WorldWideScience

Sample records for polarimetric spectral analyses

  1. Polarimetric optimization for clutter suppression in spectral polarimetric weather radar

    NARCIS (Netherlands)

    Yin, J.; Unal, C.M.H.; Russchenberg, H.W.J.

    2017-01-01

    For the polarimetric-Doppler weather radar, sometimes there are artifacts caused by radar system itself or external sources displaying in the radar plan position indicator (PPI). These artifacts are not confined to specific range bins and also they are non-stationary when observed in the Doppler

  2. Spectral Polarimetric Features Analysis of Wind Turbine Clutter in Weather Radar

    NARCIS (Netherlands)

    Yin, J.; Krasnov, O.A.; Unal, C.M.H.; Medagli, S.; Russchenberg, H.W.J.

    2017-01-01

    Wind turbine clutter has gradually become a concern for the radar community for its increasing size and quantity worldwide. Based on the S-band polarimetric Doppler PARSAX radar measurements, this paper demonstrates the micro-Doppler features and spectral-polarimetric characteristic of wind turbine

  3. COMPARISON BETWEEN SPECTRAL, SPATIAL AND POLARIMETRIC CLASSIFICATION OF URBAN AND PERIURBAN LANDCOVER USING TEMPORAL SENTINEL – 1 IMAGES

    Directory of Open Access Journals (Sweden)

    K. Roychowdhury

    2016-06-01

    Full Text Available Landcover is the easiest detectable indicator of human interventions on land. Urban and peri-urban areas present a complex combination of landcover, which makes classification challenging. This paper assesses the different methods of classifying landcover using dual polarimetric Sentinel-1 data collected during monsoon (July and winter (December months of 2015. Four broad landcover classes such as built up areas, water bodies and wetlands, vegetation and open spaces of Kolkata and its surrounding regions were identified. Polarimetric analyses were conducted on Single Look Complex (SLC data of the region while ground range detected (GRD data were used for spectral and spatial classification. Unsupervised classification by means of K-Means clustering used backscatter values and was able to identify homogenous landcovers over the study area. The results produced an overall accuracy of less than 50% for both the seasons. Higher classification accuracy (around 70% was achieved by adding texture variables as inputs along with the backscatter values. However, the accuracy of classification increased significantly with polarimetric analyses. The overall accuracy was around 80% in Wishart H-A-Alpha unsupervised classification. The method was useful in identifying urban areas due to their double-bounce scattering and vegetated areas, which have more random scattering. Normalized Difference Built-up index (NDBI and Normalized Difference Vegetation Index (NDVI obtained from Landsat 8 data over the study area were used to verify vegetation and urban classes. The study compares the accuracies of different methods of classifying landcover using medium resolution SAR data in a complex urban area and suggests that polarimetric analyses present the most accurate results for urban and suburban areas.

  4. Research on visible and near infrared spectral-polarimetric properties of soil polluted by crude oil

    Science.gov (United States)

    Shen, Hui-yan; Zhou, Pu-cheng; Pan, Bang-long

    2017-10-01

    Hydrocarbon contaminated soil can impose detrimental effects on forest health and quality of agricultural products. To manage such consequences, oil leak indicators should be detected quickly by monitoring systems. Remote sensing is one of the most suitable techniques for monitoring systems, especially for areas which are uninhabitable and difficulty to access. The most available physical quantities in optical remote sensing domain are the intensity and spectral information obtained by visible or infrared sensors. However, besides the intensity and wavelength, polarization is another primary physical quantity associated with an optical field. During the course of reflecting light-wave, the surface of soil polluted by crude oil will cause polarimetric properties which are related to the nature of itself. Thus, detection of the spectralpolarimetric properties for soil polluted by crude oil has become a new remote sensing monitoring method. In this paper, the multi-angle spectral-polarimetric instrument was used to obtain multi-angle visible and near infrared spectralpolarimetric characteristic data of soil polluted by crude oil. And then, the change rule between polarimetric properties with different affecting factors, such as viewing zenith angle, incidence zenith angle of the light source, relative azimuth angle, waveband of the detector as well as different grain size of soil were discussed, so as to provide a scientific basis for the research on polarization remote sensing for soil polluted by crude oil.

  5. Spectral and polarimetric characterization of gazeous and telluric planets with SEE COAST

    Science.gov (United States)

    Boccaletti, A.; Baudoz, P.; Mawet, D.; Schneider, J.; Tinetti, G.; Galicher, R.; Stam, D.; Cavarroc, C.; Hough, J.; Doel, P.; Pinfield, D.; Keller, C.-U.; Beuzit, J.-L.; Udry, S.; Ferrari, A.; Martin, E.; Ménard, F.; Sein, E.

    2011-07-01

    SEE COAST stands for Super Earth Explorer - Coronagraphic Off-Axis Space Telescope. The concept was initially proposed to ESA for Cosmic Vision. None of the direct detection exoplanet proposals were selected in 2007 and we are now pursuing our efforts to consolidate the astrophysical program and the technical developments for the next call for proposal. The prime objective of SEE COAST is to contribute to the understanding of the formation and evolution of planetary systems. Exploring the diversity of these objects is therefore the main driver to define the instrumentation. In the next decade the improvement of radial velocity instruments and obviously temporal coverage will provide us with a large numbers of long period giants as well as telluric planets, namely Super Earths. Obtaining the spectral and polarimetric signatures of these objects in the visible range to measure atmospheric parameters (molecular composition, clouds, soils, …) will be unique and with important scientific returns. A space mission complementary to near IR instruments like SPHERE, GPI, JWST and later ELTs for the full characterization of giants and Super Earths is a first secure step towards the longer term goal that is the characterization of telluric planets with mass and atmosphere comparable to that of the Earth. An overview of the astrophysical motivation and the trade-off that lead to a simple integrated concept of a space-based high contrast imaging instrument are given here.

  6. Spectral and polarimetric characterization of gazeous and telluric planets with SEE COAST

    Directory of Open Access Journals (Sweden)

    Keller C.-U.

    2011-07-01

    Full Text Available SEE COAST stands for Super Earth Explorer – Coronagraphic Off-Axis Space Telescope. The concept was initially proposed to ESA for Cosmic Vision. None of the direct detection exoplanet proposals were selected in 2007 and we are now pursuing our efforts to consolidate the astrophysical program and the technical developments for the next call for proposal. The prime objective of SEE COAST is to contribute to the understanding of the formation and evolution of planetary systems. Exploring the diversity of these objects is therefore the main driver to define the instrumentation. In the next decade the improvement of radial velocity instruments and obviously temporal coverage will provide us with a large numbers of long period giants as well as telluric planets, namely Super Earths. Obtaining the spectral and polarimetric signatures of these objects in the visible range to measure atmospheric parameters (molecular composition, clouds, soils, … will be unique and with important scientific returns. A space mission complementary to near IR instruments like SPHERE, GPI, JWST and later ELTs for the full characterization of giants and Super Earths is a first secure step towards the longer term goal that is the characterization of telluric planets with mass and atmosphere comparable to that of the Earth. An overview of the astrophysical motivation and the trade-off that lead to a simple integrated concept of a space-based high contrast imaging instrument are given here.

  7. Polarimetric imagery collection experiment

    Science.gov (United States)

    Romano, Joao M.; Felton, Melvin; Chenault, David; Sohr, Brian

    2010-04-01

    The Spectral and Polarimetric Imagery Collection Experiment (SPICE) is a collaborative effort between the US Army ARDEC and ARL that is focused on the collection of mid-wave and long-wave infrared imagery using hyperspectral, polarimetric, and broadband sensors. The objective of the program is to collect a comprehensive database of the different modalities over the course of 1 to 2 years to capture sensor performance over a wide variety of weather conditions, diurnal, and seasonal changes inherent to Picatinny's northern New Jersey location. Using the Precision Armament Laboratory (PAL) tower at Picatinny Arsenal, the sensors will autonomously collect the desired data around the clock at different ranges where surrogate 2S3 Self-Propelled Howitzer targets are positioned at different viewing perspectives in an open field. The database will allow for: 1) Understanding of signature variability under adverse weather conditions; 2) Development of robust algorithms; 3) Development of new sensors; 4) Evaluation of polarimetric technology; and 5) Evaluation of fusing the different sensor modalities. In this paper, we will present the SPICE data collection objectives, the ongoing effort, the sensors that are currently deployed, and how this work will assist researches on the development and evaluation of sensors, algorithms, and fusion applications.

  8. Efficient Estimation of Spectral Moments and the Polarimetric Variables on Weather Radars, Sonars, Sodars, Acoustic Flow Meters, Lidars, and Similar Active Remote Sensing Instruments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method for estimation of Doppler spectrum, its moments, and polarimetric variables on pulsed weather radars which uses over sampled echo components at a rate...

  9. Computerized spectral analyses of EEG in chronic schizophrenic patients

    International Nuclear Information System (INIS)

    Fujita, Haruhiro

    1985-01-01

    This study was aimed at clarifying the EEG difference between chronic schizophrenic patients and normal controls by using the EEG method of spectral analyses. Twelve comparatively homogenous chronic schizophrenic patients and the 10 healthy controls were subjected to EEG investigations. 1) The EEG of schizophrenic patients had a slowing tendency of the frequency in the frontal pole, anterior temporal and central regions of the scalp compared with control subjects. 2) There was a decrease of mutual relation among the five electrodes' peak frequency in the schizophrenic patients. 3) The EEG of schizophrenic patients had more fast waves of β 1 and β 2 band than that of control subjects. 4) A slowing tendency of the frequency in the first half regions of the scalp was not found in 3 chronic schizophrenic patients which showed defective functions in the frontal area by positron emission tomography. 5) When mental arithmetic was given, the schizophrenic patients showed an increase of fast wave in the central, posterior temporal and occipital regions of the scalp. 6) When they opened their eyes, attenuation in the α band was not so marked in the schizophrenic patients. (author)

  10. Development and Validation of a Polarimetric-MCScene 3D Atmospheric Radiation Model

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Alexander [Spectral Sciences, Inc., Burlington, MA (United States); Hawes, Frederick [Spectral Sciences, Inc., Burlington, MA (United States); Fox, Marsha [Spectral Sciences, Inc., Burlington, MA (United States)

    2016-03-15

    Polarimetric measurements can substantially enhance the ability of both spectrally resolved and single band imagery to detect the proliferation of weapons of mass destruction, providing data for locating and identifying facilities, materials, and processes of undeclared and proliferant nuclear weapons programs worldwide. Unfortunately, models do not exist that efficiently and accurately predict spectral polarized signatures for the materials of interest embedded in complex 3D environments. Having such a model would enable one to test hypotheses and optimize both the enhancement of scene contrast and the signal processing for spectral signature extraction. The Phase I set the groundwork for development of fully validated polarimetric spectral signature and scene simulation models. This has been accomplished 1. by (a) identifying and downloading state-of-the-art surface and atmospheric polarimetric data sources, (b) implementing tools for generating custom polarimetric data, and (c) identifying and requesting US Government funded field measurement data for use in validation; 2. by formulating an approach for upgrading the radiometric spectral signature model MODTRAN to generate polarimetric intensities through (a) ingestion of the polarimetric data, (b) polarimetric vectorization of existing MODTRAN modules, and (c) integration of a newly developed algorithm for computing polarimetric multiple scattering contributions; 3. by generating an initial polarimetric model that demonstrates calculation of polarimetric solar and lunar single scatter intensities arising from the interaction of incoming irradiances with molecules and aerosols; 4. by developing a design and implementation plan to (a) automate polarimetric scene construction and (b) efficiently sample polarimetric scattering and reflection events, for use in a to be developed polarimetric version of the existing first-principles synthetic scene simulation model, MCScene; and 5. by planning a validation field

  11. Science Drivers for Polarimetric Exploration

    Science.gov (United States)

    Yanamandra-Fisher, Padma

    2017-04-01

    The versatility of polarimetric exploration is exploited to address: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Polarized light occurs in three states: unpolarized, linear and circularized. Each mode of polarized light provides information about the scattering medium, from atmospheres to search for signatures of habitability. Spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Linear polarization of reflected light by solar system objects provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects, circular polarization and related chirality (or handedness, a property of molecules that exhibit mirror-image symmetry, similar to right and left hands) can serve as diagnostic of biological activity. Atmospheric phenomena such as rainbows, clouds and haloes exhibit polarimetric signatures that can be used as diagnostics to probe the atmosphere and may be possible to extend this approach to other planets and exoplanets. Biological molecules exhibit an inherent handedness or circular polarization or chirality, assisting in search for the identification of astrobiological material in the solar system. Polarimetry is also utilized in the exploration of comets, asteroids, dust/regoliths. Renewed efforts for ground-based polarimetry are emerging, from probing planetary atmospheres to the study of magnetic field lines and taxonomy of asteroids. While imaging and spectroscopy are routinely performed by amateurs, there is growing interest and progress in developing polarimetric exploration amongst the amateur community, with encouraging results.I will present a review of these efforts and the goal to create a global " PACA* Polarimetry Network" of observers, modelers and instrument experts to fully

  12. Analyse spectrale paramétrique et non-paramétrique du signal de ...

    African Journals Online (AJOL)

    Cette panoplie de méthodes est appliquée à l'analyse spectrale du signal de précession libre (FID; Free Induction Decay) dans les expériences de résonance magnétique nucléaire (RMN). Dans cet article, nous montrons clairement les avantages des méthodes paramétriques. En ce sens qu'elles se caractérisent par une ...

  13. Initial analyses of surface spectral radiance between observations and Line-By-Line calculations

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.D.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States); Miller, N.E.; Shippert, T.R.; Turner, D.D. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1996-04-01

    The evaluation an improvement of radiative transfer calculations are essential to attain improved performance of general circulation models (GCMs) for climate change applications. A Quality Measurement Experiment (QME) is being conducted to analyze the spectral residuals between the downwelling longwave radiance measured by the University of Wisconsin Atmospheric Emitted Radiance Interferometer (AERI) and spectral radiance calculated by the Line-By-Line Radiative Transfer Model (LBLRTM). The three critical components of this study are (1) the assessment of the quality of the high resolution AERI measurements, (2) the assessment of the ability to define the atmospheric state in the radiating column, and (3) the evaluation of the capability of LBLRTM. Validations have been performed on spectral radiance data, obtained from April 1994 through July 1994, through the analysis of the spectral interval and physical process. The results are archived as a function of time, enabling the retrieval of specific data and facilitating investigations and diurnal effects, seasonal effects, and longer-term trends. While the initial focus is restricted to clear-sky analyses, efforts are under way to include the effects of clouds and aerosols. Plans are well formulated for the extension of the current approach to the shortwave. An overview of the concept of the QME is described by Miller et al. (1994), and a detailed description of this study is provided by Clough et al. (1994).

  14. Scaling analyses of the spectral dimension in 3-dimensional causal dynamical triangulations

    Science.gov (United States)

    Cooperman, Joshua H.

    2018-05-01

    The spectral dimension measures the dimensionality of a space as witnessed by a diffusing random walker. Within the causal dynamical triangulations approach to the quantization of gravity (Ambjørn et al 2000 Phys. Rev. Lett. 85 347, 2001 Nucl. Phys. B 610 347, 1998 Nucl. Phys. B 536 407), the spectral dimension exhibits novel scale-dependent dynamics: reducing towards a value near 2 on sufficiently small scales, matching closely the topological dimension on intermediate scales, and decaying in the presence of positive curvature on sufficiently large scales (Ambjørn et al 2005 Phys. Rev. Lett. 95 171301, Ambjørn et al 2005 Phys. Rev. D 72 064014, Benedetti and Henson 2009 Phys. Rev. D 80 124036, Cooperman 2014 Phys. Rev. D 90 124053, Cooperman et al 2017 Class. Quantum Grav. 34 115008, Coumbe and Jurkiewicz 2015 J. High Energy Phys. JHEP03(2015)151, Kommu 2012 Class. Quantum Grav. 29 105003). I report the first comprehensive scaling analysis of the small-to-intermediate scale spectral dimension for the test case of the causal dynamical triangulations of 3-dimensional Einstein gravity. I find that the spectral dimension scales trivially with the diffusion constant. I find that the spectral dimension is completely finite in the infinite volume limit, and I argue that its maximal value is exactly consistent with the topological dimension of 3 in this limit. I find that the spectral dimension reduces further towards a value near 2 as this case’s bare coupling approaches its phase transition, and I present evidence against the conjecture that the bare coupling simply sets the overall scale of the quantum geometry (Ambjørn et al 2001 Phys. Rev. D 64 044011). On the basis of these findings, I advance a tentative physical explanation for the dynamical reduction of the spectral dimension observed within causal dynamical triangulations: branched polymeric quantum geometry on sufficiently small scales. My analyses should facilitate attempts to employ the spectral

  15. Moving towards more intuitive display strategies for polarimetric image data

    Science.gov (United States)

    Ratliff, Bradley M.; Tyo, J. Scott

    2017-09-01

    The display of polarimetric imaging data has been a subject of considerable debate. Display strategies range from direct display of the Stokes vector images (or their derivatives) to false color representations. In many cases, direct interpretation of polarimetric image data using traditional display strategies is not intuitive and can at times result in confusion as to what benefit polarimetric information is actually providing. Here we investigate approaches that attempt to augment the s0 image with polarimetric information, rather than directly display it, as a means of enhancing the baseband s0 image. The benefit is that the polarization-enhanced visible or infrared image maintains a familiar look without the need for complex interpretation of the meaning of the polarimetric data, thus keeping the incorporation of polarimetric information transparent to the end user. The method can be applied to monochromatic or multi-band data, which allows color to be used for representing spectral data in multi- or hyper-spectropolarimetric applications. We take a more subjective approach to image enhancement than current techniques employ by simply seeking to improve contrast and shape information for polarized objects within a scene. We find that such approaches provide clear enhancement to the imagery when polarized objects are contained within the scene without the need for complex interpretation of polarization phenomenology.

  16. Polarimetric neutron scattering

    International Nuclear Information System (INIS)

    Tasset, F.

    2001-01-01

    Polarimetric Neutron Scattering in introduced, both by, explaining methodological issues and the corresponding instrumental developments. After a short overview of neutron spin polarization and the neutron polarization 3d-vector a pictorial approach of the microscopic theory is used to show how a polarized beam interacts with lattice and magnetic Fourier components in a crystal. Examples are given of using Spherical Neutron Polarimetry (SNP) and the corresponding Cryopad polarimeter for the investigation of non-collinear magnetic structures. (R.P.)

  17. Multiple Spectral Ratio Analyses Reveal Earthquake Source Spectra of Small Earthquakes and Moment Magnitudes of Microearthquakes

    Science.gov (United States)

    Uchide, T.; Imanishi, K.

    2016-12-01

    Spectral studies for macroscopic earthquake source parameters are helpful for characterizing earthquake rupture process and hence understanding earthquake source physics and fault properties. Those studies require us mute wave propagation path and site effects in spectra of seismograms to accentuate source effect. We have recently developed the multiple spectral ratio method [Uchide and Imanishi, BSSA, 2016] employing many empirical Green's function (EGF) events to reduce errors from the choice of EGF events. This method helps us estimate source spectra more accurately as well as moment ratios among reference and EGF events, which are useful to constrain the seismic moment of microearthquakes. First, we focus on earthquake source spectra. The source spectra have generally been thought to obey the omega-square model with single corner-frequency. However recent studies imply the existence of another corner frequency for some earthquakes. We analyzed small shallow inland earthquakes (3.5 multiple spectral ratio analyses. For 20000 microearthquakes in Fukushima Hamadori and northern Ibaraki prefecture area, we found that the JMA magnitudes (Mj) based on displacement or velocity amplitude are systematically below Mw. The slope of the Mj-Mw relation is 0.5 for Mj 5. We propose a fitting curve for the obtained relationship as Mw = (1/2)Mj + (1/2)(Mjγ + Mcorγ)1/γ+ c, where Mcor is a corner magnitude, γ determines the sharpness of the corner, and c denotes an offset. We obtained Mcor = 4.1, γ = 5.6, and c = -0.47 to fit the observation. The parameters are useful for characterizing the Mj-Mw relationship. This non-linear relationship affects the b-value of the Gutenberg-Richter law. Quantitative discussions on b-values are affected by the definition of magnitude to use.

  18. Interaction of zincate with additives turbidimetric, IR and Raman spectral analyses

    Science.gov (United States)

    Renuka, R.; Ramamurthy, S.; Srinivasan, L.

    The interaction of zincate with additives, viz., alkaline earth oxides, cadmium oxide, nickel hydroxide, cobalt hydroxide bismuth oxide, sodium carbonate, and lithium hydroxide is investigated by turbidimetry and Raman spectroscopy. From the pattern of dependence of turbidity on additive concentration, the additives can be classified into three groups: (i) BeO, CdO, MgO, Ni(OH) 2, Co(OH) 2; (ii) CaO, BaO, SrO; (iii) LiOH, Bi 2O 3, Na 2CO 3. An identical grouping of additives has been discerned from Raman spectral analysis. Turbidimetry is a simple inexpensive technique for understanding the processes taking place between the additives and the zincate solution. Products of electrochemical dissolution of zinc in 4 M NaOH containing alkaline earth oxides, SnO, CdO, Ni(OH) 2, CO(OH) 2, or LiOH have been analysed by IR spectroscopy. The effect of heat treatment of the products on IR spectral pattern is described in the light of thermogravimetric analysis.

  19. Interaction of zincate with additives turbidimetric, IR and Raman spectral analyses

    Energy Technology Data Exchange (ETDEWEB)

    Renuka, R.; Ramamurthy, S.; Srinivasan, L. [Central Electrochemical Research Inst., Chennai (India). Madras Unit

    2000-07-01

    The interaction of zincate with additives, viz., alkaline earth oxides, cadmium oxide, nickel hydroxide, cobalt hydroxide bismuth oxide, sodium carbonate, and lithium hydroxide is investigated by turbidimetry and Raman spectroscopy. From the pattern of dependence of turbidity on additive concentration, the additives can be classified into three groups: (i) BeO, CdO, MgO, Ni(OH){sub 2}, Co(OH){sub 2}; (ii) CaO, BaO, SrO; (iii) LiOH, Bi{sub 2}O{sub 3}, Na{sub 2}CO{sub 3}. An identical grouping of additives has been discerned from Raman spectral analysis. Turbidimetry is a simple inexpensive technique for understanding the processes taking place between the additives and the zincate solution. Products of electrochemcial dissolution of zinc in 4 M NaOH containing alkaline earth oxides, SnO, CdO, Ni(OH){sub 2}, Co(OH){sub 2}, or LiOH have been analysed by IR spectroscopy. The effect of heat treatment of the products on IR spectral pattern is described in the light of thermogravimetric analysis. (orig.)

  20. Reflectance spectral analyses for the assessment of environmental pollution in the geothermal site of Mt. Amiata (Italy)

    Science.gov (United States)

    Manzo, Ciro; Salvini, Riccardo; Guastaldi, Enrico; Nicolardi, Valentina; Protano, Giuseppe

    2013-11-01

    We studied the environmental impact of geothermal activities in the Mt. Amiata area, using on-site spectral analyses of various ecological components. Analytical techniques were based on the study of the “red-edge”, which represents the spectral feature of the reflectance spectra defined between red and infrared wavelengths (λ) within the range 670-780 nm. Since in the study area the geothermal exploitation causes the drifting of contaminants such as Hg, Sb, S, B, As and H2S (hydrogen sulfide) from power plants, the spectral response of vegetation and lichens depends on their distance from the power stations, and also on the exposed surface, material type and other physical parameters. In the present research, the spectral radiance of targets was measured in the field using an Analytical Spectral Device (ASD) Field-Spec™FR portable radiometer. Spectral measurements were made on vegetation and lichen samples located near to and far from geothermal areas and potential pollution sources (e.g., power plants), with the aim of spatially defining their environmental impact. Observations for vegetation and lichens showed correlation with laboratory chemical analyses when these organisms were under stress conditions. The evaluation of relationships was carried out using several statistical approaches, which allowed to identify methods for identifying contamination indicators for plants and lichens in polluted areas. Results show that the adopted spectral indices are sensitive to environmental pollution and their responses spatialstatically correlated to chemical and ecophysiological analyses within a notable distance.

  1. Observations on the polarimetric imagery collection experiment database

    Science.gov (United States)

    Woolley, Mark; Michalson, Jacob; Romano, Joao

    2011-10-01

    The Spectral and Polarimetric Imagery Collection Experiment (SPICE) is an ongoing collaborative effort that commenced in February 2010 between the US Army ARDEC and Army Research Laboratory (ARL). SPICE is focused on the collection of mid-wave and long-wave infrared imagery using hyperspectral, polarimetric, and broadband sensors. The overall objective of SPICE is to collect a comprehensive database of the different modalities spanning multiple years to capture sensor performance encompassing a wide variety of meteorological (MET) conditions, diurnal, and seasonal changes inherent to Picatinny's northern New Jersey location. Utilizing the Precision Armament Laboratory (PAL) tower at Picatinny Arsenal, the sensors are autonomously collecting the desired data around the clock at multiple ranges containing surrogate 2S3 Self-Propelled Howitzer targets positioned at different orientations in an open woodland field. This database allows for: 1) Understanding of signature variability under adverse weather conditions; 2) Development of robust algorithms; 3) Development of new sensors; 4) Evaluation of polarimetric technology; and 5) Evaluation of fusing the different sensor modalities. In this paper, we will revisit the SPICE data collection objectives and the sensors deployed. We will present, in a statistical sense, the integrity of the data in the long-wave infrared (LWIR) polarimetric database collected from February through September 2010 and issues and lessons learned associated with a fully autonomous, around the clock data collection. We will also demonstrate sample LWIR polarimetric imagery and the performance of the Stokes parameters under adverse weather conditions.

  2. Spectral and Polarimetric Imagery Collection Experiment

    Science.gov (United States)

    2011-12-01

    imager if each mini-lens is followed by a band-pass filter. For this system, a set of four linear wire- grid polarizers are used, oriented at angles 0...is that of a 2S3 howitzer that was developed and produced for an ARDEC smart munitions program (Sense and Destroy Armor – SADARM). The PAL...using Imagej, Metlab, or any other program that can read test images for further processing and image analysis. The PAL metrological database can

  3. Multispectral and polarimetric photodetection using a plasmonic metasurface

    Science.gov (United States)

    Pelzman, Charles; Cho, Sang-Yeon

    2018-01-01

    We present a metasurface-integrated Si 2-D CMOS sensor array for multispectral and polarimetric photodetection applications. The demonstrated sensor is based on the polarization selective extraordinary optical transmission from periodic subwavelength nanostructures, acting as artificial atoms, known as meta-atoms. The meta-atoms were created by patterning periodic rectangular apertures that support optical resonance at the designed spectral bands. By spatially separating meta-atom clusters with different lattice constants and orientations, the demonstrated metasurface can convert the polarization and spectral information of an optical input into a 2-D intensity pattern. As a proof-of-concept experiment, we measured the linear components of the Stokes parameters directly from captured images using a CMOS camera at four spectral bands. Compared to existing multispectral polarimetric sensors, the demonstrated metasurface-integrated CMOS system is compact and does not require any moving components, offering great potential for advanced photodetection applications.

  4. Polarimetric Multispectral Imaging Technology

    Science.gov (United States)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  5. Sensitivity of Multiangle, Multispectral Polarimetric Remote Sensing Over Open Oceans to Water-Leaving Radiance: Analyses of RSP Data Acquired During the MILAGRO Campaign

    Science.gov (United States)

    Chowdhary, Jacek; Cairns, Brian; Waquet, Fabien; Knobelspiesse, Kirk; Ottaviani, Matteo; Redemann, Jens; Travis, Larry; Mishchenko, Michael

    2012-01-01

    For remote sensing of aerosol over the ocean, there is a contribution from light scattered underwater. The brightness and spectrum of this light depends on the biomass content of the ocean, such that variations in the color of the ocean can be observed even from space. Rayleigh scattering by pure sea water, and Rayleigh-Gans type scattering by plankton, causes this light to be polarized with a distinctive angular distribution. To study the contribution of this underwater light polarization to multiangle, multispectral observations of polarized reflectance over ocean, we previously developed a hydrosol model for use in underwater light scattering computations that produces realistic variations of the ocean color and the underwater light polarization signature of pure sea water. In this work we review this hydrosol model, include a correction for the spectrum of the particulate scattering coefficient and backscattering efficiency, and discuss its sensitivity to variations in colored dissolved organic matter (CDOM) and in the scattering function of marine particulates. We then apply this model to measurements of total and polarized reflectance that were acquired over open ocean during the MILAGRO field campaign by the airborne Research Scanning Polarimeter (RSP). Analyses show that our hydrosol model faithfully reproduces the water-leaving contributions to RSP reflectance, and that the sensitivity of these contributions to Chlorophyll a concentration [Chl] in the ocean varies with the azimuth, height, and wavelength of observations. We also show that the impact of variations in CDOM on the polarized reflectance observed by the RSP at low altitude is comparable to or much less than the standard error of this reflectance whereas their effects in total reflectance may be substantial (i.e. up to >30%). Finally, we extend our study of polarized reflectance variations with [Chl] and CDOM to include results for simulated spaceborne observations.

  6. Impact of spectral resolution of in situ ocean color radiometric data in satellite matchups analyses.

    Science.gov (United States)

    Zibordi, Giuseppe; Talone, Marco; Voss, Kenneth J; Johnson, B Carol

    2017-08-07

    The spectral resolution requirements for in situ remote sensing reflectanceR RS measurements aiming at supporting satellite ocean color validation and System Vicarious Calibration (SVC) were investigated. The study, conducted using sample hyperspectral R RS from different water types, focused on the visible spectral bands of the ocean land color imager (OLCI) and of the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite sensors. Allowing for a ±0.5% maximum difference between in situ and satellite derived R RS solely due to the spectral band characteristics of the in situ radiometer, a spectral resolution of 1 nm for SVC of PACE is needed in oligotrophic waters. Requirements decrease to 3 nm for SVC of OLCI. In the case of validation activities, which exhibit less stringent uncertainty requirements with respect to SVC, a maximum difference of ±1% between in situ and satellite derived data indicates the need for a spectral resolution of 3 nm for both OLCI and PACE in oligotrophic waters. Conversely, spectral resolutions of 6 nm for PACE and 9 nm for OLCI appear to satisfy validation activities in optically complex waters.

  7. Knowledge-based sea ice classification by polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning; Dierking, Wolfgang

    2004-01-01

    Polarimetric SAR images acquired at C- and L-band over sea ice in the Greenland Sea, Baltic Sea, and Beaufort Sea have been analysed with respect to their potential for ice type classification. The polarimetric data were gathered by the Danish EMISAR and the US AIRSAR which both are airborne...... systems. A hierarchical classification scheme was chosen for sea ice because our knowledge about magnitudes, variations, and dependences of sea ice signatures can be directly considered. The optimal sequence of classification rules and the rules themselves depend on the ice conditions/regimes. The use...... of the polarimetric phase information improves the classification only in the case of thin ice types but is not necessary for thicker ice (above about 30 cm thickness)...

  8. Bird Migration Echoes Observed by Polarimetric Radar

    OpenAIRE

    MINDA, Haruya; FURUZAWA, Fumie A.; SATOH, Shinsuke; NAKAMURA, Kenji

    2008-01-01

    A C-band polarimetric radar on Okinawa Island successfully observed large-scale bird migrations over the western Pacific Ocean. The birds generated interesting polarimetric signatures. This paper describes the signatures and speculates bird behavior.

  9. Identifying scales of pattern in ecological data: a comparison of lacunarity, spectral and wavelet analyses

    Science.gov (United States)

    Sari C. Saunders; Jiquan Chen; Thomas D. Drummer; Eric J. Gustafson; Kimberley D. Brosofske

    2005-01-01

    Identifying scales of pattern in ecological systems and coupling patterns to processes that create them are ongoing challenges. We examined the utility of three techniques (lacunarity, spectral, and wavelet analysis) for detecting scales of pattern of ecological data. We compared the information obtained using these methods for four datasets, including: surface...

  10. Bulk mineralogy of the NE Syrtis and Jezero crater regions of Mars derived through thermal infrared spectral analyses

    Science.gov (United States)

    Salvatore, M. R.; Goudge, T. A.; Bramble, M. S.; Edwards, C. S.; Bandfield, J. L.; Amador, E. S.; Mustard, J. F.; Christensen, P. R.

    2018-02-01

    We investigated the area to the northwest of the Isidis impact basin (hereby referred to as "NW Isidis") using thermal infrared emission datasets to characterize and quantify bulk surface mineralogy throughout this region. This area is home to Jezero crater and the watershed associated with its two deltaic deposits in addition to NE Syrtis and the strong and diverse visible/near-infrared spectral signatures observed in well-exposed stratigraphic sections. The spectral signatures throughout this region show a diversity of primary and secondary surface mineralogies, including olivine, pyroxene, smectite clays, sulfates, and carbonates. While previous thermal infrared investigations have sought to characterize individual mineral groups within this region, none have systematically assessed bulk surface mineralogy and related these observations to visible/near-infrared studies. We utilize an iterative spectral unmixing method to statistically evaluate our linear thermal infrared spectral unmixing models to derive surface mineralogy. All relevant primary and secondary phases identified in visible/near-infrared studies are included in the unmixing models and their modeled spectral contributions are discussed in detail. While the stratigraphy and compositional diversity observed in visible/near-infrared spectra are much better exposed and more diverse than most other regions of Mars, our thermal infrared analyses suggest the dominance of basaltic compositions with less observed variability in the amount and diversity of alteration phases. These results help to constrain the mineralogical context of these previously reported visible/near-infrared spectral identifications. The results are also discussed in the context of future in situ investigations, as the NW Isidis region has long been promoted as a region of paleoenvironmental interest on Mars.

  11. CLEAN Technique for Polarimetric ISAR

    Directory of Open Access Journals (Sweden)

    M. Martorella

    2008-01-01

    Full Text Available Inverse synthetic aperture radar (ISAR images are often used for classifying and recognising targets. To reduce the amount of data processed by the classifier, scattering centres are extracted from the ISAR image and used for classifying and recognising targets. This paper addresses the problem of estimating the position and the scattering vector of target scattering centres from polarimetric ISAR images. The proposed technique is obtained by extending the CLEAN technique, which was introduced in radar imaging for extracting scattering centres from single-polarisation ISAR images. The effectiveness of the proposed algorithm, namely, the Polarimetric CLEAN (Pol-CLEAN is tested on simulated and real data.

  12. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  13. Testing the impact of stratigraphic uncertainty on spectral analyses of sedimentary series

    Science.gov (United States)

    Martinez, Mathieu; Kotov, Sergey; De Vleeschouwer, David; Pas, Damien; Pälike, Heiko

    2016-09-01

    Spectral analysis is a key tool for identifying periodic patterns in sedimentary sequences, including astronomically related orbital signals. While most spectral analysis methods require equally spaced samples, this condition is rarely achieved either in the field or when sampling sediment core. Here, we propose a method to assess the impact of the uncertainty or error made in the measurement of the sample stratigraphic position on the resulting power spectra. We apply a Monte Carlo procedure to randomise the sample steps of depth series using a gamma distribution. Such a distribution preserves the stratigraphic order of samples and allows controlling the average and the variance of the distribution of sample distances after randomisation. We apply the Monte Carlo procedure on two geological datasets and find that gamma distribution of sample distances completely smooths the spectrum at high frequencies and decreases the power and significance levels of the spectral peaks in an important proportion of the spectrum. At 5 % of stratigraphic uncertainty, a small portion of the spectrum is completely smoothed. Taking at least three samples per thinnest cycle of interest should allow this cycle to be still observed in the spectrum, while taking at least four samples per thinnest cycle of interest should allow its significance levels to be preserved in the spectrum. At 10 and 15 % uncertainty, these thresholds increase, and taking at least four samples per thinnest cycle of interest should allow the targeted cycles to be still observed in the spectrum. In addition, taking at least 10 samples per thinnest cycle of interest should allow their significance levels to be preserved. For robust applications of the power spectrum in further studies, we suggest providing a strong control of the measurement of the sample position. A density of 10 samples per putative precession cycle is a safe sampling density for preserving spectral power and significance level in the

  14. Feature-Based Nonlocal Polarimetric SAR Filtering

    Directory of Open Access Journals (Sweden)

    Xiaoli Xing

    2017-10-01

    Full Text Available Polarimetric synthetic aperture radar (PolSAR images are inherently contaminated by multiplicative speckle noise, which complicates the image interpretation and image analyses. To reduce the speckle effect, several adaptive speckle filters have been developed based on the weighted average of the similarity measures commonly depending on the model or probability distribution, which are often affected by the distribution parameters and modeling texture components. In this paper, a novel filtering method introduces the coefficient of variance ( CV and Pauli basis (PB to measure the similarity, and the two features are combined with the framework of the nonlocal mean filtering. The CV is used to describe the complexity of various scenes and distinguish the scene heterogeneity; moreover, the Pauli basis is able to express the polarimetric information in PolSAR image processing. This proposed filtering combines the CV and Pauli basis to improve the estimation accuracy of the similarity weights. Then, the similarity of the features is deduced according to the test statistic. Subsequently, the filtering is proceeded by using the nonlocal weighted estimation. The performance of the proposed filter is tested with the simulated images and real PolSAR images, which are acquired by AIRSAR system and ESAR system. The qualitative and quantitative experiments indicate the validity of the proposed method by comparing with the widely-used despeckling methods.

  15. Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Nørbygaard, Thomas; White, Peter C.

    2011-01-01

    . The spectra of amphetamine and amphetamine-H+ sampleswere obtained and assigned according to a comparison of the experimental spectra and the ab initio MO calculations, performed using the Gaussian 03W program (Gaussian, Inc., Pittsburgh, PA). The analyses were based on complete geometry minimization...

  16. Polarimetric Segmentation Using Wishart Test Statistic

    DEFF Research Database (Denmark)

    Skriver, Henning; Schou, Jesper; Nielsen, Allan Aasbjerg

    2002-01-01

    ) approach, which is a merging algorithm for single channel SAR images. The polarimetric version described in this paper uses the above-mentioned test statistic for merging. The segmentation algorithm has been applied to polarimetric SAR data from the Danish dual-frequency, airborne polarimetric SAR, EMISAR......A newly developed test statistic for equality of two complex covariance matrices following the complex Wishart distribution and an associated asymptotic probability for the test statistic has been used in a segmentation algorithm. The segmentation algorithm is based on the MUM (merge using moments....... The results show clearly an improved segmentation performance for the full polarimetric algorithm compared to single channel approaches....

  17. ASTEROID POLARIMETRIC DATABASE V3.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is compiled by Dmitrij Lupishko of Kharkov University. This database tabulates the original data comprising degree of...

  18. ASTEROID POLARIMETRIC DATABASE V4.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is compiled by Dmitrij Lupishko of Kharkov University. This database tabulates the original data comprising degree of...

  19. ASTEROID POLARIMETRIC DATABASE V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is compiled by Dmitrij Lupishko of Kharkov University. This database tabulates the original data comprising degree of...

  20. ASTEROID POLARIMETRIC DATABASE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is compiled by Dmitrij Lupishko of Kharkov University. This database tabulates the original data comprising degree of...

  1. Searching for Jet Emission in LMXBs: A Polarimetric View

    Directory of Open Access Journals (Sweden)

    Maria Cristina Baglio

    2017-10-01

    Full Text Available We present results taken from a study aiming at detecting the emission from relativistic particles jets in neutron star-low mass X-ray binaries using optical polarimetric observations. First, we focus on a polarimetric study performed on the persistent LMXB 4U 0614+091. Once corrected for interstellar effects, we measured an intrinsic linear polarization in the r-band of ~3% at a 3σ confidence level. This is in-line with the observation of an infrared excess in the spectral energy distribution (SED of the source, reported in a previous work, which the authors linked to the optically thin synchrotron emission of a jet. We then present a study performed on the transitional millisecond pulsar PSR J1023+0038 during quiescence. We measured a linear polarization of 1.09 ± 0.27% and 0.90 ± 0.17% in the V and R bands, respectively. The phase-resolved polarimetric curve of the source in the R-band reveals a hint of a sinusoidal modulation at the source orbital period. The NIR -optical SED of the system did not suggest the presence of a jet. We conclude that the optical linear polarization observed for PSR J1023+0038 is possibly due to Thomson scattering with electrons in the disc, as also suggested by the hint of the modulation of the R-band linear polarization at the system orbital period.

  2. Cortical Auditory-Evoked Responses in Preterm Neonates: Revisited by Spectral and Temporal Analyses.

    Science.gov (United States)

    Kaminska, A; Delattre, V; Laschet, J; Dubois, J; Labidurie, M; Duval, A; Manresa, A; Magny, J-F; Hovhannisyan, S; Mokhtari, M; Ouss, L; Boissel, A; Hertz-Pannier, L; Sintsov, M; Minlebaev, M; Khazipov, R; Chiron, C

    2017-08-11

    Characteristic preterm EEG patterns of "Delta-brushes" (DBs) have been reported in the temporal cortex following auditory stimuli, but their spatio-temporal dynamics remains elusive. Using 32-electrode EEG recordings and co-registration of electrodes' position to 3D-MRI of age-matched neonates, we explored the cortical auditory-evoked responses (AERs) after 'click' stimuli in 30 healthy neonates aged 30-38 post-menstrual weeks (PMW). (1) We visually identified auditory-evoked DBs within AERs in all the babies between 30 and 33 PMW and a decreasing response rate afterwards. (2) The AERs showed an increase in EEG power from delta to gamma frequency bands over the middle and posterior temporal regions with higher values in quiet sleep and on the right. (3) Time-frequency and averaging analyses showed that the delta component of DBs, which negatively peaked around 550 and 750 ms over the middle and posterior temporal regions, respectively, was superimposed with fast (alpha-gamma) oscillations and corresponded to the late part of the cortical auditory-evoked potential (CAEP), a feature missed when using classical CAEP processing. As evoked DBs rate and AERs delta to alpha frequency power decreased until full term, auditory-evoked DBs are thus associated with the prenatal development of auditory processing and may suggest an early emerging hemispheric specialization. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. INFRARED HIGH-RESOLUTION INTEGRATED LIGHT SPECTRAL ANALYSES OF M31 GLOBULAR CLUSTERS FROM APOGEE

    Energy Technology Data Exchange (ETDEWEB)

    Sakari, Charli M. [Department of Astronomy, University of Washington, Seattle WA 98195-1580 (United States); Shetrone, Matthew D. [McDonald Observatory, University of Texas at Austin, HC75 Box 1337-MCD, Fort Davis, TX 79734 (United States); Schiavon, Ricardo P. [Gemini Observatory, 670 N. A’Ohoku Place, Hilo, HI 96720 (United States); Bizyaev, Dmitry; Pan, Kaike [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States); Prieto, Carlos Allende; García-Hernández, Domingo Aníbal [Instituto de Astrofísica de Canarias (IAC), Va Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Beers, Timothy C. [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lucatello, Sara [INAF Osservatorio Astronomico di Padova, Vicolo dellOsservatorio 5, I-35122 Padova (Italy); Majewski, Steven; O’Connell, Robert W. [Dept. of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Strader, Jay, E-mail: sakaricm@u.washington.edu [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2016-10-01

    Chemical abundances are presented for 25 M31 globular clusters (GCs), based on moderately high resolution ( R = 22,500) H -band integrated light (IL) spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Infrared (IR) spectra offer lines from new elements, lines of different strengths, and lines at higher excitation potentials compared to the optical. Integrated abundances of C, N, and O are derived from CO, CN, and OH molecular features, while Fe, Na, Mg, Al, Si, K, Ca, and Ti abundances are derived from atomic features. These abundances are compared to previous results from the optical, demonstrating the validity and value of IR IL analyses. The CNO abundances are consistent with typical tip of the red giant branch stellar abundances but are systematically offset from optical Lick index abundances. With a few exceptions, the other abundances agree between the optical and the IR within the 1 σ uncertainties. The first integrated K abundances are also presented and demonstrate that K tracks the α elements. The combination of IR and optical abundances allows better determinations of GC properties and enables probes of the multiple populations in extragalactic GCs. In particular, the integrated effects of the Na/O anticorrelation can be directly examined for the first time.

  4. Spectral analyses of the KTB sonic and density logs using robust nonparametric methods

    Science.gov (United States)

    Jones, Alan G.; Holliger, Klaus

    1997-08-01

    We use robust techniques to estimate power spectra, coherences and transfer functions of the German Continental Deep Drilling Program (KTB) sonic and density logs and lithologically defined subsets thereof. Our results confirm the overall 1/wavelength-decay of the power spectra inferred by parametric analyses, but provide superior resolution and nonparametric estimates of errors and statistical significance. We demonstrate the absence of any statistically meaningful coherence between the velocity logs from the main and pilot holes, suggesting a spatially quasi-isotropic upper crustal velocity structure. Also, there is little coherence between the physical and caliper logs, indicating that disturbances introduced by breakouts and uneven relief of the borehole wall mostly contribute to the uncorrelated portions of the velocity logs. Coherence between the gamma and physical logs is weak to absent, indicating that the observed velocity and density fluctuations are dominated by the physical state of the rocks rather than by their petrological composition. Attempts to derive Poisson's ratio, and its variation with wavelength, from the relationship between the shear and compressional velocity logs met with limited success, but imply that caution should be exercised when comparing Poisson's ratio derived from laboratory studies on samples representative of a region to crustal-scale seismic determinations. Our preferred interpretation is that fluctuations in the physical logs in the intermediate wavelength range (˜10-150 m) are dominated by cracks and their level of fluid saturation. At larger wavelengths (>50-150 m) the effects of the petrology becomes more significant as shown by changes in slope of the power spectra and the emerging coherence between the Vp and the gamma logs.

  5. Target detection and recognition with polarimetric SAR

    NARCIS (Netherlands)

    Dekker, R.J.; Broek, A.C. van den

    2000-01-01

    Target detection and recognition using polarimetric SAR data has been studied by using PHARUS and RAMSES data collected during the MIMEX campaign. Additionally very high-resolution ISAR data was used. A basic detection and recognition scheme has been developed, which includes polarimetric

  6. Electro-Optic Imaging Fourier Transform Spectral Polarimeter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Boulder Nonlinear Systems, Inc. (BNS) proposes to develop an Electro-Optic Imaging Fourier Transform Spectral Polarimeter (E-O IFTSP). The polarimetric system is...

  7. Polarimetric microlensing of circumstellar discs

    Science.gov (United States)

    Sajadian, Sedighe; Rahvar, Sohrab

    2015-12-01

    We study the benefits of polarimetry observations of microlensing events to detect and characterize circumstellar discs around the microlensed stars located at the Galactic bulge. These discs which are unresolvable from their host stars make a net polarization effect due to their projected elliptical shapes. Gravitational microlensing can magnify these signals and make them be resolved. The main aim of this work is to determine what extra information about these discs can be extracted from polarimetry observations of microlensing events in addition to those given by photometry ones. Hot discs which are closer to their host stars are more likely to be detected by microlensing, owing to more contributions in the total flux. By considering this kind of discs, we show that although the polarimetric efficiency for detecting discs is similar to the photometric observation, but polarimetry observations can help to constraint the disc geometrical parameters e.g. the disc inner radius and the lens trajectory with respect to the disc semimajor axis. On the other hand, the time-scale of polarimetric curves of these microlensing events generally increases while their photometric time-scale does not change. By performing a Monte Carlo simulation, we show that almost four optically thin discs around the Galactic bulge sources are detected (or even characterized) through photometry (or polarimetry) observations of high-magnification microlensing events during 10-yr monitoring of 150 million objects.

  8. Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses.

    Science.gov (United States)

    Ribeiro, L F; Ribani, R H; Francisco, T M G; Soares, A A; Pontarolo, R; Haminiuk, C W I

    2015-12-15

    The aim of this study was to characterize grape pomace (GP) from winemaking byproducts of different grape samples (Cabernet Sauvignon-CS; Merlot-ME; Mix composed of 65% Bordeaux, 25% Isabel and 10% BRS Violet-MI and Terci-TE) with a view to exploiting its potential as a source of bioactive compounds and an alternative to the reuse of waste. Bioactive compounds such as individual phenolic compounds and polyunsaturated fatty acids (PUFA) were identified and quantified by spectrophotometric, chromatographic and spectral analyses. The sample of MI had the highest concentrations for total phenolic compounds and total flavonoids, while TE had the highest content for total monomeric anthocyanins. For all samples it was possible to identify 13 different anthocyanins by high performance liquid chromatography (HPLC) and mass spectrometry (MS). Moreover, the GP samples showed phenolic acids; flavan-3-ols such as catechin; flavonols such as quercetin, rutin and kaempferol; and stilbenes such as trans-resveratrol. Therefore, grape pomace can be considered a source for the recovery of phenolic compounds having antioxidant activity as well as a rich source of PUFA. Thus it can be used as an ingredient in the development of new food products, since it is suitable for human consumption, and a viable alternative both to adding nutritional value to food and to reduce environmental contamination. Copyright © 2015. Published by Elsevier B.V.

  9. ASTEROID POLARIMETRIC DATABASE V6.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko and S.V. Vasiliev of Karazin Kharkiv National...

  10. ASTEROID POLARIMETRIC DATABASE V7.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko and S.V. Vasiliev of Karazin Kharkiv National...

  11. ASTEROID POLARIMETRIC DATABASE V8.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko of Karazin Kharkiv National University, Ukraine....

  12. ASTEROID POLARIMETRIC DATABASE V5.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko of Karazin Kharkiv National University, Ukraine....

