, R.; Mendes, V.M.F.

    2015-01-01

    Highlights: • The management of thermal power plants is considered for different emission allowance levels. • The uncertainty on electricity price is considered by a set of scenarios. • A stochastic MILP approach allows devising the bidding strategies and hedging against price uncertainty and emission allowances. - Abstract: This paper is on the self-scheduling problem for a thermal power producer taking part in a pool-based electricity market as a price-taker, having bilateral contracts and emission-constrained. An approach based on stochastic mixed-integer linear programming approach is proposed for solving the self-scheduling problem. Uncertainty regarding electricity price is considered through a set of scenarios computed by simulation and scenario-reduction. Thermal units are modelled by variable costs, start-up costs and technical operating constraints, such as: forbidden operating zones, ramp up/down limits and minimum up/down time limits. A requirement on emission allowances to mitigate carbon footprint is modelled by a stochastic constraint. Supply functions for different emission allowance levels are accessed in order to establish the optimal bidding strategy. A case study is presented to illustrate the usefulness and the proficiency of the proposed approach in supporting biding strategies

  10. Transition Region Emission and the Energy Input to Thermal Plasma in Solar Flares

    Science.gov (United States)

    Holman, Gordon D.; Holman, Gordon D.; Dennis, Brian R.; Haga, Leah; Raymond, John C.; Panasyuk, Alexander

    2005-01-01

    Understanding the energetics of solar flares depends on obtaining reliable determinations of the energy input to flare plasma. X-ray observations of the thermal bremsstrahlung from hot flare plasma provide temperatures and emission measures which, along with estimates of the plasma volume, allow the energy content of this hot plasma to be computed. However, if thermal energy losses are significant or if significant energy goes directly into cooler plasma, this is only a lower limit on the total energy injected into thermal plasma during the flare. We use SOHO UVCS observations of O VI flare emission scattered by coronal O VI ions to deduce the flare emission at transition region temperatures between 100,000 K and 1 MK for the 2002 July 23 and other flares. We find that the radiated energy at these temperatures significantly increases the deduced energy input to the thermal plasma, but by an amount that is less than the uncertainty in the computed energies. Comparisons of computed thermal and nonthermal electron energies deduced from RHESSI, GOES, and UVCS are shown.

  11. HIGH-ENERGY NON-THERMAL AND THERMAL EMISSION FROM GRB 141207A DETECTED BY FERMI

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Makoto [Research Institute for Science and Engineering, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo, 169-8555 (Japan); Asano, Katsuaki [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8582 (Japan); Ohno, Masanori [Department of Physical Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 (Japan); Veres, Péter [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Axelsson, Magnus [KTH Royal Institute of Technology, Department of Physics, SE-106 91 Stockholm (Sweden); Bissaldi, Elisabetta [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Tachibana, Yutaro; Kawai, Nobuyuki, E-mail: m.arimoto@aoni.waseda.jp [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8551 (Japan)

    2016-12-20

    A bright long gamma-ray burst GRB 141207A was observed by the Fermi Gamma-ray Space Telescope and detected by both instruments onboard. The observations show that the spectrum in the prompt phase is not well described by the canonical empirical Band function alone, and that an additional power-law component is needed. In the early phase of the prompt emission, a modified blackbody with a hard low-energy photon index ( α  = +0.2 to +0.4) is detected, which suggests a photospheric origin. In a finely time-resolved analysis, the spectra are also well fitted by the modified blackbody combined with a power-law function. We discuss the physical parameters of the photosphere such as the bulk Lorentz factor of the relativistic flow and the radius. We also discuss the physical origin of the extra power-law component observed during the prompt phase in the context of different models such as leptonic and hadronic scenarios in the internal shock regime and synchrotron emission in the external forward shock. In the afterglow phase, the temporal and spectral behaviors of the temporally extended high-energy emission and the fading X-ray emission detected by the X-Ray Telescope on-board Swift are consistent with synchrotron emission in a radiative external forward shock.

  12. DETECTION OF THERMAL EMISSION FROM A SUPER-EARTH

    Energy Technology Data Exchange (ETDEWEB)

    Demory, Brice-Olivier; Seager, Sara; Benneke, Bjoern [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Gillon, Michaeel [Institut d' Astrophysique et de Geophysique, Universite de Liege, Allee du 6 Aout 17, Bat. B5C, Liege 1 (Belgium); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Jackson, Brian, E-mail: demory@mit.edu [Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Road NW, Washington, DC 20015 (United States)

    2012-06-01

    We report on the detection of infrared light from the super-Earth 55 Cnc e, based on four occultations obtained with Warm Spitzer at 4.5 {mu}m. Our data analysis consists of a two-part process. In a first step, we perform individual analyses of each data set and compare several baseline models to optimally account for the systematics affecting each light curve. We apply independent photometric correction techniques, including polynomial detrending and pixel mapping, that yield consistent results at the 1{sigma} level. In a second step, we perform a global Markov Chain Monte Carlo analysis, including all four data sets that yield an occultation depth of 131 {+-} 28 ppm, translating to a brightness temperature of 2360 {+-} 300 K in the IRAC 4.5 {mu}m channel. This occultation depth suggests a low Bond albedo coupled to an inefficient heat transport from the planetary day side to the night side, or else possibly that the 4.5 {mu}m observations probe atmospheric layers that are hotter than the maximum equilibrium temperature (i.e., a thermal inversion layer or a deep hot layer). The measured occultation phase and duration are consistent with a circular orbit and improves the 3{sigma} upper limit on 55 Cnc e's orbital eccentricity from 0.25 to 0.06.

  13. Non-thermal Hard X-Ray Emission from Coma and Several Abell Clusters

    International Nuclear Information System (INIS)

    Correa, C

    2004-01-01

    We report results of hard X-Ray observations of the clusters Coma, Abell 496, Abell754, Abell 1060, Abell 1367, Abell2256 and Abell3558 using RXTE data from the NASA HEASARC public archive. Specifically we searched for clusters with hard x-ray emission that can be fitted by a power law because this would indicate that the cluster is a source of non-thermal emission. We are assuming the emission mechanism proposed by Vahk Petrosian where the inter cluster space contains clouds of relativistic electrons that by themselves create a magnetic field and emit radio synchrotron radiation. These relativistic electrons Inverse-Compton scatter Microwave Background photons up to hard x-ray energies. The clusters that were found to be sources of non-thermal hard x-rays are Coma, Abell496, Abell754 and Abell 1060

  14. Numerical Investigation into CO Emission, O Depletion, and Thermal Decomposition in a Reacting Slab

    Directory of Open Access Journals (Sweden)

    O. D. Makinde

    2011-01-01

    Full Text Available The emission of carbon dioxide (CO2 is closely associated with oxygen (O2 depletion, and thermal decomposition in a reacting stockpile of combustible materials like fossil fuels (e.g., coal, oil, and natural gas. Moreover, it is understood that proper assessment of the emission levels provides a crucial reference point for other assessment tools like climate change indicators and mitigation strategies. In this paper, a nonlinear mathematical model for estimating the CO2 emission, O2 depletion, and thermal stability of a reacting slab is presented and tackled numerically using a semi-implicit finite-difference scheme. It is assumed that the slab surface is subjected to a symmetrical convective heat and mass exchange with the ambient. Both numerical and graphical results are presented and discussed quantitatively with respect to various parameters embedded in the problem.

  15. Passive Polarimetric Microwave Signatures Observed Over Antarctica

    Science.gov (United States)

    WindSat satellite-based fully polarimetric passive microwave observations, expressed in the form of the Stokes vector, were analyzed over the Antarctic ice sheet. The vertically and horizontally polarized brightness temperatures (first two Stokes components) from WindSat are shown to be consistent w...

  16. Is the aerosol emission detectable in the thermal infrared?

    Science.gov (United States)

    Hollweg, H.-D.; Bakan, S.; Taylor, J. P.

    2006-08-01

    The impact of aerosols on the thermal infrared radiation can be assessed by combining observations and radiative transfer calculations. Both have uncertainties, which are discussed in this paper. Observational uncertainties are obtained for two FTIR instruments operated side by side on the ground during the LACE 1998 field campaign. Radiative transfer uncertainties are assessed using a line-by-line model taking into account the uncertainties of the HITRAN 2004 spectroscopic database, uncertainties in the determination of the atmospheric profiles of water vapor and ozone, and differences in the treatment of the water vapor continuum absorption by the CKD 2.4.1 and MT_CKD 1.0 algorithms. The software package OPAC was used to describe the optical properties of aerosols for climate modeling. The corresponding radiative signature is a guideline to the assessment of the uncertainty ranges of observations and models. We found that the detection of aerosols depends strongly on the measurement accuracy of atmospheric profiles of water vapor and ozone and is easier for drier conditions. Within the atmospheric window, only the forcing of downward radiation at the surface by desert aerosol emerges clearly from the uncertainties of modeling and FTIR measurement. Urban and polluted continental aerosols are only partially detectable depending on the wave number and on the atmospheric water vapor amount. Simulations for the space-borne interferometer IASI show that only upward radiation above transported mineral dust aloft emerges out of the uncertainties. The detection of aerosols with weak radiative impact by FTIR instruments like ARIES and OASIS is made difficult by noise as demonstrated by the signal to noise ratio for clean continental aerosols. Altogether, the uncertainties found suggest that it is difficult to detect the optical depths of nonmineral and unpolluted aerosols.

  17. H I anisotropies associated with radio-polarimetric filaments . Steep power spectra associated with cold gas

    Science.gov (United States)

    Kalberla, P. M. W.; Kerp, J.; Haud, U.; Haverkorn, M.

    2017-10-01

    Context. LOFAR detected toward 3C 196 linear polarization structures which were found subsequently to be closely correlated with cold filamentary H I structures. The derived direction-dependent H I power spectra revealed marked anisotropies for narrow ranges in velocity, sharing the orientation of the magnetic field as expected for magneto-hydrodynamical (MHD) turbulence. Aims: Using the Galactic portion of the Effelsberg-Bonn H I Survey (EBHIS) we continue our study of such anisotropies in the H I distribution in direction of two WSRT fields, Horologium and Auriga; both are well known for their prominent radio-polarimetric depolarization canals. At 349 MHz the observed pattern in total intensity is insignificant but polarized intensity and polarization angle show prominent ubiquitous structures with so far unknown origin. Methods: Apodizing the H I survey data by applying a rotational symmetric 50% Tukey window, we derive average and position angle dependent power spectra. We fit power laws and characterize anisotropies in the power distribution. We used a Gaussian analysis to determine relative abundances for the cold and warm neutral medium. Results: For the analyzed radio-polarimetric targets significant anisotropies are detected in the H I power spectra; their position angles are aligned to the prominent depolarization canals, initially detected by WSRT. H I anisotropies are associated with steep power spectra. Steep power spectra, associated with cold gas, are detected also in other fields. Conclusions: Radio-polarimetric depolarization canals are associated with filamentary H I structures that belong to the cold neutral medium (CNM). Anisotropies in the CNM are in this case linked to a steepening of the power-spectrum spectral index, indicating that phase transitions in a turbulent medium occur on all scales. Filamentary H I structures, driven by thermal instabilities, and radio-polarimetric filaments are associated with each other. The magneto-ionic medium

  18. A Non-thermal Pulsed X-Ray Emission of AR Scorpii

    Science.gov (United States)

    Takata, J.; Hu, C.-P.; Lin, L. C. C.; Tam, P. H. T.; Pal, P. S.; Hui, C. Y.; Kong, A. K. H.; Cheng, K. S.

    2018-02-01

    We report the analysis result of UV/X-ray emission from AR Scorpii, which is an intermediate polar (IP) composed of a magnetic white dwarf and an M-type star, with the XMM-Newton data. The X-ray/UV emission clearly shows a large variation over the orbit, and their intensity maximum (or minimum) is located at the superior conjunction (or inferior conjunction) of the M star orbit. The hardness ratio of the X-ray emission shows a small variation over the orbital phase and shows no indication of the absorption by an accretion column. These properties are naturally explained by the emission from the M star surface rather than that from the accretion column on the white dwarf’s (WD) star, which is similar to usual IPs. Additionally, the observed X-ray emission also modulates with the WD’s spin with a pulse fraction of ∼14%. The peak position is aligned in the optical/UV/X-ray band. This supports the hypothesis that the electrons in AR Scorpii are accelerated to a relativistic speed and emit non-thermal photons via the synchrotron radiation. In the X-ray bands, evidence of the power-law spectrum is found in the pulsed component, although the observed emission is dominated by the optically thin thermal plasma emissions with several different temperatures. It is considered that the magnetic dissipation/reconnection process on the M star surface heats up the plasma to a temperature of several keV and also accelerates the electrons to the relativistic speed. The relativistic electrons are trapped in the WD’s closed magnetic field lines by the magnetic mirror effect. In this model, the observed pulsed component is explained by the emissions from the first magnetic mirror point.

  19. Thermal wind model for the broad emission line region of quasars

    International Nuclear Information System (INIS)

    Weymann, R.J.; Scott, J.S.; Schiano, A.V.R.; Christiansen, W.A.

    1982-01-01

    Arguments are summarized for supposing that the clouds giving rise to the broad emission lines of QSOs are confined by the pressure of an expanding thermal gas and that a flux of relativistic particles with luminosity comparable to the photon luminosity streams through this gas. The resulting heating and momentum deposition produces a transonic thermal wind whose dynamical properties are calculated in detail. This wind accelerates and confines the emission line clouds, thereby producing the broad emission line (BEL) profiles. In a companion paper, the properties of the wind at much larger distances (approx.kpc) than the BEL region are used to explain the production of the broad absorption lines (BAL) observed in some QSOs. The same set of wind parameters can account for the properties of both the BEL and BAL regions, and this unification in the physical description of the BEL and BAL regions is one of the most important advantages of this model. A characteristic size of approx.1 pc for the QSO emission line region is one consequence of the model. This characteristic size is shown to depend upon luminosity in such a way that the ionization parameter is roughly constant over a wide range of luminosities. An X-ray luminosity due to thermal bremsstrahlung of approx.1%--10% of the optical luminosity is another consequence of the model. The trajectories of clouds under the combined influence of ram pressure acceleration and radiative acceleration are calculated. From these trajectories emission line profiles are also calculated, as well as the wind and cloud parameters yielding profiles in fair agreement with observed profiles explored. Opacity in the wind due to electron scattering displaces the line cores of optically thin lines to the blue. This is roughly compensated for by the redward skewing of optically thick lines due to preferential emission of photons from the back side of the clouds.void rapid depletion due to Compton losses are discussed

  20. Enhanced performance of thermal-assisted electron field emission based on barium oxide nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yunkang [Department of Mathematics and Physics, Nanjing Institute of technology, Nanjing, 211167 (China); Chen, Jing, E-mail: chenjingmoon@gmail.com [School of Electronic Science & Engineering, Southeast University, Nanjing, 210096 (China); Zhang, Yuning; Zhang, Xiaobing; Lei, Wei; Di, Yunsong [School of Electronic Science & Engineering, Southeast University, Nanjing, 210096 (China); Zhang, Zichen, E-mail: zz241@ime.ac.cn [Integrated system for Laser applications Group, Institute of Microelectronics of Chinese Academy of Sciences, 100029, Beijing (China)

    2017-02-28

    Highlights: • A possible mechanism for thermal-assisted electric field was demonstrated. • A new path for the architecture of the novel nanomaterial and methodology for its potential application in the field emission device area was provided. • The turn-on field, the threshold field and the field emission current density were largely related to the temperature of the cathode. • The relationship between the work function of emitter material and the temperature of emitter was found. - Abstract: In this paper, thermal-assisted field emission properties of barium oxide (BaO) nanowire synthesized by a chemical bath deposition method were investigated. The morphology and composition of BaO nanowire were characterized by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SED), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX) respectively. The turn-on field, threshold field and the emission current density could be affected relatively due to the thermal-assisted effect when the electric field was applied, in the meanwhile, the turn-on field for BaO nanowire was measured to be decreased from 1.12 V/μm to 0.66 V/μm when the temperature was raised from 293 K to 593 K, whereas for the threshold field was found to decrease from 3.64 V/μm to 2.12 V/μm. The improved performance was demonstrated due to the reduced work function of the BaO nanowire as the agitation temperature increasing, leading to the higher probability of electrons tunneling through the energy barrier and enhancement of the field emission properties of BaO emitters.

  1. Enhanced performance of thermal-assisted electron field emission based on barium oxide nanowire

    International Nuclear Information System (INIS)

    Cui, Yunkang; Chen, Jing; Zhang, Yuning; Zhang, Xiaobing; Lei, Wei; Di, Yunsong; Zhang, Zichen

    2017-01-01

    Highlights: • A possible mechanism for thermal-assisted electric field was demonstrated. • A new path for the architecture of the novel nanomaterial and methodology for its potential application in the field emission device area was provided. • The turn-on field, the threshold field and the field emission current density were largely related to the temperature of the cathode. • The relationship between the work function of emitter material and the temperature of emitter was found. - Abstract: In this paper, thermal-assisted field emission properties of barium oxide (BaO) nanowire synthesized by a chemical bath deposition method were investigated. The morphology and composition of BaO nanowire were characterized by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SED), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX) respectively. The turn-on field, threshold field and the emission current density could be affected relatively due to the thermal-assisted effect when the electric field was applied, in the meanwhile, the turn-on field for BaO nanowire was measured to be decreased from 1.12 V/μm to 0.66 V/μm when the temperature was raised from 293 K to 593 K, whereas for the threshold field was found to decrease from 3.64 V/μm to 2.12 V/μm. The improved performance was demonstrated due to the reduced work function of the BaO nanowire as the agitation temperature increasing, leading to the higher probability of electrons tunneling through the energy barrier and enhancement of the field emission properties of BaO emitters.

  2. Optimization of thermochromic VO2-based structures with tunable thermal emissivity

    International Nuclear Information System (INIS)

    Li Voti, R.; Larciprete, M.C.; Leahu, G.L.; Bertolotti, M.; Sibilia, C.

    2013-01-01

    In this paper we design and simulate VO 2 /metal multilayers to obtain a large tunability of the thermal emissivity of IR filters in the typical MWIR window of many infrared cameras. The multilayer structure is optimized to realise a low-emissivity filter at high temperatures useful for military purposes. The values of tunability found for VO 2 /metal multilayers are larger than the value for a single thick layer of VO 2 . Innovative SiO 2 /VO 2 synthetic opals are also investigated to enhance the optical tunability by combining the properties of a 3D periodic structure and the specific optical properties of vanadium dioxide.

  3. Determination of the ion thermal diffusivity from neutron emission profiles in decay

    Energy Technology Data Exchange (ETDEWEB)

    Sasao, M. (National Inst. for Fusion Science, Nagoya (Japan)); Adams, J.M. (AEA Industrial Technology, Harwell (United Kingdom)); Conroy, S.; Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking)

    1994-01-01

    Spatial profiles of the neutron emission from deuterium plasmas are routinely obtained at the Joint European Torus (JET) using the line-integrated signals measured with a multichannel instrument. It is shown that the manner in which these profiles relax following the termination of strong heating with neutral beam injection (NBI) permits the local thermal diffusivity ([chi][sub i]) to be obtained with an accuracy of about 20%. (author).

  4. Determination of the ion thermal diffusivity from neutron emission profiles in decay

    International Nuclear Information System (INIS)

    Sasao, M.; Adams, J.M.; Conroy, S.; Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van

    1994-01-01

    Spatial profiles of the neutron emission from deuterium plasmas are routinely obtained at the Joint European Torus (JET) using the line-integrated signals measured with a multichannel instrument. It is shown that the manner in which these profiles relax following the termination of strong heating with neutral beam injection (NBI) permits the local thermal diffusivity (χ i ) to be obtained with an accuracy of about 20%. (author)

  5. How Often Do Thermally Excited 630.0 nm Emissions Occur in the Polar Ionosphere?

    Science.gov (United States)

    Kwagala, Norah Kaggwa; Oksavik, Kjellmar; Lorentzen, Dag A.; Johnsen, Magnar G.

    2018-01-01

    This paper studies thermally excited emissions in the polar ionosphere derived from European Incoherent Scatter Svalbard radar measurements from the years 2000-2015. The peak occurrence is found around magnetic noon, where the radar observations show cusp-like characteristics. The ionospheric, interplanetary magnetic field and solar wind conditions favor dayside magnetic reconnection as the dominant driving process. The thermal emissions occur 10 times more frequently on the dayside than on the nightside, with an average intensity of 1-5 kR. For typical electron densities in the polar ionosphere (2 × 1011 m-3), we find the peak occurrence rate to occur for extreme electron temperatures (>3000 K), which is consistent with assumptions in literature. However, for extreme electron densities (>5 × 1011 m-3), we can now report on a completely new population of thermal emissions that may occur at much lower electron temperatures (˜2300 K). The empirical atmospheric model (NRLMSISE-00) suggests that the latter population is associated with enhanced neutral atomic oxygen densities.

  6. CAMEX-3 POLARIMETRIC SCANNING RADIOMETER (PSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Polarimetric Scanning Radiometer (PSR) is a versatile airborne microwave imaging radiometer developed by the Georgia Institute of Technology and the NOAA...

  7. Patterns in thermal emissions from the volcanoes of the Aleutian Islands

    Science.gov (United States)

    Blackett, M.; Webley, P. W.; Dehn, J.

    2012-12-01

    Using AVHRR data 1993-2011 and the Alaska Volcano Observatory's Okmok II Algorithm, the thermal emissions from all volcanoes in the Aleutian Islands were converted from temperature to power emission and examined for periodicity. The emissions were also summed to quantify the total energy released throughout the period. It was found that in the period April 1997 - January 2004 (37% of the period) the power emission from the volcanoes of the island arc declined sharply to constitute just 5.7% of the total power output for the period (138,311 MW), and this was attributable to just three volcanoes: Veniaminof (1.0%), Cleveland (1.5%) and Shishaldin (3.2%). This period of apparent reduced activity contrasts with the periods both before and after and is unrelated to the number of sensors in orbit at the time. What is also evident from the data set is that in terms of overall power emission over this period, the majority of emitted energy is largely attributable to those volcanoes which erupt with regularity (again, Veniaminof [29.7%], Cleveland [17%] and Shishaldin [11.4%]), as opposed to from the relatively few, large scale events (i.e. Reboubt [5.4%], Okmok [8.3%], Augustine [9.7%]; Pavlov [13.9%] being an exception). Sum power emission from volcanoes in the Aleutian Islands (1993-2011)

  8. Thermal field emission observation of single-crystal LaB6

    International Nuclear Information System (INIS)

    Nagata, H.; Harada, K.; Shimizu, R.

    1990-01-01

    TFE (thermal field emission) properties of LaB 6 left-angle 100 right-angle and left-angle 310 right-angle single crystals were investigated by emission pattern observation. It was found that field evaporation with the tip temperature held at ∼1500 degree C is very useful to get a clean pattern of fourfold symmetry. Each of four bright spots in the clean pattern was presumed to correspond to left-angle 310 right-angle emission. It is proposed, as the most appropriate operating condition, to use the left-angle 310 right-angle LaB 6 tip at a temperature ∼1000 degree C in vacuum of 10 -9 Torr region, promising a new TF emitter of high brightness and stability for practical use

  9. Legislative measures for suppressing emission of nitrogen oxides from thermal power stations

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1987-11-01

    Reviews measures taken by some countries to control emission of nitrogen oxides from thermal power stations run on solid fuels, mazout and gas. Refers to maximum permissible concentrations of nitrogen oxides in USA (100 mg/m/sup 3/), Canada (460 mg/m/sup 3/), Japan (41-62 mg/m/sup 3/) and several European countries. Discusses legislative measures in FRG (Federal Regulations BImSchG), particularly Instruction No. 13 BImSchV concerning large boilers run on solid fuels or mazout (continuous monitoring of nitrogen oxide emission into atmosphere, equipping old boilers with means of reducing nitrogen oxide emission, reduction of acid rain). Gives maximum permissible concentrations of nitrogen oxides for new boilers agreed by various countries. 5 refs.

  10. Determination of the ion thermal diffusivity from neutron emission profiles in decay

    International Nuclear Information System (INIS)

    Sasao, M.; Adam, J.M.; Conroy, S.; Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van

    1992-01-01

    Spatial profiles of neutron emission are routinely obtained at the Joint European Torus (JET) from line-integrated emissivities measured with a multi-channel instrument. It is shown that the manner in which the emission profiles relax following termination of strong heating with Neutral Beam Injection (NBI) permits the local thermal diffusivity (χ i ) to be obtained with an accuracy of about 20%. The radial profiles of χ i for small minor radius (r/a 2 /s for H-mode plasmas with plasma current I p = 3.1 MA and toroidal field B T = 2.3T. The experimental value of χ i is smallest for Z eff = 2.2 and increases weakly with increasing Z eff . The experimental results disagree by two orders of magnitude with predictions from an ion temperature gradient driven turbulence model. (author) 6 refs., 3 figs

  11. Net emission coefficient for CO–H2 thermal plasmas with the consideration of molecular systems

    International Nuclear Information System (INIS)

    Billoux, T.; Cressault, Y.; Gleizes, A.

    2015-01-01

    This paper deals with the calculation of net emission coefficients (NECs) for CO–H 2 thermal plasmas. This task required the elaboration of a complete spectroscopic database including atoms and molecules formed by carbon, oxygen and hydrogen elements. We have used a systematic line by line method to calculate all the main radiative contributions which are the atomic and molecular continua, the atomic lines and the molecular (diatomic and polyatomic) lines. The main diatomic electronic systems for CO–H 2 plasmas and the triatomic molecular bands were considered. We present some variations of the net emission coefficient versus temperature, for various pressures and for two relative proportions of the components. The role of the diatomic molecules is important at temperatures lower than 5000 K whereas the net emission coefficient presents an unusual peak at temperature around 1000 K, due to the presence of the CO 2 molecule presenting a strong infrared radiation. Finally, the results show that the NEC slightly depends on the relative proportion of CO and H 2 . - highlights: • We calculate radiative losses from CO–H 2 thermal plasmas. • We use the up-to-date atomic and molecular databases. • The influence of CO 2 molecule is very important at low temperature. • The relative maximum of the net emission coefficient at low temperature is unusual

  12. CHARACTERIZATION OF EMISSIONS OF THERMALLY MODIFIED WOOD AND THEIR REDUCTION BY CHEMICAL TREATMENT

    Directory of Open Access Journals (Sweden)

    Jana Peters

    2008-05-01

    Full Text Available Thermal treatment is a suitable method for improving the quality of wood types like spruce, beech or poplar, and thus to open up new fields of application that used to be limited to tropical woods or woods treated with timber preservatives. These thermally treated woods are characterized by a typical odor caused by degradation products of miscellaneous wood components. The characterization and removal of those odorous substances were investigated using chromatographic and spectroscopic methods. Headspace gas chromatography (GC in combination with solid-phase microextraction (SPME was used for a qualitative analysis of volatile wood emissions, and the detectable volatiles were compared before and after solvent extraction. Wood solvent extractives were investigated by means of gas chromatography/mass spectrometry and then evaluated in terms of changes in composition caused by the thermal treatment process.

  13. Relative astrometry of compact flaring structures in Sgr A* with polarimetric very long baseline interferometry

    International Nuclear Information System (INIS)

    Johnson, Michael D.; Doeleman, Sheperd S.; Fish, Vincent L.; Broderick, Avery E.; Wardle, John F. C.; Marrone, Daniel P.

    2014-01-01

    We demonstrate that polarimetric interferometry can be used to extract precise spatial information about compact polarized flares of Sgr A*. We show that, for a faint dynamical component, a single interferometric baseline suffices to determine both its polarization and projected displacement from the quiescent intensity centroid. A second baseline enables two-dimensional reconstruction of the displacement, and additional baselines can self-calibrate using the flare, enhancing synthesis imaging of the quiescent emission. We apply this technique to simulated 1.3 mm wavelength observations of a 'hot spot' embedded in a radiatively inefficient accretion disk around Sgr A*. Our results indicate that, even with current sensitivities, polarimetric interferometry with the Event Horizon Telescope can achieve ∼5 μas relative astrometry of compact flaring structures near Sgr A* on timescales of minutes.

  14. Polarimetric studies of polyethylene terephtalate flexible substrates

    Science.gov (United States)

    Stchakovsky, M.; Garcia-Caurel, E.; Warenghem, M.

    2008-12-01

    Polymer sheets are currently used worldwide in a wide range of applications. The manufacturing process of these sheets involves extruding machines that stretch the material in both lateral and longitudinal directions with respect to the machine direction, thus inducing birefringence. In most cases, the film obtained is optically biaxial. Polarimetric spectroscopy (Ellipsometry and Mueller Matrix) combined with conoscopic observation are the methods of choice to study these properties. In this work we report an analysis of commercially available polyethylene terephtalate (PET) films used as substrate for food packaging as well as for embedded electronic devices such as solar cells or flexible displays. Initial observation of these films through polarizing microscope in conoscopic mode reveals first the trace of optical axis plane with respect to the film surface and second, whether the optical axis is acute or not. This preliminary study allows optimal sample positioning for further polarimetric studies. The measurements and modelling are done in both reflection and transmission mode on several spectroscopic polarimetric setups from UV to NIR. The models give as a main result, the dielectric tensor of the film as well as its orientation with respect to the laboratory reference frame.

  15. Thermal emission before earthquakes by analyzing satellite infra-red data

    Science.gov (United States)

    Ouzounov, D.; Taylor, P.; Bryant, N.; Pulinets, S.; Freund, F.

    2004-05-01

    Satellite thermal imaging data indicate long-lived thermal anomaly fields associated with large linear structures and fault systems in the Earth's crust but also with short-lived anomalies prior to major earthquakes. Positive anomalous land surface temperature excursions of the order of 3-4oC have been observed from NOAA/AVHRR, GOES/METEOSAT and EOS Terra/Aqua satellites prior to some major earthquake around the world. The rapid time-dependent evolution of the "thermal anomaly" suggests that is changing mid-IR emissivity from the earth. These short-lived "thermal anomalies", however, are very transient therefore there origin has yet to be determined. Their areal extent and temporal evolution may be dependent on geology, tectonic, focal mechanism, meteorological conditions and other factors.This work addresses the relationship between tectonic stress, electro-chemical and thermodynamic processes in the atmosphere and increasing mid-IR flux as part of a larger family of electromagnetic (EM) phenomena related to seismic activity.We still need to understand better the link between seismo-mechanical processes in the crust, on the surface, and at the earth-atmospheric interface that trigger thermal anomalies. This work serves as an introduction to our effort to find an answer to this question. We will present examples from the strong earthquakes that have occurred in the Americas during 2003/2004 and the techniques used to record the thermal emission mid-IR anomalies, geomagnetic and ionospheric variations that appear to associated with impending earthquake activity.

  16. The EVE plus RHESSI DEM for Solar Flares, and Implications for Residual Non-Thermal X-Ray Emission

    Science.gov (United States)

    McTiernan, James; Caspi, Amir; Warren, Harry

    2016-05-01

    Solar flare spectra are typically dominated by thermal emission in the soft X-ray energy range. The low energy extent of non-thermal emission can only be loosely quantified using currently available X-ray data. To address this issue, we combine observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) to calculate the Differential Emission Measure (DEM) for solar flares. This improvement over the isothermal approximation helps to resolve the ambiguity in the range where the thermal and non-thermal components may have similar photon fluxes. This "crossover" range can extend up to 30 keV.Previous work (Caspi et.al. 2014ApJ...788L..31C) concentrated on obtaining DEM models that fit both instruments' observations well. For this current project we are interested in breaks and cutoffs in the "residual" non-thermal spectrum; i.e., the RHESSI spectrum that is left over after the DEM has accounted for the bulk of the soft X-ray emission. As in our earlier work, thermal emission is modeled using a DEM that is parametrized as multiple gaussians in temperature. Non-thermal emission is modeled as a photon spectrum obtained using a thin-target emission model ('thin2' from the SolarSoft Xray IDL package). Spectra for both instruments are fit simultaneously in a self-consistent manner.For this study, we have examined the DEM and non-thermal resuidual emission for a sample of relatively large (GOES M class and above) solar flares observed from 2011 to 2014. The results for the DEM and non-thermal parameters found using the combined EVE-RHESSI data are compared with those found using only RHESSI data.

  17. An improved method for polarimetric image restoration in interferometry

    Science.gov (United States)

    Pratley, Luke; Johnston-Hollitt, Melanie

    2016-11-01

    Interferometric radio astronomy data require the effects of limited coverage in the Fourier plane to be accounted for via a deconvolution process. For the last 40 years this process, known as `cleaning', has been performed almost exclusively on all Stokes parameters individually as if they were independent scalar images. However, here we demonstrate for the case of the linear polarization P, this approach fails to properly account for the complex vector nature resulting in a process which is dependent on the axes under which the deconvolution is performed. We present here an improved method, `Generalized Complex CLEAN', which properly accounts for the complex vector nature of polarized emission and is invariant under rotations of the deconvolution axes. We use two Australia Telescope Compact Array data sets to test standard and complex CLEAN versions of the Högbom and SDI (Steer-Dwedney-Ito) CLEAN algorithms. We show that in general the complex CLEAN version of each algorithm produces more accurate clean components with fewer spurious detections and lower computation cost due to reduced iterations than the current methods. In particular, we find that the complex SDI CLEAN produces the best results for diffuse polarized sources as compared with standard CLEAN algorithms and other complex CLEAN algorithms. Given the move to wide-field, high-resolution polarimetric imaging with future telescopes such as the Square Kilometre Array, we suggest that Generalized Complex CLEAN should be adopted as the deconvolution method for all future polarimetric surveys and in particular that the complex version of an SDI CLEAN should be used.

  18. VIRTIS on Venus Express thermal emission spectra near 1μm

    Science.gov (United States)

    Mueller, Nils; Tsang, Constantine; Helbert, Joern; Smrekar, Suzanne; Piccioni, Giuseppe; Drossart, Pierre

    2016-10-01

    Thermal emission from the surface of Venus is observable through narrow spectral windows close to 1μm. Surface temperature is strongly constrained by surface elevation, due to the thick and dense atmosphere. The data from Visible and InfraRed Thermal Imaging Spectrometer VIRTIS on Venus Express together with altimetry constrain surface emissivity. In VIRTIS observations at 1.02μm, strongly deformed highland plateaus (tesserae) appear to have a lower emissivity consistent with continental crust, an interpretation that implies existence of an early ocean. Comparison between the Magellan stereo digital elevation model (DEM) and altimetry shows that the altimetry height error in rough tesserae greatly exceeds the formal error. In the one tesserae outlier covered by altimetry, DEM, and VIRTIS, the height error could account for the observed emissivity variation. The radiances observed at 1.10 and 1.18μm have a different response to topography, mostly due to spectrally varying absorption in the overlying atmospheric column. Thus if the tesserae have the same emissivity as volcanic plains, its spectrum should be the same as that of plains of the correct surface elevation. In order to investigate this statistically, we create a database of all long exposure duration VIRTIS spectra in the range of 1 - 1.4μm. The spectra are corrected for the ubiquitous straylight from the dayside, based on analysis of spectra showing deep space. Because the 1.10 and 1.18μm peaks are narrow compared to the variation of instrument spectral registration, we fit each spectrum with a synthetic spectrum from an atmospheric radiative transfer model, using wavelength offset and bandwidths as parameters in addition to atmospheric variables. This dataset of ~28 million thermal emission spectra spans a wide range of southern latitudes and night local times, and thus may be useful for studies beyond the question of surface emissivity. A portion of this research was conducted at the Jet Propulsion

  19. Local Group dSph radio survey with ATCA - II. Non-thermal diffuse emission

    Science.gov (United States)

    Regis, Marco; Richter, Laura; Colafrancesco, Sergio; Profumo, Stefano; de Blok, W. J. G.; Massardi, Marcella

    2015-04-01

    Our closest neighbours, the Local Group dwarf spheroidal (dSph) galaxies, are extremely quiescent and dim objects, where thermal and non-thermal diffuse emissions lack, so far, of detection. In order to possibly study the dSph interstellar medium, deep observations are required. They could reveal non-thermal emissions associated with the very low level of star formation, or to particle dark matter annihilating or decaying in the dSph halo. In this work, we employ radio observations of six dSphs, conducted with the Australia Telescope Compact Array in the frequency band 1.1-3.1 GHz, to test the presence of a diffuse component over typical scales of few arcmin and at an rms sensitivity below 0.05 mJy beam-1. We observed the dSph fields with both a compact array and long baselines. Short spacings led to a synthesized beam of about 1 arcmin and were used for the extended emission search. The high-resolution data mapped background sources, which in turn were subtracted in the short-baseline maps, to reduce their confusion limit. We found no significant detection of a diffuse radio continuum component. After a detailed discussion on the modelling of the cosmic ray (CR) electron distribution and on the dSph magnetic properties, we present bounds on several physical quantities related to the dSphs, such that the total radio flux, the angular shape of the radio emissivity, the equipartition magnetic field, and the injection and equilibrium distributions of CR electrons. Finally, we discuss the connection to far-infrared and X-ray observations.

  20. The Spatial Distribution of Thermal Emission from Baghdad Sulcus, Enceladus, at 100 meter Scales

    Science.gov (United States)

    Spencer, John R.; Gorius, N. J. P.; Howett, C. J. A.; Jennings, D. E.; Albright, S. A.

    2012-10-01

    The Cassini Composite Infrared Spectrometer (CIRS) has been observing endogenic thermal emission from the south pole of Enceladus since 2005. Best spatial resolution from conventional scans is about 1km, usually from distances > 2000 km. When Cassini is closer to Enceladus, the spacecraft cannot rotate fast enough to track the surface, and the 5 seconds required to obtain a CIRS spectrum produces many kilometers of smear. However, higher-resolution mapping can be done from much closer range by exploiting the 20 msec sampling of the CIRS raw interferograms. On April 14th 2012, Cassini made a gravity pass of Enceladus at a range of 74 km. Spacecraft orientation was inertially fixed, and chosen so that the active tiger stripe Baghdad Sulcus passed through the CIRS and VIMS fields of view during the flyby. In the 7 to 17 µm region, CIRS uses linear arrays of ten detectors with IFOV of 0.29 mrad, which were oriented roughly perpendicular to the groundtrack and operated in pairs, giving five cross-track spatial resolution elements, each 43 meters wide. Along-track spatial resolution, defined by the 20 msec interferogram sampling time and the flyby speed of 7.5 km/sec, was 150 meters. At longer wavelengths, CIRS obtained a single-detector scan with a spatial resolution of 300 meters. The brief passage of the intense tiger stripe thermal emission through the field of view produced complex spikes in the CIRS interferograms. Though spectra cannot be reconstructed, we can use knowledge of the interferogram temporal response to reconstruct the time history of the incoming radiation and thus its spatial distribution. The resulting image will map tiger stripe thermal emission along a small part of Baghdad Sulcus at about ten times the spatial resolution of the best previous Cassini thermal images.

  1. Thermal runaway of metal nano-tips during intense electron emission

    Science.gov (United States)

    Kyritsakis, A.; Veske, M.; Eimre, K.; Zadin, V.; Djurabekova, F.

    2018-06-01

    When an electron emitting tip is subjected to very high electric fields, plasma forms even under ultra high vacuum conditions. This phenomenon, known as vacuum arc, causes catastrophic surface modifications and constitutes a major limiting factor not only for modern electron sources, but also for many large-scale applications such as particle accelerators, fusion reactors etc. Although vacuum arcs have been studied thoroughly, the physical mechanisms that lead from intense electron emission to plasma ignition are still unclear. In this article, we give insights to the atomic scale processes taking place in metal nanotips under intense field emission conditions. We use multi-scale atomistic simulations that concurrently include field-induced forces, electron emission with finite-size and space-charge effects, Nottingham and Joule heating. We find that when a sufficiently high electric field is applied to the tip, the emission-generated heat partially melts it and the field-induced force elongates and sharpens it. This initiates a positive feedback thermal runaway process, which eventually causes evaporation of large fractions of the tip. The reported mechanism can explain the origin of neutral atoms necessary to initiate plasma, a missing key process required to explain the ignition of a vacuum arc. Our simulations provide a quantitative description of in the conditions leading to runaway, which shall be valuable for both field emission applications and vacuum arc studies.

  2. MODELING THERMAL DUST EMISSION WITH TWO COMPONENTS: APPLICATION TO THE PLANCK HIGH FREQUENCY INSTRUMENT MAPS

    International Nuclear Information System (INIS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales

  3. Thermal effects on light emission in Yb3+ -sensitized rare-earth doped optical glasses

    International Nuclear Information System (INIS)

    Gouveia, E.A.; Araujo, M.T. de; Gouveia-Neto, A.S.

    2001-01-01

    The temperature effect upon infrared-to-visible frequency upconversion fluorescence emission in off-resonance infrared excited Yb 3+ -sensitized rare-earth doped optical glasses is theoretically and experimentally investigated. We have examined samples of Er3+/Yb 3+ -codoped Ga 2 S 3 :La 2 O 3 chalcogenide glasses and germanosilicate optical fibers, and Ga2O3:La 2 O 3 chalcogenide and fluoroindate glasses codoped with Pr 3+ /Yb 3+ , excited off-resonance at 1.064μm. The experimental results revealed thermal induced enhancement in the visible upconversion emission intensity as the samples temperatures were increased within the range of 20 deg C to 260 deg C. The fluorescence emission enhancement is attributed to the temperature dependent multiphonon-assisted anti-Stokes excitation process of the ytterbium-sensitizer. A theoretical approach that takes into account a sensitizer temperature dependent effective absorption cross section, which depends upon the phonon occupation number in the host matrices, has proven to agree very well with the experimental data. As beneficial applications of the thermal enhancement, a temperature tunable amplifier and a fiber laser with improved power performance are presented. (author)

  4. Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions

    Science.gov (United States)

    Griffiths, L.; Lengliné, O.; Heap, M. J.; Baud, P.; Schmittbuhl, J.

    2018-03-01

    To monitor both the permanent (thermal microcracking) and the nonpermanent (thermo-elastic) effects of temperature on Westerly Granite, we combine acoustic emission monitoring and ultrasonic velocity measurements at ambient pressure during three heating and cooling cycles to a maximum temperature of 450°C. For the velocity measurements we use both P wave direct traveltime and coda wave interferometry techniques, the latter being more sensitive to changes in S wave velocity. During the first cycle, we observe a high acoustic emission rate and large—and mostly permanent—apparent reductions in velocity with temperature (P wave velocity is reduced by 50% of the initial value at 450°C, and 40% upon cooling). Our measurements are indicative of extensive thermal microcracking during the first cycle, predominantly during the heating phase. During the second cycle we observe further—but reduced—microcracking, and less still during the third cycle, where the apparent decrease in velocity with temperature is near reversible (at 450°C, the P wave velocity is decreased by roughly 10% of the initial velocity). Our results, relevant for thermally dynamic environments such as geothermal reservoirs, highlight the value of performing measurements of rock properties under in situ temperature conditions.

  5. Polarimetric signatures of sea ice in the Greenland Sea

    DEFF Research Database (Denmark)

    Skriver, Henning; Pedersen, Leif Toudal

    1995-01-01

    Polarimetric SAR data of sea ice have been acquired by the Danish polarimetric SAR (EMISAR) during a mission at the Greenland Sea in August 1994. Video recordings from a low-altitude acquisition have been used for interpretation of the SAR data. Also, ERS-1 SAR data and NOAA AVHRR-data have been...

  6. EMISAR: A Dual-frequency, Polarimetric Airborne SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2002-01-01

    EMISAR is a fully polarimetric, dual frequency (L- and C-band) SAR system designed for remote sensing applications. The data are usually processed to 2×2 m resolution. The system has the capability of C-band cross-track single-pass interferometry and fully polarimetric repeat-pass interferometry....

  7. The CASLEO Polarimetric Survey of Main Belt Asteroids: Updated results

    Science.gov (United States)

    Gil-Hutton, R.; Cellino, A.; Cañada-Assandri, M.

    2011-10-01

    We present updated results of the polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina, using the 2.15 m telescope and the Torino and CASPROF polarimeters. The goals of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids belonging to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. The survey began in 2003, and data for a sample of more than 170 asteroids have been obtained, most of them having been polarimetrically observed for the first time. Using these data we find phase-polarization curves and polarimetric parameters for several taxonomic classes.

  8. A Global Outlook to the Carbon Dioxide Emissions in the World and Emission Factors of the Thermal Power Plants in Turkey

    International Nuclear Information System (INIS)

    Atimtay, Aysel T.

    2003-01-01

    World primary energy demand increases with increases in population and economic development. Within the last 25 yr, the total energy consumption has almost doubled. For the purpose of meeting this demand, fossil energy sources are used and various pollutants are generated. CO 2 is also one of these gases, which cannot be removed like other pollutants, and it causes greenhouse effect and climate change. Reducing the CO 2 emission is very important because of the environmental concerns and regulations, especially the Kyoto Protocol. This paper reviews the estimated world carbon emissions, Turkey's situation in electrical energy production, emission amounts estimated until the year 2020 and emission factors for dust, SO 2 , NO x and CO 2 . The estimated results show that CO 2 emissions from thermal power plants in Turkey will make about 0.66 % of the global CO 2 emissions in 2020

  9. Measuring the spectral emissivity of thermal protection materials during atmospheric reentry simulation

    Science.gov (United States)

    Marble, Elizabeth

    1996-01-01

    Hypersonic spacecraft reentering the earth's atmosphere encounter extreme heat due to atmospheric friction. Thermal Protection System (TPS) materials shield the craft from this searing heat, which can reach temperatures of 2900 F. Various thermophysical and optical properties of TPS materials are tested at the Johnson Space Center Atmospheric Reentry Materials and Structures Evaluation Facility, which has the capability to simulate critical environmental conditions associated with entry into the earth's atmosphere. Emissivity is an optical property that determines how well a material will reradiate incident heat back into the atmosphere upon reentry, thus protecting the spacecraft from the intense frictional heat. This report describes a method of measuring TPS emissivities using the SR5000 Scanning Spectroradiometer, and includes system characteristics, sample data, and operational procedures developed for arc-jet applications.

  10. Impact of coal-fired thermal power plant emissions on surrounding vegetative environment: a case study

    International Nuclear Information System (INIS)

    Soni, D.K.; Senger, C.B.S.

    1993-01-01

    Vegetative system around the thermal power plants are exposed to perpetual emissions of particulates as well as gaseous pollutants in various forms and nature. These emissions evidently are reflected in plant responses. In order to assess the response of natural flora of this region, 2 plant species, that is Mangifera indica and Holarrhina artidysentrica and certain pollution sensitive parameter, such as leaf area, pH of wash water of foliage and sugar content of the leaves were identified for this study. It was observed that the pH of wash solution of leaves was close to neutral in upstream locations and in polluted zone pH was acidic. Leaf area was higher in least polluted zone and lower in more polluted locations. Dust deposition on leaves was observed be lower in upstream locations and higher in influenced areas. Sugar variations in leaves showed negative impact in affected areas. (author). 9 refs., 5 tabs

  11. Thermal dependence of free exciton emission in ultraviolet cathodoluminescence of colloidal ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Hong Van; Pham, Van Ben [Faculty of Physics, VNU-Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Le, Si Dang [Institut Néel, CNRS, 25 rue des Martyrs, BP 166, F-38042 Grenoble Cedex 9 (France); Hoang, Nam Nhat, E-mail: namnhat@gmail.com [Faculty of Engineering Physics and Nanotechnology, VNU-University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi (Viet Nam)

    2016-10-15

    Cathodoluminescence properties of the colloidal ZnS nanopowders synthesized by using hydrothermal process, a large scale production method, are reported. The cathodoluminescence spectra were obtained for temperature from 5 to 300 K, where an intensive free exciton originated 326 nm emission was observed. This band did not split under the increase of excitation beam current density and prevailed even at room temperature. The weaker emissions appeared at 331, 333, 337 and 343 nm which were related to excitons bound to neutral acceptor (A{sup o}, X), transition from conduction band to acceptor levels (e, A) and their corresponding (e, A)−1LO, (e, A)−2LO phonon replicas. With increasing temperature the free exciton band shifted towards lower energy and its intensity decreased at 36.5 meV thermal quenching threshold. The dependence of band gap on temperature was also determined.

  12. The influence of thermal regime on gasoline direct injection engine performance and emissions

    Science.gov (United States)

    Leahu, C. I.; Tarulescu, S.

    2016-08-01

    This paper presents the experimental research regarding to the effects of a low thermal regime on fuel consumption and pollutant emissions from a gasoline direct injection (GDI) engine. During the experimental researches, the temperature of the coolant and oil used by the engine were modified 4 times (55, 65, 75 and 85 oC), monitoring the effects over the fuel consumption and emissions (CO2, CO and NOx). The variations in temperature of the coolant and oil have been achieved through AVL coolant and oil conditioning unit, integrated in the test bed. The obtained experimental results reveals the poor quality of exhaust gases and increases of fuel consumption for the gasoline direct injection engines that runs outside the optimal ranges for coolant and oil temperatures.

  13. Reducing energy consumption and CO{sub 2} emissions in thermally coupled azeotropic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L.Y.; Chang, X.W.; Zhang, Y.M.; Li, J.; Li, Q.S. [Department of Chemical Engineering, China University of Petroleum, Qingdao, Shandong Province (China)

    2010-03-15

    The design and optimization procedures of a heterogeneous thermally coupled azeotropic distillation sequence with a side stripper (TCADS-SS) for the purification of isopropanol has been investigated. The proposed procedures can detect the optimal values of the design variables and thereby guarantee the minimum energy consumption, which is related to the minimum CO{sub 2} emissions and the lowest total annual cost (TAC). The procedures are applied to the study of the separation of azeotropic mixtures using the two distillation sequences. In the TCADS-SS, the top end of the side stripper has both liquid and vapor exchange with the main column, which eliminates a condenser in contrast with the conventional heterogeneous azeotropic distillation sequence (CHADS). The results show that not only reductions in energy consumption and CO{sub 2} emissions but also higher thermodynamic efficiency can be obtained for the TCADS-SS. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. Emission factors and thermal efficiencies of cooking biofuels from five countries

    International Nuclear Information System (INIS)

    Gupta, S.; Saksena, S.; Shankar, V.R.; Joshi, V.

    1998-01-01

    The aim of the study was to compare the environmental and thermal performance of cooking biofuels from five countries. The standard water boiling test was used to determine thermal parameters. The fuels were burnt in a metal stove in a test chamber in accordance with standard protocol. Low-flow air samplers were used for particulate matter measurements, both TSP and RSP. Later, benzo(a)pyrene was determined using the high performance liquid chromatography (HPLC) technique after extraction from particulate samples in benzene. CO was measured using an electronic datalogger and HCHO using a passive sampler. The ventilation conditions during the experiments were manipulated by using different combinations of doors, windows and fans to ensure minimum stratification of pollutants in the chamber. The indirect method of deriving emission factors was used. Levels of most of the pollutants measured was found to be higher than that reported by previous studies, especially that of benzo(a)pyrene. (author)

  15. Analysis of Thermo-Acoustic Emission from Damage in Composite Laminates under Thermal Cyclic Loading

    International Nuclear Information System (INIS)

    Kim, Young Bok; Min, Dae Hong; Lee, Deok Bo; Choi, Nak Sam

    2001-01-01

    An investigation on nondestructive evaluation of thermal stress-reduced damage in the composite laminates (3mm in thickness and [+45 6 /-45 6 ] S lay-up angles) has been performed using the thermo-acoustic emission technique. Reduction of thermo-AE events due to repetitive thermal load cycles showed a Kaiser effect. An analysis of the thermo-AE behavior determined the stress free temperature of composite laminates. Fiber fracture and matrix cracks were observed using the optical microscopy, scanning electron microscopy and ultrasonic C-sean. Short-Time Fourier Transform of thermo-AE signals offered the time-frequency characteristics which might classify the thermo-AE as three different types to estimate the damage processes of the composites

  16. Removal properties of low-thermal-expansion materials with rotating-sphere elastic emission machining

    Directory of Open Access Journals (Sweden)

    Masahiko Kanaoka et al

    2007-01-01

    Full Text Available Optical mirrors used in extreme ultraviolet lithography systems require a figure accuracy and a roughness of about 0.1 nm rms. In addition, mirror substrates must be low-thermal-expansion materials. Thus, in this study, we processed two low-thermal-expansion materials, ULE [K. Hrdina, B. Hanson, P. Fenn, R. Sabia, Proc. SPIE 4688 (2002 454.] (Corning Inc. and Zerodur [I. Mitra, M.J. Davis, J. Alkemper, Rolf Müller, H. Kohlmann, L. Aschke, E. Mörsen, S. Ritter, H. Hack, W. Pannhorst, Proc. SPIE 4688 (2002 462.] (SCHOTT AG, with elastic emission machining (EEM in order to evaluate the removal properties. Consequently, we successfully calculated the respective removal rates, because removal volumes were found to be proportional to process times in EEM. Moreover, we demonstrated that the surface roughness of Zerodur is reduced to 0.1 nm rms in the spatial wavelength range from 100 μm to 1 mm.

  17. First-principles calculations of orientation dependence of Si thermal oxidation based on Si emission model

    Science.gov (United States)

    Nagura, Takuya; Kawachi, Shingo; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Kageshima, Hiroyuki; Endoh, Tetsuo; Shiraishi, Kenji

    2018-04-01

    It is expected that the off-state leakage current of MOSFETs can be reduced by employing vertical body channel MOSFETs (V-MOSFETs). However, in fabricating these devices, the structure of the Si pillars sometimes cannot be maintained during oxidation, since Si atoms sometimes disappear from the Si/oxide interface (Si missing). Thus, in this study, we used first-principles calculations based on the density functional theory, and investigated the Si emission behavior at the various interfaces on the basis of the Si emission model including its atomistic structure and dependence on Si crystal orientation. The results show that the order in which Si atoms are more likely to be emitted during thermal oxidation is (111) > (110) > (310) > (100). Moreover, the emission of Si atoms is enhanced as the compressive strain increases. Therefore, the emission of Si atoms occurs more easily in V-MOSFETs than in planar MOSFETs. To reduce Si missing in V-MOSFETs, oxidation processes that induce less strain, such as wet or pyrogenic oxidation, are necessary.

  18. High-resolution spectroscopic search for the thermal emission of the extrasolar planet HD 217107 b

    OpenAIRE

    Cubillos, Patricio E.; Rojo, Patricio; Fortney, Jonathan J.

    2011-01-01

    We analyzed the combined near-infrared spectrum of a star-planet system with thermal emission atmospheric models, based on the composition and physical parameters of the system. The main objective of this work is to obtain the inclination of the orbit, the mass of the exoplanet, and the planet-to-star flux ratio. We present the results of our routines on the planetary system HD 217107, which was observed with the high-resolution spectrograph Phoenix at 2.14 microns. We revisited and tuned a c...

  19. Acoustic emission studies of cermet BK structural modifications under thermal and radiation action and hydrogenation

    International Nuclear Information System (INIS)

    Ul'yanov, V.L.; Chernov, I.P.; Botaki, A.A.; Chakhlov, B.V.

    1992-01-01

    Elastic wave attenuation and acoustic emission (AE) in tungsten monocarbide base cermets were investigated with the purpose of studying structural changes and microplastic strains under heating within the range of 100-1000 K, gamma-irradiation up to absorbed dose of 10 7 J·kg -1 and hydrogenation. Interrelations were revealed of AE signals and a decrement of elastic wave damping to temperature- and radiation-induced transformations in microstructure of 94 % WC -6 % Co and 92 % WC - 8 % Co hard alloys. AE peaks under thermal action were found to be associated with cobalt phase microstrain or with dislocation of hydrogen in preliminary hyudrogenated alloys

  20. Thermal Emission Control via Bandgap Engineering in Aperiodically Designed Nanophotonic Devices

    Directory of Open Access Journals (Sweden)

    Enrique Maciá

    2015-05-01

    Full Text Available Aperiodic photonic crystals can open up novel routes for more efficient photon management due to increased degrees of freedom in their design along with the unique properties brought about by the long-range aperiodic order as compared to their periodic counterparts. In this work we first describe the fundamental notions underlying the idea of thermal emission/absorption control on the basis of the systematic use of aperiodic multilayer designs in photonic quasicrystals. Then, we illustrate the potential applications of this approach in order to enhance the performance of daytime radiative coolers and solar thermoelectric energy generators.

  1. Geometry of the non-thermal emission in SN 1006. Azimuthal variations of cosmic-ray acceleration

    OpenAIRE

    Rothenflug, R.; Ballet, J.; Dubner, Gloria Mabel; Giacani, Elsa Beatriz; Decourchelle, A.; Ferrando, P.

    2017-01-01

    SN 1006 is the prototype of shell supernova remnants, in which non-thermal synchrotron emission dominates the X-ray spectrum. The non-thermal emission is due to the cosmic-ray electrons accelerated behind the blast wave. The X-ray synchrotron emission is due to the highest energy electrons, and is thus a tracer of the maximum energy electrons may reach behind a shock. We have put together all XMM-Newton observations to build a full map of SN 1006. The very low brightness a...

  2. Polarimetric Imaging using Two Photoelastic Modulators

    Science.gov (United States)

    Wang, Yu; Cunningham, Thomas; Diner, David; Davis, Edgar; Sun, Chao; Hancock, Bruce; Gutt, Gary; Zan, Jason; Raouf, Nasrat

    2009-01-01

    A method of polarimetric imaging, now undergoing development, involves the use of two photoelastic modulators in series, driven at equal amplitude but at different frequencies. The net effect on a beam of light is to cause (1) the direction of its polarization to rotate at the average of two excitation frequencies and (2) the amplitude of its polarization to be modulated at the beat frequency (the difference between the two excitation frequencies). The resulting modulated optical light beam is made to pass through a polarizing filter and is detected at the beat frequency, which can be chosen to equal the frame rate of an electronic camera or the rate of sampling the outputs of photodetectors in an array. The method was conceived to satisfy a need to perform highly accurate polarimetric imaging, without cross-talk between polarization channels, at frame rates of the order of tens of hertz. The use of electro-optical modulators is necessitated by a need to obtain accuracy greater than that attainable by use of static polarizing filters over separate fixed detectors. For imaging, photoelastic modulators are preferable to such other electrio-optical modulators as Kerr cells and Pockels cells in that photoelastic modulators operate at lower voltages, have greater angular acceptances, and are easier to use. Prior to the conception of the present method, polarimetric imaging at frame rates of tens of hertz using photoelastic modulators was not possible because the resonance frequencies of photoelastic modulators usually lie in the range from about 20 to about 100 kHz.

  3. Ultra High Resolution Imaging of Enceladus Tiger Stripe Thermal Emission with Cassini CIRS

    Science.gov (United States)

    Spencer, John R.; Gorius, Nicolas; Howett, Carly; Verbiscer, Anne J.; Cassini CIRS Team

    2017-10-01

    In October 2015, Cassini flew within 48 km of Enceladus’ south pole. The spacecraft attitude was fixed during the flyby, but the roll angle of the spacecraft was chosen so that the remote sensing instrument fields of view passed over Damascus, Baghdad, and Cairo Sulci. The Composite Infrared Spectrometer (CIRS) instrument obtained a single interferometer scan during the flyby, using a special mode, enabled by a flight software update, which bypassed numerical filters to improve the fidelity of the interferograms. This generated a total of 11 interferograms, at 5 contiguous spatial locations for each of the 7 - 9 micron (FP4) and 9 - 17 micron (FP3) focal planes, and a single larger field of view for the 17 - 500 micron focal plane (FP1). Strong spikes were seen in the interferograms when crossing each of the sulci, due to the rapid passage of warm material through the field of view. For FP3 and FP4, the temporal variations of the signals from the 5 contiguous detectors can be used to generated 5-pixel-wide images of the thermal emission, which show excellent agreement between the two focal planes. FP3 and FP4 spatial resolution, limited along track by the 5 msec time sampling of the interferogram, and across track by the CIRS field of view, is a remarkable 40 x 40 meters. At this resolution, the tiger stripe thermal emission shows a large amount of structure, including both continuous emission along the fractures, discrete hot spots less than 100 meters across, and extended emission with complex structure.

  4. Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method

    International Nuclear Information System (INIS)

    Azizipanah-Abarghooee, Rasoul; Niknam, Taher; Roosta, Alireza; Malekpour, Ahmad Reza; Zare, Mohsen

    2012-01-01

    In this paper, wind power generators are being incorporated in the multiobjective economic emission dispatch problem which minimizes wind-thermal electrical energy cost and emissions produced by fossil-fueled power plants, simultaneously. Large integration of wind energy sources necessitates an efficient model to cope with uncertainty arising from random wind variation. Hence, a multiobjective stochastic search algorithm based on 2m point estimated method is implemented to analyze the probabilistic wind-thermal economic emission dispatch problem considering both overestimation and underestimation of available wind power. 2m point estimated method handles the system uncertainties and renders the probability density function of desired variables efficiently. Moreover, a new population-based optimization algorithm called modified teaching-learning algorithm is proposed to determine the set of non-dominated optimal solutions. During the simulation, the set of non-dominated solutions are kept in an external memory (repository). Also, a fuzzy-based clustering technique is implemented to control the size of the repository. In order to select the best compromise solution from the repository, a niching mechanism is utilized such that the population will move toward a smaller search space in the Pareto-optimal front. In order to show the efficiency and feasibility of the proposed framework, three different test systems are represented as case studies. -- Highlights: ► WPGs are being incorporated in the multiobjective economic emission dispatch problem. ► 2m PEM handles the system uncertainties. ► A MTLBO is proposed to determine the set of non-dominated (Pareto) optimal solutions. ► A fuzzy-based clustering technique is implemented to control the size of the repository.

  5. Polarimetric scattering and SAR information retrieval

    CERN Document Server

    Jin, Ya-Qiu

    2013-01-01

    Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative app

  6. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    Science.gov (United States)

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.

  7. NON-THERMAL EMISSION FROM CATACLYSMIC VARIABLES: IMPLICATIONS ON ASTROPARTICLE PHYSICS

    Directory of Open Access Journals (Sweden)

    Vojtech Šimon

    2013-12-01

    Full Text Available We review the lines of evidence that some cataclysmic variables (CVs are the sources of non-thermal radiation. It was really observed in some dwarf novae in outburst, a novalike CV in the high state, an intermediate polar, polars, and classical novae (CNe during outburst. The detection of this radiation suggests the presence of highly energetic particles in these CVs. The conditions for the observability of this emission depend on the state of activity, and the system parameters. We review the processes and conditions that lead to the production of this radiation in various spectral bands, from gamma-rays including TeV emission to radio. Synchrotron and cyclotron emissions suggest the presence of strong magnetic fields in CV. In some CVs, e.g. during some dwarf nova outbursts, the magnetic field generated in the accretion disk leads to the synchrotron jets radiating in radio. The propeller effect or a shock in the case of the magnetized white dwarf (WD can lead to a strong acceleration of the particles that produce gamma-ray emission via pi0 decay; even Cherenkov radiation is possible. In addition, a gamma-ray production via pi0 decay was observed in the ejecta of an outburst of a symbiotic CN. Nuclear reactions during thermonuclear runaway in the outer layer of the WD undergoing CN outburst lead to the production of radioactive isotopes; their decay is the source of gamma-ray emission. The production of accelerated particles in CVs often has episodic character with a very small duty cycle; this makes their detection and establishing the relation of the behavior in various bands difficult.

  8. Dynamics of the cavity radiation of a correlated emission laser initially seeded with a thermal light

    Energy Technology Data Exchange (ETDEWEB)

    Tesfa, Sintayehu, E-mail: sint_tesfa@yahoo.com [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Street 38, 01187 Dresden (Germany); Physics Department, Dilla University, PO Box 419, Dilla (Ethiopia)

    2011-10-15

    A detailed analysis of the time evolution of the two-mode squeezing, entanglement and intensity of the cavity radiation of a two-photon correlated emission laser initially seeded with a thermal light is presented. The dependences of the degree of two-mode squeezing and entanglement on the intensity of the thermal light and time are found to have a more or less similar nature, although the actual values differ, especially in the early stages of the process and when the atoms are initially prepared with nearly 50:50 probability to be in the upper and lower energy levels. Seeding the cavity degrades the nonclassical features significantly, particularly in the vicinity of t=0. It is also shown that the mean photon number in a wider time span has a dip when mode b is seeded but a peak when mode a is seeded. Moreover, it turns out that the effect of the seed light on the nonclassical features and intensity of the cavity radiation decreases significantly with time, an outcome essentially attributed to the pertinent emission-absorption mechanism. This can be taken as an encouraging aspect in the practical utilization of this model as a source of a bright entangled light.

  9. Comparison of organic emissions from laboratory and full-scale thermal degradation of sewage sludge

    International Nuclear Information System (INIS)

    Tirey, D.A.; Striebich, R.C.; Dellinger, B.; Bostian, H.E.

    1991-01-01

    Samples of sewage sludge burned at one fluidized-bed and three multiple-hearth incinerators were subjected to laboratory flow reactor thermal decomposition testing in both pyrolytic and oxidative atmospheres. The time/temperature conditions of the laboratory testing were established to simulate as closely as possible full-scale incineration conditions so that a direct comparison of results could be made. The laboratory test results indicated that biomass decomposition products, not toxic industrial contaminants, comprised the majority of the emissions. Benzene, toluene, ethylbenzene, acrylonitrile, and acetonitrile were consistently the most environmentally significant products of thermal degradation. Comparison of the results from this study with those obtained in field tests was complicated by an apparent loss of volatile chlorocarbons from the sludge samples received for laboratory testing. However, qualitative comparison of emission factors derived from lab and field results for those compounds observed in both studies, showed reasonably good correlation for the pyrolysis testing. Results suggested that the upper stages of multiple-hearth units may vaporize many volatile components of the sludge before they enter the combustion stages of the incinerator and thus represent a direct source of introduction of pollutants into the atmosphere

  10. Polarimetric Remote Sensing of Atmospheric Particulate Pollutants

    Science.gov (United States)

    Li, Z.; Zhang, Y.; Hong, J.

    2018-04-01

    Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF), whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.

  11. POLARIMETRIC REMOTE SENSING OF ATMOSPHERIC PARTICULATE POLLUTANTS

    Directory of Open Access Journals (Sweden)

    Z. Li

    2018-04-01

    Full Text Available Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF, whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.

  12. Feature-Based Nonlocal Polarimetric SAR Filtering

    Directory of Open Access Journals (Sweden)

    Xiaoli Xing

    2017-10-01

    Full Text Available Polarimetric synthetic aperture radar (PolSAR images are inherently contaminated by multiplicative speckle noise, which complicates the image interpretation and image analyses. To reduce the speckle effect, several adaptive speckle filters have been developed based on the weighted average of the similarity measures commonly depending on the model or probability distribution, which are often affected by the distribution parameters and modeling texture components. In this paper, a novel filtering method introduces the coefficient of variance ( CV and Pauli basis (PB to measure the similarity, and the two features are combined with the framework of the nonlocal mean filtering. The CV is used to describe the complexity of various scenes and distinguish the scene heterogeneity; moreover, the Pauli basis is able to express the polarimetric information in PolSAR image processing. This proposed filtering combines the CV and Pauli basis to improve the estimation accuracy of the similarity weights. Then, the similarity of the features is deduced according to the test statistic. Subsequently, the filtering is proceeded by using the nonlocal weighted estimation. The performance of the proposed filter is tested with the simulated images and real PolSAR images, which are acquired by AIRSAR system and ESAR system. The qualitative and quantitative experiments indicate the validity of the proposed method by comparing with the widely-used despeckling methods.

  13. [Modeling and Simulation of Spectral Polarimetric BRDF].

    Science.gov (United States)

    Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu

    2016-01-01

    Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.

  14. A method to quickly test the emissivity with an infrared thermal imaging system within a small distance

    Science.gov (United States)

    Wang, Xuan-yu; Hu, Rui; Wang, Rui-xin

    2015-10-01

    A simple method has been set up to quickly test the emissivity with an infrared thermal imaging system within a small distance according to the theory of measuring temperature by infrared system, which is based on the Planck radiation law and Lambert-beer law. The object's temperature is promoted and held on by a heater while a temperature difference has been formed between the target and environment. The emissivity of human skin, galvanized iron plate, black rubber and liquid water has been tested under the condition that the emissivity is set in 1.0 and the testing distance is 1m. According to the invariance of human's body temperature, a testing curve is established to describe that the thermal imaging temperatures various with the emissivity which is set in from 0.9 to 1.0. As a result, the method has been verified. The testing results show that the emissivity of human skin is 0.95. The emissivity of galvanized iron plate, black rubber and liquid water decreases with the increase of object's temperature. The emissivity of galvanized iron plate is far smaller than the one of human skin, black rubber or water. The emissivity of water slowly linearly decreases with the increase of its temperature. By the study, within a small distance and clean atmosphere, the infrared emissivity of objects may be expediently tested with an infrared thermal imaging system according to the method, which is promoting the object's temperature to make it different from the environment temperature, then simultaneously measures the environmental temperature, the real temperature and thermal imaging temperature of the object when the emissivity is set in 1.0 and the testing distance is 1.0m.

  15. Numerical investigation of CO{sub 2} emission and thermal stability of a convective and radiative stockpile of reactive material in a cylindrical pipe of variable thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Lebelo, Ramoshweu Solomon, E-mail: sollyl@vut.ac.za [Department of Mathematics, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1911 (South Africa)

    2014-10-24

    In this paper the CO{sub 2} emission and thermal stability in a long cylindrical pipe of combustible reactive material with variable thermal conductivity are investigated. It is assumed that the cylindrical pipe loses heat by both convection and radiation at the surface. The nonlinear differential equations governing the problem are tackled numerically using Runge-Kutta-Fehlberg method coupled with shooting technique method. The effects of various thermophysical parameters on the temperature and carbon dioxide fields, together with critical conditions for thermal ignition are illustrated and discussed quantitatively.

  16. VARIABILITY OF THE SiO THERMAL LINE EMISSION TOWARD THE YOUNG L1448-mm OUTFLOW

    International Nuclear Information System (INIS)

    Jimenez-Serra, I.; MartIn-Pintado, J.; RodrIguez-Franco, A.; Winters, J.-M.; Caselli, P.

    2011-01-01

    The detection of narrow SiO thermal emission toward young outflows has been proposed to be a signature of the magnetic precursor of C-shocks. Recent modeling of the SiO emission across C-shocks predicts variations in the SiO line intensity and line shape at the precursor and intermediate-velocity regimes in only a few years. We present high angular resolution (3.''8 x 3.''3) images of the thermal SiO J = 2→1 emission toward the L1448-mm outflow in two epochs (2004 November-2005 February, 2009 March-April). Several SiO condensations have appeared at intermediate velocities (20-50 km s -1 ) toward the redshifted lobe of the outflow since 2005. Toward one of the condensations (clump D), systematic differences of the dirty beams between 2005 and 2009 could be responsible for the SiO variability. At higher velocities (50-80 km s -1 ), SiO could also have experienced changes in its intensity. We propose that the SiO variability toward L1448-mm is due to a real SiO enhancement by young C-shocks at the internal working surface between the jet and the ambient gas. For the precursor regime (5.2-9.2 km s -1 ), several narrow and faint SiO components are detected. The narrow SiO components tend to be compact, transient and show elongated (bow-shock) morphologies perpendicular to the jet. We speculate that these features are associated with the precursor of C-shocks appearing at the interface of the new SiO components seen at intermediate velocities.

  17. Investigation of EBW Thermal Emission and Mode Conversion Physics in H-Mode Plasmas on NSTX

    International Nuclear Information System (INIS)

    Diem, S.J.; Taylor, G.; Efthimion, P.C.; Kugel, H.W.; LeBlanc, B.P.; Phillips, C.K.; Caughman, J.B.; Wilgen, J.B.; Harvey, R.W.; Preinhaelter, J.; Urban, J.; Sabbagh, S.A.

    2008-01-01

    High β plasmas in the National Spherical Torus Experiment (NSTX) operate in the overdense regime, allowing the electron Bernstein wave (EBW) to propagate and be strongly absorbed/emitted at the electron cyclotron resonances. As such, EBWs may provide local electron heating and current drive. For these applications, efficient coupling between the EBWs and electromagnetic waves outside the plasma is needed. Thermal EBW emission (EBE) measurements, via oblique B-X-O double mode conversion, have been used to determine the EBW transmission efficiency for a wide range of plasma conditions on NSTX. Initial EBE measurements in H-mode plasmas exhibited strong emission before the L-H transition, but the emission rapidly decayed after the transition. EBE simulations show that collisional damping of the EBW prior to the mode conversion (MC) layer can significantly reduce the measured EBE for T e < 20 eV, explaining the observations. Lithium evaporation was used to reduce EBE collisional damping near the MC layer. As a result, the measured B-X-O transmission efficiency increased from < 10% (no Li) to 60% (with Li), consistent with EBE simulations.

  18. Thermal and nonthermal electron cyclotron emission by high-temperature tokamak plasmas

    International Nuclear Information System (INIS)

    Airoldi, A.; Ramponi, G.

    1997-01-01

    An analysis of the electron cyclotron emission (ECE) spectra emitted by a high-temperature tokamak plasma in the frequency range of the second and third harmonic of the electron cyclotron frequency is made, both in purely Maxwellian and in non-Maxwellian cases (i.e., in the presence of a current-carrying superthermal tail). The work is motivated mainly by the experimental observations made in the supershot plasmas of the Tokamak Fusion Test Reactor (TFTR), where a systematic disagreement is found between the T e measurements by second-harmonic ECE and Thomson scattering. We show that, by properly taking into account the overlap of superthermals-emitted third harmonic with second-harmonic bulk emission, the radiation temperature observed about the central frequency of the second harmonic may be enhanced up to 30%endash 40% compared to the corresponding thermal value. Moreover we show that, for parameters relevant to the International Thermonuclear Experimental Reactor (ITER) with T e (0)>7 keV, the overlap between the second and the downshifted third harmonic seriously affects the central plasma region, so that the X-mode emission at the second harmonic becomes unsuitable for local T e measurements. copyright 1997 American Institute of Physics

  19. Determination of the ion thermal diffusivity from neutron emission profiles in decay

    Energy Technology Data Exchange (ETDEWEB)

    Sasao, M. (National Inst. for Fusion Science, Nagoya (Japan)); Adam, J.M. (AEA Industrial Technology, Harwell (United Kingdom)); Conroy, S.; Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking)

    1992-01-01

    Spatial profiles of neutron emission are routinely obtained at the Joint European Torus (JET) from line-integrated emissivities measured with a multi-channel instrument. It is shown that the manner in which the emission profiles relax following termination of strong heating with Neutral Beam Injection (NBI) permits the local thermal diffusivity ([chi][sub i]) to be obtained with an accuracy of about 20%. The radial profiles of [chi][sub i] for small minor radius (r/a < 0.6) were found to be flat and to take values between 0.3 and 1.1 m[sup 2]/s for H-mode plasmas with plasma current I[sub p] = 3.1 MA and toroidal field B[sub T] = 2.3T. The experimental value of [chi][sub i] is smallest for Z[sub eff] = 2.2 and increases weakly with increasing Z[sub eff]. The experimental results disagree by two orders of magnitude with predictions from an ion temperature gradient driven turbulence model. (author) 6 refs., 3 figs.

  20. Radiative thermal emission from silicon nanoparticles: a reversed story from quantum to classical theory

    International Nuclear Information System (INIS)

    Roura, P.; Costa, J.

    2002-01-01

    Among the rush of papers published after the discovery of visible luminescence in porous silicon, a number of them claimed that an extraordinary behaviour had been found. However, after five years of struggling with increasingly sophisticated but not completely successful models, it was finally demonstrated that it was simply thermal radiation. Here, we calculate thermal radiation emitted by silicon nanoparticles when irradiated in vacuum with a laser beam. If one interprets this radiation as being photoluminescence, its properties appear extraordinary: non-exponential excitation and decay transients and a supralinear dependence on laser power. Within the (quantum) theory of photoluminescence, this behaviour can be interpreted as arising from a non-usual excitation mechanism known as multiphoton excitation. Although this erroneous interpretation has, to some extent, a predictive power, it is unable to give a sound explanation for the quenching of radiation when particles are not irradiated in vacuum but inside a gas. The real story of this error is presented both to achieve a deeper understanding of the radiative thermal emission of nanoparticles and as a matter of reflection on scientific activity. (author)

  1. Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China

    Directory of Open Access Journals (Sweden)

    Xiaopeng Guo

    2014-12-01

    Full Text Available Spurred by the increasingly serious air pollution problem, the Chinese government has launched a series of policies to put forward specific measures of power structure adjustment and the control objectives of air pollution and coal consumption. Other policies pointed out that the coal resources regional blockades will be broken by improving transportation networks and constructing new logistics nodes. Thermal power takes the largest part of China’s total installed power generation capacity, so these policies will undoubtedly impact thermal coal supply chain member enterprises. Based on the actual situation in China, this paper figures out how the member enterprises adjust their business decisions to satisfy the requirements of air pollution prevention and control policies by establishing system dynamic models of policy impact transfer. These dynamic analyses can help coal enterprises and thermal power enterprises do strategic environmental assessments and find directions of sustainable development. Furthermore, the policy simulated results of this paper provide the Chinese government with suggestions for policy-making to make sure that the energy conservation and emission reduction policies and sustainable energy policies can work more efficiently.

  2. Evaluation of the Wishart test statistics for polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    2003-01-01

    A test statistic for equality of two covariance matrices following the complex Wishart distribution has previously been used in new algorithms for change detection, edge detection and segmentation in polarimetric SAR images. Previously, the results for change detection and edge detection have been...... quantitatively evaluated. This paper deals with the evaluation of segmentation. A segmentation performance measure originally developed for single-channel SAR images has been extended to polarimetric SAR images, and used to evaluate segmentation for a merge-using-moment algorithm for polarimetric SAR data....

  3. Thermal Emission of Alkali Metal Ions from Al30-Pillared Montmorillonite Studied by Mass Spectrometric Method.

    Science.gov (United States)

    Motalov, V B; Karasev, N S; Ovchinnikov, N L; Butman, M F

    2017-01-01

    The thermal emission of alkali metal ions from Al 30 -pillared montmorillonite in comparison with its natural form was studied by mass spectrometry in the temperature range 770-930 K. The measurements were carried out on a magnetic mass spectrometer MI-1201. For natural montmorillonite, the densities of the emission currents ( j ) decrease in the mass spectrum in the following sequence (T = 805 K, A/cm 2 ): K + (4.55 · 10 -14 ), Cs + (9.72 · 10 -15 ), Rb + (1.13 · 10 -15 ), Na + (1.75 · 10 -16 ), Li + (3.37 · 10 -17 ). For Al 30 -pillared montmorillonite, thermionic emission undergoes temperature-time changes. In the low-temperature section of the investigated range (770-805 K), the value of j increases substantially for all ions in comparison with natural montmorillonite (T = 805 K, A/cm 2 ): Cs + (6.47 · 10 -13 ), K + (9.44 · 10 -14 ), Na + (3.34 · 10 -15 ), Rb + (1.77 · 10 -15 ), and Li + (4.59 · 10 -16 ). A reversible anomaly is observed in the temperature range 805-832 K: with increasing temperature, the value of j of alkaline ions falls abruptly. This effect increases with increasing ionic radius of M + . After a long heating-up period, this anomaly disappears and the ln j - 1/ T dependence acquires a classical linear form. The results are interpreted from the point of view of the dependence of the efficiency of thermionic emission on the phase transformations of pillars.

  4. Thermal Emission of Alkali Metal Ions from Al30-Pillared Montmorillonite Studied by Mass Spectrometric Method

    Directory of Open Access Journals (Sweden)

    V. B. Motalov

    2017-01-01

    Full Text Available The thermal emission of alkali metal ions from Al30-pillared montmorillonite in comparison with its natural form was studied by mass spectrometry in the temperature range 770–930 K. The measurements were carried out on a magnetic mass spectrometer MI-1201. For natural montmorillonite, the densities of the emission currents (j decrease in the mass spectrum in the following sequence (T = 805 K, A/cm2: K+ (4.55 · 10−14, Cs+ (9.72 · 10−15, Rb+ (1.13 · 10−15, Na+ (1.75 · 10−16, Li+ (3.37 · 10−17. For Al30-pillared montmorillonite, thermionic emission undergoes temperature-time changes. In the low-temperature section of the investigated range (770–805 K, the value of j increases substantially for all ions in comparison with natural montmorillonite (T = 805 K, A/cm2: Cs+ (6.47 · 10−13, K+ (9.44 · 10−14, Na+ (3.34 · 10−15, Rb+ (1.77 · 10−15, and Li+ (4.59 · 10−16. A reversible anomaly is observed in the temperature range 805–832 K: with increasing temperature, the value of j of alkaline ions falls abruptly. This effect increases with increasing ionic radius of M+. After a long heating-up period, this anomaly disappears and the lnj-1/T dependence acquires a classical linear form. The results are interpreted from the point of view of the dependence of the efficiency of thermionic emission on the phase transformations of pillars.

  5. Assessment of tissue polarimetric properties using Stokes polarimetric imaging with circularly polarized illumination.

    Science.gov (United States)

    Qi, Ji; He, Honghui; Lin, Jianyu; Dong, Yang; Chen, Dongsheng; Ma, Hui; Elson, Daniel S

    2018-04-01

    Tissue-depolarization and linear-retardance are the main polarization characteristics of interest for bulk tissue characterization, and are normally interpreted from Mueller polarimetry. Stokes polarimetry can be conducted using simpler instrumentation and in a shorter time. Here, we use Stokes polarimetric imaging with circularly polarized illumination to assess the circular-depolarization and linear-retardance properties of tissue. Results obtained were compared with Mueller polarimetry in transmission and reflection geometry, respectively. It is found that circular-depolarization obtained from these 2 methods is very similar in both geometries, and that linear-retardance is highly quantitatively similar for transmission geometry and qualitatively similar for reflection geometry. The majority of tissue circular-depolarization and linear-retardance image information (represented by local image contrast features) obtained from Mueller polarimetry is well preserved from Stokes polarimetry in both geometries. These findings can be referred to for further understanding tissue Stokes polarimetric data, and for further application of Stokes polarimetry under the circumstances where short acquisition time or low optical system complexity is a priority, such as polarimetric endoscopy and microscopy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. PCA-based approach for subtracting thermal background emission in high-contrast imaging data

    Science.gov (United States)

    Hunziker, S.; Quanz, S. P.; Amara, A.; Meyer, M. R.

    2018-03-01

    Aims.Ground-based observations at thermal infrared wavelengths suffer from large background radiation due to the sky, telescope and warm surfaces in the instrument. This significantly limits the sensitivity of ground-based observations at wavelengths longer than 3 μm. The main purpose of this work is to analyse this background emission in infrared high-contrast imaging data as illustrative of the problem, show how it can be modelled and subtracted and demonstrate that it can improve the detection of faint sources, such as exoplanets. Methods: We used principal component analysis (PCA) to model and subtract the thermal background emission in three archival high-contrast angular differential imaging datasets in the M' and L' filter. We used an M' dataset of β Pic to describe in detail how the algorithm works and explain how it can be applied. The results of the background subtraction are compared to the results from a conventional mean background subtraction scheme applied to the same dataset. Finally, both methods for background subtraction are compared by performing complete data reductions. We analysed the results from the M' dataset of HD 100546 only qualitatively. For the M' band dataset of β Pic and the L' band dataset of HD 169142, which was obtained with an angular groove phase mask vortex vector coronagraph, we also calculated and analysed the achieved signal-to-noise ratio (S/N). Results: We show that applying PCA is an effective way to remove spatially and temporarily varying thermal background emission down to close to the background limit. The procedure also proves to be very successful at reconstructing the background that is hidden behind the point spread function. In the complete data reductions, we find at least qualitative improvements for HD 100546 and HD 169142, however, we fail to find a significant increase in S/N of β Pic b. We discuss these findings and argue that in particular datasets with strongly varying observing conditions or

  7. MCM Polarimetric Radiometers for Planar Arrays

    Science.gov (United States)

    Kangaslahti, Pekka; Dawson, Douglas; Gaier, Todd

    2007-01-01

    A polarimetric radiometer that operates at a frequency of 40 GHz has been designed and built as a prototype of multiple identical units that could be arranged in a planar array for scientific measurements. Such an array is planned for use in studying the cosmic microwave background (CMB). All of the subsystems and components of this polarimetric radiometer are integrated into a single multi-chip module (MCM) of substantially planar geometry. In comparison with traditional designs of polarimetric radiometers, the MCM design is expected to greatly reduce the cost per unit in an array of many such units. The design of the unit is dictated partly by a requirement, in the planned CMB application, to measure the Stokes parameters I, Q, and U of the CMB radiation with high sensitivity. (A complete definition of the Stokes parameters would exceed the scope of this article. In necessarily oversimplified terms, I is a measure of total intensity of radiation, while Q and U are measures of the relationships between the horizontally and vertically polarized components of radiation.) Because the sensitivity of a single polarimeter cannot be increased significantly, the only way to satisfy the high-sensitivity requirement is to make a large array of polarimeters that operate in parallel. The MCM includes contact pins that can be plugged into receptacles on a standard printed-circuit board (PCB). All of the required microwave functionality is implemented within the MCM; any required supporting non-microwave ("back-end") electronic functionality, including the provision of DC bias and control signals, can be implemented by standard PCB techniques. On the way from a microwave antenna to the MCM, the incoming microwave signal passes through an orthomode transducer (OMT), which splits the radiation into an h + i(nu) beam and an h - i(nu) beam (where, using complex-number notation, h denotes the horizontal component, nu denotes the vertical component, and +/-i denotes a +/-90deg phase

  8. Nonlinear Polarimetric Microscopy for Biomedical Imaging

    Science.gov (United States)

    Samim, Masood

    A framework for the nonlinear optical polarimetry and polarimetric microscopy is developed. Mathematical equations are derived in terms of linear and nonlinear Stokes Mueller formalism, which comprehensively characterize the polarization properties of the incoming and outgoing radiations, and provide structural information about the organization of the investigated materials. The algebraic formalism developed in this thesis simplifies many predictions for a nonlinear polarimetry study and provides an intuitive understanding of various polarization properties for radiations and the intervening medium. For polarimetric microscopy experiments, a custom fast-scanning differential polarization microscope is developed, which is also capable of real-time three-dimensional imaging. The setup is equipped with a pair of high-speed resonant and galvanometric scanning mirrors, and supplemented by advanced adaptive optics and data acquisition modules. The scanning mirrors when combined with the adaptive optics deformable mirror enable fast 3D imaging. Deformable membrane mirrors and genetic algorithm optimization routines are employed to improve the imaging conditions including correcting the optical aberrations, maximizing signal intensities, and minimizing point-spread-functions of the focal volume. A field-programmable-gate array (FPGA) chip is exploited to rapidly acquire and process the multidimensional data. Using the nonlinear optical polarimetry framework and the home-built polarization microscope, a few biologically important tissues are measured and analyzed to gain insight as to their structure and dynamics. The structure and distribution of muscle sarcomere myosins, connective tissue collagen, carbohydrate-rich starch, and fruit fly eye retinal molecules are characterized with revealing polarization studies. In each case, using the theoretical framework, polarization sensitive data are analyzed to decipher the molecular orientations and nonlinear optical

  9. NAMMA NASA POLARIMETRIC DOPPLER WEATHER RADAR (NPOL) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA NASA Polarimetric Doppler Weather Radar (NPOL) dataset used the NPOL, developed by a research team from Wallops Flight Facility, is a fully transportable...

  10. The effect of orbital eccentricity on polarimetric binary diagnostics

    International Nuclear Information System (INIS)

    Aspin, C.; Brown, J.C.; Simmons, J.F.L.

    1980-01-01

    The polarimetric variation from a binary system with an eccentric orbit, thus non-corotating, are calculated and the effect on determining the system parameters is discussed, relative to the circular case. (Auth.)

  11. Evaluation of gas emissions and environmental impact of a Cuban thermal power plant

    International Nuclear Information System (INIS)

    Colas Aroche, Juan Alberto; Alvarez Hernandez, Orlando H; Fuentes Quevedo, Eduardo; Teutelo Nunnez, Raisa

    2006-01-01

    The present work shows the results obtained in the characterization of gas emissions and the impact of two fire-tube boilers in a Cuban thermal power plant. The results of the SO 2 and NO X sampling were collected in specific solutions for each pollutant. The sampling of suspended particulates in chimneys/pipes/stacks was made by collecting them in a filterholder for their analysis by means of the gravimetric method. Flow measurements were also made by using pressure sensors of Pilot tube-type speedometers. The dispersion modelling of pollutants poured out of the chimneys was developed running the program for the concentration calculation from continuous industrial sources and following the methodology approved by the Cuban standard according to Berliand model. The authors conclude that when burning national crude oil in the studied boilers, sulphur dioxide concentrations and suspended particulates are higher than the internationally standardized level

  12. Emission parameters and thermal management of single high-power 980-nm laser diodes

    International Nuclear Information System (INIS)

    Bezotosnyi, V V; Krokhin, O N; Oleshchenko, V A; Pevtsov, V F; Popov, Yu M; Cheshev, E A

    2014-01-01

    We report emission parameters of high-power cw 980-nm laser diodes (LDs) with a stripe contact width of 100 μm. On copper heat sinks of the C-mount type, a reliable output power of 10 W is obtained at a pump current of 10 A. Using a heat flow model derived from analysis of calculated and measured overall efficiencies at pump currents up to 20 A, we examine the possibility of raising the reliable power limit of a modified high-power LD mounted on heat sinks of the F-mount type using submounts with optimised geometric parameters and high thermal conductivity. The possibility of increasing the maximum reliable cw output power to 20 W with the use of similar laser crystals is discussed. (lasers)

  13. Emission of Polycyclic Aromatic Hydrocarbons from the Exhalation Zones of Thermally Active Mine Waste Dumps

    Directory of Open Access Journals (Sweden)

    Patrycja Kuna-Gwoździewicz

    2013-01-01

    Full Text Available The article presents results of research carried out on the occurrence of polycyclic aromatic hydrocarbons (PAH in gases of exhalation zones, created on the surface of a thermally active coal mine waste dump. The oxidation and self-heating of mine waste are accompanied with the intensive emission of flue gases, including PAH group compounds. Taking into consideration the fact the hydrocarbons show strong genotoxic, mutagenic and carcinogenic properties, research was conducted to establish their content in the examined gases. The research object was a gangue dump located in Rybnik. The research was performed in 2012. In total, 24 samples of gas were collected with PUF (polyurethane foam sampling cartridges with a quartz fibre filter and an aspirator. The collected samples were analysed with the use of high performance liquid chromatography (HPLC and a fluorescence detector (FLD to evaluate the amount of PAH present.

  14. Thermal Infrared Emission Spectroscopy of Synthetic Allophane and its Potential Formation on Mars

    Science.gov (United States)

    Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Golden, D. C.; Ming, Douglas W.

    2010-01-01

    Allophane is a poorly-crystalline, hydrous aluminosilicate with variable Si/Al ratios approx.0.5-1 and a metastable precursor of clay minerals. On Earth, it forms rapidly by aqueous alteration of volcanic glass under neutral to slightly acidic conditions [1]. Based on in situ chemical measurements and the identification of alteration phases [2-4], the Martian surface is interpreted to have been chemically weathered on local to regional scales. Chemical models of altered surfaces detected by the Mars Exploration Rover Spirit in Gusev crater suggest the presence of an allophane-like alteration product [3]. Thermal infrared (TIR) spectroscopy and spectral deconvolution models are primary tools for determining the mineralogy of the Martian surface [5]. Spectral models of data from the Thermal Emission Spectrometer (TES) indicate a global compositional dichotomy, where high latitudes tend to be enriched in a high-silica material [6,7], interpreted as high-silica, K-rich volcanic glass [6,8]. However, later interpretations proposed that the high-silica material may be an alteration product (such as amorphous silica, clay minerals, or allophane) and that high latitude surfaces are chemically weathered [9-11]. A TIR spectral library of pure minerals is available for the public [12], but it does not contain allophane spectra. The identification of allophane on the Martian surface would indicate high water activity at the time of its formation and would help constrain the aqueous alteration environment [13,14]. The addition of allophane to the spectral library is necessary to address the global compositional dichotomy. In this study, we characterize a synthetic allophane by IR spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) to create an IR emission spectrum of pure allophane for the Mars science community to use in Martian spectral models.

  15. Change detection in polarimetric SAR data over several time points

    DEFF Research Database (Denmark)

    Conradsen, Knut; Nielsen, Allan Aasbjerg; Skriver, Henning

    2014-01-01

    A test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution is introduced. The test statistic is applied successfully to detect change in C-band EMISAR polarimetric SAR data over four time points.......A test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution is introduced. The test statistic is applied successfully to detect change in C-band EMISAR polarimetric SAR data over four time points....

  16. Pulse-based internal calibration of polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Christensen, Erik Lintz

    1994-01-01

    Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops and devel......Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops...

  17. High thermal efficiency and low emission performance of a methanol reformed gas fueled engine for hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, K.; Nakajima, Y.; Shudo, T.; Hiruma, M. [Musahi Inst. of Tech., Tokyo (Japan); Komatsu, H.; Takagi, Y. [Nissan Motor Co., Ltd., Yokosuka (Japan)

    2000-07-01

    An internal combustion engine (ICE) operation was carried out experimentally by using the mixture of air and fuel simulating the reformed gas as the fuel. It has been found that the engine can expectedly attain ultra-low emission and high thermal efficiency, namely 35% brake thermal efficiency in the basis of the low heat value of the theoretically reformed gas or 42% in the basis of the low heat value of methanol. By using the result for the estimation of the total thermal efficiency at the end of the motor output shaft of a hybrid electric vehicle, it has been found that the total thermal efficiency of the reformed gas engine system is 34% in case of a 120% energy increment and 33% in case of a 116% energy increment with a little higher NOx emission of 60 ppm while the counterpart of the fuel cell system is 34%. When the emission level for EZEV is required, the total thermal efficiency falls to 32% in case of a 120% energy increment and 31% in case of a 116% energy increment. From the points of the reliability proved by the long history, higher specific power and low cost, the internal combustion engine system with the thermal efficiency almost equal to that of the fuel cell (FC) system is further more practical when methanol is used as the fuel. (orig.)

  18. Short timescale photometric and polarimetric behavior of two BL Lacertae type objects

    International Nuclear Information System (INIS)

    Covino, S.; Baglio, M. C.; Foschini, L.; Sandrinelli, A.; Tavecchio, F.; Treves, A.; Zhang, H.; Barres de Almeida, U.; Bonnoli, G.; Boettcher, M.; Cecconi, M.; D'Ammando, F.; Fabrizio, L. di; Giarrusso, M.; Leone, F.; Lindfors, E.; Lorenzi, V.; Molinari, E.; Paiano, S.; Prandini, E.; Raiteri, C. M.; Stamerra, A.; Tagliaferri, G.

    2015-01-01

    Context. Blazars are astrophysical sources whose emission is dominated by non-thermal processes, typically interpreted as synchrotron and inverse Compton emission. Although the general picture is rather robust and consistent with observations, many aspects are still unexplored. Aims. Polarimetric monitoring can offer a wealth of information about the physical processes in blazars. Models with largely different physical ingredients can often provide almost indistinguishable predictions for the total flux, but usually are characterized by markedly different polarization properties. We explore, with a pilot study, the possibility to derive structural information about the emitting regions of blazars by means of a joint analysis of rapid variability of the total and polarized flux at optical wavelengths. Methods. Short timescale (from tens of seconds to a couple of minutes) optical linear polarimetry and photometry for two blazars, BL Lacertae and PKS 1424+240, was carried out with the PAOLO polarimeter at the 3.6 m Telescopio Nazionale Galileo. Several hours of almost continuous observations were obtained for both sources. Results. Our intense monitoring allowed us to draw strongly different scenarios for BL Lacertae and PKS 1424+240, with the former characterized by intense variability on time-scales from hours to a few minutes and the latter practically constant in total flux. Essentially the same behavior is observed for the polarized flux and the position angle. The variability time-scales turned out to be as short as a few minutes, although involving only a few percent variation of the flux. The polarization variability time-scale is generally consistent with the total flux variability. Total and polarized flux appear to be essentially uncorrelated. However, even during our relatively short monitoring, different regimes can be singled out. Conclusions. No simple scenario is able to satisfactorily model the very rich phenomenology exhibited in our data. As a

  19. Thermal analysis and infrared emission spectroscopic study of halloysite-potassium acetate intercalation compound

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hongfei [School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083 China (China); School of Mining Engineering, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Liu, Qinfu [School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083 China (China); Yang, Jing [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Zhang, Jinshan [School of Mining Engineering, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Frost, Ray L., E-mail: r.frost@qut.edu.au [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia)

    2010-11-20

    The thermal decomposition of halloysite-potassium acetate intercalation compound was investigated by thermogravimetric analysis and infrared emission spectroscopy. The X-ray diffraction patterns indicated that intercalation of potassium acetate into halloysite caused an increase of the basal spacing from 1.00 to 1.41 nm. The thermogravimetry results show that the mass losses of intercalation the compound occur in main three main steps, which correspond to (a) the loss of adsorbed water, (b) the loss of coordination water and (c) the loss of potassium acetate and dehydroxylation. The temperature of dehydroxylation and dehydration of halloysite is decreased about 100 {sup o}C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the halloysite intercalation compound when the temperature is raised. The dehydration of the intercalation compound is followed by the loss of intensity of the stretching vibration bands at region 3600-3200 cm{sup -1}. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm{sup -1}. Dehydration was completed by 300 {sup o}C and partial dehydroxylation by 350 {sup o}C. The inner hydroxyl group remained until around 500 {sup o}C.

  20. PHOTOMETRIC VARIABILITY OF THE DISK-INTEGRATED THERMAL EMISSION OF THE EARTH

    International Nuclear Information System (INIS)

    Gómez-Leal, I.; Selsis, F.; Pallé, E.

    2012-01-01

    Here we present an analysis of the global-integrated mid-infrared emission flux of the Earth based on data derived from satellite measurements. We have studied the photometric annual, seasonal, and rotational variability of the thermal emission of the Earth to determine which properties can be inferred from the point-like signal. We find that the analysis of the time series allows us to determine the 24 hr rotational period of the planet for most observing geometries, due to large warm and cold areas, identified with geographic features, which appear consecutively in the observer's planetary view. However, the effects of global-scale meteorology can effectively mask the rotation for several days at a time. We also find that orbital time series exhibit a seasonal modulation, whose amplitude depends strongly on the latitude of the observer but weakly on its ecliptic longitude. As no systematic difference of brightness temperature is found between the dayside and the nightside, the phase variations of the Earth in the infrared range are negligible. Finally, we also conclude that the phase variation of a spatially unresolved Earth-Moon system is dominated by the lunar signal.

  1. Thermal effects on vehicle emission dispersion in an urban street canyon

    Energy Technology Data Exchange (ETDEWEB)

    Xiaomin Xie; Zhen Huang; Jiasong Wang; Zheng Xie [Shanghai Jiao Tong Univ., School of Mechanical Engineering, Shanghai (China)

    2005-05-15

    The impact of the thermal effects on vehicle emission dispersion within street canyons is examined. The results show that heating from building wall surfaces and horizontal surfaces lead to strong buoyancy forces close to surfaces receiving direct solar radiation. This thermally induced flow is combined with mechanically induced flows formed in the canyon where there is no solar heating, and affects the transport of pollutants from the canyon to the layer aloft. The relative influence of each of these effects can be estimates by Gr/Re{sup 2}. When the windward wall is warmer than the air, an upward buoyancy flux opposes the downward advection flux along the wall; if Gr/Re{sup 2} > 2, the flow structure is divided into two counter-rotating cells, and pollutants are accumulated on the windward side of the canyon. When the horizontal surface is heated, and Gr/Re{sup 2} > 4, the flow structure is divided into two counter-rotating cells by upward buoyancy flux. Pollutants are accumulated at the windward side of the canyon. When the leeward side is heated, the buoyancy flux adds to the upward advection flux along the wall strengthening the original vortex and pollutant effects of transport compared to the isothermal case. (Author)

  2. Status of electron temperature and density measurement with beam emission spectroscopy on thermal helium at TEXTOR

    International Nuclear Information System (INIS)

    Schmitz, O; Schweer, B; Pospieszczyk, A; Lehnen, M; Samm, U; Unterberg, B; Beigman, I L; Vainshtein, L A; Kantor, M; Xu, Y; Krychowiak, M

    2008-01-01

    Beam emission spectroscopy on thermal helium is used at the TEXTOR tokamak as a reliable method to obtain radial profiles of electron temperature T e (r, t) and electron density n e (r, t). In this paper the experimental realization of this method at TEXTOR and the status of the atomic physics employed as well as the major factors for the measurement's accuracy are evaluated. On the experimental side, the hardware specifications are described and the impact of the beam atoms on the local plasma parameters is shown to be negligible. On the modeling side the collisional-radiative model (CRM) applied to infer n e and T e from the measured He line intensities is evaluated. The role of proton and deuteron collisions and of charge exchange processes is studied with a new CRM and the impact of these so far neglected processes appears to be of minor importance. Direct comparison to Thomson scattering and fast triple probe data showed that for high densities n e > 3.5 x 10 19 m -3 the T e values deduced with the established CRM are too low. However, the new atomic data set implemented in the new CRM leads in general to higher T e values. This allows us to specify the range of reliable application of BES on thermal helium to a range of 2.0 x 10 18 e 19 m -3 and 10 eV e < 250 eV which can be extended by routine application of the new CRM.

  3. Airborne emissions of carcinogens and respiratory sensitizers during thermal processing of plastics.

    Science.gov (United States)

    Unwin, John; Coldwell, Matthew R; Keen, Chris; McAlinden, John J

    2013-04-01

    Thermoplastics may contain a wide range of additives and free monomers, which themselves may be hazardous substances. Laboratory studies have shown that the thermal decomposition products of common plastics can include a number of carcinogens and respiratory sensitizers, but very little information exists on the airborne contaminants generated during actual industrial processing. The aim of this work was to identify airborne emissions during thermal processing of plastics in real-life, practical applications. Static air sampling was conducted at 10 industrial premises carrying out compounding or a range of processes such as extrusion, blown film manufacture, vacuum thermoforming, injection moulding, blow moulding, and hot wire cutting. Plastics being processed included polyvinyl chloride, polythene, polypropylene, polyethylene terephthalate, and acrylonitrile-butadiene-styrene. At each site, static sampling for a wide range of contaminants was carried out at locations immediately adjacent to the prominent fume-generating processes. The monitoring data indicated the presence of few carcinogens at extremely low concentrations, all less than 1% of their respective WEL (Workplace Exposure Limit). No respiratory sensitizers were detected at any sites. The low levels of process-related fume detected show that the control strategies, which employed mainly forced mechanical general ventilation and good process temperature control, were adequate to control the risks associated with exposure to process-related fume. This substantiates the advice given in the Health and Safety Executive's information sheet No 13, 'Controlling Fume During Plastics Processing', and its broad applicability in plastics processing in general.

  4. Evidence of hot spot formation on carbon limiters due to thermal electron emission

    International Nuclear Information System (INIS)

    Philipps, V.; Samm, U.; Tokar, M.Z.; Unterberg, B.; Pospieszczyk, A.; Schweer, B.

    1993-01-01

    Carbon test limiters have been exposed in TEXTOR to high heat loads up to about 30 MW/m 2 . The evolutions of the surface temperature distribution and of the carbon release have been observed by means of local diagnostics. A sudden acceleration of the rise of the surface temperature has been found at a critical temperature of approx. 2400 deg. C. The increase of the rate of the temperature rise is consistent with an enhancement of the power loading by a factor of 2.5-3. Following the temperature jump (hot spot), a quasi-equilibrium temperature establishes at approx. 2700 deg. C. The development of the hot spot is explained by an increase of the local power loading to the breakdown of the sheath potential by thermal emission of electrons from the carbon surface. Simultaneously with the appearance of the hot spot, the carbon release from the surface increases sharply. This increase can be explained by normal thermal sublimation. Sublimation cooling contributes to the establishment of the quasi-equilibrium temperature at about 2700 deg. C. (author). 16 refs, 10 figs

  5. The Annual Cycle of Water Vapor on Mars as Observed by the Thermal Emission Spectrometer

    Science.gov (United States)

    Smith, Michael D.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Spectra taken by the Mars Global Surveyor Thermal Emission Spectrometer (TES) have been used to monitor the latitude, longitude, and seasonal dependence of water vapor for over one full Martian year (March 1999-March 2001). A maximum in water vapor abundance is observed at high latitudes during mid-summer in both hemispheres, reaching a maximum value of approximately 100 pr-micrometer in the north and approximately 50 pr-micrometer in the south. Low water vapor abundance (water vapor. The latitudinal and seasonal dependence of the decay of the northern summer water vapor maximum implies cross-equatorial transport of water to the southern hemisphere, while there is little or no corresponding transport during the decay of the southern hemisphere summer maximum. The latitude-longitude dependence of annually-averaged water vapor (corrected for topography) has a significant positive correlation with albedo and significant negative correlations with thermal inertia and surface pressure. Comparison of TES results with those retrieved from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) experiments shows some similar features, but also many significant differences. The southern hemisphere maximum observed by TES was not observed by MAWD and the large latitudinal gradient in annually-averaged water vapor observed by MAWD does not appear in the TES results.

  6. A New GPU-Enabled MODTRAN Thermal Model for the PLUME TRACKER Volcanic Emission Analysis Toolkit

    Science.gov (United States)

    Acharya, P. K.; Berk, A.; Guiang, C.; Kennett, R.; Perkins, T.; Realmuto, V. J.

    2013-12-01

    Real-time quantification of volcanic gaseous and particulate releases is important for (1) recognizing rapid increases in SO2 gaseous emissions which may signal an impending eruption; (2) characterizing ash clouds to enable safe and efficient commercial aviation; and (3) quantifying the impact of volcanic aerosols on climate forcing. The Jet Propulsion Laboratory (JPL) has developed state-of-the-art algorithms, embedded in their analyst-driven Plume Tracker toolkit, for performing SO2, NH3, and CH4 retrievals from remotely sensed multi-spectral Thermal InfraRed spectral imagery. While Plume Tracker provides accurate results, it typically requires extensive analyst time. A major bottleneck in this processing is the relatively slow but accurate FORTRAN-based MODTRAN atmospheric and plume radiance model, developed by Spectral Sciences, Inc. (SSI). To overcome this bottleneck, SSI in collaboration with JPL, is porting these slow thermal radiance algorithms onto massively parallel, relatively inexpensive and commercially-available GPUs. This paper discusses SSI's efforts to accelerate the MODTRAN thermal emission algorithms used by Plume Tracker. Specifically, we are developing a GPU implementation of the Curtis-Godson averaging and the Voigt in-band transmittances from near line center molecular absorption, which comprise the major computational bottleneck. The transmittance calculations were decomposed into separate functions, individually implemented as GPU kernels, and tested for accuracy and performance relative to the original CPU code. Speedup factors of 14 to 30× were realized for individual processing components on an NVIDIA GeForce GTX 295 graphics card with no loss of accuracy. Due to the separate host (CPU) and device (GPU) memory spaces, a redesign of the MODTRAN architecture was required to ensure efficient data transfer between host and device, and to facilitate high parallel throughput. Currently, we are incorporating the separate GPU kernels into a

  7. Polarimetric survey of main-belt asteroids. V. The unusual polarimetric behavior of V-type asteroids

    Science.gov (United States)

    Gil-Hutton, R.; López-Sisterna, C.; Calandra, M. F.

    2017-03-01

    Aims: We present the results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained using the CASPROF and CASPOL polarimeters at the 2.15 m telescope. The CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation and CASPOL is a polarimeter based on a CCD detector, which allows us to observe fainter objects with better signal-to-noise ratio. Results: The survey began in 1995 and data on a large sample of asteroids were obtained until 2012. A second period began in 2013 using a polarimeter with a more sensitive detector in order to study small asteroids, families, and special taxonomic groups. We obtained 55 polarimetric measurements for 28 V-type main belt asteroids, all of them polarimetrically observed for the first time. The data obtained in this survey let us find polarimetric parameters for (1459) Magnya and for a group of 11 small V-type objects with similar polarimetric behavior. These polarization curves are unusual since they show a shallow minimum and a small inversion angle in comparison with (4) Vesta, although they have a steeper slope at α0. This polarimetric behavior could be explained by differences in the regoliths of these asteroids. The observations of (2579) Spartacus, and perhaps also (3944) Halliday, indicate a inversion angle larger than 24-25°. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  8. Non-thermal emission from young supernova remnants: Implications on cosmic ray acceleration

    Science.gov (United States)

    Araya-Arguedas, Miguel A.

    For a long time, supernova remnants have been thought to constitute the main source of galactic cosmic rays. Plausible mechanisms have been proposed through which these objects would be able to transfer some of their energy to charged particles. Detailed studies of SNRs, particularly allowed by the spectral and spatial resolution obtained with telescopes such as the Chandra X-Ray Observatory , have permitted us to understand some of the properties of high-energy particles within these objects and their interactions with their environment. In the first part of this work, the basic concepts of particle acceleration in SNRs are outlined, and the main observational tools available today for studying high-energy phenomena in astrophysics are mentioned briefly. In the second part, a study of non-thermal emission from the young SNR Cassiopeia A is presented. Through the use of a very deep one million-second Chandra observation of this remnant, the spectral evolution across non-thermal filaments near the forward shock was studied. A consistent hardening of the spectrum towards the exterior of the remnant was found and explained via a model developed that takes into account particle diffusion, plasma advection and radiation losses. The role of particle diffusion was studied and its effect on the photon spectral index quantified. In the model, the diffusion is included as a fraction of Bohm-type diffusion, which is consistent with the data. The model also allowed an estimation of the electron distribution, the magnetic field and its orientation, as well as the level of magnetic turbulence. In the third part, a multi-wavelength study of two young SNRs is presented. Multi-wavelength modeling of spectral energy distributions (SED) may hold the key to disentangle the nature and content of cosmic rays within these objects. The first model shown presents state of the art measurements gathered for Cassiopeia A, and the modeling is based partly on the results presented in the second

  9. A comparative study of field-emission from different one dimensional carbon nanostructures synthesized via thermal CVD system

    International Nuclear Information System (INIS)

    Jha, A.; Banerjee, D.; Chattopadhyay, K.K.

    2011-01-01

    Different one dimensional (1D) carbon nanostructures, such as carbon nanonoodles (CNNs), carbon nanospikes (CNSs) and carbon nanotubes (CNTs) have been synthesized via thermal chemical vapour deposition (TCVD) technique. The different 1D morphologies were synthesized by varying the substrate material and the deposition conditions. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). FESEM and TEM images showed that the diameters of the CNNs and CNTs were ∼40 nm while the diameters of the CNSs were around 100 nm. Field emission studies of the as-prepared samples showed that CNSs to be a better field emitter than CNNs, whereas CNTs are the best among the three producing large emission current. The variation of field emission properties with inter-electrode distance has been studied in detail. Also the time dependent field emission studies of all the nanostructures have been carried out.