  13. Novel Polarimetric SAR Interferometry Algorithms, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric SAR interferometry (PolInSAR) is a recently developed synthetic aperture radar (SAR) imaging mode that combines the capabilities of radar polarimetry...

  14. Novel Polarimetric SAR Interferometry Algorithms, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  15. Comparison between Multitemporal and Polarimetric SAR Data for Land Cover Classification

    DEFF Research Database (Denmark)

    Skriver, Henning

    2008-01-01

    The investigation focuses on the determination of the land cover type using SAR data, including single polarisation, dual polarisation and fully polarimetric data, at L-band. The analysed data set was acquired during the AgriSAR 2006 campaign by the airborne ESAR system over the Gormin agricultural...... site (Northeast Germany). The multitemporal acquisitions significantly improve the classification results for single and dual polarization configurations. The best results for the single and dual polarization configurations are better than for the polarimetric mode. Overall, the cross...

  16. Some OFDM waveforms for a fully polarimetric weather radar

    NARCIS (Netherlands)

    Van Genderen, P.; Krasnov, O.A.; Wang, Z.; Tigrek, R.F.

    2012-01-01

    Retrieval of cloud parameters in weather radar benefits from polarimetric measurements. Most polarimetric radars measure the full backscatter matrix (BSM) using a few alternating polarized sounding signals. Using specially encoded orthogonal frequency division multiplexing (OFDM) signals however,

  17. Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS).

    Science.gov (United States)

    West, A G; Goldsmith, G R; Matimati, I; Dawson, T E

    2011-08-30

    Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be

  18. Mechanical Spectral Signatures of Malignant Disease? A Small-Sample, Comparative Study of Continuum vs. Nano-Biomechanical Data Analyses

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2002-01-01

    Full Text Available Thin sections from human breast biopsies were employed to perform a differential analysis of the ultrasound spectral responses from invasive ductal carcinoma and normal tissue. A non-destructive testing methodology was employed, yielding the reflection coefficients as function of frequency in the clinical ultrasound range. The spectral responses were simulated both in the context of continuum and nano-biomechanics, with the objective of quantifying the physical properties that determine the differences in the spectral signature of normal vs. malignant tissue. The properties that were employed for the theoretical reconstruction of the spectra were: the density, the continuum and the nanomechanical elastic constants, and the nanomechanical theory internodal distance. The latter is a measure of the depth-of-penetration of mechanical actions between contiguous tissue elements. Together with vectorial descriptors of the tissue spatial arrangement, the internodal distance variable affords the quantitative incorporation of tissue architectural data in the theoretical model.

  19. Processeurs atomiques utilisant la propriété de creusement spectral : modélisation et application à l’analyse spectrale radiofréquence large bande sur porteuse optique

    OpenAIRE

    Attal, Yoann

    2017-01-01

    The Spectral Hole Burning property, found in some rare-earth ion-doped crystals at low temperature is particularly relevant for analogic processing of radiofrequency signals. Indeed, it enables processing functions to be programmed in the crystal’s absorption spectrum.Starting with the first demonstrations of a wideband radiofrequency spectrum analyser, we aim at improving its performances, which requires an accurate modelling of the light-matter interaction and all the perturbations arising ...

  20. Science data collection with polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Woelders, Kim; Madsen, Søren Nørvang

    1996-01-01

    Discusses examples on the use of polarimetric SAR in a number of Earth science studies. The studies are presently being conducted by the Danish Center for Remote Sensing. A few studies of the European Space Agency's EMAC programme are also discussed. The Earth science objectives are presented......, and the potential of polarimetric SAR is discussed and illustrated with data collected by the Danish airborne EMISAR system during a number of experiments in 1994 and 1995. The presentation will include samples of data acquired for the different studies...

  1. Spectral imagery collection experiment

    Science.gov (United States)

    Romano, Joao M.; Rosario, Dalton; Farley, Vincent; Sohr, Brian

    2010-04-01

    The Spectral and Polarimetric Imagery Collection Experiment (SPICE) is a collaborative effort between the US Army ARDEC and ARL for the collection of mid-wave and long-wave infrared imagery using hyperspectral, polarimetric, and broadband sensors. The objective of the program is to collect a comprehensive database of the different modalities over the course of 1 to 2 years to capture sensor performance over a wide variety of adverse weather conditions, diurnal, and seasonal changes inherent to Picatinny's northern New Jersey location. Using the Precision Armament Laboratory (PAL) tower at Picatinny Arsenal, the sensors will autonomously collect the desired data around the clock at different ranges where surrogate 2S3 Self-Propelled Howitzer targets are positioned at different viewing perspectives at 549 and 1280m from the sensor location. The collected database will allow for: 1) Understand of signature variability under the different weather conditions; 2) Development of robust algorithms; 3) Development of new sensors; 4) Evaluation of hyperspectral and polarimetric technologies; and 5) Evaluation of fusing the different sensor modalities. In this paper, we will present the SPICE data collection objectives, the ongoing effort, the sensors that are currently deployed, and how this work will assist researches on the development and evaluation of sensors, algorithms, and fusion applications.

  2. Développement d'algorithmes d'analyse spectrale en spectrométrie gamma embarquée

    OpenAIRE

    Martin-Burtart , Nicolas

    2012-01-01

    Airborne gamma spectrometry was first used for mining prospection. Three main families were looked for: K40, U238 and Th232. The Chernobyl accident acted as a trigger and for the last fifteen years, a lot of new systems have been developed for intervention in case of nuclear accident or environmental purposes. Depending on their uses, new algorithms were developed, mainly for medium or high energy signal extraction. These spectral regions are characteristics of natural emissions (K40, U238- a...

  3. Comprehensive Space-Object Characterization using Spectrally Compressive Polarimetric Sensing

    Science.gov (United States)

    2015-04-08

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Contracts and Grants Accounting, Main 1 University of New Mexico , MSC01 1245 Albuquerque, NM 87131...AFRL-OSR-VA-TR-2015-0100 Comprehensive Space-Object Characterization Sudhakar Prasad UNIVERSITY OF NEW MEXICO Final Report 04/17/2015 DISTRIBUTION A...8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Office of Scientific Research 875 N

  4. Investigation of Polarimetric and Electrical Characteristics of Natural and Triggered Lightning Strikes

    Science.gov (United States)

    Hyland, P. T.; Biggerstaff, M. I.; Uman, M. A.; Jordan, D. M.; Hill, J. D.; Pilkey, J. T.; Ngin, T.; Blakeslee, R. J.; Krehbiel, P. R.; Rison, W.; Winn, W. P.; Eack, K.; Trueblood, J.; Edens, H. E.

    2013-12-01

    For the past three summers, the University of Oklahoma has deployed three mobile, polarimetric radars to the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida and Langmuir Laboratory near Socorro, New Mexico for the purpose of investigating the relationship between cloud structure and the propagation of triggered and natural lightning channels. This presentation will highlight observations from select natural and triggered events at these two facilities. During the summer of 2012, University of Oklahoma radar operators made a launch recommendation to the ICLRT during the passage of Tropical Storm Debby over northeast Florida that resulted in a successful triggered flash with 11 return strokes. The trigger was attempted as precipitation streamers within the stratiform rainbands of Tropical Storm Debby approached the launch site. According to the National Lightning Detection Network (NLDN), there were no reported natural cloud-to-ground (CG) flashes within 60 km of the ICLRT 20 hours before and eight hours after the triggered flash. The recommendation was made based on previous analyses of the storm structure of trigger attempts from the ICLRT that indicated the coincidence of several successful triggers with descending regions of enhanced radar reflectivity, or descending precipitation packets (DePPs). Polarimetric data from the frequency-agile Rapid-scanning X-band Polarimetric (RaXPol) radar as well as data from the lightning mapping array (LMA) and electric field meter (EFM) networks from the ICLRT for this event will be presented. Past analyses also revealed ice alignment signatures in differential phase and specific differential phase as strong electric fields near the top of electrified clouds cause small ice particles to become vertically aligned. These signatures are especially noticeable for circularly polarized radars. Polarimetric data from the Shared Mobile Atmospheric Research & Teaching (SMART) radar and Ra

  5. Comparisons of Circular Transmit and Linear Receive Compact Polarimetric SAR Features for Oil Slicks Discrimination

    Directory of Open Access Journals (Sweden)

    Yu Li

    2015-01-01

    Full Text Available Compact polarimetric (CP synthetic aperture radar (SAR has proven its potential in distinguishing oil slicks and look-alikes. Polarimetric information can be retrieved directly from scattering vector or from reconstructed pseudo-Quad-Pol covariance matrix of CP SAR data. In this paper, we analysed features from Circular Transmit and Linear Receive (CTLR CP SAR data that are derived by taking both of these two methods. K-means clustering followed by accuracy assessment was also implemented for performance evaluation. Through experiments that were conducted based on L-band UAVSAR fully polarimetric data, it was found that optimum extraction methods varied for different features. The histogram analysis and segmentation results also demonstrated the comparable performance of CP SAR features in distinguishing different damping properties within oil slicks. This study proposed a framework of statistically analyzing polarimetric SAR (Pol-SAR features and provided guidelines for determining optimum feature extraction methods from CP SAR data and for marine oil-spills detection and classification.

  6. Polarimetric Exploration of Solar System Small Bodies: Search for Habitability

    Science.gov (United States)

    Yanamandra-Fisher, Padma A.

    2015-08-01

    The overarching goals for the remote sensing and robotic exploration of our solar system and exoplanetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. These goals can be realized with the inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy. Since all objects have unique polarimetric signatures, like fingerprints, much can be learned about the scattering object. Although polarization, in general, is elliptical by nature, special cases such as linear and circular polarimetric signatures provide insight into the various types of scattering media and are valuable tools to be developed. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. The search for habitability can benefit from spectrophotopolarimetry. While linear polarization of reflected light by solar system objects (planetary atmospheres, satellites, rings systems, comets, asteroids, dust, etc.) provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects, circular polarization and related chirality) or handedness, a property of molecules that exhibit mirror-image symmetry, similar to right and left hands) can serve as diagnostic of biological activity. All known life forms on earth are chiral and pre-dominantly left-handed. However, many of these applications suffer from lack of detailed observations, instrumentation, dedicated missions and numerical/retrieval methods. I will present a review of the field, with advances made in instrumentation, measurements and applications to prospective missions.

  7. Self-condensation of n-(N-propyl)butanimine: NMR and mass spectral analyses and investigation by theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Manfrini, Rozangela Magalhaes; Teixeira, Flavia Rodrigues; Pilo-Veloso, Dorila; Alcantara, Antonio Flavio de Carvalho, E-mail: aalcantara@zeus.qui.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Quimica; Nelson, David Lee [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia. Dept. de Quimica; Siqueira, Ezequias Pessoa de [Centro de Pesquisas Rene Rachou (FIOCRUZ), Belo Horizonte, MG (Brazil)

    2012-07-01

    The stability of N-propylbutanimine (1) was investigated under different experimental conditions. The acid-catalyzed self-condensation that produced the E-enimine (4) and Z-inimine (5) was studied by experimental analyses and theoretical calculations. Since the calculations for the energy of 5 indicated that it had a lower energy than 4, yet 4 was the principal product, the self-condensation of 1 must be kinetically controlled. (author)

  8. SMEX02 Aircraft Polarimetric Scanning Radiometer (PSR) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Polarimetric Scanning Radiometer (PSR) is an airborne microwave imaging radiometer developed and operated by the National Oceanic and Atmospheric Administration...

  9. IHW COMET HALLEY POLARIMETRIC OBSERVATIONS, V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the polarimetric results reported to the International Halley Watch (IHW) Photometry and Polarimetry Network (PPN) by the various...

  10. CAMEX-3 POLARIMETRIC SCANNING RADIOMETER (PSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Polarimetric Scanning Radiometer (PSR) is a versatile airborne microwave imaging radiometer developed by the Georgia Institute of Technology and the NOAA...

  11. Structural Changes of Desertified and Managed Shrubland Landscapes in Response to Drought: Spectral, Spatial and Temporal Analyses

    Directory of Open Access Journals (Sweden)

    Tarin Paz-Kagan

    2014-08-01

    Full Text Available Drought events cause changes in ecosystem function and structure by reducing the shrub abundance and expanding the biological soil crusts (biocrusts. This change increases the leakage of nutrient resources and water into the river streams in semi-arid areas. A common management solution for decreasing this loss of resources is to create a runoff-harvesting system (RHS. The objective of the current research is to apply geo-information techniques, including remote sensing and geographic information systems (GIS, on the watershed scale, to monitor and analyze the spatial and temporal changes in response to drought of two source-sink systems, the natural shrubland and the human-made RHSs in the semi-arid area of the northern Negev Desert, Israel. This was done by evaluating the changes in soil, vegetation and landscape cover. The spatial changes were evaluated by three spectral indices: Normalized Difference Vegetation Index (NDVI, Crust Index (CI and landscape classification change between 2003 and 2010. In addition, we examined the effects of environmental factors on NDVI, CI and their clustering after successive drought years. The results show that vegetation cover indicates a negative ∆NDVI change due to a reduction in the abundance of woody vegetation. On the other hand, the soil cover change data indicate a positive ∆CI change due to the expansion of the biocrusts. These two trends are evidence for degradation processes in terms of resource conservation and bio-production. A considerable part of the changed area (39% represents transitions between redistribution processes of resources, such as water, sediments, nutrients and seeds, on the watershed scale. In the pre-drought period, resource redistribution mainly occurred on the slope scale, while in the post-drought period, resource redistribution occurred on the whole watershed scale. However, the RHS management is effective in reducing leakage, since these systems are located on the

  12. Effects of surface materials on polarimetric-thermal measurements: applications to face recognition.

    Science.gov (United States)

    Short, Nathaniel J; Yuffa, Alex J; Videen, Gorden; Hu, Shuowen

    2016-07-01

    Materials, such as cosmetics, applied to the face can severely inhibit biometric face-recognition systems operating in the visible spectrum. These products are typically made up of materials having different spectral properties and color pigmentation that distorts the perceived shape of the face. The surface of the face emits thermal radiation, due to the living tissue beneath the surface of the skin. The emissivity of skin is approximately 0.99; in comparison, oil- and plastic-based materials, commonly found in cosmetics and face paints, have an emissivity range of 0.9-0.95 in the long-wavelength infrared part of the spectrum. Due to these properties, all three are good thermal emitters and have little impact on the heat transferred from the face. Polarimetric-thermal imaging provides additional details of the face and is also dependent upon the thermal radiation from the face. In this paper, we provide a theoretical analysis on the thermal conductivity of various materials commonly applied to the face using a metallic sphere. Additionally, we observe the impact of environmental conditions on the strength of the polarimetric signature and the ability to recover geometric details. Finally, we show how these materials degrade the performance of traditional face-recognition methods and provide an approach to mitigating this effect using polarimetric-thermal imaging.

  13. Polarimetric studies of polyethylene terephtalate flexible substrates

    Science.gov (United States)

    Stchakovsky, M.; Garcia-Caurel, E.; Warenghem, M.

    2008-12-01

    Polymer sheets are currently used worldwide in a wide range of applications. The manufacturing process of these sheets involves extruding machines that stretch the material in both lateral and longitudinal directions with respect to the machine direction, thus inducing birefringence. In most cases, the film obtained is optically biaxial. Polarimetric spectroscopy (Ellipsometry and Mueller Matrix) combined with conoscopic observation are the methods of choice to study these properties. In this work we report an analysis of commercially available polyethylene terephtalate (PET) films used as substrate for food packaging as well as for embedded electronic devices such as solar cells or flexible displays. Initial observation of these films through polarizing microscope in conoscopic mode reveals first the trace of optical axis plane with respect to the film surface and second, whether the optical axis is acute or not. This preliminary study allows optimal sample positioning for further polarimetric studies. The measurements and modelling are done in both reflection and transmission mode on several spectroscopic polarimetric setups from UV to NIR. The models give as a main result, the dielectric tensor of the film as well as its orientation with respect to the laboratory reference frame.

  14. Non-LTE spectral analyses of the lately discovered DB-gap white dwarfs from the SDSS

    International Nuclear Information System (INIS)

    Huegelmeyer, S D; Dreizler, S

    2009-01-01

    For a long time, no hydrogen-deficient white dwarfs have been known that have effective temperature between 30 kK and eff < 45 kK (Eisenstein et al. 2006). It has been shown for DO white dwarfs that the relaxation of LTE is necessary to account for non local effects in the atmosphere caused by the intense radiation field. Therefore, we calculated a non-LTE model grid and re-analysed the aforementioned set of SDSS spectra. Our results confirm the existence of DB-gap white dwarfs.

  15. Spectral analyses of systolic blood pressure and heart rate variability and their association with cognitive performance in elderly hypertensive subjects.

    Science.gov (United States)

    Santos, W B; Matoso, J M D; Maltez, M; Gonçalves, T; Casanova, M; Moreira, I F H; Lourenço, R A; Monteiro, W D; Farinatti, P T V; Soares, P P; Oigman, W; Neves, M F T; Correia, M L G

    2015-08-01

    Systolic hypertension is associated with cognitive decline in the elderly. Altered blood pressure (BP) variability is a possible mechanism of reduced cognitive performance in elderly hypertensives. We hypothesized that altered beat-to-beat systolic BP variability is associated with reduced global cognitive performance in elderly hypertensive subjects. In exploratory analyses, we also studied the correlation between diverse discrete cognitive domains and indices of systolic BP and heart rate variability. Disproving our initial hypothesis, we have shown that hypertension and low education, but not indices of systolic BP and heart rate variability, were independent predictors of lower global cognitive performance. However, exploratory analyses showed that the systolic BP variability in semi-upright position was an independent predictor of matrix reasoning (B = 0.08 ± .03, P-value = 0.005), whereas heart rate variability in semi-upright position was an independent predictor of the executive function score (B = -6.36 ± 2.55, P-value = 0.02). We conclude that myogenic vascular and sympathetic modulation of systolic BP do not contribute to reduced global cognitive performance in treated hypertensive subjects. Nevertheless, our results suggest that both systolic BP and heart rate variability might be associated with modulation of frontal lobe cognitive domains, such as executive function and matrix reasoning.

  16. Polarimetric Signatures from a Crop Covered Land Surface Measured by an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    This paper describes preliminary results from field measurements of polarimetric azimuth signatures with the EMIRAD L-band polarimetric radiometer, performed over a land test site at the Institut National de la Recherche Agronomique in Avignon, France. Scans of 180 degrees in azimuth were carried...... out in order to identify an eventual dependence of the Stokes vector on the look-direction. Results indicate a clear signature, for bare soil as well as for the crop-covered surface, and variations of more than 10 K are observed....

  17. Eddy Heat Conduction and Nonlinear Stability of a Darcy Lapwood System Analysed by the Finite Spectral Method

    Directory of Open Access Journals (Sweden)

    Jónas Elíasson

    2014-01-01

    Full Text Available A finite Fourier transform is used to perform both linear and nonlinear stability analyses of a Darcy-Lapwood system of convective rolls. The method shows how many modes are unstable, the wave number instability band within each mode, the maximum growth rate (most critical wave numbers on each mode, and the nonlinear growth rates for each amplitude as a function of the porous Rayleigh number. Single amplitude controls the nonlinear growth rates and thereby the physical flow rate and fluid velocity, on each mode. They are called the flak amplitudes. A discrete Fourier transform is used for numerical simulations and here frequency combinations appear that the traditional cut-off infinite transforms do not have. The discrete show a stationary solution in the weak instability phase, but when carried past 2 unstable modes they show fluctuating motion where all amplitudes except the flak may be zero on the average. This leads to a flak amplitude scaling process of the heat conduction, producing an eddy heat conduction coefficient where a Nu-RaL relationship is found. It fits better to experiments than previously found solutions but is lower than experiments.

  18. CLASSIFICATION AUTOMATIQUE DE BLOCS D'IMAGES MULTIMODALES UTILISANT DES METHODES STATISTIQUES ET SPECTRALE D'ANALYSE

    Directory of Open Access Journals (Sweden)

    M KHAMADJA

    2000-12-01

    Full Text Available Cet article propose une nouvelle méthodologie pour la réalisation d’un classifieur automatique de blocs d’images multimodales. Cette méthode fait appel à un système de décision basé sur l’analyse et la caractérisation d’images multimodales en fonction de leurs propriétés locales. Ces propriétés sont modélisées par un ensemble de six familles de paramètres. Les blocs d’images sont classés par une méthode de classification non supervisée qui prend en compte les paramètres les plus discriminants. Une comparaison des classifieurs automatiques obtenus, en fonction de la taille des blocs, montre l'intérêt à adapter cette dernière au degré d'hétérogéneité de l'image. Enfin, l’efficacité de ces classifieurs est évaluée dans le cas d’images bruitées.

  19. Polarimetric Edge Detector Based on the Complex Wishart Distribution

    DEFF Research Database (Denmark)

    Skriver, Henning; Schou, Jesper; Nielsen, Allan Aasbjerg

    2001-01-01

    A new edge detector for polarimetric SAR data has been developed. The edge detector is based on a newly developed test statistic for equality of two complex covariance matrices following the complex Wishart distribution and an associated asymptotic probability for the test statistic. The new...... for the full polarimetric detector compared to single channel approaches....

  20. Masses of Negative Multinomial Distributions: Application to Polarimetric Image Processing

    Directory of Open Access Journals (Sweden)

    Philippe Bernardoff

    2013-01-01

    Full Text Available This paper derives new closed-form expressions for the masses of negative multinomial distributions. These masses can be maximized to determine the maximum likelihood estimator of its unknown parameters. An application to polarimetric image processing is investigated. We study the maximum likelihood estimators of the polarization degree of polarimetric images using different combinations of images.

  1. Target detection with polarimetric C-band SAR

    NARCIS (Netherlands)

    Broek, A.C. van den; Dekker, R.J.; Smith, A.J.E.; Vries, F.P.P. de

    1999-01-01

    We have studied an optimal target detection procedure for polarimetric SAR data by using PHARUS data collected during the MIMEX campaign. The detection method is especially suitable when no a priory knowledge of the target is available. We have found that polarimetric whitening filtering preceding

  2. The CASLEO Polarimetric Survey of Main Belt Asteroids: Updated results

    Science.gov (United States)

    Gil-Hutton, R.; Cellino, A.; Cañada-Assandri, M.

    2011-10-01

    We present updated results of the polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina, using the 2.15 m telescope and the Torino and CASPROF polarimeters. The goals of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids belonging to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. The survey began in 2003, and data for a sample of more than 170 asteroids have been obtained, most of them having been polarimetrically observed for the first time. Using these data we find phase-polarization curves and polarimetric parameters for several taxonomic classes.

  3. Polarimetric scattering and SAR information retrieval

    CERN Document Server

    Jin, Ya-Qiu

    2013-01-01

    Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative app

  4. Advanced discriminating criteria for natural organic substances of cultural heritage interest: spectral decomposition and multivariate analyses of FT-Raman and FT-IR signatures.

    Science.gov (United States)

    Daher, Céline; Bellot-Gurlet, Ludovic; Le Hô, Anne-Solenn; Paris, Céline; Regert, Martine

    2013-10-15

    Natural organic substances are involved in many aspects of the cultural heritage field. Their presence in different forms (raw, heated, mixed), with various conservation states, constitutes a real challenge regarding their recognition and discrimination. Their characterization usually involves the use of separative techniques which imply destructive sampling and specific analytical preparations. Here we propose a non destructive approach using FT-Raman and infrared spectroscopies for the identification and differentiation of natural organic substances. Because of their related functional groups, they usually present similar vibrational signatures. Nevertheless the use of appropriate signal treatment and statistical analysis was successfully carried out to overcome this limitation, then proposing new objective discriminating methodology to identify these substances. Spectral decomposition calculations were performed on the CH stretching region of a large set of reference materials such as resins, oils, animal glues, and gums. Multivariate analyses (Principal Component Analyses) were then performed on the fitting parameters, and new discriminating criteria were established. A set of previously characterized archeological resins, with different surface aspects or alteration states, was analyzed using the same methodology. These testing samples validate the efficiency of our discriminating criteria established on the reference corpus. Moreover, we proved that some alteration or ageing of organic materials is not an issue to their recognition. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Characterization and performance of a LWIR polarimetric imager

    Science.gov (United States)

    Eriksson, Johan; Bergström, David; Renhorn, Ingmar

    2017-10-01

    Polarimetric information has been shown to provide means for potentially enhancing the capacity of electro-optical sensors in areas such as target detection, recognition and identification. The potential benefit must be weighed against the added complexity of the sensor and the occurrence and robustness of polarimetric signatures. While progress in the design of novel systems for snapshot polarimetry may result in compact and lightweight polarimetric sensors, the aim of this work is to report on the design, characterization and performance of a polarimetric imager, primarily designed for polarimetric signature assessment of static scenes in the long wave thermal infrared. The system utilizes the division-of-time principle and is based on an uncooled microbolometer camera and a rotating polarizing filter. Methods for radiometric and polarimetric calibrations are discussed. A significant intrinsic polarization dependency of the microbolometer camera is demonstrated and it is shown that the ability to characterize, model and compensate for various instrument effects play a crucial role for polarimetric signature assessment.

  6. Evaluation of the Wishart test statistics for polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    2003-01-01

    A test statistic for equality of two covariance matrices following the complex Wishart distribution has previously been used in new algorithms for change detection, edge detection and segmentation in polarimetric SAR images. Previously, the results for change detection and edge detection have been...... quantitatively evaluated. This paper deals with the evaluation of segmentation. A segmentation performance measure originally developed for single-channel SAR images has been extended to polarimetric SAR images, and used to evaluate segmentation for a merge-using-moment algorithm for polarimetric SAR data....

  7. C- and L-band multi-temporal polarimetric signatures of crops

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Flemming; Thomsen, Anton

    1996-01-01

    Polarimetric SAR-data of agricultural fields have been acquired by the Danish polarimetric SAR (EMISAR) during a number of missions at the Danish test site Foulum during 1994 and 1995. EMISAR has operated in a fully polarimetric mode at C-band since the fall of 1993 and at L-band since the beginn......Polarimetric SAR-data of agricultural fields have been acquired by the Danish polarimetric SAR (EMISAR) during a number of missions at the Danish test site Foulum during 1994 and 1995. EMISAR has operated in a fully polarimetric mode at C-band since the fall of 1993 and at L-band since...... the beginning of 1995. The SAR system is installed on a Danish Air Force Gulfstream aircraft, and a significant amount of polarimetric SAR data have been acquired on various missions. Polarimetric parameters for a number of different agricultural crops are shown, and the advantage of having polarimetric, multi...

  8. Nonlinear Polarimetric Microscopy for Biomedical Imaging

    Science.gov (United States)

    Samim, Masood

    A framework for the nonlinear optical polarimetry and polarimetric microscopy is developed. Mathematical equations are derived in terms of linear and nonlinear Stokes Mueller formalism, which comprehensively characterize the polarization properties of the incoming and outgoing radiations, and provide structural information about the organization of the investigated materials. The algebraic formalism developed in this thesis simplifies many predictions for a nonlinear polarimetry study and provides an intuitive understanding of various polarization properties for radiations and the intervening medium. For polarimetric microscopy experiments, a custom fast-scanning differential polarization microscope is developed, which is also capable of real-time three-dimensional imaging. The setup is equipped with a pair of high-speed resonant and galvanometric scanning mirrors, and supplemented by advanced adaptive optics and data acquisition modules. The scanning mirrors when combined with the adaptive optics deformable mirror enable fast 3D imaging. Deformable membrane mirrors and genetic algorithm optimization routines are employed to improve the imaging conditions including correcting the optical aberrations, maximizing signal intensities, and minimizing point-spread-functions of the focal volume. A field-programmable-gate array (FPGA) chip is exploited to rapidly acquire and process the multidimensional data. Using the nonlinear optical polarimetry framework and the home-built polarization microscope, a few biologically important tissues are measured and analyzed to gain insight as to their structure and dynamics. The structure and distribution of muscle sarcomere myosins, connective tissue collagen, carbohydrate-rich starch, and fruit fly eye retinal molecules are characterized with revealing polarization studies. In each case, using the theoretical framework, polarization sensitive data are analyzed to decipher the molecular orientations and nonlinear optical

  9. CLPX-Airborne: Polarimetric Ku-Band Scatterometer (POLSCAT) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains Ku-band polarimetric scatterometer (POLSCAT) data collected as part of the Cold Land Processes Field Experiment (CLPX) to enable the...

  10. Change detection in polarimetric SAR data over several time points

    DEFF Research Database (Denmark)

    Conradsen, Knut; Nielsen, Allan Aasbjerg; Skriver, Henning

    2014-01-01

    A test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution is introduced. The test statistic is applied successfully to detect change in C-band EMISAR polarimetric SAR data over four time points....

  11. NAMMA NASA POLARIMETRIC DOPPLER WEATHER RADAR (NPOL) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Polarimetric Radar (NPOL), developed by a research team from Wallops Flight Facility, is a fully transportable and self-contained S-band research radar that...

  12. CLPX-Airborne: Multiband Polarimetric Scanning Radiometer (PSR) Imagery

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides multiband polarimetric brightness temperature images over three 25 x 25 km Meso-cell Study Areas (MSAs) in Northern Colorado. The purpose of...

  13. NAMMA NASA POLARIMETRIC DOPPLER WEATHER RADAR (NPOL) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA NASA Polarimetric Doppler Weather Radar (NPOL) dataset used the NPOL, developed by a research team from Wallops Flight Facility, is a fully transportable...

  14. Spectral and Polarimetric Imagery Collection Experiment (SPICE) Longwave Infrared Spectral Dataset

    Science.gov (United States)

    2014-09-01

    an example the US Air Force sponsored SEBASS LWIR hyperspectral instrument, which requires cooling the FPA of silicon arsenide (SiAs) impurity- band...radiance at the sensor from the sky plate ( aluminum plate) in the scene is dominated by the surface-reflected downwelling sky radiance toward the... aluminum plate deployed at the SPICE site clearly show the surface-reflected downwelling sky radiance 30 corresponding to downwelling in the

  15. Digital Beamforming Synthetic Aperture Radar (DBSAR) Polarimetric Upgrade

    Science.gov (United States)

    Rincon, Rafael F.; Perrine, Martin; McLinden, Matthew; Valett, Susan

    2011-01-01

    The Digital Beamforming Synthetic Aperture Radar (DBSAR) is a state-of-the-art radar system developed at NASA/Goddard Space Flight Center for the development and implementation of digital beamforming radar techniques. DBSAR was recently upgraded to polarimetric operation in order to enhance its capability as a science instrument. Two polarimetric approaches were carried out which will be demonstrated in upcoming flight campaigns.

  16. Pulse-based internal calibration of polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Christensen, Erik Lintz

    1994-01-01

    Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops and devel......Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops...

  17. Polarimetric Coherence Optimization for Multibaseline SAR Data

    Science.gov (United States)

    Neumann, M.; Ferro-Famil, L.; Reigber, A.

    2007-03-01

    This paper analyzes different approaches for polarimetric optimization of multibaseline interferometric coherences. Two general methods are developed which simultaneously optimize coherences for more than two datasets. The first method is based on multiset canonical correlation analysis, and it provides every dataset with a distinguished dominant scattering mechanism. The second optimization method is constrained to the use of an identical scattering mechanism for every dataset. A framework for a multibaseline orthogonal optimal scattering mechanisms decomposition is presented. The both methods are evaluated on real data acquired by DLR's ESAR sensor at L-band. As experimental results indicate, preferring simultaneous multibaseline coherence optimization to single-baseline optimization improves the estimation of the dominant scattering mechanisms and their interferometric phases.

  18. Forest biomass estimation from polarimetric SAR interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Mette, T.

    2007-07-01

    Polarimetric SAR interferometry (Pol-InSAR) is a radar remote sensing technique that allows extracting forest heights by means of model-based inversions. Forest biomass is closely related to forest height, and can be derived from it with allometric relations. This work investigates the combination of the two methods to estimate forest biomass from Pol-InSAR. It develops a concept for the use of height-biomass allometry, and outlines the Pol-InSAR height inversion. The methodology is validated against a set of forest inventory data and Pol-InSAR data at L-band of the test site Traunstein. The results allow drawing conclusions on the potential of Pol-InSAR forest biomass missions. (orig.)

  19. Polarimetric ISAR: Simulation and image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, David H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-21

    In polarimetric ISAR the illumination platform, typically airborne, carries a pair of antennas that are directed toward a fixed point on the surface as the platform moves. During platform motion, the antennas maintain their gaze on the point, creating an effective aperture for imaging any targets near that point. The interaction between the transmitted fields and targets (e.g. ships) is complicated since the targets are typically many wavelengths in size. Calculation of the field scattered from the target typically requires solving Maxwell’s equations on a large three-dimensional numerical grid. This is prohibitive to use in any real-world imaging algorithm, so the scattering process is typically simplified by assuming the target consists of a cloud of independent, non-interacting, scattering points (centers). Imaging algorithms based on this scattering model perform well in many applications. Since polarimetric radar is not very common, the scattering model is often derived for a scalar field (single polarization) where the individual scatterers are assumed to be small spheres. However, when polarization is important, we must generalize the model to explicitly account for the vector nature of the electromagnetic fields and its interaction with objects. In this note, we present a scattering model that explicitly includes the vector nature of the fields but retains the assumption that the individual scatterers are small. The response of the scatterers is described by electric and magnetic dipole moments induced by the incident fields. We show that the received voltages in the antennas are linearly related to the transmitting currents through a scattering impedance matrix that depends on the overall geometry of the problem and the nature of the scatterers.

  20. Polarimetric survey of main-belt asteroids. V. The unusual polarimetric behavior of V-type asteroids

    Science.gov (United States)

    Gil-Hutton, R.; López-Sisterna, C.; Calandra, M. F.

    2017-03-01

    Aims: We present the results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained using the CASPROF and CASPOL polarimeters at the 2.15 m telescope. The CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation and CASPOL is a polarimeter based on a CCD detector, which allows us to observe fainter objects with better signal-to-noise ratio. Results: The survey began in 1995 and data on a large sample of asteroids were obtained until 2012. A second period began in 2013 using a polarimeter with a more sensitive detector in order to study small asteroids, families, and special taxonomic groups. We obtained 55 polarimetric measurements for 28 V-type main belt asteroids, all of them polarimetrically observed for the first time. The data obtained in this survey let us find polarimetric parameters for (1459) Magnya and for a group of 11 small V-type objects with similar polarimetric behavior. These polarization curves are unusual since they show a shallow minimum and a small inversion angle in comparison with (4) Vesta, although they have a steeper slope at α0. This polarimetric behavior could be explained by differences in the regoliths of these asteroids. The observations of (2579) Spartacus, and perhaps also (3944) Halliday, indicate a inversion angle larger than 24-25°. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  1. Using new hetero-spectral two-dimensional correlation analyses and synchrotron-radiation-based spectromicroscopy to characterize binding of Cu to soil dissolved organic matter.

    Science.gov (United States)

    Sun, Fusheng; Li, Yaqing; Wang, Xiang; Chi, Zhilai; Yu, Guanghui

    2017-04-01

    Understanding the binding characteristics of copper (Cu) to different functional groups in soil dissolved organic matter (DOM) is important to explore Cu toxicity, bioavailability and ultimate fate in the environment. However, the methods used to explore such binding characteristics are still limited. Here, two-dimensional correlation spectroscopy (2DCOS) integrated with Fourier transform infrared (FTIR), 29 Si nuclear magnetic resonance (NMR), 27 Al NMR, and synchrotron-radiation-based FTIR spectromicroscopy were used to explore the binding characteristics of Cu to soil DOM as part of a long-term (23 years) fertilization experiment. Compared with no fertilization and inorganic fertilization (NPK), long-term pig manure fertilization (M) treatment significantly increased the concentration of total and bioavailable Cu in soils. Furthermore, hetero-spectral 2DCOS analyses demonstrated that the binding characteristics of Cu onto functional groups in soil DOM were modified by fertilization regimes. In the NPK treatment, Cu was bound to aliphatic C, whereas in the manure treatment SiO groups had higher affinity toward Cu than aliphatic C. Also, the sequence of binding of functional groups to Cu was modified by the fertilization treatments. Moreover, synchrotron-radiation-based FTIR spectromicroscopy showed that Cu, clay minerals and sesquioxides, and C functional groups were heterogeneously distributed at the micro-scale. Specifically, clay-OH as well as mineral elements had a distribution pattern similar to Cu, but certain (but not all) C forms showed a distribution pattern inconsistent with that of Cu. The combination of synchrotron radiation spectromicroscopy and 2DCOS is a useful tool in exploring the interactions among heavy metals, minerals and organic components in soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Handheld SFDI/polarimetric imaging device for objective evaluation of hypertrophic scars (Conference Presentation)

    Science.gov (United States)

    Ramella-Roman, Jessica C.; Montejo, Karla; Sevilla, Nicole; Stoff, Susan; Gonzalez, Mariacarla; Chue-Sang, Joseph

    2017-02-01

    Scars can be debilitating and cause serious functional limitations, significantly reduced physical function and loss of ability to perform normal daily activities. Scar formation is not fully understood and the treatment options have been hampered by the lack of an objective diagnostic tool to assess scars. Presently, assessment of hypertrophic scars has been based on subjective clinician rankings using a four-parameter scale called the Vancouver Scar Scale (VSS) or the Patient Observer Scar Assessment Scale (POSAS) but no objective, standardized tool for quantifying scar severity is available, despite known inadequacies of the subjective scales. We have developed a hand-held multi modal system consisting of a combined Spatial Frequency Domain Imager (SFDI) used for the assessment of tissue molecular components and a polarimeter for structural measurements. The SFDI capability is provided by an Arduino board controlled spectrally and polarimetric diverse Light Emitting Diodes (LED) ring illuminator. For SFDI imagery, the LEDs are combined with sinusoidal patterns. A single pattern snapshot SFDI approach is used to observe and quantify the biological components in the scar tissue including: oxygenated and de oxygenated hemoglobin, water, and melanin. The SFDI system is integrated with a reduced Mueller Matrix polarimetric system, whose illumination is also included in the LED's ring, and providing for the assessment of collagen orientation through Mueller Matrix decomposition. The design of the system and experimental work on phantoms will be presented.

  3. Characterization of Yellow Seahorse Hippocampus kuda feeding click sound signals in a laboratory environment: an application of probability density function and power spectral density analyses

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Saran, A.K.; Kuncolienker, D.S.; Sreepada, R.A.; Haris, K.; Fernandes, W.A

    Do the sounds generated by different-sized fish of different sexes differ from each other in temporal, spectral or intensity patterns? Such differences would enable the development of passive acoustic techniques to locate seahorses in open water...

  4. Une stratégie pour l'interprétation en analyse spectrale. Détection et caractérisation des composantes d'un spectre.

    OpenAIRE

    Durnerin , Matthieu

    1999-01-01

    This thesis intends to build an original process of spectral analysis of stationary signals. Its originality lies in the decision concept that we used. It is not based on the choice of one method for a particular signal, but on a methods comparison. The purpose of this comparison is to estimate the signal spectral structures. We use an iterative interpretation of the spectrum based on the properties of the analysis methods. A complete and detailed theoretical study of each selected Fourier's ...

  5. Analyse spectrale à haute résolution de signaux irrégulièrement échantillonnés : application à l'Astrophysique.

    OpenAIRE

    Bourguignon , Sébastien

    2006-01-01

    The study of many astrophysical phenomena is based on the search for periodicities from time series, as light or radial velocity curves.Because of observation constraints, astrophysical data generally suffer missing data and irregular sampling. Thus, Fourier-based spectral analysis may not be satisfactory, and widespread heuristic CLEAN deconvolution methods may lack accuracy. This thesis addresses spectral analysis as an inverse problem, where the spectrum is discretized on an arbitrarily th...

  6. Processus atomiques cohérents appliqués à l'analyse spectrale très large bande de signaux radio fréquence

    OpenAIRE

    Lavielle, Vincent

    2004-01-01

    In this thesis we apply spectral hole burning (SHB) in rare earth ion doped crystals (REIC) to optical signal processing. We present the first experimental demonstration of an instantaneous wideband radio frequency (RF) spectrum analyzer, taking advantage of REIC spectral selectivity. At low temperature, the SHB technology offers outstanding performances in terms of bandwidth and time-bandwidth product. The spectrometer concept relies on the angular separation of the optically carried RF sign...

  7. Crises Convulsives et Système Nerveux Autonome - Analyse de la Coordination Cardiorespiratoire par des Méthodes Spectrale, Géométrique et Symbolique

    OpenAIRE

    Pruvost, Mickael

    2007-01-01

    Since the presentation in 1981 of the study of cardiac fluctuations using spectral analysis by Akselrod, several applications based on this technique were developed, in the clinical field or in research. Two spectral components are extracted from heart rate variability and, according to authors, are related to sympathetic and parasympathetic activities of the autonomic nervous system. However, frequency bands are highly dependent on the ages of the studied subjects and the application of this...

  8. OIL DETECTION IN A COASTAL MARSH WITH POLARIMETRIC SAR

    Directory of Open Access Journals (Sweden)

    E. Ramsey III

    2012-09-01

    Full Text Available The NASA UAVSAR was deployed June 2010 to support Deep Water Horizon oil spill response activities specifically, oil detection and characterization, oil extent mapping in wetlands, coastal resource impact detection, and ecosystem recovery. The UAVSAR platform demonstrated enhanced capability to act rapidly and provide targeted mapping response. Our research focused on the effectiveness of high spatial resolution and fully polarimetric L-band Synthetic Aperture Radar (PolSAR for mapping oil in wetlands, specifically within Barataria Bay in eastern coastal Louisiana. Barataria Bay contained a numerous site observations confirming spatially extensive shoreline oil impacts, multiple oil spill UAVSAR collections, and a near anniversary 2009 collection. PolSAR oil detection relied on decomposition and subsequent classifications of the single look complex (SLC calibrated radar cross sections representing the complex elements of the scattering matrix. Initial analyses results found that shoreline marsh structural damage as well as oil on marsh plants and sediments without canopy structural damage were exhibited as anomalous features on post-spill SLC scenes but were not evident on the pre-spill SLC scene collected in 2009. Pre-spill and post-spill Freeman-Durden (FD and Cloude-Pottier (CP decompositions and the Wishart classifications seeded with the FD and CP classes (Wishart-FD also highlighted these nearshore features as a change in dominate scatter from pre-spill to post-spill. SLC analyses also indicated penetration of oil ladened waters into interior marshes well past the immediate shorelines; however, these post-spill SLC analyses results could not be validated due to the lack of observational data and possible flooding in the pre-spill SLC scene.

  9. CAMEX-4 MOBILE X-BAND POLARIMETRIC WEATHER RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 Mobile X-Band Polarimetric Weather Radar dataset was collected by the Mobile X-band Polarimetric Weather Radar on Wheels (X-POW), which is a Doppler...

  10. Polarimetric C-Band SAR Observations of Sea Ice in the Greenland Sea

    DEFF Research Database (Denmark)

    Thomsen, Bjørn Bavnehøj; Nghiem, S.V.; Kwok, R.

    1998-01-01

    The fully polarimetric EMISAR acquired C-band radar signatures of sea ice in the Greenland Sea during a campaign in March 1995. The authors present maps of polarimetric signatures over an area containing various kinds of ice and discuss the use of polarimetric SAR for identification of ice types...

  11. Méthodes d'analyse/synthèse et représentations optimales des sons musicaux basées sur la réduction de données spectrales

    OpenAIRE

    Rochebois , Thierry

    1997-01-01

    This thesis introduces a method that allows systematic reduction of data representing musical sounds. This method and its variants allows fast and dynamic synthesis of musical sounds.; Les applications de l'analyse et de la synthèse des sons musicaux sont primordiales a l'heure du multimédia. Nous présentons une méthode permettant d'analyser et de synthétiser les sons musicaux. Cette méthode, illustrée au chapitre 2, se décompose en trois étapes. La première repose sur une analyse spectrale p...

  12. Initial assessment of an airborne Ku-band polarimetric SAR.

    Energy Technology Data Exchange (ETDEWEB)

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940s. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analysts understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  13. Polarimetric SAR interferometry applied to land ice: modeling

    DEFF Research Database (Denmark)

    Dall, Jørgen; Papathanassiou, Konstantinos; Skriver, Henning

    2004-01-01

    depths. The validity of the scattering models is examined using L-band polarimetric interferometric SAR data acquired with the EMISAR system over an ice cap located in the percolation zone of the Greenland ice sheet. Radar reflectors were deployed on the ice surface prior to the data acquisition in order......This paper introduces a few simple scattering models intended for the application of polarimetric SAR interfer-ometry to land ice. The principal aim is to eliminate the penetration bias hampering ice sheet elevation maps generated with single-channel SAR interferometry. The polarimetric coherent...... scattering models are similar to the oriented-volume model and the random-volume-over-ground model used in vegetation studies, but the ice models are adapted to the different geometry of land ice. Also, due to compaction, land ice is not uniform; a fact that must be taken into account for large penetration...

  14. New polarimetric and spectroscopic evidence of anomalous enrichment in spinel-bearing calcium-aluminium-rich inclusions among L-type asteroids

    Science.gov (United States)

    Devogèle, M.; Tanga, P.; Cellino, A.; Bendjoya, Ph.; Rivet, J.-P.; Surdej, J.; Vernet, D.; Sunshine, J. M.; Bus, S. J.; Abe, L.; Bagnulo, S.; Borisov, G.; Campins, H.; Carry, B.; Licandro, J.; McLean, W.; Pinilla-Alonso, N.

    2018-04-01

    Asteroids can be classified into several groups based on their spectral reflectance. Among these groups, the one belonging to the L-class in the taxonomic classification based on visible and near-infrared spectra exhibit several peculiar properties. First, their near-infrared spectrum is characterized by a strong absorption band interpreted as the diagnostic of a high content of the FeO bearing spinel mineral. This mineral is one of the main constituents of Calcium-Aluminum-rich Inclusions (CAI) the oldest mineral compounds found in the solar system. In polarimetry, they possess an uncommonly large value of the inversion angle incompatible with all known asteroid belonging to other taxonomical classes. Asteroids found to possess such a high inversion angle are commonly called Barbarians based on the first asteroid on which this property was first identified, (234) Barbara. In this paper we present the results of an extensive campaign of polarimetric and spectroscopic observations of L-class objects. We have derived phase-polarization curves for a sample of 7 Barbarians, finding a variety of inversion angles ranging between 25 and 30°. Spectral reflectance data exhibit variations in terms of spectral slope and absorption features in the near-infrared. We analyzed these data using a Hapke model to obtain some inferences about the relative abundance of CAI and other mineral compounds. By combining spectroscopic and polarimetric results, we find evidence that the polarimetric inversion angle is directly correlated with the presence of CAI, and the peculiar polarimetric properties of Barbarians are primarily a consequence of their anomalous composition.

  15. Radar Measurement of Human Polarimetric Micro-Doppler

    Directory of Open Access Journals (Sweden)

    David Tahmoush

    2013-01-01

    Full Text Available We use polarimetric micro-Doppler for the detection of arm motion, especially for the classification of whether someone has their arms swinging and is thus unloaded. The arm is often bent at the elbow, providing a surface somewhat similar to a dihedral. This is distinct from the more planar surfaces of the body which allows us to isolate the signals of the arm (and knee. The dihedral produces a double bounce that can be seen in polarimetric radar data by measuring the phase difference between HH and VV. This measurement can then be used to determine whether the subject is unloaded.

  16. Compact polarimetric SAR product and calibration considerations for target analysis

    Science.gov (United States)

    Sabry, Ramin

    2016-10-01

    Compact polarimetric (CP) data exploitation is currently of growing interest considering the new generation of such Synthetic Aperture Radar (SAR) systems. These systems offer target detection and classification capabilities comparable to those of polarimetric SARs (PolSAR) with less stringent requirements. A good example is the RADARSAT Constellation Mission (RCM). In this paper, some characteristic CP products are described and effects of CP mode deviation from ideal circular polarization transmit on classifications are modeled. The latter is important for operation of typical CP modes (e.g., RCM). The developed model can be used to estimate the ellipticity variation from CP measured data, and hence, calibrate the classification products.

  17. Authentication of gold nanoparticle encoded pharmaceutical tablets using polarimetric signatures.

    Science.gov (United States)

    Carnicer, Artur; Arteaga, Oriol; Suñé-Negre, Josep M; Javidi, Bahram

    2016-10-01

    The counterfeiting of pharmaceutical products represents concerns for both industry and the safety of the general public. Falsification produces losses to companies and poses health risks for patients. In order to detect fake pharmaceutical tablets, we propose producing film-coated tablets with gold nanoparticle encoding. These coated tablets contain unique polarimetric signatures. We present experiments to show that ellipsometric optical techniques, in combination with machine learning algorithms, can be used to distinguish genuine and fake samples. To the best of our knowledge, this is the first report using gold nanoparticles encoded with optical polarimetric classifiers to prevent the counterfeiting of pharmaceutical products.