  10. Paragenesis of thermal denudation with gas-emission crater and lake formation, Yamal Peninsula, Russia

    Science.gov (United States)

    Babkina, Elena; Khomutov, Artem; Leibman, Marina; Dvornikov, Yury; Kizyakov, Alexander; Babkin, Evgeny

    2017-04-01

    Gas-emission craters (GECs) found in the North of West Siberia in 2014 occur in an area of wide tabular ground ice (TGI) distribution. TGI observed in the GEC walls also provokes thermal denudation: a complex of processes responsible for formation of thermocirques (TCs). TCs are semi-circle shaped depressions resulting from TGI thaw and removal of detached material downslope. Shores of many lakes are terraced and have ancient to recent traces of thermal denudation activity. TCs are numerous in the GEC area giving reason to assume that GEC, TGI, TC, and lakes are interrelated. First found Yamal crater (GEC-1) expanded from initial 18 m wide deep hole in 2013 to an irregularly-shaped lake up to 85 meters wide in 2016. Expansion of the GEC was controlled by TGI thaw. This can be considered in terms of thermal denudation and analyzed on the basis of TC study in the adjacent area. In summer 2014 and 2015 (the lifetime of the GEC-1) its wall retreat covered the area of 1730 square meters, which gives 865 square meters per year. In 2016, which was the warmest for the period of observation at weather station Marre-Sale, retreat area increased to 2200 square meters per year. TC, which exposed TGI similar to that in the walls of GEC-1, is observed on the nearest lakeshore. TC activation probably started in 2012 as elsewhere on Yamal. In 2015 its area according to GPS survey reached 4400 square meters (a four-year average 1100 square meters). Since September 2015 and till October 2016 its area expanded by 2600 square meters, thus increased by 59%, and more than twice compared to previous annual average. Lake adjacent to GEC-1 in 2016 was separated from crater edge by only a 13 meter wide isthmus, most likely both GEC-1 lake and adjacent lake merge in few years. Therefore, single basis of erosion for thermal denudation appear. After lakes merge, it would become hard to determine what the initial process for the lake formation was if not for the occasional discovery of the GEC

  11. An Optimization Scheduling Model for Wind Power and Thermal Power with Energy Storage System considering Carbon Emission Trading

    Directory of Open Access Journals (Sweden)

    Huan-huan Li

    2015-01-01

    Full Text Available Wind power has the characteristics of randomness and intermittence, which influences power system safety and stable operation. To alleviate the effect of wind power grid connection and improve power system’s wind power consumptive capability, this paper took emission trading and energy storage system into consideration and built an optimization model for thermal-wind power system and energy storage systems collaborative scheduling. A simulation based on 10 thermal units and wind farms with 2800 MW installed capacity verified the correctness of the models put forward by this paper. According to the simulation results, the introduction of carbon emission trading can improve wind power consumptive capability and cut down the average coal consumption per unit of power. The introduction of energy storage system can smooth wind power output curve and suppress power fluctuations. The optimization effects achieve the best when both of carbon emission trading and energy storage system work at the same time.

  12. Metallic layer-by-layer photonic crystals for linearly-polarized thermal emission and thermophotovoltaic device including same

    Science.gov (United States)

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P.

    2016-07-26

    Metallic thermal emitters consisting of two layers of differently structured nickel gratings on a homogeneous nickel layer are fabricated by soft lithography and studied for polarized thermal radiation. A thermal emitter in combination with a sub-wavelength grating shows a high extinction ratio, with a maximum value close to 5, in a wide mid-infrared range from 3.2 to 7.8 .mu.m, as well as high emissivity up to 0.65 at a wavelength of 3.7 .mu.m. All measurements show good agreement with theoretical predictions. Numerical simulations reveal that a high electric field exists within the localized air space surrounded by the gratings and the intensified electric-field is only observed for the polarizations perpendicular to the top sub-wavelength grating. This result suggests how the emissivity of a metal can be selectively enhanced at a certain range of wavelengths for a given polarization.

  13. Change Detection with Polarimetric SAR Imagery for Nuclear Verification

    International Nuclear Information System (INIS)

    Canty, M.

    2015-01-01

    This paper investigates the application of multivariate statistical change detection with high-resolution polarimetric SAR imagery acquired from commercial satellite platforms for observation and verification of nuclear activities. A prototype software tool comprising a processing chain starting from single look complex (SLC) multitemporal data through to change detection maps is presented. Multivariate change detection algorithms applied to polarimetric SAR data are not common. This is because, up until recently, not many researchers or practitioners have had access to polarimetric data. However with the advent of several spaceborne polarimetric SAR instruments such as the Japanese ALOS, the Canadian Radarsat-2, the German TerraSAR-X, the Italian COSMO-SkyMed missions and the European Sentinal SAR platform, the situation has greatly improved. There is now a rich source of weather-independent satellite radar data which can be exploited for Nuclear Safeguards purposes. The method will also work for univariate data, that is, it is also applicable to scalar or single polarimetric SAR data. The change detection procedure investigated here exploits the complex Wishart distribution of dual and quad polarimetric imagery in look-averaged covariance matrix format in order to define a per-pixel change/no-change hypothesis test. It includes approximations for the probability distribution of the test statistic, and so permits quantitative significance levels to be quoted for change pixels. The method has been demonstrated previously with polarimetric images from the airborne EMISAR sensor, but is applied here for the first time to satellite platforms. In addition, an improved multivariate method is used to estimate the so-called equivalent number of looks (ENL), which is a critical parameter of the hypothesis test. (author)

  14. Simultaneous Differential Polarimetric Measurements and Co-Polar Correlation Coefficient Measurement

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A polarimetric Doppler weather radar system which allows measurement of linear orthogonal polarimetric variables without a switch by using simultaneous transmission...

  15. First detection of thermal radio emission from solar-type stars with the Karl G. Jansky very large array

    Energy Technology Data Exchange (ETDEWEB)

    Villadsen, Jackie; Hallinan, Gregg; Bourke, Stephen [Department of Astronomy, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125 (United States); Güdel, Manuel [Department of Astrophysics, University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Rupen, Michael, E-mail: jrv@astro.caltech.edu [National Radio Astronomy Observatory, Socorro, NM 87801 (United States)

    2014-06-20

    We present the first detections of thermal radio emission from the atmospheres of solar-type stars τ Cet, η Cas A, and 40 Eri A. These stars all resemble the Sun in age and level of magnetic activity, as indicated by X-ray luminosity and chromospheric emission in Ca II H and K lines. We observed these stars with the Karl G. Jansky Very Large Array with sensitivities of a few μJy at combinations of 10.0, 15.0, and 34.5 GHz. τ Cet, η Cas A, and 40 Eri A are all detected at 34.5 GHz with signal-to-noise ratios of 6.5, 5.2, and 4.5, respectively. 15.0 GHz upper limits imply a rising spectral index greater than 1.0 for τ Cet and 1.6 for η Cas A, at the 95% confidence level. The measured 34.5 GHz flux densities correspond to stellar disk-averaged brightness temperatures of roughly 10,000 K, similar to the solar brightness temperature at the same frequency. We explain this emission as optically thick thermal free-free emission from the chromosphere, with possible contributions from coronal gyroresonance emission above active regions and coronal free-free emission. These and similar quality data on other nearby solar-type stars, when combined with Atacama Large Millimeter/Submillimeter Array observations, will enable the construction of temperature profiles of their chromospheres and lower transition regions.

  16. First detection of thermal radio emission from solar-type stars with the Karl G. Jansky very large array

    International Nuclear Information System (INIS)

    Villadsen, Jackie; Hallinan, Gregg; Bourke, Stephen; Güdel, Manuel; Rupen, Michael

    2014-01-01

    We present the first detections of thermal radio emission from the atmospheres of solar-type stars τ Cet, η Cas A, and 40 Eri A. These stars all resemble the Sun in age and level of magnetic activity, as indicated by X-ray luminosity and chromospheric emission in Ca II H and K lines. We observed these stars with the Karl G. Jansky Very Large Array with sensitivities of a few μJy at combinations of 10.0, 15.0, and 34.5 GHz. τ Cet, η Cas A, and 40 Eri A are all detected at 34.5 GHz with signal-to-noise ratios of 6.5, 5.2, and 4.5, respectively. 15.0 GHz upper limits imply a rising spectral index greater than 1.0 for τ Cet and 1.6 for η Cas A, at the 95% confidence level. The measured 34.5 GHz flux densities correspond to stellar disk-averaged brightness temperatures of roughly 10,000 K, similar to the solar brightness temperature at the same frequency. We explain this emission as optically thick thermal free-free emission from the chromosphere, with possible contributions from coronal gyroresonance emission above active regions and coronal free-free emission. These and similar quality data on other nearby solar-type stars, when combined with Atacama Large Millimeter/Submillimeter Array observations, will enable the construction of temperature profiles of their chromospheres and lower transition regions.

  17. The iterative thermal emission method: A more implicit modification of IMC

    Energy Technology Data Exchange (ETDEWEB)

    Long, A.R., E-mail: arlong.ne@tamu.edu [Department of Nuclear Engineering, Texas A and M University, 3133 TAMU, College Station, TX 77843 (United States); Gentile, N.A. [Lawrence Livermore National Laboratory, L-38, P.O. Box 808, Livermore, CA 94550 (United States); Palmer, T.S. [Nuclear Engineering and Radiation Health Physics, Oregon State University, 100 Radiation Center, Corvallis, OR 97333 (United States)

    2014-11-15

    For over 40 years, the Implicit Monte Carlo (IMC) method has been used to solve challenging problems in thermal radiative transfer. These problems typically contain regions that are optically thick and diffusive, as a consequence of the high degree of “pseudo-scattering” introduced to model the absorption and reemission of photons from a tightly-coupled, radiating material. IMC has several well-known features that could be improved: a) it can be prohibitively computationally expensive, b) it introduces statistical noise into the material and radiation temperatures, which may be problematic in multiphysics simulations, and c) under certain conditions, solutions can be nonphysical, in that they violate a maximum principle, where IMC-calculated temperatures can be greater than the maximum temperature used to drive the problem. We have developed a variant of IMC called iterative thermal emission IMC, which is designed to have a reduced parameter space in which the maximum principle is violated. ITE IMC is a more implicit version of IMC in that it uses the information obtained from a series of IMC photon histories to improve the estimate for the end of time step material temperature during a time step. A better estimate of the end of time step material temperature allows for a more implicit estimate of other temperature-dependent quantities: opacity, heat capacity, Fleck factor (probability that a photon absorbed during a time step is not reemitted) and the Planckian emission source. We have verified the ITE IMC method against 0-D and 1-D analytic solutions and problems from the literature. These results are compared with traditional IMC. We perform an infinite medium stability analysis of ITE IMC and show that it is slightly more numerically stable than traditional IMC. We find that significantly larger time steps can be used with ITE IMC without violating the maximum principle, especially in problems with non-linear material properties. The ITE IMC method does

  18. The iterative thermal emission method: A more implicit modification of IMC

    International Nuclear Information System (INIS)

    Long, A.R.; Gentile, N.A.; Palmer, T.S.

    2014-01-01

    For over 40 years, the Implicit Monte Carlo (IMC) method has been used to solve challenging problems in thermal radiative transfer. These problems typically contain regions that are optically thick and diffusive, as a consequence of the high degree of “pseudo-scattering” introduced to model the absorption and reemission of photons from a tightly-coupled, radiating material. IMC has several well-known features that could be improved: a) it can be prohibitively computationally expensive, b) it introduces statistical noise into the material and radiation temperatures, which may be problematic in multiphysics simulations, and c) under certain conditions, solutions can be nonphysical, in that they violate a maximum principle, where IMC-calculated temperatures can be greater than the maximum temperature used to drive the problem. We have developed a variant of IMC called iterative thermal emission IMC, which is designed to have a reduced parameter space in which the maximum principle is violated. ITE IMC is a more implicit version of IMC in that it uses the information obtained from a series of IMC photon histories to improve the estimate for the end of time step material temperature during a time step. A better estimate of the end of time step material temperature allows for a more implicit estimate of other temperature-dependent quantities: opacity, heat capacity, Fleck factor (probability that a photon absorbed during a time step is not reemitted) and the Planckian emission source. We have verified the ITE IMC method against 0-D and 1-D analytic solutions and problems from the literature. These results are compared with traditional IMC. We perform an infinite medium stability analysis of ITE IMC and show that it is slightly more numerically stable than traditional IMC. We find that significantly larger time steps can be used with ITE IMC without violating the maximum principle, especially in problems with non-linear material properties. The ITE IMC method does

  19. The iterative thermal emission method: A more implicit modification of IMC

    Science.gov (United States)

    Long, A. R.; Gentile, N. A.; Palmer, T. S.

    2014-11-01

    For over 40 years, the Implicit Monte Carlo (IMC) method has been used to solve challenging problems in thermal radiative transfer. These problems typically contain regions that are optically thick and diffusive, as a consequence of the high degree of ;pseudo-scattering; introduced to model the absorption and reemission of photons from a tightly-coupled, radiating material. IMC has several well-known features that could be improved: a) it can be prohibitively computationally expensive, b) it introduces statistical noise into the material and radiation temperatures, which may be problematic in multiphysics simulations, and c) under certain conditions, solutions can be nonphysical, in that they violate a maximum principle, where IMC-calculated temperatures can be greater than the maximum temperature used to drive the problem. We have developed a variant of IMC called iterative thermal emission IMC, which is designed to have a reduced parameter space in which the maximum principle is violated. ITE IMC is a more implicit version of IMC in that it uses the information obtained from a series of IMC photon histories to improve the estimate for the end of time step material temperature during a time step. A better estimate of the end of time step material temperature allows for a more implicit estimate of other temperature-dependent quantities: opacity, heat capacity, Fleck factor (probability that a photon absorbed during a time step is not reemitted) and the Planckian emission source. We have verified the ITE IMC method against 0-D and 1-D analytic solutions and problems from the literature. These results are compared with traditional IMC. We perform an infinite medium stability analysis of ITE IMC and show that it is slightly more numerically stable than traditional IMC. We find that significantly larger time steps can be used with ITE IMC without violating the maximum principle, especially in problems with non-linear material properties. The ITE IMC method does however

  20. THE LOCAL DUST FOREGROUNDS IN THE MICROWAVE SKY. I. THERMAL EMISSION SPECTRA

    International Nuclear Information System (INIS)

    Dikarev, Valeri; Preuss, Oliver; Solanki, Sami; Krueger, Harald; Krivov, Alexander

    2009-01-01

    Analyses of the cosmic microwave background (CMB) radiation maps made by the Wilkinson Microwave Anisotropy Probe (WMAP) have revealed anomalies not predicted by the standard inflationary cosmology. In particular, the power of the quadrupole moment of the CMB fluctuations is remarkably low, and the quadrupole and octopole moments are aligned mutually and with the geometry of the solar system. It has been suggested in the literature that microwave sky pollution by an unidentified dust cloud in the vicinity of the solar system may be the cause for these anomalies. In this paper, we simulate the thermal emission by clouds of spherical homogeneous particles of several materials. Spectral constraints from the WMAP multi-wavelength data and earlier infrared observations on the hypothetical dust cloud are used to determine the dust cloud's physical characteristics. In order for its emissivity to demonstrate a flat, CMB-like wavelength dependence over the WMAP wavelengths (3 through 14 mm), and to be invisible in the infrared light, its particles must be macroscopic. Silicate spheres of several millimeters in size and carbonaceous particles an order of magnitude smaller will suffice. According to our estimates of the abundance of such particles in the zodiacal cloud and trans-Neptunian belt, yielding the optical depths of the order of 10 -7 for each cloud, the solar system dust can well contribute 10 μK (within an order of magnitude) in the microwaves. This is not only intriguingly close to the magnitude of the anomalies (about 30 μK), but also alarmingly above the presently believed magnitude of systematic biases of the WMAP results (below 5 μK) and, to an even greater degree, of the future missions with higher sensitivities, e.g., Planck.

  1. [Modeling polarimetric BRDF of leaves surfaces].

    Science.gov (United States)

    Xie, Dong-Hui; Wang, Pei-Juan; Zhu, Qi-Jiang; Zhou, Hong-Min

    2010-12-01

    The purpose of the present paper is to model a physical polarimetric bidirectional reflectance distribution function (pBRDF), which can character not only the non-Lambertian but also the polarized features in order that the pBRDF can be applied to analyze the relationship between the degree of polarization and the physiological and biochemical parameters of leaves quantitatively later. Firstly, the bidirectional polarized reflectance distributions from several leaves surfaces were measured by the polarized goniometer developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. The samples of leaves include two pieces of zea mays L. leaves (young leaf and mature leaf) and a piece of E. palcherrima wild leaf. Non-Lambertian characteristics of directional reflectance from the surfaces of these three leaves are obvious. A Cook-Torrance model was modified by coupling the polarized Fresnel equations to simulate the bidirectional polarized reflectance properties of leaves surfaces. The three parameters in the modified pBRDF model, such as diffuse reflectivity, refractive index and roughness of leaf surface were inversed with genetic algorithm (GA). It was found that the pBRDF model can fit with the measured data well. In addition, these parameters in the model are related with both the physiological and biochemical properties and the polarized characteristics of leaves, therefore it is possible to build the relationships between them later.

  2. The classification of ambiguity in polarimetric reconstruction of coronal mass ejection

    International Nuclear Information System (INIS)

    Dai, Xinghua; Wang, Huaning; Huang, Xin; Du, Zhanle; He, Han

    2014-01-01

    The Thomson scattering theory indicates that there exist explicit and implicit ambiguities in polarimetric analyses of coronal mass ejection (CME) observations. We suggest a classification for these ambiguities in CME reconstruction. Three samples, including double explicit, mixed, and double implicit ambiguity, are shown with the polarimetric analyses of STEREO CME observations. These samples demonstrate that this classification is helpful for improving polarimetric reconstruction.

  3. Polarimetric C-Band SAR Observations of Sea Ice in the Greenland Sea

    DEFF Research Database (Denmark)

    Thomsen, Bjørn Bavnehøj; Nghiem, S.V.; Kwok, R.

    1998-01-01

    The fully polarimetric EMISAR acquired C-band radar signatures of sea ice in the Greenland Sea during a campaign in March 1995. The authors present maps of polarimetric signatures over an area containing various kinds of ice and discuss the use of polarimetric SAR for identification of ice types...

  4. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    Directory of Open Access Journals (Sweden)

    T. Karthikeya Sharma

    2015-11-01

    Full Text Available Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE. This paper investigates the effects of using argon (Ar gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied.

  5. FINDING ROCKY ASTEROIDS AROUND WHITE DWARFS BY THEIR PERIODIC THERMAL EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Henry W. [Harvard College, Cambridge, MA 02138 (United States); Loeb, Abraham, E-mail: henrylin@college.harvard.edu [Harvard Astronomy Department, Harvard University, Cambridge, MA 02138 (United States)

    2014-10-01

    Since white dwarfs (WDs) are small, the contrast between the thermal emission of an orbiting object and a WD is dramatically enhanced compared to a main-sequence host. Furthermore, rocky objects much smaller than the moon have no atmospheres and are tidally locked to the WD. We show that this leads to temperature contrasts between their day and night side of the order of unity that should lead to temporal variations in infrared flux over an orbital period of ∼0.2 to ∼2 days. Ground-based telescopes could detect objects with a mass as small as 1% of the lunar mass M{sub L} around Sirius B with a few hours of exposure. The James Webb Space Telescope may be able to detect objects as small as 10{sup –3} M{sub L} around most nearby WDs. The tightest constraints will typically be placed on 12,000 K WDs, whose Roche zone coincides with the dust sublimation zone. Constraining the abundance of minor planets around WDs as a function of their surface temperatures (and therefore age) provides a novel probe for the physics of planetary formation.

  6. Emission of Lyman α radiation in H2 + H*(2s) collisions at thermal energies

    International Nuclear Information System (INIS)

    Stern, B.

    1991-01-01

    A previously-published study of the thermal-energy collision between H 2 and metastable H*(2s), which could lead to the emission of Lyman α radiation, is reconsidered to take into account possible polarization effects. The total was function of the system is expanded in terms of the molecular states of the intermediate complex H 2 * , which constitute the minimal basis of the four adiabatic states dissociating into H 2 + H*(n=2) where they are normally degenerate in energy. The results of the calculation show the existence, between three of those states, of average values of the separation distance R (R ≅ 10 atomic units) of long range (ΔR ≅ 2 au) electronic interactions which depend on the geometric form of the H 2 * molecule. From the molecular data the hypothesis of no longer considering H 2 with H*(2s) as a rigid rotator is postulated and justified, after a purely quantum mechanical treatment of the radial equations. The mean ratio of the (oscillating) polarization angular differential cross sections tot he elastic ones is found important (> ∼ 1/10). The inelastic phenomena are anticipated to be more marked in the ortho than in the para hydrogen at a low collision energy (75 meV). (15 refs., 2 tabs., 9 figs.)

  7. Analysis of Saturn's Thermal Emission at 2.2-cm Wavelength: Spatial Distribution of Ammonia Vapor

    Science.gov (United States)

    Laraia, A. L.; Ingersoll, A. P.; Janssen, Michael A.; Gulkis, Samuel; Oyafuso, Fabiano A.; Allison, Michael D.

    2013-01-01

    This work focuses on determining the latitudinal structure of ammonia vapor in Saturn's cloud layer near 1.5 bars using the brightness temperature maps derived from the Cassini RADAR (Elachi et al., 2004) instrument, which works in a passive mode to measure thermal emission from Saturn at 2.2-cm wavelength. We perform an analysis of five brightness temperature maps that span epochs from 2005 to 2011, which are presented in a companion paper by Janssen et al. (2013a, this issue). The brightness temperature maps are representative of the spatial distribution of ammonia vapor, since ammonia gas is the only effective opacity source in Saturn's atmosphere at 2.2-cm wavelength. Relatively high brightness temperatures indicate relatively low ammonia relative humidity (RH), and vice versa. We compare the observed brightness temperatures to brightness temperatures computed using the Juno atmospheric microwave radiative transfer (JAMRT) program which includes both the means to calculate a tropospheric atmosphere model for Saturn and the means to carry out radiative transfer calculations at microwave frequencies. The reference atmosphere to which we compare has a 3x solar deep mixing ratio of ammonia (we use 1.352x10(exp -4) for the solar mixing ratio of ammonia vapor relative to H2; see Atreya, 2010) and is fully saturated above its cloud base. The maps are comprised of residual brightness temperatures-observed brightness temperature minus the model brightness temperature of the saturated atmosphere.

  8. Development of a thermally stimulated exoelectron emission (TSEE) system for dosimetric applications

    International Nuclear Information System (INIS)

    Rocha, Felicia del Gallo

    1997-01-01

    A thermally stimulated exoelectron emission measuring system (TSEE) with a counting (reader) and a heating system was designed, constructed and tested for the dosimetry of weakly penetrating radiations, such as alpha and beta particles and low energy X rays. The counting system consists of a 271 windowless gas-flow proportional counter, while the heating system is composed by a temperature programmer that provides linear heating of the samples. The characterization of the proportional counter was done, as well as the tests to verify the performance of the counting system with reference TSEE materials, such as beryllium oxide (BeO) and magnesium oxide (MgO) single crystals. The dosimetric characteristics of some materials as pure calcium sulphate (CaS0 4 ) sintered pellets and with 10% of graphite in its composition, lithium fluoride doped with magnesium, copper and phosphor (LiF:Mg,Cu,P), lithium fluoride (LiF) thin films on aluminum and stainless steel substrates and BeO on graphite substrates were studied. As an application, the feasibility of the use of pure calcium sulphate sintered pellets and others with 10% of graphite in area monitoring of an electron accelerator with variable energy was studied. The obtained results show the usefulness of this system in the dosimetry of weakly penetrating radiations. (author)

  9. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    Science.gov (United States)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  10. Radio Thermal Emission from Pluto and Charon during the New Horizons Encounter

    Science.gov (United States)

    Bird, Michael; Linscott, Ivan; Hinson, David; Tyler, G. L.; Strobel, Darrell F.; New Horizons Science Team

    2017-10-01

    As part of the New Horizons Radio-Science Experiment REX, radio thermal emission from Pluto and Charon (wavelength: 4.2 cm) was observed during the encounter on 14 July 2015. The primary REX measurement, a determination of the atmospheric height profile from the surface up to about 100 km, was conducted during an uplink radio occultation at both ingress and egress (Hinson et al., Icarus 290, 96-111, 2017). During the interval between ingress and egress, when the Earth and the REX uplink signals were occulted by the Pluto disk, the spacecraft antenna continued to point toward Earth and thus scanned diametrically across the Pluto nightside. The average diameter of the HGA 3 dB beam was ≈1100 km at the surface during this opportunity, thereby providing crudely resolved measurements of the radio brightness temperature across Pluto. The best resolution for the REX radiometry observations occurred shortly after closest approach, when the HGA was scanned twice across Pluto. These observations will be reported elsewhere (Linscott et al., Icarus, submitted, 2017). In addition to the resolved observations, full disk brightness temperature measurements of both bodies were performed during the approach (dayside) and departure (nightside) phases of the encounter. We present the results of these observations and provide a preliminary interpretation of the measured brightness temperatures.

  11. Deconvolution of Thermal Emissivity Spectra of Mercury to their Endmember Counterparts measured in Simulated Mercury Surface Conditions

    Science.gov (United States)

    Varatharajan, I.; D'Amore, M.; Maturilli, A.; Helbert, J.; Hiesinger, H.

    2017-12-01

    The Mercury Radiometer and Thermal Imaging Spectrometer (MERTIS) payload of ESA/JAXA Bepicolombo mission to Mercury will map the thermal emissivity at wavelength range of 7-14 μm and spatial resolution of 500 m/pixel [1]. Mercury was also imaged at the same wavelength range using the Boston University's Mid-Infrared Spectrometer and Imager (MIRSI) mounted on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii with the minimum spatial coverage of 400-600km/spectra which blends all rocks, minerals, and soil types [2]. Therefore, the study [2] used quantitative deconvolution algorithm developed by [3] for spectral unmixing of this composite thermal emissivity spectrum from telescope to their respective areal fractions of endmember spectra; however, the thermal emissivity of endmembers used in [2] is the inverted reflectance measurements (Kirchhoff's law) of various samples measured at room temperature and pressure. Over a decade, the Planetary Spectroscopy Laboratory (PSL) at the Institute of Planetary Research (PF) at the German Aerospace Center (DLR) facilitates the thermal emissivity measurements under controlled and simulated surface conditions of Mercury by taking emissivity measurements at varying temperatures from 100-500°C under vacuum conditions supporting MERTIS payload. The measured thermal emissivity endmember spectral library therefore includes major silicates such as bytownite, anorthoclase, synthetic glass, olivine, enstatite, nepheline basanite, rocks like komatiite, tektite, Johnson Space Center lunar simulant (1A), and synthetic powdered sulfides which includes MgS, FeS, CaS, CrS, TiS, NaS, and MnS. Using such specialized endmember spectral library created under Mercury's conditions significantly increases the accuracy of the deconvolution model results. In this study, we revisited the available telescope spectra and redeveloped the algorithm by [3] by only choosing the endmember spectral library created at PSL for unbiased model

  12. Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce its Carbon Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Colin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    This report quantifies greenhouse gas (GHG) emissions from the industrial sector and identifies opportunities for non-GHG-emitting thermal energy sources to replace the most significant GHG-emitting U.S. industries based on targeted, process-level analysis of industrial heat requirements. The intent is to provide a basis for projecting opportunities for clean energy use. This provides a prospectus for small modular nuclear reactors (including nuclear-renewable hybrid energy systems), solar industrial process heat, and geothermal energy. This report provides a complement to analysis of process-efficiency improvement by considering how clean energy delivery and use by industry could reduce GHG emissions.

  13. Initial assessment of an airborne Ku-band polarimetric SAR.

    Energy Technology Data Exchange (ETDEWEB)

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940s. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analysts understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  14. Knowledge-based sea ice classification by polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning; Dierking, Wolfgang

    2004-01-01

    Polarimetric SAR images acquired at C- and L-band over sea ice in the Greenland Sea, Baltic Sea, and Beaufort Sea have been analysed with respect to their potential for ice type classification. The polarimetric data were gathered by the Danish EMISAR and the US AIRSAR which both are airborne...... systems. A hierarchical classification scheme was chosen for sea ice because our knowledge about magnitudes, variations, and dependences of sea ice signatures can be directly considered. The optimal sequence of classification rules and the rules themselves depend on the ice conditions/regimes. The use...... of the polarimetric phase information improves the classification only in the case of thin ice types but is not necessary for thicker ice (above about 30 cm thickness)...

  15. Polarimetric SAR interferometry applied to land ice: modeling

    DEFF Research Database (Denmark)

    Dall, Jørgen; Papathanassiou, Konstantinos; Skriver, Henning

    2004-01-01

    This paper introduces a few simple scattering models intended for the application of polarimetric SAR interfer-ometry to land ice. The principal aim is to eliminate the penetration bias hampering ice sheet elevation maps generated with single-channel SAR interferometry. The polarimetric coherent...... scattering models are similar to the oriented-volume model and the random-volume-over-ground model used in vegetation studies, but the ice models are adapted to the different geometry of land ice. Also, due to compaction, land ice is not uniform; a fact that must be taken into account for large penetration...... depths. The validity of the scattering models is examined using L-band polarimetric interferometric SAR data acquired with the EMISAR system over an ice cap located in the percolation zone of the Greenland ice sheet. Radar reflectors were deployed on the ice surface prior to the data acquisition in order...

  16. Typical calculation and analysis of carbon emissions in thermal power plants

    Science.gov (United States)

    Gai, Zhi-jie; Zhao, Jian-gang; Zhang, Gang

    2018-03-01

    On December 19, 2017, the national development and reform commission issued the national carbon emissions trading market construction plan (power generation industry), which officially launched the construction process of the carbon emissions trading market. The plan promotes a phased advance in carbon market construction, taking the power industry with a large carbon footprint as a breakthrough, so it is extremely urgent for power generation plants to master their carbon emissions. Taking a coal power plant as an example, the paper introduces the calculation process of carbon emissions, and comes to the fuel activity level, fuel emissions factor and carbon emissions data of the power plant. Power plants can master their carbon emissions according to this paper, increase knowledge in the field of carbon reserves, and make the plant be familiar with calculation method based on the power industry carbon emissions data, which can help power plants positioning accurately in the upcoming carbon emissions trading market.

  17. Housing and sustainable development: perspectives offered by thermal solar energy. Particle emissions: prospective investigation of primary particle emissions in France by 2030

    International Nuclear Information System (INIS)

    Brignon, J.M.; Cauret, L.; Sambat, S.

    2004-09-01

    This publication proposes two investigation reports. A first study proposes a prospective analysis of the housing 'stock' in France and the evolution of global energy consumptions and CO 2 emissions by the housing sector, a prospective study of space heating and hot water needs by defining reference scenarios as well as a target scenario for heating consumption (based on the factor 4 of reduction of emissions by 2050), and an assessment of the contribution of the thermal solar energy applied to winter comfort under the form of direct solar floors and passive solar contributions, and applied to hot water by 2050. The contribution of the thermal solar energy is studied within its regulatory context. An analysis of urban forms is also performed to assess the potential of integration of renewable energy solutions in the existing housing stock, and thus to assess the morphological limits of an attempt of generalized solarization of roofs. The second study proposes a detailed identification and assessment of the various sources of primary particles (combustion, industrial processes, mineral extraction and processing, road transport, waste processing and elimination, agriculture, natural sources, forest fires), providing more precise results and methodological complements for some sources. It also proposes a prospective assessment of emissions and identifies the main factors of particle concentrations in urban environment

  18. Snapshot spectral and polarimetric imaging; target identification with multispectral video

    Science.gov (United States)

    Bartlett, Brent D.; Rodriguez, Mikel D.

    2013-05-01

    As the number of pixels continue to grow in consumer and scientific imaging devices, it has become feasible to collect the incident light field. In this paper, an imaging device developed around light field imaging is used to collect multispectral and polarimetric imagery in a snapshot fashion. The sensor is described and a video data set is shown highlighting the advantage of snapshot spectral imaging. Several novel computer vision approaches are applied to the video cubes to perform scene characterization and target identification. It is shown how the addition of spectral and polarimetric data to the video stream allows for multi-target identification and tracking not possible with traditional RGB video collection.

  19. Authentication of gold nanoparticle encoded pharmaceutical tablets using polarimetric signatures.

    Science.gov (United States)

    Carnicer, Artur; Arteaga, Oriol; Suñé-Negre, Josep M; Javidi, Bahram

    2016-10-01

    The counterfeiting of pharmaceutical products represents concerns for both industry and the safety of the general public. Falsification produces losses to companies and poses health risks for patients. In order to detect fake pharmaceutical tablets, we propose producing film-coated tablets with gold nanoparticle encoding. These coated tablets contain unique polarimetric signatures. We present experiments to show that ellipsometric optical techniques, in combination with machine learning algorithms, can be used to distinguish genuine and fake samples. To the best of our knowledge, this is the first report using gold nanoparticles encoded with optical polarimetric classifiers to prevent the counterfeiting of pharmaceutical products.

  20. The Next Generation Airborne Polarimetric Doppler Radar

    Science.gov (United States)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  1. POLARIMETRIC OBSERVATIONS OF {sigma} ORIONIS E

    Energy Technology Data Exchange (ETDEWEB)

    Carciofi, A. C.; Faes, D. M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-900 Sao Paulo, SP (Brazil); Townsend, R. H. D. [Department of Astronomy, University of Wisconsin-Madison, Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States); Bjorkman, J. E., E-mail: carciofi@usp.br [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States)

    2013-03-20

    Some massive stars possess strong magnetic fields that confine plasma in the circumstellar environment. These magnetospheres have been studied spectroscopically, photometrically, and, more recently, interferometrically. Here we report on the first firm detection of a magnetosphere in continuum linear polarization, as a result of monitoring {sigma} Ori E at the Pico dos Dias Observatory. The non-zero intrinsic polarization indicates an asymmetric structure whose minor elongation axis is oriented 150. Degree-Sign 0 east of the celestial north. A modulation of the polarization was observed with a period of half of the rotation period, which supports the theoretical prediction of the presence of two diametrally opposed, corotating blobs of gas. A phase lag of -0.085 was detected between the polarization minimum and the primary minimum of the light curve, suggestive of a complex shape of the plasma clouds. We present a preliminary analysis of the data with the Rigidly Rotating Magnetosphere model, which could not reproduce simultaneously the photometric and polarimetric data. A toy model comprising two spherical corotating blobs joined by a thin disk proved more successful in reproducing the polarization modulation. With this model we were able to determine that the total scattering mass of the thin disk is similar to the mass of the blobs (2M{sub b}/M{sub d} = 1.2) and that the blobs are rotating counterclockwise on the plane of the sky. This result shows that polarimetry can provide a diagnostic of the geometry of clouds, which will serve as an important constraint for improving the Rigidly Rotating Magnetosphere model.

  2. The performance of DC restoration function for MODIS thermal emissive bands

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong Jack; Shrestha, Ashish

    2017-09-01

    The DC restore (DCR) process of MODIS instrument maintains the output of a detector at focal plane assembly (FPA) within the dynamic range of subsequent analog-to-digital converter, by adding a specific offset voltage to the output. The DCR offset value is adjusted per scan, based on the comparison of the detector response in digital number (DN) collected from the blackbody (BB) view with target DN saved as an on-board look-up table. In this work, the MODIS DCR mechanism is revisited, with the trends of DCR offset being provided for thermal emissive bands (TEB). Noticeable changes have been occasionally found which coincide with significant detector gain change due to various instrumental events such as safe-mode anomaly or FPA temperature fluctuation. In general, MODIS DCR functionality has been effective and the change of DCR offset has no impact to the quality of MODIS data. One exception is the Earth view (EV) data saturation of Aqua MODIS LWIR bands 33, 35 ad 36 during BB warm-up cool-down (WUCD) cycle which has been observed since 2008. The BB view of their detectors saturate when the BB temperature is above certain threshold so the DCR cannot work as designed. Therefore, the dark signal DN fluctuates with the cold FPA (CFPA) temperature and saturate for a few hours per WUCD cycle, which also saturate the EV data sector within the scan. The CFPA temperature fluctuation peaked in 2012 and has been reduced in recent years and the saturation phenomenon has been easing accordingly. This study demonstrates the importance of DCR to data generation.

  3. Evaluation of VIIRS and MODIS Thermal Emissive Band Calibration Stability Using Ground Target

    Directory of Open Access Journals (Sweden)

    Sriharsha Madhavan

    2016-02-01

    Full Text Available The S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS instrument, a polar orbiting Earth remote sensing instrument built using a strong MODIS background, employs a similarly designed on-board calibrating source—a V-grooved blackbody for the Thermal Emissive Bands (TEB. The central wavelengths of most VIIRS TEBs are very close to those of MODIS with the exception of the 10.7 µm channel. To ensure the long term continuity of climate data records derived using VIIRS and MODIS TEB, it is necessary to assess any systematic differences between the two instruments, including scenes with temperatures significantly lower than blackbody operating temperatures at approximately 290 K. Previous work performed by the MODIS Characterization Support Team (MCST at NASA/GSFC used the frequent observations of the Dome Concordia site located in Antarctica to evaluate the calibration stability and consistency of Terra and Aqua MODIS over the mission lifetime. The near-surface temperature measurements from an automatic weather station (AWS provide a direct reference useful for tracking the stability and determining the relative bias between the two MODIS instruments. In this study, the same technique is applied to the VIIRS TEB and the results are compared with those from the matched MODIS TEB. The results of this study show a small negative bias when comparing the matching VIIRS and Aqua MODIS TEB, implying a higher brightness temperature for S-VIIRS at the cold end. Statistically no significant drift is observed for VIIRS TEB performance over the first 3.5 years of the mission.

  4. Thermal energy consumption and carbon dioxide emissions in ceramic tile manufacture - Analysis of the Spanish and Brazilian industries

    International Nuclear Information System (INIS)

    Monfort, E.; Mezquita, A.; Vaquer, E.; Mallol, G.; Alves, H. J.; Boschi, A. O.

    2012-01-01

    Spain and Brazil are two of the world's biggest ceramic tile producers. The tile manufacturing process consumes a great quantity of thermal energy that, in these two countries, is mainly obtained from natural gas combustion, which entails CO 2 emission, a greenhouse gas. This study presents a comparative analysis of the thermal energy consumption and CO 2 emissions in the ceramic tile manufacturing process in Spain and Brazil, in terms of the different production technologies and different products made. The energy consumption and CO 2 emissions in ceramic tile manufacture by the wet process are very similar in both countries. In the dry process used in Brazil, less thermal energy is consumed and less CO 2 is emitted than in the wet process, but it is a process that is only used in manufacturing one particular type of product, which exhibits certain technical limitations. While in Spain the use of cogeneration systems in spray-dryers improves significantly the global energy efficiency. The average energy consumption in the different process stages, in both countries, lies within the range indicated in the Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry (BREF of the Ceramic Manufacturing Industry) of the European Union. (Author) 14 refs.

  5. THE NON-THERMAL, TIME-VARIABLE RADIO EMISSION FROM Cyg OB2 no. 5: A WIND-COLLISION REGION

    International Nuclear Information System (INIS)

    Ortiz-Leon, Gisela N.; Loinard, Laurent; RodrIguez, Luis F.; Dzib, Sergio A.; Mioduszewski, Amy J.

    2011-01-01

    The radio emission from the well-studied massive stellar system Cyg OB2 no. 5 is known to fluctuate with a period of 6.7 years between a low-flux state, when the emission is entirely of free-free origin, and a high-flux state, when an additional non-thermal component (of hitherto unknown nature) appears. In this paper, we demonstrate that the radio flux of that non-thermal component is steady on timescales of hours and that its morphology is arc-like. This shows that the non-thermal emission results from the collision between the strong wind driven by the known contact binary in the system and that of an unseen companion on a somewhat eccentric orbit with a 6.7 year period and a 5-10 mas semimajor axis. Together with the previously reported wind-collision region located about 0.''8 to the northeast of the contact binary, so far Cyg OB2 no. 5 appears to be the only multiple system known to harbor two radio-imaged wind-collision regions.

  6. A SYSTEMATIC STUDY OF THE THERMAL AND NONTHERMAL EMISSION IN THE SUPERNOVA REMNANT RCW 86 WITH SUZAKU

    International Nuclear Information System (INIS)

    Tsubone, Yoshio; Sawada, Makoto; Bamba, Aya; Katsuda, Satoru; Vink, Jacco

    2017-01-01

    Diffusive shock acceleration by the shockwaves in supernova remnants (SNRs) is widely accepted as the dominant source for Galactic cosmic rays. However, it is unknown what determines the maximum energy of accelerated particles. The surrounding environment could be one of the key parameters. The SNR RCW 86 shows both thermal and nonthermal X-ray emission with different spatial morphologies. These emission originate from the shock-heated plasma and accelerated electrons respectively, and their intensities reflect their density distributions. Thus, the remnant provides a suitable laboratory to test possible association between the acceleration efficiency and the environment. In this paper, we present results of spatially resolved spectroscopy of the entire remnant with Suzaku . The spacially resolved spectra are well reproduced with a combination of a power-law for synchrotron emission and a two-component optically thin thermal plasma, corresponding to the shocked interstellar medium (ISM) with kT of 0.3–0.6 keV and Fe-dominated ejecta. It is discovered that the photon index of the nonthermal component becomes smaller when decreasing the emission measure of the shocked ISM, where the shock speed has remained high. This result implies that the maximum energy of accelerated electrons in RCW 86 is higher in the low-density and higher shock speed regions.

  7. Economic and Environmental Considerations for Zero-emission Transport and Thermal Energy Generation on an Energy Autonomous Island

    Directory of Open Access Journals (Sweden)

    Fontina Petrakopoulou

    2018-01-01

    Full Text Available The high cost and environmental impact of fossil-fuel energy generation in remote regions can make renewable energy applications more competitive than business-as-usual scenarios. Furthermore, energy and transport are two of the main sectors that significantly contribute to global greenhouse gas emissions. This paper focuses on the generation of thermal energy and the transport sector of a fossil fuel-based energy independent island in Greece. We evaluate (1 technologies for fully renewable thermal energy generation using building-specific solar thermal systems and (2 the replacement of the vehicle fleet of the island with electric and hydrogen-fueled vehicles. The analysis, based on economic and environmental criteria, shows that although solar thermal decreases greenhouse gases by 83%, when compared to the current diesel-based situation, it only becomes economically attractive with subsidy scenarios equal to or higher than 50%. However, in the transport sector, the sum of fuel and maintenance costs of fuel-cell and electric vehicles is found to be 45% lower than that of the current fleet, due to their approximately seven times lower fuel cost. Lastly, it will take approximately six years of use of the new vehicles to balance out the emissions of their manufacturing phase.

  8. Non Thermal Emission from Clusters of Galaxies: the Importance of a Joint LOFAR/Simbol-X View

    Science.gov (United States)

    Ferrari, C.

    2009-05-01

    Deep radio observations of galaxy clusters have revealed the existence of diffuse radio sources (``halos'' and ``relics'') related to the presence of relativistic electrons and weak magnetic fields in the intracluster volume. I will outline our current knowledge about the presence and properties of this non-thermal cluster component. Despite the recent progress made in observational and theoretical studies of the non-thermal emission in galaxy clusters, a number of open questions about its origin and its effects on the thermo-dynamical evolution of galaxy clusters need to be answered. I will show the importance of combining galaxy cluster observations by new-generation instruments such as LOFAR and Simbol-X. A deeper knowledge of the non-thermal cluster component, together with statistical studies of radio halos and relics, will allow to test the current cluster formation scenario and to better constrain the physics of large scale structure evolution.

  9. Non Thermal Emission from Clusters of Galaxies: the Importance of a Joint LOFAR/Simbol-X View

    International Nuclear Information System (INIS)

    Ferrari, C.

    2009-01-01

    Deep radio observations of galaxy clusters have revealed the existence of diffuse radio sources ('halos' and 'relics') related to the presence of relativistic electrons and weak magnetic fields in the intracluster volume. I will outline our current knowledge about the presence and properties of this non-thermal cluster component. Despite the recent progress made in observational and theoretical studies of the non-thermal emission in galaxy clusters, a number of open questions about its origin and its effects on the thermo-dynamical evolution of galaxy clusters need to be answered. I will show the importance of combining galaxy cluster observations by new-generation instruments such as LOFAR and Simbol-X. A deeper knowledge of the non-thermal cluster component, together with statistical studies of radio halos and relics, will allow to test the current cluster formation scenario and to better constrain the physics of large scale structure evolution.

  10. Monitoring and inventorying of the pollutant emissions from thermal power plants

    International Nuclear Information System (INIS)

    Vladescu, Gherghina; Iordache, Daniela; Iordache, Victorita; Ciomaga, Carmencita; Matei, Magdalena; Ilie, Ion; Motiu, Cornel

    2001-01-01

    Pollution due to emissions discharged in atmosphere as a result of human (anthropogenic) activities and the related environmental effects, such as acid depositions, land quality degradation, global warming/climate changes, building degradation, ozone layer depletion required the monitoring and inventorying of the polluting emissions at the local, regional and global levels. The paper briefly presents the international requirements concerning the development of a polluting emission inventory, the European methodologies for air polluting emission inventorying, programs and methodologies used in the Romanian electricity production sector for inventorying the polluting emissions and calculation of the dispersion of the pollutants discharged in the atmosphere. (author)

  11. THERMAL CHARACTERISTICS AND THE DIFFERENTIAL EMISSION MEASURE DISTRIBUTION DURING A B8.3 FLARE ON 2009 JULY 4

    Energy Technology Data Exchange (ETDEWEB)

    Awasthi, Arun Kumar [Astronomical Institute, University of Wroclaw, Wroclaw (Poland); Sylwester, Barbara; Sylwester, Janusz [Solar Physics Division, Space Research Centre, Polish Academy of Sciences, Wroclaw (Poland); Jain, Rajmal, E-mail: arun.awasthi.87@gmail.com, E-mail: awasthi@astro.uni.wroc.pl [Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat (India)

    2016-06-01

    We investigate the evolution of the differential emission measure distribution (DEM[ T ]) in various phases of a B8.3 flare which occurred on 2009 July 04. We analyze the soft X-ray (SXR) emission in the 1.6–8.0 keV range, recorded collectively by the Solar Photometer in X-rays (SphinX; Polish) and the Solar X-ray Spectrometer (Indian) instruments. We conduct a comparative investigation of the best-fit DEM[ T ] distributions derived by employing various inversion schemes, namely, single Gaussian, power-law functions and a Withbroe–Sylwester (W–S) maximum likelihood algorithm. In addition, the SXR spectrum in three different energy bands, that is, 1.6–5.0 keV (low), 5.0–8.0 keV (high), and 1.6–8.0 keV (combined), is analyzed to determine the dependence of the best-fit DEM[ T ] distribution on the selection of the energy interval. The evolution of the DEM[ T ] distribution, derived using a W–S algorithm, reveals multi-thermal plasma during the rise to the maximum phase of the flare, and isothermal plasma in the post-maximum phase of the flare. The thermal energy content is estimated by considering the flare plasma to be (1) isothermal and (2) multi-thermal in nature. We find that the energy content during the flare, estimated using the multi-thermal approach, is in good agreement with that derived using the isothermal assumption, except during the flare maximum. Furthermore, the (multi-) thermal energy estimated while employing the low-energy band of the SXR spectrum results in higher values than that derived from the combined energy band. On the contrary, the analysis of the high-energy band of the SXR spectrum leads to lower thermal energy than that estimated from the combined energy band.

  12. Development and Validation of a Polarimetric-MCScene 3D Atmospheric Radiation Model

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Alexander [Spectral Sciences, Inc., Burlington, MA (United States); Hawes, Frederick [Spectral Sciences, Inc., Burlington, MA (United States); Fox, Marsha [Spectral Sciences, Inc., Burlington, MA (United States)

    2016-03-15

    Polarimetric measurements can substantially enhance the ability of both spectrally resolved and single band imagery to detect the proliferation of weapons of mass destruction, providing data for locating and identifying facilities, materials, and processes of undeclared and proliferant nuclear weapons programs worldwide. Unfortunately, models do not exist that efficiently and accurately predict spectral polarized signatures for the materials of interest embedded in complex 3D environments. Having such a model would enable one to test hypotheses and optimize both the enhancement of scene contrast and the signal processing for spectral signature extraction. The Phase I set the groundwork for development of fully validated polarimetric spectral signature and scene simulation models. This has been accomplished 1. by (a) identifying and downloading state-of-the-art surface and atmospheric polarimetric data sources, (b) implementing tools for generating custom polarimetric data, and (c) identifying and requesting US Government funded field measurement data for use in validation; 2. by formulating an approach for upgrading the radiometric spectral signature model MODTRAN to generate polarimetric intensities through (a) ingestion of the polarimetric data, (b) polarimetric vectorization of existing MODTRAN modules, and (c) integration of a newly developed algorithm for computing polarimetric multiple scattering contributions; 3. by generating an initial polarimetric model that demonstrates calculation of polarimetric solar and lunar single scatter intensities arising from the interaction of incoming irradiances with molecules and aerosols; 4. by developing a design and implementation plan to (a) automate polarimetric scene construction and (b) efficiently sample polarimetric scattering and reflection events, for use in a to be developed polarimetric version of the existing first-principles synthetic scene simulation model, MCScene; and 5. by planning a validation field

  13. THERMAL EMISSION IN THE EARLY X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS: FOLLOWING THE PROMPT PHASE TO LATE TIMES

    Energy Technology Data Exchange (ETDEWEB)

    Friis, Mette [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Watson, Darach, E-mail: mef4@hi.is, E-mail: darach@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark)

    2013-07-01

    Thermal radiation, peaking in soft X-rays, has now been detected in a handful of gamma-ray burst (GRB) afterglows and has to date been interpreted as shock break-out of the GRB's progenitor star. We present a search for thermal emission in the early X-ray afterglows of a sample of Swift bursts selected by their brightness in X-rays at early times. We identify a clear thermal component in eight GRBs and track the evolution. We show that at least some of the emission must come from highly relativistic material since two show an apparent super-luminal expansion of the thermal component. Furthermore, we determine very large luminosities and high temperatures for many of the components-too high to originate in a supernova shock break-out. Instead, we suggest that the component may be modeled as late photospheric emission from the jet, linking it to the apparently thermal component observed in the prompt emission of some GRBs at gamma-ray and hard X-ray energies. By comparing the parameters from the prompt emission and the early afterglow emission, we find that the results are compatible with the interpretation that we are observing the prompt quasi-thermal emission component in soft X-rays at a later point in its evolution.

  14. Ice sheet anisotropy measured with polarimetric ice sounding radar

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2010-01-01

    For polar ice sheets, valuable stress and strain information can be deduced from crystal orientation fabrics (COF) and their prevailing c-axis alignment. Polarimetric radio echo sounding is a promising technique to measure the anisotropic electromagnetic propagation and reflection properties asso...

  15. Mapping mountain meadow with high resolution and polarimetric SAR data

    International Nuclear Information System (INIS)

    Tian, Bangsen; Li, Zhen; Xu, Juan; Fu, Sitao; Liu, Jiuli

    2014-01-01

    This paper presents a method to map the large grassland in the eastern margin of the Tibetan Plateau with the high resolution polarimetric SAR (PolSAR) imagery. When PolSAR imagery is used for land cover classification, the brightness of a SAR image is affected by topography due to varying projection between ground and image coordinates. The objective of this paper is twofold: (1) we first extend the theory of SAR terrain correction to the polarimetric case, to utilize the entire available polarimetric signature, where correction is performed explicitly based on a matrix format like covariance matrix. (2) Next, the orthoectified PolSAR is applied to classify mountain meadow and investigate the potential of PolSAR in mapping grassland. In this paper, the gamma naught radiometric correction estimates the local illuminated area at each grid point in the radar geometry. Then, each element of the coherency matrix is divided by the local area to produce a polarimetric product. Secondly, the impact of radiometric correction upon classification accuracy is investigated. A supervised classification is performed on the orthorectified Radarsat-2 PolSAR to map the spatial distribution of meadow and evaluate monitoring capabilities of mountain meadow

  16. Reconfigurable digital receiver design and application for instantaneous polarimetric measurement

    NARCIS (Netherlands)

    Wang, Z.; Krasnov, O.A.; Babur, G.P.; Ligthart, L.P.; Van der Zwan, F.

    2011-01-01

    This paper presents the development of a reconfigurable receiver to undertake challenging signal processing tasks for a novel polarimetric radar system. The field-programmable gate arrays (FPGAs)-based digital receiver samples incoming signals at intermediate frequency (IF) and processes signals

  17. Polarimetric synthetic aperture radar data and the complex Wishart distribution

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2003-01-01

    distribution. Based on this distribution a test statistic for equality of two such matrices and an associated asymptotic probability for obtaining a smaller value of the test statistic are given and applied to segmentation, change detection and edge detection in polarimetric SAR data. In a case study EMISAR L...

  18. Multi-look polarimetric SAR image filtering using simulated annealing

    DEFF Research Database (Denmark)

    Schou, Jesper

    2000-01-01

    Based on a previously published algorithm capable of estimating the radar cross-section in synthetic aperture radar (SAR) intensity images, a new filter is presented utilizing multi-look polarimetric SAR images. The underlying mean covariance matrix is estimated from the observed sample covariance...

  19. The Danish polarimetric SAR for remote sensing applications

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Madsen, Søren Nørvang; Dall, Jørgen

    1994-01-01

    Presents the Danish polarimetric SAR system, EMISAR, and the approach taken in the system design to achieve a reliable high performance system. The design and implementation of the antenna system as well as the analog and digital hardware are discussed. The SAR utilises a dual polarised microstri...

  20. L-Band Polarimetric Correlation Radiometer with Subharmonic Sampling

    DEFF Research Database (Denmark)

    Rotbøll, Jesper; Søbjærg, Sten Schmidl; Skou, Niels

    2001-01-01

    A novel L-band radiometer trading analog complexity for digital ditto has been designed and built. It is a fully polarimetric radiometer of the correlation type and it is based on the sub-harmonic sampling principle in which the L-band signal is directly sampled by a fast A to D converter...

  1. Processing of dual-orthogonal cw polarimetric radar signals

    NARCIS (Netherlands)

    Babur, G.

    2009-01-01

    The thesis consists of two parts. The first part is devoted to the theory of dual-orthogonal polarimetric radar signals with continuous waveforms. The thesis presents a comparison of the signal compression techniques, namely correlation and de-ramping methods, for the dual-orthogonal sophisticated

  2. A novel L-band polarimetric radiometer featuring subharmonic sampling

    DEFF Research Database (Denmark)

    Rotbøll, J.; Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    A novel L-band radiometer trading analog components for digital circuits has been designed, built and operated. It is a fully polarimetric radiometer of the correlation type, and it is based on the subharmonic sampling principle in which the L-band signal is directly sampled by a fast A to D...

  3. Project PHARUS: Towards a polarimetric C-band airborne SAR

    NARCIS (Netherlands)

    Hoogeboom, P.; Koomen, P.J.; Otten, M.P.G.; Pouwels, H.; Snoeij, P.

    1989-01-01

    A few years ago three institutes in the Netherlands developed a plan to design and build a polarimetric C-band aircraft SAR system of a novel design, called PHARUS (PHased Array Universal SAR), meant as a replacement for our current digital SLAR system. These institutes are the Physics and

  4. Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce its Carbon Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Colin A. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center; Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    The industrial sector was the third-largest source of direct U.S. greenhouse gas (GHG) emissions in 2014 behind electricity generation and transportation and accounted for roughly 20% of total emissions (EPA 2016). The Energy Information Administration (EIA) projects that total U.S. energy consumption will grow to about 108 exajoules (1 EJ = 1018 J) or 102 quads (1 quad = 1015 British thermal units) in 2025, with nearly all of the growth coming from the industrial sector (DOE 2015b). Energy consumption in the industrial sector is forecast to increase to 39.5 EJ (37.4 quads)—a 22% increase, exceeding 36% of total energy consumption in the United States. Therefore, it is imperative that industrial GHG emissions be considered in any strategy intent on achieving deep decarbonization of the energy sector as a whole. It is important to note that unlike the transportation sector and electrical grid, energy use by industry often involves direct conversion of primary energy sources to thermal and electrical energy at the point of consumption. About 52% of U.S. industrial direct GHG emissions are the result of fuel combustion (EPA 2016) to produce hot gases and steam for process heating, process reactions, and process evaporation, concentration, and drying. The heterogeneity and variations in scale of U.S. industry and the complexity of modern industrial firms’ global supply chains are among the sector’s unique challenges to minimizing its GHG emissions. A combination of varied strategies—such as energy efficiency, material efficiency, and switching to low-carbon fuels—can help reduce absolute industrial GHG emissions. This report provides a complement to process-efficiency improvement to consider how clean energy delivery and use by industry could reduce GHG emissions. Specifically, it considers the possibility of replacing fossil-fuel combustion in industry with nuclear (specifically small modular reactors [SMRs]), solar thermal (referred to

  5. HYDRO2GEN: Non-thermal hydrogen Balmer and Paschen emission in solar flares generated by electron beams

    Science.gov (United States)

    Druett, M. K.; Zharkova, V. V.