  18. Coupled retrieval of aerosol properties and land surface reflection using the Airborne Multiangle SpectroPolarimetric Imager

    Science.gov (United States)

    Xu, Feng; van Harten, Gerard; Diner, David J.; Kalashnikova, Olga V.; Seidel, Felix C.; Bruegge, Carol J.; Dubovik, Oleg

    2017-07-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) has been flying aboard the NASA ER-2 high-altitude aircraft since October 2010. In step-and-stare operation mode, AirMSPI acquires radiance and polarization data in bands centered at 355, 380, 445, 470*, 555, 660*, 865*, and 935 nm (* denotes polarimetric bands). The imaged area covers about 10 km by 11 km and is typically observed from nine viewing angles between ±66° off nadir. For a simultaneous retrieval of aerosol properties and surface reflection using AirMSPI, an efficient and flexible retrieval algorithm has been developed. It imposes multiple types of physical constraints on spectral and spatial variations of aerosol properties as well as spectral and temporal variations of surface reflection. Retrieval uncertainty is formulated by accounting for both instrumental errors and physical constraints. A hybrid Markov-chain/adding-doubling radiative transfer (RT) model is developed to combine the computational strengths of these two methods in modeling polarized RT in vertically inhomogeneous and homogeneous media, respectively. Our retrieval approach is tested using 27 AirMSPI data sets with low to moderately high aerosol loadings, acquired during four NASA field campaigns plus one AirMSPI preengineering test flight. The retrieval results including aerosol optical depth, single-scattering albedo, aerosol size and refractive index are compared with Aerosol Robotic Network reference data. We identify the best angular combinations for 2, 3, 5, and 7 angle observations from the retrieval quality assessment of various angular combinations. We also explore the benefits of polarimetric and multiangular measurements and target revisits in constraining aerosol property and surface reflection retrieval.

  19. POLARIMETRIC OBSERVATIONS OF {sigma} ORIONIS E

    Energy Technology Data Exchange (ETDEWEB)

    Carciofi, A. C.; Faes, D. M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-900 Sao Paulo, SP (Brazil); Townsend, R. H. D. [Department of Astronomy, University of Wisconsin-Madison, Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States); Bjorkman, J. E., E-mail: carciofi@usp.br [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States)

    2013-03-20

    Some massive stars possess strong magnetic fields that confine plasma in the circumstellar environment. These magnetospheres have been studied spectroscopically, photometrically, and, more recently, interferometrically. Here we report on the first firm detection of a magnetosphere in continuum linear polarization, as a result of monitoring {sigma} Ori E at the Pico dos Dias Observatory. The non-zero intrinsic polarization indicates an asymmetric structure whose minor elongation axis is oriented 150. Degree-Sign 0 east of the celestial north. A modulation of the polarization was observed with a period of half of the rotation period, which supports the theoretical prediction of the presence of two diametrally opposed, corotating blobs of gas. A phase lag of -0.085 was detected between the polarization minimum and the primary minimum of the light curve, suggestive of a complex shape of the plasma clouds. We present a preliminary analysis of the data with the Rigidly Rotating Magnetosphere model, which could not reproduce simultaneously the photometric and polarimetric data. A toy model comprising two spherical corotating blobs joined by a thin disk proved more successful in reproducing the polarization modulation. With this model we were able to determine that the total scattering mass of the thin disk is similar to the mass of the blobs (2M{sub b}/M{sub d} = 1.2) and that the blobs are rotating counterclockwise on the plane of the sky. This result shows that polarimetry can provide a diagnostic of the geometry of clouds, which will serve as an important constraint for improving the Rigidly Rotating Magnetosphere model.

  20. Simultaneous spectral and temporal analyses of kinetic energies in nonequilibrium systems: theory and application to vibrational relaxation of O-D stretch mode of HOD in water.

    Science.gov (United States)

    Jeon, Jonggu; Lim, Joon Hyung; Kim, Seongheun; Kim, Heejae; Cho, Minhaeng

    2015-05-28

    A time series of kinetic energies (KE) from classical molecular dynamics (MD) simulation contains fundamental information on system dynamics. It can also be analyzed in the frequency domain through Fourier transformation (FT) of velocity correlation functions, providing energy content of different spectral regions. By limiting the FT time span, we have previously shown that spectral resolution of KE evolution is possible in the nonequilibrium situations [Jeon and Cho, J. Chem. Phys. 2011, 135, 214504]. In this paper, we refine the method by employing the concept of instantaneous power spectra, extending it to reflect an instantaneous time-correlation of velocities with those in the future as well as with those in the past, and present a new method to obtain the instantaneous spectral density of KE (iKESD). This approach enables the simultaneous spectral and temporal resolution of KE with unlimited time precision. We discuss the formal and novel properties of the new iKESD approaches and how to optimize computational methods and determine parameters for practical applications. The method is specifically applied to the nonequilibrium MD simulation of vibrational relaxation of the OD stretch mode in a hydrated HOD molecule by employing a hybrid quantum mechanical/molecular mechanical (QM/MM) potential. We directly compare the computational results with the OD band population relaxation time profiles extracted from the IR pump-probe measurements for 5% HOD in water. The calculated iKESD yields the OD bond relaxation time scale ∼30% larger than the experimental value, and this decay is largely frequency-independent if the classical anharmonicity is accounted for. From the integrated iKESD over intra- and intermolecular bands, the major energy transfer pathways were found to involve the HOD bending mode in the subps range, then the internal modes of the solvent until 5 ps after excitation, and eventually the solvent intermolecular modes. Also, strong hydrogen

  1. A New Ka-Band Scanning Radar Facility: Polarimetric and Doppler Spectra Measurements of Snow Events

    Science.gov (United States)

    Oue, M.; Kollias, P.; Luke, E. P.; Mead, J.

    2017-12-01

    Polarimetric radar analyses offer the capability of identification of ice hydrometeor species as well as their spatial distributions. In addition to polarimetric parameter observations, Doppler spectra measurements offer unique insights into ice particle properties according to particle fall velocities. In particular, millimeter-wavelength radar Doppler spectra can reveal supercooled liquid cloud droplets embedded in ice precipitation clouds. A Ka-band scanning polarimetric radar, named KASPR, was installed in an observation facility at Stony Brook University, located 22 km west of the KOKX NEXRAD radar at Upton, NY. The KASPR can measure Doppler spectra and full polarimetric variables, including radar reflectivity, differential reflectivity (ZDR), differential phase (φDP), specific differential phase (KDP), correlation coefficient (ρhv), and linear depolarization ratio (LDR). The facility also includes a micro-rain radar and a microwave radiometer capable of measuring reflectivity profiles and integrated liquid water path, respectively. The instruments collected initial datasets during two snowstorm events and two snow shower events in March 2017. The radar scan strategy was a combination of PPI scans at 4 elevation angles (10, 20, 45, and 60°) and RHI scans in polarimetry mode, and zenith pointing with Doppler spectra collection. During the snowstorm events the radar observed relatively larger ZDR (1-1.5 dB) and enhanced KDP (1-2 ° km-1) at heights corresponding to a plate/dendrite crystal growth regime. The Doppler spectra showed that slower-falling particles ( 1 m s-1). The weakly increased ZDR could be produced by large, faster falling particles such as quasi-spherical aggregates, while the enhanced KDP could be produced by highly-oriented oblate, slowly-falling particles. Below 2 km altitude, measurements of dual wavelength ratio (DWR) based on Ka and S-band reflectivities from the KASPR and NEXRAD radars were available. Larger DWR (>10 dB) suggested

  2. Polarimetric ice sounding at P-band: First results

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2009-01-01

    For polar ice sheets valuable stress and strain information can be deduced from the crystal orientation fabric (COF) and its prevailing c-axis alignment. Polarimetric radio echo sounding is a promising technique to measure the anisotropic electromagnetic propagation and reflection properties...

  3. Investigation of Polarimetric SAR Data Acquired at Multiple Incidence Angles

    DEFF Research Database (Denmark)

    Svendsen, Morten Thougaard; Skriver, Henning; Thomsen, A.

    1998-01-01

    The dependence of different polarimetric parameters on the incidence angles in the range of 30° to 60° is investigated for a number of different crops using airborne SAR data. The purpose of the investigation is to determine the effect of the variation of incidence angle within a SAR image when...

  4. Polarimetric synthetic aperture radar data and the complex Wishart distribution

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2003-01-01

    When working with multi-look fully polarimetric synthetic aperture radar (SAR) data an appropriate way of representing the backscattered signal consists of the so-called covariance matrix. For each pixel this is a 3 by 3 Hermitian, positive definite matrix which follows a complex Wishart distribu...

  5. Polarimetric Signatures of Sea Ice. Part 1; Theoretical Model

    Science.gov (United States)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.

    1995-01-01

    Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarimetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies for interpretation of sea ice polarimetric signatures.

  6. Processing of dual-orthogonal cw polarimetric radar signals

    NARCIS (Netherlands)

    Babur, G.

    2009-01-01

    The thesis consists of two parts. The first part is devoted to the theory of dual-orthogonal polarimetric radar signals with continuous waveforms. The thesis presents a comparison of the signal compression techniques, namely correlation and de-ramping methods, for the dual-orthogonal sophisticated

  7. L-Band Polarimetric Correlation Radiometer with Subharmonic Sampling

    DEFF Research Database (Denmark)

    Rotbøll, Jesper; Søbjærg, Sten Schmidl; Skou, Niels

    2001-01-01

    A novel L-band radiometer trading analog complexity for digital ditto has been designed and built. It is a fully polarimetric radiometer of the correlation type and it is based on the sub-harmonic sampling principle in which the L-band signal is directly sampled by a fast A to D converter...

  8. Project PHARUS: Towards a polarimetric C-band airborne SAR

    NARCIS (Netherlands)

    Hoogeboom, P.; Koomen, P.J.; Otten, M.P.G.; Pouwels, H.; Snoeij, P.

    1989-01-01

    A few years ago three institutes in the Netherlands developed a plan to design and build a polarimetric C-band aircraft SAR system of a novel design, called PHARUS (PHased Array Universal SAR), meant as a replacement for our current digital SLAR system. These institutes are the Physics and

  9. Ice sheet anisotropy measured with polarimetric ice sounding radar

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2010-01-01

    For polar ice sheets, valuable stress and strain information can be deduced from crystal orientation fabrics (COF) and their prevailing c-axis alignment. Polarimetric radio echo sounding is a promising technique to measure the anisotropic electromagnetic propagation and reflection properties asso...

  10. The Danish polarimetric SAR for remote sensing applications

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Madsen, Søren Nørvang; Dall, Jørgen

    1994-01-01

    Presents the Danish polarimetric SAR system, EMISAR, and the approach taken in the system design to achieve a reliable high performance system. The design and implementation of the antenna system as well as the analog and digital hardware are discussed. The SAR utilises a dual polarised microstri...

  11. A novel L-band polarimetric radiometer featuring subharmonic sampling

    DEFF Research Database (Denmark)

    Rotbøll, J.; Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    A novel L-band radiometer trading analog components for digital circuits has been designed, built and operated. It is a fully polarimetric radiometer of the correlation type, and it is based on the subharmonic sampling principle in which the L-band signal is directly sampled by a fast A to D...

  12. A NEW SAR CLASSIFICATION SCHEME FOR SEDIMENTS ON INTERTIDAL FLATS BASED ON MULTI-FREQUENCY POLARIMETRIC SAR IMAGERY

    Directory of Open Access Journals (Sweden)

    W. Wang

    2017-11-01

    Full Text Available We present a new classification scheme for muddy and sandy sediments on exposed intertidal flats, which is based on synthetic aperture radar (SAR data, and use ALOS-2 (L-band, Radarsat-2 (C-band and TerraSAR-X (X-band fully polarimetric SAR imagery to demonstrate its effectiveness. Four test sites on the German North Sea coast were chosen, which represent typical surface compositions of different sediments, vegetation, and habitats, and of which a large amount of SAR is used for our analyses. Both Freeman-Durden and Cloude-Pottier polarimetric decomposition are utilized, and an additional descriptor called Double-Bounce Eigenvalue Relative Difference (DERD is introduced into the feature sets instead of the original polarimetric intensity channels. The classification is conducted following Random Forest theory, and the results are verified using ground truth data from field campaigns and an existing classification based on optical imagery. In addition, the use of Kennaugh elements for classification purposes is demonstrated using both fully and dual-polarization multi-frequency and multi-temporal SAR data. Our results show that the proposed classification scheme can be applied for the discrimination of muddy and sandy sediments using L-, C-, and X-band SAR images, while SAR imagery acquired at short wavelengths (C- and X-band can also be used to detect more detailed features such as bivalve beds on intertidal flats.

  13. Full polarimetric millimetre wave radar for stand-off security screening

    Science.gov (United States)

    Blackhurst, Eddie; Salmon, Neil; Southgate, Matthew

    2017-10-01

    The development and measurements are described of a frequency modulated continuous wave (FMCW) mono-static millimetre wave full polarimetric radar, operating at k-band (18 to 26 GHz). The system has been designed to explore the feasibility of using full polarimetry for the detection of concealed weapons, and person borne improvised explosive devices (PBIED). The philosophy of this scheme is a means to extract the maximum information content from a target which is normally in the single spatial pixel (sometimes sub-pixel) configuration in stand-off (tens of metres) and crowd surveillance scenarios. The radar comprises a vector network analyser (VNA), an orthomode transducer and a conical horn antenna. A calibration strategy is discussed and demonstrated using a variety of known calibration targets with known reflective properties, including a flat metal plate, dihedral reflector, metal sphere, helix and dipole. The orthomode transducer is based on a high performance linear polarizer of the turnstile type with isolation better than - 35dB between orthogonal polarisations. The calibration enables the polarimetric Sinclair scattering matrix to be measured at each frequency for coherent polarimetry, and this can be extended using multiple measurements via the Kennaugh matrix to investigate incoherent full polarimetry.

  14. X-Ray Spectral Analyses of AGNs from the 7Ms Chandra Deep Field-South Survey: The Distribution, Variability, and Evolutions of AGN Obscuration

    Science.gov (United States)

    Liu, Teng; Tozzi, Paolo; Wang, Jun-Xian; Brandt, William N.; Vignali, Cristian; Xue, Yongquan; Schneider, Donald P.; Comastri, Andrea; Yang, Guang; Bauer, Franz E.; Paolillo, Maurizio; Luo, Bin; Gilli, Roberto; Wang, Q. Daniel; Giavalisco, Mauro; Ji, Zhiyuan; Alexander, David M.; Mainieri, Vincenzo; Shemmer, Ohad; Koekemoer, Anton; Risaliti, Guido

    2017-09-01

    We present a detailed spectral analysis of the brightest active galactic nuclei (AGNs) identified in the 7Ms Chandra Deep Field-South (CDF-S) survey over a time span of 16 years. Using a model of an intrinsically absorbed power-law plus reflection, with possible soft excess and narrow Fe Kα line, we perform a systematic X-ray spectral analysis, both on the total 7Ms exposure and in four different periods with lengths of 2-21 months. With this approach, we not only present the power-law slopes, column densities {N}{{H}}, observed fluxes, and absorption-corrected 2-10 keV luminosities L X for our sample of AGNs, but also identify significant spectral variabilities among them on timescales of years. We find that the {N}{{H}} variabilities can be ascribed to two different types of mechanisms, either flux-driven or flux-independent. We also find that the correlation between the narrow Fe line EW and {N}{{H}} can be well explained by the continuum suppression with increasing {N}{{H}}. Accounting for the sample incompleteness and bias, we measure the intrinsic distribution of {N}{{H}} for the CDF-S AGN population and present reselected subsamples that are complete with respect to {N}{{H}}. The {N}{{H}}-complete subsamples enable us to decouple the dependences of {N}{{H}} on L X and on redshift. Combining our data with those from C-COSMOS, we confirm the anticorrelation between the average {N}{{H}} and L X of AGN, and find a significant increase of the AGN-obscured fraction with redshift at any luminosity. The obscured fraction can be described as {f}{obscured}≈ 0.42 {(1+z)}0.60.

  15. VLBA polarimetric monitoring of 3C 111

    Science.gov (United States)

    Beuchert, T.; Kadler, M.; Perucho, M.; Großberger, C.; Schulz, R.; Agudo, I.; Casadio, C.; Gómez, J. L.; Gurwell, M.; Homan, D.; Kovalev, Y. Y.; Lister, M. L.; Markoff, S.; Molina, S. N.; Pushkarev, A. B.; Ros, E.; Savolainen, T.; Steinbring, T.; Thum, C.; Wilms, J.

    2018-02-01

    Context. While studies of large samples of jets of active galactic nuclei (AGN) are important in order to establish a global picture, dedicated single-source studies are an invaluable tool for probing crucial processes within jets on parsec scales. These processes involve in particular the formation and geometry of the jet magnetic field as well as the flow itself. Aims: We aim to better understand the dynamics within relativistic magneto-hydrodynamical flows in the extreme environment and close vicinity of supermassive black holes. Methods: We analyze the peculiar radio galaxy 3C 111, for which long-term polarimetric observations are available. We make use of the high spatial resolution of the VLBA network and the MOJAVE monitoring program, which provides high data quality also for single sources and allows us to study jet dynamics on parsec scales in full polarization with an evenly sampled time-domain. While electric vectors can probe the underlying magnetic field, other properties of the jet such as the variable (polarized) flux density, feature size, and brightness temperature, can give valuable insights into the flow itself. We complement the VLBA data with data from the IRAM 30-m Telescope as well as the SMA. Results: We observe a complex evolution of the polarized jet. The electric vector position angles (EVPAs) of features traveling down the jet perform a large rotation of ≳180∘ across a distance of about 20 pc. As opposed to this smooth swing, the EVPAs are strongly variable within the first parsecs of the jet. We find an overall tendency towards transverse EVPAs across the jet with a local anomaly of aligned vectors in between. The polarized flux density increases rapidly at that distance and eventually saturates towards the outermost observable regions. The transverse extent of the flow suddenly decreases simultaneously to a jump in brightness temperature around where we observe the EVPAs to turn into alignment with the jet flow. Also the gradient

  16. Detecting molecular features of spectra mainly associated with structural and non-structural carbohydrates in co-products from bioEthanol production using DRIFT with uni- and multivariate molecular spectral analyses.

    Science.gov (United States)

    Yu, Peiqiang; Damiran, Daalkhaijav; Azarfar, Arash; Niu, Zhiyuan

    2011-01-01

    The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS) from bioethanol processing in comparison with original feedstock (wheat (Triticum), corn (Zea mays)). The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 1485-1188 cm(-1)), A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm(-1) with region and baseline: ca. 1292-1198 cm(-1)), A_CHO (total carbohydrates, peaks region and baseline: ca. 1187-950 cm(-1)), A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm(-1) with region and baseline: ca. 952-910 cm(-1)), A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm(-1) with region and baseline: ca. 880-827 cm(-1)), H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm(-1) with baseline: ca. 1485-1188 cm(-1)), H_1370 (structural carbohydrate, peak height at ca. 1370 cm(-1) with a baseline: ca. 1485-1188 cm(-1)). The study shows that the grains had lower spectral intensity (KM Unit) of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P bioethanol processing. There were no differences (P > 0.05) in the peak area intensities of A_Cell (structural CHO) at 1292-1198 cm(-1) and A_CHO (total CHO) at 1187-950 cm(-1) with average molecular infrared intensity KM unit of 226.8 and 508.1, respectively. There were no differences (P > 0.05) in the peak height intensities of H_1415 and H_1370 (structural CHOs) with average intensities 1.35 and 1.15, respectively. The multivariate molecular spectral analyses were able to discriminate and classify between the corn and corn DDGS molecular spectra, but not wheat and wheat DDGS. This study indicated that the bioethanol processing changes carbohydrate molecular structural profiles, compared

  17. Retrieval of Macro- and Micro-Physical Properties of Oceanic Hydrosols from Polarimetric Observations

    Science.gov (United States)

    Ibrahim, Amir; Gilerson, Alexander; Chowdhary, Jacek; Ahmed, Samir

    2016-01-01

    Remote sensing has mainly relied on measurements of scalar radiance and its spectral and angular features to retrieve micro- and macro-physical properties of aerosols/hydrosols. However, it is recognized that measurements that include the polarimetric characteristics of light provide more intrinsic information about particulate scattering. To take advantage of this, we used vector radiative transfer (VRT) simulations and developed an analytical relationship to retrieve the macro and micro-physical properties of the oceanic hydrosols. Specifically, we investigated the relationship between the observed degree of linear polarization (DoLP) and the ratio of attenuation-to- absorption coefficients (c/a) in water, from which the scattering coefficient can be readily computed (b equals c minus a), after retrieving a. This relationship was parameterized for various scattering geometries, including sensor zenith/azimuth angles relative to the Sun's principal plane, and for varying Sun zenith angles. An inversion method was also developed for the retrieval of the microphysical properties of hydrosols, such as the bulk refractive index and the particle size distribution. The DoLP vs c/a relationship was tested and validated against in-situ measurements of underwater light polarization obtained by a custom-built polarimeter and measurements of the coefficients a and c, obtained using an in-water WET (Western Environmental Technologies) Labs ac-s (attenuation coefficients In-Situ Spectrophotometer) instrument package. These measurements confirmed the validity of the approach, with retrievals of attenuation coefficients showing a high coefficient of determination depending on the wavelength. We also performed a sensitivity analysis of the DoLP at the Top of Atmosphere (TOA) over coastal waters showing the possibility of polarimetric remote sensing application for ocean color.

  18. Multi-Feature Segmentation for High-Resolution Polarimetric SAR Data Based on Fractal Net Evolution Approach

    Directory of Open Access Journals (Sweden)

    Qihao Chen

    2017-06-01

    Full Text Available Segmentation techniques play an important role in understanding high-resolution polarimetric synthetic aperture radar (PolSAR images. PolSAR image segmentation is widely used as a preprocessing step for subsequent classification, scene interpretation and extraction of surface parameters. However, speckle noise and rich spatial features of heterogeneous regions lead to blurred boundaries of high-resolution PolSAR image segmentation. A novel segmentation algorithm is proposed in this study in order to address the problem and to obtain accurate and precise segmentation results. This method integrates statistical features into a fractal net evolution algorithm (FNEA framework, and incorporates polarimetric features into a simple linear iterative clustering (SLIC superpixel generation algorithm. First, spectral heterogeneity in the traditional FNEA is substituted by the G0 distribution statistical heterogeneity in order to combine the shape and statistical features of PolSAR data. The statistical heterogeneity between two adjacent image objects is measured using a log likelihood function. Second, a modified SLIC algorithm is utilized to generate compact superpixels as the initial samples for the G0 statistical model, which substitutes the polarimetric distance of the Pauli RGB composition for the CIELAB color distance. The segmentation results were obtained by weighting the G0 statistical feature and the shape features, based on the FNEA framework. The validity and applicability of the proposed method was verified with extensive experiments on simulated data and three real-world high-resolution PolSAR images from airborne multi-look ESAR, spaceborne single-look RADARSAT-2, and multi-look TerraSAR-X data sets. The experimental results indicate that the proposed method obtains more accurate and precise segmentation results than the other methods for high-resolution PolSAR images.

  19. AirMOSS: L1 S-0 Polarimetric Data from AirMOSS P-band SAR, La Selva, 2012-2015

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides level 1 (L1) polarimetric radar backscattering coefficient (sigma-0), multilook complex, polarimetrically calibrated, and georeferenced data...

  20. Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue.

    Science.gov (United States)

    Egea, Isabel; Bian, Wanping; Barsan, Cristina; Jauneau, Alain; Pech, Jean-Claude; Latché, Alain; Li, Zhengguo; Chervin, Christian

    2011-08-01

    There are several studies suggesting that tomato (Solanum lycopersicum) chromoplasts arise from chloroplasts, but there is still no report showing the fluorescence of both chlorophylls and carotenoids in an intermediate plastid, and no video showing this transition phase. Pigment fluorescence within individual plastids, isolated from tomato fruit using sucrose gradients, was observed at different ripening stages, and an in situ real-time recording of pigment fluorescence was performed on live tomato fruit slices. At the mature green and red stages, homogenous fractions of chloroplasts and chromoplasts were obtained, respectively. At the breaker stage, spectral confocal microscopy showed that intermediate plastids contained both chlorophylls and carotenoids. Furthermore, an in situ real-time recording (a) showed that the chloroplast to chromoplast transition was synchronous for all plastids of a single cell; and (b) confirmed that all chromoplasts derived from pre-existing chloroplasts. These results give details of the early steps of tomato chromoplast biogenesis from chloroplasts, with the formation of intermediate plastids containing both carotenoids and chlorophylls. They provide information at the sub-cellular level on the synchronism of plastid transition and pigment changes.

  1. INVENTORY OF IRRIGATED RICE ECOSYSTEM USING POLARIMETRIC SAR DATA

    Directory of Open Access Journals (Sweden)

    P. Srikanth

    2012-08-01

    Full Text Available An attempt has been made in the current study to assess the potential of polarimetric SAR data for inventory of kharif rice and the major competing crop like cotton. In the process, physical process of the scattering mechanisms occurring in rice and cotton crops at different phonological stages was studied through the use of temporal Radarsat 2 Fine quadpol SAR data. The temporal dynamics of the volume, double and odd bounce, entropy, anisotropy, alpha parameters and polarimertic signatures, classification through isodata clustering and Wishart techniques were assessed. The Wishart (H-a classification showed higher overall as well as rice and cotton crop accuracies compared to the isodata clustering from Freeman 3-component decomposition. The classification of temporal SAR data sets independently showed that the rice crop forecasting can be advanced with the use of appropriate single date polarimetric SAR data rather than using temporal SAR amplitude data sets with the single polarization in irrigated rice ecosystems

  2. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    DEFF Research Database (Denmark)

    Sales, Morten; Strobl, Markus; Shinohara, Takenao

    2018-01-01

    -destructively with the potential to probe the interior of bulk samples which is not amenable otherwise. Using a pioneering polarimetric set-up for ToF neutron instrumentation in combination with a newly developed tailored reconstruction algorithm, the magnetic field generated by a current carrying solenoid has been measured......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...

  3. EMISAR: A Dual-frequency, Polarimetric Airborne SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2002-01-01

    . The SAR is operated at high altitudes on a Gulfstream G-3 jet aircraft. The system is very well calibrated and has low sidelobes and low cross-polar contamination. Digital technology has been utilized to realize a flexible and highly stable radar with variable resolution, swath width, and imaging geometry....... Thermal control and several calibration loops have been built into the system to ensure system stability and absolute calibration. Accurately measured antenna gains and radiation patterns are included in the calibration. The processing system is developed to support data calibration, which is the key......EMISAR is a fully polarimetric, dual frequency (L- and C-band) SAR system designed for remote sensing applications. The data are usually processed to 2×2 m resolution. The system has the capability of C-band cross-track single-pass interferometry and fully polarimetric repeat-pass interferometry...

  4. Retrieval of ice thickness from polarimetric SAR data

    Science.gov (United States)

    Kwok, R.; Yueh, S. H.; Nghiem, S. V.; Huynh, D. D.

    1993-01-01

    We describe a potential procedure for retrieving ice thickness from multi-frequency polarimetric SAR data for thin ice. This procedure includes first masking out the thicker ice types with a simple classifier and then deriving the thickness of the remaining pixels using a model-inversion technique. The technique used to derive ice thickness from polarimetric observations is provided by a numerical estimator or neural network. A three-layer perceptron implemented with the backpropagation algorithm is used in this investigation with several improved aspects for a faster convergence rate and a better accuracy of the neural network. These improvements include weight initialization, normalization of the output range, the selection of offset constant, and a heuristic learning algorithm. The performance of the neural network is demonstrated by using training data generated by a theoretical scattering model for sea ice matched to the database of interest. The training data are comprised of the polarimetric backscattering coefficients of thin ice and the corresponding input ice parameters to the scattering model. The retrieved ice thickness from the theoretical backscattering coefficients is compare with the input ice thickness to the scattering model to illustrate the accuracy of the inversion method. Results indicate that the network convergence rate and accuracy are higher when multi-frequency training sets are presented. In addition, the dominant backscattering coefficients in retrieving ice thickness are found by comparing the behavior of the network trained backscattering data at various incidence angels. After the neural network is trained with the theoretical backscattering data at various incidence anges, the interconnection weights between nodes are saved and applied to the experimental data to be investigated. In this paper, we illustrate the effectiveness of this technique using polarimetric SAR data collected by the JPL DC-8 radar over a sea ice scene.

  5. Change detection in a time series of polarimetric SAR data

    DEFF Research Database (Denmark)

    Conradsen, Knut; Nielsen, Allan Aasbjerg; Skriver, Henning

    2014-01-01

    A test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution with an associated probability of finding a smaller value of the test statistic is introduced. Unlike tests based on pairwise comparisons between all temporally consecutive acquisi...... acquisitions the new omnibus test statistic and the probability measure successfully detects change in two short series of L- and C-band polarimetric EMISAR data....

  6. RADARSAT-2 Polarimetric Radar Imaging for Lake Ice Mapping

    Science.gov (United States)

    Pan, F.; Kang, K.; Duguay, C. R.

    2016-12-01

    Changes in lake ice dates and duration are useful indicators for assessing long-term climate trends and variability in northern countries. Lake ice cover observations are also a valuable data source for predictions with numerical ice and weather forecasting models. In recent years, satellite remote sensing has assumed a greater role in providing observations of lake ice cover extent for both modeling and climate monitoring purposes. Polarimetric radar imaging has become a promising tool for lake ice mapping at high latitudes where meteorological conditions and polar darkness severely limit observations from optical sensors. In this study, we assessed and characterized the physical scattering mechanisms of lake ice from fully polarimetric RADARSAT-2 datasets obtained over Great Bear Lake, Canada, with the intent of classifying open water and different ice types during the freeze-up and break-up periods. Model-based and eigen-based decompositions were employed to construct the coherency matrix into deterministic scattering mechanisms. These procedures as well as basic polarimetric parameters were integrated into modified convolutional neural networks (CNN). The CNN were modified via introduction of a Markov random field into the higher iterative layers of networks for acquiring updated priors and classifying ice and open water areas over the lake. We show that the selected polarimetric parameters can help with interpretation of radar-ice/water interactions and can be used successfully for water-ice segmentation, including different ice types. As more satellite SAR sensors are being launched or planned, such as the Sentinel-1a/b series and the upcoming RADARSAT Constellation Mission, the rapid volume growth of data and their analysis require the development of robust automated algorithms. The approach developed in this study was therefore designed with the intent of moving towards fully automated mapping of lake ice for consideration by ice services.

  7. Synergy of optical and polarimetric microwave data for forest resource assessment

    International Nuclear Information System (INIS)

    Miguel-Ayanz, J.S.

    1997-01-01

    Data acquired during the Mac-Europe 91 campaign over the Black Forest ( Germany) are used to study the synergy of optical imaging spectrometer data ( AVIRIS) and polarimetric microwave data ( AIRSAR) for forest resource assessment. Original and new derived bands from AIRSAR and AVIRIS data are used to predict age and biomass. The best predictors ( bands) are selected through a multivariate stepwise regression analysis of each of the datasets separately. Then the joint AIRSAR-AVIRIS dataset is analysed. This study shows how the synergistic use of AIRSAR and AVIRIS data improves significantly the predictions obtained from the individual datasets for both age and biomass over the test site. In the analysis of AVIRIS data a new approach for processing large datasets as those provided by imaging spectrometers is presented, so that maximum likelihood classification of these datasets becomes feasible. (author)

  8. Polarimetric signatures of sea ice. 1: Theoretical model

    Science.gov (United States)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.

    1995-01-01

    Physical, structral, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarmetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies to interpretation of sea ice polarimetric signatures.

  9. Hydrometeor classification from polarimetric radar measurements: a clustering approach

    Directory of Open Access Journals (Sweden)

    J. Grazioli

    2015-01-01

    Full Text Available A data-driven approach to the classification of hydrometeors from measurements collected with polarimetric weather radars is proposed. In a first step, the optimal number of hydrometeor classes (nopt that can be reliably identified from a large set of polarimetric data is determined. This is done by means of an unsupervised clustering technique guided by criteria related both to data similarity and to spatial smoothness of the classified images. In a second step, the nopt clusters are assigned to the appropriate hydrometeor class by means of human interpretation and comparisons with the output of other classification techniques. The main innovation in the proposed method is the unsupervised part: the hydrometeor classes are not defined a priori, but they are learned from data. The approach is applied to data collected by an X-band polarimetric weather radar during two field campaigns (from which about 50 precipitation events are used in the present study. Seven hydrometeor classes (nopt = 7 have been found in the data set, and they have been identified as light rain (LR, rain (RN, heavy rain (HR, melting snow (MS, ice crystals/small aggregates (CR, aggregates (AG, and rimed-ice particles (RI.

  10. Interpulse phase coding for improving accuracy of polarimetric SAR

    Science.gov (United States)

    Giuli, Dino; Facheris, Luca

    1993-02-01

    Polarimetric measurements made by Synthetic Aperture Radar (SAR) may be in some cases, depending on the polarimetric response of distributed targets to be imaged, severely limited in their accuracy due to the joint effect of range ambiguities and weak crosspolarized signal response. Due to the utilization of alternate transmission of pulses at orthogonal polarizations, each ambiguous swath gives rise to one different kind of interference, depending whether its order is even or odd. Interference arising from even-order ambiguous swaths, differently from that arising from odd-order swaths, is generated by pulses transmitted on the same polarization channel of the pulse soliciting the desired echo signal, that they corrupt. Evidently, interference arising from odd-order swaths and affecting crosspolar measurements is most harmful, together with that arising from zones at low incidence angle, which carries a strong reflectivity contribution to the total interference on the desired signal. The paper discusses the utility of appropriate interpulse phase coding strategies, depending on the SAR geometry, than can be devised and utilized in the polarimetric interleaved-pulse measurement technique, with the task to reduce the interference generated by range ambiguities and affecting those target scattering matrix elements, whose measurement is expected to be most critical.

  11. The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI: a new tool for aerosol and cloud remote sensing

    Directory of Open Access Journals (Sweden)

    D. J. Diner

    2013-08-01

    Full Text Available The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI is an eight-band (355, 380, 445, 470, 555, 660, 865, 935 nm pushbroom camera, measuring polarization in the 470, 660, and 865 nm bands, mounted on a gimbal to acquire multiangular observations over a ±67° along-track range. The instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI employs a photoelastic modulator-based polarimetric imaging technique to enable accurate measurements of the degree and angle of linear polarization in addition to spectral intensity. A description of the AirMSPI instrument and ground data processing approach is presented. Example images of clear, hazy, and cloudy scenes over the Pacific Ocean and California land targets obtained during flights between 2010 and 2012 are shown, and quantitative interpretations of the data using vector radiative transfer theory and scene models are provided to highlight the instrument's capabilities for determining aerosol and cloud microphysical properties and cloud 3-D spatial distributions. Sensitivity to parameters such as aerosol particle size distribution, ocean surface wind speed and direction, cloud-top and cloud-base height, and cloud droplet size is discussed. AirMSPI represents a major step toward realization of the type of imaging polarimeter envisioned to fly on NASA's Aerosol-Cloud-Ecosystem (ACE mission in the next decade.

  12. A theoretical and numerical study of polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum

    Science.gov (United States)

    Yueh, S. H.; Kwok, R.

    1993-01-01

    In this paper, theoretical and numerical results of the polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum are presented for the remote sensing of ocean and soil surfaces. The polarimetric scattered field for rough dielectric surfaces is derived to the second order by the small perturbation method (SPM). It is found that the second-order scattered field is coherent in nature, and its coefficients for different polarizations present the lowest-order corrections to the Fresnel reflection coefficients of the surfaces. In addition, the cross-polarized (HV and VH) components of the coherent fields are reciprocal and not zero for surfaces with anisotropic directional spectrum when the azimuth angle of the incident direction is not aligned with the symmetry directions of surfaces. In order to verify the energy conservation condition of the theoretical results, which is important if the theory is to be applied to the passive polarimetry of rough surfaces, a Monte Carlo simulation is performed to numerically calculate the polarimetric reflectivities of one-dimensional random rough surfaces which are generated with a prescribed power-law spectrum in the spectral domain and transformed to the spatial domain by the FFT. The surfaces simulated by this approach are periodic with the period corresponding to the low-wavenumber cutoff. To calculate the scattering from periodic dielectric surfaces, the authors present a new numerical technique which applies the Floquet theorem to reduce the problem to one period and does not require the evaluation of one-dimensional periodic Green's function used in the conventional method of moment formulation. Once the scattering coefficients are obtained, the polarimetric Stokes vectors for the emission from the random surfaces are then calculated according to the Kirchhoff's law and are illustrated as functions of relative azimuth observation and row directions. The second-order SPM is also

  13. Coupled retrieval of water cloud and above-cloud aerosol properties using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI)

    Science.gov (United States)

    Xu, F.; van Harten, G.; Diner, D. J.; Rheingans, B. E.; Tosca, M.; Seidel, F. C.; Bull, M. A.; Tkatcheva, I. N.; McDuffie, J. L.; Garay, M. J.; Davis, A. B.; Jovanovic, V. M.; Brian, C.; Alexandrov, M. D.; Hostetler, C. A.; Ferrare, R. A.; Burton, S. P.

    2017-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI acquires radiance and polarization data in bands centered at 355, 380, 445, 470*, 555, 660*, 865*, and 935 nm (*denotes polarimetric bands). In sweep mode, georectified images cover an area of 80-100 km (along track) by 10-25 km (across track) between ±66° off nadir, with a map-projected spatial resolution of 25 meters. An efficient and flexible retrieval algorithm has been developed using AirMSPI polarimetric bands for simultaneous retrieval of cloud and above-cloud aerosol microphysical properties. We design a three-step retrieval approach, namely 1) estimating effective droplet size distribution using polarimetric cloudbow observations and using it as initial guess for Step 2; 2) combining water cloud and aerosol above cloud retrieval by fitting polarimetric signals at all scattering angles (e.g. from 80° to 180°); and 3) constructing a lookup table of radiance for a set of cloud optical depth grids using aerosol and cloud information retrieved from Step 2 and then estimating pixel-scale cloud optical depth based on 1D radiative transfer (RT) theory by fitting the AirMSPI radiance. Retrieval uncertainty is formulated by accounting for instrumental errors and constraints imposed on spectral variations of aerosol and cloud droplet optical properties. As the forward RT model, a hybrid approach is developed to combine the computational strengths of Markov-chain and adding-doubling methods to model polarized RT in a coupled aerosol, Rayleigh and cloud system. Our retrieval approach is tested using 134 AirMSPI datasets acquired during NASA ORACLES field campaign in 09/2016, with low to high aerosol loadings. For validation, the retrieved aerosol optical depths and cloud-top heights are compared to coincident High Spectral Resolution Lidar-2 (HSRL-2) data, and the droplet size parameters including effective radius and

  14. Detecting Molecular Features of Spectra Mainly Associated with Structural and Non-Structural Carbohydrates in Co-Products from BioEthanol Production Using DRIFT with Uni- and Multivariate Molecular Spectral Analyses

    Science.gov (United States)

    Yu, Peiqiang; Damiran, Daalkhaijav; Azarfar, Arash; Niu, Zhiyuan

    2011-01-01

    The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS) from bioethanol processing in comparison with original feedstock (wheat (Triticum), corn (Zea mays)). The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 1485–1188 cm−1), A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm−1 with region and baseline: ca. 1292–1198 cm−1), A_CHO (total carbohydrates, peaks region and baseline: ca. 1187–950 cm−1), A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm−1 with region and baseline: ca. 952–910 cm−1), A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm−1 with region and baseline: ca. 880–827 cm−1), H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm−1 with baseline: ca. 1485–1188 cm−1), H_1370 (structural carbohydrate, peak height at ca. 1370 cm−1 with a baseline: ca. 1485–1188 cm−1). The study shows that the grains had lower spectral intensity (KM Unit) of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P carbohydrate of A_928 (17.3 vs. 2.0) and A_860 (20.7 vs. 7.6) than their co-products from bioethanol processing. There were no differences (P > 0.05) in the peak area intensities of A_Cell (structural CHO) at 1292–1198 cm−1 and A_CHO (total CHO) at 1187–950 cm−1 with average molecular infrared intensity KM unit of 226.8 and 508.1, respectively. There were no differences (P > 0.05) in the peak height intensities of H_1415 and H_1370 (structural CHOs) with average intensities 1.35 and 1.15, respectively. The multivariate molecular spectral analyses were able to discriminate and classify between the corn and corn DDGS molecular spectra, but not wheat and wheat DDGS. This

  15. Detecting Molecular Features of Spectra Mainly Associated with Structural and Non-Structural Carbohydrates in Co-Products from BioEthanol Production Using DRIFT with Uni- and Multivariate Molecular Spectral Analyses

    Directory of Open Access Journals (Sweden)

    Zhiyuan Niu

    2011-03-01

    Full Text Available The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS from bioethanol processing in comparison with original feedstock (wheat (Triticum, corn (Zea mays. The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 1485–1188 cm−1, A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm−1 with region and baseline: ca. 1292–1198 cm−1, A_CHO (total carbohydrates, peaks region and baseline: ca. 1187–950 cm-1, A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm−1 with region and baseline: ca. 952–910 cm−1, A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm−1 with region and baseline: ca. 880–827 cm-1, H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm−1 with baseline: ca. 1485–1188 cm−1, H_1370 (structural carbohydrate, peak height at ca. 1370 cm−1 with a baseline: ca. 1485–1188 cm−1. The study shows that the grains had lower spectral intensity (KM Unit of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P < 0.05, higher (P < 0.05 intensities of the non-structural carbohydrate of A_928 (17.3 vs. 2.0 and A_860 (20.7 vs. 7.6 than their co-products from bioethanol processing. There were no differences (P > 0.05 in the peak area intensities of A_Cell (structural CHO at 1292–1198 cm−1 and A_CHO (total CHO at 1187–950 cm−1 with average molecular infrared intensity KM unit of 226.8 and 508.1, respectively. There were no differences (P > 0.05 in the peak height intensities of H_1415 and H_1370 (structural CHOs with average intensities 1.35 and 1.15, respectively. The multivariate molecular spectral analyses were able to discriminate and classify between the corn and corn DDGS

  16. Integrating polarimetric synthetic aperture radar and imaging spectrometry for wildland fuel mapping in southern California

    Science.gov (United States)

    P.E. Dennison; D.A. Roberts; J. Regelbrugge; S.L. Ustin

    2000-01-01

    Polarimetric synthetic aperture radar (SAR) and imaging spectrometry exemplify advanced technologies for mapping wildland fuels in chaparral ecosystems. In this study, we explore the potential of integrating polarimetric SAR and imaging spectrometry for mapping wildland fuels. P-band SAR and ratios containing P-band polarizations are sensitive to variations in stand...

  17. Polarimetric Scattering Properties of Landslides in Forested Areas and the Dependence on the Local Incidence Angle

    Directory of Open Access Journals (Sweden)

    Takashi Shibayama

    2015-11-01

    Full Text Available This paper addresses the local incidence angle dependence of several polarimetric indices corresponding to landslides in forested areas. Landslide is deeply related to the loss of human lives and their property. Various kinds of remote sensing techniques, including aerial photography, high-resolution optical satellite imagery, LiDAR and SAR interferometry (InSAR, have been available for landslide investigations. SAR polarimetry is potentially an effective measure to investigate landslides because fully-polarimetric SAR (PolSAR data contain more information compared to conventional single- or dual-polarization SAR data. However, research on landslide recognition utilizing polarimetric SAR (PolSAR is quite limited. Polarimetric properties of landslides have not been examined quantitatively so far. Accordingly, we examined the polarimetric scattering properties of landslides by an assessment of how the decomposed scattering power components and the polarimetric correlation coefficient change with the local incidence angle. In the assessment, PolSAR data acquired from different directions with both spaceborne and airborne SARs were utilized. It was found that the surface scattering power and the polarimetric correlation coefficient of landslides significantly decrease with the local incidence angle, while these indices of surrounding forest do not. This fact leads to establishing a method of effective detection of landslide area by polarimetric information.

  18. The effect of donor content on the efficiency of P3HT:PCBM bilayers: optical and photocurrent spectral data analyses.

    Science.gov (United States)

    Casalegno, Mosé; Kotowski, Dariusz; Bernardi, Andrea; Luzzati, Silvia; Po, Riccardo; Raos, Guido

    2015-01-28

    State-of-the-art organic solar cells mostly rely on bulk-heterojunction architectures, where the photoactive layer is cast from a solution containing both the electron donor and acceptor components and subsequently annealed. An alternative route for device preparation is the sequential deposition of the two components using "orthogonal" solvents. The morphology of sequentially deposited bilayers has been extensively studied, but the interplay between optical and electrical properties and its influence on device efficiency is still unclear. Here we present a study of poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) bilayers with variable P3HT content, including also a standard bulk-heterojunction device for comparison. Measured optical absorption, external quantum efficieny (EQE), and internal quantum efficiency (IQE) data are analysed and interpreted with the aid of numerical models. In agreement with other studies, our results suggest substantial intermixing between the PCBM and P3HT component, regardless of the P3HT content. In the bulk heterojunction and the bilayer devices with an active layer thickness of 100 nm or less, our best fits to both the optical and optoelectronic data highlight a concentration inversion, with an accumulation of PCBM on the anode side. Through the numerical analysis of device performance at short-circuit, we also find that exciton diffusion toward the P3HT:PCBM interface and geminate recombination can be the main IQE loss factors. Additional losses, attributed to bimolecular electron-hole recombination, are also observed upon increasing the P3HT content.

  19. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its Larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    Science.gov (United States)

    Santhosh, Shanthi Bhupathi; Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-12-01

    Mosquitoes transmit various diseases which mainly affect the human beings and every year cause millions of deaths globally. Currently available chemical and synthetic mosquitocidal agents pose severe side effects, pollute the environment vigorously, and become resistance. There is an urgent need to identify and develop the cost effective, compatible and eco-friendly product for mosquito control. The present study was aimed to find out the larvicidal potential of aqueous crude extract and green synthesized silver nanoparticles (AgNPs) from Annona muricata leaves were tested against fourth instar larvae of three important mosquitoes i.e. Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti using different concentrations of AgNPs (10, 20, 30, 40 and 50 ppm) and the aqueous leaf extract (100, 200, 300, 400, and 500 ppm) for 24 and 48 h. The maximum mortality was noticed in AgNPs than aqueous leaf extract of A. muricata against tested mosquitoes with least LC50 values of 37.70, 31.29, and 20.65 ppm (24h) and 546.7, 516.2, and 618.4 ppm (48 h), respectively. All tested concentrations of AgNps exhibited 100% mortality in A. aegypti larvae at 48 hour observation. In addition, the plant mediated AgNPs were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy, particle size analyser, X-ray diffraction, high resonance transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis for confirmation of nanoparticle synthesis. Based on the findings of the study suggests that the use of A. muricata plant mediated AgNPs can act as an alternate insecticidal agents for controlling target mosquitoes. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Polsar Land Cover Classification Based on Hidden Polarimetric Features in Rotation Domain and Svm Classifier

    Science.gov (United States)

    Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.

    2017-09-01

    Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / text-decoration: overline">α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification

  1. Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE

    Science.gov (United States)

    Poellot, Michael R.; Kucera, Paul A.

    2004-01-01

    This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative

  2. Polarimetric radar characteristics of storms with and without lightning activity

    Science.gov (United States)

    Mattos, Enrique V.; Machado, Luiz A. T.; Williams, Earle R.; Albrecht, Rachel I.

    2016-12-01

    This paper analyzes the cloud microphysics in different layers of storms as a function of three-dimensional total lightning density. A mobile X-band polarimetric radar and very high frequency (VHF) sources from Lightning Mapping Array (LMA) observations during the 2011/2012 Brazil spring-summer were used to determine the microphysical signatures of radar vertical profiles and lightning density. This study quantified the behavior of 5.3 million vertical profiles of the horizontal reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), and correlation coefficient (ρHV). The principal changes in the polarimetric variables occurred only for VHF source rate density greater than 14 VHF sources per km2 in 4 min. These storms showed an enhanced positive KDP in the mixed 1 layer (from 0 to -15°C) probably associated with supercooled liquid water signatures, whereas regions with negative ZDR and KDP and moderate ZH in the mixed 2 layer (from -15 to -40°C) were possibly associated with the presence of conical graupel. The glaciated (above -40°C) and upper part of the mixed 2 layers showed a significant trend to negative KDP with an increase in lightning density, in agreement with vertical alignment of ice particle by the cloud electric field. A conceptual model that presents the microphysical signatures in storms with and without lightning activity was constructed. The observations documented in this study provide an understanding of how the combinations of polarimetric variables could help to identify storms with different lightning density and vice versa.

  3. Microphysical retrievals from simultaneous polarimetric and profiling radar observations

    Directory of Open Access Journals (Sweden)

    M. P. Morris

    2009-12-01

    Full Text Available The character of precipitation detected at the surface is the final product of many microphysical interactions in the cloud above, the combined effects of which may be characterized by the observed drop size distribution (DSD. This necessitates accurate retrieval of the DSD from remote sensing data, especially radar as it offers large areal coverage, high spatial resolution, and rigorous quality control and testing. Combined instrument observations with a UHF wind profiler, an S-band polarimetric weather radar, and a video disdrometer are analyzed for two squall line events occuring during the calendar year 2007. UHF profiler Doppler velocity spectra are used to estimate the DSD aloft, and are complemented by DSDs retrieved from an exponential model applied to polarimetric data. Ground truth is provided by the disdrometer. A complicating factor in the retrieval from UHF profiler spectra is the presence of ambient air motion, which can be corrected using the method proposed by Teshiba et al. (2009, in which a comparison between idealized Doppler spectra calculated from the DSDs retrieved from KOUN and those retrieved from contaminated wind profiler spectra is performed. It is found that DSDs measured using the distrometer at the surface and estimated using the wind profiler and polarimetric weather radar generally showed good agreement. The DSD retrievals using the wind profiler were improved when the estimates of the vertical wind were included into the analysis, thus supporting the method of Teshiba et al. (2009. Furthermore, the the study presents a method of investigating the time and height structure of DSDs.