    2018-03-01

    Aim. Sharp rises of hard X-ray (HXR) emission accompanied by Hα line profiles with strong red-shifts up to 4 Å from the central wavelength, often observed at the onset of flares with the Specola Solare Ticinese Telescope (STT) and the Swedish Solar Telescope (SST), are not fully explained by existing radiative models. Moreover, observations of white light (WL) and Balmer continuum emission with the Interface Region Imaging Spectrograph (IRISH) reveal strong co-temporal enhancements and are often nearly co-spatial with HXR emission. These effects indicate a fast effective source of excitation and ionisation of hydrogen atoms in flaring atmospheres associated with HXR emission. In this paper, we investigate electron beams as the agents accounting for the observed hydrogen line and continuum emission. Methods: Flaring atmospheres are considered to be produced by a 1D hydrodynamic response to the injection of an electron beam defining their kinetic temperatures, densities, and macro velocities. We simulated a radiative response in these atmospheres using a fully non-local thermodynamic equilibrium (NLTE) approach for a 5-level plus continuum hydrogen atom model, considering its excitation and ionisation by spontaneous, external, and internal diffusive radiation and by inelastic collisions with thermal and beam electrons. Simultaneous steady-state and integral radiative transfer equations in all optically thick transitions (Lyman and Balmer series) were solved iteratively for all the transitions to define their source functions with the relative accuracy of 10-5. The solutions of the radiative transfer equations were found using the L2 approximation. Resulting intensities of hydrogen line and continuum emission were also calculated for Balmer and Paschen series. Results: We find that inelastic collisions with beam electrons strongly increase excitation and ionisation of hydrogen atoms from the chromosphere to photosphere. This leads to an increase in Lyman continuum

  6. Probing the non-thermal emission in Abell 2146 and the Perseus cluster with the JVLA

    Science.gov (United States)

    Gendron-Marsolais, Marie-Lou; Hlavacek-Larrondo, Julie; van Weeren, Reinout; Clarke, Tracy; Intema, Huib; Russell, Helen; Edge, Alastair; Fabian, Andy; Olamaie, Malak; Rumsey, Clare; King, Lindsay; McNamara, Brian; Fecteau-Beaucage, David; Hogan, Michael; Mezcua, Mar; Taylor, Gregory; Blundell, Katherine; Sanders, Jeremy

    2018-01-01

    Jets created from accretion onto supermassive black holes release relativistic particles on large distances. These strongly affect the intracluster medium when located in the center of a brightest cluster galaxy. The hierarchical merging of subclusters and groups, from which cluster originate, also generates perturbations into the intracluster medium through shocks and turbulence, constituting a potential source of reacceleration for these particles. I will present deep multi-configuration low radio frequency observations from the Karl G. Jansky Very Large Array of two unique clusters, probing the non-thermal emission from the old particle population of the AGN outflows.Recently awarded of 550 hours of Chandra observations, Abell 2146 is one of the rare clusters undergoing a spectacular merger in the plane of the sky. Our recent deep multi-configuration JVLA 1.4 GHz observations have revealed the presence of a structure extending to 850 kpc in size, consisting of one component associated with the upstream shock and classified as a radio relic, and one associated with the subcluster core, consistent with a radio halo bounded by the bow shock. Theses structures have some of the lowest radio powers detected thus far in any cluster. The flux measurements of the halo, its morphology and measurements of the dynamical state of the cluster suggest that the halo was recently created (~ 0.3 Gyr after core passage). This makes A2146 extremely interesting to study, allowing us to probe the complete evolutionary stages of halos.I will also present results on 230-470 MHz JVLA observations of the Perseus cluster. Our observations of this nearby relaxed cool core cluster have revealed a multitude of new structures associated with the mini-halo, extending to hundreds of kpc in size. Its irregular morphology seems to be have been influenced both by the AGN activity and by the sloshing motion of the cluster’ gas. In addition, it has a filamentary structure similar to that seen in

  7. Assessment of Mars Atmospheric Temperature Retrievals from the Thermal Emission Spectrometer Radiances

    Science.gov (United States)

    Hoffman, Matthew J.; Eluszkiewicz, Janusz; Weisenstein, Deborah; Uymin, Gennady; Moncet, Jean-Luc

    2012-01-01

    Motivated by the needs of Mars data assimilation. particularly quantification of measurement errors and generation of averaging kernels. we have evaluated atmospheric temperature retrievals from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) radiances. Multiple sets of retrievals have been considered in this study; (1) retrievals available from the Planetary Data System (PDS), (2) retrievals based on variants of the retrieval algorithm used to generate the PDS retrievals, and (3) retrievals produced using the Mars 1-Dimensional Retrieval (M1R) algorithm based on the Optimal Spectral Sampling (OSS ) forward model. The retrieved temperature profiles are compared to the MGS Radio Science (RS) temperature profiles. For the samples tested, the M1R temperature profiles can be made to agree within 2 K with the RS temperature profiles, but only after tuning the prior and error statistics. Use of a global prior that does not take into account the seasonal dependence leads errors of up 6 K. In polar samples. errors relative to the RS temperature profiles are even larger. In these samples, the PDS temperature profiles also exhibit a poor fit with RS temperatures. This fit is worse than reported in previous studies, indicating that the lack of fit is due to a bias correction to TES radiances implemented after 2004. To explain the differences between the PDS and Ml R temperatures, the algorithms are compared directly, with the OSS forward model inserted into the PDS algorithm. Factors such as the filtering parameter, the use of linear versus nonlinear constrained inversion, and the choice of the forward model, are found to contribute heavily to the differences in the temperature profiles retrieved in the polar regions, resulting in uncertainties of up to 6 K. Even outside the poles, changes in the a priori statistics result in different profile shapes which all fit the radiances within the specified error. The importance of the a priori statistics prevents

  8. Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique

    Science.gov (United States)

    Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.

    2011-01-01

    The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between

  9. Increasing thermal drying temperature of biosolids reduced nitrogen mineralisation and soil N2O emissions

    DEFF Research Database (Denmark)

    Case, Sean; Gomez Muñoz, Beatriz; Magid, Jakob

    2016-01-01

    Previous studies found that thermally dried biosolids contained more mineralisable organic nitrogen (N) than the raw or anaerobically digested (AD) biosolids they were derived from. However, the effect of thermal drying temperature on biosolid N availability is not well understood. This will be o......Previous studies found that thermally dried biosolids contained more mineralisable organic nitrogen (N) than the raw or anaerobically digested (AD) biosolids they were derived from. However, the effect of thermal drying temperature on biosolid N availability is not well understood...

  10. Influence of aging on the heat and gas emissions from commercial lithium ion cells in case of thermal failure

    Directory of Open Access Journals (Sweden)

    Michael Lammer

    2018-03-01

    Full Text Available A method for thermal ramp experiments on cylindrical 18650 Li-ion cells has been established. The method was applied on pristine cells as well as on devices aged by cyclisation or by storage at elevated temperature respectively. The tested cells comprise three types of LiNi0.8Co0.15Al0.05O2 cells for either high power or high energy applications. The heat flux to and from the cell was investigated. Degradation and exothermic breakdown released large amounts of heat and gas. The total gas and heat emission from cycled cells was significantly larger than emission from cells aged by storage. After aging, the low energy cell ICR18650HE4 did not transgress into thermal runaway. Gas composition changed mainly in the early stage of the experiment. The composition of the initial gas release changed from predominantly CO2 towards hydrocarbons. The thermal runaway emitted for all tests a comparable mixture of H2, CO and CO2.

  11. On-line thermal dependence study of the main solar cell electrical photoconversion parameters using low thermal emission lamps.

    Science.gov (United States)

    Gallardo, J J; Navas, J; Alcántara, R; Fernández-Lorenzo, C; Aguilar, T; Martín-Calleja, J

    2012-06-01

    This paper presents a non-conventional methodology and an instrumental system to measure the effect of temperature on the photovoltaic properties of solar cells. The system enables the direct measurement of the evolution of open-circuit voltage and short-circuit current intensity in relation to a continuously decreasing temperature. The system uses a high-intensity white light-emitting diode light source with low emissions of radiation in the infrared region of the electromagnetic spectrum, resulting in a reduced heating of the photovoltaic devices by the irradiation source itself. To check the goodness of the system and the methodology designed, several measurements were performed with monocrystalline silicon solar cells, dye-sensitized solar cells, and thin-film amorphous silicon solar cells, showing similar tendencies to those reported in the literature.

  12. An expression for the atomic fluorescence and thermal-emission intensity under conditions of near saturation and arbitrary self-absorption

    NARCIS (Netherlands)

    Omenetto, N.; Winefordner, J.D.; Alkemade, C.T.J.

    An expression for the effect of self-absorption on the fluorescence and thermal emission intensities is derived by taking into account stimulated emission. A simple, idealized case is considered, consisting of a two level atomic system, in a flame, homogeneous with respect to temperature and

  13. The Multi-Instrument (EVE-RHESSI) DEM for Solar Flares, and Implications for Residual Non-Thermal Soft X-Ray Emission

    Science.gov (United States)

    McTiernan, James M.; Caspi, Amir; Warren, Harry

    2015-04-01

    In the soft X-ray energy range, solar flare spectra are typically dominated by thermal emission. The low energy extent of non-thermal emission can only be loosely quantified using currently available X-ray data. To address this issue, we combine observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI). The improvement over the isothermal approximation is intended to resolve the ambiguity in the range where the thermal and non-thermal components may have similar photon fluxes. This "crossover" range can extend up to 30 keV for medium to large solar flares.Previous work (Caspi et.al. 2014ApJ...788L..31C) has concentrated on obtaining DEM models that fit both instruments' observations well. Now we are interested in any breaks and cutoffs in the "residual" non-thermal spectrum; i.e., the RHESSI spectrum that is left over after the DEM has accounted for the bulk of the soft X-ray emission. Thermal emission is again modeled using a DEM that is parametrized as multiple gaussians in temperature; the non-thermal emission is modeled as a photon spectrum obtained using a thin-target emission model ('thin2' from the SolarSoft Xray IDL package). Spectra for both instruments are fit simultaneously in a self-consistent manner. The results for non-thermal parameters then are compared with those found using RHESSI data alone, with isothermal and double-thermal models.

  14. Cosmic Rays and Non-thermal Emission Induced by Accretion of Cool Gas onto the Galactic Disk

    Science.gov (United States)

    Inoue, Susumu; Uchiyama, Yasunobu; Arakawa, Masanori; Renaud, Matthieu; Wada, Keiichi

    2017-11-01

    On both observational and theoretical grounds, the disk of our Galaxy should be accreting cool gas with temperature ≲ {10}5 K via the halo at a rate ˜1 {{M}⊙ {yr}}-1. At least some of this accretion is mediated by high-velocity clouds (HVCs), observed to be traveling in the halo with velocities of a few 100 km s-1 and occasionally impacting the disk at such velocities, especially in the outer regions of the Galaxy. We address the possibility of particle acceleration in shocks triggered by such HVC accretion events, and the detectability of consequent non-thermal emission in the radio to gamma-ray bands and high-energy neutrinos. For plausible shock velocities ˜ 300 {km} {{{s}}}-1 and magnetic field strengths ˜ 0.3{--}10 μ {{G}}, electrons and protons may be accelerated up to ˜1-10 TeV and ˜ 30{--}{10}3 TeV, respectively, in sufficiently strong adiabatic shocks during their lifetime of ˜ {10}6 {{yr}}. The resultant pion decay and inverse Compton gamma-rays may be the origin of some unidentified Galactic GeV-TeV sources, particularly the “dark” source HESS J1503-582 that is spatially coincident with the anomalous H I structure known as “forbidden-velocity wings.” Correlation of their locations with star-forming regions may be weak, absent, or even opposite. Non-thermal radio and X-ray emission from primary and/or secondary electrons may be detectable with deeper observations. The contribution of HVC accretion to Galactic cosmic rays is subdominant, but could be non-negligible in the outer Galaxy. As the thermal emission induced by HVC accretion is likely difficult to detect, observations of such phenomena may offer a unique perspective on probing gas accretion onto the Milky Way and other galaxies.

  15. Effects of potassium hydroxide post-treatments on the field-emission properties of thermal chemical vapor deposited carbon nanotubes.

    Science.gov (United States)

    Lee, Li-Ying; Lee, Shih-Fong; Chang, Yung-Ping; Hsiao, Wei-Shao

    2011-12-01

    In this study, a simple potassium hydroxide treatment was applied to functionalize the surface and to modify the structure of multi-walled carbon nanotubes grown on silicon substrates by thermal chemical vapor deposition. Scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive spectrometry were employed to investigate the mechanism causing the modified field-emission properties of carbon nanotubes. From our experimental data, the emitted currents of carbon nanotubes after potassium hydroxide treatment are enhanced by more than one order of magnitude compared with those of untreated carbon nanotubes. The emitted current density of carbon nanotubes increases from 0.44 mA/cm2 to 7.92 mA/cm2 after 30 minutes KOH treatment. This technique provides a simple, economical, and effective way to enhance the field-emission properties of carbon nanotubes.

  16. Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of 235U

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Saetone, E.

    2007-01-01

    The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of 235 U(n th ,f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions

  17. Electromagnetic scattering and emission by a fixed multi-particle object in local thermal equilibrium: General formalism.

    Science.gov (United States)

    Mishchenko, Michael I

    2017-10-01

    The majority of previous studies of the interaction of individual particles and multi-particle groups with electromagnetic field have focused on either elastic scattering in the presence of an external field or self-emission of electromagnetic radiation. In this paper we apply semi-classical fluctuational electrodynamics to address the ubiquitous scenario wherein a fixed particle or a fixed multi-particle group is exposed to an external quasi-polychromatic electromagnetic field as well as thermally emits its own electromagnetic radiation. We summarize the main relevant axioms of fluctuational electrodynamics, formulate in maximally rigorous mathematical terms the general scattering-emission problem for a fixed object, and derive such fundamental corollaries as the scattering-emission volume integral equation, the Lippmann-Schwinger equation for the dyadic transition operator, the multi-particle scattering-emission equations, and the far-field limit. We show that in the framework of fluctuational electrodynamics, the computation of the self-emitted component of the total field is completely separated from that of the elastically scattered field. The same is true of the computation of the emitted and elastically scattered components of quadratic/bilinear forms in the total electromagnetic field. These results pave the way to the practical computation of relevant optical observables.

  18. Modern techniques for the emissions control in thermal electric stations; Tecnicas modernas para el control de emisiones en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Romo Millares, C. A. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-12-31

    This paper presents the techniques and the control equipment for emissions in thermal stations that have the highest possibilities of being considered in the immediate future in the national energy panorama and the established frame for the environmental normativity. The pollutant compounds subject to revision are the nitrogen and sulfur oxides and unburned particles. [Espanol] Se presentan las tecnicas y equipos de control de emisiones para centrales termoelectricas que tienen mayores posibilidades de ser consideradas en el futuro inmediato dentro del panorama energetico nacional y el marco establecido por la normatividad ambiental. Los compuestos contaminantes sujetos a revision son los oxidos de nitrogeno y azufre y las particulas inquemadas.

  19. Modern techniques for the emissions control in thermal electric stations; Tecnicas modernas para el control de emisiones en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Romo Millares, C A [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    This paper presents the techniques and the control equipment for emissions in thermal stations that have the highest possibilities of being considered in the immediate future in the national energy panorama and the established frame for the environmental normativity. The pollutant compounds subject to revision are the nitrogen and sulfur oxides and unburned particles. [Espanol] Se presentan las tecnicas y equipos de control de emisiones para centrales termoelectricas que tienen mayores posibilidades de ser consideradas en el futuro inmediato dentro del panorama energetico nacional y el marco establecido por la normatividad ambiental. Los compuestos contaminantes sujetos a revision son los oxidos de nitrogeno y azufre y las particulas inquemadas.

  20. Characterization of Jupiter's Atmosphere from Observation of Thermal Emission by Juno and Ground-Based Supporting Observations

    Science.gov (United States)

    Orton, G. S.; Momary, T.; Tabataba-Vakili, F.; Janssen, M. A.; Hansen, C. J.; Bolton, S. J.; Li, C.; Adriani, A.; Mura, A.; Grassi, D.; Fletcher, L. N.; Brown, S. T.; Fujiyoshi, T.; Greathouse, T. K.; Kasaba, Y.; Sato, T. M.; Stephens, A.; Donnelly, P.; Eichstädt, G.; Rogers, J.

    2017-12-01

    Ground-breaking measurements of thermal emission at very long wavelengths have been made by the Juno mission's Microwave Radiometer (MWR). We examine the relationship between these and other thermal emission measurements by the Jupiter Infrared Auroral Mapper (JIRAM) at 5 µm and ground-based supporting observations in the thermal infrared that cover the 5-25 µm range. The relevant ground-based observations of thermal emission are constituted from imaging and scanning spectroscopy obtained at the NASA Infrared Telescope Facility (IRTF), the Gemini North Telescope, the Subaru Telescope and the Very Large Telescope. A comparison of these results clarifies the physical properties responsible for the observed emissions, i.e. variability of the temperature field, the cloud field or the distribution of gaseous ammonia. Cross-references to the visible cloud field from Juno's JunoCam experiment and Earth-based images are also useful. This work continues an initial comparison by Orton et al. (2017, GRL 44, doi: 10.1002/2017GL073019) between MWR and JIRAM results, together with ancillary 5-µm IRTF imaging and with JunoCam and ground-based visible imaging. These showed a general agreement between MWR and JIRAM results for the 5-bar NH3 abundance in specific regions of low cloud opacity but only a partial correlation between MWR and 5-µm radiances emerging from the 0.5-5 bar levels of the atmosphere in general. Similar to the latter, there appears to be an inconsistent correlation between MWR channels sensitive to 0.5-10 bars and shorter-wavelength radiances in the "tails" of 5-µm hot spots , which may be the result of the greater sensitivity of the latter to particulate opacity that could depend on the evolution history of the particular features sampled. Of great importance is the interpretation of MWR radiances in terms of the variability of temperature vs. NH3 abundances in the 0.5-5 bar pressure range. This is particularly important to understand MWR results in

  1. Thermal energy creation and transport and X-ray/EUV emission in a thermodynamic MHD CME simulation

    Science.gov (United States)

    Reeves, K.; Mikic, Z.; Torok, T.; Linker, J.; Murphy, N. A.

    2017-12-01

    We model a CME using the PSI 3D numerical MHD code that includes coronal heating, thermal conduction and radiative cooling in the energy equation. The magnetic flux distribution at 1 Rs is produced by a localized subsurface dipole superimposed on a global dipole field, mimicking the presence of an active region within the global corona. We introduce transverse electric fields near the neutral line in the active region to form a flux rope, then a converging flow is imposed that causes the eruption. We follow the formation and evolution of the current sheet and find that instabilities set in soon after the reconnection commences. We simulate XRT and AIA EUV emission and find that the instabilities manifest as bright features emanating from the reconnection region. We examine the quantities responsible for plasma heating and cooling during the eruption, including thermal conduction, radiation, adiabatic compression and expansion, coronal heating and ohmic heating due to dissipation of currents. We find that the adiabatic compression plays an important role in heating the plasma around the current sheet, especially in the later stages of the eruption when the instabilities are present. Thermal conduction also plays an important role in the transport of thermal energy away from the current sheet region throughout the reconnection process.

  2. Methodology for calculation of carbon emission and energy generation efficiency by fossil coal thermal power plants

    International Nuclear Information System (INIS)

    Licks, Leticia A.; Pires, Marcal

    2008-01-01

    This work intends to evaluate the emissions of carbon dioxide (CO 2 ) emitted by the burning of fossil coal in Brazil. So, a detailed methodology is proposed for calculation of CO 2 emissions from the carbon emission coefficients specific for the Brazilian carbons. Also, the using of secondary fuels (fuel oil and diesel oil) were considered and the power generation for the calculation of emissions and efficiencies of each power plant as well. The obtained results indicate carbon emissions for the year 2002 approximately of the order of 1,794 Gg, with 20% less than the obtained by the official methodology (MCT). Such differences are related to the non consideration of the humidity containment of the coals as well as the using of generic coefficients not adapted to the Brazilian coals. The obtained results indicate the necessity to review the emission inventories and the modernization of the burning systems aiming the increase the efficiency and reduction of the CO 2 and other pollutants, as an alternative for maintaining the sustainable form of using the fossil coal in the country

  3. Severe measures for the reduction of the SO2 emissions, applicable to the thermal power plants in Romania

    International Nuclear Information System (INIS)

    Pop, Ovidiu

    2006-01-01

    The accession of Romania to EU imposes the observance of the environment community regulations and the international conventions to which Romania is a party, as well. The legislative framework was adapted to the of the community regulations by conditioning the operation of the Large Burning Units, LBU, (of thermal power larger than 50 MW) that belong to the thermal power plants. The control of the LBU operation is not limited to the technological problems but goes further to issues related to the protection of the environment where the severity of the measures adopted imposes equally the control of the Emission Limit Values, ELV. To reduce the pollutant emissions, Romania must observe the ELVs for sulfur dioxide, nitrogen oxides and aerosols for each of the existing LBU, and also to prepare a National Plant for the Reduction of the Pollutant Emissions within a transition period, thus ensuring a strict compliance with the EU regulations by January 1, 2008. The power plants for which the transition period was awarded are requested to prevent the pollution especially through the application of the best available techniques what assumes the implementation of some important investment programs. In order to have a clear image on what the observance of the community regulations mean in the domain of the sulfur dioxide emission from the LBU, a few self-evident figures are shown. The paper tackles the following issues: EU Accession Requirements; The efforts of the conforming; The best available techniques (BAT); Severe Measures for the Reduction of the Sulfur Emissions; Wet Desulfurization Procedures; Desulfurization dry/semidry procedures. Since the fuels used by the LBUs in Romania have much sulfur one concludes that they cannot be fired without the desulfurization of the flue gases. Even the mandatory utilization of the fuel oil with sulfur contents less than 1% starting by January 1, 2007 cannot solve the problem; it reduces to a certain extent the SO 2 emissions but

  4. INVENTORY OF IRRIGATED RICE ECOSYSTEM USING POLARIMETRIC SAR DATA

    Directory of Open Access Journals (Sweden)

    P. Srikanth

    2012-08-01

    Full Text Available An attempt has been made in the current study to assess the potential of polarimetric SAR data for inventory of kharif rice and the major competing crop like cotton. In the process, physical process of the scattering mechanisms occurring in rice and cotton crops at different phonological stages was studied through the use of temporal Radarsat 2 Fine quadpol SAR data. The temporal dynamics of the volume, double and odd bounce, entropy, anisotropy, alpha parameters and polarimertic signatures, classification through isodata clustering and Wishart techniques were assessed. The Wishart (H-a classification showed higher overall as well as rice and cotton crop accuracies compared to the isodata clustering from Freeman 3-component decomposition. The classification of temporal SAR data sets independently showed that the rice crop forecasting can be advanced with the use of appropriate single date polarimetric SAR data rather than using temporal SAR amplitude data sets with the single polarization in irrigated rice ecosystems

  5. The orbital inclination of Cygnus XR-1 measured polarimetrically

    International Nuclear Information System (INIS)

    Dolan, J.F.; Tapia, S.

    1989-01-01

    The X-ray binary Cyg XR-1/HDE 226868 was observed polarimetrically over one orbit at three different optical wavelengths. The standard theory of Brown, et al. (1978) is used to derive an orbital inclination i = 62 deg (+5 deg, -37 deg), where the error is the 90-percent-confidence interval derived by the method of Simmons, et al. (1980). The value of the orbital inclination is significantly lower than values based on polarimetric observations. The difference is a result of the observational protocols used. A bias toward larger values of the inclination caused by the tidal distortion of the primary is still found in the present result. The inclination derived corresponds to a mass of the compact component of 6.3 solar masses, above the maximum mass of any degenerate configuration consistent with general relativity except a black hole. 37 refs

  6. Integrated quantitative fractal polarimetric analysis of monolayer lung cancer cells

    Science.gov (United States)

    Shrestha, Suman; Zhang, Lin; Quang, Tri; Farrahi, Tannaz; Narayan, Chaya; Deshpande, Aditi; Na, Ying; Blinzler, Adam; Ma, Junyu; Liu, Bo; Giakos, George C.

    2014-05-01

    Digital diagnostic pathology has become one of the most valuable and convenient advancements in technology over the past years. It allows us to acquire, store and analyze pathological information from the images of histological and immunohistochemical glass slides which are scanned to create digital slides. In this study, efficient fractal, wavelet-based polarimetric techniques for histological analysis of monolayer lung cancer cells will be introduced and different monolayer cancer lines will be studied. The outcome of this study indicates that application of fractal, wavelet polarimetric principles towards the analysis of squamous carcinoma and adenocarcinoma cancer cell lines may be proved extremely useful in discriminating among healthy and lung cancer cells as well as differentiating among different lung cancer cells.

  7. Multispectral and polarimetric photodetection using a plasmonic metasurface

    Science.gov (United States)

    Pelzman, Charles; Cho, Sang-Yeon

    2018-01-01

    We present a metasurface-integrated Si 2-D CMOS sensor array for multispectral and polarimetric photodetection applications. The demonstrated sensor is based on the polarization selective extraordinary optical transmission from periodic subwavelength nanostructures, acting as artificial atoms, known as meta-atoms. The meta-atoms were created by patterning periodic rectangular apertures that support optical resonance at the designed spectral bands. By spatially separating meta-atom clusters with different lattice constants and orientations, the demonstrated metasurface can convert the polarization and spectral information of an optical input into a 2-D intensity pattern. As a proof-of-concept experiment, we measured the linear components of the Stokes parameters directly from captured images using a CMOS camera at four spectral bands. Compared to existing multispectral polarimetric sensors, the demonstrated metasurface-integrated CMOS system is compact and does not require any moving components, offering great potential for advanced photodetection applications.

  8. A New Polarimetric Study of Cygnus A Using JVLA from 2-18GHz

    Science.gov (United States)

    Lerato Sebokolodi, Makhuduga; Perley, Rick; Carilli, Chris; Smirnov, Oleg M.; Makhathini, Sphesihle

    2018-01-01

    Polarimetric studies of Cygnus A [5, 1, 2, 3] have shown that this radio galaxy has unusually large rotation measures ranging from -4000 to +3000 rad m -2 for the eastern lobe (E-lobe) and -2000 to +1300 rad m -2 for western lobe(W-lobe). A challenge since then has been to identify the medium(s) responsible for these high Faraday rotations (FR). Although a majority of the FR must arise from the surrounding cluster gas, an unknown portion may arise either in the sheath or within the lobes. In these cases, some depolarization must result, along with a non λ 2 rotation of the plane of polarization. Detecting such a depolarization will enable an estimate of the internal (and/or sheath) thermal gas density. [1] found significant depolarization associated with the inner regions of the E-lobe and no depolarization associated with the W-lobe. This depolarization could be either internal to the source (Faraday depolarization) or due to unresolved small-scale fluctuations in the foreground screen (beam depolarization) [1]. The former is expected to impose significant deviations in the λ2 -law, none of which have been found to date, nor could have been found due to the limited number of frequencies employed in these studies.Since 2015, new JVLA polarimetric observations of Cygnus A have been taken, in all four configurations, covering the frequency range from 2 to 18GHz. These new data provide thousands of frequency channels at high resolution and sensitivity – opening a new opportunity to study in great detail the physics of the jets, lobes and the magnetic field of the X-ray cluster medium and lobes. Our objective is to analyze these new polarimetric data with the expectation of extending the previous work and more importantly, to investigate the possibility of any significantdeviations from the λ2-law. Initial analysis shows significant deviations from λ2 -law associated with the W-lobe. We will present these results in detail, and also the results from RM

  9. Retrieval of ice thickness from polarimetric SAR data

    Science.gov (United States)

    Kwok, R.; Yueh, S. H.; Nghiem, S. V.; Huynh, D. D.

    1993-01-01

    We describe a potential procedure for retrieving ice thickness from multi-frequency polarimetric SAR data for thin ice. This procedure includes first masking out the thicker ice types with a simple classifier and then deriving the thickness of the remaining pixels using a model-inversion technique. The technique used to derive ice thickness from polarimetric observations is provided by a numerical estimator or neural network. A three-layer perceptron implemented with the backpropagation algorithm is used in this investigation with several improved aspects for a faster convergence rate and a better accuracy of the neural network. These improvements include weight initialization, normalization of the output range, the selection of offset constant, and a heuristic learning algorithm. The performance of the neural network is demonstrated by using training data generated by a theoretical scattering model for sea ice matched to the database of interest. The training data are comprised of the polarimetric backscattering coefficients of thin ice and the corresponding input ice parameters to the scattering model. The retrieved ice thickness from the theoretical backscattering coefficients is compare with the input ice thickness to the scattering model to illustrate the accuracy of the inversion method. Results indicate that the network convergence rate and accuracy are higher when multi-frequency training sets are presented. In addition, the dominant backscattering coefficients in retrieving ice thickness are found by comparing the behavior of the network trained backscattering data at various incidence angels. After the neural network is trained with the theoretical backscattering data at various incidence anges, the interconnection weights between nodes are saved and applied to the experimental data to be investigated. In this paper, we illustrate the effectiveness of this technique using polarimetric SAR data collected by the JPL DC-8 radar over a sea ice scene.

  10. Polarimetric neutron spin echo: Feasibility and first results

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, C. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany)], E-mail: pappas@hmi.de; Lelievre-Berna, E. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Bentley, P. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany); Bourgeat-Lami, E. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Moskvin, E. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany); PNPI, 188300 Gatchina, Leningrad District (Russian Federation); Thomas, M. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Grigoriev, S.; Dyadkin, V. [PNPI, 188300 Gatchina, Leningrad District (Russian Federation)

    2008-07-21

    Neutron Spin Echo (NSE) spectroscopy uses polarized neutrons and accordingly polarization analysis is an intrinsic feature of NSE. However, the multifaceted dynamics of antiferromagnets and helimagnets require more than the classical NSE set-up. Here we present the feasibility test and first results of a new and powerful technique: Polarimetric NSE, obtained by combining the wide angle NSE spectrometer SPAN, developed at HMI with the zero-field polarimeter Cryopad developed at ILL.

  11. Polarimetric neutron spin echo: Feasibility and first results

    International Nuclear Information System (INIS)

    Pappas, C.; Lelievre-Berna, E.; Bentley, P.; Bourgeat-Lami, E.; Moskvin, E.; Thomas, M.; Grigoriev, S.; Dyadkin, V.

    2008-01-01

    Neutron Spin Echo (NSE) spectroscopy uses polarized neutrons and accordingly polarization analysis is an intrinsic feature of NSE. However, the multifaceted dynamics of antiferromagnets and helimagnets require more than the classical NSE set-up. Here we present the feasibility test and first results of a new and powerful technique: Polarimetric NSE, obtained by combining the wide angle NSE spectrometer SPAN, developed at HMI with the zero-field polarimeter Cryopad developed at ILL

  12. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter

    Science.gov (United States)

    Kim, Dae-Hyeon; D'Aléo, Anthony; Chen, Xian-Kai; Sandanayaka, Atula D. S.; Yao, Dandan; Zhao, Li; Komino, Takeshi; Zaborova, Elena; Canard, Gabriel; Tsuchiya, Youichi; Choi, Eunyoung; Wu, Jeong Weon; Fages, Frédéric; Brédas, Jean-Luc; Ribierre, Jean-Charles; Adachi, Chihaya

    2018-02-01

    Near-infrared organic light-emitting diodes and semiconductor lasers could benefit a variety of applications including night-vision displays, sensors and information-secured displays. Organic dyes can generate electroluminescence efficiently at visible wavelengths, but organic light-emitting diodes are still underperforming in the near-infrared region. Here, we report thermally activated delayed fluorescent organic light-emitting diodes that operate at near-infrared wavelengths with a maximum external quantum efficiency of nearly 10% using a boron difluoride curcuminoid derivative. As well as an effective upconversion from triplet to singlet excited states due to the non-adiabatic coupling effect, this donor-acceptor-donor compound also exhibits efficient amplified spontaneous emission. By controlling the polarity of the active medium, the maximum emission wavelength of the electroluminescence spectrum can be tuned from 700 to 780 nm. This study represents an important advance in near-infrared organic light-emitting diodes and the design of alternative molecular architectures for photonic applications based on thermally activated delayed fluorescence.

  13. Characteristics of ammonia emission during thermal drying of lime sludge for co-combustion in cement kilns.

    Science.gov (United States)

    Liu, Wei; Xu, Jingcheng; Liu, Jia; Cao, Haihua; Huang, Xiang-Feng; Li, Guangming

    2015-01-01

    Thermal drying was used to reduce sludge moisture content before co-combustion in cement kilns. The characteristics of ammonia (NH3) emission during thermal drying of lime sludge (LS) were investigated in a laboratory-scale tubular dry furnace under different temperature and time conditions. As the temperature increased, the NH3 concentration increased in the temperature range 100-130°C, decreased in the temperature range 130-220°C and increased rapidly at >220°C. Emission of NH3 also increased as the lime dosage increased and stabilized at lime dosages>5%. In the first 60 min of drying experiments, 55% of the NH3 was released. NH3 accounted for about 67-72% of the change in total nitrogen caused by the release of nitrogen-containing volatile compounds (VCs) from the sludge. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy revealed that the main forms of nitrogen in sludge were amides and amines. The addition of lime (CaO) could cause conversion of N-H, N-O or C-N containing compounds to NH3 during the drying process.

  14. Initiation of vacuum breakdown and failure mechanism of the carbon nanotube during thermal field emission

    Science.gov (United States)

    Dan, Cai; Lie, Liu; Jin-Chuan, Ju; Xue-Long, Zhao; Hong-Yu, Zhou; Xiao, Wang

    2016-04-01

    The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission cathode. The falling off of CNT from the substrate, which frequently appears in experiments, restricts its application. In addition, the onset time of vacuum breakdown limits the performance of the high-power explosive-emission-cathode-based diode. In this paper, the characteristics of the CNT, electric field strength, contact resistance and the kind of substrate material are varied to study the parameter effects on the onset time of vacuum breakdown and failure mechanism of the CNT by using the finite element method. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305263 and 61401484).

  15. The economics of reducing CO2 emissions by solar thermal power plants

    International Nuclear Information System (INIS)

    Brakmann, G.

    1993-01-01

    The necessity to reduce CO 2 -emissions on a global scale is being recognized by scientists and politicians. If no scientific proof of a climate catastrophe due to CO 2 -emissions can be established, it would nevertheless be prudent to implement a form of global survival insurance policy, the premium of which is the required effort to reduce CO 2 -emissions. The implementation of such a policy without a considerable reduction in the living standard requires the replacement of fossil fuels by capital and/or know-how. It should be performed in the most economical manner. This leads to the replacement of the classical ''least cost power expansion strategy'' by the ''least cost power expansion/pollution limiting strategy''. Thereby projects have to compete no longer exclusively on low cost of energy production but on low cost of pollution reduction as well. (Author)

  16. A comparison of the thermal, emission and heat transfer characteristics of swirl-stabilized premixed and inverse diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, H.S.; Leung, C.W.; Cheung, C.S. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (China)

    2011-02-15

    Two swirl-stabilized flames, a premixed flame (PMF-s) and an inverse diffusion flame (IDF-s), were investigated experimentally in order to obtain information on their thermal, emission and heat transfer characteristics. The two flames, having different global air/fuel mixing mechanisms, were compared under identical air and fuel flow rates. Results showed that the two flames have similar visual features such as flame shape, size and structure because the Reynolds number and the swirl number which are important parameters representative of the aerodynamic characteristics of a swirling jet flow, are almost the same for the two flames. The minor dissimilarity in flame color and flame length indicates that the IDF-s is more diffusional. Both the PMF-s and IDF-s are stabilized by the internal recirculation zone (IRZ) and the IDF-s is more stable. Flame temperature is uniformly distributed in the IRZ due to the strong mixing caused by flow recirculation. The highest flame temperature is achieved at the main reaction zone and it is higher for the PMF-s due to more rapid and localized heat release. For the IDF-s, the thermal NO mechanism dominates the NO{sub x} formation. For the PMF-s, both the thermal and prompt mechanisms tend to play important roles in the global NO{sub x} emission under rich conditions. The comparison of EINO{sub x} and EICO shows that the PMF-s has lower level of NO{sub x} emission under lean combustion and lower level of CO emission under all conditions. The reason is that the air/fuel premixing in the PMF-s significantly enhances the mixedness of the supplied air/fuel mixture. The analysis of the behaviors of the impinging PMF-s and IDF-s heat transfer reveals that because the PMF-s has more rapid and localized heat release at the main reaction zone, the peak heat flux is higher than that of the IDF-s and the IDF-s has more uniform heating effect. A comparison of the overall heat transfer rates shows that, due to more complete combustion, the PMF

  17. A comparison of the thermal, emission and heat transfer characteristics of swirl-stabilized premixed and inverse diffusion flames

    International Nuclear Information System (INIS)

    Zhen, H.S.; Leung, C.W.; Cheung, C.S.

    2011-01-01

    Two swirl-stabilized flames, a premixed flame (PMF-s) and an inverse diffusion flame (IDF-s), were investigated experimentally in order to obtain information on their thermal, emission and heat transfer characteristics. The two flames, having different global air/fuel mixing mechanisms, were compared under identical air and fuel flow rates. Results showed that the two flames have similar visual features such as flame shape, size and structure because the Reynolds number and the swirl number which are important parameters representative of the aerodynamic characteristics of a swirling jet flow, are almost the same for the two flames. The minor dissimilarity in flame color and flame length indicates that the IDF-s is more diffusional. Both the PMF-s and IDF-s are stabilized by the internal recirculation zone (IRZ) and the IDF-s is more stable. Flame temperature is uniformly distributed in the IRZ due to the strong mixing caused by flow recirculation. The highest flame temperature is achieved at the main reaction zone and it is higher for the PMF-s due to more rapid and localized heat release. For the IDF-s, the thermal NO mechanism dominates the NO x formation. For the PMF-s, both the thermal and prompt mechanisms tend to play important roles in the global NO x emission under rich conditions. The comparison of EINO x and EICO shows that the PMF-s has lower level of NO x emission under lean combustion and lower level of CO emission under all conditions. The reason is that the air/fuel premixing in the PMF-s significantly enhances the mixedness of the supplied air/fuel mixture. The analysis of the behaviors of the impinging PMF-s and IDF-s heat transfer reveals that because the PMF-s has more rapid and localized heat release at the main reaction zone, the peak heat flux is higher than that of the IDF-s and the IDF-s has more uniform heating effect. A comparison of the overall heat transfer rates shows that, due to more complete combustion, the PMF-s has higher overall

  18. Experimental investigation of combustion, emissions and thermal balance of secondary butyl alcohol-gasoline blends in a spark ignition engine

    International Nuclear Information System (INIS)

    Yusri, I.M.; Mamat, Rizalman; Azmi, W.H.; Najafi, G.; Sidik, N.A.C.; Awad, Omar I.

    2016-01-01

    Highlights: • 2-Butanol-gasoline blends up to 15% of volume were examined. • Combustion emissions and thermal balance for blended fuel were discussed. • Significant of improvement for energy utilisation by using blended fuels. - Abstract: An experimental investigation of butanol as an alternative fuel was conducted. A four-cylinder, four-stroke gasoline engine was used to investigate the engine combustion emissions and thermal balance characteristics using 2-butanol–gasoline blended fuels at 50% throttle wide open. In this experimental study, the gasoline engine was tested at 2-butanol–gasoline percentage volume ratios of 5:95 (GBu5), 10:90 (GBu10) and 15:85 (GBu15) of gasoline to butanol, respectively. Combustion analysis results showed that 2-butanol–gasoline blends have a lower in-cylinder pressure, rate of pressure rise and rate of heat release. However, as the 2-butanol addition increases in the blended fuels, increasing trends of in-cylinder pressure, rate of pressure rise and rate of heat release are observed, but it is still lower than G100 fuels. Moreover, even 5%, 10% and 15% additions of 2-butanol in the gasoline fuels improve the COV of IMEP by 3.7, 3.46 and 3.26, respectively, which indicates that the presence of 2-butanol stabilises the combustion process. Comparative analysis of the experimental results by exhaust emissions produced an average of 7.1%, 13.7%, and 19.8% lower NO_x for GBu5, GBu10 and GBu15, respectively, over the speed range of 1000–4000 RPM. Other emission contents indicate lower CO and HC but higher CO_2 from 2500 to 4000 RPM for the blended fuels with regard to G100. The thermal balance analysis mainly exhibits an improvement in effective power, cooling energy and exhaust energy by average differences of 3.3%, 0.8% and 2.3% for GBu15 compared with G100.

  19. Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen

    OpenAIRE

    Sun, Zhihong; H?ve, Katja; Vislap, Vivian; Niinemets, ?lo

    2013-01-01

    Isoprene emissions importantly protect plants from heat stress, but the emissions become inhibited by instantaneous increase of [CO2], and it is currently unclear how isoprene-emitting plants cope with future more frequent and severe heat episodes under high [CO2]. Hybrid aspen (Populus tremula x Populus tremuloides) saplings grown under ambient [CO2] of 380 ?mol mol?1 and elevated [CO2] of 780 ?mol mol?1 were used to test the hypothesis that acclimation to elevated [CO2] reduces the inhibito...

  20. Enhanced light emission efficiency and current stability by morphology control and thermal annealing of organic light emitting diode devices

    Energy Technology Data Exchange (ETDEWEB)

    Caria, S [Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P Gobetti 101, 40129 Bologna (Italy); Como, E Da [Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P Gobetti 101, 40129 Bologna (Italy); Murgia, M [Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P Gobetti 101, 40129 Bologna (Italy); Zamboni, R [Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P Gobetti 101, 40129 Bologna (Italy); Melpignano, P [Centro Ricerche Plast-Optica (CRP), via Jacopo Linussio 1, 33020 Amaro (UD) (Italy); Biondo, V [Centro Ricerche Plast-Optica (CRP), via Jacopo Linussio 1, 33020 Amaro (UD) (Italy)

    2006-08-23

    The electro-optical behaviour of organic light emitting diode devices (OLEDs) is greatly influenced by the morphology of the films. A major parameter is due to the important role that the morphology of the active organic thin films plays in the phenomena that lead to light emission. For vacuum-grown OLEDs, the morphology of the specific thin films can be varied by modification of the deposition conditions. We have assessed the method (ultrahigh-vacuum organic molecular beam deposition) and conditions (variation of the deposition rate) for electro-emission (EL) optimization in a standard {alpha}-NPB (N,N'-bis-(1-naphthyl)-N,N' diphenyl-1,1' biphenyl-4-4' diamine)/Alq3 (tris-(8-hydroxyquinoline) aluminium) vacuum-grown OLED device. The best EL performances have been obtained for OLEDs made in ultrahigh vacuum with the Alq3 layer deposited with a differential deposition rate ranging from 1.0 to 0.3Angsts{sup -1}. The results are consistent with a model of different Alq3 morphologies, allowing efficient charge injection at the metal/organic interface, and of the minimization of grain boundaries at the electron-hole recombination interface, allowing efficient radiative excitonic decay. At the same time, with the objective of controlling and stabilizing the morphology changes and stabilizing the charge transport over a long OLED operating time, we have studied the effect of thermal annealing processing in the standard current behaviour of OLEDs. The large current fluctuations typically observed for standard vacuum-grown OLEDs have been smeared out and kept constant over a long operating time by the given thermal annealing conditions. The results are interpreted in terms of the stabilization of intrinsic polymorphism of the organic film's structure induced by thermal energy and leading the morphology to a lowest-energetic configuration.

  1. The role of Dark Matter sub-halos in the non-thermal emission of galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marchegiani, Paolo; Colafrancesco, Sergio, E-mail: Paolo.Marchegiani@wits.ac.za, E-mail: Sergio.Colafrancesco@wits.ac.za [School of Physics, University of the Witwatersrand, Private Bag 3, WITS-2050, Johannesburg (South Africa)

    2016-11-01

    Annihilation of Dark Matter (DM) particles has been recognized as one of the possible mechanisms for the production of non-thermal particles and radiation in galaxy clusters. Previous studies have shown that, while DM models can reproduce the spectral properties of the radio halo in the Coma cluster, they fail in reproducing the shape of the radio halo surface brightness because they produce a shape that is too concentrated towards the center of the cluster with respect to the observed one. However, in previous studies the DM distribution was modeled as a single spherically symmetric halo, while the DM distribution in Coma is found to have a complex and elongated shape. In this work we calculate a range of non-thermal emissions in the Coma cluster by using the observed distribution of DM sub-halos. We find that, by including the observed sub-halos in the DM model, we obtain a radio surface brightness with a shape similar to the observed one, and that the sub-halos boost the radio emission by a factor between 5 and 20%, thus allowing to reduce the gap between the annihilation cross section required to reproduce the radio halo flux and the upper limits derived from other observations, and that this gap can be explained by realistic values of the boosting factor due to smaller substructures. Models with neutralino mass of 9 GeV and composition τ{sup +} τ{sup −}, and mass of 43 GeV and composition b b-bar can fit the radio halo spectrum using the observed properties of the magnetic field in Coma, and do not predict a gamma-ray emission in excess compared to the recent Fermi-LAT upper limits. These findings make these DM models viable candidate to explain the origin of radio halos in galaxy clusters, avoiding the problems connected to the excessive gamma-ray emission expected from proton acceleration in most of the currently proposed models, where the acceleration of particles is directly or indirectly connected to events related to clusters merging. Therefore, DM

  2. Controlling the diameters and field emission properties of vertically aligned carbon nanotubes synthesized by thermal chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sung Yool; Kang, Young Il; Cho, Kyoung Ik; Choi, Kyu Seok; Kim, Do Jin

    2001-01-01

    We report here the synthesis of vertically well-aligned carbon nanotubes and the effect of catalytic metal layer on the diameter of grown carbon nanotubes and the field emission characteristics of them, The carbon nanotubes were grown by thermal chemical vapor deposition at temperatures below 900 .deg. C on Fe metal catalytic layer, deposited by sputtering process on a Si substrate and pretreated by heat and NH 3 gas. We found that the thickness of metal layers could be an important parameter in controlling the diameters of carbon nanotubes. With varying the thickness of the metal layers the grain sizes of them also vary so that the diameters of the nanotubes could be controlled. Field emission measurement has been made on the carbon nanotube field emitters at room temperature in a vacuum chamber below 10 -6 Torr. Our vertically aligned carbon nanotube field emitter of the smallest diameter emits a current density about 10 mA/cm 2 at 7.2 V/μm. The field emission property of the carbon nanotubes shows strong dependence on the nanotube diameters as expected

  3. Amended Results for Hard X-Ray Emission by Non-thermal Thick Target Recombination in Solar Flares

    Science.gov (United States)

    Reep, J. W.; Brown, J. C.

    2016-06-01

    Brown & Mallik and the corresponding corrigendum Brown et al. presented expressions for non-thermal recombination (NTR) in the collisionally thin- and thick-target regimes, claiming that the process could account for a substantial part of the hard X-ray continuum in solar flares usually attributed entirely to thermal and non-thermal bremsstrahlung (NTB). However, we have found the thick-target expression to become unphysical for low cut-offs in the injected electron energy spectrum. We trace this to an error in the derivation, derive a corrected version that is real-valued and continuous for all photon energies and cut-offs, and show that, for thick targets, Brown et al. overestimated NTR emission at small photon energies. The regime of small cut-offs and large spectral indices involve large (reducing) correction factors but in some other thick-target parameter regimes NTR/NTB can still be of the order of unity. We comment on the importance of these results to flare and microflare modeling and spectral fitting. An empirical fit to our results shows that the peak NTR contribution comprises over half of the hard X-ray signal if δ ≳ 6{≤ft(\\tfrac{{E}0c}{4{keV}}\\right)}0.4.

  4. How the geysers, tidal stresses, and thermal emission across the south polar terrain of enceladus are related

    International Nuclear Information System (INIS)

    Porco, Carolyn; DiNino, Daiana; Nimmo, Francis

    2014-01-01

    We present the first comprehensive examination of the geysering, tidal stresses, and anomalous thermal emission across the south pole of Enceladus and discuss the implications for the moon's thermal history and interior structure. A 6.5 yr survey of the moon's south polar terrain (SPT) by the Cassini imaging experiment has located ∼100 jets or geysers erupting from four prominent fractures crossing the region. Comparing these results with predictions of diurnally varying tidal stresses and with Cassini low resolution thermal maps shows that all three phenomena are spatially correlated. The coincidence of individual jets with very small (∼10 m) hot spots detected in high resolution Cassini VIMS data strongly suggests that the heat accompanying the geysers is not produced by shearing in the upper brittle layer but rather is transported, in the form of latent heat, from a sub-ice-shell sea of liquid water, with vapor condensing on the near-surface walls of the fractures. Normal stresses modulate the geysering activity, as shown in the accompanying paper; we demonstrate here they are capable of opening water-filled cracks all the way down to the sea. If Enceladus' eccentricity and heat production are in steady state today, the currently erupting material and anomalous heat must have been produced in an earlier epoch. If regional tidal heating is occurring today, it may be responsible for some of the erupting water and heat. Future Cassini observations may settle the question.

  5. Non-thermal emission in the core of Perseus: results from a long XMM-Newton observation

    Science.gov (United States)

    Molendi, S.; Gastaldello, F.

    2009-01-01

    We employ a long XMM-Newton observation of the core of the Perseus cluster to validate claims of a non-thermal component discovered with Chandra. From a meticulous analysis of our dataset, which includes a detailed treatment of systematic errors, we find the 2-10 keV surface brightness of the non-thermal component to be less than about 5 × 10-16 erg~cm-2 s-1 arcsec-2. The most likely explanation for the discrepancy between the XMM-Newton and Chandra estimates is a problem in the effective area calibration of the latter. Our EPIC-based magnetic field lower limits do not disagree with Faraday rotation measure estimates on a few cool cores and with a minimum energy estimate on Perseus. In the not too distant future Simbol-X may allow detection of non-thermal components with intensities more than 10 times lower than those that can be measured with EPIC; nonetheless even the exquisite sensitivity within reach for Simbol-X might be insufficient to detect the IC emission from Perseus.

  6. The Analysis of the Possible Thermal Emission at Radio Frequencies from an Evolved Supernova Remnant HB 3 (G132.7+1.3: Revisited

    Directory of Open Access Journals (Sweden)

    Onić, D.

    2008-12-01

    Full Text Available It has recently been reported that some of the flux density values for an evolved supernova remnant (SNR HB 3 (G132.7$+$1.3 are not accurate enough. In this work we therefore revised the analysis of the possible thermal emission at radio frequencies from this SNR using the recently published, corrected flux density values. A model including the sum of non-thermal (purely synchrotron and thermal (bremsstrahlung components is applied to fit the integrated radio spectrum of this SNR. The contribution of thermal component to the total volume emissivity at $1 mathrm{GHz}$ is estimated to be $approx37 \\%$. The ambient density is also estimated to be $napprox 9 mathrm{cm}^{-3}$ for $mathrm{T}=10^{4} mathrm{K}$. Again we obtained a relatively significant presence of thermal emission at radio frequencies from the SNR, which can support interaction between SNR HB 3 and adjacent molecular cloud associated with the mbox{H,{sc ii}} region W3. Our model estimates for thermal component contribution to total volume emissivity at $1 mathrm{GHz}$ and ambient density are similar to those obtained earlier ($approx40 \\%$, $approx10 mathrm{cm^{-3}}$. It is thus obvious that the corrected flux density values do not affect the basic conclusions.

  7. Reduction of heat losses from greenhouses by means of internal blinds with low thermal emissivity

    NARCIS (Netherlands)

    Meijer, J.

    1980-01-01

    Heat losses in greenhouses may be substantially reduced by the use of heat reflecting blinds. Quantitative results are obtained solving a mathematical heat flow model by numerical methods. Special attention has been given to the emissivity and transmittance of the screen and the ventilation through

  8. Planck 2013 results. XI. All-sky model of thermal dust emission

    DEFF Research Database (Denmark)

    Abergel, A.; Ade, P. A. R.; Aghanim, N.

    2014-01-01

    This paper presents an all-sky model of dust emission from the Planck 353, 545, and 857 GHz, and IRAS 100 mu m data. Using a modified blackbody fit to the data we present all-sky maps of the dust optical depth, temperature, and spectral index over the 353-3000 GHz range. This model is a good repr...

  9. Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust

    DEFF Research Database (Denmark)

    Cardoso, J. F.; Delabrouille, J.; Ganga, K.

    2015-01-01

    measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different...

  10. Use of Radarsat-2 polarimetric SAR images for fuel moisture mapping in the Kruger National Park, South Africa

    CSIR Research Space (South Africa)

    Kong, M

    2015-08-01

    Full Text Available of winter, dry). Sample plots were classified into two broad Lowveld site types (herbaceous-dominated and shrub and tree-dominated). Linear and circular polarized backscatters, polarimetric discriminators and polarimetric decomposition parameters were...

  11. Testing a polarimetric cloud imager aboard research vessel Polarstern: comparison of color-based and polarimetric cloud detection algorithms.

    Science.gov (United States)

    Barta, András; Horváth, Gábor; Horváth, Ákos; Egri, Ádám; Blahó, Miklós; Barta, Pál; Bumke, Karl; Macke, Andreas

    2015-02-10

    Cloud cover estimation is an important part of routine meteorological observations. Cloudiness measurements are used in climate model evaluation, nowcasting solar radiation, parameterizing the fluctuations of sea surface insolation, and building energy transfer models of the atmosphere. Currently, the most widespread ground-based method to measure cloudiness is based on analyzing the unpolarized intensity and color distribution of the sky obtained by digital cameras. As a new approach, we propose that cloud detection can be aided by the additional use of skylight polarization measured by 180° field-of-view imaging polarimetry. In the fall of 2010, we tested such a novel polarimetric cloud detector aboard the research vessel Polarstern during expedition ANT-XXVII/1. One of our goals was to test the durability of the measurement hardware under the extreme conditions of a trans-Atlantic cruise. Here, we describe the instrument and compare the results of several different cloud detection algorithms, some conventional and some newly developed. We also discuss the weaknesses of our design and its possible improvements. The comparison with cloud detection algorithms developed for traditional nonpolarimetric full-sky imagers allowed us to evaluate the added value of polarimetric quantities. We found that (1) neural-network-based algorithms perform the best among the investigated schemes and (2) global information (the mean and variance of intensity), nonoptical information (e.g., sun-view geometry), and polarimetric information (e.g., the degree of polarization) improve the accuracy of cloud detection, albeit slightly.

  12. Computational fluid dynamics (CFD) simulation of CO2 emission from a thermal power plant in an urban environment.

    Science.gov (United States)

    Toja-Silva, Francisco; Chen, Jia; Hachinger, Stephan

    2017-04-01

    Climate change, a societal challenge for the European Union, is affecting all regions in Europe and has a profound impact on society and environment. It is now clear that the present global warming period is due to the strong anthropogenic greenhouse gas (GHG) emission, occurring at an unprecedented rate. Therefore, the identification and control of the greenhouse gas sources has a great relevance. Since the GHG emissions from cities are the largest human contribution to climate change, the present investigation focuses on the urban environment. Bottom-up annual emission inventories are compiled for most countries. However, a rigorous approach requires to perform experimental measurements in order to verify the official estimates. Measurements of column-averaged dry-air mole fractions of GHG (XGHG) can be used for this. To comprehensively detect and quantify GHG emission sources, these punctual column data, however, have to be extended to the surrounding urban map, requiring a deep understanding of the gas transport. The resulting emission estimation will serve several practical purposes, e.g. the verification of official emission rates and the determination of trends in urban emissions. They will enable the administration to make targeted and economically efficient decisions about mitigation options, and help to stop unintentional and furtive releases. With this aim, this investigation presents a completely new approach to the analysis of the carbon dioxide (CO2) emissions from fossil fuel thermal power plants in urban environments by combining differential column measurements with computational fluid dynamics (CFD) simulations in order to deeply understand the experimental conditions. The case study is a natural gas-fueled cogeneration (combined heat and power, CHP) thermal power plant inside the city of Munich (Germany). The software used for the simulations (OpenFOAM) was modified in order to use the most advanced RANS turbulence modeling (i.e. Durbin) and

  13. Impurity line emission due to thermal charge exchange in JET edge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maggi, C F; Horton, L D; Koenig, R; Stamp, M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Summers, H P [Strathclyde Univ., Glasgow (United Kingdom)

    1994-07-01

    High n-shell emission from hydrogen-like carbon (C VI, n=8-7) has been routinely observed from the plasma edge of JET. By comparing the measured spectral line intensities with the signals predicted by advanced atomic physics modelling of carbon and hydrogen radiation, integrated with modelling of the divertor and edge plasma, it is concluded that charge transfer from excited state hydrogen donors into fully stripped carbon ions can account for the observed spectral emission, but that the hydrogen distribution and to a lesser extent the carbon distribution away from the strike zone predicted by the transport model are too low. Data presented are those of three upper X-point discharges, where the target material was carbon. 5 refs., 1 fig., 3 tabs.