  4. Polarimetric purity and the concept of degree of polarization

    Science.gov (United States)

    Gil, José J.; Norrman, Andreas; Friberg, Ari T.; Setälä, Tero

    2018-02-01

    The concept of degree of polarization for electromagnetic waves, in its general three-dimensional version, is revisited in the light of the implications of the recent findings on the structure of polarimetric purity and of the existence of nonregular states of polarization [J. J. Gil et al., Phys Rev. A 95, 053856 (2017), 10.1103/PhysRevA.95.053856]. From the analysis of the characteristic decomposition of a polarization matrix R into an incoherent convex combination of (1) a pure state Rp, (2) a middle state Rm given by an equiprobable mixture of two eigenstates of R, and (3) a fully unpolarized state Ru -3 D, it is found that, in general, Rm exhibits nonzero circular and linear degrees of polarization. Therefore, the degrees of linear and circular polarization of R cannot always be assigned to the single totally polarized component Rp. It is shown that the parameter P3 D proposed formerly by Samson [J. C. Samson, Geophys. J. R. Astron. Soc. 34, 403 (1973), 10.1111/j.1365-246X.1973.tb02404.x] takes into account, in a proper and objective form, all the contributions to polarimetric purity, namely, the contributions to the linear and circular degrees of polarization of R as well as to the stability of the plane containing its polarization ellipse. Consequently, P3 D constitutes a natural representative of the degree of polarimetric purity. Some implications for the common convention for the concept of two-dimensional degree of polarization are also analyzed and discussed.

  5. Beaconless search and rescue using polarimetric synthetic aperture radar

    Science.gov (United States)

    McCandless, Samuel W.; Huxtable, Barton D.; Mansfield, Arthur W.; Wallace, Ronald; Larsen, Rudolph; Rais, Houra

    1996-03-01

    In developing a beaconless search and rescue capability to quickly locate small aircraft that have crashed in remote areas, NASA's Search and Rescue (S&R) Program brings together advanced polarimetric synthetic aperture radar processing, field and laboratory tests, and state-of-the-art automated target detection algorithms. This paper provides the status of this program, which began with experiments conducted in concert with the JPL DC-8 AirSAR in 1989 at the Duke University Forest. The program is being conducted by NASA's Goddard Space Flight Center (GSFC) under the auspices of the Search and Rescue Office.

  6. HAWC+/SOFIA Polarimetric Observations of OMC-1

    Science.gov (United States)

    Chuss, David; Andersson, B.-G.; Bally, John; Dowell, Charles D.; Harper, Doyal; Lazarian, Alex; Michail, Joseph M.; Morris, Mark; Novak, Giles; Siah, Javad; Vaillancourt, John; Werner, Michael; HAWC+ Science Team

    2018-01-01

    Astrophysical dust grains become partially aligned due to magnetic fields that permeate the interstellar medium. Measurements of far-infrared polarized emission provide a tool to characterize magnetic fields and test their effect on star formation in molecular clouds. The HAWC+ camera provides polarimetric imaging capability for SOFIA in four bands between 50 and 300 microns. As part of the science commissioning of the instrument, HAWC+ has obtained more than 1000 independent measurements of polarization in the OMC-1 star forming region. The observations were made at a wavelength of 89 microns with an angular resolution of 8 arcseconds. We present these preliminary data and initial analysis.

  7. Three axis vector atomic magnetometer utilizing polarimetric technique

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India and Homi Bhabha National Institute, Department of Atomic Energy, Mumbai 400094 (India)

    2016-09-15

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity field gradient measurement as required for biomedical application.

  8. Millimeter Wave Polarimetric Radar Remote Sensing of Ice Clouds.

    Science.gov (United States)

    Tang, Chengxian

    Ice clouds play important roles in many practical and theoretical researches. This thesis investigates the electromagnetic scattering properties of ice crystals at 94 and 220 GHz, and polarimetric radar techniques for ice crystal type discrimination and ice mass content estimation. The scattering amplitude matrix is computed for pristine ice crystals of different sizes and from different incidence directions using the Finite Difference Time Domain method. Hexagonal plates, stellar crystals, and hexagonal columns with empirical aspect ratios are considered. The results show that the co-polarized scattering amplitudes are not sensitive to the azimuthal incidence angle but dependent on the polar incidence angle theta as functions of costheta or sintheta raised to a power which depends on particle size. Cross-polarized scattering amplitudes are negligible when the wave polarization is aligned with respect to the particle symmetry axis. Numerical computations are performed to examine the dependence of polarimetric radar parameters on the parameters in the gamma size and Gaussian canting angle distributions, and on radar elevation angle. The computed Mueller matrix elements related to the cross-correlation of the co-polarized and cross-polarized scattering amplitudes are less than 5% of the total irradiance. The linear depolarization ratio, circular depolarization ratio, and dual-frequency ratio are found depolarization ratio, circular depolarization ratio, and dual-frequency ratio are found useful for differentiating between planar ice crystals and columns. Five relationships between ice mass content and polarimetric radar parameters are derived based on numerical simulations representing various assumed ice mass contents and gamma size distributions. The specific differential phase at incidence angles away from the zenith, and effective reflectivity factor together with dual-frequency ratio can provide reasonable estimates for ice mass content. Simulations based on in

  9. Optical polarimetric and near-infrared photometric study of the RCW95 Galactic H II region

    Science.gov (United States)

    Vargas-González, J.; Roman-Lopes, A.; Santos, F. P.; Franco, G. A. P.; Santos, J. F. C.; Maia, F. F. S.; Sanmartim, D.

    2018-02-01

    We carried out an optical polarimetric study in the direction of the RCW 95 star-forming region in order to probe the sky-projected magnetic field structure by using the distribution of linear polarization segments which seem to be well aligned with the more extended cloud component. A mean polarization angle of θ = 49.8° ± 7.7°7 was derived. Through the spectral dependence analysis of polarization it was possible to obtain the total-to-selective extinction ratio (RV) by fitting the Serkowski function, resulting in a mean value of RV = 2.93 ± 0.47. The foreground polarization component was estimated and is in agreement with previous studies in this direction of the Galaxy. Further, near-infrared (NIR) images from Vista Variables in the Via Láctea (VVV) survey were collected to improve the study of the stellar population associated with the H II region. The Automated Stellar Cluster Analysis algorithm was employed to derive structural parameters for two clusters in the region, and a set of PAdova and TRieste Stellar Evolution Code (PARSEC) isochrones was superimposed on the decontaminated colour-magnitude diagrams to estimate an age of about 3 Myr for both clusters. Finally, from the NIR photometry study combined with spectra obtained with the Ohio State Infrared Imager and Spectrometer mounted at the Southern Astrophysics Research Telescope we derived the spectral classification of the main ionizing sources in the clusters associated with IRAS 15408-5356 and IRAS 15412-5359, both objects classified as O4V stars.

  10. A Polarimetric Approach for Constraining the Dynamic Foreground Spectrum for Cosmological Global 21 cm Measurements

    Science.gov (United States)

    Nhan, Bang D.; Bradley, Richard F.; Burns, Jack O.

    2017-02-01

    The cosmological global (sky-averaged) 21 cm signal is a powerful tool to probe the evolution of the intergalactic medium in high-redshift universe (z≤slant 6). One of the biggest observational challenges is to remove the foreground spectrum which is at least four orders of magnitude brighter than the cosmological 21 cm emission. Conventional global 21 cm experiments rely on the spectral smoothness of the foreground synchrotron emission to separate it from the unique 21 cm spectral structures in a single total-power spectrum. However, frequency-dependent instrumental and observational effects are known to corrupt such smoothness and complicate the foreground subtraction. We introduce a polarimetric approach to measure the projection-induced polarization of the anisotropic foreground onto a stationary dual-polarized antenna. Due to Earth rotation, when pointing the antenna at a celestial pole, the revolving foreground will modulate this polarization with a unique frequency-dependent sinusoidal signature as a function of time. In our simulations, by harmonic decomposing this dynamic polarization, our technique produces two separate spectra in parallel from the same observation: (I) a total sky power consisting both the foreground and the 21 cm background and (II) a model-independent measurement of the foreground spectrum at a harmonic consistent to twice the sky rotation rate. In the absence of any instrumental effects, by scaling and subtracting the latter from the former, we recover the injected global 21 cm model within the assumed uncertainty. We further discuss several limiting factors and potential remedies for future implementation.

  11. Ship Discrimination Using Polarimetric SAR Data and Coherent Time-Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Canbin Hu

    2013-12-01

    Full Text Available This paper presents a new approach for the discrimination of ship responses using polarimetric SAR (PolSAR data. The PolSAR multidimensional information is analyzed using a linear Time-Frequency (TF decomposition approach, which permits to describe the polarimetric behavior of a ship and its background area for different azimuthal angles of observation and frequencies of illumination. This paper proposes to discriminate ships from their background by using characteristics of their polarimetric TF responses, which may be associated with the intrinsic nature of the observed natural or artificial scattering structures. A statistical descriptor related to polarimetric coherence of the signal in the TF domain is proposed for detecting ships in different complex backgrounds, including SAR azimuth ambiguities, artifacts, and small natural islands, which may induce numerous false alarms. Choices of the TF analysis direction, i.e., along separate azimuth or range axis, or simultaneously in both directions, are investigated and evaluated. TF decomposition modes including range direction perform better in terms of discriminating ships from range focusing artifacts. In comparison with original full-resolution polarimetric indicators, the proposed TF polarimetric coherence descriptor is shown to qualitatively enhance the ship/background contrast and improve discrimination capabilities. Using polarimetric RADARSAT-2 data acquired over complex scenes, experimental results demonstrate the efficiency of this approach in terms of ship location retrieval and response characterization.

  12. Multi-Frequency Polarimetric SAR Classification Based on Riemannian Manifold and Simultaneous Sparse Representation

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2015-07-01

    Full Text Available Normally, polarimetric SAR classification is a high-dimensional nonlinear mapping problem. In the realm of pattern recognition, sparse representation is a very efficacious and powerful approach. As classical descriptors of polarimetric SAR, covariance and coherency matrices are Hermitian semidefinite and form a Riemannian manifold. Conventional Euclidean metrics are not suitable for a Riemannian manifold, and hence, normal sparse representation classification cannot be applied to polarimetric SAR directly. This paper proposes a new land cover classification approach for polarimetric SAR. There are two principal novelties in this paper. First, a Stein kernel on a Riemannian manifold instead of Euclidean metrics, combined with sparse representation, is employed for polarimetric SAR land cover classification. This approach is named Stein-sparse representation-based classification (SRC. Second, using simultaneous sparse representation and reasonable assumptions of the correlation of representation among different frequency bands, Stein-SRC is generalized to simultaneous Stein-SRC for multi-frequency polarimetric SAR classification. These classifiers are assessed using polarimetric SAR images from the Airborne Synthetic Aperture Radar (AIRSAR sensor of the Jet Propulsion Laboratory (JPL and the Electromagnetics Institute Synthetic Aperture Radar (EMISAR sensor of the Technical University of Denmark (DTU. Experiments on single-band and multi-band data both show that these approaches acquire more accurate classification results in comparison to many conventional and advanced classifiers.

  13. Polarimetric LIDAR with FRI sampling for target characterization

    Science.gov (United States)

    Wijerathna, Erandi; Creusere, Charles D.; Voelz, David; Castorena, Juan

    2017-09-01

    Polarimetric LIDAR is a significant tool for current remote sensing applications. In addition, measurement of the full waveform of the LIDAR echo provides improved ranging and target discrimination, although, data storage volume in this approach can be problematic. In the work presented here, we investigated the practical issues related to the implementation of a full waveform LIDAR system to identify polarization characteristics of multiple targets within the footprint of the illumination beam. This work was carried out on a laboratory LIDAR testbed that features a flexible arrangement of targets and the ability to change the target polarization characteristics. Targets with different retardance characteristics were illuminated with a linearly polarized laser beam and the return pulse intensities were analyzed by rotating a linear analyzer polarizer in front of a high-speed detector. Additionally, we explored the applicability and the limitations of applying a sparse sampling approach based on Finite Rate of Innovations (FRI) to compress and recover the characteristic parameters of the pulses reflected from the targets. The pulse parameter values extracted by the FRI analysis were accurate and we successfully distinguished the polarimetric characteristics and the range of multiple targets at different depths within the same beam footprint. We also demonstrated the recovery of an unknown target retardance value from the echoes by applying a Mueller matrix system model.

  14. Measurement of impulse current using polarimetric fiber optic sensor

    Science.gov (United States)

    Ginter, Mariusz

    2017-08-01

    In the paper the polarimetric current sensing solution used for measurements of high amplitude currents and short durations is presented. This type of sensor does not introduce additional resistance and inductance into the circuit, which is a desirable phenomenon in this type of measurement. The magneto element is a fiber optic coil made of spun fiber optic. The fiber in which the core is twisted around its axis is characterized by a small effect of interfering magnitudes, ie mechanical vibrations and pressure changes on the polarimeter. The presented polarimetric current sensor is completely fiber optic. Experimental results of a proposed sensor construction solution operating at 1550 nm and methods of elimination of influence values on the fiber optic current sensor were presented. The sensor was used to measure the impulse current. The generated current pulses are characterized by a duration of 23μs and amplitudes ranging from 1 to 3.5 kA. The currents in the discharge circuit are shown. The measurement uncertainty of the amplitude of the electric current in the range of measured impulses was determined and estimated to be no more than 2%.

  15. G0-WISHART Distribution Based Classification from Polarimetric SAR Images

    Science.gov (United States)

    Hu, G. C.; Zhao, Q. H.

    2017-09-01

    Enormous scientific and technical developments have been carried out to further improve the remote sensing for decades, particularly Polarimetric Synthetic Aperture Radar(PolSAR) technique, so classification method based on PolSAR images has getted much more attention from scholars and related department around the world. The multilook polarmetric G0-Wishart model is a more flexible model which describe homogeneous, heterogeneous and extremely heterogeneous regions in the image. Moreover, the polarmetric G0-Wishart distribution dose not include the modified Bessel function of the second kind. It is a kind of simple statistical distribution model with less parameter. To prove its feasibility, a process of classification has been tested with the full-polarized Synthetic Aperture Radar (SAR) image by the method. First, apply multilook polarimetric SAR data process and speckle filter to reduce speckle influence for classification result. Initially classify the image into sixteen classes by H/A/α decomposition. Using the ICM algorithm to classify feature based on the G0-Wshart distance. Qualitative and quantitative results show that the proposed method can classify polaimetric SAR data effectively and efficiently.

  16. Algorithm for wind speed estimate with polarimetric radar

    Directory of Open Access Journals (Sweden)

    Ю. А. Авер’янова

    2013-07-01

    Full Text Available The connection of wind speed and drops behavior is substantiated as well as the drop behavior influence onto the polarization characteristics of electromagnetic waves. The expression to calculate the wind speed taking into account the Weber number for the critical regime of drop deformation is obtained. The critical regime of drop deformation is the regime when drop is divided into two parts. The dependency of critical wind speed on the drop diameter is calculated and shown. The concept o polarization spectrum that is introduced in the previous papers is used to estimate the dynamic processes in the atmosphere. At the moment when the drop is under the influence of the wind that is equal to the critical wind speed the drop will be divided into two parts. This process will be reflected as the appearance of the two equal components of polarization spectra of reflected electromagnetic waves at the orthogonal antennas of Doppler Polarimetric Radar. Owing the information about the correspondence of the polarization component energy level to the drop diameter it is possible to estimate the wind speed with the obtained dependency. The process of the wind speed estimate with polarimetric radar is presented with the developed common algorithm

  17. Heavy Rainfall Monitoring by Polarimetric C-Band Weather Radars

    Directory of Open Access Journals (Sweden)

    Roberto Cremonini

    2010-11-01

    Full Text Available Piemonte region, in the north-western Italy, is characterized by complex orography and Mediterranean influence that often causes extreme rainfall event, during the warm season. Although the region is monitored by a dense gauge network (more than one gauge per 100 km2, the ground measurements are often inadequate to properly observe intense and highly variable precipitations. Polarimetric weather radars provide a unique way to monitor rainfall over wide areas, with the required spatial detail and temporal resolution. Nevertheless, most European weather radar networks are operating at C-band, which may seriously limit quantitative precipitation estimation in heavy rainfall due to relevant power signal attenuation. Phase measurements, unlike power measurements, are not affected by signal attenuation. For this reason, polarimetric radars, for which the differential phase shift measurements are available, provide an additional way in which to estimate precipitation, which is immune to signal attenuation. In this work differential phase based rainfall estimation techniques are applied to analyze two flash-floods: the first one occurred on the Ligurian Apennines on 16 August 2006 and the second occurred on 13 September 2008, causing rain accumulations above 270 mm in few hours.

  18. Interactions of light with rough dielectric surfaces - Spectral reflectance and polarimetric properties

    Science.gov (United States)

    Yon, S. A.; Pieters, C. M.

    1988-01-01

    The nature of the interactions of visible and NIR radiation with the surfaces of rock and mineral samples was investigated by measuring the reflectance and the polarization properties of scattered and reflected light for slab samples of obsidian and fine-grained basalt, prepared to controlled surface roughness. It is shown that the degree to which radiation can penetrate a surface and then scatter back out, an essential criterion for mineralogic determinations based on reflectance spectra, depends not only upon the composition of the material, but also on its physical condition such as sample grain size and surface roughness. Comparison of the experimentally measured reflectance and polarization from smooth and rough slab materials with the predicted models indicates that single Fresnel reflections are responsible for the largest part of the reflected intensity resulting from interactions with the surfaces of dielectric materials; multiple Fresnel reflections are much less important for such surfaces.

  19. Spectral Analysis of Polarimetric Weather Radar Data With Multiple Processes in a Resolution Volume

    National Research Council Canada - National Science Library

    Bachmann, Svetlana; DeBrunner, Victor; Zrnic, Dusan; Yeary, Mark

    2007-01-01

    .... An example of clear air observed using an S-band dual polarization radar is presented. Heretofore, migrating birds and wind-blown insects that are mixed within each resolution volume caused such data to be unusable for meteorological interpretation...

  20. Studying ice particle growth processes in mixed-phase clouds using spectral polarimetric radar measurements

    NARCIS (Netherlands)

    Pfitzenmaier, L.

    2018-01-01

    Clouds are a prominent part of the Earth hydrological cycle. In the mid latitudes, the ice phase of clouds is highly involved in the formation of precipitation. The ice particles in the clouds fall to earth either as snow flakes, in the winter month, or melting crystals that become rain drops. An

  1. Ice crystal properties retrieval using radar spectral polarimetric measurements within ice/mixed-phase clouds

    NARCIS (Netherlands)

    Dufournet, Y.

    2010-01-01

    In the field of atmospheric research, ground-based radar systems are often employed to study ice/mixed-phase cloud properties based on retrieval techniques. These techniques convert the radar signal backscattered by each bulk of ice crystals being probed within the same radar resolution volume to

  2. REMOVAL OF SPECTRO-POLARIMETRIC FRINGES BY TWO-DIMENSIONAL PATTERN RECOGNITION

    International Nuclear Information System (INIS)

    Casini, R.; Judge, P. G.; Schad, T. A.

    2012-01-01

    We present a pattern-recognition-based approach to the problem of the removal of polarized fringes from spectro-polarimetric data. We demonstrate that two-dimensional principal component analysis can be trained on a given spectro-polarimetric map in order to identify and isolate fringe structures from the spectra. This allows us, in principle, to reconstruct the data without the fringe component, providing an effective and clean solution to the problem. The results presented in this paper point in the direction of revising the way that science and calibration data should be planned for a typical spectro-polarimetric observing run.

  3. Accurate Characterization of Winter Precipitation Using Multi-Angle Snowflake Camera, Visual Hull, Advanced Scattering Methods and Polarimetric Radar

    Directory of Open Access Journals (Sweden)

    Branislav M. Notaroš

    2016-06-01

    Full Text Available This article proposes and presents a novel approach to the characterization of winter precipitation and modeling of radar observables through a synergistic use of advanced optical disdrometers for microphysical and geometrical measurements of ice and snow particles (in particular, a multi-angle snowflake camera—MASC, image processing methodology, advanced method-of-moments scattering computations, and state-of-the-art polarimetric radars. The article also describes the newly built and established MASCRAD (MASC + Radar in-situ measurement site, under the umbrella of CSU-CHILL Radar, as well as the MASCRAD project and 2014/2015 winter campaign. We apply a visual hull method to reconstruct 3D shapes of ice particles based on high-resolution MASC images, and perform “particle-by-particle” scattering computations to obtain polarimetric radar observables. The article also presents and discusses selected illustrative observation data, results, and analyses for three cases with widely-differing meteorological settings that involve contrasting hydrometeor forms. Illustrative results of scattering calculations based on MASC images captured during these events, in comparison with radar data, as well as selected comparative studies of snow habits from MASC, 2D video-disdrometer, and CHILL radar data, are presented, along with the analysis of microphysical characteristics of particles. In the longer term, this work has potential to significantly improve the radar-based quantitative winter-precipitation estimation.

  4. Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle SpectroPolarimetric Imager

    Directory of Open Access Journals (Sweden)

    David J. Diner

    2012-12-01

    Full Text Available Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF model. GroundMSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of outdoor landscapes. The camera uses a very accurate photoelastic-modulator-based polarimetric imaging technique to acquire Stokes vector measurements in three of the instrument’s bands (470, 660, and 865 nm. A description of the instrument is presented, and observations of selected targets within a scene acquired on 6 January 2010 are analyzed. Data collected during the course of the day as the Sun moved across the sky provided a range of illumination geometries that facilitated evaluation of the surface model, which is comprised of a volumetric reflection term represented by the modified Rahman-Pinty-Verstraete function plus a specular reflection term generated by a randomly oriented array of Fresnel-reflecting microfacets. While the model is fairly successful in predicting the polarized reflection from two grass targets in the scene, it does a poorer job for two manmade targets (a parking lot and a truck roof, possibly due to their greater degree of geometric organization. Several empirical adjustments to the model are explored and lead to improved fits to the data. For all targets, the data support the notion of spectral invariance in the angular shape of the unpolarized and polarized surface reflection. As noted by others, this behavior provides valuable constraints on the aerosol retrieval problem, and highlights the importance of multiangle observations.

  5. CAMEX-4 MOBILE X-BAND POLARIMETRIC WEATHER RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Mobile X-band Polarimetric Weather Radar on Wheels (X-POW)is a Doppler scanning radar operating at 9.3 GHz.with horizontal and vertical polarization. Used for...

  6. GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar OLYMPEX V2

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar OLYMPEX V2 dataset consists of rain rate, reflectivity, Doppler velocity, and other...

  7. The Development of Polarimetric and Nonpolarimetric Multiwavelength Focal Plane Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance polarimetric and nonpolarimetric sensing is crucial to upcoming NASA missions, including ACE and CLARREO and the multi-agency VIIRS NPP project. The...

  8. GPM GROUND VALIDATION NASA S-BAND DUAL POLARIMETRIC (NPOL) DOPPLER RADAR IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar IFloodS data set was collected from April 30, 2013 to June 16, 2013 near Traer, Iowa as...

  9. GPM GROUND VALIDATION IOWA X-BAND POLARIMETRIC MOBILE DOPPLER WEATHER RADARS IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Iowa X-band Polarimetric Mobile Doppler Weather Radars IFloodS dataset was gathered during the IFloodS campaign from April to June 2013...

  10. Polarimetric Multiwavelength Focal Plane Arrays for ACE and CLARREO, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance polarimetric and nonpolarimetric sensing is crucial to upcoming NASA missions, including ACE and CLARREO and the multi-agency VIIRS NPP project. The...

  11. CLPX-Airborne: Polarimetric Ku-Band Scatterometer (POLSCAT) Data, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains Ku-band polarimetric scatterometer (POLSCAT) data collected as part of the Cold Land Processes Field Experiment (CLPX) to enable the...

  12. An Icon-Based Synoptic Visualization of Fully Polarimetric Radar Data

    Directory of Open Access Journals (Sweden)

    Iain H. Woodhouse

    2012-03-01

    Full Text Available The visualization of fully polarimetric radar data is hindered by traditional remote sensing methodologies for displaying data due to the large number of parameters per pixel in such data, and the non-scalar nature of variables such as phase difference. In this paper, a new method is described that uses icons instead of image pixels to represent the image data so that polarimetric properties and geographic context can be visualized together. The icons are parameterized using the alpha-entropy decomposition of polarimetric data. The resulting image allows the following five variables to be displayed simultaneously: unpolarized power, alpha angle, polarimetric entropy, anisotropy and orientation angle. Examples are given for both airborne and laboratory-based imaging.

  13. GPM Ground Validation NOAA X-band Polarimetric Radar (NOXP) IPHEx V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NOAA X-band dual-Polarimetric radar (NOXP) IPHEx dataset consists of differential reflectivity, differential phase shift, co-polar cross...

  14. Retrieval of the raindrop size distribution from polarimetric radar data using double-moment normalisation

    OpenAIRE

    Raupach, Timothy H.; Berne, Alexis

    2016-01-01

    A new technique for estimating the raindrop size distribution (DSD) from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observation...

  15. Polarimetric SAR image classification based on discriminative dictionary learning model

    Science.gov (United States)

    Sang, Cheng Wei; Sun, Hong

    2018-03-01

    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  16. Estimating soil moisture using the Danish polarimetric SAR

    DEFF Research Database (Denmark)

    Jiankang, Ji; Thomsen, A.; Skriver, Henning

    1995-01-01

    The results of applying data from the Danish polarimetric SAR (EMISAR) to estimate soil moisture for bare fields are presented. Fully calibrated C-band SAR images for hh, vv and cross polarizations have been used in this study. The measured surface roughness data showed that classical roughness...... autocorrelation functions (Gaussian and Exponential) were not able to fit natural surfaces well. A Gauss-Exp hybrid model which agreed better with the measured data has been proposed. Theoretical surface scattering models (POM, IEM), as well as an empirical model for retrieval of soil moisture and surface rms...... height from coand cross-polarized ratio, have been examined, but the results are less satisfactory. As soil moisture response to backscattering coefficient σo is mainly coupled to surface roughness effect for bare fields, a bilinear model coupling volumetric soil moisture mv and surface rms height σ...

  17. Scattering Mechanism Identification Based on Polarimetric HRRP of Manmade Target

    Directory of Open Access Journals (Sweden)

    Wu Jiani

    2016-04-01

    Full Text Available In this paper, we analyze the space polarization and frequency dispersion characteristics of the polarimetric High Resolution Range Profile (HRRP of manmade targets. We integrate these characteristics and propose a novel scheme for scattering mechanism identification. Using a polarization decomposition technique, the scheme first identifies the scattering mechanism of the scattering centers. Specially, it uses an algorithm to compensate for the polarization orientation angle in order to decrease the errors in judgment caused by the varying azimuth. Then, based on the frequency dispersion characteristics, we design threedimensional parameters to discriminate between the scattering centers, in order to decrease the inaccuracy in the discriminations. Finally, we conduct simulations based on electromagnetic data to validate the feasibility of the proposed scheme and to demonstrate that it provides a basis for practical use in target recognition.

  18. Classification of Polarimetric SAR Data Using Dictionary Learning

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Nielsen, Allan Aasbjerg; Dahl, Anders Lindbjerg

    2012-01-01

    This contribution deals with classification of multilook fully polarimetric synthetic aperture radar (SAR) data by learning a dictionary of crop types present in the Foulum test site. The Foulum test site contains a large number of agricultural fields, as well as lakes, forests, natural vegetation......, grasslands and urban areas, which make it ideally suited for evaluation of classification algorithms. Dictionary learning centers around building a collection of image patches typical for the classification problem at hand. This requires initial manual labeling of the classes present in the data and is thus...... a method for supervised classification. Sparse coding of these image patches aims to maintain a proficient number of typical patches and associated labels. Data is consecutively classified by a nearest neighbor search of the dictionary elements and labeled with probabilities of each class. Each dictionary...

  19. Analytical Aspects of Total Starch Polarimetric Determination in Some Cereals

    Directory of Open Access Journals (Sweden)

    Rodica Caprita

    2016-10-01

    Full Text Available Starch is the most important digestible polysaccharide present in foods and feeds. The starch concentration in cereals cannot be determined directly, because the starch is contained within a structurally and chemically complex matrix. Fine grinding and boiling in dilute HCl are preparative steps necessary for complete release of the starch granules from the protein matrix. Starch can be determined using simple and inexpensive physical methods, such as density, refractive index or optical rotation assessment. The polarimetric method allows the determination even of small starch contents due to its extremely high specific rotation. For more accurate results, the contribution of free sugars is eliminated by dissolution in 40% (V/V ethanol. The influence of other optically active substances, which might interfere, is removed by filtration/clarification prior to the optical rotation measurement.

  20. Tropical Mangrove Mapping Using Fully-Polarimetric Radar Data

    Directory of Open Access Journals (Sweden)

    Bambang Trisasongko

    2009-09-01

    Full Text Available Although mangrove is one of important ecosystems in the world, it has been abused and exploited by human for various purposes. Monitoring mangrove is therefore required to maintain a balance between economy and conservation and provides up-to-date information for rehabilitation. Optical remote sensing data have delivered such information, however ever-changing atmospheric disturbance may significantly decrease thematic content. In this research, Synthetic Aperture Radar (SAR fully polarimetric data were evaluated to present an alternative for mangrove mapping. Assessment using three statistical trees was performed on both tonal and textural data. It was noticeable that textural data delivered fairly good improvement which reduced the error rate to around 5-6% at L-band. This suggests that insertion of textural data is more important than any information derived from decomposition algorithm.

  1. Segment-based change detection for polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    2006-01-01

    single-channel SAR images but multi-channel algorithms have also been described. Different approaches have been used for image segmentation. Edge detection combined with region growing is one approach, where segments are created by growing regions from a previously edge detected and edge thinned image....... This method relies primarily on a robust edge detector, which preferably provides a constant false alarm rate. For single-channel SAR images this is fulfilled by the ratio edge detector, and for polarimetric SAR data, an edge detector based on the above mentioned test statistic fulfils this. Another approach......, wetlands, lakes, and urban areas. Also, other test sites over for instance urban areas have been used to assess the improvement by the segment-based change detection method. In the paper, results from pixel-based change detection, i.e. without segmentation, and from segment-based change detection, where...

  2. Polarimetric Radar Retrievals in Southeast Texas During Hurricane Harvey

    Science.gov (United States)

    Wolff, D. B.; Petersen, W. A.; Tokay, A.; Marks, D. A.; Pippitt, J. L.; Kirstetter, P. E.

    2017-12-01

    Hurricane Harvey hit the Texas Gulf Coast as a major hurricane on August 25, 2017 before exiting the state as a tropical storm on September 1, 2017. In its wake, it left a flood of historic proportions, with some areas measuring 60 inches of rain over a five-day period. Although the storm center stayed west of the immediate Houston area training bands of precipitation impacted the Houston area for five full days. The National Weather Service (NWS) WSR88D dual-polarimetric radar (KHGX), located southeast of Houston, maintained operations for the entirety of the event. The Harris County Flood Warning System (HCFWS) had 150 rain gauges deployed in its network and seven NWS Automated Surface Observing Systems (ASOS) rain gauges are also located in the area. In this study, we used the full radar data set to retrieve daily and event-total precipitation estimates within 120 km of the KHGX radar for the period August 25-29, 2017. These estimates were then compared to the HCFWS and ASOS gauges. Three different polarimetric hybrid rainfall retrievals were used: Ciffeli et al. 2011; Bringi et al. 2004; and, Chen et al. 2017. Each of these hybrid retrievals have demonstrated robust performance in the past. However, both daily and event-total comparisons from each of these retrievals compared to those of HCFWS and ASOS rain gauge networks resulted in significant underestimates by the radar retrievals. These radar underestimates are concerning. Sources of error and variance will be investigated to understand the source of radar-gauge disagreement. One current hypothesis is that due to the large number of small drops often found in hurricanes, the differential reflectivity and specific differential phase are relatively small so that the hybrid algorithms use only the reflectivity/rain rate procedure (so called Z-R relationships), and hence rarely invoke the ZDR or KDP procedures. Thus, an alternative Z-R relationship must be invoked to retrieve accurate rain rate estimates.

  3. An improved method for polarimetric image restoration in interferometry

    Science.gov (United States)

    Pratley, Luke; Johnston-Hollitt, Melanie

    2016-11-01

    Interferometric radio astronomy data require the effects of limited coverage in the Fourier plane to be accounted for via a deconvolution process. For the last 40 years this process, known as `cleaning', has been performed almost exclusively on all Stokes parameters individually as if they were independent scalar images. However, here we demonstrate for the case of the linear polarization P, this approach fails to properly account for the complex vector nature resulting in a process which is dependent on the axes under which the deconvolution is performed. We present here an improved method, `Generalized Complex CLEAN', which properly accounts for the complex vector nature of polarized emission and is invariant under rotations of the deconvolution axes. We use two Australia Telescope Compact Array data sets to test standard and complex CLEAN versions of the Högbom and SDI (Steer-Dwedney-Ito) CLEAN algorithms. We show that in general the complex CLEAN version of each algorithm produces more accurate clean components with fewer spurious detections and lower computation cost due to reduced iterations than the current methods. In particular, we find that the complex SDI CLEAN produces the best results for diffuse polarized sources as compared with standard CLEAN algorithms and other complex CLEAN algorithms. Given the move to wide-field, high-resolution polarimetric imaging with future telescopes such as the Square Kilometre Array, we suggest that Generalized Complex CLEAN should be adopted as the deconvolution method for all future polarimetric surveys and in particular that the complex version of an SDI CLEAN should be used.

  4. Assessment of GF-3 Polarimetric SAR Data for Physical Scattering Mechanism Analysis and Terrain Classification.

    Science.gov (United States)

    Yin, Junjun; Yang, Jian; Zhang, Qingjun

    2017-12-01

    On 10 August 2016 China launched the GF-3, its first C-band polarimetric synthetic aperture radar (SAR) satellite, which was put into operation at the end of January, 2017. GF-3 polarimetric SAR has many advantages such as high resolution and multi-polarization imaging capabilities. Polarimetric SAR can fully characterize the backscatter property of targets, and thus it is of great interest to explore the physical scattering mechanisms of terrain types, which is very important in interpreting polarimetric SAR imagery and for its further usages in Earth observations. In this paper, focusing on target scattering characterization and feature extraction, we generalize the Δ α B / α B method, which was proposed under the reflection symmetric assumption, for the general backscatter process to account for both the reflection symmetry and asymmetry cases. Then, we evaluate the performances of physical scattering mechanism analysis methods for GF-3 polarimetric SAR imagery. Radarsat-2 data acquired over the same area is used for cross validation. Results show that GF-3 polarimetric SAR data has great potential for target characterization, especially for ocean area observation.

  5. HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wardle, John F. C. [Brandeis University, Physics Department, Waltham, MA 02454 (United States); Bouman, Katherine L., E-mail: achael@cfa.harvard.edu [Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139 (United States)

    2016-09-20

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previous work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.

  6. The ROHP-PAZ mission and the polarimetric and non-polarimetric effects of rain and other fozen hydrometeors on GNSS Radio-Occultation signals.

    Science.gov (United States)

    De La Torre Juarez, M.; Padulles, R.; Cardellach, E.; Tomás, S.; Turk, J.; Ao, C. O.; Oliveras, S.; Rius, A.

    2015-12-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) will test, for the first time, the new polarimetric radio occultation (RO) concept. This is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) RO payload on board of the Spanish Earth Observation satellite PAZ. The launch of the satellite is scheduled for October 2015, and it will be followed by a 6-month commissioning phase period and has an expected life of 7 years, with a goal of 10 years.The concept is similar to that used in some polarimetric weather radars: to measure the differential phase shift between the two polarimetric components of the received signal, although in this case we will use the forward scattering geometry instead of the backscattering one. It will allow us to retrieve precipitation and other hydrometeors information, and simultaneous thermodynamic vertical profiles which will help to the understanding of the thermodynamic processes beyond heavy rain events. A sensitivity analysis has been performed, showing that the rain-induced effect is above PAZ detectability threshold in 90% of the events with along-ray averaged rain rate higher than 5 mm/h. Also, a ground field campaign has been conducted prior to the launch of the satellite. The measurements from the campaign have shown the first experimental evidences that precipitation and frozen hydrometeors induce a noticeable effect into the polarimetric RO observables. We will present here the actual status of the mission and the results from the field campaign. We will also discuss the results of the theoretical study of the thermodynamics and the effects of rain and frozen hydrometeors into standard and polarimetric RO, based on a large collocation exercise of COSMIC and TerrasSar-X with TRMM, GPM and CloudSat.

  7. Space-borne polarimetric SAR sensors or the golden age of radar polarimetry

    Directory of Open Access Journals (Sweden)

    Pottier E.

    2010-06-01

    Full Text Available SAR Polarimetry represents an active area of research in Active Earth Remote Sensing. This interest is clearly supported by the fact that nowadays there exists, or there will exist in a very next future, a non negligible quantity of launched Polarimetric SAR Spaceborne sensors. The ENVISAT satellite, developed by ESA, was launched on March 2002, and was the first Spaceborne sensor offering an innovative dualpolarization Advanced Synthetic Aperture Radar (ASAR system operating at C-band. The second Polarimetric Spaceborne sensor is ALOS, a Japanese Earth-Observation satellite, developed by JAXA and was launched in January 2006. This mission includes an active L-band polarimetric radar sensor (PALSAR whose highresolution data may be used for environmental and hazard monitoring. The third Polarimetric Spaceborne sensor is TerraSAR-X, a new German radar satellite, developed by DLR, EADS-Astrium and Infoterra GmbH, was launched on June 2007. This sensor carries a dual-polarimetric and high frequency X-Band SAR sensor that can be operated in different modes and offers features that were not available from space before. At least, the Polarimetric Spaceborne sensor, developed by CSA and MDA, and named RADARSAT-2 was launched in December 2007 The Radarsat program was born out the need for effective monitoring of Canada’s icy waters, and some Radarsat-2 capabilities that benefit sea- and river ice applications are the multi-polarization options that will improve ice-edge detection, ice-type discrimination and structure information. The many advances in these different Polarimetric Spaceborne platforms were developed to respond to specific needs for radar data in environmental monitoring applications around the world, like : sea- and river-ice monitoring, marine surveillance, disaster management, oil spill detection, snow monitoring, hydrology, mapping, geology, agriculture, soil characterisation, forestry applications (biomass, allometry, height

  8. A Common Calibration Source Framework for Fully-Polarimetric and Interferometric Radiometers

    Science.gov (United States)

    Kim, Edward J.; Davis, Brynmor; Piepmeier, Jeff; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    Two types of microwave radiometry--synthetic thinned array radiometry (STAR) and fully-polarimetric (FP) radiometry--have received increasing attention during the last several years. STAR radiometers offer a technological solution to achieving high spatial resolution imaging from orbit without requiring a filled aperture or a moving antenna, and FP radiometers measure extra polarization state information upon which entirely new or more robust geophysical retrieval algorithms can be based. Radiometer configurations used for both STAR and FP instruments share one fundamental feature that distinguishes them from more 'standard' radiometers, namely, they measure correlations between pairs of microwave signals. The calibration requirements for correlation radiometers are broader than those for standard radiometers. Quantities of interest include total powers, complex correlation coefficients, various offsets, and possible nonlinearities. A candidate for an ideal calibration source would be one that injects test signals with precisely controllable correlation coefficients and absolute powers simultaneously into a pair of receivers, permitting all of these calibration quantities to be measured. The complex nature of correlation radiometer calibration, coupled with certain inherent similarities between STAR and FP instruments, suggests significant leverage in addressing both problems together. Recognizing this, a project was recently begun at NASA Goddard Space Flight Center to develop a compact low-power subsystem for spaceflight STAR or FP receiver calibration. We present a common theoretical framework for the design of signals for a controlled correlation calibration source. A statistical model is described, along with temporal and spectral constraints on such signals. Finally, a method for realizing these signals is demonstrated using a Matlab-based implementation.

  9. Structural Classification of Marshes with Polarimetric SAR Highlighting the Temporal Mapping of Marshes Exposed to Oil

    Directory of Open Access Journals (Sweden)

    Elijah Ramsey

    2015-09-01

    Full Text Available Empirical relationships between field-derived Leaf Area Index (LAI and Leaf Angle Distribution (LAD and polarimetric synthetic aperture radar (PolSAR based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.

  10. Structural classification of marshes with Polarimetric SAR highlighting the temporal mapping of marshes exposed to oil

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2015-01-01

    Empirical relationships between field-derived Leaf Area Index (LAI) and Leaf Angle Distribution (LAD) and polarimetric synthetic aperture radar (PolSAR) based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC) correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.             

  11. Spectral Lag Evolution among -Ray Burst Pulses

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We analyse the spectral lag evolution of -ray burst (GRB) pulses with observations by CGRO/BATSE. No universal spectral lag evolution feature and pulse luminosity-lag relation within a GRB is observed.Our results suggest that the spectral lag would be due to radiation physics and dynamics of a given ...

  12. Spectral Pollution

    OpenAIRE

    Davies, E B; Plum, M

    2003-01-01

    We discuss the problems arising when computing eigenvalues of self-adjoint operators which lie in a gap between two parts of the essential spectrum. Spectral pollution, i.e. the apparent existence of eigenvalues in numerical computations, when no such eigenvalues actually exist, is commonplace in problems arising in applied mathematics. We describe a geometrically inspired method which avoids this difficulty, and show that it yields the same results as an algorithm of Zimmermann and Mertins.

  13. Polarimetric Emission of Rain Events: Simulation and Experimental Results at X-Band

    Directory of Open Access Journals (Sweden)

    Nuria Duffo

    2009-06-01

    Full Text Available Accurate models are used today for infrared and microwave satellite radiance simulations of the first two Stokes elements in the physical retrieval, data assimilation etc. of surface and atmospheric parameters. Although in the past a number of theoretical and experimental works have studied the polarimetric emission of some natural surfaces, specially the sea surface roughened by the wind (Windsat mission, very limited studies have been conducted on the polarimetric emission of rain cells or other natural surfaces. In this work, the polarimetric emission (four Stokes elements of a rain cell is computed using the polarimetric radiative transfer equation assuming that raindrops are described by Pruppacher-Pitter shapes and that their size distribution follows the Laws-Parsons law. The Boundary Element Method (BEM is used to compute the exact bistatic scattering coefficients for each raindrop shape and different canting angles. Numerical results are compared to the Rayleigh or Mie scattering coefficients, and to Oguchi’s ones, showing that above 1-2 mm raindrop size the exact formulation is required to model properly the scattering. Simulation results using BEM are then compared to the experimental data gathered with a X-band polarimetric radiometer. It is found that the depolarization of the radiation caused by the scattering of non-spherical raindrops induces a non-zero third Stokes parameter, and the differential phase of the scattering coefficients induces a non-zero fourth Stokes parameter.

  14. Atmospheric polarimetric effects on GNSS radio occultations: the ROHP-PAZ field campaign

    Science.gov (United States)

    Padullés, R.; Cardellach, E.; de la Torre Juárez, M.; Tomás, S.; Turk, F. J.; Oliveras, S.; Ao, C. O.; Rius, A.

    2016-01-01

    This study describes the first experimental observations showing that hydrometeors induce polarimetric signatures in global navigation satellite system (GNSS) signals. This evidence is relevant to the PAZ low Earth orbiter, which will test the concept and applications of polarimetric GNSS radio occultation (RO) (i.e. ROs obtained with a dual-polarization antenna). A ground field campaign was carried out in preparation for PAZ to verify the theoretical sensitivity studies on this concept (Cardellach et al., 2015). The main aim of the campaign is to identify and understand the factors that might affect the polarimetric GNSS observables. Studied for the first time, GNSS signals measured with two polarimetric antennas (H, horizontal, and V, vertical) are shown to discriminate between heavy rain events by comparing the measured phase difference between the H and V phase delays (ΔΦ) in different weather scenarios. The measured phase difference indicates higher dispersion under rain conditions. When individual events are examined, significant increases in ΔΦ occur when the radio signals cross rain cells. Moreover, the amplitude of such a signal is much higher than the theoretical prediction for precipitation; thus, other sources of polarimetric signatures have been explored and identified. Modelling of other hydrometeors, such as melting particles and ice crystals, have been proposed to explain the obtained measurements, with good agreement in more than 90 % of the cases.

  15. Application of Deep Networks to Oil Spill Detection Using Polarimetric Synthetic Aperture Radar Images

    Directory of Open Access Journals (Sweden)

    Guandong Chen

    2017-09-01

    Full Text Available Polarimetric synthetic aperture radar (SAR remote sensing provides an outstanding tool in oil spill detection and classification, for its advantages in distinguishing mineral oil and biogenic lookalikes. Various features can be extracted from polarimetric SAR data. The large number and correlated nature of polarimetric SAR features make the selection and optimization of these features impact on the performance of oil spill classification algorithms. In this paper, deep learning algorithms such as the stacked autoencoder (SAE and deep belief network (DBN are applied to optimize the polarimetric feature sets and reduce the feature dimension through layer-wise unsupervised pre-training. An experiment was conducted on RADARSAT-2 quad-polarimetric SAR image acquired during the Norwegian oil-on-water exercise of 2011, in which verified mineral, emulsions, and biogenic slicks were analyzed. The results show that oil spill classification achieved by deep networks outperformed both support vector machine (SVM and traditional artificial neural networks (ANN with similar parameter settings, especially when the number of training data samples is limited.

  16. Fitting a Two-Component Scattering Model to Polarimetric SAR Data

    Science.gov (United States)

    Freeman, A.

    1998-01-01

    Classification, decomposition and modeling of polarimetric SAR data has received a great deal of attention in the recent literature. The objective behind these efforts is to better understand the scattering mechanisms which give rise to the polarimetric signatures seen in SAR image data. In this Paper an approach is described, which involves the fit of a combination of two simple scattering mechanisms to polarimetric SAR observations. The mechanisms am canopy scatter from a cloud of randomly oriented oblate spheroids, and a ground scatter term, which can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, seen through a layer of vertically oriented scatterers. An advantage of this model fit approach is that the scattering contributions from the two basic scattering mechanisms can be estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. The model fit can be applied to polarimetric AIRSAR data at C-, L- and P-Band.

  17. Evaluation of Polarimetric SAR Decomposition for Classifying Wetland Vegetation Types

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Hong

    2015-07-01

    Full Text Available The Florida Everglades is the largest subtropical wetland system in the United States and, as with subtropical and tropical wetlands elsewhere, has been threatened by severe environmental stresses. It is very important to monitor such wetlands to inform management on the status of these fragile ecosystems. This study aims to examine the applicability of TerraSAR-X quadruple polarimetric (quad-pol synthetic aperture radar (PolSAR data for classifying wetland vegetation in the Everglades. We processed quad-pol data using the Hong & Wdowinski four-component decomposition, which accounts for double bounce scattering in the cross-polarization signal. The calculated decomposition images consist of four scattering mechanisms (single, co- and cross-pol double, and volume scattering. We applied an object-oriented image analysis approach to classify vegetation types with the decomposition results. We also used a high-resolution multispectral optical RapidEye image to compare statistics and classification results with Synthetic Aperture Radar (SAR observations. The calculated classification accuracy was higher than 85%, suggesting that the TerraSAR-X quad-pol SAR signal had a high potential for distinguishing different vegetation types. Scattering components from SAR acquisition were particularly advantageous for classifying mangroves along tidal channels. We conclude that the typical scattering behaviors from model-based decomposition are useful for discriminating among different wetland vegetation types.

  18. Polarimetric study of the interstellar medium in Taurus Dark Clouds

    International Nuclear Information System (INIS)

    Hsu, J.

    1985-01-01

    An optical linear polarimetric survey was completed for more than 300 stars in an area of 6.5 0 x 10 0 toward the Taurus Dark Clouds Complex. It was found that the orientation of the magnetic field is roughly perpendicular to the elongation direction of the dust lanes, indicating cloud contraction along the magnetic field lines. The distance to the front edge of the dark clouds in Taurus is determined to be 126 pc. There is only insignificant amount of obscuring material between the cloud complex and the Sun. Besides the polarization data, the reddenings of about 250 stars were also obtained from the UBV photometry. The mean polarization to reddening ratio in the Taurus region is 4.6, which is similar to that of the general interstellar matter. The wavelengths of maximum polarization were determined for 30 stars in Taurus. They show an average value of lambda/sub max/ = 0.57 μm, which is only slightly higher than the mean value of the general interstellar medium, lambda/sub max/ = 0.55 μm. A few stars that show higher values of lambda/sub max/ are found near the small isolated regions of very high extinction. One such highly obscured small region where very complex long chain molecules have been discovered in the ratio spectra, is the Taurus Molecular Cloud 1

  19. Sample Extraction Bsaed on Helix Scattering for Polarimetric SAR Calibratio

    Science.gov (United States)

    Chang, Y.; Yang, J.; Li, P.; Zhao, L.; Shi, L.