  14. Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization

    DEFF Research Database (Denmark)

    Cardoso, J. F.; Delabrouille, J.; Ganga, K.

    2015-01-01

    )% from 353 to 70 GHz. We discuss this result within the context of existing dust models. The decrease in p could indicate differences in polarization efficiency among components of interstellar dust (e.g., carbon versus silicate grains). Our observational results provide inputs to quantify and optimize......Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We use these data to characterize the frequency dependence of dust emission. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and cross-correlate them...... of the cosmic microwave background. We use a mask that focuses our analysis on the diffuse interstellar medium at intermediate Galactic latitudes. We determine the spectral indices of dust emission in intensity and polarization between 100 and 353 GHz, for each sky patch. Both indices are found to be remarkably...

  15. Emission reduction in thermal processes for sewage sludge disposal; Emissionsreduzierung bei thermischen Verfahren zur Klaerschlammentsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Nethe, L.P. [Maerker Umwelttechnik GmbH, Hamburg (Germany)

    1998-09-01

    Owing to the intensification of treatment processes and the construction of new sewage plants sewage arisings are due to rise considerably. The thermal treatment of sewage sludge which it has not been possible to avoid or utilise is an important and indispensable part of any sewage sludge disposal concept. If equipped with a state-of-the-art flue gas purification process that uses carbonaceous adsorbents (Sorbalit trademark), thermal treatment of sewage sludge can be regarded as an environmentally safe process technique. [Deutsch] Die anfallenden Klaerschlammengen werden durch die Intensivierung der Klaerprozesse und der Bau neuer Klaeranlagen deutlich zunehmen. Die thermische Behandlung nicht vermiedener oder verwerteter Klaerschlaemme stellt einen bedeutenden und unverzichtbaren Teil der Klaerschlamm-Entsorgungskonzepte dar. Bei Installation einer - dem Stand der Technik - entsprechenden Rauchgasreinigung mit dem Einsatz kohlenstoffhaltiger Adsorbentien (Sorbalit {sup trademark}) ist die thermische Behandlung von Klaerschlamm eine umweltsichere Verfahrenstechnik. (orig.)

  16. Thermal tuning of spectral emission from optically trapped liquid-crystal droplet resonators

    Czech Academy of Sciences Publication Activity Database

    Jonáš, A.; Pilát, Zdeněk; Ježek, Jan; Bernatová, Silvie; Fořt, Tomáš; Zemánek, Pavel; Aas, M.; Kiraz, A.

    2017-01-01

    Roč. 34, č. 9 (2017), s. 1855-1864 ISSN 0740-3224 R&D Projects: GA MŠk(CZ) LD14069; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : emission spectroscopy * drops * optical tweezers Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.843, year: 2016

  17. Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China

    OpenAIRE

    Xiaopeng Guo; Xiaodan Guo; Jiahai Yuan

    2014-01-01

    Spurred by the increasingly serious air pollution problem, the Chinese government has launched a series of policies to put forward specific measures of power structure adjustment and the control objectives of air pollution and coal consumption. Other policies pointed out that the coal resources regional blockades will be broken by improving transportation networks and constructing new logistics nodes. Thermal power takes the largest part of China’s total installed power generation capacity, s...

  18. A two component model for thermal emission from organic grains in Comet Halley

    Science.gov (United States)

    Chyba, Christopher; Sagan, Carl

    1988-01-01

    Observations of Comet Halley in the near infrared reveal a triple-peaked emission feature near 3.4 micrometer, characteristic of C-H stretching in hydrocarbons. A variety of plausible cometary materials exhibit these features, including the organic residue of irradiated candidate cometary ices (such as the residue of irradiated methane ice clathrate, and polycyclic aromatic hydrocarbons. Indeed, any molecule containing -CH3 and -CH2 alkanes will emit at 3.4 micrometer under suitable conditions. Therefore tentative identifications must rest on additional evidence, including a plausible account of the origins of the organic material, a plausible model for the infrared emission of this material, and a demonstration that this conjunction of material and model not only matches the 3 to 4 micrometer spectrum, but also does not yield additional emission features where none is observed. In the case of the residue of irradiated low occupancy methane ice clathrate, it is argued that the lab synthesis of the organic residue well simulates the radiation processing experienced by Comet Halley.

  19. MODELING THE THERMAL DIFFUSE SOFT AND HARD X-RAY EMISSION IN M17

    International Nuclear Information System (INIS)

    Velázquez, P. F.; Rodríguez-González, A.; Esquivel, A.; Rosado, M.; Reyes-Iturbide, J.

    2013-01-01

    We present numerical models of very young wind driven superbubbles. The parameters chosen for the simulations correspond to the particular case of the M17 nebula, but are appropriate for any young superbubble in which the wind sources have not completely dispersed their parental cloud. From the simulations, we computed the diffuse emission in the soft ([0.5-1.5] keV) and hard ([1.5-5] keV) X-ray bands. The total luminosity in our simulations agrees with the observations of Hyodo et al., about two orders of magnitude below the prediction of the standard model of Weaver et al.. The difference with respect to the standard (adiabatic) model is the inclusion of radiative cooling, which is still important in such young bubbles. We show that for this type of object the diffuse hard X-ray luminosity is significant compared to that of soft X-rays, contributing as much as 10% of the total luminosity, in contrast with more evolved bubbles where the hard X-ray emission is indeed negligible, being at least four orders of magnitude lower than the soft X-ray emission.

  20. Polarimetric Scattering Properties of Landslides in Forested Areas and the Dependence on the Local Incidence Angle

    Directory of Open Access Journals (Sweden)

    Takashi Shibayama

    2015-11-01

    Full Text Available This paper addresses the local incidence angle dependence of several polarimetric indices corresponding to landslides in forested areas. Landslide is deeply related to the loss of human lives and their property. Various kinds of remote sensing techniques, including aerial photography, high-resolution optical satellite imagery, LiDAR and SAR interferometry (InSAR, have been available for landslide investigations. SAR polarimetry is potentially an effective measure to investigate landslides because fully-polarimetric SAR (PolSAR data contain more information compared to conventional single- or dual-polarization SAR data. However, research on landslide recognition utilizing polarimetric SAR (PolSAR is quite limited. Polarimetric properties of landslides have not been examined quantitatively so far. Accordingly, we examined the polarimetric scattering properties of landslides by an assessment of how the decomposed scattering power components and the polarimetric correlation coefficient change with the local incidence angle. In the assessment, PolSAR data acquired from different directions with both spaceborne and airborne SARs were utilized. It was found that the surface scattering power and the polarimetric correlation coefficient of landslides significantly decrease with the local incidence angle, while these indices of surrounding forest do not. This fact leads to establishing a method of effective detection of landslide area by polarimetric information.

  1. Spectral Polarimetric Features Analysis of Wind Turbine Clutter in Weather Radar

    NARCIS (Netherlands)

    Yin, J.; Krasnov, O.A.; Unal, C.M.H.; Medagli, S.; Russchenberg, H.W.J.

    2017-01-01

    Wind turbine clutter has gradually become a concern for the radar community for its increasing size and quantity worldwide. Based on the S-band polarimetric Doppler PARSAX radar measurements, this paper demonstrates the micro-Doppler features and spectral-polarimetric characteristic of wind turbine

  2. Comparative determination of sucrose content in sugar beet by polarimetric and isotope dilution methods

    Energy Technology Data Exchange (ETDEWEB)

    Malec, K; Szuchnik, A [Institute of Nuclear Research, Warsaw (Poland); Rydel, S; Walerianaczyk, E [Instytut Przemyslu Cukrowniczego, Warsaw (Poland)

    1976-01-01

    The comparative determination of sucrose content in sugar beets has been investigated by following methods: polarimetric, direct isotope dilution and double carrier-isotope dilution analysis. Basing upon the obtained results it has been ascertained, that in the case of worse quality beets the polarimetric determinations differ greatly from isotopic data.

  3. Measurement of CO{sub 2}, CO, SO{sub 2}, and NO emissions from coal-based thermal power plants in India

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, N.; Mukheriee, I.; Santra, A.K.; Chowdhury, S.; Chakraborty, S.; Bhattacharya, S.; Mitra, A.P.; Sharma, C. [Jadavpur University, Calcutta (India). Dept. of Power Engineering

    2008-02-15

    Measurements of CO{sub 2} (direct GHG) and CO, SO{sub 2}, NO (indirect GHGs) were conducted on-line at some of the coal-based thermal power plants in India. The objective of the study was three-fold: to quantify the measured emissions in terms of emission coefficient per kg of coal and per kWh of electricity, to calculate the total possible emission from Indian thermal power plants, and subsequently to compare them with some previous studies. Instrument IMR 2800P Flue Gas Analyzer was used on-line to measure the emission rates Of CO{sub 2}, CO, SO{sub 2}, and NO at 11 numbers of generating units of different ratings. Certain quality assurance (QA) and quality control (QC) techniques were also adopted to gather the data so as to avoid any ambiguity in subsequent data interpretation. For the betterment of data interpretation, the requisite statistical parameters (standard deviation and arithmetic mean) for the measured emissions have been also calculated. The emission coefficients determined for CO{sub 2}, CO, SO{sub 2}, and NO have been compared with their corresponding values as obtained in the studies conducted by other groups. The total emissions of CO{sub 2}, CO, SO{sub 2}, and NO calculated on the basis of the emission coefficients for the year 2003-2004 have been found to be 465.667, 1.583, 4.058, and 1.129 Tg, respectively.

  4. Global Thermal Power Plants Database: Unit-Based CO2, SO2, NOX and PM2.5 Emissions in 2010

    Science.gov (United States)

    Tong, D.; Qiang, Z.; Davis, S. J.

    2016-12-01

    There are more than 30,000 thermal power plants now operating worldwide, reflecting a tremendously diverse infrastructure that includes units burning oil, natural gas, coal and biomass and ranging in capacity from 1GW. Although the electricity generated by this infrastructure is vital to economic activities across the world, it also produces more CO2 and air pollution emissions than any other industry sector. Here we present a new database of global thermal power-generating units and their emissions as of 2010, GPED (Global Power Emissions Database), including the detailed unit information of installed capacity, operation year, geographic location, fuel type and control measures for more than 70000 units. In this study, we have compiled, combined, and harmonized the available underlying data related to thermal power-generating units (e.g. eGRID of USA, CPED of China and published Indian power plants database), and then analyzed the generating capacity, capacity factor, fuel type, age, location, and installed pollution-control technology in order to determine those units with disproportionately high levels of emissions. In total, this work is of great importance for improving spatial distribution of global thermal power plants emissions and exploring their environmental impacts at global scale.

  5. Is there a difference between the energy and CO_2 emission performance for China’s thermal power industry? A bootstrapped directional distance function approach

    International Nuclear Information System (INIS)

    Duan, Na; Guo, Jun-Peng; Xie, Bai-Chen

    2016-01-01

    Highlights: • Evaluate the energy and CO_2 emission performance of China’s thermal power industry. • Perform statistical inferences for the estimates of efficiency and productivity indexes. • There exist differences between the energy and CO_2 emission performance. • Technological progress is the main driving force for productivity improvement. - Abstract: A scientific evaluation of the energy efficiency and CO_2 emission performance of the thermal power industry could not only provide valuable information for reducing energy consumption and carbon emissions but also serve as a tool to estimate the effectiveness of relevant policy reforms. Considering the opposite effects of energy conservation and carbon emission reduction on generation cost, this study respectively measures the energy and CO_2 emission performance of the thermal power industries in China’s 30 provincial administrative regions during the period 2005–2012 from both static and dynamic perspectives. We implement the bootstrap method for the directional distance function to correct the possible estimate bias and test the significance of productivity changes where the weak disposability of undesirable outputs is also integrated. The empirical analysis leads to the following conclusions. The bootstrapping results could provide us with much valuable information because the initial estimates might result from sampling noise rather than reveal the real variations. In addition, some differences do exist between the energy and CO_2 emission performance of China’s thermal power industry. Furthermore, technological progress is the main driving force for energy and CO_2 emission productivity improvement and it works better for the former.

  6. Carbon nanotubes growing on rapid thermal annealed Ni and their application to a triode-type field emission device

    International Nuclear Information System (INIS)

    Uh, Hyung Soo; Park, Sang Sik

    2006-01-01

    In this paper, we demonstrate a new triode-type field emitter arrays using carbon nanotubes (CNTs) as an electron emitter source. In the proposed structure, the gate electrode is located underneath the cathode electrode and the extractor electrode is surrounded by CNT emitters. CNTs were selectively grown on the patterned Ni catalyst layer by using plasma-enhanced chemical vapor deposition (PECVD). Vertically aligned CNTs were grown with gas mixture of acetylene and ammonia under external DC bias. Compared with a conventional under-gate structure, the proposed structure reduced the turn-on voltage by about 30%. In addition, with a view to controlling the density of CNTs, Ni catalyst thickness was varied and rapid thermal annealing (RTA) treatment was optionally adopted before CNT growth. With controlled Ni thickness and RTA condition, field emission efficiency was greatly improved by reducing the density of CNTs, which is due to the reduction of the electric field screening effect caused by dense CNTs

  7. Polsar Land Cover Classification Based on Hidden Polarimetric Features in Rotation Domain and Svm Classifier

    Science.gov (United States)

    Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.

    2017-09-01

    Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / text-decoration: overline">α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification

  8. POLSAR LAND COVER CLASSIFICATION BASED ON HIDDEN POLARIMETRIC FEATURES IN ROTATION DOMAIN AND SVM CLASSIFIER

    Directory of Open Access Journals (Sweden)

    C.-S. Tao

    2017-09-01

    Full Text Available Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR data utilization. Rollinvariant polarimetric features such as H / Ani / α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets’ scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification accuracy

  9. Optical temperature sensor based on the Nd{sup 3+} infrared thermalized emissions in a fluorotellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Lalla, E.A. [Departamento de Física, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); León-Luis, S.F., E-mail: sleonlui@ull.es [Departamento de Física, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); Malta Consolider Team, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); Monteseguro, V. [Departamento de Física, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); Malta Consolider Team, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); Pérez-Rodríguez, C. [Departamento de Física, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); Cáceres, J.M. [Departamento de Ingeniería Industrial, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); and others

    2015-10-15

    The temperature dependence of the infrared luminescence of a fluorotellurite glass doped with 0.01 and 2.5 mol% of Nd{sup 3+} ions was studied in order to use it as a high temperature sensing probe. For this purpose, the emission intensities of the ({sup 4}S{sub 3/2}, {sup 4}F{sub 7/2}), ({sup 2}H{sub 9/2}, {sup 4}F{sub 5/2}),{sup 4}F{sub 3/2}→{sup 4}I{sub 9/2} transitions were measured in a wide range of temperatures from 300 upto 650 K. The changes in the emission profiles were calibrated by means of the fluorescence intensity ratio technique. The calibrations showed a strong dependence on the Nd{sup 3+} ions concentration, having the low-doped concentrated sample the best response to changes of temperature. The maximum value obtained for the thermal sensibility is 17×10{sup −4} K{sup −1} at 640 K, being one of the highest values found in the literature for Nd{sup 3+} optical temperature sensors. Finally, the experimental calibrations were compared with the theoretical temperature luminescence response calculated from the Judd–Ofelt theory. - Highlights: • Nd{sup 3+}-doped fluorotellurite glasses were prepared. • The intensities of the ({sup 4}S{sub 3/2},{sup 4}F{sub 7/2}),({sup 2}H{sub 9/2},{sup 4}F{sub 5/2}), {sup 4}F{sub 3/2}→{sup 4}I{sub 9/2} transitions. • The highest thermal sensitivity has been obtained for the glass with the lowest concentration of Nd{sup 3+} ions. • The Nd{sup 3+}-doped fluorotellurite glass fits the requirement for a good temperature sensor.

  10. Different scenarios to reduce greenhouse gas emissions of thermal power stations in Canada

    International Nuclear Information System (INIS)

    Zabihian, F.; Fung, A.S.

    2009-01-01

    The purpose of this paper is to examine greenhouse gas (GHG) emission reduction potentials in the Canadian electricity generation sector through fuel switching and the adoption of advanced power generation systems. To achieve this purpose, six different scenarios were introduced. In the first scenario existing power stations' fuel was switched to natural gas. Existing power plants were replaced by natural gas combined cycle (NGCC), integrated gasification combined cycle (IGCC), solid oxide fuel cell (SOFC), hybrid SOFC, and SOFC-IGCC hybrid power stations in scenarios number 2 to 6, respectively. (author)

  11. Recombination properties of diode structures by study of thermal emission beyond the fundamental absorption band

    International Nuclear Information System (INIS)

    Piotrowski, T; Wȩgrzecki, M; Czerwinski, A; Teslenko, G I; Malyutenko, O Y; Malyutenko, V K

    2014-01-01

    The study presents the possibilities of applying the measurement of spatial and temporal distribution of thermal radiation of a p-n junction structure located in a homogeneous temperature field higher than the ambient temperature, modulated by the presence of excess carriers injected through the junction, to determine surface recombination velocity at the injecting contact of the diode emitter and to measure the diffusion length in the base. Good agreement was obtained between the experimental results and calculations based on solutions of the transport equations.

  12. Measurement of optically and thermally stimulated electron emission from natural minerals

    DEFF Research Database (Denmark)

    Ankjærgaard, C.; Murray, A.S.; Denby, P.M.

    2006-01-01

    to a Riso TL/OSL reader, enabling optically stimulated electrons (OSE) and thermally stimulated electrons (TSE) to be measured simultaneously with optically stimulated luminescence (OSL) and thermoluminescence (TL). Repeated irradiation and measurement is possible without removing the sample from...... the counting chamber. Using this equipment both OSE and TSE from loose sand-sized grains of natural minerals has been recorded. It is shown that both the surface electron traps (giving rise to the OSE signals) and the bulk traps (giving rise to OSL) have the same dosimetric properties. A comparison of OSL...

  13. Simulated transient thermal infrared emissions of forest canopies during rainfall events

    Science.gov (United States)

    Ballard, Jerrell R.; Hawkins, William R.; Howington, Stacy E.; Kala, Raju V.

    2017-05-01

    We describe the development of a centimeter-scale resolution simulation framework for a theoretical tree canopy that includes rainfall deposition, evaporation, and thermal infrared emittance. Rainfall is simulated as discrete raindrops with specified rate. The individual droplets will either fall through the canopy and intersect the ground; adhere to a leaf; bounce or shatter on impact with a leaf resulting in smaller droplets that are propagated through the canopy. Surface physical temperatures are individually determined by surface water evaporation, spatially varying within canopy wind velocities, solar radiation, and water vapor pressure. Results are validated by theoretical canopy gap and gross rainfall interception models.

  14. Determining mineralogical variations of aeolian deposits using thermal infrared emissivity and linear deconvolution methods

    Science.gov (United States)

    Hubbard, Bernard E.; Hooper, Donald M.; Solano, Federico; Mars, John C.

    2018-01-01

    We apply linear deconvolution methods to derive mineral and glass proportions for eight field sample training sites at seven dune fields: (1) Algodones, California; (2) Big Dune, Nevada; (3) Bruneau, Idaho; (4) Great Kobuk Sand Dunes, Alaska; (5) Great Sand Dunes National Park and Preserve, Colorado; (6) Sunset Crater, Arizona; and (7) White Sands National Monument, New Mexico. These dune fields were chosen because they represent a wide range of mineral grain mixtures and allow us to gauge a better understanding of both compositional and sorting effects within terrestrial and extraterrestrial dune systems. We also use actual ASTER TIR emissivity imagery to map the spatial distribution of these minerals throughout the seven dune fields and evaluate the effects of degraded spectral resolution on the accuracy of mineral abundances retrieved. Our results show that hyperspectral data convolutions of our laboratory emissivity spectra outperformed multispectral data convolutions of the same data with respect to the mineral, glass and lithic abundances derived. Both the number and wavelength position of spectral bands greatly impacts the accuracy of linear deconvolution retrieval of feldspar proportions (e.g. K-feldspar vs. plagioclase) especially, as well as the detection of certain mafic and carbonate minerals. In particular, ASTER mapping results show that several of the dune sites display patterns such that less dense minerals typically have higher abundances near the center of the active and most evolved dunes in the field, while more dense minerals and glasses appear to be more abundant along the margins of the active dune fields.

  15. Determining mineralogical variations of aeolian deposits using thermal infrared emissivity and linear deconvolution methods

    Science.gov (United States)

    Hubbard, Bernard E.; Hooper, Donald M.; Solano, Federico; Mars, John C.

    2018-02-01

    We apply linear deconvolution methods to derive mineral and glass proportions for eight field sample training sites at seven dune fields: (1) Algodones, California; (2) Big Dune, Nevada; (3) Bruneau, Idaho; (4) Great Kobuk Sand Dunes, Alaska; (5) Great Sand Dunes National Park and Preserve, Colorado; (6) Sunset Crater, Arizona; and (7) White Sands National Monument, New Mexico. These dune fields were chosen because they represent a wide range of mineral grain mixtures and allow us to gauge a better understanding of both compositional and sorting effects within terrestrial and extraterrestrial dune systems. We also use actual ASTER TIR emissivity imagery to map the spatial distribution of these minerals throughout the seven dune fields and evaluate the effects of degraded spectral resolution on the accuracy of mineral abundances retrieved. Our results show that hyperspectral data convolutions of our laboratory emissivity spectra outperformed multispectral data convolutions of the same data with respect to the mineral, glass and lithic abundances derived. Both the number and wavelength position of spectral bands greatly impacts the accuracy of linear deconvolution retrieval of feldspar proportions (e.g. K-feldspar vs. plagioclase) especially, as well as the detection of certain mafic and carbonate minerals. In particular, ASTER mapping results show that several of the dune sites display patterns such that less dense minerals typically have higher abundances near the center of the active and most evolved dunes in the field, while more dense minerals and glasses appear to be more abundant along the margins of the active dune fields.

  16. Planck 2013 results. XI. All-sky model of thermal dust emission

    CERN Document Server

    Abergel, A; Aghanim, N; Alina, D; Alves, M I R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartlett, J G; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bonaldi, A; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Butler, R C; Cardoso, J -F; Catalano, A; Chamballu, A; Chary, R -R; Chiang, H C; Chiang, L -Y; Christensen, P R; Church, S; Clemens, M; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Galeotta, S; Ganga, K; Ghosh, T; Giard, M; Giardino, G; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Grenier, I A; Gruppuso, A; Guillet, V; Hansen, F K; Hanson, D; Harrison, D; Helou, G; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Jaffe, A H; Jaffe, T R; Jewell, J; Joncas, G; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leonardi, R; León-Tavares, J; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Massardi, M; Matarrese, S; Matthai, F; Mazzotta, P; McGehee, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rowan-Robinson, M; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Türler, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Welikala, N; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    This paper presents an all-sky model of dust emission from the Planck 857, 545 and 353 GHz, and IRAS 100 micron data. Using a modified black-body fit to the data we present all-sky maps of the dust optical depth, temperature, and spectral index over the 353-3000 GHz range. This model is a tight representation of the data at 5 arcmin. It shows variations of the order of 30 % compared with the widely-used model of Finkbeiner, Davis, and Schlegel. The Planck data allow us to estimate the dust temperature uniformly over the whole sky, providing an improved estimate of the dust optical depth compared to previous all-sky dust model, especially in high-contrast molecular regions. An increase of the dust opacity at 353 GHz, tau_353/N_H, from the diffuse to the denser interstellar medium (ISM) is reported. It is associated with a decrease in the observed dust temperature, T_obs, that could be due at least in part to the increased dust opacity. We also report an excess of dust emission at HI column densities lower than...

  17. Abatement of global warming gas emissions from semiconductor manufacturing processes by non-thermal plasma-catalyst systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J-S.; Urashima, K. [McMaster Univ., McIARS and Dept. Eng. Phys., Hamilton, Ontario (Canada)

    2009-07-01

    Emission of various hazardous air pollutants (HAPs) and greenhouse gases including perfluoro-compounds (PFCs) from semiconductor industries may cause significant impact on human health and the global environment, has attracted much public attention. In this paper, an application of nonthermal plasma-adsorbent system for a removal of PFCs emission from semiconductor process flue gases is experimentally investigated. The non-thermal plasma reactor used is the ferro-electric packed-bed type barrier discharge plasma and adsorbent reactor used is Zeolite bed reactor. The results show that for a simulated semiconductor process flue gas with C{sub 2}F{sub 6} (2000ppm)/ CF{sub 4}(1000ppm)/ N{sub 2}O(1000ppm)/ N{sub 2}/ Air mixture, 54% of C{sub 2}F{sub 6} and 32% of CF{sub 4} were decomposed by the plasma reactor and 100% of C{sub 2}F{sub 6} and 98% of CF{sub 4} were removed by plasma reactor/Zeolite adsorbent hybrid system. For a simulated semiconductor process flue gas with NF{sub 3} (2000ppm)/ SiF{sub 4}(1000ppm)/ N{sub 2}O(200ppm)/ N{sub 2}/ Air mixture, 92% of NF{sub 3} and 32% of SiF{sub 4} were decomposed by the plasma reactor and total (100%) removal of the pollutant gases was achieved by plasma reactor/Zeolite adsorbent hybrid system. (author)

  18. Chemical light emission and formation of C=O radicals accompanying thermal deterioration of irradiated pure EPR

    International Nuclear Information System (INIS)

    Ito, Masayuki

    1991-01-01

    The Institute of Electrical Engineers of Japan proposed the method of successively applying radiation and heat as the environmental test method for the electric wires and cables for nuclear power stations. In this study, the method of applying radiation first and heat next was examined. In the case of trying to give by the successive application the deterioration equivalent to that by the simultaneous application of radiation and heat, it becomes an important problem whether the activation energy of thermal deterioration changes due to irradiation or not. In this study, the samples were irradiated and subsequently exposed to heat, and the chemical light emission arose at that time which reflects the oxidizing reaction was measured. Besides, the concentration of C=O radicals which were accumulated as the result of the oxidizing reaction was measured, and the temperature dependence of the constant of the concentration increase rate was examined. The experiment on chemical light emission and on the formation of C=O radicals and the results are reported. It was clarified that the concentraiton of C=O radicals formed by irradiation and heat treatment thereafter can be represented as the functions of dose and heat treatment temperature. (K.I.)

  19. Effect of thermal annealing on the emission properties of heterostructures containing a quantum-confined GaAsSb layer

    Energy Technology Data Exchange (ETDEWEB)

    Dikareva, N. V., E-mail: dnat@ro.ru; Vikhrova, O. V.; Zvonkov, B. N. [Lobachevsky State University of Nizhni Novgorod, Physico-Technical Research Institute (Russian Federation); Malekhonova, N. V. [Lobachevsky State University of Nizhni Novgorod (Russian Federation); Nekorkin, S. M. [Lobachevsky State University of Nizhni Novgorod, Physico-Technical Research Institute (Russian Federation); Pirogov, A. V.; Pavlov, D. A. [Lobachevsky State University of Nizhni Novgorod (Russian Federation)

    2015-01-15

    Heterostructures containing single GaAsSb/GaAs quantum wells and bilayer GaAsSb/InGaAs quantum wells are produced by metal-organic vapor-phase epitaxy at atmospheric pressure. The growth temperature of the quantum-confined layers is 500–570°C. The structural quality of the samples and the quality of heterointerfaces of the quantum wells are studied by the high-resolution transmission electron microscopy of cross sections. The emission properties of the heterostructures are studied by photoluminescence measurements. The structures are subjected to thermal annealing under conditions chosen in accordance with the temperature and time of growth of the upper cladding p-InGaP layer during the formation of GaAs/InGaP laser structures with an active region containing quantum-confined GaAsSb layers. It is found that such heat treatment can have a profound effect on the emission properties of the active region, only if a bilayer GaAsSb/InGaAs quantum well is formed.

  20. In situ probing of temperature in radio frequency thermal plasma using Yttrium ion emission lines during synthesis of yttria nanoparticles

    Science.gov (United States)

    Dhamale, G. D.; Tiwari, N.; Mathe, V. L.; Bhoraskar, S. V.; Ghorui, S.

    2017-07-01

    Particle feeding is used in the most important applications of radio frequency (r.f.) thermal plasmas like synthesis of nanoparticles and particle spheroidization. The study reports an in-situ investigation of radial distribution of temperature in such devices using yttrium ion emission lines under different rates of particle loading during synthesis of yttria nanoparticles. A number of interesting facts about the response of r.f. plasma to the rate of particle loading, hitherto unknown, are revealed. Observed phenomena are supported with experimental data from fast photographic experiments and actual synthesis results. The use of the Abel inversion technique together with simultaneous multi-track acquisition of emission spectra from different spatial locations using a CCD based spectrometer allowed us to extract accurate distribution of temperature inside the plasma in the presence of inherent instabilities. The temperature profiles of this type of plasma have been measured possibly for the first time while particles are being fed into the plasma. Observed changes in the temperature profiles as the particle feed rate increases are very significant. Reaction forces resulting from particle evaporation, and increased skin depth owing to the decrease in electrical conductivity in the edge region are proposed as the two different mechanisms to account for the observed changes in the temperature profile as the powder feed rate is increased. Quantitative analyses supporting the proposed mechanisms are presented.

  1. Abatement of global warming gas emissions from semiconductor manufacturing processes by non-thermal plasma-catalyst systems

    International Nuclear Information System (INIS)

    Chang, J-S.; Urashima, K.

    2009-01-01

    Emission of various hazardous air pollutants (HAPs) and greenhouse gases including perfluoro-compounds (PFCs) from semiconductor industries may cause significant impact on human health and the global environment, has attracted much public attention. In this paper, an application of nonthermal plasma-adsorbent system for a removal of PFCs emission from semiconductor process flue gases is experimentally investigated. The non-thermal plasma reactor used is the ferro-electric packed-bed type barrier discharge plasma and adsorbent reactor used is Zeolite bed reactor. The results show that for a simulated semiconductor process flue gas with C 2 F 6 (2000ppm)/ CF 4 (1000ppm)/ N 2 O(1000ppm)/ N 2 / Air mixture, 54% of C 2 F 6 and 32% of CF 4 were decomposed by the plasma reactor and 100% of C 2 F 6 and 98% of CF 4 were removed by plasma reactor/Zeolite adsorbent hybrid system. For a simulated semiconductor process flue gas with NF 3 (2000ppm)/ SiF 4 (1000ppm)/ N 2 O(200ppm)/ N 2 / Air mixture, 92% of NF 3 and 32% of SiF 4 were decomposed by the plasma reactor and total (100%) removal of the pollutant gases was achieved by plasma reactor/Zeolite adsorbent hybrid system. (author)

  2. Developing an early laekage detection system for thermal power plant boiler tubes by using acoustic emission technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Bum [RECTUSON, Co., LTD, Masan (Korea, Republic of); Roh, Seon Man [Samcheonpo Division, Korea South-East Power Co., Samcheonpo (Korea, Republic of)

    2016-06-15

    A thermal power plant has a heat exchanger tube to collect and convert the heat generated from the high temperature and pressure steam to energy, but the tubes are arranged in a complex manner. In the event that a leakage occurs in any of these tubes, the high-pressure steam leaks out and may cause the neighboring tubes to rupture. This leakage can finally stop power generation, and hence there is a dire need to establish a suitable technology capable of detecting tube leaks at an early stage even before it occurs. As shown in this paper, by applying acoustic emission (AE) technology in existing boiler tube leak detection equipment (BTLD), we developed a system that detects these leakages early enough and generates an alarm at an early stage to necessitate action; the developed system works better that the existing system used to detect fine leakages. We verified the usability of the system in a 560 MW-class thermal power plant boiler by conducting leak tests by simulating leakages from a variety of hole sizes (⌀2, ⌀5, ⌀10 mm). Results show that while the existing fine leakage detection system does not detect fine leakages of ⌀2 mm and ⌀5 mm, the newly developed system could detect leakages early enough and generate an alarm at an early stage, and it is possible to increase the signal to more than 18 dB.

  3. Study of electron temperature evolution during sawtoothing and pellet injection using thermal electron cyclotron emission in the Alcator C tokamak

    International Nuclear Information System (INIS)

    Gomez, C.C.

    1986-05-01

    A study of the electron temperature evolution has been performed using thermal electron cyclotron emission. A six channel far infrared polychromator was used to monitor the radiation eminating from six radial locations. The time resolution was <3 μs. Three events were studied, the sawtooth disruption, propagation of the sawtooth generated heatpulse and the electron temperature response to pellet injection. The sawtooth disruption in Alcator takes place in 20 to 50 μs, the energy mixing radius is approx. 8 cm or a/2. It is shown that this is inconsistent with single resonant surface Kadomtsev reconnection. Various forms of scalings for the sawtooth period and amplitude were compared. The electron heatpulse propagation has been used to estimate chi e(the electron thermal diffusivity). The fast temperature relaxation observed during pellet injection has also been studied. Electron temperature profile reconstructions have shown that the profile shape can recover to its pre-injection form in a time scale of 200 μs to 3 ms depending on pellet size

  4. Developing an early laekage detection system for thermal power plant boiler tubes by using acoustic emission technology

    International Nuclear Information System (INIS)

    Lee, Sang Bum; Roh, Seon Man

    2016-01-01

    A thermal power plant has a heat exchanger tube to collect and convert the heat generated from the high temperature and pressure steam to energy, but the tubes are arranged in a complex manner. In the event that a leakage occurs in any of these tubes, the high-pressure steam leaks out and may cause the neighboring tubes to rupture. This leakage can finally stop power generation, and hence there is a dire need to establish a suitable technology capable of detecting tube leaks at an early stage even before it occurs. As shown in this paper, by applying acoustic emission (AE) technology in existing boiler tube leak detection equipment (BTLD), we developed a system that detects these leakages early enough and generates an alarm at an early stage to necessitate action; the developed system works better that the existing system used to detect fine leakages. We verified the usability of the system in a 560 MW-class thermal power plant boiler by conducting leak tests by simulating leakages from a variety of hole sizes (⌀2, ⌀5, ⌀10 mm). Results show that while the existing fine leakage detection system does not detect fine leakages of ⌀2 mm and ⌀5 mm, the newly developed system could detect leakages early enough and generate an alarm at an early stage, and it is possible to increase the signal to more than 18 dB

  5. Polarimetric observations of the innermost regions of relativistic jets in X-ray binaries

    Directory of Open Access Journals (Sweden)

    Russell D.M.

    2013-12-01

    Full Text Available Synchrotron emission from the relativistic jets launched close to black holes and neutron stars can be highly linearly polarized, depending on the configuration of the magnetic field. In X-ray binaries, optically thin synchrotron emission from the compact jets resides at infrared–optical wavelengths. The polarimetric signature of the jets is detected in the infrared and is highly variable in some X-ray binaries. This reveals the magnetic geometry in the compact jet, in a region close enough to the black hole that it is influenced by its strong gravity. In some cases the magnetic field is turbulent and variable near the jet base. In Cyg X–1, the origin of the γ-ray, X-ray and some of the infrared polarization is likely the optically thin synchrotron power law from the inner regions of the jet. In order to reproduce the polarization properties, the magnetic field in this region must be highly ordered, in contrast to other sources.

  6. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases.

    Science.gov (United States)

    Zickfeld, Kirsten; Solomon, Susan; Gilford, Daniel M

    2017-01-24

    Mitigation of anthropogenic greenhouse gases with short lifetimes (order of a year to decades) can contribute to limiting warming, but less attention has been paid to their impacts on longer-term sea-level rise. We show that short-lived greenhouse gases contribute to sea-level rise through thermal expansion (TSLR) over much longer time scales than their atmospheric lifetimes. For example, at least half of the TSLR due to increases in methane is expected to remain present for more than 200 y, even if anthropogenic emissions cease altogether, despite the 10-y atmospheric lifetime of this gas. Chlorofluorocarbons and hydrochlorofluorocarbons have already been phased out under the Montreal Protocol due to concerns about ozone depletion and provide an illustration of how emission reductions avoid multiple centuries of future TSLR. We examine the "world avoided" by the Montreal Protocol by showing that if these gases had instead been eliminated in 2050, additional TSLR of up to about 14 cm would be expected in the 21st century, with continuing contributions lasting more than 500 y. Emissions of the hydrofluorocarbon substitutes in the next half-century would also contribute to centuries of future TSLR. Consideration of the time scales of reversibility of TSLR due to short-lived substances provides insights into physical processes: sea-level rise is often assumed to follow air temperature, but this assumption holds only for TSLR when temperatures are increasing. We present a more complete formulation that is accurate even when atmospheric temperatures are stable or decreasing due to reductions in short-lived gases or net radiative forcing.

  7. Detection of non-thermal X-ray emission in the lobes and jets of Cygnus A

    Science.gov (United States)

    de Vries, M. N.; Wise, M. W.; Huppenkothen, D.; Nulsen, P. E. J.; Snios, B.; Hardcastle, M. J.; Birkinshaw, M.; Worrall, D. M.; Duffy, R. T.; McNamara, B. R.

    2018-06-01

    We present a spectral analysis of the lobes and X-ray jets of Cygnus A, using more than 2 Ms of Chandra observations. The X-ray jets are misaligned with the radio jets and significantly wider. We detect non-thermal emission components in both lobes and jets. For the eastern lobe and jet, we find 1 keV flux densities of 71_{-10}^{+10} nJy and 24_{-4}^{+4} nJy, and photon indices of 1.72_{-0.03}^{+0.03} and 1.64_{-0.04}^{+0.04} respectively. For the western lobe and jet, we find flux densities of 50_{-13}^{+12} nJy and 13_{-5}^{+5} nJy, and photon indices of 1.97_{-0.10}^{+0.23} and 1.86_{-0.12}^{+0.18} respectively. Using these results, we modeled the electron energy distributions of the lobes as broken power laws with age breaks. We find that a significant population of non-radiating particles is required to account for the total pressure of the eastern lobe. In the western lobe, no such population is required and the low energy cutoff to the electron distribution there needs to be raised to obtain pressures consistent with observations. This discrepancy is a consequence of the differing X-ray photon indices, which may indicate that the turnover in the inverse-Compton spectrum of the western lobe is at lower energies than in the eastern lobe. We modeled the emission from both jets as inverse-Compton emission. There is a narrow region of parameter space for which the X-ray jet can be a relic of an earlier active phase, although lack of knowledge about the jet's electron distribution and particle content makes the modelling uncertain.

  8. Microphysical retrievals from simultaneous polarimetric and profiling radar observations

    Directory of Open Access Journals (Sweden)

    M. P. Morris

    2009-12-01

    Full Text Available The character of precipitation detected at the surface is the final product of many microphysical interactions in the cloud above, the combined effects of which may be characterized by the observed drop size distribution (DSD. This necessitates accurate retrieval of the DSD from remote sensing data, especially radar as it offers large areal coverage, high spatial resolution, and rigorous quality control and testing. Combined instrument observations with a UHF wind profiler, an S-band polarimetric weather radar, and a video disdrometer are analyzed for two squall line events occuring during the calendar year 2007. UHF profiler Doppler velocity spectra are used to estimate the DSD aloft, and are complemented by DSDs retrieved from an exponential model applied to polarimetric data. Ground truth is provided by the disdrometer. A complicating factor in the retrieval from UHF profiler spectra is the presence of ambient air motion, which can be corrected using the method proposed by Teshiba et al. (2009, in which a comparison between idealized Doppler spectra calculated from the DSDs retrieved from KOUN and those retrieved from contaminated wind profiler spectra is performed. It is found that DSDs measured using the distrometer at the surface and estimated using the wind profiler and polarimetric weather radar generally showed good agreement. The DSD retrievals using the wind profiler were improved when the estimates of the vertical wind were included into the analysis, thus supporting the method of Teshiba et al. (2009. Furthermore, the the study presents a method of investigating the time and height structure of DSDs.

  9. Polarimetric purity and the concept of degree of polarization

    Science.gov (United States)

    Gil, José J.; Norrman, Andreas; Friberg, Ari T.; Setälä, Tero

    2018-02-01

    The concept of degree of polarization for electromagnetic waves, in its general three-dimensional version, is revisited in the light of the implications of the recent findings on the structure of polarimetric purity and of the existence of nonregular states of polarization [J. J. Gil et al., Phys Rev. A 95, 053856 (2017), 10.1103/PhysRevA.95.053856]. From the analysis of the characteristic decomposition of a polarization matrix R into an incoherent convex combination of (1) a pure state Rp, (2) a middle state Rm given by an equiprobable mixture of two eigenstates of R, and (3) a fully unpolarized state Ru -3 D, it is found that, in general, Rm exhibits nonzero circular and linear degrees of polarization. Therefore, the degrees of linear and circular polarization of R cannot always be assigned to the single totally polarized component Rp. It is shown that the parameter P3 D proposed formerly by Samson [J. C. Samson, Geophys. J. R. Astron. Soc. 34, 403 (1973), 10.1111/j.1365-246X.1973.tb02404.x] takes into account, in a proper and objective form, all the contributions to polarimetric purity, namely, the contributions to the linear and circular degrees of polarization of R as well as to the stability of the plane containing its polarization ellipse. Consequently, P3 D constitutes a natural representative of the degree of polarimetric purity. Some implications for the common convention for the concept of two-dimensional degree of polarization are also analyzed and discussed.

  10. Three axis vector atomic magnetometer utilizing polarimetric technique

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India and Homi Bhabha National Institute, Department of Atomic Energy, Mumbai 400094 (India)

    2016-09-15

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity field gradient measurement as required for biomedical application.

  11. Segment-based change detection for polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    2006-01-01

    that is needed compared to single polarisation SAR to provide reliable and robust detection of changes. Polarimetric SAR data will be available from satellites in the near future, e.g. the Japanese ALOS, the Canadian Radarsat-2 and the German TerraSAR-X. An appropriate way of representing multi-look fully...... be split into a number of smaller fields, a building may be removed from or added to some area, hedgerows may be removed/added or other type of vegetated areas may be partly removed or added. In this case, ambiguities may arise when segments have changed shape and extent from one image to another...

  12. Pulsed Thermal Emission from the Accreting Pulsar XMMU J054134.7-682550

    Science.gov (United States)

    Manousakis, Antonis; Walter, Roland; Audard, Marc; Lanz, Thierry

    2009-05-01

    XMMU J054134.7-682550, located in the LMC, featured a type II outburst in August 2007. We analyzed XMM-Newton (EPIC-MOS) and RXTE (PCA) data in order to derive the spectral and temporal characteristics of the system throughout the outburst. Spectral variability, spin period evolution, energy dependent pulse shape are discussed. The outburst (LX~3×1038 erg/s~LEDD) spectrum can be modeled using, cutoff power law, soft X-ray blackbody, disk emission, and cyclotron absorption line. The blackbody component shows a sinusoidal behavior, expected from hard X-ray reprocessing on the inner edge of the accretion disk. The thickness of the inner accretion disk (width of ~75 km) can be constrained. The spin-up of the pulsar during the outburst is the signature of a (huge) accretion rate. Simbol-X will provide similar capabilities as XMM-Newton and RXTE together, for such bright events.

  13. Calculation of the net emission coefficient of an air thermal plasma at very high pressure

    International Nuclear Information System (INIS)

    Billoux, T; Cressault, Y; Teulet, Ph; Gleizes, A

    2012-01-01

    The aim of this paper is to present an accurate evaluation of the phenomena appearing for high pressure air plasmas supposed to be in local thermodynamic equilibrium (LTE). In the past, we already calculated the net emission coefficient for air mixtures at atmospheric pressure and for temperatures up to 30kK (molecular contribution being restricted to 10kK). Unfortunately, the existence of high pressures does not allow us to use this database due to the non-ideality of the plasma (Viriel and Debye corrections, energy cut-off ...), and due to the significant shifts of molecular reactions towards upper temperatures. Consequently, this paper proposes an improvement of our previous works with a consideration of high pressure corrections in the composition algorithm in order to take into account the pressure effects, and with a new calculation of all the contributions of the plasma radiation (atomic lines and continuum, molecular continuum, and molecular bands) using an updated database. A particular attention is paid to calculate the contribution of all the major molecular band systems to the radiation: O 2 (Schumann–Runge), N 2 (VUV, 1st and 2nd positive), NO (IR, β, γ, δ, element of ) and N 2 + (1st negative and Meinel). The discrete atomic lines and molecular bands radiation including the overlapping are calculated by a line-by-line method up to 30kK and 100 bar. This updated database is validated in the case of optically thin plasmas and pressure of 1bar by the comparison of our integrated emission strength with the published results. Finally, this work shows the necessity to extend the molecular radiation database up to 15kK at high pressure (bands and continuum) since their corresponding contributions could not be neglected at high temperature.

  14. First hard X-ray detection of the non-thermal emission around the Arches cluster: morphology and spectral studies with NuSTAR

    DEFF Research Database (Denmark)

    Krivonos, Roman A.; Tomsick, John A.; Bauer, Franz E.

    2014-01-01

    The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe Ku line emission at 6.4 keV from material that is n......The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe Ku line emission at 6.4 keV from material...... and spectrum. The spatial distribution of the hard X-ray emission is found to be consistent with the broad region around the cluster where the 6.4 keV line is observed. The interpretation of the hard X-ray emission within the context of the X-ray reflection model puts a strong constraint on the luminosity...... of the possible illuminating hard X-ray source. The properties of the observed emission are also in broad agreement with the low-energy cosmic-ray proton excitation scenario....

  15. THERMAL EMISSION AND TIDAL HEATING OF THE HEAVY AND ECCENTRIC PLANET XO-3b

    International Nuclear Information System (INIS)

    Machalek, Pavel; Greene, Tom; McCullough, Peter R.; Burrows, Adam; Burke, Christopher J.; Hora, Joseph L.; Johns-Krull, Christopher M.; Deming, Drake L.

    2010-01-01

    We determined the flux ratios of the heavy and eccentric planet XO-3b to its parent star in the four Infrared Array Camera bands of the Spitzer Space Telescope: 0.101% ± 0.004% at 3.6 μm; 0.143% ± 0.006% at 4.5 μm; 0.134% ± 0.049% at 5.8 μm; and 0.150% ± 0.036% at 8.0 μm. The flux ratios are within [-2.2, 0.3, -0.8, and -1.7]σ of the model of XO-3b with a thermally inverted stratosphere in the 3.6 μm, 4.5 μm, 5.8 μm, and 8.0 μm channels, respectively. XO-3b has a high illumination from its parent star (F p ∼ (1.9-4.2) x 10 9 erg cm -2 s -1 ) and is thus expected to have a thermal inversion, which we indeed observe. When combined with existing data for other planets, the correlation between the presence of an atmospheric temperature inversion and the substellar flux is insufficient to explain why some high insolation planets like TrES-3 do not have stratospheric inversions and some low insolation planets like XO-1b do have inversions. Secondary factors such as sulfur chemistry, atmospheric metallicity, amounts of macroscopic mixing in the stratosphere, or even dynamical weather effects likely play a role. Using the secondary eclipse timing centroids, we determined the orbital eccentricity of XO-3b as e = 0.277 ± 0.009. The model radius-age trajectories for XO-3b imply that at least some amount of tidal heating is required to inflate the radius of XO-3b, and the tidal heating parameter of the planet is constrained to Q p ∼ 6 .

  16. Generation and Use of Thermal Energy in the Industrial Sector and Opportunities to Reduce its Carbon Emissions

    International Nuclear Information System (INIS)

    McMillan, Colin; Boardman, Richard; McKellar, Michael; Sabharwall, Piyush; Ruth, Mark; Bragg-Sitton, Shannon

    2016-01-01

    Changes are occurring throughout the U.S. economy, especially in regard to how energy is generated and used in the electricity, buildings, industrial, and transportation sectors. These changes are being driven by environmental and energy security concerns and by economics. The electric-sector market share of natural gas and variable renewable generation, such as wind and solar photovoltaics (PV), continues to grow. The buildings sector is evolving to meet efficiency standards, the transportation sector is evolving to meet efficiency and renewable fuels standards, and the industrial sector is evolving to reduce emissions. Those changes are driving investment and utilization strategies for generation and other assets. Nuclear and renewable energy sources are important to consider in the energy sector’s evolution because both are considered to be clean and non-carbon-emitting energy sources. The Idaho National Laboratory (INL) and the National Renewable Energy Laboratory (NREL) are jointly investigating potential synergies between technologies exploiting nuclear and renewable energy sources. The two laboratories have held several joint workshops since 2011. Those workshops brought together experts in both areas to identify synergies and potential opportunities to work together. Workshop participants identified nuclear-renewable hybrid energy systems (N-R HESs) as one of the opportunities and recommended investigating whether N-R HESs could both generate dispatchable electricity without carbon emissions and provide clean energy to industrial processes. They also recommended analyzing the potential for N-R HESs to provide dispatchable capacity to a grid with high penetrations of non-dispatchable resources and to investigate whether real inertia provided by thermal power cycles within N-R HESs provides value to the grid. This report is one of a series of reports INL and NREL are producing to investigate the technical and economic aspects of N-R HESs. Previous reports

  17. Generation and Use of Thermal Energy in the Industrial Sector and Opportunities to Reduce its Carbon Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Colin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Changes are occurring throughout the U.S. economy, especially in regard to how energy is generated and used in the electricity, buildings, industrial, and transportation sectors. These changes are being driven by environmental and energy security concerns and by economics. The electric-sector market share of natural gas and variable renewable generation, such as wind and solar photovoltaics (PV), continues to grow. The buildings sector is evolving to meet efficiency standards, the transportation sector is evolving to meet efficiency and renewable fuels standards, and the industrial sector is evolving to reduce emissions. Those changes are driving investment and utilization strategies for generation and other assets. Nuclear and renewable energy sources are important to consider in the energy sector’s evolution because both are considered to be clean and non-carbon-emitting energy sources. The Idaho National Laboratory (INL) and the National Renewable Energy Laboratory (NREL) are jointly investigating potential synergies between technologies exploiting nuclear and renewable energy sources. The two laboratories have held several joint workshops since 2011. Those workshops brought together experts in both areas to identify synergies and potential opportunities to work together. Workshop participants identified nuclear-renewable hybrid energy systems (N-R HESs) as one of the opportunities and recommended investigating whether N-R HESs could both generate dispatchable electricity without carbon emissions and provide clean energy to industrial processes. They also recommended analyzing the potential for N-R HESs to provide dispatchable capacity to a grid with high penetrations of non-dispatchable resources and to investigate whether real inertia provided by thermal power cycles within N-R HESs provides value to the grid. This report is one of a series of reports INL and NREL are producing to investigate the technical and economic aspects of N-R HESs. Previous reports

  18. Assessment of a landfill methane emission screening method using an unmanned aerial vehicle mounted thermal infrared camera – A field study

    DEFF Research Database (Denmark)

    Fjelsted, Lotte; Christensen, A. G.; Larsen, J. E.

    2018-01-01

    An unmanned aerial vehicle (UAV)-mounted thermal infrared (TIR) camera’s ability to delineate landfill gas (LFG) emission hotspots was evaluated in a field test at two Danish landfills (Hedeland landfill and Audebo landfill). At both sites, a test area of 100 m2 was established and divided into a...

  19. Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission

    Directory of Open Access Journals (Sweden)

    Zhigang Pan

    2017-02-01

    Full Text Available The existing temperature sensors using carbon nanotubes (CNTs are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K−1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential.

  20. Experimental study of radioactive aerosols emission during the thermal degradation of organic materials in nuclear facilities

    International Nuclear Information System (INIS)

    Fernandez, Yvette

    1993-01-01

    Radioactive products may be released during a fire in nuclear fuel cycles facilities. These products must be confined to avoid a contamination spread in the environment. It is therefore necessary to be able to predict the amount and the physico-chemical forms of radioactive material that may be airborne. The aim of this study is to determine experimentally the release of contamination aerosols in a typical fire scenario involving plutonium oxide in a glove box. Firstly, this phenomenon has been studied in a small scale test chamber where samples of polymethylmethacrylate (Plexiglas) contaminated by cerium oxide (used as a substitute for plutonium oxide) were submitted to thermal degradation (pyrolysis and combustion). The release of radioactive material is determined by the quantity of contaminant emitted, the kinetics of the release and the particle size distribution of aerosols. Secondly, the development of an experimental procedure allowed to realize large scale fires in more realistic conditions. The experimental tools developed in the course of this study allow to consider application to other scenarios. (author) [fr

  1. Study of Thermal-Field Emission Properties and Investigation of Temperature dependent Noise in the Emission Current form vertical Carbon nanotube emitters

    KAUST Repository

    Kolekar, Sadhu; Patole, Shashikant P.; Patil, Sumati; Yoo, J.B.; Dharmadhikari, C.V.

    2017-01-01

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well defined cathode surface is given by Millikan and Lauritsen [1

  2. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    DEFF Research Database (Denmark)

    Sales, Morten; Strobl, Markus; Shinohara, Takenao

    2018-01-01

    Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non-destructively wi......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...... fields. The technique puts the potential of the ToF time structure of pulsed neutron sources to full use in order to optimise the recorded information quality and reduce measurement time....

  3. Polarimetric LIDAR with FRI sampling for target characterization

    Science.gov (United States)

    Wijerathna, Erandi; Creusere, Charles D.; Voelz, David; Castorena, Juan

    2017-09-01

    Polarimetric LIDAR is a significant tool for current remote sensing applications. In addition, measurement of the full waveform of the LIDAR echo provides improved ranging and target discrimination, although, data storage volume in this approach can be problematic. In the work presented here, we investigated the practical issues related to the implementation of a full waveform LIDAR system to identify polarization characteristics of multiple targets within the footprint of the illumination beam. This work was carried out on a laboratory LIDAR testbed that features a flexible arrangement of targets and the ability to change the target polarization characteristics. Targets with different retardance characteristics were illuminated with a linearly polarized laser beam and the return pulse intensities were analyzed by rotating a linear analyzer polarizer in front of a high-speed detector. Additionally, we explored the applicability and the limitations of applying a sparse sampling approach based on Finite Rate of Innovations (FRI) to compress and recover the characteristic parameters of the pulses reflected from the targets. The pulse parameter values extracted by the FRI analysis were accurate and we successfully distinguished the polarimetric characteristics and the range of multiple targets at different depths within the same beam footprint. We also demonstrated the recovery of an unknown target retardance value from the echoes by applying a Mueller matrix system model.

  4. G0-WISHART Distribution Based Classification from Polarimetric SAR Images

    Science.gov (United States)

    Hu, G. C.; Zhao, Q. H.

    2017-09-01

    Enormous scientific and technical developments have been carried out to further improve the remote sensing for decades, particularly Polarimetric Synthetic Aperture Radar(PolSAR) technique, so classification method based on PolSAR images has getted much more attention from scholars and related department around the world. The multilook polarmetric G0-Wishart model is a more flexible model which describe homogeneous, heterogeneous and extremely heterogeneous regions in the image. Moreover, the polarmetric G0-Wishart distribution dose not include the modified Bessel function of the second kind. It is a kind of simple statistical distribution model with less parameter. To prove its feasibility, a process of classification has been tested with the full-polarized Synthetic Aperture Radar (SAR) image by the method. First, apply multilook polarimetric SAR data process and speckle filter to reduce speckle influence for classification result. Initially classify the image into sixteen classes by H/A/α decomposition. Using the ICM algorithm to classify feature based on the G0-Wshart distance. Qualitative and quantitative results show that the proposed method can classify polaimetric SAR data effectively and efficiently.

  5. Generalized Calibration of the Polarimetric Albedo Scale of Asteroids

    Science.gov (United States)

    Lupishko, D. F.

    2018-03-01

    Six different calibrations of the polarimetric albedo scale of asteroids have been published so far. Each of them contains its particular random and systematic errors and yields its values of geometric albedo. On the one hand, this complicates their analysis and comparison; on the other hand, it becomes more and more difficult to decide which of the proposed calibrations should be used. Moreover, in recent years, new databases on the albedo of asteroids obtained from the radiometric surveys of the sky with the orbital space facilities (the InfraRed Astronomical Satellite (IRAS), the Japanese astronomical satellite AKARI (which means "light"), the Wide-field Infrared Survey Explorer (WISE), and the Near-Earth Object Wide-field Survey Explorer (NEOWISE)) have appeared; and the database on the diameters and albedos of asteroids obtained from their occultations of stars has substantially increased. Here, we critically review the currently available calibrations and propose a new generalized calibration derived from the interrelations between the slope h and the albedo and between P min and the albedo. This calibration is based on all of the available series of the asteroid albedos and the most complete data on the polarization parameters of asteroids. The generalized calibration yields the values of the polarimetric albedo of asteroids in the system unified with the radiometric albedos and the albedos obtained from occultations of stars by asteroids. This, in turn, removes the difficulties in their comparison, joint analysis, etc.

  6. Estimating soil moisture using the Danish polarimetric SAR

    DEFF Research Database (Denmark)

    Jiankang, Ji; Thomsen, A.; Skriver, Henning

    1995-01-01

    The results of applying data from the Danish polarimetric SAR (EMISAR) to estimate soil moisture for bare fields are presented. Fully calibrated C-band SAR images for hh, vv and cross polarizations have been used in this study. The measured surface roughness data showed that classical roughness a...... of surface parameters with the bilinear model, the correlation coefficient between the estimated and measured soil moisture, as well as rms height, is about 0.77. To improve the result, the local incidence angles need to be taken into account......The results of applying data from the Danish polarimetric SAR (EMISAR) to estimate soil moisture for bare fields are presented. Fully calibrated C-band SAR images for hh, vv and cross polarizations have been used in this study. The measured surface roughness data showed that classical roughness...... autocorrelation functions (Gaussian and Exponential) were not able to fit natural surfaces well. A Gauss-Exp hybrid model which agreed better with the measured data has been proposed. Theoretical surface scattering models (POM, IEM), as well as an empirical model for retrieval of soil moisture and surface rms...

  7. Multi-Frequency Polarimetric SAR Classification Based on Riemannian Manifold and Simultaneous Sparse Representation

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2015-07-01

    Full Text Available Normally, polarimetric SAR classification is a high-dimensional nonlinear mapping problem. In the realm of pattern recognition, sparse representation is a very efficacious and powerful approach. As classical descriptors of polarimetric SAR, covariance and coherency matrices are Hermitian semidefinite and form a Riemannian manifold. Conventional Euclidean metrics are not suitable for a Riemannian manifold, and hence, normal sparse representation classification cannot be applied to polarimetric SAR directly. This paper proposes a new land cover classification approach for polarimetric SAR. There are two principal novelties in this paper. First, a Stein kernel on a Riemannian manifold instead of Euclidean metrics, combined with sparse representation, is employed for polarimetric SAR land cover classification. This approach is named Stein-sparse representation-based classification (SRC. Second, using simultaneous sparse representation and reasonable assumptions of the correlation of representation among different frequency bands, Stein-SRC is generalized to simultaneous Stein-SRC for multi-frequency polarimetric SAR classification. These classifiers are assessed using polarimetric SAR images from the Airborne Synthetic Aperture Radar (AIRSAR sensor of the Jet Propulsion Laboratory (JPL and the Electromagnetics Institute Synthetic Aperture Radar (EMISAR sensor of the Technical University of Denmark (DTU. Experiments on single-band and multi-band data both show that these approaches acquire more accurate classification results in comparison to many conventional and advanced classifiers.

  8. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 1; Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    Science.gov (United States)

    Raj, S. V.

    2017-01-01

    This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  9. Study of Thermal-Field Emission Properties and Investigation of Temperature dependent Noise in the Emission Current form vertical Carbon nanotube emitters

    KAUST Repository

    Kolekar, Sadhu

    2017-05-05

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD), in order to understand the effect of temperature on electron emission spots in image morphology (as indicated by ring like structures) and electron emission spot intensity of the emitters. Moreover, the field electron emission images can be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 is 4.5x107 and, the actual number emitters per cm2 present for electron emission calculated from Atomic Force Microscopy (AFM) data is 1.2x1012. The measured Current-Voltage (I-V) characteristics obey the Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current are recorded at different temperatures and, temperature dependence of power spectral density obeys power law relation s(f)=I2/f2 with that of emission current and frequency.

  10. REMOVAL OF SPECTRO-POLARIMETRIC FRINGES BY TWO-DIMENSIONAL PATTERN RECOGNITION

    International Nuclear Information System (INIS)

    Casini, R.; Judge, P. G.; Schad, T. A.

    2012-01-01

    We present a pattern-recognition-based approach to the problem of the removal of polarized fringes from spectro-polarimetric data. We demonstrate that two-dimensional principal component analysis can be trained on a given spectro-polarimetric map in order to identify and isolate fringe structures from the spectra. This allows us, in principle, to reconstruct the data without the fringe component, providing an effective and clean solution to the problem. The results presented in this paper point in the direction of revising the way that science and calibration data should be planned for a typical spectro-polarimetric observing run.

  11. A modified gravitational search algorithm based on a non-dominated sorting genetic approach for hydro-thermal-wind economic emission dispatching

    International Nuclear Information System (INIS)

    Chen, Fang; Zhou, Jianzhong; Wang, Chao; Li, Chunlong; Lu, Peng

    2017-01-01

    Wind power is a type of clean and renewable energy, and reasonable utilization of wind power is beneficial to environmental protection and economic development. Therefore, a short-term hydro-thermal-wind economic emission dispatching (SHTW-EED) problem is presented in this paper. The proposed problem aims to distribute the load among hydro, thermal and wind power units to simultaneously minimize economic cost and pollutant emission. To solve the SHTW-EED problem with complex constraints, a modified gravitational search algorithm based on the non-dominated sorting genetic algorithm-III (MGSA-NSGA-III) is proposed. In the proposed MGSA-NSGA-III, a non-dominated sorting approach, reference-point based selection mechanism and chaotic mutation strategy are applied to improve the evolutionary process of the original gravitational search algorithm (GSA) and maintain the distribution diversity of Pareto optimal solutions. Moreover, a parallel computing strategy is introduced to improve the computational efficiency. Finally, the proposed MGSA-NSGA-III is applied to a typical hydro-thermal-wind system to verify its feasibility and effectiveness. The simulation results indicate that the proposed algorithm can obtain low economic cost and small pollutant emission when dealing with the SHTW-EED problem. - Highlights: • A hybrid algorithm is proposed to handle hydro-thermal-wind power dispatching. • Several improvement strategies are applied to the algorithm. • A parallel computing strategy is applied to improve computational efficiency. • Two cases are analyzed to verify the efficiency of the optimize mode.

  12. Re-emission and thermal desorption of deuterium from plasma sprayed tungsten coatings for application in ASDEX-upgrade

    International Nuclear Information System (INIS)

    Garcia-Rosales, C.; Franzen, P.; Plank, H.; Roth, J.; Gauthier, E.

    1996-01-01

    The trapping and release of deuterium implanted with an energy of 100 eV in wrought and in plasma sprayed tungsten of different manufacture and structure has been investigated by means of re-emission as well as thermal and isothermal desorption spectroscopy. The experimental data for wrought tungsten are compared with model calculations with the PIDAT code in order to estimate the parameters governing diffusion, surface recombination and trapping in tungsten. The amount of retained deuterium in tungsten is of the same order of magnitude as in graphite for the implantation parameters used in this work. The mobile hydrogen concentration in tungsten during the implantation is of the same order of magnitude than the trapped one, being released after the termination of the implantation. The fraction of deuterium trapped to defects increases strongly with the porosity of the samples. The temperature needed for the release of the trapped deuterium (∝600 K) are considerably lower than for graphite, due to the smaller trapping energy (≤1.5 eV). (orig.)

  13. Carbon dioxide diffuse emission and thermal energy release from hydrothermal systems at Copahue-Caviahue Volcanic Complex (Argentina)

    Science.gov (United States)

    Chiodini, Giovanni; Cardellini, Carlo; Lamberti, María Clara; Agusto, Mariano; Caselli, Alberto; Liccioli, Caterina; Tamburello, Giancarlo; Tassi, Franco; Vaselli, Orlando; Caliro, Stefano

    2015-10-01

    The north-western sector of Caviahue caldera (Argentina), close to the active volcanic system of Copahue, is characterized by the presence of several hydrothermal sites that host numerous fumarolic emissions, anomalous soil diffuse degassing of CO2 and hot soils. In March 2014, measurements of soil CO2 fluxes in 5 of these sites (namely, Las Máquinas, Las Maquinitas I, Las Maquinitas II, Anfiteatro, and Termas de Copahue) allowed an estimation that 165 t of deeply derived CO2 is daily released. The gas source is likely related to a relatively shallow geothermal reservoir containing a single vapor phase as also suggested by both the geochemical data from the 3 deep wells drilled in the 1980s and gas geoindicators applied to the fumarolic discharges. Gas equilibria within the H-C-O gas system indicate the presence of a large, probably unique, single phase vapor zone at 200-210 °C feeding the hydrothermal manifestations of Las Máquinas, Las Maquinitas I and II and Termas de Copahue. A natural thermal release of 107 MW was computed by using CO2 as a tracer of the original vapor phase. The magmatic signature of the incondensable fumarolic gases, the wide expanse of the hydrothermal areas and the remarkable high amount of gas and heat released by fluid expulsion seem to be compatible with an active magmatic intrusion beneath this portion of the Caviahue caldera.

  14. Use of emission spectroscopy as a tool for optimization of plasma hearth operation for hazardous waste thermal treatment

    International Nuclear Information System (INIS)

    Monts, D.L.; Bauman, L.E.; Lengel, R.K.; Wang, W.; Lin, J.; Cook, R.L.; Shepard, W.S.

    1994-01-01

    Thermal processing of mixed wastes by plasma hearth vitrification requires optimization of and continuous monitoring of plasma hearth operation. A series of investigations utilizing emission spectroscopy has been initiated to characterize the plasma of a 96 kW plasma hearth in order to determine optimum conditions for monitoring and hence controlling plasma hearth performance. The plasma hearth test stand is based upon a 96 kW, transferred arc plasma torch. The torch is mounted in a vacuum vessel through an electrically operated XYZ Gimbal mount. The peak operating power depends on the gas used for the plasma. The operational limits for DC voltage are 180 V to 550 V; and the current is operated at a constant value, selectable in the range from 72 to 200 amps. The plasma arc length can be varied from 2.5 cm to 25 cm, and is dependent on the supply voltage and the process gas used. The arc current and voltage, gas pressure, cooling water flow, and cooling water temperature are monitored and stored by a PC-based data acquisition system. Five optical ports are available for making optical diagnostic measurements

  15. Highly thermal conductivity and infrared emissivity of flexible transparent film heaters utilizing silver-decorated carbon nanomaterials as fillers

    International Nuclear Information System (INIS)

    Li, Yu-An; Chen, Yin-Ju; Tai, Nyan-Hwa

    2014-01-01

    A flexible transparent film heater using functionalized few-walled carbon nanotubes and graphene nanosheets decorated with silver nanoparticles as fillers and poly(3,4-ethylenedioxythiophene)- poly(4-stryrenesulfonate) (PEDOT:PSS) as a dispersant possesses excellent optoelectronic and electrothermal properties. The film possesses a low sheet resistance of 53.0 ± 4.2 ohm · sq −1 , a transmittance of 80.2 ± 0.8% at a wavelength of 550 nm, a high thermal conductivity of 142.0 ± 9.6 W · m −1  · K −1 , a quick response time of less than 60 s, stable heating performance, good reliability, low power consumption, flexibility, and uniform heat diffusion. Besides, the film shows an average infrared emissivity of 0.53 in the wavelength range of 4 to 14 μm, which shows an outstanding heat release performance by radiation. The flexible transparent film heaters adopting graphene and carbon nanotubes as fillers boast excellent electrothermal performance through heat conduction and infrared radiation, suggesting that they are good substitutes for traditional metallic and indium tin oxide film heaters. (papers)

  16. NOx emissions and thermal efficiencies of small scale biomass-fuelled combustion plant with reference to process industries in a developing country

    International Nuclear Information System (INIS)

    Tariq, A.S.; Purvis, M.R.I.

    1996-01-01

    Solid biomass materials are an important industrial fuel in many developing countries and also show good potential for usage in Europe within a future mix of renewable energy resources. The sustainable use of wood fuels for combustion relies on operation of plant with acceptable thermal efficiency. There is a clear link between plant efficiency and environmental impacts due to air pollution and deforestation. To supplement a somewhat sparse literature on thermal efficiencies and nitrogen oxide emissions from biomass-fuelled plants in developing countries, this paper presents results for tests carried out on 14 combustion units obtained during field trials in Sri Lanka. The plants tested comprised steam boilers and process air heaters. Biomass fuels included: rubber-wood, fuelwood from natural forests; coconut shells; rice husks; and sugar can bagasse. Average NO x (NO and NO 2 ) emissions for the plants were found to be 47 gNO 2 GJ -1 with 18% conversion of fuel nitrogen. The former value is the range of NO x emission values quoted for combustion of coal in grate-fired systems; some oil-fired systems and systems operating on natural gas, but is less than the emission levels for the combustion of pulverized fuel and heavy fuel oil. This value is significantly within current European standards for NO x emission from large combustion plants. Average thermal efficiency of the plants was found to be 50%. Observations made on operational practices demonstrated that there is considerable scope for the improvement of this thermal efficiency value by plant supervisor training, drying of fuelwood and the use of simple instruments for monitoring plant performance. (Author)

  17. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy – Part 1: Slant-columns and their ratios

    Directory of Open Access Journals (Sweden)

    M. Grutter

    2012-02-01

    Full Text Available The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a safe distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006–2009 using a Scanning Infrared Gas Imaging System (SIGIS. The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm−1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume and its animation. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 and strong ash emission together with a pronounced SO2 cloud was registered around 01:00 a.m. LST (Local Standard Time. Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential images is used in a subsequent paper (Part 2 to calculate the emission rates at different distances from the crater.

  18. Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon

    Science.gov (United States)

    Donaldson Hanna, K. L.; Greenhagen, B. T.; Patterson, W. R.; Pieters, C. M.; Mustard, J. F.; Bowles, N. E.; Paige, D. A.; Glotch, T. D.; Thompson, C.

    2017-02-01

    Currently, few thermal infrared measurements exist of fine particulate (samples (e.g. minerals, mineral mixtures, rocks, meteorites, and lunar soils) measured under simulated lunar conditions. Such measurements are fundamental for interpreting thermal infrared (TIR) observations by the Diviner Lunar Radiometer Experiment (Diviner) onboard NASA's Lunar Reconnaissance Orbiter as well as future TIR observations of the Moon and other airless bodies. In this work, we present thermal infrared emissivity measurements of a suite of well-characterized Apollo lunar soils and a fine particulate (sample as we systematically vary parameters that control the near-surface environment in our vacuum chamber (atmospheric pressure, incident solar-like radiation, and sample cup temperature). The atmospheric pressure is varied between ambient (1000 mbar) and vacuum (radiation is varied between 52 and 146 mW/cm2, and the sample cup temperature is varied between 325 and 405 K. Spectral changes are characterized as each parameter is varied, which highlight the sensitivity of thermal infrared emissivity spectra to the atmospheric pressure and the incident solar-like radiation. Finally spectral measurements of Apollo 15 and 16 bulk lunar soils are compared with Diviner thermal infrared observations of the Apollo 15 and 16 sampling sites. This comparison allows us to constrain the temperature and pressure conditions that best simulate the near-surface environment of the Moon for future laboratory measurements and to better interpret lunar surface compositions as observed by Diviner.

  19. An Icon-Based Synoptic Visualization of Fully Polarimetric Radar Data

    Directory of Open Access Journals (Sweden)

    Iain H. Woodhouse

    2012-03-01

    Full Text Available The visualization of fully polarimetric radar data is hindered by traditional remote sensing methodologies for displaying data due to the large number of parameters per pixel in such data, and the non-scalar nature of variables such as phase difference. In this paper, a new method is described that uses icons instead of image pixels to represent the image data so that polarimetric properties and geographic context can be visualized together. The icons are parameterized using the alpha-entropy decomposition of polarimetric data. The resulting image allows the following five variables to be displayed simultaneously: unpolarized power, alpha angle, polarimetric entropy, anisotropy and orientation angle. Examples are given for both airborne and laboratory-based imaging.

  20. GPM GROUND VALIDATION NASA S-BAND DUAL POLARIMETRIC (NPOL) DOPPLER RADAR IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar IFloodS data set was collected from April 30, 2013 to June 16, 2013 near Traer, Iowa as...

  1. The Development of Polarimetric and Nonpolarimetric Multiwavelength Focal Plane Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance polarimetric and nonpolarimetric sensing is crucial to upcoming NASA missions, including ACE and CLARREO and the multi-agency VIIRS NPP project. The...

  2. CAMEX-4 MOBILE X-BAND POLARIMETRIC WEATHER RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Mobile X-band Polarimetric Weather Radar on Wheels (X-POW)is a Doppler scanning radar operating at 9.3 GHz.with horizontal and vertical polarization. Used for...

  3. Adaptive polarimetric image representation for contrast optimization of a polarized beacon through fog

    International Nuclear Information System (INIS)

    Panigrahi, Swapnesh; Fade, Julien; Alouini, Mehdi

    2015-01-01

    We present a contrast-maximizing optimal linear representation of polarimetric images obtained from a snapshot polarimetric camera for enhanced vision of a polarized light source in obscured weather conditions (fog, haze, cloud) over long distances (above 1 km). We quantitatively compare the gain in contrast obtained by different linear representations of the experimental polarimetric images taken during rapidly varying foggy conditions. It is shown that the adaptive image representation that depends on the correlation in background noise fluctuations in the two polarimetric images provides an optimal contrast enhancement over all weather conditions as opposed to a simple difference image which underperforms during low visibility conditions. Finally, we derive the analytic expression of the gain in contrast obtained with this optimal representation and show that the experimental results are in agreement with the assumed correlated Gaussian noise model. (paper)

  4. Tropical Mangrove Mapping Using Fully-Polarimetric Radar Data

    Directory of Open Access Journals (Sweden)

    Bambang Trisasongko

    2009-09-01

    Full Text Available Although mangrove is one of important ecosystems in the world, it has been abused and exploited by human for various purposes. Monitoring mangrove is therefore required to maintain a balance between economy and conservation and provides up-to-date information for rehabilitation. Optical remote sensing data have delivered such information, however ever-changing atmospheric disturbance may significantly decrease thematic content. In this research, Synthetic Aperture Radar (SAR fully polarimetric data were evaluated to present an alternative for mangrove mapping. Assessment using three statistical trees was performed on both tonal and textural data. It was noticeable that textural data delivered fairly good improvement which reduced the error rate to around 5-6% at L-band. This suggests that insertion of textural data is more important than any information derived from decomposition algorithm.

  5. Analytical Aspects of Total Starch Polarimetric Determination in Some Cereals

    Directory of Open Access Journals (Sweden)

    Rodica Caprita

    2016-10-01

    Full Text Available Starch is the most important digestible polysaccharide present in foods and feeds. The starch concentration in cereals cannot be determined directly, because the starch is contained within a structurally and chemically complex matrix. Fine grinding and boiling in dilute HCl are preparative steps necessary for complete release of the starch granules from the protein matrix. Starch can be determined using simple and inexpensive physical methods, such as density, refractive index or optical rotation assessment. The polarimetric method allows the determination even of small starch contents due to its extremely high specific rotation. For more accurate results, the contribution of free sugars is eliminated by dissolution in 40% (V/V ethanol. The influence of other optically active substances, which might interfere, is removed by filtration/clarification prior to the optical rotation measurement.

  6. Vegetation Parameter Extraction Using Dual Baseline Polarimetric SAR Interferometry Data

    Science.gov (United States)

    Zhang, H.; Wang, C.; Chen, X.; Tang, Y.

    2009-04-01

    For vegetation parameter inversion, the single baseline polarimetric SAR interferometry (POLinSAR) technique, such as the three-stage method and the ESPRIT algorithm, is limited by the observed data with the minimum ground to volume amplitude ration, which effects the estimation of the effective phase center for the vegetation canopy or the surface, and thus results in the underestimated vegetation height. In order to remove this effect of the single baseline inversion techniques in some extend, another baseline POLinSAR data is added on vegetation parameter estimation in this paper, and a dual baseline POLinSAR technique for the extraction of the vegetation parameter is investigated and improved to reduce the dynamic bias for the vegetation parameter estimation. Finally, the simulated data and real data are used to validate this dual baseline technique.

  7. Classification of Polarimetric SAR Data Using Dictionary Learning

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Nielsen, Allan Aasbjerg; Dahl, Anders Lindbjerg

    2012-01-01

    This contribution deals with classification of multilook fully polarimetric synthetic aperture radar (SAR) data by learning a dictionary of crop types present in the Foulum test site. The Foulum test site contains a large number of agricultural fields, as well as lakes, forests, natural vegetation......, grasslands and urban areas, which make it ideally suited for evaluation of classification algorithms. Dictionary learning centers around building a collection of image patches typical for the classification problem at hand. This requires initial manual labeling of the classes present in the data and is thus...... a method for supervised classification. Sparse coding of these image patches aims to maintain a proficient number of typical patches and associated labels. Data is consecutively classified by a nearest neighbor search of the dictionary elements and labeled with probabilities of each class. Each dictionary...

  8. Polarimetric SAR image classification based on discriminative dictionary learning model

    Science.gov (United States)

    Sang, Cheng Wei; Sun, Hong

    2018-03-01

    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  9. Change detection in a time series of polarimetric SAR images

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    A test statistic for the equality of two or several variance-covariance matrices following the real (as opposed to the complex) Wishart distribution with an associated probability of finding a smaller value of the test statistic is described in the literature [1]. In 2003 we introduced a test...... statistic for the equality of two variance-covariance matrices following the complex Wishart distribution with an associated probability measure [2]. In that paper we also demonstrated the use of the test statistic to change detection over time in both fully polarimetric and azimuthal symmetric SAR data...... positives (postulating a change when there actually is none) and/or false negatives (missing an actual change). Therefore we need to test for equality for all time points simultaneously. In this paper we demonstrate a new test statistic for the equality of several variance-covariance matrices from the real...

  10. Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN

    OpenAIRE

    Guo, Hao; Wu, Danni; An, Jubai

    2017-01-01

    Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred f...

  11. An icon-based synoptic visualization of fully polarimetric radar data

    OpenAIRE

    Woodhouse, I.H.; Turner, Dean

    2012-01-01

    The visualization of fully polarimetric radar data is hindered by traditional remote sensing methodologies for displaying data due to the large number of parameters per pixel in such data, and the non-scalar nature of variables such as phase difference. In this paper, a new method is described that uses icons instead of image pixels to represent the image data so that polarimetric properties and geographic context can be visualized together. The icons are parameterized using the alpha-entropy...

  12. Polarimetric Radar Retrievals in Southeast Texas During Hurricane Harvey

    Science.gov (United States)

    Wolff, D. B.; Petersen, W. A.; Tokay, A.; Marks, D. A.; Pippitt, J. L.; Kirstetter, P. E.

    2017-12-01

    Hurricane Harvey hit the Texas Gulf Coast as a major hurricane on August 25, 2017 before exiting the state as a tropical storm on September 1, 2017. In its wake, it left a flood of historic proportions, with some areas measuring 60 inches of rain over a five-day period. Although the storm center stayed west of the immediate Houston area training bands of precipitation impacted the Houston area for five full days. The National Weather Service (NWS) WSR88D dual-polarimetric radar (KHGX), located southeast of Houston, maintained operations for the entirety of the event. The Harris County Flood Warning System (HCFWS) had 150 rain gauges deployed in its network and seven NWS Automated Surface Observing Systems (ASOS) rain gauges are also located in the area. In this study, we used the full radar data set to retrieve daily and event-total precipitation estimates within 120 km of the KHGX radar for the period August 25-29, 2017. These estimates were then compared to the HCFWS and ASOS gauges. Three different polarimetric hybrid rainfall retrievals were used: Ciffeli et al. 2011; Bringi et al. 2004; and, Chen et al. 2017. Each of these hybrid retrievals have demonstrated robust performance in the past. However, both daily and event-total comparisons from each of these retrievals compared to those of HCFWS and ASOS rain gauge networks resulted in significant underestimates by the radar retrievals. These radar underestimates are concerning. Sources of error and variance will be investigated to understand the source of radar-gauge disagreement. One current hypothesis is that due to the large number of small drops often found in hurricanes, the differential reflectivity and specific differential phase are relatively small so that the hybrid algorithms use only the reflectivity/rain rate procedure (so called Z-R relationships), and hence rarely invoke the ZDR or KDP procedures. Thus, an alternative Z-R relationship must be invoked to retrieve accurate rain rate estimates.

  13. Investigating the Innermost Jet Structures of Blazar S5 0716+714 Using Uniquely Dense Intra-day Photo-polarimetric Observations

    Directory of Open Access Journals (Sweden)

    Gopal Bhatta

    2016-10-01

    Full Text Available The sub-hour timescale variability commonly observed in blazars—widely known as intra-day or microvariability—has been extensively studied in optical photo-polarimetric bands over the past 25–30 years. In addition, there have been comprehensive theoretical discussions on the topic, with various models and scenarios proposed; however, the phenomenon still remains relatively poorly understood. Here we present the summary of our optical microvariability studies over the past few years based on multi-frequency photo-polarimetric Whole Earth Blazar Telescope (WEBT observation campaigns. The primary objective of the study was to explore the characteristics of the source microvariability on timescales of a few minutes to a few days using exceptionally dense photo-polarimetric observations. The results show that the source often displays fast variability with an amplitude as large as 0.3 mag within a few hours, as well as color variability on similar time scales often characterized by “bluer-when-brighter” trend. Similarly, the correlation between variability in flux and polarization appears to depend upon the configuration of the optical polarization angle relative to the positional angle of the innermost radio core of the jet. Other fascinating observations include a sudden and temporary disappearance in the observed variability lasting for ∼6 h. In addition, the modeling of individual microflares strongly suggests that the phenomenon of microvariability can be best explained by convolved emission from compact emission sites distributed stochastically in the turbulent jet. Besides, analysis of some of the well resolved micro-flares exhibiting high degrees of polarization points towards a complex magnetic geometry pervading the jet with the possible presence of small-scale regions of highly ordered and enhanced magnetic field similar to so-called “magnetic islands”.

  14. HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wardle, John F. C. [Brandeis University, Physics Department, Waltham, MA 02454 (United States); Bouman, Katherine L., E-mail: achael@cfa.harvard.edu [Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139 (United States)

    2016-09-20

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previous work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.

  15. Properties of C4F7N–CO2 thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients

    Science.gov (United States)

    Wu, Yi; Wang, Chunlin; Sun, Hao; Murphy, Anthony B.; Rong, Mingzhe; Yang, Fei; Chen, Zhexin; Niu, Chunpin; Wang, Xiaohua

    2018-04-01

    The thermophysical properties, including composition, thermodynamic properties, transport coefficients and net emission coefficients, of thermal plasmas formed from pure iso-C4 perfluoronitrile C4F7N and C4F7N–CO2 mixtures are calculated for temperatures from 300 to 30 000 K and pressures from 0.1 to 20 atm. These gases have received much attention as alternatives to SF6 for use in circuit breakers, due to the low global warming potential and good dielectric properties of C4F7N. Since the parameters of the large molecules formed in the dissociation of C4F7N are unavailable, the partition function and enthalpy of formation were calculated using computational chemistry methods. From the equilibrium composition calculations, it was found that when C4F7N is mixed with CO2, CO2 can capture C atoms from C4F7N, producing CO, since the system consisting of small molecules such as CF4 and CO has lower energy at room temperature. This is in agreement with previous experimental results, which show that CO dominates the decomposition products of C4F7N–CO2 mixtures; it could limit the repeated breaking performance of C4F7N. From the point of view of chemical stability, the mixing ratio of CO2 should therefore be chosen carefully. Through comparison with common arc quenching gases (including SF6, CF3I and C5F10O), it is found that for the temperature range for which electrical conductivity remains low, pure C4F7N has similar ρC p (product of mass density and specific heat) properties to SF6, and higher radiative emission coefficient, properties that are correlated with good arc extinguishing capability. For C4F7N–CO2 mixtures, the electrical conductivity is very close to that of SF6 while the ρC p peak at 7000 K caused by decomposition of CO implies inferior interruption capability to that of SF6. The calculated properties will be useful in arc simulations.

  16. Space-borne polarimetric SAR sensors or the golden age of radar polarimetry

    Directory of Open Access Journals (Sweden)

    Pottier E.

    2010-06-01

    Full Text Available SAR Polarimetry represents an active area of research in Active Earth Remote Sensing. This interest is clearly supported by the fact that nowadays there exists, or there will exist in a very next future, a non negligible quantity of launched Polarimetric SAR Spaceborne sensors. The ENVISAT satellite, developed by ESA, was launched on March 2002, and was the first Spaceborne sensor offering an innovative dualpolarization Advanced Synthetic Aperture Radar (ASAR system operating at C-band. The second Polarimetric Spaceborne sensor is ALOS, a Japanese Earth-Observation satellite, developed by JAXA and was launched in January 2006. This mission includes an active L-band polarimetric radar sensor (PALSAR whose highresolution data may be used for environmental and hazard monitoring. The third Polarimetric Spaceborne sensor is TerraSAR-X, a new German radar satellite, developed by DLR, EADS-Astrium and Infoterra GmbH, was launched on June 2007. This sensor carries a dual-polarimetric and high frequency X-Band SAR sensor that can be operated in different modes and offers features that were not available from space before. At least, the Polarimetric Spaceborne sensor, developed by CSA and MDA, and named RADARSAT-2 was launched in December 2007 The Radarsat program was born out the need for effective monitoring of Canada’s icy waters, and some Radarsat-2 capabilities that benefit sea- and river ice applications are the multi-polarization options that will improve ice-edge detection, ice-type discrimination and structure information. The many advances in these different Polarimetric Spaceborne platforms were developed to respond to specific needs for radar data in environmental monitoring applications around the world, like : sea- and river-ice monitoring, marine surveillance, disaster management, oil spill detection, snow monitoring, hydrology, mapping, geology, agriculture, soil characterisation, forestry applications (biomass, allometry, height

  17. A low-order model of water vapor, clouds, and thermal emission for tidally locked terrestrial planets

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun; Abbot, Dorian S., E-mail: junyang28@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States)

    2014-04-01

    In the spirit of minimal modeling of complex systems, we develop an idealized two-column model to investigate the climate of tidally locked terrestrial planets with Earth-like atmospheres in the habitable zone of M-dwarf stars. The model is able to approximate the fundamental features of the climate obtained from three-dimensional (3D) atmospheric general circulation model (GCM) simulations. One important reason for the two-column model's success is that it reproduces the high cloud albedo of the GCM simulations, which reduces the planet's temperature and delays the onset of a runaway greenhouse state. The two-column model also clearly illustrates a secondary mechanism for determining the climate: the nightside acts as a 'radiator fin' through which infrared energy can be lost to space easily. This radiator fin is maintained by a temperature inversion and dry air on the nightside, and plays a similar role to the subtropics on modern Earth. Since one-dimensional radiative-convective models cannot capture the effects of the cloud albedo and radiator fin, they are systematically biased toward a narrower habitable zone. We also show that cloud parameters are the most important in the two-column model for determining the day-night thermal emission contrast, which decreases and eventually reverses as the stellar flux increases. This reversal is important because it could be detected by future extrasolar planet characterization missions, which would suggest that the planet has Earth-like water clouds and is potentially habitable.

  18. A LINGERING NON-THERMAL COMPONENT IN THE GAMMA-RAY BURST PROMPT EMISSION: PREDICTING GeV EMISSION FROM THE MeV SPECTRUM

    International Nuclear Information System (INIS)

    Basak, Rupal; Rao, A. R.

    2013-01-01

    The high-energy GeV emission of gamma-ray bursts (GRBs) detected by Fermi/LAT has a significantly different morphology compared to the lower energy MeV emission detected by Fermi/GBM. Though the late-time GeV emission is believed to be synchrotron radiation produced via an external shock, this emission as early as the prompt phase is puzzling. A meaningful connection between these two emissions can be drawn only by an accurate description of the prompt MeV spectrum. We perform a time-resolved spectroscopy of the Gamma-ray Burst Monitor (GBM) data of long GRBs with significant GeV emission, using a model consisting of two blackbodies and a power law. We examine in detail the evolution of the spectral components and find that GRBs with high GeV emission (GRB 090902B and GRB 090926A) have a delayed onset of the power-law component in the GBM spectrum, which lingers at the later part of the prompt emission. This behavior mimics the flux evolution in the Large Area Telescope (LAT). In contrast, bright GBM GRBs with an order of magnitude lower GeV emission (GRB 100724B and GRB 091003) show a coupled variability of the total and the power-law flux. Further, by analyzing the data for a set of 17 GRBs, we find a strong correlation between the power-law fluence in the MeV and the LAT fluence (Pearson correlation: r = 0.88 and Spearman correlation: ρ = 0.81). We demonstrate that this correlation is not influenced by the correlation between the total and the power-law fluences at a confidence level of 2.3σ. We speculate the possible radiation mechanisms responsible for the correlation

  19. Non-relativistic Free–Free Emission due to the n -distribution of Electrons—Radiative Cooling and Thermally Averaged and Total Gaunt Factors

    Energy Technology Data Exchange (ETDEWEB)

    De Avillez, Miguel A. [Department of Mathematics, University of Évora, R. Romão Ramalho 59, 7000 Évora (Portugal); Breitschwerdt, Dieter, E-mail: mavillez@galaxy.lca.uevora.pt [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstrasse 36, D-10623 Berlin (Germany)

    2017-09-01

    Tracking the thermal evolution of plasmas, characterized by an n -distribution, using numerical simulations, requires the determination of the emission spectra and of the radiative losses due to free–free emission from the corresponding temperature-averaged and total Gaunt factors. Detailed calculations of the latter are presented and associated with n -distributed electrons with the parameter n ranging from 1 (corresponding to the Maxwell–Boltzmann distribution) to 100. The temperature-averaged and total Gaunt factors with decreasing n tend toward those obtained with the Maxwell–Boltzmann distribution. Radiative losses due to free–free emission in a plasma evolving under collisional ionization equilibrium conditions and composed by H, He, C, N, O, Ne, Mg, Si, S, and Fe ions, are presented. These losses decrease with a decrease in the parameter n , reaching a minimum when n  = 1, and thus converge with the loss of thermal plasma. Tables of the thermal-averaged and total Gaunt factors calculated for n -distributions, and a wide range of electron and photon energies, are presented.

  20. Non-relativistic Free–Free Emission due to the n -distribution of Electrons—Radiative Cooling and Thermally Averaged and Total Gaunt Factors

    International Nuclear Information System (INIS)

    De Avillez, Miguel A.; Breitschwerdt, Dieter

    2017-01-01

    Tracking the thermal evolution of plasmas, characterized by an n -distribution, using numerical simulations, requires the determination of the emission spectra and of the radiative losses due to free–free emission from the corresponding temperature-averaged and total Gaunt factors. Detailed calculations of the latter are presented and associated with n -distributed electrons with the parameter n ranging from 1 (corresponding to the Maxwell–Boltzmann distribution) to 100. The temperature-averaged and total Gaunt factors with decreasing n tend toward those obtained with the Maxwell–Boltzmann distribution. Radiative losses due to free–free emission in a plasma evolving under collisional ionization equilibrium conditions and composed by H, He, C, N, O, Ne, Mg, Si, S, and Fe ions, are presented. These losses decrease with a decrease in the parameter n , reaching a minimum when n  = 1, and thus converge with the loss of thermal plasma. Tables of the thermal-averaged and total Gaunt factors calculated for n -distributions, and a wide range of electron and photon energies, are presented.

  1. ZnO nanorod arrays prepared by chemical bath deposition combined with rapid thermal annealing: structural, photoluminescence and field emission characteristics

    International Nuclear Information System (INIS)

    Chen, Hung-Wei; He, Hsin-Min; Lee, Yi-Mu; Yang, Hsi-Wen

    2016-01-01

    ZnO nanorod arrays were prepared by low temperature chemical bath deposition (CBD) combined with rapid thermal annealing (RTA) under different ambient conditions. The structure and morphology of the synthesized ZnO have been characterized by field-emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). The obtained ZnO samples are highly crystalline with a hexagonal wurtzite phase and also display well-aligned array structure. A pronounced effect on increased nanorod length was found for the RTA-treated ZnO as compared to the as-grown ZnO. Analysis of XRD indicates that the (0 0 2) feature peak of the as-grown ZnO was shifted towards a lower angle as compared to the peaks of RTA-treated ZnO samples due to the reduction of tensile strain along the c-axis by RTA. Photoluminescence (PL) studies reveal that the ZnO nanorod arrays receiving RTA in an O 2 environment have the sharpest UV emission band and greatest intensity ratio of near band-edge emission (NBE) to deep level emission (DLE). Additionally, the effects of RTA on the field emission properties were evaluated. The results demonstrate that RTA an O 2 environment can lower the turn-on field and improve the field enhancement factor. The stability of the field emission current was also tested for 4 h. (paper)

  2. Memory effect driven emissions of persistent organic pollutants from industrial thermal processes, their implications and management: a review.

    Science.gov (United States)

    Trivedi, Jitendra; Majumdar, Deepanjan

    2013-04-15

    Memory effect is delayed emission of certain persistent organic pollutants (POPs). Many of the POP compounds viz. polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) get trapped in the particulate phase deposited in the flue transfer lines and air pollution control systems (equivalent to storage in the memory of a system) and released subsequently. Memory effect driven emission is a combination of real time emission and emission of stored compounds and so is not a true measure of actual real time emission. Memory effect is now realized to have existed for a long time but was not identified and understood until recently. Memory effect has several serious implications e.g. it wrongly depicts emission patterns of POPs; it makes compliance to stipulated emission standards difficult; it could lead to wrong calculations of emission factors and emission inventory estimates of a plant and leads to misinterpretation of efficacy of processes and air pollution control systems. Further, new PCDD/Fs may be formed in the trapped particulate phase via de novo synthesis and the new compounds may be emitted, thereby increasing total PCDD/F emissions, apart from altering the homologue pattern of PCDD/Fs in emissions. Memory effect could be minimized by judicious operational and management (O&M) procedures like optimizing combustion, minimizing unnecessary halts in operations, periodical cleaning of flue transfer lines, application of inhibitors etc. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Characterization of dynamic thermal control schemes and heat transfer pathways for incorporating variable emissivity electrochromic materials into a space suit heat rejection system

    Science.gov (United States)

    Massina, Christopher James

    The feasibility of conducting long duration human spaceflight missions is largely dependent on the provision of consumables such as oxygen, water, and food. In addition to meeting crew metabolic needs, water sublimation has long served as the primary heat rejection mechanism in space suits during extravehicular activity (EVA). During a single eight hour EVA, approximately 3.6 kg (8 lbm) of water is lost from the current suit. Reducing the amount of expended water during EVA is a long standing goal of space suit life support systems designers; but to date, no alternate thermal control mechanism has demonstrated the ability to completely eliminate the loss. One proposed concept is to convert the majority of a space suit's surface area into a radiator such that the local environment can be used as a radiative thermal sink for rejecting heat without mass loss. Due to natural variations in both internal (metabolic) loads and external (environmental) sink temperatures, radiative transport must be actively modulated in order to maintain an acceptable thermal balance. Here, variable emissivity electrochromic devices are examined as the primary mechanism for enabling variable heat rejection. This dissertation focuses on theoretical and empirical evaluations performed to determine the feasibility of using a full suit, variable emissivity radiator architecture for space suit thermal control. Operational envelopes are described that show where a given environment and/or metabolic load combination may or may not be supported by the evaluated thermal architecture. Key integration considerations and guidelines include determining allowable thermal environments, defining skin-to-radiator heat transfer properties, and evaluating required electrochromic performance properties. Analysis also considered the impacts of dynamic environmental changes and the architecture's extensibility to EVA on the Martian surface. At the conclusion of this work, the full suit, variable emissivity

  4. Seasonal and Non-Seasonal Variations of Jupiter's Atmosphere from Observations of Thermal Emission, 1994-2011

    Science.gov (United States)

    Orton, G.; Fletcher, L.; Yanamandra-Fisher, P.; Greathouse, T.; Fisher, B.; Greco, J.; Wakefield, L.; Snead, E.; Boydstun, K.; Simon-Miller, A.; hide

    2012-01-01

    We analyzed mid-infrared images of Jupiter's thermal emission, covering approx.1.5 Jovian years, acquired in discrete filters between 7.8 and 24.5 microns. The behavior of stratospheric (approx.10-mbar) and tropospheric (approx.100-400 mbar) temperatures is generally consistent with predictions of seasonal variability, with differences between 100-mbar temperatures +/-50-60deg from the equator on the order of +/-2. Removing this effect, there appear to be long-term quasi-periodic variability of tropospheric temperatures, whose amplitude, phase and period depend on latitude. The behavior of temperatures in the Equatorial Zone (EZ) suggests a approx.4-6-year period with amplitude of about +/-1-1.5 K in temperature. At mid-latitudes, the periodicity is more distinct with amplitudes around +/-1.5-2.5 K and 4-8 year periods. The 4.2-year variation of stratospheric temperatures known as the quasiquadrennial oscillation or "QQO" (Leovy et al. 1991, Nature 354, 380) continued during this period. There were no variations of zonal mean temperatures associated with any of the "global upheaval" events that have produced dramatic changes of jupiter's visible appearance and cloud cover, although there are colder discrete regions associated with updrafts, e.g. the early stages of the re-darkening ("revival") of the South Equatorial Belt (SEB) in late 2010. On the other hand increases in the visible albedos ("fades") of belts are accompanied by increases in the thickness of a 700-mbar cloud layer (most likely NH3 ice) and clouds at higher pressures, together with the mixing ratio of NH3 gas near 400 mbar (above its condensation level). These quantities decrease during re-darkening ("revival") episodes, during which we note discrete features that are exceptions to the general correlation between dark albedos and minimal cloudiness. In contrast to all these changes, the meridional distribution of the 240-mbar para-H2 fraction appears to be invariant in time.

  5. Time-resolved x-ray line emission studies of thermal transport in multiple beam uv-irradiated targets

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; Henke, B.L.; Delettrez, J.; Richardson, M.C.

    1984-01-01

    Thermal transport in spherical targets irradiated with multiple, nanosecond duration laser beams, has been a topic of much discussion recently. Different inferences on the level of thermal flux inhibition have been drawn from plasma velocity and x-ray spectroscopic diagnostics. We present new measurements of thermal transport on spherical targets made through time-resolved x-ray spectroscopic measurements of the progress of the ablation surface through thin layers of material on the surface of the target. These measurements, made with 6 and 12 uv (351 nm) nanosecond beams from OMEGA, will be compared to previous thermal transport measurements. Transparencies of the conference presentation are given

  6. Recommendations on the choice of gas analysis equipment for systems of continuous monitoring and accounting of emissions from thermal power plants

    Science.gov (United States)

    Kondrat'eva, O. E.; Roslyakov, P. V.; Burdyukov, D. A.; Khudolei, O. D.; Loktionov, O. A.

    2017-10-01

    According to Federal Law no. 219-FZ, dated July 21, 2014, all enterprises that have a significant negative impact on the environment shall continuously monitor and account emissions of harmful substances into the atmospheric air. The choice of measuring equipment that is included in continuous emission monitoring and accounting systems (CEM&ASs) is a complex technical problem; in particular, its solution requires a comparative analysis of gas analysis systems; each of these systems has its advantages and disadvantages. In addition, the choice of gas analysis systems for CEM&ASs should be maximally objective and not depend on preferences of separate experts and specialists. The technique of choosing gas analysis equipment that was developed in previous years at Moscow Power Engineering Institute (MPEI) has been analyzed and the applicability of the mathematical tool of a multiple criteria analysis to choose measuring equipment for the continuous emission monitoring and accounting system have been estimated. New approaches to the optimal choice of gas analysis equipment for systems of the continuous monitoring and accounting of harmful emissions from thermal power plants have been proposed, new criteria of evaluation of gas analysis systems have been introduced, and weight coefficients have been determined for these criteria. The results of this study served as a basis for the Preliminary National Standard of the Russian Federation "Best Available Technologies. Automated Systems of Continuous Monitoring and Accounting of Emissions of Harmful (Polluting) Substances from Thermal Power Plants into the Atmospheric Air. Basic Requirements," which was developed by the Moscow Power Engineering Institute, National Research University, in cooperation with the Council of Power Producers and Strategic Electric Power Investors Association and the All-Russia Research Institute for Materials and Technology Standardization.

  7. Contribution of multitemporal polarimetric synthetic aperture radar data for monitoring winter wheat and rapeseed crops

    Science.gov (United States)

    Betbeder, Julie; Fieuzal, Remy; Philippets, Yannick; Ferro-Famil, Laurent; Baup, Frederic

    2016-04-01

    This paper aims to evaluate the contribution of multitemporal polarimetric synthetic aperture radar (SAR) data for winter wheat and rapeseed crops parameters [height, leaf area index, and dry biomass (DB)] estimation, during their whole vegetation cycles in comparison to backscattering coefficients and optical data. Angular sensitivities and dynamics of polarimetric indicators were also analyzed following the growth stages of these two common crop types using, in total, 14 radar images (Radarsat-2), 16 optical images (Formosat-2, Spot-4/5), and numerous ground data. The results of this study show the importance of correcting the angular effect on SAR signals especially for copolarized signals and polarimetric indicators associated to single-bounce scattering mechanisms. The analysis of the temporal dynamic of polarimetric indicators has shown their high potential to detect crop growth changes. Moreover, this study shows the high interest of using SAR parameters (backscattering coefficients and polarimetric indicators) for crop parameters estimation during the whole vegetation cycle instead of optical vegetation index. They particularly revealed their high potential for rapeseed height and DB monitoring [i.e., Shannon entropy polarimetry (r2=0.70) and radar vegetation index (r2=0.80), respectively].

  8. Application of Deep Networks to Oil Spill Detection Using Polarimetric Synthetic Aperture Radar Images

    Directory of Open Access Journals (Sweden)

    Guandong Chen

    2017-09-01

    Full Text Available Polarimetric synthetic aperture radar (SAR remote sensing provides an outstanding tool in oil spill detection and classification, for its advantages in distinguishing mineral oil and biogenic lookalikes. Various features can be extracted from polarimetric SAR data. The large number and correlated nature of polarimetric SAR features make the selection and optimization of these features impact on the performance of oil spill classification algorithms. In this paper, deep learning algorithms such as the stacked autoencoder (SAE and deep belief network (DBN are applied to optimize the polarimetric feature sets and reduce the feature dimension through layer-wise unsupervised pre-training. An experiment was conducted on RADARSAT-2 quad-polarimetric SAR image acquired during the Norwegian oil-on-water exercise of 2011, in which verified mineral, emulsions, and biogenic slicks were analyzed. The results show that oil spill classification achieved by deep networks outperformed both support vector machine (SVM and traditional artificial neural networks (ANN with similar parameter settings, especially when the number of training data samples is limited.

  9. Realizing Highly Efficient Solution-Processed Homojunction-Like Sky-Blue OLEDs by Using Thermally Activated Delayed Fluorescent Emitters Featuring an Aggregation-Induced Emission Property.

    Science.gov (United States)

    Wu, Kailong; Wang, Zian; Zhan, Lisi; Zhong, Cheng; Gong, Shaolong; Xie, Guohua; Yang, Chuluo

    2018-04-05

    Two new blue emitters, i.e., bis-[2-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone ( o-ACSO2) and bis-[3-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone ( m-ACSO2), with reserved fine thermally activated delayed fluorescent (TADF) nature and simply tuned thermal and optoelectronic properties, were synthesized by isomer engineering. The meta-linking compound, i.e., m-ACSO2, obtains the highest photoluminescence quantum yield with a small singlet-triplet energy gap, a moderate delayed fluorescent lifetime, excellent solubility, and neat film homogeneity. Due to its unique aggregation-induced emission (AIE) character, neat film-based heterojunction-like organic light-emitting diodes (OLEDs) are achievable. By inserting an excitonic inert exciton-blocking layer, the PN heterojunction-like emission accompanied by intefacial exciplex was shifted to a homojunction-like channel mainly from the AIE emitter itself, providing a new tactic to generate efficient blue color from neat films. The solution-processed nondoped sky-blue OLED employing m-ACSO2 as emitter with homojunction-like emission achieved a maximum external quantum efficiency of 17.2%. The design strategies presented herein provide practical methods to construct efficient blue TADF dyes and realize high-performance blue TADF devices.

  10. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting

    Directory of Open Access Journals (Sweden)

    A. T. Wieg

    2016-12-01

    Full Text Available We introduce high thermal conductivity aluminum nitride (AlN as a transparent ceramic host for Ce3+, a well-known active ion dopant. We show that the Ce:AlN ceramics have overlapping photoluminescent (PL emission peaks that cover almost the entire visible range resulting in a white appearance under 375 nm excitation without the need for color mixing. The PL is due to a combination of intrinsic AlN defect complexes and Ce3+ electronic transitions. Importantly, the peak intensities can be tuned by varying the Ce concentration and processing parameters, causing different shades of white light without the need for multiple phosphors or light sources. The Commission Internationale de l’Eclairage coordinates calculated from the measured spectra confirm white light emission. In addition, we demonstrate the viability of laser driven white light emission by coupling the Ce:AlN to a readily available frequency tripled Nd-YAG laser emitting at 355 nm. The high thermal conductivity of these ceramic down-converters holds significant promise for producing higher power white light sources than those available today.

  11. Project for solving of environmental problems caused by ash emission and deposition from the thermal power plant 'Nikola Tesla' at Obrenovac

    International Nuclear Information System (INIS)

    Simonovic, B.R.; Vukmirovic, Z.; Ilic, M.

    2002-01-01

    The problem of ash emission and deposition from the Thermal Power Plant 'Nikola Tesla' (TPPNT) in Obrenovac commences with the date of their construction. Up to now, mainly, some analysis of several possible influences of ash (emitted or deposited on the ash and slug dump) was done. We believe that is time now, due to the consequences for a long time, to pose and to resolve the whole problem of ash emission and deposition from TPPNT Obrenovac. Due to the very big production capacity, an enormous amount of fly ash (particle size of 90-200 μm) is emitted to a large area near Obrenovac. Very large quantities of ash and slug (more than 2 millions tons annually) produced during coal burning were deposited on the dump very close to the river Sava. Some of the multiple consequences due to elution of heavy metals, water spilling from the dump and mixing with ground water and surface water of river Sava, weathering of fine particles of ash by wind, acid rains near to the thermal power plants, and other influences of flying and deposited ash on the environment of the whole area are always present. Due to the complexity of the posed problem, a multidisciplinary experts' team was formed to cover all aspects of negative influences of ash emission and deposition from TPPNT Obrenovac. Our project comprises a large number of subprojects covering different problem solving, diminution or removal of all negative influences according to European standards and regulations. (author)

  12. Evaluation of Polarimetric SAR Decomposition for Classifying Wetland Vegetation Types

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Hong

    2015-07-01

    Full Text Available The Florida Everglades is the largest subtropical wetland system in the United States and, as with subtropical and tropical wetlands elsewhere, has been threatened by severe environmental stresses. It is very important to monitor such wetlands to inform management on the status of these fragile ecosystems. This study aims to examine the applicability of TerraSAR-X quadruple polarimetric (quad-pol synthetic aperture radar (PolSAR data for classifying wetland vegetation in the Everglades. We processed quad-pol data using the Hong & Wdowinski four-component decomposition, which accounts for double bounce scattering in the cross-polarization signal. The calculated decomposition images consist of four scattering mechanisms (single, co- and cross-pol double, and volume scattering. We applied an object-oriented image analysis approach to classify vegetation types with the decomposition results. We also used a high-resolution multispectral optical RapidEye image to compare statistics and classification results with Synthetic Aperture Radar (SAR observations. The calculated classification accuracy was higher than 85%, suggesting that the TerraSAR-X quad-pol SAR signal had a high potential for distinguishing different vegetation types. Scattering components from SAR acquisition were particularly advantageous for classifying mangroves along tidal channels. We conclude that the typical scattering behaviors from model-based decomposition are useful for discriminating among different wetland vegetation types.

  13. Radiative Grain Alignment in Protoplanetary Disks: Implications for Polarimetric Observations

    Energy Technology Data Exchange (ETDEWEB)

    Tazaki, Ryo [Department of Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606–8502 (Japan); Lazarian, Alexandre [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Nomura, Hideko, E-mail: rtazaki@kusastro.kyoto-u.ac.jp [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152–8551 (Japan)

    2017-04-10

    We apply the theory of radiative torque (RAT) alignment for studying protoplanetary disks around a T-Tauri star and perform 3D radiative transfer calculations to provide the expected maps of polarized radiation to be compared with observations, such as with ALMA. We revisit the issue of grain alignment for large grains expected in the protoplanetary disks and find that mm-sized grains at the midplane do not align with the magnetic field since the Larmor precession timescale for such large grains becomes longer than the gaseous damping timescale. Hence, for these grains the RAT theory predicts that the alignment axis is determined by the grain precession with respect to the radiative flux. As a result, we expect that the polarization will be in the azimuthal direction for a face-on disk. It is also shown that if dust grains have superparamagnetic inclusions, magnetic field alignment is possible for (sub-)micron grains at the surface layer of disks, and this can be tested by mid-infrared polarimetric observations.

  14. Polarimetric study of the interstellar medium in Taurus Dark Clouds

    International Nuclear Information System (INIS)

    Hsu, J.

    1985-01-01

    An optical linear polarimetric survey was completed for more than 300 stars in an area of 6.5 0 x 10 0 toward the Taurus Dark Clouds Complex. It was found that the orientation of the magnetic field is roughly perpendicular to the elongation direction of the dust lanes, indicating cloud contraction along the magnetic field lines. The distance to the front edge of the dark clouds in Taurus is determined to be 126 pc. There is only insignificant amount of obscuring material between the cloud complex and the Sun. Besides the polarization data, the reddenings of about 250 stars were also obtained from the UBV photometry. The mean polarization to reddening ratio in the Taurus region is 4.6, which is similar to that of the general interstellar matter. The wavelengths of maximum polarization were determined for 30 stars in Taurus. They show an average value of lambda/sub max/ = 0.57 μm, which is only slightly higher than the mean value of the general interstellar medium, lambda/sub max/ = 0.55 μm. A few stars that show higher values of lambda/sub max/ are found near the small isolated regions of very high extinction. One such highly obscured small region where very complex long chain molecules have been discovered in the ratio spectra, is the Taurus Molecular Cloud 1

  15. Heterogeneity Measurement Based on Distance Measure for Polarimetric SAR Data

    Science.gov (United States)

    Xing, Xiaoli; Chen, Qihao; Liu, Xiuguo

    2018-04-01

    To effectively test the scene heterogeneity for polarimetric synthetic aperture radar (PolSAR) data, in this paper, the distance measure is introduced by utilizing the similarity between the sample and pixels. Moreover, given the influence of the distribution and modeling texture, the K distance measure is deduced according to the Wishart distance measure. Specifically, the average of the pixels in the local window replaces the class center coherency or covariance matrix. The Wishart and K distance measure are calculated between the average matrix and the pixels. Then, the ratio of the standard deviation to the mean is established for the Wishart and K distance measure, and the two features are defined and applied to reflect the complexity of the scene. The proposed heterogeneity measure is proceeded by integrating the two features using the Pauli basis. The experiments conducted on the single-look and multilook PolSAR data demonstrate the effectiveness of the proposed method for the detection of the scene heterogeneity.