    2017-09-01

    Polarimetric calibration (PolCAL) of Synthetic Aperture Radar (SAR) images is a significant preprocessing for further applications. Since the reflection symmetry property of distributed objects can provide stable constraints for PolCAL. It is reasonable to extract these reference samples before calibration. The helix scattering generally appears in complex urban area and disappears for a natural scatterer, making it a good measure to extract distributed objects. In this paper, a novel technique that extracts reflecting symmetry samples is proposed by using helix scattering. The helix scattering information is calculated by Yamaguchi four-component decomposition algorithm. An adaptive threshold selection algorithm based on generalized Gaussian distribution is also utilized to scale the helix scattering components automatically, getting rid of the problem of various numerical range. The extracting results will be taken as PolCAL reference samples and the Quegan method are utilized to calibrate these PolSAR images. A C-band airborne PolSAR data was taken as examples to evaluate its ability in improving calibration precision. Traditional method i.e. extracting samples with span power was also evaluated as contrast experiment. The results showed that the samples extracting method based on helix scattering can improve the Polcal precision preferably.

  20. Status of PEM-based polarimetric MSE development at KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Jinseok; Chung, Jinil; Oh, Seungtae; Ko, Wonha [National Fusion Research Institute, Daejeon (Korea, Republic of); Bock, Maarten de; Ong, Henry; Lange, Guido [Eindhoven University of Technology, Eindhoven (Netherlands)

    2014-10-15

    A multi-chord PEM (photo elastic modulator)-based polarimetric motional Stark effect (MSE) system is under development for the KSTAR tokamak. The conceptual design for the front optics was optimized to preserve not only the polarization state of the input light for the MSE measurements but also the signal intensity of the existing charge exchange spectroscopy (CES) system that will share the front optics with the MSE. The optics design incorporates how to determine the number of channels and the number of fibers for each channel. A dielectric coating will be applied on the mirror to minimize the relative reflectivity and the phase shift between the two orthogonal polarization components of the incident light. Lenses with low stress-birefringence constants will be adopted to minimize non-linear and random changes in the polarization through the lenses, which is a trade-off with the rather high Faraday rotation in the lenses because the latter effect is linear and can be relatively easily calibrated out. Intensive spectrum measurements and their comparisons with the simulated spectra are done to assist the design of the bandpass filter system that will also use tilting stages to remotely control the passband. Following the system installation in 2014, the MSE measurements are expected to be performed during the 2015 KSTAR campaign.

  1. SAMPLE EXTRACTION BSAED ON HELIX SCATTERING FOR POLARIMETRIC SAR CALIBRATIO

    Directory of Open Access Journals (Sweden)

    Y. Chang

    2017-09-01

    Full Text Available Polarimetric calibration (PolCAL of Synthetic Aperture Radar (SAR images is a significant preprocessing for further applications. Since the reflection symmetry property of distributed objects can provide stable constraints for PolCAL. It is reasonable to extract these reference samples before calibration. The helix scattering generally appears in complex urban area and disappears for a natural scatterer, making it a good measure to extract distributed objects. In this paper, a novel technique that extracts reflecting symmetry samples is proposed by using helix scattering. The helix scattering information is calculated by Yamaguchi four-component decomposition algorithm. An adaptive threshold selection algorithm based on generalized Gaussian distribution is also utilized to scale the helix scattering components automatically, getting rid of the problem of various numerical range. The extracting results will be taken as PolCAL reference samples and the Quegan method are utilized to calibrate these PolSAR images. A C-band airborne PolSAR data was taken as examples to evaluate its ability in improving calibration precision. Traditional method i.e. extracting samples with span power was also evaluated as contrast experiment. The results showed that the samples extracting method based on helix scattering can improve the Polcal precision preferably.

  2. Modeling the photo-polarimetric characteristics of brown dwarfs

    Science.gov (United States)

    Sanghavi, Suniti; Millar-Blanchaer, Max; Jensen-Clem, Rebecca; Shporer, Avi; Nilsson, Ricky; Tinyanont, Samaporn; Riedel, Adric; Kataria, Tiffany; Mawet, Dimitri

    2018-01-01

    An envelope of scatterers like free electrons, atoms/molecules, or haze/clouds affect the Stokes vector of radiation emitted by an oblate body.Due to their high rotation rates, brown dwarfs (BDs) are often considerably oblate. We present a conics-based radiative transfer (RT) scheme for computing the disc-resolved and disc-integrated polarized emission of an oblate body like a BD or extrasolar giant planet (EGP) bearing homogenous or patchy clouds. Using this capability, we theoretically examine the photo-polarimetric signal of BDs as a function of the scattering properties of its atmosphere like cloud optical thickness and grain size concurrently with BD properties like oblateness and inclination angle. The effect of oblateness is examined with and without the temperature gradients caused by gravitational darkening, revealing that the latter can considerably amplify the disc-integrated polarization. The signal depends on both oblateness and inclination angle, with the degree of polarization (DoP) increasing with oblateness and decreasing with inclination, a property useful for assessing the exact spatial orientation of the rotation axis in favorable cases. Our examination of BD cloud properties shows a relative blue-shift in the near-infrared (NIR) for increasing droplet size in optically thick clouds - interesting in view of the observed relative brightening in the J-band for L/T transition BDs. For large cloud grains, the polarization decreases sharply, while the transmitted intensity shows a steady increase, thus reducing the DoP.

  3. Forest Structure Characterization Using Jpl's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    Science.gov (United States)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  4. Estimation and Removing of Anisotropic Scattering for Multiaspect Polarimetric SAR Image

    Directory of Open Access Journals (Sweden)

    Li Yang

    2015-06-01

    Full Text Available Multiaspect Synthetic Aperture Radar (SAR can generate high resolution images and target scattering signatures in different azimuth angles from the coherent integration of all subaperture images. However, mixed anisotropic scatters limit the application of traditional imaging theory. Anisotropic scattering may introduce errors in polarimetric parameters by decreasing the reliability of terrain classification and detection of variability. Thus a method is proposed for estimating and removing anisotropic scattering in multiaspect polarimetric SAR images. The proposed algorithm is based on the maximum likelihood and likelihood-ratio tests for the two-class case, while considering the speckle effect, the mechanism of removing the anisotropic scattering, and the monotonicity of the Constant False Alarm Rate (CFAR detection function. We compare the polarimetric entropy before and after removing the anisotropic subapertures, and then validate the algorithm's potential in retrieving the target signature using a P-band quad-pol airborne SAR with circular trajectory.

  5. Fast polarimetric dehazing method for visibility enhancement in HSI colour space

    Science.gov (United States)

    Zhang, Wenfei; Liang, Jian; Ren, Liyong; Ju, Haijuan; Bai, Zhaofeng; Wu, Zhaoxin

    2017-09-01

    Image haze removal has attracted much attention in optics and computer vision fields in recent years due to its wide applications. In particular, the fast and real-time dehazing methods are of significance. In this paper, we propose a fast dehazing method in hue, saturation and intensity colour space based on the polarimetric imaging technique. We implement the polarimetric dehazing method in the intensity channel, and the colour distortion of the image is corrected using the white patch retinex method. This method not only reserves the detailed information restoration capacity, but also improves the efficiency of the polarimetric dehazing method. Comparison studies with state of the art methods demonstrate that the proposed method obtains equal or better quality results and moreover the implementation is much faster. The proposed method is promising in real-time image haze removal and video haze removal applications.

  6. The Potential of Polarimetric and Compact SAR Data in Rice Identification

    International Nuclear Information System (INIS)

    Shao, Y; Li, K; Liu, L; Yang, Z; Brisco, B

    2014-01-01

    Rice is a major food staple in the world, and provides food for more than one-third of the global population. The monitoring and mapping of paddy rice in a timely and efficient manner is very important for governments and decision makers. Synthetic Aperture Radar (SAR) has been proved to be a significant data source in rice monitoring. In this study, RADARSAT-2 polarimetric data were used to simulate compact polarimetry data. The simulated compact data and polarimetric data were then used to evaluate the information content for rice identification. The results indicate that polarimetric SAR can be used for rice identification based on the scattering mechanisms. The compact polarization RH and the RH/RL ratio are very promising for the discrimination of transplanted rice and direct-sown rice. These results require verification in further research

  7. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Sun Xun

    2016-12-01

    Full Text Available In this paper, we propose a supervised classification algorithm for Polarimetric Synthetic Aperture Radar (PolSAR images using multiple-feature fusion and ensemble learning. First, we extract different polarimetric features, including extended polarimetric feature space, Hoekman, Huynen, H/alpha/A, and fourcomponent scattering features of PolSAR images. Next, we randomly select two types of features each time from all feature sets to guarantee the reliability and diversity of later ensembles and use a support vector machine as the basic classifier for predicting classification results. Finally, we concatenate all prediction probabilities of basic classifiers as the final feature representation and employ the random forest method to obtain final classification results. Experimental results at the pixel and region levels show the effectiveness of the proposed algorithm.

  8. A high resolution polarimetric L-band SAR-design and first results

    DEFF Research Database (Denmark)

    Skou, Niels; Granholm, Johan; Woelders, Kim

    1995-01-01

    An L-band polarimetric SAR system has been developed as part of the dual frequency (L- and C-band), polarimetric, airborne EMISAR system. The SAR features a unique combination of fine resolution (2×2 m) and wide swath (9.3 km). The transmitter power is 6 kW. From a flight altitude of 41,000 ft...... conventional PIN diode switch matrix able to sustain the 6 kW peak power from the transmitter still exhibiting low loss (0.3 dB) and high isolation (more than 50 dB). Thus system cross talk (between polarizations) is dominated by antenna cross talk and is some -35 dB. Polarimetric imagery has been acquired...

  9. Contribution of polarimetric imaging for the characterization of fibrous surface properties at different scales

    Science.gov (United States)

    Tourlonias, Michel; Bigué, Laurent; Bueno, Marie-Ange

    2010-01-01

    The point in using polarimetric imaging for surface characterization is highlighted in this paper. A method for the evaluation of nonwoven surface properties at microscopic and macroscopic scales is described. This method is based on a polarimetric apparatus and various image processing operations are then performed depending on the studied scale. Polarimetric imaging applied to nonwovens, particularly degree of polarization imaging, highlights texture inhomogeneities. At both scales, image processing techniques were designed to analyze surface zones of different textures. At the macroscopic scale, a basic image processing was developed in order to detect the nonwoven manufacturing process defects. Moreover at the microscopic scale, i.e. at the fiber scale, image processing was adapted to evaluate fiber orientation within nonwovens, which is known to be an important information for mechanical behavior prediction.

  10. Detection of buried pipes by polarimetric borehole radar; Polarimetric borehole radar ni yoru maisetsukan no kenshutsu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Niitsuma, H. [Tohoku University, Sendai (Japan); Nakauchi, T. [Osaka Gas Co. Ltd., Osaka (Japan)

    1997-05-27

    If the borehole radar is utilized for detection of buried pipes, the underground radar measurement becomes possible even in the situation where the mesurement on the earth surface is difficult, for example, such a place as under the road where there is much traffic. However, since buried pipes are horizontally installed and the existing borehole radar can send/receive only vertical polarization, the measurement conducted comes to be poor in efficiency from a viewpoint of the polarization utilization. Therefore, by introducing the polarimetric borehole radar to the detection of buried pipes, a basic experiment was conducted for the effective detection of horizontal buried pipes. Proposing the use of a slot antenna which can send/receive horizontal polarization in borehole in addition to a dipole antenna which sends/receives vertical polarization, developed was a step frequency type continuous wave radar of a network analyzer basis. As a result of the experiment, it was confirmed that reflection from buried pipes is largely dependent on polarization. Especially, it was found that in the slot dipole cross polarization mesurement, reflection from buried pipes can be emphasized. 4 refs., 5 figs.

  11. Complex Wishart distribution based analysis of polarimetric synthetic aperture radar data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Skriver, Henning; Conradsen, Knut

    2007-01-01

    Multi-look, polarimetric synthetic aperture radar (SAR) data are often worked with in the so-called covariance matrix representation. For each pixel this representation gives a 3x3 Hermitian, positive definite matrix which follows a complex Wishart distribution. Based on this distribution a test ...... covering agricultural fields near Foulum, Denmark, are used. Soon the Japanese ALOS, the German TerraSAR-X and the Canadian RADARSAT-2 will acquire space-borne, polarimetric data making analysis based on these methods important....

  12. Wavelet Analyses and Applications

    Science.gov (United States)

    Bordeianu, Cristian C.; Landau, Rubin H.; Paez, Manuel J.

    2009-01-01

    It is shown how a modern extension of Fourier analysis known as wavelet analysis is applied to signals containing multiscale information. First, a continuous wavelet transform is used to analyse the spectrum of a nonstationary signal (one whose form changes in time). The spectral analysis of such a signal gives the strength of the signal in each…

  13. OPTICAL PHOTOMETRIC AND POLARIMETRIC INVESTIGATION OF NGC 1931

    International Nuclear Information System (INIS)

    Pandey, A. K.; Eswaraiah, C.; Sharma, Saurabh; Yadav, Ram Kesh; Samal, M. R.; Chauhan, N.; Chen, W. P.; Jose, J.; Ojha, D. K.; Chandola, H. C.

    2013-01-01

    We present optical photometric and polarimetric observations of stars toward NGC 1931 with the aim of deriving cluster parameters such as distance, reddening, age, and luminosity/mass function as well as understanding dust properties and star formation in the region. The distance to the cluster is found to be 2.3 ± 0.3 kpc and the reddening E(B – V) in the region is found to be variable. The stellar density contours reveal two clusters in the region. The observations suggest a differing reddening law within the cluster region. Polarization efficiency of the dust grains toward the direction of the cluster is found to be less than that for the general diffuse interstellar medium (ISM). The slope of the mass function (–0.98 ± 0.22) in the southern region in the mass range of 0.8 ☉ < 9.8 is found to be shallower in comparison to that in the northern region (–1.26 ± 0.23), which is comparable to the Salpeter value (–1.35). The K-band luminosity function (KLF) of the region is found to be comparable to the average value of the slope (∼0.4) for young clusters obtained by Lada and Lada; however, the slope of the KLF is steeper in the northern region as compared to the southern region. The region is probably ionized by two B2 main-sequence-type stars. The mean age of the young stellar objects (YSOs) is found to be 2 ± 1 Myr, which suggests that the identified YSOs could be younger than the ionizing sources of the region. The morphology of the region, the distribution and ages of the YSOs, and ionizing sources indicate a triggered star formation in the region.

  14. Microphysical Structures of Hurricane Irma Observed by Polarimetric Radar

    Science.gov (United States)

    Didlake, A. C.; Kumjian, M. R.

    2017-12-01

    This study examines dual-polarization radar observations of Hurricane Irma as its center passed near the WSR-88D radar in Puerto Rico, capturing needed microphysical information of a mature tropical cyclone. Twenty hours of observations continuously sampled the inner core precipitation features. These data were analyzed by annuli and azimuth, providing a bulk characterization of the primary eyewall, secondary eyewall, and rainbands as they varied around the storm. Polarimetric radar variables displayed distinct signatures of convective and stratiform precipitation in the primary eyewall and rainbands that were organized in a manner consistent with the expected kinematic asymmetry of a storm in weak environmental wind shear but with moderate low-level storm-relative flow. In the front quadrants of the primary eyewall, vertical profiles of differential reflectivity (ZDR) exhibit increasing values with decreasing height consistent with convective precipitation processes. In particular, the front-right quadrant exhibits a signature in reflectivity (ZH) and ZDR indicating larger, sparser drops, which is consistent with a stronger updraft present in this quadrant. In the rear quadrants, a sharply peaked ZDR maximum occurs within the melting layer, which is attributed of stratiform processes. In the rainbands, the convective to stratiform transition can be seen traveling from the front-right to the front-left quadrant. The front-right quadrant exhibits lower co-polar correlation coefficient (ρHV) values in the 3-8 km altitude layer, suggesting larger vertical spreading of various hydrometeors that occurs in convective vertical motions. The front-left quadrant exhibits larger ρHV values, suggesting less diversity of hydrometeor shapes, consistent with stratiform processes. The secondary eyewall did not exhibit a clear signature of processes preferred in a specific quadrant, and a temporal analysis of the secondary eyewall revealed a complex evolution of its structure

  15. Laboratory Measurements of Single-Particle Polarimetric Spectrum

    Science.gov (United States)

    Gritsevich, M.; Penttila, A.; Maconi, G.; Kassamakov, I.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Measuring scattering properties of different targets is important for material characterization, remote sensing applications, and for verifying theoretical results. Furthermore, there are usually simplifications made when we model targets and compute the scattering properties, e.g., ideal shape or constant optical parameters throughout the target material. Experimental studies help in understanding the link between the observed properties and computed results. Experimentally derived Mueller matrices of studied particles can be used as input for larger-scale scattering simulations, e.g., radiative transfer computations. This method allows to bypass the problem of using an idealized model for single-particle optical properties. While existing approaches offer ensemble- and orientation-averaged particle properties, our aim is to measure individual particles with controlled or known orientation. With the newly developed scatterometer, we aim to offer novel possibility to measure single, small (down to μm-scale) targets and their polarimetric spectra. This work presents an experimental setup that measures light scattered by a fixed small particle with dimensions ranging between micrometer and millimeter sizes. The goal of our setup is nondestructive characterization of such particles by measuring light of multiple wavelengths scattered in 360° in a horizontal plane by an ultrasonically levitating sample, whilst simultaneously controlling its 3D position and orientation. We describe the principles and design of our instrument and its calibration. We also present example measurements of real samples. This study was conducted under the support from the European Research Council, in the frame of the Advanced Grant project No. 320773 `Scattering and Absorption of Electromagnetic Waves in Particulate Media' (SAEMPL).

  16. Fiber-based polarimetric stress sensor for measuring the Young's modulus of biomaterials

    Science.gov (United States)

    Harrison, Mark C.; Armani, Andrea M.

    2015-03-01

    Polarimetric optical fiber-based stress and pressure sensors have proven to be a robust tool for measuring and detecting changes in the Young's modulus (E) of materials in response to external stimuli, including the real-time monitoring of the structural integrity of bridges and buildings. These sensors typically work by using a pair of polarizers before and after the sensing region of the fiber, and often require precise alignment to achieve high sensitivity. The ability to perform similar measurements in natural and in engineered biomaterials could provide significant insights and enable research advancement and preventative healthcare. However, in order for this approach to be successful, it is necessary to reduce the complexity of the system by removing free-space components and the need for alignment. As the first step in this path, we have developed a new route for performing these measurements. By generalizing and expanding established theoretical analyses for these types of sensors, we have developed a predictive theoretical model. Additionally, by replacing the conventional free space components and polarization filters with a polarimeter, we have constructed a sensor system with higher sensitivity and which is semi-portable. In initial experiments, a series of polydimethylsiloxane (PDMS) samples with several base:curing agent ratios ranging from 5:1 up to 30:1 were prepared to simulate tissues with different stiffnesses. By simultaneously producing stress-strain curves using a load frame and monitoring the polarization change of light traveling through the samples, we verified the accuracy of our theoretical model.

  17. Quantitative Estimation of Above Ground Crop Biomass using Ground-based, Airborne and Spaceborne Low Frequency Polarimetric Synthetic Aperture Radar

    Science.gov (United States)

    Koyama, C.; Watanabe, M.; Shimada, M.

    2016-12-01

    Estimation of crop biomass is one of the important challenges in environmental remote sensing related to agricultural as well as hydrological and meteorological applications. Usually passive optical data (photographs, spectral data) operating in the visible and near-infrared bands is used for such purposes. The virtue of optical remote sensing for yield estimation, however, is rather limited as the visible light can only provide information about the chemical characteristics of the canopy surface. Low frequency microwave signals with wavelength longer 20 cm have the potential to penetrate through the canopy and provide information about the whole vertical structure of vegetation from the top of the canopy down to the very soil surface. This phenomenon has been well known and exploited to detect targets under vegetation in the military radar application known as FOPEN (foliage penetration). With the availability of polarimetric interferometric SAR data the use PolInSAR techniques to retrieve vertical vegetation structures has become an attractive tool. However, PolInSAR is still highly experimental and suitable data is not yet widely available. In this study we focus on the use of operational dual-polarization L-band (1.27 GHz) SAR which is since the launch of Japan's Advanced Land Observing Satellite (ALOS, 2006-2011) available worldwide. Since 2014 ALOS-2 continues to deliver such kind of partial polarimetric data for the entire land surface. In addition to these spaceborne data sets we use airborne L-band SAR data acquired by the Japanese Pi-SAR-L2 as well as ultra-wideband (UWB) ground based SAR data operating in the frequency range from 1-4 GHz. By exploiting the complex dual-polarization [C2] Covariance matrix information, the scattering contributions from the canopy can be well separated from the ground reflections allowing for the establishment of semi-empirical relationships between measured radar reflectivity and the amount of fresh-weight above

  18. Polarimetric borehole radar measurement near Nojima fault and its application to subsurface crack characterization; Polarimetric borehole radar ni yoru Nojima danso shuhen no chika kiretsu keisoku jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Taniguchi, Y.; Miwa, T.; Niitsuma, H. [Tohoku University, Sendai (Japan); Ikeda, R. [National Research Institute for Disaster Prevention, Tsukuba (Japan); Makino, K. [Geophysical Surveying and Consulting Co. Ltd., Tokyo (Japan)

    1997-05-27

    Practical application of subsurface crack characterization by the borehole radar measurement to which the radar polarimetric method was introduced was attempted to measuring objects for which the borehole radar has not been much used, for example, the inside of low loss rock mass or fracture zone where cracks tightly exist. A system was trially manufactured which makes the radar polarimetric measurement possible in the borehole at a 1000m depth and with a about 10cm diameter, and a field experiment was conducted for realizing the subsurface crack characterization near the Nojima fault. For the measuring experiment by the polarimetric borehole radar, used were Iwaya borehole and Hirabayashi borehole drilled in the north of Awaji-shima, Hyogo-ken. In a comparison of both polarization systems of Hirabayashi borehole, reflected waves at depths of 1038m and 1047m are relatively stronger in both polarization systems than those with the same polarization form and at different depths, whereas reflected waves around a 1017m depth are strong only as to the parallel polarization system. Characteristics of the polarization in this experiment indirectly reflect crack structures. 6 refs., 6 figs., 1 tab.

  19. Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN.

    Science.gov (United States)

    Guo, Hao; Wu, Danni; An, Jubai

    2017-08-09

    Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred features subset. The features analyzed include entropy, alpha, and Single-bounce Eigenvalue Relative Difference (SERD) in the C-band polarimetric mode. We also propose a novel SAR image discrimination method for oil slicks and lookalikes based on Convolutional Neural Network (CNN). The regions of interest are selected as the training and testing samples for CNN on the three kinds of polarimetric feature images. The proposed method is applied to a training data set of 5400 samples, including 1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples. In the end, the effectiveness of the method is demonstrated through the analysis of some experimental results. The classification accuracy obtained using 900 samples of test data is 91.33%. It is here observed that the proposed method not only can accurately identify the dark spots on SAR images but also verify the ability of the proposed algorithm to classify unstructured features.

  20. Wind direction over the ocean determined by an airborne, imaging, polarimetric radiometer system

    DEFF Research Database (Denmark)

    Laursen, Brian; Skou, Niels

    2001-01-01

    The speed and direction of winds over the ocean can be determined by polarimetric radiometers. This has been established by theoretical work and demonstrated experimentally using airborne radiometers carrying out circle flights and thus measuring the full 360° azimuthal response from the sea surf...

  1. Detection and Monitoring of Inundation with Polarimetric L-Band SAR

    Science.gov (United States)

    Chapman, B. D.; Celi, J. E.; Hamilton, S. K.; McDonald, K. C.

    2014-12-01

    It has been known for decades that at wavelengths L-band or longer, SAR is a sensitive indicator of inundation underneath forest canopies. The high resolution detection of below-canopy inundation is difficult to accomplish at regional to continental scales using other types of remote sensing sensors, making it a compelling SAR measurement especially useful for studying wetland inundation dynamics, particularly in difficult-to-reach access, canopy-covered tropical forest environments. Most results have utilized spaceborne SAR observations with less than fully polarimetric data. Since one of the objectives of the NISAR mission is to characterize and understand the fundamental process that drives changes to ecosystems such as wetland inundated areas, we will discuss the sensitivity of L-band SAR to inundation. We will illustrate the detection of inundation using fully polarimetric L-band SAR data from UAVSAR, NASA's airborne SAR, over a tropical forest region in Ecuador and Peru. At the same time as the data collection, measurements were made on the ground to characterize vegetation and inundation characteristics. The field data were used to validate the results of classifying the vanZyl decomposition of the polarimetric data. We compare this classification with that possible with a reduced subset of the polarimetric observations.

  2. Polarimetric Determination of Starch in Raw Materials and Discharged Waste from Beer Production

    Directory of Open Access Journals (Sweden)

    Anca Farcas

    2013-11-01

    Full Text Available Brewer’s spent grain (BGS is a by-product of thebrewing process, consisting of the solid fraction of barley malt remainingafter separation of worth. In this research, raw materials and discharged waste from beer production were evaluated on the basis of starch content, using Ewers polarimetric method.

  3. The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager (SO/PHI)

    Energy Technology Data Exchange (ETDEWEB)

    Gandorfer, Achim; Solanki, Sami K; Woch, Joachim [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Strasse 2, D-37191 Katlenburg-Lindau (Germany); Pillet, Valentin MartInez [Instituto de Astrofisica de Canarias, C/ VIa Lactea, s/n, E38205 - La Laguna (Tenerife) (Spain); Herrero, Alberto Alvarez [Instituto Nacional de Tecnica Aeroespacial, E-28850, Torrejon de Ardoz, Madrid (Spain); Appourchaux, Thierry, E-mail: gandorfer@mps.mpg.de [Institut d' Astrophysique Spatiale, CNRS-Universite Paris XI UMR8617, 91405 Orsay Cedex (France)

    2011-01-01

    We briefly outline the scientific and instrumental aspects of ESA's Solar Orbiter mission. Special emphasis is given to the Polarimetric and Helioseismic Imager, the instrument with the highest relevance for helioseismology applications, which will observe gas motions and the vector magnetic field in the photosphere at high spatial and temporal resolution.

  4. Applications of Polarimetric Radar to the Hydrometeorology of Urban Floods in St. Louis

    Science.gov (United States)

    Chaney, M. M.; Smith, J. A.; Baeck, M. L.

    2017-12-01

    Predicting and responding to flash flooding requires accurate spatial and temporal representation of rainfall rates. The polarimetric upgrade of all US radars has led to optimism about more accurate rainfall rate estimation from the NEXRAD network of WSR-88D radars in the US. Previous work has proposed different algorithms to do so, but significant uncertainties remain, especially for extreme short-term rainfall rates that control flash floods in urban settings. We will examine the relationship between radar rainfall estimates and gage rainfall rates for a catalog of 30 storms in St. Louis during the period of polarimetric radar measurements, 2012-2016. The storms are selected to provide a large sample of extreme rainfall measurements at the 15-minute to 3-hour time scale. A network of 100 rain gages and a lack of orographic or coastal effects make St. Louis an interesting location to study these relationships. A better understanding of the relationships between polarimetric radar measurements and gage rainfall rates will aid in refining polarimetric radar rainfall algorithms, in turn helping hydrometeorologists predict flash floods and other hazards associated with severe rainfall. Given the fact that St. Louis contains some of the flashiest watersheds in the United States (Smith and Smith, 2015), it is an especially important urban area in which to have accurate, real-time rainfall data. Smith, Brianne K, and James A Smith. "The Flashiest Watersheds in the Contiguous United States." American Meteorological Society (2015): 2365-2381. Web.

  5. Maritime target and sea clutter measurements with a coherent Doppler polarimetric surveillance radar

    NARCIS (Netherlands)

    Smith, A.J.E.; Gelsema, S.J.; Kester, L.J.H.M.; Melief, H.W.; Premel Cabic, G.; Theil, A.; Woudenberg, E.

    2002-01-01

    Doppler polarimetry in a surveillance radar for the maritime surface picture is considered. This radar must be able to detect low-RCS targets in littoral environments. Measurements on such targets have been conducted with a coherent polarimetric measurement radar in March 2001 and preliminary

  6. Forest mapping using bi-aspect polarimetric SAR data in southwest China

    Science.gov (United States)

    Zhang, Fengli; Xu, Maosong; Xia, Zhongsheng; Wan, Zi; Li, Kun; Li, Xiaofang

    2009-10-01

    Synthetic aperture radar (SAR) provides a powerful tool for forestry inventory because of its all-weather and all-day capabilities. In this paper forest mapping method using bi-aspect polarimetric SAR data acquired from ascending and descending path has been studied. Zhazuo forest farm in Guizhou province was selected as test site and an 8-temporal field experiment was designed to obtain bio-physical parameters and spatial structure parameters of the 12 sample plots. Then the Michigan Microwave Canopy Scattering model (MIMICS) was employed to analyze the seasonal variation of these 4 types of managed forests. Using polarimetric Radarsat 2 data, scattering mechanisms of each forest type were determined and polarimetric variables were extracted and analyzed for forest discrimination. Considering the inherent geometric distortion of SAR imaging in hilly areas, a geometric correction strategy using bi-aspect SAR images and high resolution DEM was proposed. Then support vector machines method was adopted for classification of the whole test area. Experiments show that the bi-aspect geometric strategy is useful for hilly areas especially for shadow elimination in SAR image, and polarimetric SAR data is helpful to forest mapping.

  7. Compact Polarimetric SAR Ship Detection with m-δ Decomposition Using Visual Attention Model

    Directory of Open Access Journals (Sweden)

    Lu Xu

    2016-09-01

    Full Text Available A few previous studies have illustrated the potentials of compact polarimetric Synthetic Aperture Radar (CP SAR in ship detection. In this paper, we design a ship detection algorithm of CP SAR from the perspective of computer vision. A ship detection algorithm using the pulsed cosine transform (PCT visual attention model is proposed to suppress background clutter and highlight conspicuous ship targets. It is the first time that a visual attention model is introduced to CP SAR application. The proposed algorithm is a quick and complete framework for practical use. Polarimetric features—the relative phase δ and volume scattering component—are extracted from m-δ decomposition to eliminate false alarms and modify the PCT model. The constant false alarm rate (CFAR algorithm based on lognormal distribution is adopted to detect ship targets, after a clutter distribution fitting procedure of the modified saliency map. The proposed method is then tested on three simulated circular-transmit-linear-receive (CTLR mode images, which covering East Sea of China. Compared with the detection results of SPAN and the saliency map with only single-channel amplitude, the proposed method achieves the highest detection rates and the lowest misidentification rate and highest figure of merit, proving the effectiveness of polarimetric information of compact polarimetric SAR ship detection and the enhancement from the visual attention model.

  8. Airborn Ku-band polarimetric radar remote sensing of terrestrial snow cover

    Science.gov (United States)

    Simon H. Yueh; Steve J. Dinardo; Ahmed Akgiray; Richard West; Donald W. Cline; Kelly Elder

    2009-01-01

    Characteristics of the Ku-band polarimetric scatterometer (POLSCAT) data acquired from five sets of aircraft flights in the winter months of 2006-2008 for the second Cold Land Processes Experiment (CLPX-II) in Colorado are described in this paper. The data showed the response of the Ku-band radar echoes to snowpack changes for various types of background vegetation in...

  9. Feature level fusion of polarimetric infrared and GPR data for landmine detection

    NARCIS (Netherlands)

    Cremer, F.; Jong, W. de; Schutte, K.; Yarovoy, A.G.; Kovalenko, V.; Bloemenkamp, R.F.

    2003-01-01

    Feature-level sensor fusion is the process where specific information (i.e. features) from objects detected by different sensors are combined and classified. This paper focuses on the feature-level fusion procedure for a sensor combination consisting of a polarimetric infrared (IR) imaging sensor

  10. Design of a Small, Low Cost, P-Band Airborne Polarimetric Synthetic Aperture Radar

    NARCIS (Netherlands)

    Figueras i Ventura, J.; Hoogeboom, P.

    2004-01-01

    A preliminary study of the design of a small, low cost, P-band airborne, polarimetric Synthetic Aperture Radar desired by the Wageningen University and the Borneo Orangutan Survival Foundation (BOS) to carry out forest biomass monitoring in Indonesia is presented. The requirements of the application

  11. Unsupervised polarimetric synthetic aperture radar image classification based on sketch map and adaptive Markov random field

    Science.gov (United States)

    Shi, Junfei; Li, Lingling; Liu, Fang; Jiao, Licheng; Liu, Hongying; Yang, Shuyuan; Liu, Lu; Hao, Hongxia

    2016-04-01

    Markov random field (MRF) model is an effective tool for polarimetric synthetic aperture radar (PolSAR) image classification. However, due to the lack of suitable contextual information in conventional MRF methods, there is usually a contradiction between edge preservation and region homogeneity in the classification result. To preserve edge details and obtain homogeneous regions simultaneously, an adaptive MRF framework is proposed based on a polarimetric sketch map. The polarimetric sketch map can provide the edge positions and edge directions in detail, which can guide the selection of neighborhood structures. Specifically, the polarimetric sketch map is extracted to partition a PolSAR image into structural and nonstructural parts, and then adaptive neighborhoods are learned for two parts. For structural areas, geometric weighted neighborhood structures are constructed to preserve image details. For nonstructural areas, the maximum homogeneous regions are obtained to improve the region homogeneity. Experiments are taken on both the simulated and real PolSAR data, and the experimental results illustrate that the proposed method can obtain better performance on both region homogeneity and edge preservation than the state-of-the-art methods.

  12. Polarimetric SAR Target Scattering Interpretation in Rotation Domain: Theory and Application

    Directory of Open Access Journals (Sweden)

    Chen Siwei

    2017-10-01

    Full Text Available Backscattering of radar targets is sensitive to the relative geometry between target orientations and the radar line of sight. This scattering diversity makes imaging radar represented by polarimetric Synthetic Aperture Radar (SAR information processing and applications very difficult. This situation has become one of the main bottlenecks in the interpretation of the target scattering mechanism and quantitative applications. In this work, we review and introduce a new interpretation of the target scattering mechanism in the rotation domain along the radar line of sight. This concept includes the recently established uniform polarimetric matrix rotation theory and polarimetric coherence pattern visualization and interpretation in the rotation domain. The core idea of target scattering interpretation in the rotation domain is to extend the amount of target information acquired at a given geometry to the rotation domain, which then provides fundamentals for the deep mining and utilization of target scattering information. This work mainly focuses on the investigation of derived new polarimetric feature sets and application demonstrations. Comparison study results validate the promising potential for the application of the established interpretation framework in the rotation domain with respect to target discrimination and classification.

  13. Polarimetric Determination of Starch in Raw Materials and Discharged Waste from Beer Production

    OpenAIRE

    Anca Farcas; Maria Tofana; Sonia Socaci; Stancuta Scrob; Liana Salanta; Doinita Bors

    2013-01-01

    Brewer’s spent grain (BGS) is a by-product of thebrewing process, consisting of the solid fraction of barley malt remainingafter separation of worth. In this research, raw materials and discharged waste from beer production were evaluated on the basis of starch content, using Ewers polarimetric method.

  14. Probe-Fed Stacked Microstrip Patch Antenna for High-Resolution Polarimetric C-Band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, Niels

    2000-01-01

    The paper describes a C-band, dual-linear polarization wideband antenna for use in the next-generation of the Danish high-resolution, airborne polarimetric synthetic aperture radar (SAR) system, EMISAR. The design and performance of a probe-fed, stacked microstrip patch element, operating from 4...

  15. The PHARUS Project; Real Time Digital Processing of Airborne Polarimetric Radar Signals

    NARCIS (Netherlands)

    Pouwels, H.; Hoogeboom, P.; Koomen, P.J.; Snoeij, P.

    1992-01-01

    The Dutch PHARUS project aims for the developrlenÈ of a polarimetric C-band aircraft SAR, to be finalized in 1994. The PHARUS systen consists of three subsystens: the radar, the subsystem for the onboard data processing and recording and the ground-based subsystem for SAR processing. PHARUS is a

  16. The Design and Development of a Polarimetric Phased Array Airborne SAR Sensor

    NARCIS (Netherlands)

    Snoeij, P.; Pouwels, H.; Koomen, P.J.; Vermeulen, B.C.B.; Hoogeboom, P.

    1996-01-01

    A polarimetric C-band airborne SAR has been developed in the Netherlands. The system makes use of a phased array antenna with solid state amplifiers. The project consists of two phases, a definition phase and a realization phase. The definition phase consisted of the actual realization of a SAR

  17. Validation of Distributed Soil Moisture: Airborne Polarimetric SAR vs. Ground-based Sensor Networks

    Science.gov (United States)

    Jagdhuber, T.; Kohling, M.; Hajnsek, I.; Montzka, C.; Papathanassiou, K. P.

    2012-04-01

    The knowledge of spatially distributed soil moisture is highly desirable for an enhanced hydrological modeling in terms of flood prevention and for yield optimization in combination with precision farming. Especially in mid-latitudes, the growing agricultural vegetation results in an increasing soil coverage along the crop cycle. For a remote sensing approach, this vegetation influence has to be separated from the soil contribution within the resolution cell to extract the actual soil moisture. Therefore a hybrid decomposition was developed for estimation of soil moisture under vegetation cover using fully polarimetric SAR data. The novel polarimetric decomposition combines a model-based decomposition, separating the volume component from the ground components, with an eigen-based decomposition of the two ground components into a surface and a dihedral scattering contribution. Hence, this hybrid decomposition, which is based on [1,2], establishes an innovative way to retrieve soil moisture under vegetation. The developed inversion algorithm for soil moisture under vegetation cover is applied on fully polarimetric data of the TERENO campaign, conducted in May and June 2011 for the Rur catchment within the Eifel/Lower Rhine Valley Observatory. The fully polarimetric SAR data were acquired in high spatial resolution (range: 1.92m, azimuth: 0.6m) by DLR's novel F-SAR sensor at L-band. The inverted soil moisture product from the airborne SAR data is validated with corresponding distributed ground measurements for a quality assessment of the developed algorithm. The in situ measurements were obtained on the one hand by mobile FDR probes from agricultural fields near the towns of Merzenhausen and Selhausen incorporating different crop types and on the other hand by distributed wireless sensor networks (SoilNet clusters) from a grassland test site (near the town of Rollesbroich) and from a forest stand (within the Wüstebach sub-catchment). Each SoilNet cluster

  18. Temporal Decorrelation Effect in Carbon Stocks Estimation Using Polarimetric Interferometry Synthetic Aperture Radar (PolInSAR (Case Study: Southeast Sulawesi Tropical Forest

    Directory of Open Access Journals (Sweden)

    Laode M Golok Jaya

    2017-07-01

    Full Text Available This paper was aimed to analyse the effect of temporal decorrelation in carbon stocks estimation. Estimation of carbon stocks plays important roles particularly to understand the global carbon cycle in the atmosphere regarding with climate change mitigation effort. PolInSAR technique combines the advantages of Polarimetric Synthetic Aperture Radar (PolSAR and Interferometry Synthetic Aperture Radar (InSAR technique, which is evidenced to have significant contribution in radar mapping technology in the last few years. In carbon stocks estimation, PolInSAR provides information about vertical vegetation structure to estimate carbon stocks in the forest layers. Two coherence Synthetic Aperture Radar (SAR images of ALOS PALSAR full-polarimetric with 46 days temporal baseline were used in this research. The study was carried out in Southeast Sulawesi tropical forest. The research method was by comparing three interferometric phase coherence images affected by temporal decorrelation and their impacts on Random Volume over Ground (RvoG model. This research showed that 46 days temporal baseline has a significant impact to estimate tree heights of the forest cover where the accuracy decrease from R2=0.7525 (standard deviation of tree heights is 2.75 meters to R2=0.4435 (standard deviation 4.68 meters and R2=0.3772 (standard deviation 3.15 meters respectively. However, coherence optimisation can provide the best coherence image to produce a good accuracy of carbon stocks.

  19. Analysis of Radarsat-2 Full Polarimetric Data for Forest Mapping

    Science.gov (United States)

    Maghsoudi, Yasser

    Forests are a major natural resource of the Earth and control a wide range of environmental processes. Forests comprise a major part of the planet's plant biodiversity and have an important role in the global hydrological and biochemical cycles. Among the numerous potential applications of remote sensing in forestry, forest mapping plays a vital role for characterization of the forest in terms of species. Particularly, in Canada where forests occupy 45% of the territory, representing more than 400 million hectares of the total Canadian continental area. In this thesis, the potential of polarimetric SAR (PolSAR) Radarsat-2 data for forest mapping is investigated. This thesis has two principle objectives. First is to propose algorithms for analyzing the PolSAR image data for forest mapping. There are a wide range of SAR parameters that can be derived from PolSAR data. In order to make full use of the discriminative power offered by all these parameters, two categories of methods are proposed. The methods are based on the concept of feature selection and classifier ensemble. First, a nonparametric definition of the evaluation function is proposed and hence the methods NFS and CBFS. Second, a fast wrapper algorithm is proposed for the evaluation function in feature selection and hence the methods FWFS and FWCBFS. Finally, to incorporate the neighboring pixels information in classification an extension of the FWCBFS method i.e. CCBFS is proposed. The second objective of this thesis is to provide a comparison between leaf-on (summer) and leaf-off (fall) season images for forest mapping. Two Radarsat-2 images acquired in fine quad-polarized mode were chosen for this study. The images were collected in leaf-on and leaf-off seasons. We also test the hypothesis whether combining the SAR parameters obtained from both images can provide better results than either individual datasets. The rationale for this combination is that every dataset has some parameters which may be

  20. Airborne polarimetric Doppler weather radar: trade-offs between various engineering specifications

    Science.gov (United States)

    Vivekanandan, Jothiram; Loew, Eric

    2018-01-01

    NCAR EOL is investigating potential configurations for the next-generation airborne phased array radar (APAR) that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. The APAR will operate at C band. The APAR will use the electronic scanning (e-scan) feature to acquire the optimal number of independent samples for recording research-quality measurements. Since the airborne radar has only a limited time for collecting measurements over a specified region (moving aircraft platform ˜ 100 m s-1), beam multiplexing will significantly enhance its ability to collect high-resolution, research-quality measurements. Beam multiplexing reduces errors in radar measurements while providing rapid updates of scan volumes. Beamwidth depends on the size of the antenna aperture. Beamwidth and directivity of elliptical, circular, and rectangular antenna apertures are compared and radar sensitivity is evaluated for various polarimetric configurations and transmit-receive (T/R) elements. In the case of polarimetric measurements, alternate transmit with alternate receive (single-channel receiver) and simultaneous reception (dual-channel receiver) is compared. From an overall architecture perspective, element-level digitization of T/R module versus digital sub-array is considered with regard to flexibility in adaptive beamforming, polarimetric performance, calibration, and data quality. Methodologies for calibration of the radar and removing bias in polarimetric measurements are outlined. The above-mentioned engineering options are evaluated for realizing an optimal APAR system suitable for measuring the high temporal and spatial resolutions of Doppler and polarimetric measurements of precipitation and clouds.

  1. Polarimetric survey of main-belt asteroids⋆. III. Results for 33 X-type objects

    Science.gov (United States)

    Cañada-Assandri, M.; Gil-Hutton, R.; Benavidez, P.

    2012-06-01

    Aims: We present results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained with the Torino and CASPROF polarimeters at the 2.15 m telescope. The Torino polarimeter is an instrument that allows the simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 2003, and up to 2009 data of a sample of more than 170 asteroids were obtained. In this paper the results for 33 X-type objects are presented, several of them are being polarimetrically observed for the first time. Using these data we found polarization curves and polarimetric parameters for different groups among this taxonomic class and that there are objects with very different albedo in the sub-classes of the X taxonomic complex. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/542/A11

  2. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  3. Multifrequency Photo-polarimetric WEBT Observation Campaign on the Blazar S5 0716+714: Source Microvariability and Search for Characteristic Timescales

    Science.gov (United States)

    Bhatta, G.; Stawarz, Ł.; Ostrowski, M.; Markowitz, A.; Akitaya, H.; Arkharov, A. A.; Bachev, R.; Benítez, E.; Borman, G. A.; Carosati, D.; Cason, A. D.; Chanishvili, R.; Damljanovic, G.; Dhalla, S.; Frasca, A.; Hiriart, D.; Hu, S.-M.; Itoh, R.; Jableka, D.; Jorstad, S.; Jovanovic, M. D.; Kawabata, K. S.; Klimanov, S. A.; Kurtanidze, O.; Larionov, V. M.; Laurence, D.; Leto, G.; Marscher, A. P.; Moody, J. W.; Moritani, Y.; Ohlert, J. M.; Di Paola, A.; Raiteri, C. M.; Rizzi, N.; Sadun, A. C.; Sasada, M.; Sergeev, S.; Strigachev, A.; Takaki, K.; Troitsky, I. S.; Ui, T.; Villata, M.; Vince, O.; Webb, J. R.; Yoshida, M.; Zola, S.

    2016-11-01

    Here we report on the results of the Whole Earth Blazar Telescope photo-polarimetric campaign targeting the blazar S5 0716+71, organized in 2014 March to monitor the source simultaneously in BVRI and near-IR filters. The campaign resulted in an unprecedented data set spanning ∼110 hr of nearly continuous, multiband observations, including two sets of densely sampled polarimetric data mainly in the R filter. During the campaign, the source displayed pronounced variability with peak-to-peak variations of about 30% and “bluer-when-brighter” spectral evolution, consisting of a day-timescale modulation with superimposed hour-long microflares characterized by ∼0.1 mag flux changes. We performed an in-depth search for quasi-periodicities in the source light curve; hints for the presence of oscillations on timescales of ∼3 and ∼5 hr do not represent highly significant departures from a pure red-noise power spectrum. We observed that, at a certain configuration of the optical polarization angle (PA) relative to the PA of the innermost radio jet in the source, changes in the polarization degree (PD) led the total flux variability by about 2 hr; meanwhile, when the relative configuration of the polarization and jet angles altered, no such lag could be noted. The microflaring events, when analyzed as separate pulse emission components, were found to be characterized by a very high PD (>30%) and PAs that differed substantially from the PA of the underlying background component, or from the radio jet positional angle. We discuss the results in the general context of blazar emission and energy dissipation models. ).

  4. MULTIFREQUENCY PHOTO-POLARIMETRIC WEBT OBSERVATION CAMPAIGN ON THE BLAZAR S5 0716+714: SOURCE MICROVARIABILITY AND SEARCH FOR CHARACTERISTIC TIMESCALES

    Energy Technology Data Exchange (ETDEWEB)

    Bhatta, G.; Stawarz, Ł.; Ostrowski, M. [Astronomical Observatory of Jagiellonian University, ul. Orla 171, 30-244 Krakow (Poland); Markowitz, A. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0424 (United States); Akitaya, H. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Arkharov, A. A. [Main (Pulkovo) Astronomical Observatory of RAS, Pulkovskoye shosse, 60, 196140 St. Petersburg (Russian Federation); Bachev, R. [Institute of Astronomy, Bulgarian Academy of Sciences, 72, Tsarigradsko Shosse Blvd., 1784 Sofia (Bulgaria); Benítez, E. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Mexico DF (Mexico); Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny, Crimea, 298409 (Russian Federation); Carosati, D. [EPT Observatories, Tijarafe, La Palma (Spain); Cason, A. D. [Private address, 105 Glen Pine Trail, Dawnsonville, GA 30534 (United States); Chanishvili, R. [Abastumani Observatory, Mt. Kanobili, 0301 Abastumani, Georgia (United States); Damljanovic, G. [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia); Dhalla, S. [Florida International University, Miami, FL 33199 (United States); Frasca, A. [INAF—Osservatorio Astrofisico di Catania (Italy); Hiriart, D. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada (Mexico); Hu, S-M., E-mail: gopalbhatta716@gmail.com [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University at Weihai, 264209 Weihai (China); and others

    2016-11-01

    Here we report on the results of the Whole Earth Blazar Telescope photo-polarimetric campaign targeting the blazar S5 0716+71, organized in 2014 March to monitor the source simultaneously in BVRI and near-IR filters. The campaign resulted in an unprecedented data set spanning ∼110 hr of nearly continuous, multiband observations, including two sets of densely sampled polarimetric data mainly in the R filter. During the campaign, the source displayed pronounced variability with peak-to-peak variations of about 30% and “bluer-when-brighter” spectral evolution, consisting of a day-timescale modulation with superimposed hour-long microflares characterized by ∼0.1 mag flux changes. We performed an in-depth search for quasi-periodicities in the source light curve; hints for the presence of oscillations on timescales of ∼3 and ∼5 hr do not represent highly significant departures from a pure red-noise power spectrum. We observed that, at a certain configuration of the optical polarization angle (PA) relative to the PA of the innermost radio jet in the source, changes in the polarization degree (PD) led the total flux variability by about 2 hr; meanwhile, when the relative configuration of the polarization and jet angles altered, no such lag could be noted. The microflaring events, when analyzed as separate pulse emission components, were found to be characterized by a very high PD (>30%) and PAs that differed substantially from the PA of the underlying background component, or from the radio jet positional angle. We discuss the results in the general context of blazar emission and energy dissipation models.

  5. Classification of Polarimetric SAR Image Based on Support Vector Machine Using Multiple-Component Scattering Model and Texture Features

    Directory of Open Access Journals (Sweden)

    Lamei Zhang

    2010-01-01

    Full Text Available The classification of polarimetric SAR image based on Multiple-Component Scattering Model (MCSM and Support Vector Machine (SVM is presented in this paper. MCSM is a potential decomposition method for a general condition. SVM is a popular tool for machine learning tasks involving classification, recognition, or detection. The scattering powers of single-bounce, double-bounce, volume, helix, and wire scattering components are extracted from fully polarimetric SAR images. Combining with the scattering powers of MCSM and the selected texture features from Gray-level cooccurrence matrix (GCM, SVM is used for the classification of polarimetric SAR image. We generate a validity test for the proposed method using Danish EMISAR L-band fully polarimetric data of Foulum Area (DK, Denmark. The preliminary result indicates that this method can classify most of the areas correctly.