  16. Using Lava Tube Skylight Thermal Emission Spectra to Determine Lava Composition on Io: Quantitative Constraints for Observations by Future Missions to the Jovian System.

    Science.gov (United States)

    Davies, A. G.

    2008-12-01

    Deriving the composition of Io's dominant lavas (mafic or ultramafic?) is a major objective of the next missions to the jovian system. The best opportunities for making this determination are from observations of thermal emission from skylights, holes in the roof of a lava tube through which incandescent lava radiates, and Io thermal outbursts, where lava fountaining is taking place [1]. Allowing for lava cooling across the skylight, the expected thermal emission spectra from skylights of different sizes have been calculated for laminar and turbulent tube flow and for mafic and ultramafic composition lavas. The difference between the resulting mafic and ultramafic lava spectra has been quantified, as has the instrument sensitivity needed to acquire the necessary data to determine lava eruption temperature, both from Europa orbit and during an Io flyby. A skylight is an excellent target to observe lava that has cooled very little since eruption (California Institute of Technology, under contract to NASA. AGD is supported by a grant from the NASA OPR Program. References: [1] Davies, A. G., 1996, Icarus, 124, 45-61. [2] Keszthelyi, L., et al., 2006, JGS, 163, 253-264. [3] Davies, A. G., 2007, Volcanism on Io, Cambridge University Press. [4] Keszthelyi, L., et al., 2007, Icarus, 192, 491-502. [5] Davies, A. G., et al., 2006, Icarus, 184, 460-477.

  17. Reassessment of the temperature-emissivity separation from multispectral thermal infrared data: Introducing the impact of vegetation canopy by simulating the cavity effect with the SAIL-Thermique model

    Science.gov (United States)

    We investigated the use of multispectral thermal imagery to retrieve land surface emissivity and temperature. Conversely to concurrent methods, the temperature emissivity separation (TES) method simply requires single overpass without any ancillary information. This is possible since TES makes use o...

  18. Detection of buried pipes by polarimetric borehole radar; Polarimetric borehole radar ni yoru maisetsukan no kenshutsu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Niitsuma, H. [Tohoku University, Sendai (Japan); Nakauchi, T. [Osaka Gas Co. Ltd., Osaka (Japan)

    1997-05-27

    If the borehole radar is utilized for detection of buried pipes, the underground radar measurement becomes possible even in the situation where the mesurement on the earth surface is difficult, for example, such a place as under the road where there is much traffic. However, since buried pipes are horizontally installed and the existing borehole radar can send/receive only vertical polarization, the measurement conducted comes to be poor in efficiency from a viewpoint of the polarization utilization. Therefore, by introducing the polarimetric borehole radar to the detection of buried pipes, a basic experiment was conducted for the effective detection of horizontal buried pipes. Proposing the use of a slot antenna which can send/receive horizontal polarization in borehole in addition to a dipole antenna which sends/receives vertical polarization, developed was a step frequency type continuous wave radar of a network analyzer basis. As a result of the experiment, it was confirmed that reflection from buried pipes is largely dependent on polarization. Especially, it was found that in the slot dipole cross polarization mesurement, reflection from buried pipes can be emphasized. 4 refs., 5 figs.

  19. The Potential of Polarimetric and Compact SAR Data in Rice Identification

    International Nuclear Information System (INIS)

    Shao, Y; Li, K; Liu, L; Yang, Z; Brisco, B

    2014-01-01

    Rice is a major food staple in the world, and provides food for more than one-third of the global population. The monitoring and mapping of paddy rice in a timely and efficient manner is very important for governments and decision makers. Synthetic Aperture Radar (SAR) has been proved to be a significant data source in rice monitoring. In this study, RADARSAT-2 polarimetric data were used to simulate compact polarimetry data. The simulated compact data and polarimetric data were then used to evaluate the information content for rice identification. The results indicate that polarimetric SAR can be used for rice identification based on the scattering mechanisms. The compact polarization RH and the RH/RL ratio are very promising for the discrimination of transplanted rice and direct-sown rice. These results require verification in further research

  20. Forest Structure Characterization Using Jpl's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    Science.gov (United States)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  1. The Effect of Topography on Target Decomposition of Polarimetric SAR Data

    Directory of Open Access Journals (Sweden)

    Sang-Eun Park

    2015-04-01

    Full Text Available Polarimetric target decomposition enables the interpretation of radar images more easily, mostly based on physical assumptions, i.e., fitting physically-based scattering models to the polarimetric SAR observations. However, the model-fitting result cannot be always successful. Particularly, the performance of model-fitting in sloping forests is still an open question. In this study, the effect of ground topography on the model-fitting-based polarimetric decomposition techniques is investigated. The estimation accuracy of each scattering component in the decomposition results are evaluated based on the simulated target matrix by using the incoherent vegetation scattering model that accounts for the tilted scattering surface beneath the forest canopy. Experimental results show that the surface and the double-bounce scattering components can be significantly misestimated due to the topographic slope, even when the volume scattering power is successfully estimated.

  2. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Sun Xun

    2016-12-01

    Full Text Available In this paper, we propose a supervised classification algorithm for Polarimetric Synthetic Aperture Radar (PolSAR images using multiple-feature fusion and ensemble learning. First, we extract different polarimetric features, including extended polarimetric feature space, Hoekman, Huynen, H/alpha/A, and fourcomponent scattering features of PolSAR images. Next, we randomly select two types of features each time from all feature sets to guarantee the reliability and diversity of later ensembles and use a support vector machine as the basic classifier for predicting classification results. Finally, we concatenate all prediction probabilities of basic classifiers as the final feature representation and employ the random forest method to obtain final classification results. Experimental results at the pixel and region levels show the effectiveness of the proposed algorithm.

  3. Fast polarimetric dehazing method for visibility enhancement in HSI colour space

    Science.gov (United States)

    Zhang, Wenfei; Liang, Jian; Ren, Liyong; Ju, Haijuan; Bai, Zhaofeng; Wu, Zhaoxin

    2017-09-01

    Image haze removal has attracted much attention in optics and computer vision fields in recent years due to its wide applications. In particular, the fast and real-time dehazing methods are of significance. In this paper, we propose a fast dehazing method in hue, saturation and intensity colour space based on the polarimetric imaging technique. We implement the polarimetric dehazing method in the intensity channel, and the colour distortion of the image is corrected using the white patch retinex method. This method not only reserves the detailed information restoration capacity, but also improves the efficiency of the polarimetric dehazing method. Comparison studies with state of the art methods demonstrate that the proposed method obtains equal or better quality results and moreover the implementation is much faster. The proposed method is promising in real-time image haze removal and video haze removal applications.

  4. Thermal disposal of sewage sludges by fluidised bed combustion with low emissions of pollutants. Thermische Entsorgung kommunaler Klaerschlaemme durch schadstoffarme Verbrennung in der Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, B. (Technische Univ. Magdeburg (Germany). Inst. fuer Thermische Apparate- und Umwelttechnik, Abt. Umwelttechnik); Lindau, S. (Technische Univ. Magdeburg (Germany). Inst. fuer Thermische Apparate- und Umwelttechnik, Abt. Umwelttechnik); Busse, U. (Technische Univ. Magdeburg (Germany). Inst. fuer Thermische Apparate- und Umwelttechnik, Abt. Umwelttechnik)

    1992-04-01

    The volume of sludge from the sewage treatment represents the largest problem in the waste management in Germany recently. The thermal treatment is inevitable for the solution of the problem. The fluidised bed combustion is suitable for a very good usability of sewage sludge. Experimental investigations carried out in a stationary fluidised bed in laboratory scale. The emissions of gaseous air pollutants are influenced by the properties of the sludge and the parameters of the process. The dependence of the formation and the reactions of the pollutants from various parameters are analysed and judged. (orig.)

  5. Mercury Emissions Capture Efficiency with Activated Carbon Injection at a Russian Coal-Fired Thermal Power Plant

    Science.gov (United States)

    This EPA-led project, conducted in collaboration with UNEP, the Swedish Environmental Institute and various Russian Institutes, that demonstrates that the mercury emission control efficiencies of activated carbon injection technologies applied at a Russian power plant burning Rus...

  6. Comparison between Multitemporal and Polarimetric SAR Data for Land Cover Classification

    DEFF Research Database (Denmark)

    Skriver, Henning

    2008-01-01

    The investigation focuses on the determination of the land cover type using SAR data, including single polarisation, dual polarisation and fully polarimetric data, at L-band. The analysed data set was acquired during the AgriSAR 2006 campaign by the airborne ESAR system over the Gormin agricultural...... site (Northeast Germany). The multitemporal acquisitions significantly improve the classification results for single and dual polarization configurations. The best results for the single and dual polarization configurations are better than for the polarimetric mode. Overall, the cross...

  7. The first international workshop on "Advancement of POLarimetric Observations: calibration and improved aerosol retrievals": APOLO-2017

    Science.gov (United States)

    Dubovik, Oleg; Li, Zhengqiang; Mishchenko, Michael I.

    2018-06-01

    The international workshop on "Advancement of POLarimetric Observations: calibration and improved aerosol retrievals-2017" (APOLO-2017) took place in Hefei, China on 24 - 27 October 2017. This was the inaugural meeting of a planned series of workshops on satellite polarimetry aimed at addressing the rapidly growing interest of the scientific community in polarimetric remote-sensing observations from space. The workshop was held at the Anhui Institute of Optics and Fine Mechanics, Hefei, widely known for 15 years of experience in the development of research polarimetry sensors and for hosting the building in parallel of several orbital polarimeters.

  8. Integrated, Dual Orthogonal Antennas for Polarimetric Ground Penetrating Radar

    Science.gov (United States)

    Pauli, Mario; Wiesbeck, Werner

    2015-04-01

    Ground penetrating radar systems are mostly equipped with single polarized antennas, for example with single linear polarization or with circular polarization. The radiated waves are partly reflected at the ground surface and very often the penetrating waves are distorted in their polarization. The distortion depends on the ground homogeneity and the orientation of the antennas relative to the ground structure. The received signals from the reflecting objects may most times only be classified according to their coverage and intensity. This makes the recognition of the objects difficult or impossible. In airborne and spaceborne Remote Sensing the systems are meanwhile mostly equipped with front ends with dual orthogonal polarized antennas for a full polarimetric operation. The received signals, registered in 2x2 scattering matrices according to co- and cross polarization, are processed for the evaluation of all features of the targets. Ground penetrating radars could also profit from the scientific results of Remote Sensing. The classification of detected objects for their structure and orientation requires more information in the reflected signal than can be measured with a single polarization [1, 2]. In this paper dual linear, orthogonal polarized antennas with a common single, frequency independent phase center, are presented [3]. The relative bandwidth of these antennas can be 1:3, up to 1:4. The antenna is designed to work in the frequency range between 3 GHz and 11 GHz, but can be easily adapted to the GPR frequency range by scaling. The size of the antenna scaled for operation in typical GPR frequencies would approximately be 20 by 20 cm2. By the implementation in a dielectric carrier it could be reduced in size if required. The major problem for ultra wide band, dual polarized antennas is the frequency independent feed network, realizing the required phase shifts. For these antennas a network, which is frequency independent over a wide range, has been

  9. Laboratory Measurements of Single-Particle Polarimetric Spectrum

    Science.gov (United States)

    Gritsevich, M.; Penttila, A.; Maconi, G.; Kassamakov, I.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Measuring scattering properties of different targets is important for material characterization, remote sensing applications, and for verifying theoretical results. Furthermore, there are usually simplifications made when we model targets and compute the scattering properties, e.g., ideal shape or constant optical parameters throughout the target material. Experimental studies help in understanding the link between the observed properties and computed results. Experimentally derived Mueller matrices of studied particles can be used as input for larger-scale scattering simulations, e.g., radiative transfer computations. This method allows to bypass the problem of using an idealized model for single-particle optical properties. While existing approaches offer ensemble- and orientation-averaged particle properties, our aim is to measure individual particles with controlled or known orientation. With the newly developed scatterometer, we aim to offer novel possibility to measure single, small (down to μm-scale) targets and their polarimetric spectra. This work presents an experimental setup that measures light scattered by a fixed small particle with dimensions ranging between micrometer and millimeter sizes. The goal of our setup is nondestructive characterization of such particles by measuring light of multiple wavelengths scattered in 360° in a horizontal plane by an ultrasonically levitating sample, whilst simultaneously controlling its 3D position and orientation. We describe the principles and design of our instrument and its calibration. We also present example measurements of real samples. This study was conducted under the support from the European Research Council, in the frame of the Advanced Grant project No. 320773 `Scattering and Absorption of Electromagnetic Waves in Particulate Media' (SAEMPL).

  10. Microphysical Structures of Hurricane Irma Observed by Polarimetric Radar

    Science.gov (United States)

    Didlake, A. C.; Kumjian, M. R.

    2017-12-01

    This study examines dual-polarization radar observations of Hurricane Irma as its center passed near the WSR-88D radar in Puerto Rico, capturing needed microphysical information of a mature tropical cyclone. Twenty hours of observations continuously sampled the inner core precipitation features. These data were analyzed by annuli and azimuth, providing a bulk characterization of the primary eyewall, secondary eyewall, and rainbands as they varied around the storm. Polarimetric radar variables displayed distinct signatures of convective and stratiform precipitation in the primary eyewall and rainbands that were organized in a manner consistent with the expected kinematic asymmetry of a storm in weak environmental wind shear but with moderate low-level storm-relative flow. In the front quadrants of the primary eyewall, vertical profiles of differential reflectivity (ZDR) exhibit increasing values with decreasing height consistent with convective precipitation processes. In particular, the front-right quadrant exhibits a signature in reflectivity (ZH) and ZDR indicating larger, sparser drops, which is consistent with a stronger updraft present in this quadrant. In the rear quadrants, a sharply peaked ZDR maximum occurs within the melting layer, which is attributed of stratiform processes. In the rainbands, the convective to stratiform transition can be seen traveling from the front-right to the front-left quadrant. The front-right quadrant exhibits lower co-polar correlation coefficient (ρHV) values in the 3-8 km altitude layer, suggesting larger vertical spreading of various hydrometeors that occurs in convective vertical motions. The front-left quadrant exhibits larger ρHV values, suggesting less diversity of hydrometeor shapes, consistent with stratiform processes. The secondary eyewall did not exhibit a clear signature of processes preferred in a specific quadrant, and a temporal analysis of the secondary eyewall revealed a complex evolution of its structure

  11. OPTICAL PHOTOMETRIC AND POLARIMETRIC INVESTIGATION OF NGC 1931

    International Nuclear Information System (INIS)

    Pandey, A. K.; Eswaraiah, C.; Sharma, Saurabh; Yadav, Ram Kesh; Samal, M. R.; Chauhan, N.; Chen, W. P.; Jose, J.; Ojha, D. K.; Chandola, H. C.

    2013-01-01

    We present optical photometric and polarimetric observations of stars toward NGC 1931 with the aim of deriving cluster parameters such as distance, reddening, age, and luminosity/mass function as well as understanding dust properties and star formation in the region. The distance to the cluster is found to be 2.3 ± 0.3 kpc and the reddening E(B – V) in the region is found to be variable. The stellar density contours reveal two clusters in the region. The observations suggest a differing reddening law within the cluster region. Polarization efficiency of the dust grains toward the direction of the cluster is found to be less than that for the general diffuse interstellar medium (ISM). The slope of the mass function (–0.98 ± 0.22) in the southern region in the mass range of 0.8 ☉ < 9.8 is found to be shallower in comparison to that in the northern region (–1.26 ± 0.23), which is comparable to the Salpeter value (–1.35). The K-band luminosity function (KLF) of the region is found to be comparable to the average value of the slope (∼0.4) for young clusters obtained by Lada and Lada; however, the slope of the KLF is steeper in the northern region as compared to the southern region. The region is probably ionized by two B2 main-sequence-type stars. The mean age of the young stellar objects (YSOs) is found to be 2 ± 1 Myr, which suggests that the identified YSOs could be younger than the ionizing sources of the region. The morphology of the region, the distribution and ages of the YSOs, and ionizing sources indicate a triggered star formation in the region.

  12. Air Emissions Sampling from Vacuum Thermal Desorption for Mixed Wastes Designated with a Combustion Treatment Code for the Energy Solutions LLC Mixed Waste Facility

    International Nuclear Information System (INIS)

    Christensen, M.E.; Willoughby, O.H.

    2009-01-01

    EnergySolutions LLC is permitted by the State of Utah to treat organically-contaminated Mixed Waste by a vacuum thermal desorption (VTD) treatment process at its Clive, Utah treatment, storage, and disposal facility. The VTD process separates organics from organically-contaminated waste by heating the material in an inert atmosphere, and captures them as concentrated liquid by condensation. The majority of the radioactive materials present in the feed to the VTD are retained with the treated solids; the recovered aqueous and organic condensates are not radioactive. This is generally true when the radioactivity is present in solid form such as inorganic salts, metals or metallic oxides. The exception is when volatile radioactive materials are present such as radon gas, tritium, or carbon-14 organic chemicals. Volatile radioactive materials are a small fraction of the feed material. On August 28, 2006, EnergySolutions submitted a request to the USEPA for a variance to the Land Disposal Restrictions (LDR) standards for wastes designated with the combustion treatment code (CMBST). The final rule granting a site specific treatment variance was effective June 13, 2008. This variance is an alternative treatment standard to treatment by CMBST required for these wastes under USEPA's rules. The State of Utah provides oversight of the VTD processing operations. A demonstration test for treating CMBST-coded wastes was performed on April 29, 2008 through May 1, 2008. Three separate process cycles were conducted during this test. Both solid/liquid samples and emission samples were collected each day during the demonstration test. To adequately challenge the unit, feed material was spiked with trichloroethylene, o-cresol, dibenzofuran, and coal tar. Emission testing was conducted by EnergySolutions' emissions test contractor and sampling for radioactivity within the off-gas was completed by EnergySolutions' Health Physics department. This report discusses the emission testing

  13. 210Po and 210Pb emissions to air from the thermal phosphorus plant in Europe: measurements in the environment and dose assessment for regulatory purpose

    International Nuclear Information System (INIS)

    Tanzi, C.P.; Knetsch, G.J.

    2013-01-01

    In 1983 in The Netherlands, an environmental survey at a river estuary revealed elevated radionuclide concentrations above the background level. The source was identified as an industrial plant producing elemental phosphorus, by means of a thermal process. Within a few years a permit for emissions of radionuclides to the environment was requested under the prevailing Nuclear Energy Act, and granted. Since 1987 the industry reports its emission data to the mandated Ministry. This phosphorus plant contributes the highest release of 210 Po and 210 Pb to air in the Netherlands. The difficulty of identifying the enhanced activity due to the elemental phosphorus through environmental measurement is here illustrated by showing, by means of an air dispersion model, that the radioactivity added by the phosphorus plant to the environment is comparable to the natural background level. The estimate of the excess air concentration given exclusively by a continuous annual emission of 500 GBq, bound to aerosols of size less than 1 micron, varies from 450 to 750 micro Bq/m 3 at a distance of 3.5 km from the phosphorus plant, depending on yearly weather variations. This may be compared to the natural background level as it is measured at a distance of over 100 km inland from the phosphorus plant, at RIVM, the National Institute for Public Health and the Environment. The yearly average measured 210 Pb activity concentration in air is 363±5 micro Bq/m 3 in 2009 which is within range of other years. At the coastal site where the phosphorus plant is located, the natural background will be lower. The gross beta activity concentration near the phosphorus plant is 296 micro Bq/m 3 in 2009: this includes the emissions to air from the sintering process. The emission to air for the year 2009 reported by the phosphorus plan is 80 GBq/y of 210 Pb

  14. CORE-COLLAPSE MODEL OF BROADBAND EMISSION FROM SNR RX J1713.7–3946 WITH THERMAL X-RAYS AND GAMMA RAYS FROM ESCAPING COSMIC RAYS

    International Nuclear Information System (INIS)

    Ellison, Donald C.; Slane, Patrick; Patnaude, Daniel J.; Bykov, Andrei M.

    2012-01-01

    We present a spherically symmetric, core-collapse model of SNR RX J1713.7–3946 that includes a hydrodynamic simulation of the remnant evolution coupled to the efficient production of cosmic rays (CRs) by nonlinear diffusive shock acceleration. High-energy CRs that escape from the forward shock (FS) are propagated in surrounding dense material that simulates either a swept-up, pre-supernova shell or a nearby molecular cloud. The continuum emission from trapped and escaping CRs, along with the thermal X-ray emission from the shocked heated interstellar medium behind the FS, integrated over the remnant, is compared against broadband observations. Our results show conclusively that, overall, the GeV-TeV emission is dominated by inverse-Compton from CR electrons if the supernova is isolated regardless of its type, i.e., not interacting with a >>100 M ☉ shell or cloud. If the supernova remnant is interacting with a much larger mass ∼> 10 4 M ☉ , pion decay from the escaping CRs may dominate the TeV emission, although a precise fit at high energy will depend on the still uncertain details of how the highest energy CRs are accelerated by, and escape from, the FS. Based on morphological and other constraints, we consider the 10 4 M ☉ pion-decay scenario highly unlikely for SNR RX J1713.7–3946 regardless of the details of CR escape. Importantly, even though CR electrons dominate the GeV-TeV emission, the efficient production of CR ions is an essential part of our leptonic model.

  15. Calculations of total fusion power and spatial distribution of emissivity for a D-T thermal plasma

    International Nuclear Information System (INIS)

    Batistoni, P.; Pillon, M.

    1987-01-01

    The preliminary project of a diagnostic tool to measure the neutron emissivity profile for NET (Next European Torus) with an array of collimators is presented. With the help of a neutron transport code the maximum possible number of collimators, compatible with the crosstalk noise and the space available in the NET 2.2.B is determined within these constraints. An array of 17 collimators can be used, and some experimental results are simulated using a Monte Carlo code. These results are analyzed and an inversion procedure is used to obtain the emissivity profile and evaluate the total fusion power. The results show that the total fusion power can be measured within 10% for different emission profiles

  16. Polarimetric borehole radar measurement near Nojima fault and its application to subsurface crack characterization; Polarimetric borehole radar ni yoru Nojima danso shuhen no chika kiretsu keisoku jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Taniguchi, Y.; Miwa, T.; Niitsuma, H. [Tohoku University, Sendai (Japan); Ikeda, R. [National Research Institute for Disaster Prevention, Tsukuba (Japan); Makino, K. [Geophysical Surveying and Consulting Co. Ltd., Tokyo (Japan)

    1997-05-27

    Practical application of subsurface crack characterization by the borehole radar measurement to which the radar polarimetric method was introduced was attempted to measuring objects for which the borehole radar has not been much used, for example, the inside of low loss rock mass or fracture zone where cracks tightly exist. A system was trially manufactured which makes the radar polarimetric measurement possible in the borehole at a 1000m depth and with a about 10cm diameter, and a field experiment was conducted for realizing the subsurface crack characterization near the Nojima fault. For the measuring experiment by the polarimetric borehole radar, used were Iwaya borehole and Hirabayashi borehole drilled in the north of Awaji-shima, Hyogo-ken. In a comparison of both polarization systems of Hirabayashi borehole, reflected waves at depths of 1038m and 1047m are relatively stronger in both polarization systems than those with the same polarization form and at different depths, whereas reflected waves around a 1017m depth are strong only as to the parallel polarization system. Characteristics of the polarization in this experiment indirectly reflect crack structures. 6 refs., 6 figs., 1 tab.

  17. China action of "Cleanup Plan for Polychlorinated Biphenyls Burial Sites": emissions during excavation and thermal desorption of a capacitor-burial site.

    Science.gov (United States)

    Yang, Bing; Zhou, Lingli; Xue, Nandong; Li, Fasheng; Wu, Guanglong; Ding, Qiong; Yan, Yunzhong; Liu, Bo

    2013-10-01

    Scarce data are available so far on emissions in a given scenario for excavation and thermal desorption, a common practice, of soils contaminated with polychlorinated biphenyls (PCBs). As part of China action of "Cleanup Plan for PCBs Burial Sites", this study roughly estimated PCBs emissions in the scenario for a capacitor-burial site. The concentrations of total PCBs (22 congeners) in soils were in the range of 2.1-16,000μg/g with a mean of 2300μg/g, among the same order of magnitude as the highest values obtained in various PCBs-contaminated sites. Only six congeners belonging to Di-, Tri-, and Tetra-CBs were observed above limits of detection in air samples in the scenario, partially which can be estimated by the USEPA air emission model. Comparing concentrations and composition profiles of PCBs in the soil and air samples further indicated a leaked source of commercial PCBs formulations of trichlorobiphenyl (China PCB no. 1). The measures taken if any to mitigate the volatilization and movement of PCBs and to minimize worker exposure were discussed for improvements of the excavation practice. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, W.J. [Potlatch Corp., San Francisco, CA (United States)

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  19. THERMAL DIAGNOSTICS WITH THE ATMOSPHERIC IMAGING ASSEMBLY ON BOARD THE SOLAR DYNAMICS OBSERVATORY: A VALIDATED METHOD FOR DIFFERENTIAL EMISSION MEASURE INVERSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Mark C. M.; Boerner, P.; Schrijver, C. J.; Malanushenko, A. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street Bldg. 252, Palo Alto, CA 94304 (United States); Testa, P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chen, F.; Peter, H., E-mail: cheung@lmsal.com [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2015-07-10

    We present a new method for performing differential emission measure (DEM) inversions on narrow-band EUV images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. The method yields positive definite DEM solutions by solving a linear program. This method has been validated against a diverse set of thermal models of varying complexity and realism. These include (1) idealized Gaussian DEM distributions, (2) 3D models of NOAA Active Region 11158 comprising quasi-steady loop atmospheres in a nonlinear force-free field, and (3) thermodynamic models from a fully compressible, 3D MHD simulation of active region (AR) corona formation following magnetic flux emergence. We then present results from the application of the method to AIA observations of Active Region 11158, comparing the region's thermal structure on two successive solar rotations. Additionally, we show how the DEM inversion method can be adapted to simultaneously invert AIA and Hinode X-ray Telescope data, and how supplementing AIA data with the latter improves the inversion result. The speed of the method allows for routine production of DEM maps, thus facilitating science studies that require tracking of the thermal structure of the solar corona in time and space.

  20. Investigating the flow dynamics and chemistry of an expanding thermal plasma through CH(A-X) emission spectra

    NARCIS (Netherlands)

    Hansen, T. A. R.; Colsters, P. G. J.; M. C. M. van de Sanden,; Engeln, R.

    2011-01-01

    The gas flow in a linear plasma reactor and the plasma chemistry during hydrogenated amorphous carbon and graphite etching are investigated via time and spatially resolved measurements of the ion density and CH emission. A convolution of the ion and hydrocarbon density shows the importance of charge

  1. Performance evaluation of non-thermal plasma on particulate matter, ozone and CO2 correlation for diesel exhaust emission reduction

    DEFF Research Database (Denmark)

    Babaie, Meisam; Davari, Pooya; Talebizadeh, Poyan

    2015-01-01

    This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2...

  2. Absorption and stimulated emission between the electronic states of C and C_2 radicals in an expanding thermal plasma

    NARCIS (Netherlands)

    Otorbaev, D.K.; Sanden, van de M.C.M.; Buuron, A.J.M.; Schram, D.C.

    1995-01-01

    Using the method of reabsorption the absolute densities of argon, atomic and molecular carbon are determined during the deposition of amorphous hydrogenated (diamond-like) carbon coatings by an expanding thermal are plasma. Depending on the gas mixture argon/methane or argon/acetylene and the manner

  3. Thermal OH Emission, A New Tracer for Galaxy Structure: Z-Thickness and Rolling Motion of the Perseus Arm

    Science.gov (United States)

    Engelke, Philip; Allen, Ronald J.; Hogg, David E.

    2016-06-01

    Recent observations with the Green Bank Telescope (Allen et al. 2015) have shown that high-sensitivity measurements of OH 18-cm emission can be a useful alternative tracer for the large-scale distribution of molecular gas in the Galactic ISM. This component of the ISM is not well traced by 3-mm CO(1-0) emission. In the quiescent regions examined so far, fewer than half of the OH spectral features found show corresponding CO emission in the CfA survey (Dame el al. 2001). The intensities of the two main-line OH transitions at 1665 and 1667 MHz are in the “thermal” or LTE ratio of 5:9 and emanate from low-opacity gas with a wide spatial distribution similar to the HI. This morphology resembles that of the “dark gas” (or “dark neutral medium”) postulated by Grenier et al. (2005) as the possible source of target nucleii required to explain the excess gamma ray emission from the Galactic ISM. OH 18-cm emission provides a new tool for studies of the quantity, distance, and kinematics of this new CO-dark molecular component of the ISM. As a demonstration of the utility of this new tool, we apply it to two questions about the molecular structure of the Perseus Arm: the thickness in the z-direction, and the rolling motions of the arm discovered in the earliest HI maps of the Galaxy (e.g. Oort 1962, Rougoor 1964). Using OH emission as a molecular tracer, we find that the molecular component of gas in the Perseus Arm has a comparable z-thickness to that measured using HI, although it appears to be clumpier. OH also shows that the molecular component experiences the “rolling motions” known from the HI data. As a molecular tracer, OH allows more regions to be observed than can be observed using CO(1-0), and as an optically-thin emission line, OH can provide direct column density measurements.

  4. Biophysical Forest Type Characterization in the Colombian Amazon by Airborne Polarimetric SAR

    NARCIS (Netherlands)

    Hoekman, D.H.; Quiñones, M.J.

    2002-01-01

    Fully polarimetric C-, L-, and P-band data were collected by NASA's AirSAR system in May 1993 at the Araracuara test site, a well-surveyed forest reserve in the center of the Colombian Amazon. The area is characterized by a high diversity of forest types, soil types, and flooding conditions. In this

  5. Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN.

    Science.gov (United States)

    Guo, Hao; Wu, Danni; An, Jubai

    2017-08-09

    Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred features subset. The features analyzed include entropy, alpha, and Single-bounce Eigenvalue Relative Difference (SERD) in the C-band polarimetric mode. We also propose a novel SAR image discrimination method for oil slicks and lookalikes based on Convolutional Neural Network (CNN). The regions of interest are selected as the training and testing samples for CNN on the three kinds of polarimetric feature images. The proposed method is applied to a training data set of 5400 samples, including 1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples. In the end, the effectiveness of the method is demonstrated through the analysis of some experimental results. The classification accuracy obtained using 900 samples of test data is 91.33%. It is here observed that the proposed method not only can accurately identify the dark spots on SAR images but also verify the ability of the proposed algorithm to classify unstructured features.

  6. Complex Wishart distribution based analysis of polarimetric synthetic aperture radar data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Skriver, Henning; Conradsen, Knut

    2007-01-01

    statistic for equality of two such matrices and an associated asymptotic probability for obtaining a smaller value of the test statistic are given and applied to change detection, edge detection and segmentation in polarimetric SAR data. In a case study EMISAR L-band data from 17 April 1998 and 20 May 1998...

  7. Change detection in polarimetric SAR data and the complex Wishart distribution

    DEFF Research Database (Denmark)

    Conradsen, Knut; Nielsen, Allan Aasbjerg; Schou, Jesper

    2001-01-01

    . Based on this distribution a test statistic for equality of two such matrices and an associated asymptotic probability for obtaining a smaller value of the test statistic are given and applied to change detection in polarimetric SAR data. In a case study EMISAR L-band data from 17 April 1998 and 20 May...

  8. Maritime target and sea clutter measurements with a coherent Doppler polarimetric surveillance radar

    NARCIS (Netherlands)

    Smith, A.J.E.; Gelsema, S.J.; Kester, L.J.H.M.; Melief, H.W.; Premel Cabic, G.; Theil, A.; Woudenberg, E.

    2002-01-01

    Doppler polarimetry in a surveillance radar for the maritime surface picture is considered. This radar must be able to detect low-RCS targets in littoral environments. Measurements on such targets have been conducted with a coherent polarimetric measurement radar in March 2001 and preliminary

  9. An analytical model for the description of the full-polarimetric sea surface Doppler signature

    NARCIS (Netherlands)

    Fois, F.; Hoogeboom, P.; Le Chevalier, F.; Stoffelen, A.

    2015-01-01

    This paper describes an analytical model of the full-polarimetric sea surface scattering and Doppler signature. The model combines the small-slope-approximation theory (at the second order) with a weak nonlinear sea surface representation. Such a model is used to examine the variation of the Doppler

  10. Compact Polarimetric SAR Ship Detection with m-δ Decomposition Using Visual Attention Model

    Directory of Open Access Journals (Sweden)

    Lu Xu

    2016-09-01

    Full Text Available A few previous studies have illustrated the potentials of compact polarimetric Synthetic Aperture Radar (CP SAR in ship detection. In this paper, we design a ship detection algorithm of CP SAR from the perspective of computer vision. A ship detection algorithm using the pulsed cosine transform (PCT visual attention model is proposed to suppress background clutter and highlight conspicuous ship targets. It is the first time that a visual attention model is introduced to CP SAR application. The proposed algorithm is a quick and complete framework for practical use. Polarimetric features—the relative phase δ and volume scattering component—are extracted from m-δ decomposition to eliminate false alarms and modify the PCT model. The constant false alarm rate (CFAR algorithm based on lognormal distribution is adopted to detect ship targets, after a clutter distribution fitting procedure of the modified saliency map. The proposed method is then tested on three simulated circular-transmit-linear-receive (CTLR mode images, which covering East Sea of China. Compared with the detection results of SPAN and the saliency map with only single-channel amplitude, the proposed method achieves the highest detection rates and the lowest misidentification rate and highest figure of merit, proving the effectiveness of polarimetric information of compact polarimetric SAR ship detection and the enhancement from the visual attention model.

  11. Comparisons of Circular Transmit and Linear Receive Compact Polarimetric SAR Features for Oil Slicks Discrimination

    Directory of Open Access Journals (Sweden)

    Yu Li

    2015-01-01

    Full Text Available Compact polarimetric (CP synthetic aperture radar (SAR has proven its potential in distinguishing oil slicks and look-alikes. Polarimetric information can be retrieved directly from scattering vector or from reconstructed pseudo-Quad-Pol covariance matrix of CP SAR data. In this paper, we analysed features from Circular Transmit and Linear Receive (CTLR CP SAR data that are derived by taking both of these two methods. K-means clustering followed by accuracy assessment was also implemented for performance evaluation. Through experiments that were conducted based on L-band UAVSAR fully polarimetric data, it was found that optimum extraction methods varied for different features. The histogram analysis and segmentation results also demonstrated the comparable performance of CP SAR features in distinguishing different damping properties within oil slicks. This study proposed a framework of statistically analyzing polarimetric SAR (Pol-SAR features and provided guidelines for determining optimum feature extraction methods from CP SAR data and for marine oil-spills detection and classification.

  12. Airborn Ku-band polarimetric radar remote sensing of terrestrial snow cover

    Science.gov (United States)

    Simon H. Yueh; Steve J. Dinardo; Ahmed Akgiray; Richard West; Donald W. Cline; Kelly Elder

    2009-01-01

    Characteristics of the Ku-band polarimetric scatterometer (POLSCAT) data acquired from five sets of aircraft flights in the winter months of 2006-2008 for the second Cold Land Processes Experiment (CLPX-II) in Colorado are described in this paper. The data showed the response of the Ku-band radar echoes to snowpack changes for various types of background vegetation in...

  13. Determination of the full polarimetric transition matrix of a magnetized plasma from measurements of phase only

    International Nuclear Information System (INIS)

    Segre, S.E.

    1996-09-01

    It is shown that, by using a convenient modulated input polarization, it is possible to determine the full plasma polarimetric transition matrix purely from phase measurements. These are advantageous compared to previously proposed amplitude measurements. Two alternative sets of configurations for the input polarization are considered. The elements of the transition matrix thus found can be used in the reconstruction of the MHD equilibrium

  14. Unsupervised Full-Polarimetric SAR Data Segmentation as a Tool for Classification of Agricultural Areas

    NARCIS (Netherlands)

    Hoekman, D.H.; Vissers, M.A.M.; Tran, T.N.

    2011-01-01

    Versatile, robust and computational efficient methods for radar image segmentation, which preserve the full polarimetric information content, are of importance as research tools, as well as for practical applications in land surface monitoring. The method introduced here consists of several steps.

  15. Polarimetric SAR interferometry-based decomposition modelling for reliable scattering retrieval

    Science.gov (United States)

    Agrawal, Neeraj; Kumar, Shashi; Tolpekin, Valentyn

    2016-05-01

    Fully Polarimetric SAR (PolSAR) data is used for scattering information retrieval from single SAR resolution cell. Single SAR resolution cell may contain contribution from more than one scattering objects. Hence, single or dual polarized data does not provide all the possible scattering information. So, to overcome this problem fully Polarimetric data is used. It was observed in previous study that fully Polarimetric data of different dates provide different scattering values for same object and coefficient of determination obtained from linear regression between volume scattering and aboveground biomass (AGB) shows different values for the SAR dataset of different dates. Scattering values are important input elements for modelling of forest aboveground biomass. In this research work an approach is proposed to get reliable scattering from interferometric pair of fully Polarimetric RADARSAT-2 data. The field survey for data collection was carried out for Barkot forest during November 10th to December 5th, 2014. Stratified random sampling was used to collect field data for circumference at breast height (CBH) and tree height measurement. Field-measured AGB was compared with the volume scattering elements obtained from decomposition modelling of individual PolSAR images and PolInSAR coherency matrix. Yamaguchi 4-component decomposition was implemented to retrieve scattering elements from SAR data. PolInSAR based decomposition was the great challenge in this work and it was implemented with certain assumptions to create Hermitian coherency matrix with co-registered polarimetric interferometric pair of SAR data. Regression analysis between field-measured AGB and volume scattering element obtained from PolInSAR data showed highest (0.589) coefficient of determination. The same regression with volume scattering elements of individual SAR images showed 0.49 and 0.50 coefficients of determination for master and slave images respectively. This study recommends use of

  16. Polarimetric survey of main-belt asteroids⋆. III. Results for 33 X-type objects

    Science.gov (United States)

    Cañada-Assandri, M.; Gil-Hutton, R.; Benavidez, P.

    2012-06-01

    Aims: We present results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained with the Torino and CASPROF polarimeters at the 2.15 m telescope. The Torino polarimeter is an instrument that allows the simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 2003, and up to 2009 data of a sample of more than 170 asteroids were obtained. In this paper the results for 33 X-type objects are presented, several of them are being polarimetrically observed for the first time. Using these data we found polarization curves and polarimetric parameters for different groups among this taxonomic class and that there are objects with very different albedo in the sub-classes of the X taxonomic complex. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/542/A11

  17. Speckle Filtering of GF-3 Polarimetric SAR Data with Joint Restriction Principle.

    Science.gov (United States)

    Xie, Jinwei; Li, Zhenfang; Zhou, Chaowei; Fang, Yuyuan; Zhang, Qingjun

    2018-05-12

    Polarimetric SAR (PolSAR) scattering characteristics of imagery are always obtained from the second order moments estimation of multi-polarization data, that is, the estimation of covariance or coherency matrices. Due to the extra-paths that signal reflected from separate scatterers within the resolution cell has to travel, speckle noise always exists in SAR images and has a severe impact on the scattering performance, especially on single look complex images. In order to achieve high accuracy in estimating covariance or coherency matrices, three aspects are taken into consideration: (1) the edges and texture of the scene are distinct after speckle filtering; (2) the statistical characteristic should be similar to the object pixel; and (3) the polarimetric scattering signature should be preserved, in addition to speckle reduction. In this paper, a joint restriction principle is proposed to meet the requirement. Three different restriction principles are introduced to the processing of speckle filtering. First, a new template, which is more suitable for the point or line targets, is designed to ensure the morphological consistency. Then, the extent sigma filter is used to restrict the pixels in the template aforementioned to have an identical statistic characteristic. At last, a polarimetric similarity factor is applied to the same pixels above, to guarantee the similar polarimetric features amongst the optional pixels. This processing procedure is named as speckle filtering with joint restriction principle and the approach is applied to GF-3 polarimetric SAR data acquired in San Francisco, CA, USA. Its effectiveness of keeping the image sharpness and preserving the scattering mechanism as well as speckle reduction is validated by the comparison with boxcar filters and refined Lee filter.

  18. Airborne polarimetric Doppler weather radar: trade-offs between various engineering specifications

    Science.gov (United States)

    Vivekanandan, Jothiram; Loew, Eric

    2018-01-01

    NCAR EOL is investigating potential configurations for the next-generation airborne phased array radar (APAR) that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. The APAR will operate at C band. The APAR will use the electronic scanning (e-scan) feature to acquire the optimal number of independent samples for recording research-quality measurements. Since the airborne radar has only a limited time for collecting measurements over a specified region (moving aircraft platform ˜ 100 m s-1), beam multiplexing will significantly enhance its ability to collect high-resolution, research-quality measurements. Beam multiplexing reduces errors in radar measurements while providing rapid updates of scan volumes. Beamwidth depends on the size of the antenna aperture. Beamwidth and directivity of elliptical, circular, and rectangular antenna apertures are compared and radar sensitivity is evaluated for various polarimetric configurations and transmit-receive (T/R) elements. In the case of polarimetric measurements, alternate transmit with alternate receive (single-channel receiver) and simultaneous reception (dual-channel receiver) is compared. From an overall architecture perspective, element-level digitization of T/R module versus digital sub-array is considered with regard to flexibility in adaptive beamforming, polarimetric performance, calibration, and data quality. Methodologies for calibration of the radar and removing bias in polarimetric measurements are outlined. The above-mentioned engineering options are evaluated for realizing an optimal APAR system suitable for measuring the high temporal and spatial resolutions of Doppler and polarimetric measurements of precipitation and clouds.

  19. Utilization of biodiesel from castor oil in gas micro turbines: thermal performance testing and emissions; Utilizacao do biodiesel de mamona em microturbinas a gas: testes de desempenho termico e emissoes

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Marco Antonio R.; Lora, Electo Silva; Venturini, Osvaldo Jose; Maldonado, Manuel Rendon; Andrade, Rubenildo Viera; Correa Junior, Paulo Sergio Pedroso [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)], Emails: marcoantonio@unifei.edu.br, electo@unifei.edu.br, osvaldo@unifei.edu.br, nrendon@unifei.edu.br, ruben@unifei.edu.br, paulocorrea@unifei.edu.br; Leite, Marco Antonio Haikal [Centro de Pesquisas Leopoldo Americo Miguez de Mello (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil)], Email: mahaikal@petrobras.com.br

    2006-07-01

    The operation of power equipment such as a gas micro-turbine using renewable fuels is an interesting alternative when sustainability is concerned, mainly in isolated areas with abundant availability of fuels that come from biomass. Within this scenario, this article presents the results of tests regarding thermal performance and emissions of a gas micro-turbine operating with Diesel and bio diesel mixtures, showing the influence of the use of this fuel on the thermal behavior of the machine and on the emissions of gases such as CO, NO{sub x} and SO{sub 2}. The results of the experimental tests are shown in graphs, from where it can be observed that the bio diesel and its mixtures do not change the thermal behavior of the micro-turbine significantly, and at the same time, they may considerably reduce the emission of gaseous pollutants. (author)

  20. Low energy spectral index and Ep evolution of quasi-thermal photosphere emission of gamma-ray bursts

    International Nuclear Information System (INIS)

    Deng, Wei; Zhang, Bing

    2014-01-01

    Recent observations by the Fermi satellite suggest that a photosphere emission component is contributing to the observed spectrum of many gamma-ray bursts (GRBs). One important question is whether the photosphere component can interpret the typical 'Band' function of GRBs with a typical low energy photon spectral index α ∼ –1. We perform a detailed study of the photosphere emission spectrum by progressively introducing several physical ingredients previously not fully incorporated, including the probability distribution of the location of a dynamically evolving photosphere, superposition of emission from an equal arrival time 'volume' in a continuous wind, the evolution of optical depth of a wind with finite but evolving outer boundary, as well as the effect of different top-hat wind luminosity (L w ) profiles. By assuming a comoving blackbody spectrum emerging from the photosphere, we find that for an outflow with a constant or increasing L w , the low-energy spectrum below the peak energy (E p ), can be modified to F ν ∼ ν 1.5 (α ∼ +0.5). A softer (–1 < α < +0.5) or flat (α = –1) spectrum can be obtained during the L w decreasing phase or high-latitude-emission-dominated phase. We also study the evolution of E p as a function of wind and photosphere luminosity in this photosphere model. An E p – L tracking pattern can be reproduced if a certain positive dependence between the dimensionless entropy η and L w is introduced. However, the hard-to-soft evolution pattern cannot be reproduced unless a contrived condition is invoked. In order to interpret the Band spectrum, a more complicated photosphere model or a different energy dissipation and radiation mechanism is needed.

  1. MULTIFREQUENCY PHOTO-POLARIMETRIC WEBT OBSERVATION CAMPAIGN ON THE BLAZAR S5 0716+714: SOURCE MICROVARIABILITY AND SEARCH FOR CHARACTERISTIC TIMESCALES

    Energy Technology Data Exchange (ETDEWEB)

    Bhatta, G.; Stawarz, Ł.; Ostrowski, M. [Astronomical Observatory of Jagiellonian University, ul. Orla 171, 30-244 Krakow (Poland); Markowitz, A. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0424 (United States); Akitaya, H. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Arkharov, A. A. [Main (Pulkovo) Astronomical Observatory of RAS, Pulkovskoye shosse, 60, 196140 St. Petersburg (Russian Federation); Bachev, R. [Institute of Astronomy, Bulgarian Academy of Sciences, 72, Tsarigradsko Shosse Blvd., 1784 Sofia (Bulgaria); Benítez, E. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Mexico DF (Mexico); Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny, Crimea, 298409 (Russian Federation); Carosati, D. [EPT Observatories, Tijarafe, La Palma (Spain); Cason, A. D. [Private address, 105 Glen Pine Trail, Dawnsonville, GA 30534 (United States); Chanishvili, R. [Abastumani Observatory, Mt. Kanobili, 0301 Abastumani, Georgia (United States); Damljanovic, G. [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia); Dhalla, S. [Florida International University, Miami, FL 33199 (United States); Frasca, A. [INAF—Osservatorio Astrofisico di Catania (Italy); Hiriart, D. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada (Mexico); Hu, S-M., E-mail: gopalbhatta716@gmail.com [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University at Weihai, 264209 Weihai (China); and others

    2016-11-01

    Here we report on the results of the Whole Earth Blazar Telescope photo-polarimetric campaign targeting the blazar S5 0716+71, organized in 2014 March to monitor the source simultaneously in BVRI and near-IR filters. The campaign resulted in an unprecedented data set spanning ∼110 hr of nearly continuous, multiband observations, including two sets of densely sampled polarimetric data mainly in the R filter. During the campaign, the source displayed pronounced variability with peak-to-peak variations of about 30% and “bluer-when-brighter” spectral evolution, consisting of a day-timescale modulation with superimposed hour-long microflares characterized by ∼0.1 mag flux changes. We performed an in-depth search for quasi-periodicities in the source light curve; hints for the presence of oscillations on timescales of ∼3 and ∼5 hr do not represent highly significant departures from a pure red-noise power spectrum. We observed that, at a certain configuration of the optical polarization angle (PA) relative to the PA of the innermost radio jet in the source, changes in the polarization degree (PD) led the total flux variability by about 2 hr; meanwhile, when the relative configuration of the polarization and jet angles altered, no such lag could be noted. The microflaring events, when analyzed as separate pulse emission components, were found to be characterized by a very high PD (>30%) and PAs that differed substantially from the PA of the underlying background component, or from the radio jet positional angle. We discuss the results in the general context of blazar emission and energy dissipation models.

  2. MULTIFREQUENCY PHOTO-POLARIMETRIC WEBT OBSERVATION CAMPAIGN ON THE BLAZAR S5 0716+714: SOURCE MICROVARIABILITY AND SEARCH FOR CHARACTERISTIC TIMESCALES

    International Nuclear Information System (INIS)

    Bhatta, G.; Stawarz, Ł.; Ostrowski, M.; Markowitz, A.; Akitaya, H.; Arkharov, A. A.; Bachev, R.; Benítez, E.; Borman, G. A.; Carosati, D.; Cason, A. D.; Chanishvili, R.; Damljanovic, G.; Dhalla, S.; Frasca, A.; Hiriart, D.; Hu, S-M.

    2016-01-01

    Here we report on the results of the Whole Earth Blazar Telescope photo-polarimetric campaign targeting the blazar S5 0716+71, organized in 2014 March to monitor the source simultaneously in BVRI and near-IR filters. The campaign resulted in an unprecedented data set spanning ∼110 hr of nearly continuous, multiband observations, including two sets of densely sampled polarimetric data mainly in the R filter. During the campaign, the source displayed pronounced variability with peak-to-peak variations of about 30% and “bluer-when-brighter” spectral evolution, consisting of a day-timescale modulation with superimposed hour-long microflares characterized by ∼0.1 mag flux changes. We performed an in-depth search for quasi-periodicities in the source light curve; hints for the presence of oscillations on timescales of ∼3 and ∼5 hr do not represent highly significant departures from a pure red-noise power spectrum. We observed that, at a certain configuration of the optical polarization angle (PA) relative to the PA of the innermost radio jet in the source, changes in the polarization degree (PD) led the total flux variability by about 2 hr; meanwhile, when the relative configuration of the polarization and jet angles altered, no such lag could be noted. The microflaring events, when analyzed as separate pulse emission components, were found to be characterized by a very high PD (>30%) and PAs that differed substantially from the PA of the underlying background component, or from the radio jet positional angle. We discuss the results in the general context of blazar emission and energy dissipation models.

  3. Hydrothermal alteration maps of the central and southern Basin and Range province of the United States compiled from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data

    Science.gov (United States)

    Mars, John L.

    2013-01-01

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Interactive Data Language (IDL) logical operator algorithms were used to map hydrothermally altered rocks in the central and southern parts of the Basin and Range province of the United States. The hydrothermally altered rocks mapped in this study include (1) hydrothermal silica-rich rocks (hydrous quartz, chalcedony, opal, and amorphous silica), (2) propylitic rocks (calcite-dolomite and epidote-chlorite mapped as separate mineral groups), (3) argillic rocks (alunite-pyrophyllite-kaolinite), and (4) phyllic rocks (sericite-muscovite). A series of hydrothermal alteration maps, which identify the potential locations of hydrothermal silica-rich, propylitic, argillic, and phyllic rocks on Landsat Thematic Mapper (TM) band 7 orthorectified images, and geographic information systems shape files of hydrothermal alteration units are provided in this study.

  4. Detection of electron and hole traps in CdZnTe radiation detectors by thermoelectric emission spectroscopy and thermally stimulated conductivity

    International Nuclear Information System (INIS)

    Lee, E.Y.; Brunett, B.A.; Olsen, R.W.; Van Scyoc, J.M. III; Hermon, H.; James, R.B.

    1998-01-01

    The electrical properties of CdZnTe radiation detectors are largely determined by electron and hole traps in this material. The traps, in addition to degrading the detector performance, can function as dopants and determine the resistivity of the material. Thermoelectric emission spectroscopy and thermally stimulated conductivity are used to detect these traps in a commercially available spectrometer-grade CdZnTe detector, and the electrical resistivity is measured as a function of temperature. A deep electron trap having an energy of 695 meV and cross section of 8 x 10 -16 cm 2 is detected and three hole traps having energies of 70 ± 20 meV, 105 ± 30 meV and 694 ± 162 meV are detected. A simple model based on these traps explains quantitatively all the data, including the electrical properties at room temperature and also their temperature dependence

  5. Planck intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible

    DEFF Research Database (Denmark)

    Cardoso, J.F.; Delabrouille, J.; Ganga, K.

    2015-01-01

    The Planck survey provides unprecedented full-sky coverage of the submillimetre polarized emission from Galactic dust. In addition to the information on the direction of the Galactic magnetic field, this also brings new constraints on the properties of dust. The dust grains that emit the radiation...... with the spectral dependence in the submillimetre from Planck, will be important for constraining and understanding the full complexity of the grain models, and for interpreting the Planck thermal dust polarization and refinement of the separation of this contamination of the cosmic microwave background....... of dust, and therefore of the important dust model parameters, composition, size, and shape. Using ancillary catalogues of interstellar polarization and extinction of starlight, we obtain the degree of polarization, pV, and the optical depth in the V band to the star, τV. Toward these stars we measure...

  6. Measurement of x-ray emission and thermal transport in near-solid-density plasmas heated by 130 fs laser pulses

    International Nuclear Information System (INIS)

    Young, B.K.; Wilson, B.G.; Price, D.F.; Stewart, R.E.

    1998-01-01

    Near-solid-density plasmas with peak temperatures of 370±50 eV have been generated using a high-contrast (∼10 -7 ), 400 nm, 130 fs laser pulse of intensity 3x10 17 Wcm -2 at the Ultrashort Pulse Laser at Lawrence Livermore National Laboratory. The x-ray-emission spectra from thin tracer layers of germanium, tamped by layers of plastic, were measured as a function of target depth. The results qualitatively agree with calculations based on detailed local thermodynamic equilibrium (LTE) and modified non-LTE spectroscopic opacity models using plasma conditions determined using LASNEX hydrodynamic simulations. No evidence of thermal flux inhibition into the bulk target material was observed. The experiments and detailed simulations are presented. copyright 1998 The American Physical Society

  7. Springtime carbon emission episodes at the Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles

    Directory of Open Access Journals (Sweden)

    J. Jung

    2011-11-01

    Full Text Available In order to investigate the emission of carbonaceous aerosols at the Gosan background super-site (33.17° N, 126.10° E in East Asia, total suspended particles (TSP were collected during spring of 2007 and 2008 and analyzed for particulate organic carbon, elemental carbon, total carbon (TC, total nitrogen (TN, and stable carbon isotopic composition (δ13C of TC. The stable carbon isotopic composition of TC (δ13CTC was found to be lowest during pollen emission episodes (range: −26.2‰ to −23.5‰, avg. −25.2 ± 0.9‰, approaching those of the airborne pollen (−28.0‰ collected at the Gosan site. Based on a carbon isotope mass balance equation, we found that ~42% of TC in the TSP samples during the pollen episodes was attributed to airborne pollen from Japanese cedar trees planted around tangerine farms in Jeju Island. A negative correlation between the citric acid-carbon/TC ratios and δ13CTC was obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollen and then transported to the Gosan site. Thermal evolution patterns of organic carbon during the pollen episodes were characterized by high OC evolution in the OC2 temperature step (450 °C. Since thermal evolution patterns of organic aerosols are highly influenced by their molecular weight, they can be used as additional information on the formation of secondary organic aerosols and the effect of aging of organic aerosols during the long-range atmospheric transport and sources of organic aerosols.

  8. A MODIS-based analysis of the Val d'Agri Oil Center (South of Italy) thermal emission: an independent gas flaring estimation strategy

    Science.gov (United States)

    Pergola, Nicola; Faruolo, Mariapia; Irina, Coviello; Carolina, Filizzola; Teodosio, Lacava; Valerio, Tramutoli

    2014-05-01

    Different kinds of atmospheric pollution affect human health and the environment at local and global scale. The petroleum industry represents one of the most important environmental pollution sources, accounting for about 18% of well-to-wheels greenhouse gas (GHG) emissions. The main pollution source is represented by the flaring of gas, one of the most challenging energy and environmental problems facing the world today. The World Bank has estimated that 150 billion cubic meters of natural gas are being flared annually, that is equivalent to 30% of the European Union's gas consumption. Since 2002, satellite-based methodologies have shown their capability in providing independent and reliable estimation of gas flaring emissions, at both national and global scale. In this paper, for the first time, the potential of satellite data in estimating gas flaring volumes emitted from a single on-shore crude oil pre-treatment plant, i.e. the Ente Nazionale Idrocarburi (ENI) Val d'Agri Oil Center (COVA), located in the Basilicata Region (South of Italy), was assessed. Specifically, thirteen years of night-time Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired in the medium and thermal infrared (MIR and TIR, respectively) bands were processed. The Robust Satellite Techniques (RST) approach was implemented for identifying anomalous values of the signals under investigation (i.e. the MIR-TIR difference one), associated to the COVA flares emergency discharges. Then, the Fire Radiative Power (FRP), computed for the thermal anomalies previously identified, was correlated to the emitted gas flaring volumes, available for the COVA in the period 2003 - 2009, defining a satellite based regression model for estimating COVA gas flaring emitted volumes. The used strategy and the preliminary results of this analysis will be described in detail in this work.