  6. GPM GROUND VALIDATION NASA S-BAND DUAL POLARIMETRIC (NPOL) DOPPLER RADAR MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA S-band Dual Polarimetric (NPOL) Doppler Radar MC3E dataset was collected by the NASA NPOL radar, which was developed by a research...

  7. PolSAR Land Cover Classification Based on Roll-Invariant and Selected Hidden Polarimetric Features in the Rotation Domain

    Directory of Open Access Journals (Sweden)

    Chensong Tao

    2017-07-01

    Full Text Available Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR. Target polarimetric response is strongly dependent on its orientation. Backscattering responses of the same target with different orientations to the SAR flight path may be quite different. This target orientation diversity effect hinders PolSAR image understanding and interpretation. Roll-invariant polarimetric features such as entropy, anisotropy, mean alpha angle, and total scattering power are independent of the target orientation and are commonly adopted for PolSAR image classification. On the other aspect, target orientation diversity also contains rich information which may not be sensed by roll-invariant polarimetric features. In this vein, only using the roll-invariant polarimetric features may limit the final classification accuracy. To address this problem, this work uses the recently reported uniform polarimetric matrix rotation theory and a visualization and characterization tool of polarimetric coherence pattern to investigate hidden polarimetric features in the rotation domain along the radar line of sight. Then, a feature selection scheme is established and a set of hidden polarimetric features are selected in the rotation domain. Finally, a classification method is developed using the complementary information between roll-invariant and selected hidden polarimetric features with a support vector machine (SVM/decision tree (DT classifier. Comparison experiments are carried out with NASA/JPL AIRSAR and multi-temporal UAVSAR data. For AIRSAR data, the overall classification accuracy of the proposed classification method is 95.37% (with SVM/96.38% (with DT, while that of the conventional classification method is 93.87% (with SVM/94.12% (with DT, respectively. Meanwhile, for multi-temporal UAVSAR data, the mean overall classification accuracy of the proposed method is up to 97.47% (with SVM/99.39% (with DT, which is also higher

  8. Construction of Polarimetric Radar-Based Reference Rain Maps for the Iowa Flood Studies Campaign

    Science.gov (United States)

    Petersen, Walt; Krajewski, Witek; Wolff, David; Gatlin, Patrick

    2015-04-01

    The Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS) campaign was conducted in central and northeastern Iowa during the months of April-June, 2013. Specific science objectives for IFloodS included quantification of uncertainties in satellite and ground-based estimates of precipitation, 4-D characterization of precipitation physical processes and associated parameters (e.g., size distributions, water contents, types, structure etc.), assessment of the impact of precipitation estimation uncertainty and physical processes on hydrologic predictive skill, and refinement of field observations and data analysis approaches as they pertain to future GPM integrated hydrologic validation and related field studies. In addition to field campaign archival of raw and processed satellite data (including precipitation products), key ground-based platforms such as the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms, and a large network of 2D Video and Parsivel disdrometers were deployed. In something of a canonical approach, the radar (NPOL in particular), gauge and disdrometer observational assets were deployed to create a consistent high-quality distributed (time and space sampling) radar-based ground "reference" rainfall dataset, with known uncertainties, that could be used for assessing the satellite-based precipitation products at a range of space/time scales. Subsequently, the impact of uncertainties in the satellite products could be evaluated relative to the ground-benchmark in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction. Relative to establishing the ground-based "benchmark", numerous avenues were pursued in the making and verification of IFloodS "reference" dual-polarimetric radar-based rain maps, and this study documents the process and results as they pertain specifically

  9. Construction of Polarimetric Radar-Based Reference Rain Maps for the Iowa Flood Studies Campaign

    Science.gov (United States)

    Petersen, Walter; Wolff, David; Krajewski, Witek; Gatlin, Patrick

    2015-01-01

    The Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS) campaign was conducted in central and northeastern Iowa during the months of April-June, 2013. Specific science objectives for IFloodS included quantification of uncertainties in satellite and ground-based estimates of precipitation, 4-D characterization of precipitation physical processes and associated parameters (e.g., size distributions, water contents, types, structure etc.), assessment of the impact of precipitation estimation uncertainty and physical processes on hydrologic predictive skill, and refinement of field observations and data analysis approaches as they pertain to future GPM integrated hydrologic validation and related field studies. In addition to field campaign archival of raw and processed satellite data (including precipitation products), key ground-based platforms such as the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms, and a large network of 2D Video and Parsivel disdrometers were deployed. In something of a canonical approach, the radar (NPOL in particular), gauge and disdrometer observational assets were deployed to create a consistent high-quality distributed (time and space sampling) radar-based ground "reference" rainfall dataset, with known uncertainties, that could be used for assessing the satellite-based precipitation products at a range of space/time scales. Subsequently, the impact of uncertainties in the satellite products could be evaluated relative to the ground-benchmark in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction. Relative to establishing the ground-based "benchmark", numerous avenues were pursued in the making and verification of IFloodS "reference" dual-polarimetric radar-based rain maps, and this study documents the process and results as they pertain specifically

  10. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard sili...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance.......We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...

  11. Polarimetric synthetic aperture radar application for tropical peatlands classification: a case study in Siak River Transect, Riau Province, Indonesia

    Science.gov (United States)

    Novresiandi, Dandy Aditya; Nagasawa, Ryota

    2017-01-01

    Mapping spatial distributions of tropical peatlands is important for properly estimating carbon emissions and for providing information that aids in the sustainable management of tropical peatlands, particularly in Indonesia. This study evaluated the performance of phased array type L-band synthetic aperture radar (SAR) (PALSAR) dual-polarization and fully polarimetric data for tropical peatlands classification. The study area was in Siak River Transect, Riau Province, Indonesia, a rapidly developing region, where the peatland has been intensively converted mostly into oil palm plantations over the last two decades. Thus, polarimetric features derived after polarimetric decompositions, backscatter coefficients measurements, and the radar vegetation index were evaluated to classify tropical peatlands using the decision tree classifier. Overall, polarimetric features generated by the combination of dual-polarization and fully polarimetric data yielded an overall accuracy (OA) of 69% and a kappa coefficient (K) of 0.57. The integration of an additional feature, "distance to river," to the algorithm increased the OA to 76% and K to 0.66. These results indicated that the methodology in this study might serve as an efficient tool in tropical peatlands classification, especially when involving the use of L-band SAR dual-polarization and fully polarimetric data.

  12. Polarimetric Radar Characteristics of Simulated and Observed Intense Convection Between Continental and Maritime Environment

    Science.gov (United States)

    Matsui, T.; Dolan, B.; Tao, W. K.; Rutledge, S. A.; Iguchi, T.; Barnum, J. I.; Lang, S. E.

    2017-12-01

    This study presents polarimetric radar characteristics of intense convective cores derived from observations as well as a polarimetric-radar simulator from cloud resolving model (CRM) simulations from Midlatitude Continental Convective Clouds Experiment (MC3E) May 23 case over Oklahoma and a Tropical Warm Pool-International Cloud Experiment (TWP-ICE) Jan 23 case over Darwin, Australia to highlight the contrast between continental and maritime convection. The POLArimetric Radar Retrieval and Instrument Simulator (POLARRIS) is a state-of-art T-matrix-Mueller-Matrix-based polarimetric radar simulator that can generate synthetic polarimetric radar signals (reflectivity, differential reflectivity, specific differential phase, co-polar correlation) as well as synthetic radar retrievals (precipitation, hydrometeor type, updraft velocity) through the consistent treatment of cloud microphysics and dynamics from CRMs. The Weather Research and Forecasting (WRF) model is configured to simulate continental and maritime severe storms over the MC3E and TWP-ICE domains with the Goddard bulk 4ICE single-moment microphysics and HUCM spectra-bin microphysics. Various statistical diagrams of polarimetric radar signals, hydrometeor types, updraft velocity, and precipitation intensity are investigated for convective and stratiform precipitation regimes and directly compared between MC3E and TWP-ICE cases. The result shows MC3E convection is characterized with very strong reflectivity (up to 60dBZ), slight negative differential reflectivity (-0.8 0 dB) and near-zero specific differential phase above the freezing levels. On the other hand, TWP-ICE convection shows strong reflectivity (up to 50dBZ), slight positive differential reflectivity (0 1.0 dB) and differential phase (0 0.8 dB/km). Hydrometeor IDentification (HID) algorithm from the observation and simulations detect hail-dominant convection core in MC3E, while graupel-dominant convection core in TWP-ICE. This land-ocean contrast

  13. Characterization of polarimetric and total intensity behaviour of a complete sample of PACO radio sources in the radio bands

    Science.gov (United States)

    Galluzzi, V.; Massardi, M.; Bonaldi, A.; Casasola, V.; Gregorini, L.; Trombetti, T.; Burigana, C.; Bonato, M.; De Zotti, G.; Ricci, R.; Stevens, J.; Ekers, R. D.; Bonavera, L.; di Serego Alighieri, S.; Liuzzo, E.; López-Caniego, M.; Paladino, R.; Toffolatti, L.; Tucci, M.; Callingham, J. R.

    2018-03-01

    We present high sensitivity (σP ≃ 0.6 mJy) polarimetric observations in seven bands, from 2.1 to 38 GHz, of a complete sample of 104 compact extragalactic radio sources brighter than 200 mJy at 20 GHz. Polarization measurements in six bands, in the range 5.5-38 GHz, for 53 of these objects were reported by Galluzzi et al. We have added new measurements in the same six bands for another 51 sources and measurements at 2.1 GHz for the full sample of 104 sources. Also, the previous measurements at 18, 24, 33, and 38 GHz were re-calibrated using the updated model for the flux density absolute calibrator, PKS1934-638, not available for the earlier analysis. The observations, carried out with the Australia Telescope Compact Array, achieved a 90 per cent detection rate (at 5σ) in polarization. 89 of our sources have a counterpart in the 72-231 MHz GLEAM (GaLactic and Extragalactic All-sky Murchison Widefield Array) survey, providing an unparalleled spectral coverage of 2.7 decades of frequency for these sources. While the total intensity data from 5.5 to 38 GHz could be interpreted in terms of single component emission, a joint analysis of more extended total intensity spectra presented here, and of the polarization spectra, reveals that over 90 per cent of our sources show clear indications of at least two emission components. We interpret this as an evidence of recurrent activity. Our high sensitivity polarimetry has allowed a 5σ detection of the weak circular polarization for ˜ 38 per cent of the data set, and a deeper estimate of 20 GHz polarization source counts than has been possible so far.

  14. Investigation of the Capability of Compact Polarimetric SAR Interferometry to Estimate Forest Height

    Science.gov (United States)

    Zhang, Hong; Xie, Lei; Wang, Chao; Chen, Jiehong

    2013-08-01

    The main objective of this paper is to investigate the capability of compact Polarimetric SAR Interferometry (C-PolInSAR) on forest height estimation. For this, the pseudo fully polarimetric interferomteric (F-PolInSAR) covariance matrix is firstly reconstructed, then the three- stage inversion algorithm, hybrid algorithm, Music and Capon algorithm are applied to both C-PolInSAR covariance matrix and pseudo F-PolInSAR covariance matrix. The availability of forest height estimation is demonstrated using L-band data generated by simulator PolSARProSim and X-band airborne data acquired by East China Research Institute of Electronic Engineering, China Electronics Technology Group Corporation.

  15. The effects of thermal equilibrium and contrast in LWIR polarimetric images.

    Science.gov (United States)

    Tyo, J Scott; Ratliff, Bradley M; Boger, James K; Black, Wiley T; Bowers, David L; Fetrow, Matthew P

    2007-11-12

    Long-wave infrared (LWIR) polarimetric signatures provide the potential for day-night detection and identification of objects in remotely sensed imagery. The source of optical energy in the LWIR is usually due to thermal emission from the object in question, which makes the signature dependent primarily on the target and not on the external environment. In this paper we explore the impact of thermal equilibrium and the temperature of (unseen) background objects on LWIR polarimetric signatures. We demonstrate that an object can completely lose its polarization signature when it is in thermal equilibrium with its optical background, even if it has thermal contrast with the objects that appear behind it in the image.

  16. Retrieval of the raindrop size distribution from polarimetric radar data using double-moment normalisation

    Directory of Open Access Journals (Sweden)

    T. H. Raupach

    2017-07-01

    Full Text Available A new technique for estimating the raindrop size distribution (DSD from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed using a double-moment normalisation. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observations. In the three tested domains, in terms of DSD moments, rain rate, and characteristic drop diameter, the proposed method performs similarly to and often better than a state-of-the-art DSD-retrieval technique. The approach is flexible because no specific DSD model is prescribed. In addition, a method is proposed to treat noisy radar data to improve DSD-retrieval performance with radar measurements.

  17. Retrieval of the raindrop size distribution from polarimetric radar data using double-moment normalisation

    Science.gov (United States)

    Raupach, Timothy H.; Berne, Alexis

    2017-07-01

    A new technique for estimating the raindrop size distribution (DSD) from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed using a double-moment normalisation. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observations. In the three tested domains, in terms of DSD moments, rain rate, and characteristic drop diameter, the proposed method performs similarly to and often better than a state-of-the-art DSD-retrieval technique. The approach is flexible because no specific DSD model is prescribed. In addition, a method is proposed to treat noisy radar data to improve DSD-retrieval performance with radar measurements.

  18. Photo-polarimetric sensitivities to layering and mixing of absorbing aerosols

    Directory of Open Access Journals (Sweden)

    O. V. Kalashnikova

    2011-09-01

    Full Text Available We investigate to what extent multi-angle polarimetric measurements are sensitive to vertical mixing/layering of absorbing aerosols, adopting calibration uncertainty of 1.5% in intensity and 0.5% in the degree of linear polarization of Multiangle Spectro-Polarimetric Imager (MSPI. Employing both deterministic and Monte Carlo radiative transfer codes with polarization, we conduct modeling experiments to determine how the measured Stokes vector elements are affected at UV and short visible wavelengths by the vertical distribution, mixing and layering of smoke and dust aerosols for variety of microphysical parameters. We find that multi-angular polarimetry holds the potential to infer dust-layer heights and thicknesses at blue visible channel due to its lesser sensitivity to changes in dust coarse mode optical properties, but higher sensitivity to the dust vertical profiles. Our studies quantify requirements for obtaining simultaneous information on aerosol layer height and absorption under MSPI measurement uncertainties.

  19. Investigation of hydrometeor classification uncertainties through the POLARRIS polarimetric radar simulator

    Science.gov (United States)

    Dolan, B.; Rutledge, S. A.; Barnum, J. I.; Matsui, T.; Tao, W. K.; Iguchi, T.

    2017-12-01

    POLarimetric Radar Retrieval and Instrument Simulator (POLARRIS) is a framework that has been developed to simulate radar observations from cloud resolving model (CRM) output and subject model data and observations to the same retrievals, analysis and visualization. This framework not only enables validation of bulk microphysical model simulated properties, but also offers an opportunity to study the uncertainties associated with retrievals such as hydrometeor classification (HID). For the CSU HID, membership beta functions (MBFs) are built using a set of simulations with realistic microphysical assumptions about axis ratio, density, canting angles, size distributions for each of ten hydrometeor species. These assumptions are tested using POLARRIS to understand their influence on the resulting simulated polarimetric data and final HID classification. Several of these parameters (density, size distributions) are set by the model microphysics, and therefore the specific assumptions of axis ratio and canting angle are carefully studied. Through these sensitivity studies, we hope to be able to provide uncertainties in retrieved polarimetric variables and HID as applied to CRM output. HID retrievals assign a classification to each point by determining the highest score, thereby identifying the dominant hydrometeor type within a volume. However, in nature, there is rarely just one a single hydrometeor type at a particular point. Models allow for mixing ratios of different hydrometeors within a grid point. We use the mixing ratios from CRM output in concert with the HID scores and classifications to understand how the HID algorithm can provide information about mixtures within a volume, as well as calculate a confidence in the classifications. We leverage the POLARRIS framework to additionally probe radar wavelength differences toward the possibility of a multi-wavelength HID which could utilize the strengths of different wavelengths to improve HID classifications. With

  20. Agricultural Monitoring in Northeastern Ontario, Canada, Using Multi-Temporal Polarimetric RADARSAT-2 Data

    Directory of Open Access Journals (Sweden)

    Jeffrey W. Cable

    2014-03-01

    Full Text Available The purpose of this research is to analyze how changes in acquisition time and incidence angle affect various C-band synthetic aperture radar (SAR polarimetric intensities, co-polarized phase information, polarimetric response plots and decomposition parameters for various crops typical of Northern Ontario, Canada. We examine how these parameters may be used to monitor the growth stages of five common cash crops, namely, barley (Hordeum vulgare, canola (Brassica napus, oat (Avena sativa, soybean (Glycine max and wheat (Triticum spp.. In total, nine RADARSAT-2 polarimetric images were analyzed across a 14-week period beginning in June and ending in September 2011 using two incidence angles of approximately 26° and 41°. As expected, the backscatter intensities for all targets were found to show a higher response when acquired at the steeper incidence angle (26°. All cash crop targets showed a rise and fall in backscatter response over the course of the growing season, coinciding with changing growth stages. Slight phase differences were observed for cereal crops, possibly due to one of the polarizations penetrating between the rows allowing double-bounce to occur. The polarimetric response plots and decompositions offered insight into the scattering mechanisms of each crop type, generally showing an increase in volume scattering as the crops reached maturity. Specifically, the contributions of the crops increased towards the volume scattering component and zones 4 and 2, as the crops matured in regards to the Freeman-Durden and Cloude-Pottier decompositions respectively. Overall, soybean and canola showed a more similar response in comparison to the cereal cash crops. Although the study focused on Northern Ontario, it is anticipated that these results would be relevant in investigations of multi-temporal RADARSAT-2 for agricultural zones with similar crop types.

  1. On the possibility of noninvasive polarimetric determination of glucose content in skin

    Science.gov (United States)

    Pravdin, A. B.; Spivak, V. A.; Yakovlev, D. A.

    2016-01-01

    Based on real structure and optical properties of the dermis, we analyzed the possibility of polarimetric measurement of glucose content in the skin. It was shown that, at physiological concentrations of glucose in the interstitial fluid, the optical activity of glucose is not manifested in the polarization and optical properties of the tissue, since the optical activity of glucose is almost completely suppressed by the linear birefringence of the dermis.

  2. IMPROVED SEARCH OF PRINCIPAL COMPONENT ANALYSIS DATABASES FOR SPECTRO-POLARIMETRIC INVERSION

    International Nuclear Information System (INIS)

    Casini, R.; Lites, B. W.; Ramos, A. Asensio; Ariste, A. López

    2013-01-01

    We describe a simple technique for the acceleration of spectro-polarimetric inversions based on principal component analysis (PCA) of Stokes profiles. This technique involves the indexing of the database models based on the sign of the projections (PCA coefficients) of the first few relevant orders of principal components of the four Stokes parameters. In this way, each model in the database can be attributed a distinctive binary number of 2 4n bits, where n is the number of PCA orders used for the indexing. Each of these binary numbers (indices) identifies a group of ''compatible'' models for the inversion of a given set of observed Stokes profiles sharing the same index. The complete set of the binary numbers so constructed evidently determines a partition of the database. The search of the database for the PCA inversion of spectro-polarimetric data can profit greatly from this indexing. In practical cases it becomes possible to approach the ideal acceleration factor of 2 4n as compared to the systematic search of a non-indexed database for a traditional PCA inversion. This indexing method relies on the existence of a physical meaning in the sign of the PCA coefficients of a model. For this reason, the presence of model ambiguities and of spectro-polarimetric noise in the observations limits in practice the number n of relevant PCA orders that can be used for the indexing

  3. Assessment of Polarimetric SAR Interferometry for Improving Ship Classification based on Simulated Data

    Directory of Open Access Journals (Sweden)

    Jordi J. Mallorqui

    2008-12-01

    Full Text Available This paper uses a complete and realistic SAR simulation processing chain, GRECOSAR, to study the potentialities of Polarimetric SAR Interferometry (POLInSAR in the development of new classification methods for ships. Its high processing efficiency and scenario flexibility have allowed to develop exhaustive scattering studies. The results have revealed, first, vessels’ geometries can be described by specific combinations of Permanent Polarimetric Scatterers (PePS and, second, each type of vessel could be characterized by a particular spatial and polarimetric distribution of PePS. Such properties have been recently exploited to propose a new Vessel Classification Algorithm (VCA working with POLInSAR data, which, according to several simulation tests, may provide promising performance in real scenarios. Along the paper, explanation of the main steps summarizing the whole research activity carried out with ships and GRECOSAR are provided as well as examples of the main results and VCA validation tests. Special attention will be devoted to the new improvements achieved, which are related to simulations processing a new and highly realistic sea surface model. The paper will show that, for POLInSAR data with fine resolution, VCA can help to classify ships with notable robustness under diverse and adverse observation conditions.

  4. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    Science.gov (United States)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  5. Polarimetric infrared imaging simulation of a synthetic sea surface with Mie scattering.

    Science.gov (United States)

    He, Si; Wang, Xia; Xia, Runqiu; Jin, Weiqi; Liang, Jian'an

    2018-03-01

    A novel method to simulate the polarimetric infrared imaging of a synthetic sea surface with atmospheric Mie scattering effects is presented. The infrared emission, multiple reflections, and infrared polarization of the sea surface and the Mie scattering of aerosols are all included for the first time. At first, a new approach to retrieving the radiative characteristics of a wind-roughened sea surface is introduced. A two-scale method of sea surface realization and the inverse ray tracing of light transfer calculation are combined and executed simultaneously, decreasing the consumption of time and memory dramatically. Then the scattering process that the infrared light emits from the sea surface and propagates in the aerosol particles is simulated with a polarized light Monte Carlo model. Transformations of the polarization state of the light are calculated with the Mie theory. Finally, the polarimetric infrared images of the sea surface of different environmental conditions and detection parameters are generated based on the scattered light detected by the infrared imaging polarimeter. The results of simulation examples show that our polarimetric infrared imaging simulation can be applied to predict the infrared polarization characteristics of the sea surface, model the oceanic scene, and guide the detection in the oceanic environment.

  6. SEGMENTATION OF POLARIMETRIC SAR IMAGES USIG WAVELET TRANSFORMATION AND TEXTURE FEATURES

    Directory of Open Access Journals (Sweden)

    A. Rezaeian

    2015-12-01

    Full Text Available Polarimetric Synthetic Aperture Radar (PolSAR sensors can collect useful observations from earth’s surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT. Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  7. Calibration of Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) polarization measurements, and in-flight comparisons with the Research Scanning Polarimeter (RSP) and the Spectropolarimeter for Planetary EXploration (SPEX)

    Science.gov (United States)

    van Harten, G.; Diner, D. J.; Rheingans, B. E.; Daugherty, B. J.; Xu, F.; Bull, M. A.; Tkatcheva, I. N.; Garay, M. J.; Seidel, F.; Chipman, R. A.; Smit, M.

    2016-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is a remote sensing instrument for the characterization of atmospheric aerosols and clouds. AirMSPI, flying onboard the NASA ER-2 aircraft at 20 km altitude, participates in field campaigns since 2013, including ORACLES (2016). The pushbroom camera is mounted on a programmable, motorized gimbal for multi-angle observations at 10x10 m2 resolution. Eight spectral bands within 355-935 nm are recorded, 3 of which also measure linear polarization. Photoelastic modulators (PEMs) encode the polarized and total intensities in each polarimetric pixel as the amplitude and offset of a modulated intensity pattern, such that the ratio of the two is insensitive to pixel-to-pixel differences. This technique, developed to enable the high-accuracy imaging polarimetry required for aerosol species discrimination, will also be applied in the Multi-Angle Imager for Aerosols (MAIA) satellite instrument. We present the calibration and accuracy validation of AirMSPI polarization measurements. The main calibration, describing the instrument's response to any degree (DoLP) and angle of linear polarization, is performed in the lab using a recently updated, carefully designed and characterized polarization state generator (PSG-2). Validation measurements using an independent polarimeter show agreement in DoLP to within 0.001 for several DoLPs across the 0-1 range. The PEMs' retardances and phases, which are different and not necessarily stable in flight, are extracted from measurements of the on-board validator, a partially polarized light source located inside the instrument housing, which is viewed before and after each target. Although this calibration does not rely on the validator's DoLP, and the validator was not designed for DoLP calibration, the frequent measurements of its DoLP provide an upper limit for AirMSPI's in-flight polarimetric stability, which is 0.001. A correction for the actual PEM retardances and phases in the

  8. Acousto-Optic Tunable Filter-Based Polarimetric Spectral Sensor With Progressive Algorithm For Material Analysis and Mapping, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The prevalence of off earth landing missions both proposed and undertaken has been steadily increasing. With the proposal of missions, not only to Mars, but also to...

  9. Acousto-Optic Tunable Filter-Based Polarimetric Spectral Sensor With Progressive Algorithm For Material Analysis and Mapping Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The prevalence of off earth landing missions both proposed and undertaken has been steadily increasing. With the proposal of missions, not only to Mars, but also to...

  10. Acousto-Optic Tunable Filter-Based Polarimetric Spectral Sensor With Progressive Algorithm For Material Analysis and Mapping, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the strategic goals of NASA's Planetary Science Mission is to advance scientific knowledge of the origin and history of the solar system, the potential for...

  11. Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series

    Directory of Open Access Journals (Sweden)

    Iris Heine

    2016-06-01

    Full Text Available Synthetic aperture radar polarimetry (PolSAR and polarimetric decomposition techniques have proven to be useful tools for wetland mapping. In this study we classify reed belts and monitor their phenological changes at a natural lake in northeastern Germany using dual-co-polarized (HH, VV TerraSAR-X time series. The time series comprises 19 images, acquired between August 2014 and May 2015, in ascending and descending orbit. We calculated different polarimetric indices using the HH and VV intensities, the dual-polarimetric coherency matrix including dominant and mean alpha scattering angles, and entropy and anisotropy (normalized eigenvalue difference as well as combinations of entropy and anisotropy for the analysis of the scattering scenarios. The image classifications were performed with the random forest classifier and validated with high-resolution digital orthophotos. The time series analysis of the reed belts revealed significant seasonal changes for the double-bounce–sensitive parameters (intensity ratio HH/VV and intensity difference HH-VV, the co-polarimetric coherence phase and the dominant and mean alpha scattering angles and in the dual-polarimetric coherence (amplitude, anisotropy, entropy, and anisotropy-entropy combinations; whereas in summer dense leaves cause volume scattering, in winter, after leaves have fallen, the reed stems cause predominately double-bounce scattering. Our study showed that the five most important parameters for the classification of reed are the intensity difference HH-VV, the mean alpha scattering angle, intensity ratio HH/VV, and the coherence (phase. Due to the better separation of reed and other vegetation (deciduous forest, coniferous forest, meadow, winter acquisitions are preferred for the mapping of reed. Multi-temporal stacks of winter images performed better than summer ones. The combination of ascending and descending images also improved the result as it reduces the influence of the sensor

  12. Accuracy of the hypothetical sky-polarimetric Viking navigation versus sky conditions: revealing solar elevations and cloudinesses favourable for this navigation method

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Blahó, Miklós; Egri, Ádám; Szabó, Gyula; Horváth, Gábor

    2017-09-01

    According to Thorkild Ramskou's theory proposed in 1967, under overcast and foggy skies, Viking seafarers might have used skylight polarization analysed with special crystals called sunstones to determine the position of the invisible Sun. After finding the occluded Sun with sunstones, its elevation angle had to be measured and its shadow had to be projected onto the horizontal surface of a sun compass. According to Ramskou's theory, these sunstones might have been birefringent calcite or dichroic cordierite or tourmaline crystals working as polarizers. It has frequently been claimed that this method might have been suitable for navigation even in cloudy weather. This hypothesis has been accepted and frequently cited for decades without any experimental support. In this work, we determined the accuracy of this hypothetical sky-polarimetric Viking navigation for 1080 different sky situations characterized by solar elevation θ and cloudiness ρ, the sky polarization patterns of which were measured by full-sky imaging polarimetry. We used the earlier measured uncertainty functions of the navigation steps 1, 2 and 3 for calcite, cordierite and tourmaline sunstone crystals, respectively, and the newly measured uncertainty function of step 4 presented here. As a result, we revealed the meteorological conditions under which Vikings could have used this hypothetical navigation method. We determined the solar elevations at which the navigation uncertainties are minimal at summer solstice and spring equinox for all three sunstone types. On average, calcite sunstone ensures a more accurate sky-polarimetric navigation than tourmaline and cordierite. However, in some special cases (generally at 35° ≤ θ ≤ 40°, 1 okta ≤ ρ ≤ 6 oktas for summer solstice, and at 20° ≤ θ ≤ 25°, 0 okta ≤ ρ ≤ 4 oktas for spring equinox), the use of tourmaline and cordierite results in smaller navigation uncertainties than that of calcite. Generally, under clear or less cloudy

  13. Accuracy of the hypothetical sky-polarimetric Viking navigation versus sky conditions: revealing solar elevations and cloudinesses favourable for this navigation method.

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Blahó, Miklós; Egri, Ádám; Szabó, Gyula; Horváth, Gábor

    2017-09-01

    According to Thorkild Ramskou's theory proposed in 1967, under overcast and foggy skies, Viking seafarers might have used skylight polarization analysed with special crystals called sunstones to determine the position of the invisible Sun. After finding the occluded Sun with sunstones, its elevation angle had to be measured and its shadow had to be projected onto the horizontal surface of a sun compass. According to Ramskou's theory, these sunstones might have been birefringent calcite or dichroic cordierite or tourmaline crystals working as polarizers. It has frequently been claimed that this method might have been suitable for navigation even in cloudy weather. This hypothesis has been accepted and frequently cited for decades without any experimental support. In this work, we determined the accuracy of this hypothetical sky-polarimetric Viking navigation for 1080 different sky situations characterized by solar elevation θ and cloudiness ρ , the sky polarization patterns of which were measured by full-sky imaging polarimetry. We used the earlier measured uncertainty functions of the navigation steps 1, 2 and 3 for calcite, cordierite and tourmaline sunstone crystals, respectively, and the newly measured uncertainty function of step 4 presented here. As a result, we revealed the meteorological conditions under which Vikings could have used this hypothetical navigation method. We determined the solar elevations at which the navigation uncertainties are minimal at summer solstice and spring equinox for all three sunstone types. On average, calcite sunstone ensures a more accurate sky-polarimetric navigation than tourmaline and cordierite. However, in some special cases (generally at 35° ≤  θ  ≤ 40°, 1 okta ≤  ρ  ≤ 6 oktas for summer solstice, and at 20° ≤  θ  ≤ 25°, 0 okta ≤  ρ  ≤ 4 oktas for spring equinox), the use of tourmaline and cordierite results in smaller navigation uncertainties than that of calcite

  14. Click one pot synthesis, spectral analyses, crystal structures, DFT studies and brine shrimp cytotoxicity assay of two newly synthesized 1,4,5-trisubstituted 1,2,3-triazoles

    Science.gov (United States)

    Ahmed, Muhammad Naeem; Yasin, Khawaja Ansar; Ayub, Khurshid; Mahmood, Tariq; Tahir, M. Nawaz; Khan, Bilal Ahmad; Hafeez, Muhammad; Ahmed, Madiha; ul-Haq, Ihsan

    2016-02-01

    Methyl-2-(1-benzyl-4-phenyl-1H-1,2,3-triazol-5-yl)-2-oxoacetate (1) and ethyl-2-(1-benzyl-4-phenyl-1H-1,2,3-triazol-5-yl)-2-oxoacetate (2) were synthesized by one pot three component strategy, and characterized by FT-IR, NMR (1H and 13C) spectroscopy and TOF-MS spectrometry. Finally, the structures were unequivocally confirmed by single crystal X-ray diffraction analyses. Both compounds, 1 and 2 exist in monoclinic crystal packing having space group P21/n and P21/c, respectively. Crystal structures investigations revealed that the molecular structures of the title compounds are stabilized by weak intermolecular hydrogen bonding interactions to form dimers. Density functional theory (DFT) calculations were performed not only to compare with the experimental spectroscopic results but also to probe structural properties. The molecular electrostatic potential (MEP) mapped over the entire stabilized geometries of the molecules delivered information about the electrophilic and nucleophilic sites. Furthermore, frontier molecular orbital analysis gave the idea about stability and reactivity of compounds. Both compounds were also screened for brine shrimp cytotoxicity assay.

  15. A Classification Method Based on Polarimetric Entropy and GEV Mixture Model for Intertidal Area of PolSAR Image

    Directory of Open Access Journals (Sweden)

    She Xiaoqiang

    2017-10-01

    Full Text Available This paper proposes a classification method for the intertidal area using quad-polarimetric synthetic aperture radar data. In this paper, a systematic comparison of four well-known multipolarization features is provided so that appropriate features can be selected based on the characteristics of the intertidal area. Analysis result shows that the two most powerful multipolarization features are polarimetric entropy and anisotropy. Furthermore, through our detailed analysis of the scattering mechanisms of the polarimetric entropy, the Generalized Extreme Value (GEV distribution is employed to describe the statistical characteristics of the intertidal area based on the extreme value theory. Consequently, a new classification method is proposed by combining the GEV Mixture Models and the EM algorithm. Finally, experiments are performed on the Radarsat-2 quad-polarization data of the Dongtan intertidal area, Shanghai, to validate our method.

  16. Effect of non-coherent infrared light (LED, λ945 ± 20 nm) on bone repair in diabetic rats-morphometric and spectral analyses.

    Science.gov (United States)

    Diamantino, Alexandre Greca; Nicolau, Renata Amadei; Costa, Davidson Ribeiro; de Barros Almeida, Alessandra Paes; de Miranda Mato, Danila Xênia; de Oliveira, Marco Antonio; do Espírito Santo, Ana Maria

    2017-07-01

    Phototherapy using coherent light (lasers) and non-coherent light (light-emitting diodes (LEDs)) has been investigated for the purpose of biomodulation in biological tissues. Several effects can be expected, including pain moderation, biostimulation of cellular tropism, anti-inflammatory effects, regular circulatory stimulation, and tissue repair. The aim of this study was to evaluate the effect of LED (λ945 ± 20 nm, 48 mW) therapy on the regeneration process in femoral lesions of rats (Wistar). Seven irradiation sessions were held, with a 48-h interval between sessions. The animals were euthanised 14, 21, and 28 days after surgery. Bone samples were analysed by histomorphometry, micro X-ray fluorescence spectroscopy, scanning electron microscopy, and optical densitometry. The results demonstrated the effective positive influence of low-intensity LED therapy using the near-infrared region on the tissue repair process in diabetic animals, especially in the early stages of repair (14 and 21 days after surgery). It can be concluded that LED therapy positively influences bone formation in the early stages of the bone repair process in non-diabetic and diabetic animals, without causing changes in the optical density and volume of tissue in the final stages. No influence of LED therapy was observed on the percentage of calcium, percentage of phosphorus, Ca/P ratio, or optical mineral density in non-diabetic animals. However, increased mineral concentration was evident in the diabetic animals treated with the LED during the repair process.

  17. Estimating the Concentration of Large Raindrops from Polarimetric Radar and Disdrometer Observations

    Science.gov (United States)

    Carey, Lawrence D.; Petersen, Walter A; Gatlink, Patrick N.

    2013-01-01

    Estimation of rainfall integral parameters, including radar observables, and empirical relations between them are sensitive to the truncation of the drop size distribution (DSD), particularly at the large drop end. The sensitivity of rainfall integral parameters to the maximum drop diameter (D(sub max)) is exacerbated at C-band since resonance effects are pronounced for large drops in excess of 5 mm diameter (D). Due to sampling limitations, it is often difficult to reliably estimate D(sub max) with disdrometers. The resulting uncertainties in D(sub max0 potentially increase errors in radar retrieval methods, particularly at C-band, that rely on disdrometer observations for DSD input to radar models. In fact, D(sub max) is typically an assumed DSD parameter in the development of radar retrieval methods. Because of these very uncertainties, it is difficult to independently confirm disdrometer estimates of D(sub max) with polarimetric radar observations. A couple of approaches can be taken to reduce uncertainty in large drop measurement. Longer integration times can be used for the collection of larger disdrometer samples. However, integration periods must be consistent with a radar resolution volume (RRV) and the temporal and spatial scales of the physical processes affecting the DSD therein. Multiple co-located disdrometers can be combined into a network to increase the sample size within a RRV. However, over a reasonable integration period, a single disdrometer sample volume is many orders of magnitudes less than a RRV so it is not practical to devise a network of disdrometers that has an equivalent volume to a typical RRV. Since knowledge of DSD heterogeneity and large drop occurrence in time and space is lacking, the specific accuracy or even general representativeness of disdrometer based D(sub max) and large drop concentration estimates within a RRV are currently unknown. To address this complex issue, we begin with a simpler question. Is the frequency of

  18. Atmospheric and precipitation sounding with polarimetric radio-occultations aboard PAZ LEO

    Science.gov (United States)

    Padulles, Ramon; Cardellach, Estel; Tomás, Sergio; Oliveras, Santi; Rius, Antonio; de la Torre, Manuel; Turk, Joseph; Ao, Chi; Kursinski, Robert; Shreiner, Bill; Ector, Dave; Cucurull, Lidia; Wickert, Jens

    2015-04-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) Radio-Occultation (RO) payload on board of the Spanish Earth Observation satellite PAZ. This will be a new technique that has never been tested before, that aims to improve the knowledge of the precipitation through simultaneous thermodynamic and vertical rain profiles. The concept is similar to that used in some polarimetric weather radars: to measure the differential phase shift between the two polarimetric antennas, although here we will use the forward scattering geometry instead of the backscattering.The depolarization effect increases as the propagation line aligns with the plane of the drops' flattening (nominally perpendicular to the local gravity, i.e., parallel to the local horizon). The RO signals cross the lower troposphere tangentially, i.e., along the local horizon, which should maximize the depolarization effect. The satellite launch is scheduled for March 2015, and it will be followed by a 6-month commissioning phase period and has an expected life of 7 years, with a goal of 10 years. A sensitivity analysis have been performed, showing that we should be able to detect the 90% of all the events with along-ray averaged rain rate higher than 5 mm/h. Also, a ground field campaign has been conducted prior to the launch of the satellite. Results from the campaign also show a good correlation between phase shifts increases and heavy rain events. We will present here the status of the mission, which will have been launched few weeks before the EGU, together with some preliminary data analysis from both the actual satellite data and the prior-to-launch work.

  19. A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data

    DEFF Research Database (Denmark)

    Conradsen, Knut; Nielsen, Allan Aasbjerg; Schou, Jesper

    2003-01-01

    . Based on this distribution, a test statistic for equality of two such matrices and an associated asymptotic probability for obtaining a smaller value of the test statistic are derived and applied successfully to change detection in polarimetric SAR data. In a case study, EMISAR L-band data from April 17...... to HH, VV, or HV data alone, the derived test statistic reduces to the well-known gamma likelihood-ratio test statistic. The derived test statistic and the associated significance value can be applied as a line or edge detector in fully polarimetric SAR data also....

  20. Identification of hydrometeor mixtures in polarimetric radar measurements and their linear de-mixing

    Science.gov (United States)

    Besic, Nikola; Ventura, Jordi Figueras i.; Grazioli, Jacopo; Gabella, Marco; Germann, Urs; Berne, Alexis

    2017-04-01

    The issue of hydrometeor mixtures affects radar sampling volumes without a clear dominant hydrometeor type. Containing a number of different hydrometeor types which significantly contribute to the polarimetric variables, these volumes are likely to occur in the vicinity of the melting layer and mainly, at large distance from a given radar. Motivated by potential benefits for both quantitative and qualitative applications of dual-pol radar, we propose a method for the identification of hydrometeor mixtures and their subsequent linear de-mixing. This method is intrinsically related to our recently proposed semi-supervised approach for hydrometeor classification. The mentioned classification approach [1] performs labeling of radar sampling volumes by using as a criterion the Euclidean distance with respect to five-dimensional centroids, depicting nine hydrometeor classes. The positions of the centroids in the space formed by four radar moments and one external parameter (phase indicator), are derived through a technique of k-medoids clustering, applied on a selected representative set of radar observations, and coupled with statistical testing which introduces the assumed microphysical properties of the different hydrometeor types. Aside from a hydrometeor type label, each radar sampling volume is characterized by an entropy estimate, indicating the uncertainty of the classification. Here, we revisit the concept of entropy presented in [1], in order to emphasize its presumed potential for the identification of hydrometeor mixtures. The calculation of entropy is based on the estimate of the probability (pi ) that the observation corresponds to the hydrometeor type i (i = 1,ṡṡṡ9) . The probability is derived from the Euclidean distance (di ) of the observation to the centroid characterizing the hydrometeor type i . The parametrization of the d → p transform is conducted in a controlled environment, using synthetic polarimetric radar datasets. It ensures balanced

  1. Discussion on Application of Polarimetric Synthetic Aperture Radar in Marine Surveillance

    Directory of Open Access Journals (Sweden)

    Zhang Jie

    2016-12-01

    Full Text Available Synthetic Aperture Radar (SAR, an important earth observation sensor, has been used in a wide range of applications for land and marine surveillance. Polarimetric SAR (PolSAR can obtain abundant scattering information of a target to improve the ability of target detection, classification, and quantitative inversion. In this paper, the important role of PolSAR in ocean monitoring is discussed with factors such as sea ice, ships, oil spill, waves, internal waves, and seabed topography. Moreover, the future development direction of PolSAR is put forward to get an inspiration for further research of PolSAR in marine surveillance applications.

  2. Microphysical properties of frozen particles inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) polarimetric measurements

    Science.gov (United States)

    Gong, Jie; Wu, Dong L.

    2017-02-01

    Scattering differences induced by frozen particle microphysical properties are investigated, using the vertically (V) and horizontally (H) polarized radiances from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) 89 and 166 GHz channels. It is the first study on frozen particle microphysical properties on a global scale that uses the dual-frequency microwave polarimetric signals.From the ice cloud scenes identified by the 183.3 ± 3 GHz channel brightness temperature (Tb), we find that the scattering by frozen particles is highly polarized, with V-H polarimetric differences (PDs) being positive throughout the tropics and the winter hemisphere mid-latitude jet regions, including PDs from the GMI 89 and 166 GHz TBs, as well as the PD at 640 GHz from the ER-2 Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) during the TC4 campaign. Large polarization dominantly occurs mostly near convective outflow regions (i.e., anvils or stratiform precipitation), while the polarization signal is small inside deep convective cores as well as at the remote cirrus region. Neglecting the polarimetric signal would easily result in as large as 30 % error in ice water path retrievals. There is a universal bell curve in the PD-TBV relationship, where the PD amplitude peaks at ˜ 10 K for all three channels in the tropics and increases slightly with latitude (2-4 K). Moreover, the 166 GHz PD tends to increase in the case where a melting layer is beneath the frozen particles aloft in the atmosphere, while 89 GHz PD is less sensitive than 166 GHz to the melting layer. This property creates a unique PD feature for the identification of the melting layer and stratiform rain with passive sensors.Horizontally oriented non-spherical frozen particles are thought to produce the observed PD because of different ice scattering properties in the V and H polarizations. On the other hand, turbulent mixing within deep convective cores inevitably promotes the random

  3. Processing and Analysis of Polarimetric Ship Signatures from MARSIE: Report on Results for Polar Epsilon

    Science.gov (United States)

    2006-10-01

    observations de la surface équivalente radar de navires cibles pour les canaux de copolarisation et de polarisation croisée, la réduction de la...motion, environmental conditions, etc. on the observed polarimetric signatures; • The differences in the elemental scatterer distributions among the...calculée pour plusieurs navires. Les valeurs estimées de SER totale pour les canaux HV et VH étaient d’environ 10 dB inférieures aux valeurs

  4. Fitting a Two-Component Scattering Model to Polarimetric SAR Data from Forests

    Science.gov (United States)

    Freeman, Anthony

    2007-01-01

    Two simple scattering mechanisms are fitted to polarimetric synthetic aperture radar (SAR) observations of forests. The mechanisms are canopy scatter from a reciprocal medium with azimuthal symmetry and a ground scatter term that can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, which is seen through a layer of vertically oriented scatterers. The model is shown to represent the behavior of polarimetric backscatter from a tropical forest and two temperate forest sites by applying it to data from the National Aeronautic and Space Agency/Jet Propulsion Laboratory's Airborne SAR (AIRSAR) system. Scattering contributions from the two basic scattering mechanisms are estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. This model fit approach is justified as a simplification of more complicated scattering models, which require many inputs to solve the forward scattering problem. The model is used to develop an understanding of the ground-trunk double-bounce scattering that is present in the data, which is seen to vary considerably as a function of incidence angle. Two parameters in the model fit appear to exhibit sensitivity to vegetation canopy structure, which is worth further exploration. Results from the model fit for the ground scattering term are compared with estimates from a forward model and shown to be in good agreement. The behavior of the scattering from the ground-trunk interaction is consistent with the presence of a pseudo-Brewster angle effect for the air-trunk scattering interface. If the Brewster angle is known, it is possible to directly estimate the real part of the dielectric constant of the trunks, a key variable in forward modeling of backscatter from forests. It is also shown how, with a priori knowledge of the forest height, an estimate for the

  5. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    . The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...

  6. Validation of Forested Inundation Extent Revealed by L-Band Polarimetric and Interferometric SAR Data

    Science.gov (United States)

    Chapman, Bruce; Celi, Jorge; Hamilton, Steve; McDonald, Kyle

    2013-01-01

    UAVSAR, NASA's airborne Synthetic Aperture Radar (SAR), conducted an extended observational campaign in Central and South America in March 2013, primarily related to volcanic deformations along the Andean Mountain Range but also including a large number of flights studying other scientific phenomena. During this campaign, the L-Band SAR collected data over the Napo River in Ecuador. The objectives of this experiment were to acquire polarimetric and interferometric L-Band SAR data over an inundated tropical forest in Ecuador simultaneously with on-the-ground field work ascertaining the extent of inundation, and to then derive from this data a quantitative estimate for the error in the SAR-derived inundation extent. In this paper, we will first describe the processing and preliminary analysis of the SAR data. The polarimetric SAR data will be classified by land cover and inundation state. The interferometric SAR data will be used to identify those areas where change in inundation extent occurred, and to measure the change in water level between two observations separated by a week. Second, we will describe the collection of the field estimates of inundation, and have preliminary comparisons of inundation extent measured in the field field versus that estimated from the SAR data.

  7. Polarimetric rainfall retrieval from a C-Band weather radar in a tropical environment (The Philippines)

    Science.gov (United States)

    Crisologo, I.; Vulpiani, G.; Abon, C. C.; David, C. P. C.; Bronstert, A.; Heistermann, Maik

    2014-11-01

    We evaluated the potential of polarimetric rainfall retrieval methods for the Tagaytay C-Band weather radar in the Philippines. For this purpose, we combined a method for fuzzy echo classification, an approach to extract and reconstruct the differential propagation phase, Φ DP , and a polarimetric self-consistency approach to calibrate horizontal and differential reflectivity. The reconstructed Φ DP was used to estimate path-integrated attenuation and to retrieve the specific differential phase, K DP . All related algorithms were transparently implemented in the Open Source radar processing software wradlib. Rainfall was then estimated from different variables: from re-calibrated reflectivity, from re-calibrated reflectivity that has been corrected for path-integrated attenuation, from the specific differential phase, and from a combination of reflectivity and specific differential phase. As an additional benchmark, rainfall was estimated by interpolating the rainfall observed by rain gauges. We evaluated the rainfall products for daily and hourly accumulations. For this purpose, we used observations of 16 rain gauges from a five-month period in the 2012 wet season. It turned out that the retrieval of rainfall from K DP substantially improved the rainfall estimation at both daily and hourly time scales. The measurement of reflectivity apparently was impaired by severe miscalibration while K DP was immune to such effects. Daily accumulations of rainfall retrieved from K DP showed a very low estimation bias and small random errors. Random scatter was, though, strongly present in hourly accumulations.

  8. Using WSR-88D Polarimetric Data to Identify Bird-Contaminated Doppler Velocities

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2013-01-01

    Full Text Available As an important part of Doppler velocity data quality control for radar data assimilation and other quantitative applications, an automated technique is developed to identify and remove contaminated velocities by birds, especially migrating birds. This technique builds upon the existing hydrometeor classification algorithm (HCA for dual-polarimetric WSR-88D radars developed at the National Severe Storms Laboratory, and it performs two steps. In the first step, the fuzzy-logic method in the HCA is simplified and used to identify biological echoes (mainly from birds and insects. In the second step, another simple fuzzy logic method is developed to detect bird echoes among the biological echoes identified in the first step and thus remove bird-contaminated velocities. The membership functions used by the fuzzy logic method in the second step are extracted from normalized histograms of differential reflectivity and differential phase for birds and insects, respectively, while the normalized histograms are constructed by polarimetric data collected during the 2012 fall migrating season and sorted for bird and insects, respectively. The performance and effectiveness of the technique are demonstrated by real-data examples.

  9. Multi-Temporal Polarimetric RADARSAT-2 for Land Cover Monitoring in Northeastern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Jeffrey W. Cable

    2014-03-01

    Full Text Available For successful applications of microwave remote sensing endeavors it is essential to understand how surface targets respond to changing synthetic aperture radar (SAR parameters. The purpose of the study is to examine how two particular parameters, acquisition time and incidence angle, influences the response from various land use/land cover types (forests, urban infrastructure, surface water and marsh wetland targets using nine RADARSAT-2 C-band fine-beam (FQ7 and FQ21 fully polarimetric SAR data acquired during the 2011 growing season over northern Ontario, Canada. The results indicate that backscatter from steep incidence angle acquisitions was typically higher than shallow angles. Wetlands showed an increase in HH and HV intensity due to the growth of emergent vegetation over the course of the summer. The forest and urban targets displayed little variation in backscatter over time. The surface water target showed the greatest difference with respect to incidence angle, but was also determined to be the most affected by wind conditions. Analysis of the co-polarized phase difference revealed the urban target as greatly influenced by the incidence angle. The observed phase differences of the wetland target for all acquisitions also suggested evidence of double-bounce interactions, while the forest and surface water targets showed little to no phase difference. In addition, Cloude-Pottier and Freeman-Durden decompositions, when analyzed in conjunction with polarimetric response plots, provided supporting information to confidently identify the various targets and their scattering mechanisms.

  10. Polarimetric Imaging Of Protoplanetary Disks From The Optical To Sub-Mm

    Science.gov (United States)

    De Boer, Jos; Ménard, F.; Pinte, C.; van der Plas, G.; Snik, F.

    2017-10-01

    To learn how planets form from the smallest building blocks within protoplanetary disks, we first need to know how dust grains grow from micron to mm sizes. Polarimetry across the spectrum has proven to be sensitive to grain properties like dust size distribution and composition and thus can be used to characterize the scattering grains. However, polarization measured with radio interferometric arrays is rarely studied in concert with optical polarimetry. Our team has successfully calibrated the NIR polarimetric imaging mode of VLT/SPHERE, hence upgrading the instrument from a high-contrast imager to a robust tool for quantitative characterization. In this presentation, we will discuss which lessons can be learned by comparing polarimetry in the optical and sub-mm and explore for which science cases both techniques can complement each other. When we combine the polarimetric capabilities of the most advanced optical high-contrast imagers (e.g., Gemini GPI or VLT SPHERE) with that of ALMA we will be able to study the spatial distribution of an extensive range of different grains, which allows us to take an essential step towards a deeper understanding of planet formation.

  11. Algorithm Development for the Optimum Rainfall Estimation Using Polarimetric Variables in Korea

    Directory of Open Access Journals (Sweden)

    Cheol-Hwan You

    2015-01-01

    Full Text Available In this study, to get an optimum rainfall estimation using polarimetric variables observed from Bislsan radar which is the first polarimetric radar in Korea, rainfall cases for 84 hours caused by different conditions, which are Changma front and typhoon, Changma front only, and typhoon only, occurred in 2011, were analyzed. And rainfall algorithms were developed by using long period drop size distributions with six different raindrop axis ratio relations. The combination of the relations between R and Z, ZDR, R and KDP, ZDR, and R and KDP with different rainfall intensity would be an optimum rainfall algorithm if the reference of rainfall would be defined correctly. In the case the reference is not defined adequately, the relation between R and Z, ZDR, KDP, AH and R and Z, KDP, AH can be used as a representative rainfall relation. Particularly if the qualified ZDR is not available, the relation between R and Z, KDP, AH can be used as an optimum rainfall relation in Korea.

  12. Landslide Mapping in Vegetated Areas Using Change Detection Based on Optical and Polarimetric SAR Data

    Directory of Open Access Journals (Sweden)

    Simon Plank

    2016-04-01

    Full Text Available Mapping of landslides, quickly providing information about the extent of the affected area and type and grade of damage, is crucial to enable fast crisis response, i.e., to support rescue and humanitarian operations. Most synthetic aperture radar (SAR data-based landslide detection approaches reported in the literature use change detection techniques, requiring very high resolution (VHR SAR imagery acquired shortly before the landslide event, which is commonly not available. Modern VHR SAR missions, e.g., Radarsat-2, TerraSAR-X, or COSMO-SkyMed, do not systematically cover the entire world, due to limitations in onboard disk space and downlink transmission rates. Here, we present a fast and transferable procedure for mapping of landslides, based on change detection between pre-event optical imagery and the polarimetric entropy derived from post-event VHR polarimetric SAR data. Pre-event information is derived from high resolution optical imagery of Landsat-8 or Sentinel-2, which are freely available and systematically acquired over the entire Earth’s landmass. The landslide mapping is refined by slope information from a digital elevation model generated from bi-static TanDEM-X imagery. The methodology was successfully applied to two landslide events of different characteristics: A rotational slide near Charleston, West Virginia, USA and a mining waste earthflow near Bolshaya Talda, Russia.

  13. Development and Testing of Operational Dual-Polarimetric Radar Based Lightning Initiation Forecast Techniques

    Science.gov (United States)

    Woodard, Crystal; Carey, Lawrence D.; Petersen, Walter A.; Felix, Mariana; Roeder, William P.

    2011-01-01

    Lightning is one of Earth s natural dangers, destructive not only to life but also physical property. According to the National Weather Service, there are on average 58 lightning fatalities each year, with over 300 related injuries (NWS 2010). The ability to forecast lightning is critical to a host of activities ranging from space vehicle launch operations to recreational sporting events. For example a single lightning strike to a Space Shuttle could cause billions of dollars of damage and possible loss of life. While forecasting that provides longer lead times could provide sporting officials with more time to respond to possible threatening weather events, thus saving the lives of player and bystanders. Many researchers have developed and tested different methods and tools of first flash forecasting, however few have done so using dual-polarimetric radar variables and products on an operational basis. The purpose of this study is to improve algorithms for the short-term prediction of lightning initiation through development and testing of operational techniques that rely on parameters observed and diagnosed using C-band dual-polarimetric radar.

  14. Decomposition of Polarimetric SAR Images Based on Second- and Third-order Statics Analysis

    Science.gov (United States)

    Kojima, S.; Hensley, S.

    2012-12-01

    There are many papers concerning the research of the decomposition of polerimetric SAR imagery. Most of them are based on second-order statics analysis that Freeman and Durden [1] suggested for the reflection symmetry condition that implies that the co-polarization and cross-polarization correlations are close to zero. Since then a number of improvements and enhancements have been proposed to better understand the underlying backscattering mechanisms present in polarimetric SAR images. For example, Yamaguchi et al. [2] added the helix component into Freeman's model and developed a 4 component scattering model for the non-reflection symmetry condition. In addition, Arii et al. [3] developed an adaptive model-based decomposition method that could estimate both the mean orientation angle and a degree of randomness for the canopy scattering for each pixel in a SAR image without the reflection symmetry condition. This purpose of this research is to develop a new decomposition method based on second- and third-order statics analysis to estimate the surface, dihedral, volume and helix scattering components from polarimetric SAR images without the specific assumptions concerning the model for the volume scattering. In addition, we evaluate this method by using both simulation and real UAVSAR data and compare this method with other methods. We express the volume scattering component using the wire formula and formulate the relationship equation between backscattering echo and each component such as the surface, dihedral, volume and helix via linearization based on second- and third-order statics. In third-order statics, we calculate the correlation of the correlation coefficients for each polerimetric data and get one new relationship equation to estimate each polarization component such as HH, VV and VH for the volume. As a result, the equation for the helix component in this method is the same formula as one in Yamaguchi's method. However, the equation for the volume

  15. Sub-Seasonal Variability of Tropical Rainfall Observed by TRMM and Ground-based Polarimetric Radar

    Science.gov (United States)

    Dolan, Brenda; Rutledge, Steven; Lang, Timothy; Cifelli, Robert; Nesbitt, Stephen

    2010-05-01

    Studies of tropical precipitation characteristics from the TRMM-LBA and NAME field campaigns using ground-based polarimetric S-band data have revealed significant differences in microphysical processes occurring in the various meteorological regimes sampled in those projects. In TRMM-LMA (January-February 1999 in Brazil; a TRMM ground validation experiment), variability is driven by prevailing low-level winds. During periods of low-level easterlies, deeper and more intense convection is observed, while during periods of low-level westerlies, weaker convection embedded in widespread stratiform precipitation is common. In the NAME region (North American Monsoon Experiment, summer 2004 along the west coast of Mexico), strong terrain variability drives differences in precipitation, with larger drops and larger ice mass aloft associated with convection occurring over the coastal plain compared to convection over the higher terrain of the Sierra Madre Occidental, or adjacent coastal waters. Comparisons with the TRMM precipitation radar (PR) indicate that such sub-seasonal variability in these two regions are not well characterized by the TRMM PR reflectivity and rainfall statistics. TRMM PR reflectivity profiles in the LBA region are somewhat lower than S-Pol values, particularly in the more intense easterly regime convection. In NAME, mean reflectivities are even more divergent, with TRMM profiles below those of S-Pol. In both regions, the TRMM PR does not capture rain rates above 80 mm hr-1 despite much higher rain rates estimated from the S-Pol polarimetric data, and rain rates are generally lower for a given reflectivity from TRMM PR compared to S-Pol. These differences between TRMM PR and S-Pol may arise from the inability of Z-R relationships to capture the full variability of microphysical conditions or may highlight problems with TRMM retrievals over land. In addition to the TRMM-LBA and NAME regions, analysis of sub-seasonal precipitation variability and

  16. VizieR Online Data Catalog: Main-belt asteroids polarimetric survey. II. (Gil-Hutton+, 2012)

    Science.gov (United States)

    Gil-Hutton, R.; Canada-Assandri, M.

    2012-01-01

    Results for the objects observed during the polarimetric survey of main-belt asteroids. The observations were carried out during different observing runs between May 2004 and November 2009 at the 2.15m telescope of the CASLEO, San Juan, Argentina, using the Torino and CASPROF polarimeters. (3 data files).

  17. Use of Radarsat-2 polarimetric SAR images for fuel moisture mapping in the Kruger National Park, South Africa

    CSIR Research Space (South Africa)

    Kong, M

    2015-08-01

    Full Text Available Fully polarimetric Radarsat-2 imagery from wet and dry conditions over the South African Lowveld is compared to assess its value for fuel moisture mapping. Imagery was acquired at two different dates, in May (end of summer, wet) and in August (mid...

  18. Basics and first experiments demonstrating isolation improvements in the agile polarimetric FM-CW radar – PARSAX

    NARCIS (Netherlands)

    Krasnov, O.A.; Babur, G.P.; Wang, Z.; Ligthart, L.P.; Van der Zwan, F.

    2010-01-01

    The article describes the IRCTR PARSAX radar system, the S-band high-resolution Doppler polarimetric frequency modulated continuous wave (FM-CW) radar with dual-orthogonal sounding signals, which has the possibility to measure all elements of the radar target polarization scattering matrix

  19. High-resolution polarimetric X-band weather radar observations at the Cabauw Experimental Site for Atmospheric Research

    NARCIS (Netherlands)

    Otto, T.; Russchenberg, H.W.J.

    2013-01-01

    In 2007, the horizontally scanning polarimetric X-band radar IDRA (IRCTR Drizzle Radar) was installed on top of the 213 m high mast at the Dutch meteorological observatory Cabauw Experimental Site for Atmospheric Research (CESAR) at Netherlands. This radar complements a large variety of measurement

  20. Clustering of Multi-Temporal Fully Polarimetric L-Band SAR Data for Agricultural Land Cover Mapping

    Science.gov (United States)

    Tamiminia, H.; Homayouni, S.; Safari, A.

    2015-12-01

    Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.

  1. An omnibus likelihood test statistic and its factorization for change detection in time series of polarimetric SAR data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2016-01-01

    Based on an omnibus likelihood ratio test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution with an associated p-value and a factorization of this test statistic, change analysis in a short sequence of multilook, polarimetric SAR data...

  2. Comparison of vehicle-mounted forward-looking polarimetric infrared and downward-looking infrared sensors for landmine detection

    NARCIS (Netherlands)

    Cremer, F.; Schavemaker, J.G.M.; Jong, W. de; Schutte, K.

    2003-01-01

    This paper gives a comparison of two vehicle-mounted infrared systems for landmine detection. The first system is a down-ward looking standard infrared camera using processing methods developed within the EU project LOTUS. The second system is using a forward-looking polarimetric infrared camera.

  3. Utilization of AERONET polarimetric measurements for improving retrieval of aerosol microphysics: GSFC, Beijing and Dakar data analysis

    International Nuclear Information System (INIS)

    Fedarenka, Anton; Dubovik, Oleg; Goloub, Philippe; Li, Zhengqiang; Lapyonok, Tatyana; Litvinov, Pavel; Barel, Luc; Gonzalez, Louis; Podvin, Thierry; Crozel, Didier

    2016-01-01

    The study presents the efforts on including the polarimetric data to the routine inversion of the radiometric ground-based measurements for characterization of the atmospheric aerosols and analysis of the obtained advantages in retrieval results. First, to operationally process the large amount of polarimetric data the data preparation tool was developed. The AERONET inversion code adapted for inversion of both intensity and polarization measurements was used for processing. Second, in order to estimate the effect from utilization of polarimetric information on aerosol retrieval results, both synthetic data and the real measurements were processed using developed routine and analyzed. The sensitivity study has been carried out using simulated data based on three main aerosol models: desert dust, urban industrial and urban clean aerosols. The test investigated the effects of utilization of polarization data in the presence of random noise, bias in measurements of optical thickness and angular pointing shift. The results demonstrate the advantage of polarization data utilization in the cases of aerosols with pronounced concentration of fine particles. Further, the extended set of AERONET observations was processed. The data for three sites have been used: GSFC, USA (clean urban aerosol dominated by fine particles), Beijing, China (polluted industrial aerosol characterized by pronounced mixture of both fine and coarse modes) and Dakar, Senegal (desert dust dominated by coarse particles). The results revealed considerable advantage of polarimetric data applying for characterizing fine mode dominated aerosols including industrial pollution (Beijing). The use of polarization corrects particle size distribution by decreasing overestimated fine mode and increasing the coarse mode. It also increases underestimated real part of the refractive index and improves the retrieval of the fraction of spherical particles due to high sensitivity of polarization to particle shape

  4. Utilization of AERONET polarimetric measurements for improving retrieval of aerosol microphysics: GSFC, Beijing and Dakar data analysis

    Science.gov (United States)

    Fedarenka, Anton; Dubovik, Oleg; Goloub, Philippe; Li, Zhengqiang; Lapyonok, Tatyana; Litvinov, Pavel; Barel, Luc; Gonzalez, Louis; Podvin, Thierry; Crozel, Didier

    2016-08-01

    The study presents the efforts on including the polarimetric data to the routine inversion of the radiometric ground-based measurements for characterization of the atmospheric aerosols and analysis of the obtained advantages in retrieval results. First, to operationally process the large amount of polarimetric data the data preparation tool was developed. The AERONET inversion code adapted for inversion of both intensity and polarization measurements was used for processing. Second, in order to estimate the effect from utilization of polarimetric information on aerosol retrieval results, both synthetic data and the real measurements were processed using developed routine and analyzed. The sensitivity study has been carried out using simulated data based on three main aerosol models: desert dust, urban industrial and urban clean aerosols. The test investigated the effects of utilization of polarization data in the presence of random noise, bias in measurements of optical thickness and angular pointing shift. The results demonstrate the advantage of polarization data utilization in the cases of aerosols with pronounced concentration of fine particles. Further, the extended set of AERONET observations was processed. The data for three sites have been used: GSFC, USA (clean urban aerosol dominated by fine particles), Beijing, China (polluted industrial aerosol characterized by pronounced mixture of both fine and coarse modes) and Dakar, Senegal (desert dust dominated by coarse particles). The results revealed considerable advantage of polarimetric data applying for characterizing fine mode dominated aerosols including industrial pollution (Beijing). The use of polarization corrects particle size distribution by decreasing overestimated fine mode and increasing the coarse mode. It also increases underestimated real part of the refractive index and improves the retrieval of the fraction of spherical particles due to high sensitivity of polarization to particle shape

  5. On the Use of Generalized Volume Scattering Models for the Improvement of General Polarimetric Model-Based Decomposition

    Directory of Open Access Journals (Sweden)

    Qinghua Xie

    2017-01-01

    Full Text Available Recently, a general polarimetric model-based decomposition framework was proposed by Chen et al., which addresses several well-known limitations in previous decomposition methods and implements a simultaneous full-parameter inversion by using complete polarimetric information. However, it only employs four typical models to characterize the volume scattering component, which limits the parameter inversion performance. To overcome this issue, this paper presents two general polarimetric model-based decomposition methods by incorporating the generalized volume scattering model (GVSM or simplified adaptive volume scattering model, (SAVSM proposed by Antropov et al. and Huang et al., respectively, into the general decomposition framework proposed by Chen et al. By doing so, the final volume coherency matrix structure is selected from a wide range of volume scattering models within a continuous interval according to the data itself without adding unknowns. Moreover, the new approaches rely on one nonlinear optimization stage instead of four as in the previous method proposed by Chen et al. In addition, the parameter inversion procedure adopts the modified algorithm proposed by Xie et al. which leads to higher accuracy and more physically reliable output parameters. A number of Monte Carlo simulations of polarimetric synthetic aperture radar (PolSAR data are carried out and show that the proposed method with GVSM yields an overall improvement in the final accuracy of estimated parameters and outperforms both the version using SAVSM and the original approach. In addition, C-band Radarsat-2 and L-band AIRSAR fully polarimetric images over the San Francisco region are also used for testing purposes. A detailed comparison and analysis of decomposition results over different land-cover types are conducted. According to this study, the use of general decomposition models leads to a more accurate quantitative retrieval of target parameters. However, there

  6. Polarimetric survey of main-belt asteroids. II. Results for 58 B- and C-type objects

    Science.gov (United States)

    Gil-Hutton, R.; Cañada-Assandri, M.

    2012-03-01

    Aims: We present results of a polarimetric survey of main-belt asteroids at Complejo Astronómico el Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained with the Torino and CASPROF polarimeters at the 2.15m telescope. The Torino polarimeter is an instrument that allows simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 2003, and up to 2009 data on a sample of more than 170 asteroids were obtained. In this paper the results for 58 B- and C-type objects are presented, most of them polarimetrically observed for the first time. Using these data we find phase-polarization curves and polarimetric parameters for these taxonomic classes. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Tables 1 and 2 are available in electronic form at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/539/A115

  7. Polarimetric survey of main-belt asteroids. I. Results for fifty seven S-, L-, and K-type objects

    Science.gov (United States)

    Gil-Hutton, R.; Cañada-Assandri, M.

    2011-05-01

    Aims: We present the first results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties, similar to those shown by the asteroid (234) Barbara. Methods: The data were obtained with the Torino and CASPROF polarimeters at the 2.15 m telescope. The Torino polarimeter is an instrument that allows the simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 2003, and up to 2009 data on a sample of more than 170 asteroids were obtained. In this paper the results of 57 S-, L-, and K-type objects are presented, most of them are being polarimetrically observed for the first time. Using these data we find phase-polarization curves and polarimetric parameters for these taxonomic classes. Furthermore, we also find two candidates, (397) Vienna and (458) Hercynia, that could have a phase-polarization curve with a large inversion angle. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Tables 1 and 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?j/A+A/529/A86

  8. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  9. A New Polarimetric Study of Cygnus A Using JVLA from 2-18GHz

    Science.gov (United States)

    Lerato Sebokolodi, Makhuduga; Perley, Rick; Carilli, Chris; Smirnov, Oleg M.; Makhathini, Sphesihle

    2018-01-01

    Polarimetric studies of Cygnus A [5, 1, 2, 3] have shown that this radio galaxy has unusually large rotation measures ranging from -4000 to +3000 rad m -2 for the eastern lobe (E-lobe) and -2000 to +1300 rad m -2 for western lobe(W-lobe). A challenge since then has been to identify the medium(s) responsible for these high Faraday rotations (FR). Although a majority of the FR must arise from the surrounding cluster gas, an unknown portion may arise either in the sheath or within the lobes. In these cases, some depolarization must result, along with a non λ 2 rotation of the plane of polarization. Detecting such a depolarization will enable an estimate of the internal (and/or sheath) thermal gas density. [1] found significant depolarization associated with the inner regions of the E-lobe and no depolarization associated with the W-lobe. This depolarization could be either internal to the source (Faraday depolarization) or due to unresolved small-scale fluctuations in the foreground screen (beam depolarization) [1]. The former is expected to impose significant deviations in the λ2 -law, none of which have been found to date, nor could have been found due to the limited number of frequencies employed in these studies.Since 2015, new JVLA polarimetric observations of Cygnus A have been taken, in all four configurations, covering the frequency range from 2 to 18GHz. These new data provide thousands of frequency channels at high resolution and sensitivity – opening a new opportunity to study in great detail the physics of the jets, lobes and the magnetic field of the X-ray cluster medium and lobes. Our objective is to analyze these new polarimetric data with the expectation of extending the previous work and more importantly, to investigate the possibility of any significantdeviations from the λ2-law. Initial analysis shows significant deviations from λ2 -law associated with the W-lobe. We will present these results in detail, and also the results from RM

  10. Polarimetric mountain based radio-occultation for rain detection: The ROHP-PAZ ground campaign

    Science.gov (United States)

    Padulles, Ramon; Cardellach, Estel; Tomas, Sergio; de la Torre, Manuel; Turk, Joe

    2014-05-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) Radio-Occultation (RO) payload on board of the Spanish Earth Observation satellite PAZ. This will be a new technique that has never been tested before, that aims to improve the knowledge of precipitation through simultaneous thermodynamic and vertical rain profiles. Prior to the launch of the satellite, expected for 2014, a ground experimental campaign is being conducted with the goal of starting the process of identifying and understanding all the factors that might affect the polarimetric RO observables. The campaign is being carried out at the top of Puig Sesolles, a 1667m peak in the Natural Park of Montseny (41º46'24 N, 2º26'17 E), 50 km N-NE from Barcelona, with clear views over the horizon to the South (East to West) direction, an area in which intense precipitation events tend to occur a few times per year. The campaign uses a ICE-CSIC/IEEC's GOLD-RTR open-loop receiver initially designed for collecting GNSS signals reflected off the sea surface. The receiver has been adjusted to track occulting GNSS radio-links. A double polarization (H and V) GNSS antenna has been designed and manufactured by the Polytechnic University of Barcelona (UPC) team for this particular ground-based experiment. The antenna is a phase-array made of 7 elements, each of them being a square patch built using a Rogers 4003 substrate, and symmetrically fed by four probes. It provides a pattern of 12.9 dB peak gain, 45 degrees half-power beam-width, and <-35 dB cross-polar isolation at the peak (better than -30 dB in the main lobe). The preliminary results show that not only precipitation, but also other factors are affecting the GNSS signal, wich means that the polarimetric signal is richer than expected

  11. Unmixing of spectrally similar minerals

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available techniques is complicated when considering very similar spectral signatures. Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral signatures. The study focuses on how could estimates of abundances of spectrally similar iron-bearing oxide...

  12. Polarimetric and Interferometric Synthetic Aperture Radar (Pol-InSAR); a new way to quantify three-dimensional structure of Earth and planetary surfaces Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This study will employ a three phased approach: SAR image formation and calibration. DBSAR polarimetric and interferometric data analysis. PolInSAR algorithm...

  13. GHRSST Level 3U Global Subskin Sea Surface Temperature from the WindSat Polarimetric Radiometer on the Coriolis satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The WindSat Polarimetric Radiometer, launched on January 6, 2003 aboard the Department of Defense Coriolis satellite, was designed to measure the ocean surface wind...

  14. USGS Digital Spectral Library splib06a

    Science.gov (United States)

    Clark, Roger N.; Swayze, Gregg A.; Wise, Richard A.; Livo, K. Eric; Hoefen, Todd M.; Kokaly, Raymond F.; Sutley, Stephen J.

    2007-01-01

    ), one simply needs a diagnostic absorption band. The mapping system uses continuum-removed reference spectral features fitted to features in observed spectra. Spectral features for such algorithms can be obtained from a spectrum of a sample containing large amounts of contaminants, including those that add other spectral features, as long as the shape of the diagnostic feature of interest is not modified. If, however, the data are needed for radiative transfer models to derive mineral abundances from reflectance spectra, then completely uncontaminated spectra are required. This library contains spectra that span a range of quality, with purity indicators to flag spectra for (or against) particular uses. Acquiring spectral measurements and performing sample characterizations for this library has taken about 15 person-years of effort. Software to manage the library and provide scientific analysis capability is provided (Clark, 1980, 1993). A personal computer (PC) reader for the library is also available (Livo and others, 1993). The program reads specpr binary files (Clark, 1980, 1993) and plots spectra. Another program that reads the specpr format is written in IDL (Kokaly, 2005). In our view, an ideal spectral library consists of samples covering a very wide range of materials, has large wavelength range with very high precision, and has enough sample analyses and documentation to establish the quality of the spectra. Time and available resources limit what can be achieved. Ideally, for each mineral, the sample analysis would include X-ray diffraction (XRD), electron microprobe (EM) or X-ray fluorescence (XRF), and petrographic microscopic analyses. For some minerals, such as iron oxides, additional analyses such as Mossbauer would be helpful. We have found that to make the basic spectral measurements, provide XRD, EM or XRF analyses, and microscopic analyses, document the results, and complete an entry of one spectral library sample, all takes about

  15. Vowel Inherent Spectral Change

    CERN Document Server

    Assmann, Peter

    2013-01-01

    It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...

  16. High Resolution Spectral Analysis

    Science.gov (United States)

    2006-10-25

    liable methods for high resolution spectral analysis of multivariable processes, as well as to distance measures for quantitative assessment of...called "modern nonlinear spectral analysis methods " [27]. An alternative way to reconstruct /„(#), based on Tn, is the periodogram/correlogram f{6...eie). A homotopy method was proposed in [8, 9] leading to a differential equation for A(T) in a homotopy variable r. If the statistics are consistent

  17. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    Science.gov (United States)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; hide

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  18. Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation

    Science.gov (United States)

    Zhan, Hanyu; Voelz, David G.

    2016-12-01

    The polarimetric bidirectional reflectance distribution function (pBRDF) describes the relationships between incident and scattered Stokes parameters, but the familiar surface-only microfacet pBRDF cannot capture diffuse scattering contributions and depolarization phenomena. We propose a modified pBRDF model with a diffuse scattering component developed from the Kubelka-Munk and Le Hors et al. theories, and apply it in the development of a method to jointly estimate refractive index, slope variance, and diffuse scattering parameters from a series of Stokes parameter measurements of a surface. An application of the model and estimation approach to experimental data published by Priest and Meier shows improved correspondence with measurements of normalized Mueller matrix elements. By converting the Stokes/Mueller calculus formulation of the model to a degree of polarization (DOP) description, the estimation results of the parameters from measured DOP values are found to be consistent with a previous DOP model and results.

  19. On the calibration of the polarimetric slope - albedo relation for asteroids: Work in progress

    Directory of Open Access Journals (Sweden)

    A. Cellino

    2011-09-01

    Full Text Available Asteroid polarimetry is known to be an excellent tool to derive information on the geometric albedo of these objects. This is made possible by the existence of a relation between the albedo and the morphology of the curve which describes the variation of the degree of linear polarization of asteroid light as a function of the illumination conditions. A major problem is that the calibration of the commonly accepted form of the polarization - albedo relation includes numerical coefficients which are affected by fairly high uncertainties. Following some recommendations issued by IAU Commission 15, we are trying to improve the albedo - polarization relation by taking advantage of new polarimetric data obtained in dedicated observation campaigns. We present here some very preliminary results.

  20. PRELIMINARY RESULTS OF ESTIMATING SOIL MOISTURE OVER BARE SOIL USING FULL-POLARIMETRIC ALOS-2 DATA

    Directory of Open Access Journals (Sweden)

    A. Sekertekin

    2016-10-01

    Full Text Available Synthetic Aperture Radar (SAR imaging system is one of the most effective way for Earth observation. The aim of this study is to present the preliminary results about estimating soil moisture using L-band Synthetic Aperture Radar (SAR data. Full-polarimetric (HH, HV, VV, VH ALOS-2 data, acquired on 22.04.2016 with the incidence angle of 30.4o, were used in the study. Simultaneously with the SAR acquisition, in-situ soil moisture samples over bare agricultural lands were collected and evaluated using gravimetric method. Backscattering coefficients for all polarizations were obtained and linear regression analysis was carried out with in situ moisture measurements. The best correlation coefficient was observed with VV polarization. Cross-polarized backscattering coefficients were not so sensitive to soil moisture content. In the study, it was observed that soil moisture maps can be retrieved with the accuracy about 14% (RMSE.

  1. Bilateral bad pixel and Stokes image reconstruction for microgrid polarimetric imagers

    Science.gov (United States)

    LeMaster, Daniel A.; Ratliff, Bradley M.

    2015-09-01

    Uncorrected or poorly corrected bad pixels reduce the effectiveness of polarimetric clutter suppression. In conventional microgrid processing, bad pixel correction is accomplished as a separate step from Stokes image reconstruction. Here, these two steps are combined to speed processing and provide better estimates of the entire image, including missing samples. A variation on the bilateral filter enables both edge preservation in the Stokes imagery and bad pixel suppression. Understanding the newly presented filter requires two key insights. First, the adaptive nature of the bilateral filter is extended to correct for bad pixels by simply incorporating a bad pixel mask. Second, the bilateral filter for Stokes estimation is the sum of the normalized bilateral filters for estimating each analyzer channel individually. This paper describes the new approach and compares it to our legacy method using simulated imagery.

  2. Space-based detection of space debris by photometric and polarimetric characteristics

    Science.gov (United States)

    Pang, Shuxia; Wang, Hu; Lu, Xiaoyun; Shen, Yang; Pan, Yue

    2017-10-01

    The number of space debris has been increasing dramatically in the last few years, and is expected to increase as much in the future. As the orbital debris population grows, the risk of collision between debris and other orbital objects also grows. Therefore, space debris detection is a particularly important task for space environment security, and then supports for space debris modeling, protection and mitigation. This paper aims to review space debris detection systematically and completely. Firstly, the research status of space debris detection at home and abroad is presented. Then, three kinds of optical observation methods of space debris are summarized. Finally, we propose a space-based detection scheme for space debris by photometric and polarimetric characteristics.

  3. Spectro-polarimetric study of the early evolutionary phases of the most massive galaxies

    International Nuclear Information System (INIS)

    Vernet, Joel

    2001-01-01

    This research thesis addresses the study of the early phases of evolution of the most massive galaxies (giant elliptic), a fundamental process which is a matter of study for various reasons exposed by the author in his introduction. While presented results are based on spectro-polarimetric observations, the author first presents specific instruments and methods used by spectropolarimetry which provides access to variations of all vectorial properties of light, without loss of information. Then, he reports the study of a near powerful radio-galaxy, Cygnus A, the study of nine radio-galaxies with a high redshift, and the study of a far ultra-luminous infrared galaxy (SMM J02399-0136). Results are then discussed and perspectives of research are proposed. Appendices present the theoretical study of the contribution of massive stars to the diffuse extragalactic ionizing background, and observations made on a near radio-galaxy (NGC 6251)

  4. Semi-supervised Learning for Classification of Polarimetric SAR Images Based on SVM-Wishart

    Directory of Open Access Journals (Sweden)

    Hua Wen-qiang

    2015-02-01

    Full Text Available In this study, we propose a new semi-supervised classification method for Polarimetric SAR (PolSAR images, aiming at handling the issue that the number of train set is small. First, considering the scattering characters of PolSAR data, this method extracts multiple scattering features using target decomposition approach. Then, a semi-supervised learning model is established based on a co-training framework and Support Vector Machine (SVM. Both labeled and unlabeled data are utilized in this model to obtain high classification accuracy. Third, a recovery scheme based on the Wishart classifier is proposed to improve the classification performance. From the experiments conducted in this study, it is evident that the proposed method performs more effectively compared with other traditional methods when the number of train set is small.

  5. Link between interplanetary & cometary dust: Polarimetric observations and space studies with Rosetta & Eye-Sat

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Gaboriaud, Alain; Buil, Christian; Ressouche, Antoine; Lasue, J.; Palun, Adrien; Apper, Fabien; Elmaleh, Marc

    Intensity and linear polarization observations of the solar light scattered by interplanetary dust, the so-called zodiacal light, provide information on properties of the dust particles, such as their spatial density, local changes, morphology and albedo. Earth-based polarimetric observations, with a resolution of 5° or more, have been used to derive the polarization phase curve of interplanetary dust particles and to establish that the polarization at 90° phase angle increases with increasing solar distance, at least up to 1.5 au in the ecliptic, while the albedo decreases [1, 2]. Analysis of such studies will be revisited. Numerical simulations of the polarimetric behavior of interplanetary dust particles strongly suggest that, in the inner solar system, interplanetary dust particles consist of absorbing (e.g., organic compounds) and less absorbing (e.g., silicates) materials, that radial changes originate in a decrease of organics with decreasing solar distance (probably due to alteration processes), and that a significant fraction of the interplanetary dust is of cometary origin, in agreement with dynamical studies [3, 4]. The polarimetric behaviors of interplanetary dust and cometary dust particles seem to present striking similarities. The properties of cometary dust particles, as derived from remote polarimetric observations of comets including 67P/Churyumov-Gerasimenko, the target of the Rosetta rendezvous mission, at various wavelengths, will be summarized [5, 6]. The ground truth expected from Rosetta dust experiments, i.e., MIDAS, COSIMA, GIADA, about dust particles’ morphology, composition, and evolution (with distance to the nucleus before Philae release and with distance to the Sun before and after perihelion passage) over the year and a half of nominal mission, will be discussed. Finally, the Eye-Sat nanosatellite will be presented. This triple cubesat, developed by students from engineering schools working as interns at CNES, is to be launched

  6. ESA'S POLarimetric Airborne Radar Ice Sounder (POLARIS): design and first results

    DEFF Research Database (Denmark)

    Dall, Jørgen; Kristensen, Steen Savstrup; Krozer, Viktor

    2010-01-01

    -of-concept campaign was conducted in Greenland. This study outlines the design and implementation of the system, and based on first results it is concluded that in the central dry snow zone of Greenland, POLARIS can resolve shallow and deep internal ice layers, penetrate the thickest ice encountered and detect......The Technical University of Denmark has developed and tested a P-band ice sounding radar for European Space Agency (ESA). With the recent by the International Telecommunication Union (ITU) allocation of a radar band at 435 MHz, increased interest in space-based sounding of the Earth s ice caps has...... been encountered. ESA s POLarimetric Airborne Radar Ice Sounder (POLARIS) is intended to provide a better understanding of P-band scattering and propagation through ice sheets and to verify novel surface clutter suppression techniques in preparation for a potential space-based ice sounding mission...

  7. EMISAR: An Absolutely Calibrated Polarimetric L- and C-band SAR

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Skou, Niels; Dall, Jørgen

    1998-01-01

    and low cross-polar contamination. Digital technology has been utilized to realize a flexible and highly stable radar with variable resolution, swath width, and imaging geometry. Thermal control and several calibration loops have been built into the system to ensure system stability and absolute......EMISAR is a high-resolution (2×2 m), fully polarimetric, dual-frequency (L- and C-band) synthetic aperture radar (SAR) system designed for remote-sensing applications. The SAR is operated at high altitudes on a Gulfstream G-3 jet aircraft. The system is very well calibrated and has low sidelobes...... calibration. Accurately measured antenna gains and radiation patterns are included in the calibration. The processing system is developed to support data calibration, which is the key to most of the current applications. Recent interferometric enhancements are important for many scientific applications...

  8. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  9. TP89 - SIRZ Decomposition Spectral Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Seetho, Isacc M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Azevedo, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, Jerel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, William D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Jr., Harry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-08

    The primary objective of this test plan is to provide X-ray CT measurements of known materials for the purposes of generating and testing MicroCT and EDS spectral estimates. These estimates are to be used in subsequent Ze/RhoE decomposition analyses of acquired data.

  10. Improvement of electrophoresis performance by spectral analysis ...

    African Journals Online (AJOL)

    This paper describes a new design of standard agarose gel electrophoresis procedure for nucleic acids analysis. The electrophoresis was improved by using the real-time spectral analysis of the samples to increase its performance. A laser beam illuminated the analysed sample at wavelength with the highest absorption of ...

  11. Oil detection in a coastal marsh with polarimetric Synthetic Aperture Radar (SAR)

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Suzuoki, Yukihiro; Jones, Cathleen E.

    2011-01-01

    The National Aeronautics and Space Administration's airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR) sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD) and Cloude-Pottier (CP) decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes.

  12. Ground-Based Polarimetric Remote Sensing of Dust Aerosol Properties in Chinese Deserts near Hexi Corridor

    Directory of Open Access Journals (Sweden)

    Hua Xu

    2014-01-01

    Full Text Available One-year observation of dust aerosol properties near Hexi Corridor was obtained from polarimetric measurements by ground-based sunphotometer in the county of Minqin in northwestern China from March 2012 to February 2013. We observed an annual mean AOD of 0.22±0.22 at 0.50 μm and Ångström exponents of 0.1–1.0 fitting a bimode normal distribution centered at 0.18 and 0.50, respectively. The effective radii of fine (0.13–0.17 μm and coarse (2.49–3.49 μm modes were found stable at all seasons together with the appearance of a third mode of particle radius at 0.4–1.0 μm when AOD was larger than 0.6. It is noticeable that the real (1.5–1.7 and imaginary (0.0005 to 0.09 parts of complex refractive indices were higher than other studies performed in other desert regions of China, while single scattering albedo was relatively lower (~0.84–0.89 at wavelengths of 0.44, 0.67, 0.87, and 1.02 μm. This is partially due to calcite or hematite in the soil in Minqin or the influence of anthropogenic aerosols containing carbon. Moreover, from our novel polarimetric measurement, the scattering phase function (F11 and degree of linear polarization for incident unpolarized light (-F12/F11 of dust aerosols were also obtained within this deserted area.

  13. Oil Detection in a Coastal Marsh with Polarimetric Synthetic Aperture Radar (SAR

    Directory of Open Access Journals (Sweden)

    Cathleen E. Jones

    2011-12-01

    Full Text Available The National Aeronautics and Space Administration’s airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD and Cloude-Pottier (CP decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes.

  14. QuadCam - A Quadruple Polarimetric Camera for Space Situational Awareness

    Science.gov (United States)

    Skuljan, J.

    A specialised quadruple polarimetric camera for space situational awareness, QuadCam, has been built at the Defence Technology Agency (DTA), New Zealand, as part of collaboration with the Defence Science and Technology Laboratory (Dstl), United Kingdom. The design was based on a similar system originally developed at Dstl, with some significant modifications for improved performance. The system is made up of four identical CCD cameras looking in the same direction, but in a different plane of polarisation at 0, 45, 90 and 135 degrees with respect to the reference plane. A standard set of Stokes parameters can be derived from the four images in order to describe the state of polarisation of an object captured in the field of view. The modified design of the DTA QuadCam makes use of four small Raspberry Pi computers, so that each camera is controlled by its own computer in order to speed up the readout process and ensure that the four individual frames are taken simultaneously (to within 100-200 microseconds). In addition, a new firmware was requested from the camera manufacturer so that an output signal is generated to indicate the state of the camera shutter. A specialised GPS unit (also developed at DTA) is then used to monitor the shutter signals from the four cameras and record the actual time of exposure to an accuracy of about 100 microseconds. This makes the system well suited for the observation of fast-moving objects in the low Earth orbit (LEO). The QuadCam is currently mounted on a Paramount MEII robotic telescope mount at the newly built DTA space situational awareness observatory located on Whangaparaoa Peninsula near Auckland, New Zealand. The system will be used for tracking satellites in low Earth orbit and geostationary belt as well. The performance of the camera has been evaluated and a series of test images have been collected in order to derive the polarimetric signatures for selected satellites.

  15. Portable polarimetric fiber stress sensor system for visco-elastic and biomimetic material analysis

    Science.gov (United States)

    Harrison, Mark C.; Armani, Andrea M.

    2015-05-01

    Non-destructive materials characterization methods have significantly changed our fundamental understanding of material behavior and have enabled predictive models to be developed. However, the majority of these efforts have focused on crystalline and metallic materials, and transitioning to biomaterials, such as tissue samples, is non-trivial, as there are strict sample handling requirements and environmental controls which prevent the use of conventional equipment. Additionally, the samples are smaller and more complex in composition. Therefore, more advanced sample analysis methods capable of operating in these environments are needed. In the present work, we demonstrate an all-fiber-based material analysis system based on optical polarimetry. Unlike previous polarimetric systems which relied on free-space components, our method combines an in-line polarizer, polarization-maintaining fiber, and a polarimeter to measure the arbitrary polarization state of the output, eliminating all free-space elements. Additionally, we develop a more generalized theoretical analysis which allows more information about the polarization state to be obtained via the polarimeter. We experimentally verify our system using a series of elastomer samples made from polydimethylsiloxane (PDMS), a commonly used biomimetic material. By adjusting the base:curing agent ratio of the PDMS, we controllably tune the Young's modulus of the samples to span over an order of magnitude. The measured results are in good agreement with those obtained using a conventional load-frame system. Our fiber-based polarimetric stress sensor shows promise for use as a simple research tool that is portable and suitable for a wide variety of applications.

  16. Design and development of a microwave multifrequency polarimetric scatterometer for biosphere remote sensing

    International Nuclear Information System (INIS)

    Stjernman, A.

    1995-05-01

    The main topic of this research report is the design and development of a multifrequency, polarimetric scatterometer for biosphere remote sensing. The system was developed using a standard HP network analyzer, a crossed log-periodic dipole antenna and a reflector. The scatterometer functions in a linear polarization basis between the L- and X-bands and gathers full-polarimetric information. The standard S-parameter measurements using the network analyzer were related to surface and volume scattering coefficients of rough surface, snow cover and vegetation media. The scatterometer measurements were carried out in the frequency domain to make use of narrow band filters in the receiver chain. The fast Fourier transform was used to convert the frequency domain measurements to the time domain. The range resolution of the system was 20 cm; azimuthal and elevation resolutions are determined by the antenna beam widths. Range side lobes were reduced by making use of appropriate weighting (Kaiser-Bessel window) functions. The accuracy of target characterization depends on the quality of scatterometer calibration. A novel technique to estimate the absolute gain and crosstalk of the radar system was developed. Using a distortion matrix approach, the cross-polarization response of the system was improved by 10 to 25 dB. The radar measurements were validated by comparing point target radar observations with the corresponding theoretical values. Also, measurements of fading decorrelation distance and decorrelation bandwidth or rough surfaces were in good agreement with the theory. Backscatter observations of vegetation and snow cover were comparable to earlier published values for a similar environment. 50 refs, 56 figs, 1 tab

  17. WindSat Space Borne Polarimetric Microwave Radiometer: Data Products and System Performance

    Science.gov (United States)

    Truesdale, D.; Gaiser, P.; Bettenhausen, M. H.; Li, L.; Twarog, E.

    2017-12-01

    WindSat, a satellite-based multi-frequency polarimetric microwave radiometer developed by the Naval Research Laboratory for the U.S. Navy and the NPOESS Integrated Program Office (IPO), has collected over 14 years of fully-polarimetric microwave measurements from space since its launch in 2003. The primary WindSat mission was to demonstrate the capability to retrieve the ocean surface wind vector from a space-based microwave radiometer. The WindSat data is now being used to produce near-real-time products for the ocean surface wind vector, sea surface temperature (SST) and atmospheric columnar water vapor and cloud liquid water over the ocean at the U.S. Navy's Fleet Numerical Meteorological and Oceanographic Center (FNMOC). Several groups are assimilating WindSat data products into numerical weather models with positive results. In addition to providing environmental products over the ocean, the WindSat data set has been exploited for retrievals over land and ice. In particular, the WindSat channel set is well suited to retrieving soil moisture and land surface temperature. We have also built on heritage algorithms to derive sea ice concentration. This paper will provide highlights of WindSat environmental products. The success of the WindSat mission is directly traceable to the on-orbit sensor calibration. WindSat was designed with a one-year mission requirement and three year goal. Now in WindSat's fifteenth year on orbit, we continue to monitor the instrument performance and the calibration stability. Key system performance and calibration parameters include the receiver gains and NEDTs. These parameters are susceptible to component aging and changes in the payload thermal behavior. We will present trends in NEDT and receiver gains over the life of the mission. In addition to its primary mission, the long life of WindSat enables it to provide many forms of risk reduction and lessons learned for future microwave imagers.

  18. A Combined Use of Decomposition and Texture for Terrain Classification of Fully Polarimetric SAR Images

    Science.gov (United States)

    Rodionova, N. V.

    2007-03-01

    This p aper presents two-stag e unsupervised terrain classification of fully polarimetr ic SA R data using Freeman and Durden decomposition based on three simp le scattering mechanisms: surface, volume and double bounce (first step), and textur al features (uncorrelated uniformity , contr ast, inv erse mo men t and entropy) obtained from grey lev el co-occurrence matr ices (GLCM) (second step). Textural f eatures ar e defined in moving w indow 5x5 pixels w ith N=32 (N - number of grey lev els) . This algorith m preserves th e purity of domin ant polarimetric scattering properties and defines textural features in each scatter ing category. It is shown better object discrimin ation after app lying textur e w ith in fix ed scattering category. Speckle r eduction is one of th e main mo ments in imag e interpr etation improvement because of its great influen ce on textur e. Results from unfiltered and Lee filtered polar imetr ic SAR imag es show that the v alues of contrast and en tropy decr ease and th e values of uniformity and inverse moment increase with speckle reduction, that's tru e for all polarizations (HH, VV, HV). Th e d iscr imination b etw een objects increases after speckle f ilter ing. Polar ization influen ce on textur e features is def ined by calculating th e features in SAR images w ith HH , VV and HV polarizations before and after speck le filter ing, and then creating RG B images. It is shown mor e polarization inf luence on textur e features (uniformity , inverse mo ment and entropy) before filtering and less influen ce - after speck le f iltering. I t's not true for contrast wher e polar ization influen ce is not ch anged practically w ith filtering. SIR-C/X-SA R SLC L-band imag es of Moscow r egion are used for illustr ation.

  19. Design and development of a microwave multifrequency polarimetric scatterometer for biosphere remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Stjernman, A.

    1995-05-01

    The main topic of this research report is the design and development of a multifrequency, polarimetric scatterometer for biosphere remote sensing. The system was developed using a standard HP network analyzer, a crossed log-periodic dipole antenna and a reflector. The scatterometer functions in a linear polarization basis between the L- and X-bands and gathers full-polarimetric information. The standard S-parameter measurements using the network analyzer were related to surface and volume scattering coefficients of rough surface, snow cover and vegetation media. The scatterometer measurements were carried out in the frequency domain to make use of narrow band filters in the receiver chain. The fast Fourier transform was used to convert the frequency domain measurements to the time domain. The range resolution of the system was 20 cm; azimuthal and elevation resolutions are determined by the antenna beam widths. Range side lobes were reduced by making use of appropriate weighting (Kaiser-Bessel window) functions. The accuracy of target characterization depends on the quality of scatterometer calibration. A novel technique to estimate the absolute gain and crosstalk of the radar system was developed. Using a distortion matrix approach, the cross-polarization response of the system was improved by 10 to 25 dB. The radar measurements were validated by comparing point target radar observations with the corresponding theoretical values. Also, measurements of fading decorrelation distance and decorrelation bandwidth or rough surfaces were in good agreement with the theory. Backscatter observations of vegetation and snow cover were comparable to earlier published values for a similar environment. 50 refs, 56 figs, 1 tab.

  20. Feasibility Study of Rain Rate Monitoring from Polarimetric GNSS Propagation Parameters

    Directory of Open Access Journals (Sweden)

    Hao An

    2016-12-01

    Full Text Available In this work, the feasibility of estimating rain rate based on polarimetric Global Navigation Satellite Systems (GNSS signals is explored in theory. After analyzing the cause of polarimetric signals, three physical-mathematical relation models between co-polar phase shift (KHH, KVV, specific differential phase shift (KDP, and rain rate (R are respectively investigated. These relation models are simulated based on four different empirical equations of nonspherical raindrops and simulated Gamma raindrop size distribution. They are also respectively analyzed based on realistic Gamma raindrop size distribution and maximum diameter of raindrops under three different rain types: stratiform rain, cumuliform rain, and mixed clouds rain. The sensitivity of phase shift with respect to some main influencing factors, such as shape of raindrops, frequency, as well as elevation angle, is also discussed, respectively. The numerical results in this study show that the results by scattering algorithms T-matrix are consistent with those from Rayleigh Scattering Approximation. It reveals that they all have the possibility to estimate rain rate using the KHH-R, KVV-R or KDP-R relation. It can also be found that the three models are all affected by shape of raindrops and frequency, while the elevation angle has no effect on KHH-R. Finally, higher frequency L1 or B1 and lower elevation angle are recommended and microscopic characteristics of raindrops, such as shape and size distribution, are deemed to be important and required for further consideration in future experiments. Since phase shift is not affected by attenuation and not biased by ground clutter cancellers, this method has considerable potential in precipitation monitoring, which provides new opportunities for atmospheric research.