  9. Near-infrared Thermal Emission Detections of a Number of Hot Jupiters and the Systematics of Ground-based Near-infrared Photometry

    Science.gov (United States)

    Croll, Bryce; Albert, Loic; Jayawardhana, Ray; Cushing, Michael; Moutou, Claire; Lafreniere, David; Johnson, John Asher; Bonomo, Aldo S.; Deleuil, Magali; Fortney, Jonathan

    2015-03-01

    We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K CONT-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so as to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations. Based on observations obtained with WIRCam, a joint project of Canada-France-Hawaii Telescope (CFHT), Taiwan, Korea, Canada, France, at the CFHT, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  10. THE 1.6 μm NEAR-INFRARED NUCLEI OF 3C RADIO GALAXIES: JETS, THERMAL EMISSION, OR SCATTERED LIGHT?

    International Nuclear Information System (INIS)

    Baldi, Ranieri D.; Chiaberge, Marco; Sparks, William; Macchetto, F. Duccio; Capetti, Alessandro; O'Dea, Christopher P.; Axon, David J.; Baum, Stefi A.; Quillen, Alice C.

    2010-01-01

    Using HST NICMOS 2 observations we have measured 1.6 μm near-infrared nuclear luminosities of 100 3CR radio galaxies with z < 0.3, by modeling and subtracting the extended emission from the host galaxy. We performed a multiwavelength statistical analysis (including optical and radio data) of the properties of the nuclei following classification of the objects into FR I and FR II, and low-ionization galaxies (LIGs), high-ionization galaxies (HIGs), and broad-line objects (BLOs) using the radio morphology and optical spectra, respectively. The correlations among near-infrared, optical, and radio nuclear luminosity support the idea that the near-infrared nuclear emission of FR Is has a non-thermal origin. Despite the difference in radio morphology, the multiwavelength properties of FR II LIG nuclei are statistically indistinguishable from those of FR Is, an indication of a common structure of the central engine. All BLOs show an unresolved near-infrared nucleus and a large near-infrared excess with respect to FR II LIGs and FR Is of equal radio core luminosity. This requires the presence of an additional (and dominant) component other than the non-thermal light. Considering the shape of their spectral energy distribution, we ascribe the origin of their near-infrared light to hot circumnuclear dust. A near-infrared excess is also found in HIGs, but their nuclei are substantially fainter than those of BLO. This result indicates that substantial obscuration along the line of sight to the nuclei is still present at 1.6 μm. Nonetheless, HIG nuclei cannot simply be explained in terms of dust obscuration: a significant contribution from light reflected in a circumnuclear scattering region is needed to account for their multiwavelength properties.

  11. Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence

    DEFF Research Database (Denmark)

    Cardoso, J. F.; Delabrouille, J.; Ganga, K.

    2015-01-01

    with the local spatial coherence of the polarization angle. These observations are compared to polarized emission maps computed in simulations of anisotropic magnetohydrodynamical turbulence in which we assume a uniform intrinsic polarization fraction of the dust grains. We find that an estimate...... of these numerical models. In summary, we find that the turbulent structure of the magnetic field is able to reproduce the main statistical properties of the dust polarization as observed in a variety of nearby clouds, dense cores excluded, and that the large-scale field orientation with respect to the line of sight...

  12. Application of homotopy perturbation method for a conductive–radiative fin with temperature dependent thermal conductivity and surface emissivity

    Directory of Open Access Journals (Sweden)

    Pranab Kanti Roy

    2015-09-01

    Full Text Available This work aimed at studying the effects of environmental temperature and surface emissivity parameter on the temperature distribution, efficiency and heat transfer rate of a conductive–radiative fin. The Homotopy Perturbation Method (HPM being one of the semi-numerical methods for highly nonlinear and inhomogeneous equations, the local temperature distribution efficiencies and heat transfer rates are obtained using HPM in which Newton–Raphson method is used for the insulated boundary condition. It is found that the results of the present works are in good agreement with results available in the literature.

  13. Construction of Polarimetric Radar-Based Reference Rain Maps for the Iowa Flood Studies Campaign

    Science.gov (United States)

    Petersen, Walt; Krajewski, Witek; Wolff, David; Gatlin, Patrick

    2015-04-01

    The Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS) campaign was conducted in central and northeastern Iowa during the months of April-June, 2013. Specific science objectives for IFloodS included quantification of uncertainties in satellite and ground-based estimates of precipitation, 4-D characterization of precipitation physical processes and associated parameters (e.g., size distributions, water contents, types, structure etc.), assessment of the impact of precipitation estimation uncertainty and physical processes on hydrologic predictive skill, and refinement of field observations and data analysis approaches as they pertain to future GPM integrated hydrologic validation and related field studies. In addition to field campaign archival of raw and processed satellite data (including precipitation products), key ground-based platforms such as the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms, and a large network of 2D Video and Parsivel disdrometers were deployed. In something of a canonical approach, the radar (NPOL in particular), gauge and disdrometer observational assets were deployed to create a consistent high-quality distributed (time and space sampling) radar-based ground "reference" rainfall dataset, with known uncertainties, that could be used for assessing the satellite-based precipitation products at a range of space/time scales. Subsequently, the impact of uncertainties in the satellite products could be evaluated relative to the ground-benchmark in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction. Relative to establishing the ground-based "benchmark", numerous avenues were pursued in the making and verification of IFloodS "reference" dual-polarimetric radar-based rain maps, and this study documents the process and results as they pertain specifically

  14. Construction of Polarimetric Radar-Based Reference Rain Maps for the Iowa Flood Studies Campaign

    Science.gov (United States)

    Petersen, Walter; Wolff, David; Krajewski, Witek; Gatlin, Patrick

    2015-01-01

    The Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS) campaign was conducted in central and northeastern Iowa during the months of April-June, 2013. Specific science objectives for IFloodS included quantification of uncertainties in satellite and ground-based estimates of precipitation, 4-D characterization of precipitation physical processes and associated parameters (e.g., size distributions, water contents, types, structure etc.), assessment of the impact of precipitation estimation uncertainty and physical processes on hydrologic predictive skill, and refinement of field observations and data analysis approaches as they pertain to future GPM integrated hydrologic validation and related field studies. In addition to field campaign archival of raw and processed satellite data (including precipitation products), key ground-based platforms such as the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms, and a large network of 2D Video and Parsivel disdrometers were deployed. In something of a canonical approach, the radar (NPOL in particular), gauge and disdrometer observational assets were deployed to create a consistent high-quality distributed (time and space sampling) radar-based ground "reference" rainfall dataset, with known uncertainties, that could be used for assessing the satellite-based precipitation products at a range of space/time scales. Subsequently, the impact of uncertainties in the satellite products could be evaluated relative to the ground-benchmark in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction. Relative to establishing the ground-based "benchmark", numerous avenues were pursued in the making and verification of IFloodS "reference" dual-polarimetric radar-based rain maps, and this study documents the process and results as they pertain specifically

  15. Effect of metal stress on the thermal infrared emission of soybeans: A greenhouse experiment - Possible utility in remote sensing

    Science.gov (United States)

    Suresh, R.; Schwaller, M. R.; Foy, C. D.; Weidner, J. R.; Schnetzler, C. S.

    1989-01-01

    Manganese-sensitive forest and manganese-tolerant lee soybean cultivars were subjected to differential manganese stress in loring soil in a greenhouse experiment. Leaf temperature measurements were made using thermistors for forest and lee. Manganese-stressed plants had higher leaf temperatures than control plants in both forest and lee. Results of this experiment have potential applications in metal stress detection using remote sensing thermal infrared data over large areas of vegetation. This technique can be useful in reconnaissance mineral exploration in densely-vegetated regions where conventional ground-based methods are of little help.

  16. PolSAR Land Cover Classification Based on Roll-Invariant and Selected Hidden Polarimetric Features in the Rotation Domain

    Directory of Open Access Journals (Sweden)

    Chensong Tao

    2017-07-01

    Full Text Available Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR. Target polarimetric response is strongly dependent on its orientation. Backscattering responses of the same target with different orientations to the SAR flight path may be quite different. This target orientation diversity effect hinders PolSAR image understanding and interpretation. Roll-invariant polarimetric features such as entropy, anisotropy, mean alpha angle, and total scattering power are independent of the target orientation and are commonly adopted for PolSAR image classification. On the other aspect, target orientation diversity also contains rich information which may not be sensed by roll-invariant polarimetric features. In this vein, only using the roll-invariant polarimetric features may limit the final classification accuracy. To address this problem, this work uses the recently reported uniform polarimetric matrix rotation theory and a visualization and characterization tool of polarimetric coherence pattern to investigate hidden polarimetric features in the rotation domain along the radar line of sight. Then, a feature selection scheme is established and a set of hidden polarimetric features are selected in the rotation domain. Finally, a classification method is developed using the complementary information between roll-invariant and selected hidden polarimetric features with a support vector machine (SVM/decision tree (DT classifier. Comparison experiments are carried out with NASA/JPL AIRSAR and multi-temporal UAVSAR data. For AIRSAR data, the overall classification accuracy of the proposed classification method is 95.37% (with SVM/96.38% (with DT, while that of the conventional classification method is 93.87% (with SVM/94.12% (with DT, respectively. Meanwhile, for multi-temporal UAVSAR data, the mean overall classification accuracy of the proposed method is up to 97.47% (with SVM/99.39% (with DT, which is also higher

  17. An Airborne Campaign Measuring Wind Signatures from the Sea Surface using an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    A series of circle flights have been carried out over the sea surface, using the EMIRAD L-band polarimetric radiometer. Motion compensation is applied, and polarimetric azimuth signatures are generated. Single tracks show geophysical noise, typically about 2 K, but averaging decreases the noise, ......, but a comparison of the signature to the downwelling galactic background radiation indicates, that the signature may not origin from the wind driven sea surface pattern....

  18. Limits on the streaming and escape of electrons in thermal models for solar hard X-ray emission

    International Nuclear Information System (INIS)

    Smith, D.F.; Brown, J.C.

    1980-01-01

    Upper limits on the number of fast electrons streaming through and escaping from a plasma whose electrons have been heated to approx.10 8 K and confined by a collisionless ion-acoustic thermal conduction front are determined. It is shown that such a front is fairly transparent to fast electrons with velocities much larger than the thermal velocity because the anisotropic ion-acoustic waves cannot scatter them, making them collisionless on a scale much larger than the thickness of the front. The collisionless analog of the collisional thermoelectric field is derived self-consistently and shown to offer a significant impediment to fast electrons because they must climb over a large potential barrier than in the collisional case. The only factors limiting the escape of electrons able to surmount this barrier are their rate of production and the requirement that they carry less heat flux than the maximum heat flux allowable. The rate of production is determined for the case of a Maxwellian whose tail is being filled collisionally. Requirements for the stability of these electrons in the hot source plasma and conduction front are given. Methods of refining these limits are discussed

  19. An investigation of thermal and deformation properties of quartzite at the temperature interval of polymorphic α - β transition by neutron diffraction and acoustic emission

    International Nuclear Information System (INIS)

    Nikitin, A.N.; Vasin, R.N.; Balagurov, A.M.; Sobolev, G.A.; Ponomarev, A.V.

    2006-01-01

    The results of complex application of neutron diffraction and acoustic emission for investigation of the physical properties of synthetic quartz and natural quartzite at the temperature interval of α-β transition are given. During the experiments the quartzite sample was exposed to heating and also to uniaxial compression. The changes of the lattice spacings of quartzite at the temperature interval of 540-620 C were measured and values of lattice stresses were estimated; estimated lattice stresses several times exceed the applied stresses. It is found that short strong splashes of acoustic emission (AE) occurred when the phase transition was completed; the intensity of those splashes exceeds by two orders the level of AE, caused by the thermal bursting of the sample under heating up to the transition temperature. The assumption is placed that anomalous behaviour of quartz-containing rocks being under relatively small stresses near the phase transition temperature could cause the appearance of the concentrators of local stresses. These stresses are commensurable to the strength of quartz, and initiate the microcracking of the material

  20. Effects of thermal barrier coating on gas emissions and performance of a LHR engine with different injection timings and valve adjustments

    International Nuclear Information System (INIS)

    Bueyuekkaya, Ekrem; Engin, Tahsin; Cerit, Muhammet

    2006-01-01

    Tests were performed on a six cylinder, direct injection, turbocharged Diesel engine whose pistons were coated with a 350 μm thickness of MgZrO 3 over a 150 μm thickness of NiCrAl bond coat. CaZrO 3 was employed as the coating material for the cylinder head and valves. The working conditions for the standard engine (uncovered) and low heat rejection (LHR) engine were kept exactly the same to ensure a realistic comparison between the two configurations of the engine. Comparisons between the standard engine and its LHR version were made based on engine performance, exhaust gas emissions, injection timing and valve adjustment. The results showed that 1-8% reduction in brake specific fuel consumption could be achieved by the combined effect of the thermal barrier coating (TBC) and injection timing. On the other hand, NO x emissions were obtained below those of the base engine by 11% for 18 o BTDC injection timing

  1. Manipulation of Thermally Activated Delayed Fluorescence of Blue Exciplex Emission: Fully Utilizing Exciton Energy for Highly Efficient Organic Light Emitting Diodes with Low Roll-Off.

    Science.gov (United States)

    Wang, Zixing; Wang, Hedan; Zhu, Jun; Wu, Peng; Shen, Bowen; Dou, Dehai; Wei, Bin

    2017-06-28

    The application of exciplex energy has become a unique way to achieve organic light-emitting diodes (OLEDs) with high efficiencies, low turn-on voltage, and low roll-off. Novel δ-carboline derivatives with high triplet energy (T 1 ≈ 2.92 eV) and high glass transition temperature (T g ≈ 153 °C) were employed to manipulate exciplex emissions in this paper. Deep blue (peak at 436 nm) and pure blue (peak at 468 nm) thermally activated delayed fluorescence (TADF) of exciplex OLEDs were demonstrated by utilizing them as emitters with the maximum current efficiency (CE) of 4.64 cd A -1 , power efficiency (PE) of 2.91 lm W -1 , and external quantum efficiency (EQE) of 2.36%. Highly efficient blue phosphorescent OLEDs doped with FIrpic showed a maximum CE of 55.6 cd A -1 , PE of 52.9 lm W -1 , and EQE of 24.6% respectively with very low turn on voltage at 2.7 V. The devices still remain high CE of 46.5 cd A -1 at 100 cd m -2 , 45.4 cd A -1 at 1000 cd m -2 and 42.3 cd A -1 at 5000 cd m -2 with EQE close to 20% indicating low roll-off. Manipulating blue exciplex emissions by chemical structure gives an ideal strategy to fully utilize all exciton energies for lighting of OLEDs.

  2. Dual-MWCNT Probe Thermal Sensor Assembly and Evaluation Based on Nanorobotic Manipulation inside a Field-Emission-Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Zhan Yang

    2015-03-01

    Full Text Available We report a thermal sensor composed of two multiwalled carbon nano-tubes (MWCNTs inside a field-emission-scanning electron microscope. The sensor was assembled using a nanorobotic manipulation system, which was used to construct a probe tip in order to detect the local environment of a single cell. An atomic force microscopy (AFM cantilever was used as a substrate; the cantilever was composed of Si3N4 and both sides were covered with a gold layer. MWCNTs were individually assembled on both sides of the AFM cantilever by employing nanorobotic manipulation. Another AFM cantilever was subsequently used as an end effector to manipulate the MWCNTs to touch each other. Electron-beam-induced deposition (EBID was then used to bond the two MWCNTs. The MWCNT probe thermal sensor was evaluated inside a thermostated container in the temperature range from 25°C to 60°C. The experimental results show the positive characteristics of the temperature coefficient of resistance (TCR.

  3. Neural network-based preprocessing to estimate the parameters of the X-ray emission of a single-temperature thermal plasma

    Science.gov (United States)

    Ichinohe, Y.; Yamada, S.; Miyazaki, N.; Saito, S.

    2018-04-01

    We present data preprocessing based on an artificial neural network to estimate the parameters of the X-ray emission spectra of a single-temperature thermal plasma. The method finds appropriate parameters close to the global optimum. The neural network is designed to learn the parameters of the thermal plasma (temperature, abundance, normalization and redshift) of the input spectra. After training using 9000 simulated X-ray spectra, the network has grown to predict all the unknown parameters with uncertainties of about a few per cent. The performance dependence on the network structure has been studied. We applied the neural network to an actual high-resolution spectrum obtained with Hitomi. The predicted plasma parameters agree with the known best-fitting parameters of the Perseus cluster within uncertainties of ≲10 per cent. The result shows that neural networks trained by simulated data might possibly be used to extract a feature built in the data. This would reduce human-intensive preprocessing costs before detailed spectral analysis, and would help us make the best use of the large quantities of spectral data that will be available in the coming decades.

  4. Compensation and trapping in CdZnTe radiation detectors studied by thermoelectric emission spectroscopy, thermally stimulated conductivity, and current-voltage measurements

    International Nuclear Information System (INIS)

    James, Ralph B.

    2000-01-01

    In today's commercially available counter-select-grade CdZnTe crystals for radiation detector applications, the thermal ionization energies of the traps and their types, whether electron or hole traps, were measured. The measurements were successfully done using thermoelectric emission spectroscopy (TEES) and thermally stimulated conductivity (TSC). For reliability, the electrical contacts to the sample were found to be very important and, instead of Au Schottky contacts, In Ohmic contacts had to be used. For the filling of the traps, photoexcitation was done at zero bias, at 20K and at wavelengths which gave the maximum bulk photoexcitation for the sample. Between the temperature range from 20 to 400 K, the TSC current was found to be on the order of ∼ 10,000 times or even larger than the TEES current, in agreement with theory, but only TEES could resolve the trap type and was sensitive to the deep traps. Large concentration of hole traps at 0.1 and 0.6 eV were observed and smaller contraction of electron traps at 0.4 eV was seen. These deep traps cause compensation in the material and also cause trapping that degrades the radiation detection measurement

  5. Magnetically regulated collapse in the B335 protostar? I. ALMA observations of the polarized dust emission

    Science.gov (United States)

    Maury, A. J.; Girart, J. M.; Zhang, Q.; Hennebelle, P.; Keto, E.; Rao, R.; Lai, S.-P.; Ohashi, N.; Galametz, M.

    2018-03-01

    The role of the magnetic field during protostellar collapse is poorly constrained from an observational point of view, although it could be significant if we believe state-of-the-art models of protostellar formation. We present polarimetric observations of the 233 GHz thermal dust continuum emission obtained with ALMA in the B335 Class 0 protostar. Linearly polarized dust emission arising from the circumstellar material in the envelope of B335 is detected at all scales probed by our observations, from radii of 50 to 1000 au. The magnetic field structure producing the dust polarization has a very ordered topology in the inner envelope, with a transition from a large-scale poloidal magnetic field, in the outflow direction, to strongly pinched in the equatorial direction. This is probably due to magnetic field lines being dragged along the dominating infall direction since B335 does not exhibit prominent rotation. Our data and their qualitative comparison to a family of magnetized protostellar collapse models show that, during the magnetized collapse in B335, the magnetic field is maintaining a high level of organization from scales 1000 au to 50 au: this suggests the field is dynamically relevant and capable of influencing the typical outcome of protostellar collapse, such as regulating the disk size in B335.

  6. Magnetically regulated collapse in the B335 protostar? I. ALMA observations of the polarized dust emission

    Science.gov (United States)

    Maury, A. J.; Girart, J. M.; Zhang, Q.; Hennebelle, P.; Keto, E.; Rao, R.; Lai, S.-P.; Ohashi, N.; Galametz, M.

    2018-06-01

    The role of the magnetic field during protostellar collapse is poorly constrained from an observational point of view, although it could be significant if we believe state-of-the-art models of protostellar formation. We present polarimetric observations of the 233 GHz thermal dust continuum emission obtained with ALMA in the B335 Class 0 protostar. Linearly polarized dust emission arising from the circumstellar material in the envelope of B335 is detected at all scales probed by our observations (50 to 1000 au). The magnetic field structure producing the dust polarization has a very ordered topology in the inner envelope, with a transition from a large-scale poloidal magnetic field, in the outflow direction, to strongly pinched in the equatorial direction. This is probably due to magnetic field lines being dragged along the dominating infall direction since B335 does not exhibit prominent rotation. Our data and their qualitative comparison to a family of magnetized protostellar collapse models show that, during the magnetized collapse in B335, the magnetic field is maintaining a high level of organization from scales 1000 au to 50 au: this suggests the field is dynamically relevant and capable of influencing the typical outcome of protostellar collapse, such as regulating the disc size in B335.

  7. Experimental and theoretical analysis of effects of atomic, diatomic and polyatomic inert gases in air and EGR on mixture properties, combustion, thermal efficiency and NOx emissions of a pilot-ignited NG engine

    International Nuclear Information System (INIS)

    Li, Weifeng; Liu, Zhongchang; Wang, Zhongshu; Dou, Huili

    2015-01-01

    Highlights: • The specific heat ratio of the mixture increases with increasing Ar. • The thermal efficiency increases first and then decreases with increasing Ar. • Mechanisms of reducing NOx emissions are different for different dilution gases. • A suitable inert gas should be used to meet different requirements. - Abstract: Argon (Ar), nitrogen (N_2) and carbon dioxide (CO_2), present in exhaust gas recirculation (EGR) and air, are common atomic, diatomic and polyatomic inert gases, separately. As dilution gases, they are always added into the intake charge to reduce nitrogen oxides (NOx) emissions, directly or along with EGR and air. This paper presents the effects of Ar, N_2 and CO_2 on mixture properties, combustion, thermal efficiency and NOx emissions of pilot-ignited natural gas engines. Thermodynamic properties of the air-dilution gas mixture with increasing dilution gases, including density, gas constant, specific heat ratio, specific heat capacity, heat capacity and thermal diffusivity, were analyzed theoretically using thermodynamic relations and ideal gas equations based on experimental results. The thermal and diluent effects of dilution gases on NOx emissions were investigated based on Arrhenius Law and Zeldovich Mechanism, experimentally and theoretically. The experiments were arranged based on an electronically controlled heavy-duty, 6-cylinder, turbocharged, pilot-ignited natural gas engine. The resulted show that adding different inert gases into the intake charge had different influences on the thermodynamic properties of the air-dilution gas mixture. No great change in combustion phase was found with increasing dilution ratio (DR) of Ar, while the flame development duration increased significantly and CA50 moved far away from combustion top dead center (TDC) obviously with increasing DR for both of N_2 and CO_2. Adding Ar was superior in maintaining high thermal efficiencies than CO_2 and N_2, but adding CO_2 was superior in maintaining

  8. Peculiar features of thermal emission of GdB4 and GdB6 single crystals

    International Nuclear Information System (INIS)

    Ostrovskij, E.K.; Taran, A.A.; Kovalev, A.V.; Tkachenko, V.F.; Dudnik, E.M.; Matvienko, A.A.

    1990-01-01

    Thermoemission parameters of single crystals (410) GdB 4 and (110) GdB 6 are studied. Work function is calculated by total current. It is stated that work function of GdB 6 within temperature range of 1500-1880 K after 80 h of annealing varies from 2.95 to 3.10 eV practically with the same temperature coefficient as GdB 4 , i.e. 4.1x10 -4 eV/K. It is shown that single crystal gadolinium hexaboride during the high-temperature annealing in the surface region (∼70 mm) is transformed into gadolinium tetraboride. Influence of free air has been first studied on the GdB 4 emissivity which is determined to increase to p=1.3x10 -2 Pa within the range of T=1640-1840 K

  9. Study of the emission of a light particle charged during the fission of 235U by thermal neutron

    International Nuclear Information System (INIS)

    Carles, Claude

    1969-01-01

    In a first part, this research thesis discusses the existing theories of the mechanism of emission of light particles charged of tri-partition (tri-partition is defined as an event involving two big fragments of masses comparable with those obtained in binary fission, and a charged light particle). Then, the author presents and reports an experiment performed by suing nuclear emulsions. Another type of experiment is then presented which allows the measurement of masses and energies of tri-partition fragments. The author then presents theoretical calculations which have been performed in order to find again some characteristics of tri-partition. These calculations are mainly based on Coulomb repulsion between various fragments

  10. Non-thermal gamma-ray emission from delayed pair breakdown in a magnetized and photon-rich outflow

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Ramandeep; Thompson, Christopher, E-mail: rgill@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2014-12-01

    We consider delayed, volumetric heating in a magnetized outflow that has broken out of a confining medium and expanded to a high Lorentz factor (Γ ∼ 10{sup 2}-10{sup 3}) and low optical depth to scattering (τ {sub T} ∼ 10{sup –3}-10{sup –2}). The energy flux at breakout is dominated by the magnetic field, with a modest contribution from quasi-thermal gamma rays whose spectrum was calculated in Paper I. We focus on the case of extreme baryon depletion in the magnetized material, but allow for a separate baryonic component that is entrained from a confining medium. Dissipation is driven by relativistic motion between these two components, which develops once the photon compactness drops below 4 × 10{sup 3}(Y{sub e} /0.5){sup –1}. We first calculate the acceleration of the magnetized component following breakout, showing that embedded MHD turbulence provides significant inertia, the neglect of which leads to unrealistically high estimates of flow Lorentz factor. After reheating begins, the pair and photon distributions are evolved self-consistently using a one-zone kinetic code that incorporates an exact treatment of Compton scattering, pair production and annihilation, and Coulomb scattering. Heating leads to a surge in pair creation, and the scattering depth saturates at τ {sub T} ∼ 1-4. The plasma maintains a very low ratio of particle to magnetic pressure, and can support strong anisotropy in the charged particle distribution, with cooling dominated by Compton scattering. High-energy power-law spectra with photon indices in the range observed in gamma-ray bursts (GRBs; –3 < β < –3/2) are obtained by varying the ratio of heat input to the seed energy in quasi-thermal photons. We contrast our results with those for continuous heating across an expanding photosphere, and show that the latter model produces soft-to-hard evolution that is inconsistent with observations of GRBs.

  11. Diagnosis of the local thermal equilibrium by optical emission spectroscopy in the evolution of electric discharge; Diagnostico del equilibrio termico local por espectroscopia optica de emision en la evolucion de una descarga electrica

    Energy Technology Data Exchange (ETDEWEB)

    Valdivia B, R.; Pacheco S, J.; Pacheco P, M.; Ramos F, F.; Cruz A, A. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Velazquez P, S. [Instituto Tecnologico de Toluca, Av. Instituto Tecnologico s/n, Ex-Rancho la Virgen, Metepec 52140, Estado de Mexico (Mexico)

    2008-07-01

    In this work applies the technique of optical emission spectroscopy to diagnose the temperature of the species generated in plasma in the transition to glow discharge arc. Whit this diagnosis is possible to determine the local thermal equilibrium conditions of the discharge. (Author)

  12. Photo-polarimetric sensitivities to layering and mixing of absorbing aerosols

    Directory of Open Access Journals (Sweden)

    O. V. Kalashnikova

    2011-09-01

    Full Text Available We investigate to what extent multi-angle polarimetric measurements are sensitive to vertical mixing/layering of absorbing aerosols, adopting calibration uncertainty of 1.5% in intensity and 0.5% in the degree of linear polarization of Multiangle Spectro-Polarimetric Imager (MSPI. Employing both deterministic and Monte Carlo radiative transfer codes with polarization, we conduct modeling experiments to determine how the measured Stokes vector elements are affected at UV and short visible wavelengths by the vertical distribution, mixing and layering of smoke and dust aerosols for variety of microphysical parameters. We find that multi-angular polarimetry holds the potential to infer dust-layer heights and thicknesses at blue visible channel due to its lesser sensitivity to changes in dust coarse mode optical properties, but higher sensitivity to the dust vertical profiles. Our studies quantify requirements for obtaining simultaneous information on aerosol layer height and absorption under MSPI measurement uncertainties.

  13. Wetland Classification for Black Duck Habitat Management Using Combined Polarimetric RADARSAT 2 and SPOT Imagery

    Science.gov (United States)

    Zhang, W.; Hu, B.; Brown, G.

    2018-04-01

    The black duck population has decreased significantly due to loss of its breeding habitat. Wetlands are an important feature that relates to habitat management and requires monitoring. Synthetic Aperture Radar (SAR) systems are helpful to map the wetland as the microwave signals are sensitive to water content and can be used to map surface water extent, saturated soils, and flooded vegetation. In this study, RadarSat 2 Polarimetric data is employed to map surface water and track changes in extent over the years through image thresholding and reviewed different approaches of Polarimetric decompositions for detecting flooded vegetation. Also, object-based analysis associated with beaver activity is conducted with combined multispectral SPOT satellite imagery. Results show SAR data has proven ability to improve mapping open water areas and locate flooded vegetation areas.

  14. Investigation of the Capability of Compact Polarimetric SAR Interferometry to Estimate Forest Height

    Science.gov (United States)

    Zhang, Hong; Xie, Lei; Wang, Chao; Chen, Jiehong

    2013-08-01

    The main objective of this paper is to investigate the capability of compact Polarimetric SAR Interferometry (C-PolInSAR) on forest height estimation. For this, the pseudo fully polarimetric interferomteric (F-PolInSAR) covariance matrix is firstly reconstructed, then the three- stage inversion algorithm, hybrid algorithm, Music and Capon algorithm are applied to both C-PolInSAR covariance matrix and pseudo F-PolInSAR covariance matrix. The availability of forest height estimation is demonstrated using L-band data generated by simulator PolSARProSim and X-band airborne data acquired by East China Research Institute of Electronic Engineering, China Electronics Technology Group Corporation.

  15. Programmable liquid crystal waveplate polarization gratings as elements for polarimetric and interference applications

    Science.gov (United States)

    Moreno, I.; Davis, J. A.

    2010-06-01

    We review the use of a parallel aligned nematic liquid crystal spatial light modulator as a very useful and flexible device for polarimetric and interferometric applications. The device acts as a programmable pixelated waveplate, and the encoding of a linear grating permits its use as a polarization beam splitter. When a grating with a reduced period is encoded, the diffracted beams are spatially separated and the device can be used for polarimetric analysis. On the contrary when a large period grating is displayed, the beams are not spatially separated, and they are useful to realize a common path interferometric system with polarization sensitivity. The flexibility offered by the programmability of the display allows non-conventional uses, including the analysis of light beams with structured spatial polarizations.

  16. Nature of unresolved complex mixture in size-distributed emissions from residential wood combustion as measured by thermal desorption-gas chromatography-mass spectrometry

    Science.gov (United States)

    Hays, Michael D.; Smith, N. Dean; Dong, Yuanji

    2004-08-01

    Unresolved complex mixture (UCM) is an analytical artifact of gas chromatographs of combustion source-related fine aerosol extracts. In this study the UCM is examined in size-resolved fine aerosol emissions from residential wood combustion. The aerosols are sorted by size in an electrical low-pressure impactor (ELPI) and subsequently analyzed by thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS). A semiquantitative system for predicting the branched alkane, cycloalkane, alkylbenzene, C3-, C4-, C5-alkylbenzene, methylnaphthalene, C3-, C4-, C5-alkylnaphthalene, methylphenanthrene C2-, C3-alkylphenanthrene, and dibenzothiophene concentrations in the UCM is introduced. Analysis by TD/GS/MS detects UCM on each ELPI stage for all six combustion tests. The UCM baseline among the different fuel types is variable. In particular, the UCM of Pseudotsuga sp. is enriched in later-eluting compounds of lower volatility. A high level of reproducibility is achieved in determining UCM areas. UCM fractions (UCM ion area/total extracted ion chromatograph area) by individual ELPI stage return a mean relative standard deviation of 19.1% over the entire combustion test set, indicating a highly consistent UCM fraction across the ELPI size boundaries. Among the molecular ions investigated, branched alkane (m/z 57) and dibenzothiophene (m/z 212 and 226) constituents are most abundant in UCM emissions from RWC, collectively accounting for 64-95% of the targeted chemical species. The total UCM emissions span 446-756 mg/kg of dry biomass burned and correspond to an upper limit of 7.1% of the PM2.5 mass. The UCM emissions are primarily accumulation mode (0.1 μm ≤ aerodynamic diameter (da) ≤ 1 μm), with a geometric mean diameter (dg) range of 120.3-518.4 nm. UCM in PM2.5 is chemically asymmetric (shifted to finer da), typically clustering at da ≤ 1 μm. Measurable shifts in dg and changes in distribution widths (σg) on an intratest basis suggest that the particle density

  17. Investigation of hydrometeor classification uncertainties through the POLARRIS polarimetric radar simulator

    Science.gov (United States)

    Dolan, B.; Rutledge, S. A.; Barnum, J. I.; Matsui, T.; Tao, W. K.; Iguchi, T.

    2017-12-01

    POLarimetric Radar Retrieval and Instrument Simulator (POLARRIS) is a framework that has been developed to simulate radar observations from cloud resolving model (CRM) output and subject model data and observations to the same retrievals, analysis and visualization. This framework not only enables validation of bulk microphysical model simulated properties, but also offers an opportunity to study the uncertainties associated with retrievals such as hydrometeor classification (HID). For the CSU HID, membership beta functions (MBFs) are built using a set of simulations with realistic microphysical assumptions about axis ratio, density, canting angles, size distributions for each of ten hydrometeor species. These assumptions are tested using POLARRIS to understand their influence on the resulting simulated polarimetric data and final HID classification. Several of these parameters (density, size distributions) are set by the model microphysics, and therefore the specific assumptions of axis ratio and canting angle are carefully studied. Through these sensitivity studies, we hope to be able to provide uncertainties in retrieved polarimetric variables and HID as applied to CRM output. HID retrievals assign a classification to each point by determining the highest score, thereby identifying the dominant hydrometeor type within a volume. However, in nature, there is rarely just one a single hydrometeor type at a particular point. Models allow for mixing ratios of different hydrometeors within a grid point. We use the mixing ratios from CRM output in concert with the HID scores and classifications to understand how the HID algorithm can provide information about mixtures within a volume, as well as calculate a confidence in the classifications. We leverage the POLARRIS framework to additionally probe radar wavelength differences toward the possibility of a multi-wavelength HID which could utilize the strengths of different wavelengths to improve HID classifications. With

  18. Agricultural Monitoring in Northeastern Ontario, Canada, Using Multi-Temporal Polarimetric RADARSAT-2 Data

    Directory of Open Access Journals (Sweden)

    Jeffrey W. Cable

    2014-03-01

    Full Text Available The purpose of this research is to analyze how changes in acquisition time and incidence angle affect various C-band synthetic aperture radar (SAR polarimetric intensities, co-polarized phase information, polarimetric response plots and decomposition parameters for various crops typical of Northern Ontario, Canada. We examine how these parameters may be used to monitor the growth stages of five common cash crops, namely, barley (Hordeum vulgare, canola (Brassica napus, oat (Avena sativa, soybean (Glycine max and wheat (Triticum spp.. In total, nine RADARSAT-2 polarimetric images were analyzed across a 14-week period beginning in June and ending in September 2011 using two incidence angles of approximately 26° and 41°. As expected, the backscatter intensities for all targets were found to show a higher response when acquired at the steeper incidence angle (26°. All cash crop targets showed a rise and fall in backscatter response over the course of the growing season, coinciding with changing growth stages. Slight phase differences were observed for cereal crops, possibly due to one of the polarizations penetrating between the rows allowing double-bounce to occur. The polarimetric response plots and decompositions offered insight into the scattering mechanisms of each crop type, generally showing an increase in volume scattering as the crops reached maturity. Specifically, the contributions of the crops increased towards the volume scattering component and zones 4 and 2, as the crops matured in regards to the Freeman-Durden and Cloude-Pottier decompositions respectively. Overall, soybean and canola showed a more similar response in comparison to the cereal cash crops. Although the study focused on Northern Ontario, it is anticipated that these results would be relevant in investigations of multi-temporal RADARSAT-2 for agricultural zones with similar crop types.

  19. STUDY ON THE CLASSIFICATION OF GAOFEN-3 POLARIMETRIC SAR IMAGES USING DEEP NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2018-04-01

    Full Text Available Polarimetric Synthetic Aperture Radar(POLSAR) imaging principle determines that the image quality will be affected by speckle noise. So the recognition accuracy of traditional image classification methods will be reduced by the effect of this interference. Since the date of submission, Deep Convolutional Neural Network impacts on the traditional image processing methods and brings the field of computer vision to a new stage with the advantages of a strong ability to learn deep features and excellent ability to fit large datasets. Based on the basic characteristics of polarimetric SAR images, the paper studied the types of the surface cover by using the method of Deep Learning. We used the fully polarimetric SAR features of different scales to fuse RGB images to the GoogLeNet model based on convolution neural network Iterative training, and then use the trained model to test the classification of data validation.First of all, referring to the optical image, we mark the surface coverage type of GF-3 POLSAR image with 8m resolution, and then collect the samples according to different categories. To meet the GoogLeNet model requirements of 256 × 256 pixel image input and taking into account the lack of full-resolution SAR resolution, the original image should be pre-processed in the process of resampling. In this paper, POLSAR image slice samples of different scales with sampling intervals of 2 m and 1 m to be trained separately and validated by the verification dataset. Among them, the training accuracy of GoogLeNet model trained with resampled 2-m polarimetric SAR image is 94.89 %, and that of the trained SAR image with resampled 1 m is 92.65 %.

  20. Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data

    Science.gov (United States)

    Jiao, Xianfeng; Kovacs, John M.; Shang, Jiali; McNairn, Heather; Walters, Dan; Ma, Baoluo; Geng, Xiaoyuan

    2014-10-01

    The aim of this paper is to assess the accuracy of an object-oriented classification of polarimetric Synthetic Aperture Radar (PolSAR) data to map and monitor crops using 19 RADARSAT-2 fine beam polarimetric (FQ) images of an agricultural area in North-eastern Ontario, Canada. Polarimetric images and field data were acquired during the 2011 and 2012 growing seasons. The classification and field data collection focused on the main crop types grown in the region, which include: wheat, oat, soybean, canola and forage. The polarimetric parameters were extracted with PolSAR analysis using both the Cloude-Pottier and Freeman-Durden decompositions. The object-oriented classification, with a single date of PolSAR data, was able to classify all five crop types with an accuracy of 95% and Kappa of 0.93; a 6% improvement in comparison with linear-polarization only classification. However, the time of acquisition is crucial. The larger biomass crops of canola and soybean were most accurately mapped, whereas the identification of oat and wheat were more variable. The multi-temporal data using the Cloude-Pottier decomposition parameters provided the best classification accuracy compared to the linear polarizations and the Freeman-Durden decomposition parameters. In general, the object-oriented classifications were able to accurately map crop types by reducing the noise inherent in the SAR data. Furthermore, using the crop classification maps we were able to monitor crop growth stage based on a trend analysis of the radar response. Based on field data from canola crops, there was a strong relationship between the phenological growth stage based on the BBCH scale, and the HV backscatter and entropy.

  1. Study on the Classification of GAOFEN-3 Polarimetric SAR Images Using Deep Neural Network

    Science.gov (United States)

    Zhang, J.; Zhang, J.; Zhao, Z.

    2018-04-01

    Polarimetric Synthetic Aperture Radar (POLSAR) imaging principle determines that the image quality will be affected by speckle noise. So the recognition accuracy of traditional image classification methods will be reduced by the effect of this interference. Since the date of submission, Deep Convolutional Neural Network impacts on the traditional image processing methods and brings the field of computer vision to a new stage with the advantages of a strong ability to learn deep features and excellent ability to fit large datasets. Based on the basic characteristics of polarimetric SAR images, the paper studied the types of the surface cover by using the method of Deep Learning. We used the fully polarimetric SAR features of different scales to fuse RGB images to the GoogLeNet model based on convolution neural network Iterative training, and then use the trained model to test the classification of data validation.First of all, referring to the optical image, we mark the surface coverage type of GF-3 POLSAR image with 8m resolution, and then collect the samples according to different categories. To meet the GoogLeNet model requirements of 256 × 256 pixel image input and taking into account the lack of full-resolution SAR resolution, the original image should be pre-processed in the process of resampling. In this paper, POLSAR image slice samples of different scales with sampling intervals of 2 m and 1 m to be trained separately and validated by the verification dataset. Among them, the training accuracy of GoogLeNet model trained with resampled 2-m polarimetric SAR image is 94.89 %, and that of the trained SAR image with resampled 1 m is 92.65 %.

  2. A near-infrared, optical, and ultraviolet polarimetric and timing investigation of complex equatorial dusty structures

    Science.gov (United States)

    Marin, F.; Rojas Lobos, P. A.; Hameury, J. M.; Goosmann, R. W.

    2018-05-01

    Context. From stars to active galactic nuclei, many astrophysical systems are surrounded by an equatorial distribution of dusty material that is, in a number of cases, spatially unresolved even with cutting edge facilities. Aims: In this paper, we investigate if and how one can determine the unresolved and heterogeneous morphology of dust distribution around a central bright source using time-resolved polarimetric observations. Methods: We used polarized radiative transfer simulations to study a sample of circumnuclear dusty morphologies. We explored a grid of geometrically variable models that are uniform, fragmented, and density stratified in the near-infrared, optical, and ultraviolet bands, and we present their distinctive time-dependent polarimetric signatures. Results: As expected, varying the structure of the obscuring equatorial disk has a deep impact on the inclination-dependent flux, polarization degree and angle, and time lags we observe. We find that stratified media are distinguishable by time-resolved polarimetric observations, and that the expected polarization is much higher in the infrared band than in the ultraviolet. However, because of the physical scales imposed by dust sublimation, the average time lags of months to years between the total and polarized fluxes are important; these time lags lengthens the observational campaigns necessary to break more sophisticated, and therefore also more degenerated, models. In the ultraviolet band, time lags are slightly shorter than in the infrared or optical bands, and, coupled to lower diluting starlight fluxes, time-resolved polarimetry in the UV appears more promising for future campaigns. Conclusions: Equatorial dusty disks differ in terms of inclination-dependent photometric, polarimetric, and timing observables, but only the coupling of these different markers can lead to inclination-independent constraints on the unresolved structures. Even though it is complex and time consuming, polarized

  3. Anderson localized state as a predissipative state: irreversible emission of thermalized quanta from a dynamically delocalized state.

    Science.gov (United States)

    Yamada, Hiroaki; Ikeda, Kensuke S

    2002-04-01

    It was shown that localization in one-dimensional disordered (quantum) electronic system is destroyed against coherent harmonic perturbations and the delocalized electron exhibits an unlimited diffusive motion [Yamada and Ikeda, Phys. Rev. E 59, 5214 (1999)]. The appearance of diffusion implies that the system has potential for irreversibility and dissipation. In the present paper, we investigate dissipative property of the dynamically delocalized state, and we show that an irreversible quasistationary energy flow indeed appears in the form of a "heat" flow when we couple the system with another dynamical degree of freedom. In the concrete we numerically investigate dissipative properties of a one-dimensional tight-binding electronic system perturbed by time-dependent harmonic forces, by coupling it with a quantum harmonic oscillator or a quantum anharmonic oscillator. It is demonstrated that if the on-site potential is spatially irregular an irreversible energy transfer from the scattered electron to the test oscillator occurs. Moreover, the test oscillator promptly approaches a thermalized state characterized by a well-defined time-dependent temperature. On the contrary, such a relaxation process cannot be observed at all for periodic potential systems. Our system is one of the minimal quantum systems in which a distinct nonequilibrium statistical behavior is self-induced.

  4. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239Pu induced by thermal neutrons

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-01-01

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons (ν(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of 239 Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation σ E *(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass (σ E (A)). As a result of the simulation we obtain the dependence σ E *(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  5. Underwater Topography Detection in Coastal Areas Using Fully Polarimetric SAR Data

    Directory of Open Access Journals (Sweden)

    Xiaolin Bian

    2017-06-01

    Full Text Available Fully polarimetric synthetic aperture radar (SAR can provide detailed information on scattering mechanisms that could enable the target or structure to be identified. This paper presents a method to detect underwater topography in coastal areas using high resolution fully polarimetric SAR data, while less prior information is required. The method is based on the shoaling and refraction of long surface gravity waves as they propagate shoreward. First, the surface scattering component is obtained by polarization decomposition. Then, wave fields are retrieved from the two-dimensional (2D spectra by the Fast Fourier Transformation (FFT. Finally, shallow water depths are estimated from the dispersion relation. Applicability and effectiveness of the proposed methodology are tested by using C-band fine quad-polarization mode RADARSAT-2 SAR data over the near-shore area of the Hainan province, China. By comparing with the values from an official electronic navigational chart (ENC, the estimated water depths are in good agreement with them. The average relative error of the detected results from the scattering mechanisms based method and single polarization SAR data are 9.73% and 11.53% respectively. The validation results indicate that the scattering mechanisms based methodology is more effective than only using the single polarization SAR data for underwater topography detection, and will inspire further research on underwater topography detection with fully polarimetric SAR data.

  6. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    Science.gov (United States)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  7. SEGMENTATION OF POLARIMETRIC SAR IMAGES USIG WAVELET TRANSFORMATION AND TEXTURE FEATURES

    Directory of Open Access Journals (Sweden)

    A. Rezaeian

    2015-12-01

    Full Text Available Polarimetric Synthetic Aperture Radar (PolSAR sensors can collect useful observations from earth’s surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT. Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  8. IMPROVED SEARCH OF PRINCIPAL COMPONENT ANALYSIS DATABASES FOR SPECTRO-POLARIMETRIC INVERSION

    International Nuclear Information System (INIS)

    Casini, R.; Lites, B. W.; Ramos, A. Asensio; Ariste, A. López

    2013-01-01

    We describe a simple technique for the acceleration of spectro-polarimetric inversions based on principal component analysis (PCA) of Stokes profiles. This technique involves the indexing of the database models based on the sign of the projections (PCA coefficients) of the first few relevant orders of principal components of the four Stokes parameters. In this way, each model in the database can be attributed a distinctive binary number of 2 4n bits, where n is the number of PCA orders used for the indexing. Each of these binary numbers (indices) identifies a group of ''compatible'' models for the inversion of a given set of observed Stokes profiles sharing the same index. The complete set of the binary numbers so constructed evidently determines a partition of the database. The search of the database for the PCA inversion of spectro-polarimetric data can profit greatly from this indexing. In practical cases it becomes possible to approach the ideal acceleration factor of 2 4n as compared to the systematic search of a non-indexed database for a traditional PCA inversion. This indexing method relies on the existence of a physical meaning in the sign of the PCA coefficients of a model. For this reason, the presence of model ambiguities and of spectro-polarimetric noise in the observations limits in practice the number n of relevant PCA orders that can be used for the indexing

  9. Assessment of Polarimetric SAR Interferometry for Improving Ship Classification based on Simulated Data

    Directory of Open Access Journals (Sweden)

    Jordi J. Mallorqui

    2008-12-01

    Full Text Available This paper uses a complete and realistic SAR simulation processing chain, GRECOSAR, to study the potentialities of Polarimetric SAR Interferometry (POLInSAR in the development of new classification methods for ships. Its high processing efficiency and scenario flexibility have allowed to develop exhaustive scattering studies. The results have revealed, first, vessels’ geometries can be described by specific combinations of Permanent Polarimetric Scatterers (PePS and, second, each type of vessel could be characterized by a particular spatial and polarimetric distribution of PePS. Such properties have been recently exploited to propose a new Vessel Classification Algorithm (VCA working with POLInSAR data, which, according to several simulation tests, may provide promising performance in real scenarios. Along the paper, explanation of the main steps summarizing the whole research activity carried out with ships and GRECOSAR are provided as well as examples of the main results and VCA validation tests. Special attention will be devoted to the new improvements achieved, which are related to simulations processing a new and highly realistic sea surface model. The paper will show that, for POLInSAR data with fine resolution, VCA can help to classify ships with notable robustness under diverse and adverse observation conditions.

  10. Research on visible and near infrared spectral-polarimetric properties of soil polluted by crude oil

    Science.gov (United States)

    Shen, Hui-yan; Zhou, Pu-cheng; Pan, Bang-long

    2017-10-01

    Hydrocarbon contaminated soil can impose detrimental effects on forest health and quality of agricultural products. To manage such consequences, oil leak indicators should be detected quickly by monitoring systems. Remote sensing is one of the most suitable techniques for monitoring systems, especially for areas which are uninhabitable and difficulty to access. The most available physical quantities in optical remote sensing domain are the intensity and spectral information obtained by visible or infrared sensors. However, besides the intensity and wavelength, polarization is another primary physical quantity associated with an optical field. During the course of reflecting light-wave, the surface of soil polluted by crude oil will cause polarimetric properties which are related to the nature of itself. Thus, detection of the spectralpolarimetric properties for soil polluted by crude oil has become a new remote sensing monitoring method. In this paper, the multi-angle spectral-polarimetric instrument was used to obtain multi-angle visible and near infrared spectralpolarimetric characteristic data of soil polluted by crude oil. And then, the change rule between polarimetric properties with different affecting factors, such as viewing zenith angle, incidence zenith angle of the light source, relative azimuth angle, waveband of the detector as well as different grain size of soil were discussed, so as to provide a scientific basis for the research on polarization remote sensing for soil polluted by crude oil.

  11. Polarimetric Evidence of the First White Dwarf Pulsar: The Binary System AR Scorpii

    Directory of Open Access Journals (Sweden)

    David A.H. Buckley

    2018-01-01

    Full Text Available The binary star AR Scorpii was recently discovered to exhibit high amplitude coherent variability across the electromagnetic spectrum (ultraviolet to radio at two closely spaced ∼2 min periods, attributed to the spin period of a white dwarf and the beat period. There is strong evidence (low X-ray luminosity, lack of flickering and absense of broad emission lines that AR Sco is a detached non-accreting system whose luminosity is dominated by the spin-down power of a white dwarf, due to magnetohydrodynamical (MHD interactions with its M5 companion. Optical polarimetry has revealed highly pulsed linear polarization on the same periods, reaching a maximum of 40%, consistent with a pulsar-like dipole, with the Stokes Q and U variations reminiscent of the Crab pulsar. These observations, coupled with the spectral energy distribution (SED which is dominated by non-thermal emission, characteristic of synchrotron emission, support the notion that a strongly magnetic (∼200 MG white dwarf is behaving like a pulsar, whose magnetic field interacts with the secondary star’s photosphere and magnetosphere. Radio synchrotron emission is produced from the pumping action of the white dwarf’s magnetic field on coronal loops from the M-star companion, while emission at high frequencies (UV/optical/X-ray comes from the particle wind, driven by large electric potential, again reminiscent of processes seen in neutron star pulsars.

  12. Ferrites based infrared radiation coatings with high emissivity and high thermal shock resistance and their application on energy-saving kettle

    International Nuclear Information System (INIS)

    Zhang, Jianyi; Fan, Xi’an; Lu, Lei; Hu, Xiaoming; Li, Guangqiang

    2015-01-01

    Highlights: • The ferrites based infrared radiation coating was prepared by HVOF for the first time. • The infrared radiation coatings were applied firstly on the household kettle. • The bonding strength between the coating and substrate could reach 30.7 MPa. • The coating kept intact when cycle reached 27 by quenching from 1000 °C using water. • The energy-saving efficiency of the kettle with coating could reach 30.5%. - Abstract: Starting from Fe 2 O 3 , MnO 2 , Co 2 O 3 and NiO powders, the ferrites based infrared radiation coatings with high emissivity and high thermal shock resistance were successfully prepared on the surface of carbon steel by high velocity oxy-fuel spraying (HVOF). The coating thickness was about 120–150 μm and presented a typical flat lamellar structure. The coating surface was rough and some submicron grade grains distributed on it. The infrared emissivity of the ferrites based coating by HVOF was over 0.74 in 3–20 μm waveband at 800 °C, which was obviously higher than that of the coating by brushing process in the short waveband. The bonding strength was 30.7 MPa between the coating and substrate, which was five times more than that of conventional coatings by brushing process. The combined effect of the superior bonding strength, typical lamellar structure, pre-existing microcracks and newly generated pores made the cycle times reach 27 when the coating samples were quenched from 1000 °C using water. Lastly, the infrared radiation coatings were applied on the underside of household kettle, and the energy-saving efficiency could reach 30.5%. The ferrites based infrared radiation coatings obtained in this work are good candidates for saving energy in the field of cookware and industrial high temperature furnace

  13. Amplified spontaneous emission and thermal management on a high average-power diode-pumped solid-state laser - the Lucia laser system

    International Nuclear Information System (INIS)

    Albach, D.

    2010-01-01

    The development of the laser triggered the birth of numerous fields in both scientific and industrial domains. High intensity laser pulses are a unique tool for light/matter interaction studies and applications. However, current flash-pumped glass-based systems are inherently limited in repetition-rate and efficiency. Development within recent years in the field of semiconductor lasers and gain media drew special attention to a new class of lasers, the so-called Diode Pumped Solid State Laser (DPSSL). DPSSLs are highly efficient lasers and are candidates of choice for compact, high average-power systems required for industrial applications but also as high-power pump sources for ultra-high intense lasers. The work described in this thesis takes place in the context of the 1 kilowatt average-power DPSSL program Lucia, currently under construction at the 'Laboratoire d'Utilisation des Laser Intenses' (LULI) at the Ecole Polytechnique, France. Generation of sub-10 nanosecond long pulses with energies of up to 100 joules at repetition rates of 10 hertz are mainly limited by Amplified Spontaneous Emission (ASE) and thermal effects. These limitations are the central themes of this work. Their impact is discussed within the context of a first Lucia milestone, set around 10 joules. The developed laser system is shown in detail from the oscillator level to the end of the amplification line. A comprehensive discussion of the impact of ASE and thermal effects is completed by related experimental benchmarks. The validated models are used to predict the performances of the laser system, finally resulting in a first activation of the laser system at an energy level of 7 joules in a single-shot regime and 6.6 joules at repetition rates up to 2 hertz. Limitations and further scaling approaches are discussed, followed by an outlook for the further development. (author) [fr

  14. Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series

    Directory of Open Access Journals (Sweden)

    Iris Heine

    2016-06-01

    Full Text Available Synthetic aperture radar polarimetry (PolSAR and polarimetric decomposition techniques have proven to be useful tools for wetland mapping. In this study we classify reed belts and monitor their phenological changes at a natural lake in northeastern Germany using dual-co-polarized (HH, VV TerraSAR-X time series. The time series comprises 19 images, acquired between August 2014 and May 2015, in ascending and descending orbit. We calculated different polarimetric indices using the HH and VV intensities, the dual-polarimetric coherency matrix including dominant and mean alpha scattering angles, and entropy and anisotropy (normalized eigenvalue difference as well as combinations of entropy and anisotropy for the analysis of the scattering scenarios. The image classifications were performed with the random forest classifier and validated with high-resolution digital orthophotos. The time series analysis of the reed belts revealed significant seasonal changes for the double-bounce–sensitive parameters (intensity ratio HH/VV and intensity difference HH-VV, the co-polarimetric coherence phase and the dominant and mean alpha scattering angles and in the dual-polarimetric coherence (amplitude, anisotropy, entropy, and anisotropy-entropy combinations; whereas in summer dense leaves cause volume scattering, in winter, after leaves have fallen, the reed stems cause predominately double-bounce scattering. Our study showed that the five most important parameters for the classification of reed are the intensity difference HH-VV, the mean alpha scattering angle, intensity ratio HH/VV, and the coherence (phase. Due to the better separation of reed and other vegetation (deciduous forest, coniferous forest, meadow, winter acquisitions are preferred for the mapping of reed. Multi-temporal stacks of winte