  1. Characterization of Mediterranean hail-bearing storms using an operational polarimetric X-band radar

    Directory of Open Access Journals (Sweden)

    G. Vulpiani

    2015-11-01

    It is based on an iterative approach that uses a very short-length (1 km moving window, allowing proper capture of the observed high radial gradients of the differential phase. The parameterization of the attenuation correction algorithm, which uses the reconstructed differential phase shift, is derived from electromagnetic simulations based on 3 years of drop size distribution (DSD observations collected in Rome (Italy. A fuzzy logic hydrometeor classification algorithm was also adopted to support the analysis of the storm characteristics. The precipitation field amounts were reconstructed using a combined polarimetric rainfall algorithm based on reflectivity and specific differential phase. The first storm was observed on 21 February when a winter convective system that originated in the Tyrrhenian Sea, marginally hit the central-eastern coastline of Sicily, causing a flash flood in Catania. Due to an optimal location (the system is located a few kilometers from the city center, it was possible to retrieve the storm characteristics fairly well, including the amount of rainfall field at the ground. Extemporaneous signal extinction, caused by close-range hail core causing significant differential phase shift in a very short-range path, is documented. The second storm, on 21 August 2013, was a summer mesoscale convective system that originated from a Mediterranean low pressure system lasting a few hours that eventually flooded the city of Syracuse. The undergoing physical process, including the storm dynamics, is inferred by analyzing the vertical sections of the polarimetric radar measurements. The high registered amount of precipitation was fairly well reconstructed, although with a trend toward underestimation at increasing distances. Several episodes of signal extinction were clearly manifested during the mature stage of the observed supercells.

  2. Image Enhancement and Speckle Reduction of Full Polarimetric SAR Data by Gaussian Markov Random Field

    Science.gov (United States)

    Mahdian, M.; Motagh, M.; Akbari, V.

    2013-09-01

    In recent years, the use of Polarimetric Synthetic Aperture Radar (PolSAR) data in different applications dramatically has been increased. In SAR imagery an interference phenomenon with random behavior exists which is called speckle noise. The interpretation of data encounters some troubles due to the presence of speckle which can be considered as a multiplicative noise affecting all coherent imaging systems. Indeed, speckle degrade radiometric resolution of PolSAR images, therefore it is needful to perform speckle filtering on the SAR data type. Markov Random Field (MRF) has proven to be a powerful method for drawing out eliciting contextual information from remotely sensed images. In the present paper, a probability density function (PDF), which is fitted well with the PolSAR data based on the goodness-of-fit test, is first obtained for the pixel-wise analysis. Then the contextual smoothing is achieved with the MRF method. This novel speckle reduction method combines an advanced statistical distribution with spatial contextual information for PolSAR data. These two parts of information are combined based on weighted summation of pixel-wise and contextual models. This approach not only preserves edge information in the images, but also improves signal-to-noise ratio of the results. The method maintains the mean value of original signal in the homogenous areas and preserves the edges of features in the heterogeneous regions. Experiments on real medium resolution ALOS data from Tehran, and also high resolution full polarimetric SAR data over the Oberpfaffenhofen test-site in Germany, demonstrate the effectiveness of the algorithm compared with well-known despeckling methods.

  3. Novel Algorithms for Astronomical Plate Analyses

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Powerful computers and dedicated software allow effective data mining and scientific analyses in astronomical plate archives. We give and discuss examples of newly developed algorithms for astronomical plate analyses, e.g., searches for optical transients, as well as for major spectral and brightness ...

  4. Novel Algorithms for Astronomical Plate Analyses Rene Hudec1,2 ...

    Indian Academy of Sciences (India)

    Algorithms for automated analyses of digitized spectral plates. We have developed and tested algorithms for automated classification of spectral classes, searches for spectral variability (both continuum and lines), searches for objects with specific spectra, correlation of spectral and light ganges, and searches for transients.

  5. A Novel Ship Detection Method Using Model-Based Decomposition as a Polarimetric Band-Stop Filter

    Science.gov (United States)

    Sugimoto, Mitsunobu; Marino, Armando; Ouchi, Kazuo; Nakamura, Yasuhiro

    2013-08-01

    In this study, a novel ship detection method using model-based decomposition is suggested. The model-based decomposition is one of the popular analytical methods of POLSAR (polarimetric SAR) data. Since most of the scattering on the sea is surface scattering, the model-based decomposition can be used as a band-stop filter, to block out surface scattering component. As a result, ships, which generally have more complex scattering process, can be detected. Advanced Land Observation Satellite-Phased Array L-band SAR (ALOS-PALSAR) polarimetric SAR data and available reference data for validation are used in the study. The result was processed using adaptive-CFAR (constant false alarm rate) technique and compared with the reference data.

  6. CRISS power spectral density

    International Nuclear Information System (INIS)

    Vaeth, W.

    1979-04-01

    The correlation of signal components at different frequencies like higher harmonics cannot be detected by a normal power spectral density measurement, since this technique correlates only components at the same frequency. This paper describes a special method for measuring the correlation of two signal components at different frequencies: the CRISS power spectral density. From this new function in frequency analysis, the correlation of two components can be determined quantitatively either they stem from one signal or from two diverse signals. The principle of the method, suitable for the higher harmonics of a signal as well as for any other frequency combinations is shown for the digital frequency analysis technique. Two examples of CRISS power spectral densities demonstrates the operation of the new method. (orig.) [de

  7. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  8. Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations

    Science.gov (United States)

    Wang, Mingjun; Zhao, Kun; Xue, Ming; Zhang, Guifu; Liu, Su; Wen, Long; Chen, Gang

    2016-10-01

    The evolution of microphysical characteristics of a rainband in Typhoon Matmo (2014) over eastern China, through its onset, developing, mature, and dissipating stages, is documented using observations from an S band polarimetric Doppler radar and a two-dimensional video disdrometer (2DVD). The drop size distributions observed by the 2DVD and retrieved from the polarimetric radar measurements indicate that the convection in the rainband generally contains smaller drops and higher number concentrations than the typical maritime type convection described in Bringi et al. (2003). The average mass-weighted mean diameter (Dm) of convective precipitation in the rainband is about 1.41 mm, and the average logarithmic normalized intercept (Nw) is 4.67 log10 mm-1 m-3. To further investigate the dominant microphysical processes, the evolution of the vertical structures of polarimetric variables is examined. Results show that complex ice processes are involved above the freezing level, while it is most likely that the accretion and/or coalescence processes dominate below the freezing level throughout the rainband life cycle. A combined examination of the polarimetric measurements and profiles of estimated vertical liquid and ice water contents indicates that the conversion of cloud water into rainwater through cloud water accretion by raindrops plays a dominant role in producing heavy rainfall. The high estimated precipitation efficiency of 50% also suggests that cloud water accretion is the dominant mechanism for producing heavy rainfall. This study represents the first time that radar and 2DVD observations are used together to characterize the microphysical characteristics and precipitation efficiency for typhoon rainbands in China.

  9. Polarimetric survey of main-belt asteroids. IV. New results from the first epoch of the CASLEO survey

    Science.gov (United States)

    Gil-Hutton, R.; Cellino, A.; Bendjoya, Ph.

    2014-09-01

    Aims: We present results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained using the Torino and CASPROF polarimeters at the 2.15m telescope. The Torino polarimeter is an instrument that allows simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 1995, and until 2012 data on a large sample of asteroids were obtained. We here present and analyze the unpublished results for 129 asteroids of different taxonomic types, 56 which were polarimetrically observed for the first time. We find that the asteroids (402) Chloe and (729) Watsonia are Barbarians, and asteroid (269) Justitia shows a phase - polarization curve that seems to have a small inversion angle. Data obtained in UBVRI colors allow us to sketch an analysis of the wavelength dependence of the degree of linear polarization for 31 asteroids, in spite of some large error bars in some cases. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/569/A122

  10. Spectral analysis by correlation

    International Nuclear Information System (INIS)

    Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.

    1969-01-01

    The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr

  11. Evaluation of Digital Classification of Polarimetric SAR Data for Iron-Mineralized Laterites Mapping in the Amazon Region

    Directory of Open Access Journals (Sweden)

    Cleber G. Oliveira

    2013-06-01

    Full Text Available This study evaluates the potential of C- and L-band polarimetric SAR data for the discrimination of iron-mineralized laterites in the Brazilian Amazon region. The study area is the N1 plateau located on the northern border of the Carajás Mineral Province, the most important Brazilian mineral province which has numerous mineral deposits, particularly the world’s largest iron deposits. The plateau is covered by low-density savanna-type vegetation (campus rupestres which contrasts visibly with the dense equatorial forest. The laterites are subdivided into three units: chemical crust, iron-ore duricrust, and hematite, of which only the latter two are of economic interest. Full polarimetric data from the airborne R99B sensor of the SIVAM/CENSIPAM (L-band system and the RADARSAT-2 satellite (C-band were evaluated. The study focused on an assessment of distinct schemes for digital classification based on decomposition theory and hybrid approach, which incorporates statistical analysis as input data derived from the target decomposition modeling. The results indicated that the polarimetric classifications presented a poor performance, with global Kappa values below 0.20. The accuracy for the identification of units of economic interest varied from 55% to 89%, albeit with high commission error values. In addition, the results using L-band were considered superior compared to C-band, which suggest that the roughness scale for laterite discrimination in the area is nearer to L than to C-band.

  12. EFFECT OF POLARIMETRIC NOISE ON THE ESTIMATION OF TWIST AND MAGNETIC ENERGY OF FORCE-FREE FIELDS

    International Nuclear Information System (INIS)

    Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay; Joshi, Jayant

    2009-01-01

    The force-free parameter α, also known as helicity parameter or twist parameter, bears the same sign as the magnetic helicity under some restrictive conditions. The single global value of α for a whole active region gives the degree of twist per unit axial length. We investigate the effect of polarimetric noise on the calculation of global α value and magnetic energy of an analytical bipole. The analytical bipole has been generated using the force-free field approximation with a known value of constant α and magnetic energy. The magnetic parameters obtained from the analytical bipole are used to generate Stokes profiles from the Unno-Rachkovsky solutions for polarized radiative transfer equations. Then we add random noise of the order of 10 -3 of the continuum intensity (I c ) in these profiles to simulate the real profiles obtained by modern spectropolarimeters such as Hinode (SOT/SP), SVM (USO), ASP, DLSP, POLIS, and SOLIS etc. These noisy profiles are then inverted using a Milne-Eddington inversion code to retrieve the magnetic parameters. Hundred realizations of this process of adding random noise and polarimetric inversion is repeated to study the distribution of error in global α and magnetic energy values. The results show that (1) the sign of α is not influenced by polarimetric noise and very accurate values of global twist can be calculated, and (2) accurate estimation of magnetic energy with uncertainty as low as 0.5% is possible under the force-free condition.

  13. Automated chromatographic system with polarimetric detection laser applied in the control of fermentation processes and seaweed extracts characterization

    International Nuclear Information System (INIS)

    Fajer, V.; Naranjo, S.; Mora, W.; Patinno, R.; Coba, E.; Michelena, G.

    2012-01-01

    There are presented applications and innovations of chromatographic and polarimetric systems in which develop methodologies for measuring the input molasses and the resulting product of a fermentation process of alcohol from a rich honey and evaluation of the fermentation process honey servery in obtaining a drink native to the Yucatan region. Composition was assessed optically active substances in seaweed, of interest to the pharmaceutical industry. The findings provide measurements alternative raw materials and products of the sugar industry, beekeeping and pharmaceutical liquid chromatography with automated polarimetric detection reduces measurement times up to 15 min, making it comparable to the times of high chromatography resolution, significantly reducing operating costs. By chromatography system with polarimetric detection (SCDP) is new columns have included standard size designed by the authors, which allow process samples with volumes up to 1 ml and reduce measurement time to 15 min, decreasing to 5 times the volume sample and halving the time of measurement. Was evaluated determining the concentration of substances using the peaks of the chromatograms obtained for the different columns and calculate the uncertainty of measurements. The results relating to the improvement of a data acquisition program (ADQUIPOL v.2.0) and new programs for the preparation of chromatograms (CROMAPOL CROMAPOL V.1.0 and V.1.2) provide important benefits, which allow a considerable saving of time the processing of the results and can be applied in other chromatography systems with the appropriate adjustments. (Author)

  14. Geomorphological mapping of ice-free areas using polarimetric RADARSAT-2 data on Fildes Peninsula and Ardley Island, Antarctica

    Science.gov (United States)

    Schmid, T.; López-Martínez, J.; Guillaso, S.; Serrano, E.; D'Hondt, O.; Koch, M.; Nieto, A.; O'Neill, T.; Mink, S.; Durán, J. J.; Maestro, A.

    2017-09-01

    Satellite-borne Synthetic Aperture Radar (SAR) has been used for characterizing and mapping in two relevant ice-free areas in the South Shetland Islands. The objective has been to identify and characterize land surface covers that mainly include periglacial and glacial landforms, using fully polarimetric SAR C band RADARSAT-2 data, on Fildes Peninsula that forms part of King George Island, and Ardley Island. Polarimetric parameters obtained from the SAR data, a selection of field based training and validation sites and a supervised classification approach, using the support vector machine were chosen to determine the spatial distribution of the different landforms. Eight periglacial and glacial landforms were characterized according to their scattering mechanisms using a set of 48 polarimetric parameters. The mapping of the most representative surface covers included colluvial deposits, stone fields and pavements, patterned ground, glacial till and rock outcrops, lakes and glacier ice. The overall accuracy of the results was estimated at 81%, a significant value when mapping areas that are within isolated regions where access is limited. Periglacial surface covers such as stone fields and pavements occupy 25% and patterned ground over 20% of the ice-free areas. These are results that form the basis for an extensive monitoring of the ice-free areas throughout the northern Antarctic Peninsula region.

  15. Identificação de impurezas e misturas em pó de café por meio de comportamento espectral e análise de imagens digitais Identifying adulteration in coffee powders by spectral signatures and digital analyses

    Directory of Open Access Journals (Sweden)

    Eduardo Delgado Assad

    2002-02-01

    Full Text Available Para eliminar divergências na interpretação dos resultados e agilizar os atuais métodos de detecção de fraudes em café torrado e moído, foi estabelecido um método baseado na análise por imagem e fundamentado no princípio de que diferentes materiais de origem orgânica, como o pó de café, podem apresentar reflectâncias distintas em diferentes comprimentos de onda do espectro eletromagnético. Partiu-se da hipótese de que o pó de café adulterado, quando submetido a uma fonte artificial de iluminação, apresenta uma reflectância, nos canais vermelho (R, verde (G e azul (B, diferente em relação à do pó de café não-adulterado. Após as etapas de limpeza, secagem e homogeneização, foram geradas imagens multiespectrais das amostras de café, por meio de uma lupa acoplada a uma câmara CCD (Charge Coupled Device. A quantificação das impurezas na amostra foi obtida utilizando-se curvas de calibração entre a área relativa obtida pela classificação supervisionada de imagens e a porcentagem de impurezas presentes nas amostras. Esse novo método permite agilidade da resposta, ausência de subjetividade nos resultados e não-destruição das amostras analisadas, e assegura um patamar mínimo de detecção de 95% das impurezas do produto.In order to reduce divergences in the interpretation of the results obtained by current methods of fraud detection in powdered coffees, a new method to quantify coffee adulterants is presented in this study. This method is based on image analyses and on the principle that different organic materials found in ground coffees present distinct spectral signatures. The hypothesis is that the adultered coffees, when submitted to an artificial source of illumination, present different reflectance values in RGB (Red/Green/Blue channels in comparison to those from pure coffees. After the cleaning, drying, and homogenization steps, multispectral images of coffee samples were generated by using a glass

  16. Spectral Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Mandel, Jan; Kasanický, Ivan; Vejmelka, Martin; Fuglík, Viktor; Turčičová, Marie; Eben, Kryštof; Resler, Jaroslav; Juruš, Pavel

    2014-01-01

    Roč. 11, - (2014), EMS2014-446 [EMS Annual Meeting /14./ & European Conference on Applied Climatology (ECAC) /10./. 06.10.2014-10.10.2014, Prague] R&D Projects: GA ČR GA13-34856S Grant - others:NSF DMS -1216481 Institutional support: RVO:67985807 Keywords : data assimilation * spectral filter Subject RIV: DG - Athmosphere Sciences, Meteorology

  17. Classification of Forest Regrowth Stage using Polarimetric Decomposition and Foliage Projective Cover

    Science.gov (United States)

    Clewley, D.; Lucas, R.; Bunting, P.; Moghaddam, M.

    2012-12-01

    Within Queensland, Australia extensive clearing of vegetation for agriculture has occurred within the Brigalow Belt Bioregion (BBB), reducing forests dominated by Acacia harpophylla (brigalow) to 10 % of their former extent. Where cleared land is left abandoned or unmanaged regeneration is rapid, Regenerating vegetation represents a more efficient and cost effective method for carbon sequestration than direct planting and offers a number of benefits over plantation forest, particularly in terms of provision of habitat for native fauna. To effectively protect regenerating vegetation, maps of the distribution of forests at different stages of regeneration are required. Whilst mapping approaches have traditionally focused on optical data, the high canopy cover of brigalow regrowth in all but the very early stages limits discrimination of forests at different stages of growth. The combination of optical data, namely Landsat derived Foliage Projective Cover (FPC) and Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (SAR) backscatter data have previously been investigated for mapping regrowth. This study therefore aimed to investigate the potential of the alpha-Entropy (α/H) decomposition (S Cloude and E Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," 1997, IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 1, pp. 68-78) applied to polarimetric ALOS PALSAR backscatter for mapping regrowth stage combined with FPC data to account for canopy variations. The study focused on the Tara Downs subregion, located in the Western Darling Downs, within the south of the BBB. PALSAR data were acquired over the study site in fully-polarimetric mode (incidence angle mid swath ~ 26 degrees). From these data α/H layers were generated and stacked with FPC data. Considering only those areas known to contain brigalow prior to clearing and with an FPC > 9 %, k-means clustering was applied, with

  18. A Simple Spectral Observer

    Directory of Open Access Journals (Sweden)

    Lizeth Torres

    2018-05-01

    Full Text Available The principal aim of a spectral observer is twofold: the reconstruction of a signal of time via state estimation and the decomposition of such a signal into the frequencies that make it up. A spectral observer can be catalogued as an online algorithm for time-frequency analysis because is a method that can compute on the fly the Fourier transform (FT of a signal, without having the entire signal available from the start. In this regard, this paper presents a novel spectral observer with an adjustable constant gain for reconstructing a given signal by means of the recursive identification of the coefficients of a Fourier series. The reconstruction or estimation of a signal in the context of this work means to find the coefficients of a linear combination of sines a cosines that fits a signal such that it can be reproduced. The design procedure of the spectral observer is presented along with the following applications: (1 the reconstruction of a simple periodical signal, (2 the approximation of both a square and a triangular signal, (3 the edge detection in signals by using the Fourier coefficients, (4 the fitting of the historical Bitcoin market data from 1 December 2014 to 8 January 2018 and (5 the estimation of a input force acting upon a Duffing oscillator. To round out this paper, we present a detailed discussion about the results of the applications as well as a comparative analysis of the proposed spectral observer vis-à-vis the Short Time Fourier Transform (STFT, which is a well-known method for time-frequency analysis.

  19. The Impact of Warm-Rain Microphysical Processes on Rain Rate and Polarimetric Observables at X-Band

    Science.gov (United States)

    Xie, Xinxin; Evaristo, Raquel; Troemel, Silke; Simmer, Clemens

    2015-04-01

    Microphysical processes govern the evolution of drop size distribution (DSD) during the development of precipitating systems. Thus, an accurate knowledge on precipitating systems from a microphysical perspective is required for better quantitative precipitation estimates (QPE). Additionally, detection of microphysical processes in 3D polarimetric radar volumes paves the way for better parameterizations in numerical weather predictions (NWP). In this study, we focus on the impact of different microphysical processes on rain rate (RR) and polarimetric observables at X band. Microphysical processes during the evolution of warm-rain precipitating systems, including size sorting, evaporation, coalescence and breakup, are taken into account. Assuming that vertical rain shaft is composed of liquid spheroids distributed in a normalized Gamma size distribution, microphysical processes are reconstructed. The variation of RR governed by microphysical processes is also examined. Unique fingerprints caused by microphysical processes have been identified in polarimetric radar observations. For size sorting, large rain drops concentrating near ground surface or at leading edge induce strong Zdr (differential reflectivity) accompanied by small Zh (reflectivity). A larger mean size in DSD results in stronger Zdr during size sorting. The increasing mean size due to evaporation and coalescence enhances Zdr, while Zh during evaporation is reduced by the depletion of small rain drops. The reduction of Zh ranges between -10 dB and 0 dB considering different DSDs during evaporation. Zh, Zdr and Kdp (specific differential phase) all decrease when large rain drops break up. The evolution of DSD which depends on the ongoing microphysical processes results in a variation in RR. Though size sorting due to differential sedimentation occurs, RR approaches stable within 15 min. Suffering from vertical wind shear, RR is reduced because of the categorization of rain drops with different terminal

  20. The potential of linear discriminative Laplacian eigenmaps dimensionality reduction in polarimetric SAR classification for agricultural areas

    Science.gov (United States)

    Shi, Lei; Zhang, Lefei; Zhao, Lingli; Yang, Jie; Li, PingXiang; Zhang, Liangpei

    2013-12-01

    In this paper, the linear discriminative Laplacian eigenmaps (LDLE) dimensionality reduction (DR) algorithm is introduced to C-band polarimetric synthetic aperture radar (PolSAR) agricultural classification. A collection of homogenous areas of the same crop class usually presents physical parameter variation, such as the biomass and soil moisture. Furthermore, the local incidence angle also impacts a lot on the same crop category when the vegetation layer is penetrable with C-band radar. We name this phenomenon as the "observed variation of the same category" (OVSC). The most common PolSAR features, e.g., the Freeman-Durden and Cloude-Pottier decompositions, show an inadequate performance with OVSC. In our research, more than 40 coherent and incoherent PolSAR decomposition models are stacked into the high-dimensionality feature cube to describe the various physical parameters. The LDLE algorithm is then performed on the observed feature cube, with the aim of simultaneously pushing the local samples of the same category closer to each other, as well as maximizing the distance between local samples of different categories in the learnt subspace. Finally, the classification result is obtained by nearest neighbor (NN) or Wishart classification in the reduced feature space. In the simulation experiment, eight crop blocks are picked to generate a test patch from the 1991 Airborne Synthetic Aperture Radar (AIRSAR) C-band fully polarimetric data from of Flevoland test site. Locality preserving projections (LPP) and principal component analysis (PCA) are then utilized to evaluate the DR results of the proposed method. The classification results show that LDLE can distinguish the influence of the physical parameters and achieve a 99% overall accuracy, which is better than LPP (97%), PCA (88%), NN (89%), and Wishart (88%). In the real data experiment, the Chinese Hailaer nationalized farm RadarSat2 PolSAR test set is used, and the classification accuracy is around 94%, which

  1. Wavelength conversion based spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin

    There has been a strong, application driven development of Si-based cameras and spectrometers for imaging and spectral analysis of light in the visible and near infrared spectral range. This has resulted in very efficient devices, with high quantum efficiency, good signal to noise ratio and high...... resolution for this spectral region. Today, an increasing number of applications exists outside the spectral region covered by Si-based devices, e.g. within cleantech, medical or food imaging. We present a technology based on wavelength conversion which will extend the spectral coverage of state of the art...... visible or near infrared cameras and spectrometers to include other spectral regions of interest....

  2. Analysis of Dual- and Full-Circular Polarimetric SAR Modes for Rice Phenology Monitoring: An Experimental Investigation through Ground-Based Measurements

    Directory of Open Access Journals (Sweden)

    Yuta Izumi

    2017-04-01

    Full Text Available Circularly polarized synthetic aperture radar (CP-SAR is known to be insensitive to polarization mismatch losses caused by the Faraday rotation effect and antenna misalignment. Additionally, the dual-circular polarimetric (DCP mode has proven to have more polarimetric information than that of the corresponding mode of linear polarization, i.e., the dual-linear polarimetric (DLP mode. Owing to these benefits, this paper investigates the feasibility of CP-SAR for rice monitoring. A ground-based CP-radar system was exploited, and C-band anechoic chamber data of a self-cultivated Japanese rice paddy were acquired from germination to ripening stages. Temporal variations of polarimetric observables derived from full-circular polarimetric (FCP and DCP as well as synthetically generated DLP data are analyzed and assessed with regard to their effectiveness in phenology retrieval. Among different observations, the H / α ¯ plane and triangle plots obtained by three scattering components (surface, double-bounce, and volume scattering for both the FCP and DCP modes are confirmed to have reasonable capability in discriminating the relevant intervals of rice growth.

  3. Land Cover Changes Detection in Polarimetric SAR Data Using Algebra, Similarity and Distance Based Methods

    Science.gov (United States)

    Najafi, A.; Hasanlou, M.; Akbari, V.

    2017-09-01

    Monitoring and surveillance changes around the world need powerful methods, so detection, visualization, and assessment of significant changes are essential for planning and management. Incorporating polarimetric SAR images due to interactions between electromagnetic waves and target and because of the high spatial resolution almost one meter can be used to study changes in the Earth's surface. Full polarized radar images comparing to single polarized radar images use amplitude and phase information of the surface in different available polarization (HH, HV, VH, and VV). This study is based on the decomposition of full polarized airborne UAVSAR images and integration of these features with algebra method involves Image Differencing (ID) and Image Ratio (IR) algorithms with the mathematical nature and distance-based method involves Canberra (CA) and Euclidean (ED) algorithms with measuring distance between corresponding vector and similarity-based method involves Taminoto (TA) and Kulczynski (KU) algorithms with dependence corresponding vector for change detecting purposes on two real PolSAR datasets. Assessment of incorporated methods is implemented using ground truth data and different criteria for evaluating such as overall accuracy (OA), area under ROC curve (AUC) and false alarms rate (FAR). The output results show that ID, IR, and CA have superiority to detect changes comparing to other implemented algorithms. Also, numerical results show that the highest performance in two datasets has OA more than 90%. In other assessment criteria, mention algorithms have low FAR and high AUC value indices to detect changes in PolSAR images.

  4. Improving Wishart Classification of Polarimetric SAR Data Using the Hopfield Neural Network Optimization Approach

    Directory of Open Access Journals (Sweden)

    Íñigo Molina

    2012-11-01

    Full Text Available This paper proposes the optimization relaxation approach based on the analogue Hopfield Neural Network (HNN for cluster refinement of pre-classified Polarimetric Synthetic Aperture Radar (PolSAR image data. We consider the initial classification provided by the maximum-likelihood classifier based on the complex Wishart distribution, which is then supplied to the HNN optimization approach. The goal is to improve the classification results obtained by the Wishart approach. The classification improvement is verified by computing a cluster separability coefficient and a measure of homogeneity within the clusters. During the HNN optimization process, for each iteration and for each pixel, two consistency coefficients are computed, taking into account two types of relations between the pixel under consideration and its corresponding neighbors. Based on these coefficients and on the information coming from the pixel itself, the pixel under study is re-classified. Different experiments are carried out to verify that the proposed approach outperforms other strategies, achieving the best results in terms of separability and a trade-off with the homogeneity preserving relevant structures in the image. The performance is also measured in terms of computational central processing unit (CPU times.

  5. POLAMI: Polarimetric Monitoring of AGN at Millimetre Wavelengths - I. The programme, calibration and calibrator data products

    Science.gov (United States)

    Agudo, Iván; Thum, Clemens; Molina, Sol N.; Casadio, Carolina; Wiesemeyer, Helmut; Morris, David; Paubert, Gabriel; Gómez, José L.; Kramer, Carsten

    2018-02-01

    We describe the POLAMI (Polarimetric Monitoring of AGN at Millimetre Wavelengths) programme for the monitoring of all four Stokes parameters of a sample of bright radio-loud active galactic nuclei with the IRAM 30-m telescope at 3.5 and 1.3 mm. The programme started in 2006 October and accumulated, until 2014 August, 2300 observations at 3.5 mm, achieving a median time sampling interval of 22 d for the sample of 37 sources. This first paper explains the source selection, mostly blazars, the observing strategy and data calibration and gives the details of the instrumental polarization corrections. The sensitivity (1σ) reached at 3.5 mm is 0.5 per cent (linear polarization degree), 4.7° (polarization angle), and 0.23 per cent (circular polarization), while the corresponding values at 1.3 mm are 1.7 per cent, 9.9° and 0.72 per cent, respectively. The data quality is demonstrated by the time sequences of our calibrators Mars and Uranus. For the quasar 3C 286, widely used as a linear polarization calibrator, we give improved estimates of its linear polarization, and show for the first time occasional detections of its weak circular polarization, which suggests a small level of variability of the source at millimeter wavelengths.

  6. Detecting emergence, growth, and senescence of wetland vegetation with polarimetric synthetic aperture radar (SAR) data

    Science.gov (United States)

    Gallant, Alisa L.; Kaya, Shannon G.; White, Lori; Brisco, Brian; Roth, Mark F.; Sadinski, Walter J.; Rover, Jennifer

    2014-01-01

    Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR) data acquired with Canada’s Radarsat-2 system to track within-season changes in wetland vegetation and surface water. We speculated, a priori, how temporal and morphological traits of different types of wetland vegetation should respond over a growing season with respect to four energy-scattering mechanisms. We used ground-based monitoring data and other ancillary information to assess the limits and consistency of the SAR data for tracking seasonal changes in wetlands. We found the traits of different types of vertical emergent wetland vegetation were detected well with the SAR data and corresponded with our anticipated backscatter responses. We also found using data from Landsat’s optical/infrared sensors in conjunction with SAR data helped remove confusion of wetland features with upland grasslands. These results suggest SAR data can provide useful monitoring information on the statuses of wetlands over time.

  7. Wetland Monitoring Using the Curvelet-Based Change Detection Method on Polarimetric SAR Imagery

    Directory of Open Access Journals (Sweden)

    Andreas Schmitt

    2013-07-01

    Full Text Available One fundamental task in wetland monitoring is the regular mapping of (temporarily flooded areas especially beneath vegetation. Due to the independence of weather and illumination conditions, Synthetic Aperture Radar (SAR sensors could provide a suitable data base. Using polarimetric modes enables the identification of flooded vegetation by means of the typical double-bounce scattering. In this paper three decomposition techniques—Cloude-Pottier, Freeman-Durden, and Normalized Kennaugh elements—are compared to each other in terms of identifying the flooding extent as well as its temporal change. The image comparison along the time series is performed with the help of the Curvelet-based Change Detection Method. The results indicate that the decomposition algorithm has a strong impact on the robustness and reliability of the change detection. The Normalized Kennaugh elements turn out to be the optimal representation for Curvelet-based change detection processing. Furthermore, the co-polarized channels (same transmit and receive polarization in horizontal (HH and vertical (VV direction respectively appear to be sufficient for wetland monitoring so that dual-co-polarized imaging modes could be an alternative to conventional quad-polarized acquisitions.

  8. Full Polarimetric Synthetic Aperture Radar (SAR) Data for ionosphere observation - A comparative study

    Science.gov (United States)

    Mohanty, S.; Singh, G.

    2017-12-01

    Ionosphere, predominantly, govern the propagation of radio waves, especially at L-band and lower frequencies. Small-scale, rapid fluctuations in the electron density, termed as scintillation phenomenon, cause rapid variations in signal amplitude and phase. Scintillation studies have been done using ground-based radio transmitter and beacon GPS signals. In this work, attempt has been made to utilize full polarimetric synthetic aperture radar (SAR) satellite signal at L-band (1.27 GHz) to develop a new measurement index for SAR signal intensity fluctuation. Datasets acquired from Japan's latest Advanced Land Observation Satellite (ALOS)-2 over the Indian subcontinent on two different dates, with varying ionospheric activities, have been utilized to compare the index. A 20% increase in the index values for a scintillation-affected day has been observed. The result coincides with the nature of ionospheric scintillation pattern typically observed over the equatorial belt. Total electron content values, for the two dates of acquisition, obtained from freely available Ionosphere Exchange (IONEX) data have been used to validate the varying ionospheric activities as well as the trend in index results. Another interesting finding of the paper is the demarcation of the equatorial anomaly belt. The index values are comparatively higher at these latitudes on a scintillation-affected day. Furthermore, the SAR signal intensity fluctuation index has great potential in being used as a preliminary measurement index to identify low frequency SAR data affected by ionospheric scintillation.

  9. Correlation methods for the analysis of X-ray polarimetric signals

    Science.gov (United States)

    Massaro, E.; Fabiani, S.; Campana, R.; Costa, E.; Del Monte, E.; Muleri, F.; Soffitta, P.

    2018-03-01

    X-ray polarimetric measurements are based on studying the distribution of the directions of scattered photons or photoelectrons and on the search of a sinusoidal modulation with a period of π. We developed two tools for investigating these angular distributions based on the correlations between counts in phase bins separated by fixed phase distances. In one case we use the correlation between data separated by half of the bin number (one period) which is expected to give a linear pattern. In the other case, the scatter plot obtained by shifting by 1/8 of the bin number (1/4 of period) transforms the sinusoid in a circular pattern whose radius is equal to the amplitude of the modulation. For unpolarized radiation these plots are reduced to a random point distribution centred at the mean count level. This new methods provide direct visual and simple statistical tools for evaluating the quality of polarization measurements and for estimating the polarization parameters. Furthermore they are useful for investigating distortions due to systematic effects.

  10. Distributed transverse stress measurement along an optic fiber using polarimetric OFDR.

    Science.gov (United States)

    Wei, Changjiang; Chen, Hongxin; Chen, Xiaojun; Chen, David; Li, Zhihong; Yao, X Steve

    2016-06-15

    We report a novel polarimetric optical frequency domain reflectometer (P-OFDR) that can simultaneously measure both space-resolved transverse stresses and light back-reflections along an optic fiber with sub-mm spatial resolution. By inducing transversal stresses and optical back-reflections at multiple points along a length of optic fiber, we demonstrate that our system can unambiguously distinguish the stresses from the back-reflections of a fiber with a fiber length longer than 800 m, a spatial resolution of 0.5 mm, a maximum stress level of up to 200 kpsi (1379 Mpa), a minimum stress of about 10 kpsi (69 Mpa), and a stress measurement uncertainty of 10%. We show that our P-OFDR can clearly identify the locations and magnitudes of the stresses inside a fiber coil induced during a fiber winding process. The P-OFDR can be used for fiber health monitoring for critical fiber links, fiber gyro coil characterization, and other distributed fiber sensing applications.

  11. Optical diagnostic of breast cancer using Raman, polarimetric and fluorescence spectroscopy

    Science.gov (United States)

    Anwar, Shahzad; Firdous, Shamaraz; Rehman, Aziz-ul; Nawaz, Muhammed

    2015-04-01

    We presented the optical diagnostic of normal and cancerous human breast tissues using Raman, polarimetric and fluorescence spectroscopic techniques. Breast cancer is the second leading cause of cancer death among women worldwide. Optical diagnostics of cancer offered early intervention and the greatest chance of cure. Spectroscopic data were collected from freshly excised surgical specimens of normal tissues with Raman bands at 800, 1171 and 1530 cm-1 arising mainly by lipids, nucleic acids, proteins, carbohydrates and amino acids. For breast cancer, Raman bands are observed at 1070, 1211, 1495, 1583 and 1650 cm-1. Results demonstrate that the spectra of normal tissue are dominated by lipids and amino acids. Polarization decomposition of the Mueller matrix and confocal microscopic fluorescence provides detailed description of cancerous tissue and distinguishes between the normal and malignant one. Based on these findings, we successfully differentiate normal and malignant breast tissues at an early stage of disease. There is a need to develop a new tool for noninvasive, real-time diagnosis of tissue abnormalities and a test procedure for detecting breast cancer at an early stage.

  12. Unsupervised polarimetric SAR urban area classification based on model-based decomposition with cross scattering

    Science.gov (United States)

    Xiang, Deliang; Tang, Tao; Ban, Yifang; Su, Yi; Kuang, Gangyao

    2016-06-01

    Since it has been validated that cross-polarized scattering (HV) is caused not only by vegetation but also by rotated dihedrals, in this study, we use rotated dihedral corner reflectors to form a cross scattering matrix and propose an extended four-component model-based decomposition method for PolSAR data over urban areas. Unlike other urban area decomposition techniques which need to discriminate the urban and natural areas before decomposition, this proposed method is applied on PolSAR image directly. The building orientation angle is considered in this scattering matrix, making it flexible and adaptive in the decomposition. Therefore, we can separate cross scattering of urban areas from the overall HV component. Further, the cross and helix scattering components are also compared. Then, using these decomposed scattering powers, the buildings and natural areas can be easily discriminated from each other using a simple unsupervised K-means classifier. Moreover, buildings aligned and not aligned along the radar flight direction can be also distinguished clearly. Spaceborne RADARSAT-2 and airborne AIRSAR full polarimetric SAR data are used to validate the performance of our proposed method. The cross scattering power of oriented buildings is generated, leading to a better decomposition result for urban areas with respect to other state-of-the-art urban decomposition techniques. The decomposed scattering powers significantly improve the classification accuracy for urban areas.

  13. WIRC-POL: A near-IR spectro-polarimetric imager at Palomar Observatory

    Science.gov (United States)

    Nilsson, Ricky; Tinyanont, Samaporn; Mawet, Dimitri; Knutson, Heather; WIRC-POL Team

    2017-01-01

    The 200-inch Hale Telescope at Palomar Observatory is the largest equatorial-mounted telescope in the world. Combining a large aperture, extremely stable tracking, and no differential motion of optics, it introduces low and stable instrument polarization, making it uniquely suited for time-resolved polarimetry. Its prime focus currently hosts the Wide-field InfraRed Camera (WIRC), which is being refurbished with a new H2 detector, 32 channel readout electronics, grism, focal-plane mask and polarization grating. This will transform it into WIRC-POL — a machine for high-precision photometry, and slitless low-resolution (R~150) spectroscopy and spectro-polarimetry. Two key science programs are starting in 2017: (1) a large spectro-polarimetric survey of approximately 1000 LTY field brown dwarfs, probing atmospheric composition, physical properties, and cloud dynamics at the L-T transition, and (2) a survey of transiting exoplanets, using the high photometric stability and slitless spectroscopy mode to characterize exoplanet atmospheres from spectra obtained in transit and secondary eclipse, and search for transit-timing variations in multiple planet systems. Here we present an overview of the instrument upgrades and the exciting scientific questions we aim to address.

  14. Diurnal Variation of Tropical Ice Cloud Microphysics: Evidence from Global Precipitation Measurement Microwave Imager Polarimetric Measurements

    Science.gov (United States)

    Gong, Jie; Zeng, Xiping; Wu, Dong L.; Li, Xiaowen

    2018-01-01

    The diurnal variation of tropical ice clouds has been well observed and examined in terms of the occurring frequency and total mass but rarely from the viewpoint of ice microphysical parameters. It accounts for a large portion of uncertainties in evaluating ice clouds' role on global radiation and hydrological budgets. Owing to the advantage of precession orbit design and paired polarized observations at a high-frequency microwave band that is particularly sensitive to ice particle microphysical properties, 3 years of polarimetric difference (PD) measurements using the 166 GHz channel of Global Precipitation Measurement Microwave Imager (GPM-GMI) are compiled to reveal a strong diurnal cycle over tropical land (30°S-30°N) with peak amplitude varying up to 38%. Since the PD signal is dominantly determined by ice crystal size, shape, and orientation, the diurnal cycle observed by GMI can be used to infer changes in ice crystal properties. Moreover, PD change is found to lead the diurnal changes of ice cloud occurring frequency and total ice mass by about 2 h, which strongly implies that understanding ice microphysics is critical to predict, infer, and model ice cloud evolution and precipitation processes.

  15. Semi-Supervised Learning for Ill-Posed Polarimetric SAR Classification

    Directory of Open Access Journals (Sweden)

    Stefan Uhlmann

    2014-05-01

    Full Text Available In recent years, the interest in semi-supervised learning has increased, combining supervised and unsupervised learning approaches. This is especially valid for classification applications in remote sensing, while the data acquisition rate in current systems has become fairly large considering high- and very-high resolution data; yet on the other hand, the process of obtaining the ground truth data may be cumbersome for such large repositories. In this paper, we investigate the application of semi-supervised learning approaches and particularly focus on the small sample size problem. To that extend, we consider two basic unsupervised approaches by enlarging the initial labeled training set as well as an ensemble-based self-training method. We propose different strategies within self-training on how to select more reliable candidates from the pool of unlabeled samples to speed-up the learning process and to improve the classification performance of the underlying classifier ensemble. We evaluate the effectiveness of the proposed semi-supervised learning approach over polarimetric SAR data. Results show that the proposed self-training approach using an ensemble-based classifier that is initially trained over a small training set can achieve a similar performance level of a fully supervised learning approach where the training is performed over significantly larger labeled data. Considering the difficulties of the manual data labeling in such massive volumes of SAR repositories, this is indeed a promising accomplishment for semi-supervised SAR classification.

  16. Detecting Emergence, Growth, and Senescence of Wetland Vegetation with Polarimetric Synthetic Aperture Radar (SAR Data

    Directory of Open Access Journals (Sweden)

    Alisa L. Gallant

    2014-03-01

    Full Text Available Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR data acquired with Canada’s Radarsat-2 system to track within-season changes in wetland vegetation and surface water. We speculated, a priori, how temporal and morphological traits of different types of wetland vegetation should respond over a growing season with respect to four energy-scattering mechanisms. We used ground-based monitoring data and other ancillary information to assess the limits and consistency of the SAR data for tracking seasonal changes in wetlands. We found the traits of different types of vertical emergent wetland vegetation were detected well with the SAR data and corresponded with our anticipated backscatter responses. We also found using data from Landsat’s optical/infrared sensors in conjunction with SAR data helped remove confusion of wetland features with upland grasslands. These results suggest SAR data can provide useful monitoring information on the statuses of wetlands over time.

  17. Dual-Branch Deep Convolution Neural Network for Polarimetric SAR Image Classification

    Directory of Open Access Journals (Sweden)

    Fei Gao

    2017-04-01

    Full Text Available The deep convolution neural network (CNN, which has prominent advantages in feature learning, can learn and extract features from data automatically. Existing polarimetric synthetic aperture radar (PolSAR image classification methods based on the CNN only consider the polarization information of the image, instead of incorporating the image’s spatial information. In this paper, a novel method based on a dual-branch deep convolution neural network (Dual-CNN is proposed to realize the classification of PolSAR images. The proposed method is built on two deep CNNs: one is used to extract the polarization features from the 6-channel real matrix (6Ch which is derived from the complex coherency matrix. The other is utilized to extract the spatial features of a Pauli RGB (Red Green Blue image. These extracted features are first combined into a fully connected layer sharing the polarization and spatial property. Then, the Softmax classifier is employed to classify these features. The experiments are conducted on the Airborne Synthetic Aperture Radar (AIRSAR data of Flevoland and the results show that the classification accuracy on 14 types of land cover is up to 98.56%. Such results are promising in comparison with other state-of-the-art methods.

  18. Hybrid spectral CT reconstruction

    Science.gov (United States)

    Clark, Darin P.

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  19. Context Dependent Spectral Unmixing

    Science.gov (United States)

    2014-08-01

    remote sensing [1–13]. It is also used in food safety [14–17], pharmaceutical process monitoring and quality control [18–22], as well as in biomedical...23,24], industrial [25], biometric [26] and forensic applications [27]. Hyperspectral sensors capture both the spatial and spectral information of a...imagery,” IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 58–69, 2002. [12] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile , L. Bruzzone, G

  20. Hybrid spectral CT reconstruction.

    Directory of Open Access Journals (Sweden)

    Darin P Clark

    Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with

  1. Spectral distributions and symmetries

    International Nuclear Information System (INIS)

    Quesne, C.

    1980-01-01

    As it is now well known, the spectral distribution method has both statistical and group theoretical aspects which make for great simplifications in many-Fermion system calculations with respect to more conventional ones. Although both aspects intertwine and are equally essential to understand what is going on, we are only going to discuss some of the group theoretical aspects, namely those connected with the propagation of information, in view of their fundamental importance for the actual calculations of spectral distributions. To be more precise, let us recall that the spectral distribution method may be applied in principle to many-Fermion spaces which have a direct-product structure, i.e., are obtained by distributing a certain number n of Fermions over N single-particle states (O less than or equal to n less than or equal to N), as it is the case for instance for the nuclear shell model spaces. For such systems, the operation of a central limit theorem is known to provide us with a simplifying principle which, when used in conjunction with exact or broken symmetries, enables us to make definite predictions in those cases which are not amendable to exact shell model diagonalizations. The distribution (in energy) of the states corresponding to a fixed symmetry is then defined by a small number of low-order energy moments. Since the Hamiltonian is defined in few-particle subspaces embedded in the n-particlespace, the low-order moments, we are interested in, can be expressed in terms of simpler quantities defined in those few-particle subspaces: the information is said to propagate from the simple subspaces to the more complicated ones. The possibility of actually calculating spectral distributions depends upon the finding of simple ways to propagate the information

  2. Spectral and Diffraction Tomography

    OpenAIRE

    Lionheart, William

    2016-01-01

    We discuss several cases of what we call "Rich Tomography" problems in which more data is measured than a scalar for each ray. We give examples of infra red spectral tomography and Bragg edge neutron tomography in which the data is insufficient. For diffraction tomography of strain for polycrystaline materials we give an explicit reconstruction procedure. We go on to describe a way to find six independent rotation axes using Pascal's theorem of projective geometry

  3. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Wilson, J.F.; Sherwood, D.G.

    1982-01-01

    A mechanical spectral shift reactor comprises a reactive core having fuel assemblies accommodating both water displacer elements and neutron absorbing control rods for selectively changing the volume of water-moderator in the core. The fuel assemblies with displacer and control rods are arranged in alternating fashion so that one displacer element drive mechanism may move displacer elements in more than one fuel assembly without interfering with the movement of control rods of a corresponding control rod drive mechanisms. (author)

  4. Optimization design of spectral discriminator for high-spectral-resolution lidar based on error analysis.

    Science.gov (United States)

    Di, Huige; Zhang, Zhanfei; Hua, Hangbo; Zhang, Jiaqi; Hua, Dengxin; Wang, Yufeng; He, Tingyao

    2017-03-06

    Accurate aerosol optical properties could be obtained via the high spectral resolution lidar (HSRL) technique, which employs a narrow spectral filter to suppress the Rayleigh or Mie scattering in lidar return signals. The ability of the filter to suppress Rayleigh or Mie scattering is critical for HSRL. Meanwhile, it is impossible to increase the rejection of the filter without limitation. How to optimize the spectral discriminator and select the appropriate suppression rate of the signal is important to us. The HSRL technology was thoroughly studied based on error propagation. Error analyses and sensitivity studies were carried out on the transmittance characteristics of the spectral discriminator. Moreover, ratwo different spectroscopic methods for HSRL were described and compared: one is to suppress the Mie scattering; the other is to suppress the Rayleigh scattering. The corresponding HSRLs were simulated and analyzed. The results show that excessive suppression of Rayleigh scattering or Mie scattering in a high-spectral channel is not necessary if the transmittance of the spectral filter for molecular and aerosol scattering signals can be well characterized. When the ratio of transmittance of the spectral filter for aerosol scattering and molecular scattering is less than 0.1 or greater than 10, the detection error does not change much with its value. This conclusion implies that we have more choices for the high-spectral discriminator in HSRL. Moreover, the detection errors of HSRL regarding the two spectroscopic methods vary greatly with the atmospheric backscattering ratio. To reduce the detection error, it is necessary to choose a reasonable spectroscopic method. The detection method of suppressing the Rayleigh signal and extracting the Mie signal can achieve less error in a clear atmosphere, while the method of suppressing the Mie signal and extracting the Rayleigh signal can achieve less error in a polluted atmosphere.

  5. Spectral Slope as an Indicator of Pasture Quality

    Directory of Open Access Journals (Sweden)

    Rachel Lugassi

    2014-12-01

    Full Text Available In this study, we develop a spectral method for assessment of pasture quality based only on the spectral information obtained with a small number of wavelengths. First, differences in spectral behavior were identified across the near infrared–shortwave infrared spectral range that were indicative of changes in chemical properties. Then, slopes across different spectral ranges were calculated and correlated with the changes in crude protein (CP, neutral detergent fiber (NDF and metabolic energy concentration (MEC. Finally, partial least squares (PLS regression analysis was applied to identify the optimal spectral ranges for accurate assessment of CP, NDF and MEC. Six spectral domains and a set of slope criteria for real-time evaluation of pasture quality were suggested. The evaluation of three level categories (low, medium, high for these three parameters showed a success rate of: 73%–96% for CP, 72%–87% for NDF and 60%–85% for MEC. Moreover, only one spectral range, 1748–1764 nm, was needed to provide a good estimation of CP, NDF and MEC. Importantly, five of the six selected spectral regions were not affected by water absorbance. With some modifications, this rationale can be applied to further analyses of pasture quality from airborne sensors.

  6. Spectral Trends of Titan's Tropical Surface

    Science.gov (United States)

    Griffith, Caitlin Ann; Penteado, Paulo F.; Turner, Jake; Montiel, Nicholas; Schoenfeld, Ashley; Lopes, Rosaly M. C.; Soderblom, Laurence A.; Neish, Catherine; Radebaugh, Jani

    2016-10-01

    Titan's surface can be observed most clearly at 8 spectral regions that lie in between the strong methane bands in Titan's spectrum. Within these "windows", between 0.9 to 5 microns, the surface is nonetheless obscured by methane and haze, the latter of which is optically thick at lower wavelengths. Thus studies of Titan's surface must eliminate the effects of atmospheric extinction and extract the subtle spectral features that underlie the dominant spectral trends.To determine the subtle spectral features of Titan's tropical surface (30S--30N) we conducted a Principal Components Analysis (PCA) of the I/F at the 1.1, 1.3, 1.6 and 2.0 um wavelength windows, recorded by Cassini/VIMS. The PCA analysis identifies the spectral trend that defines the highest variance in the data (the principal component), as well as successively weaker orthogonal trends, without a priori assumptions about the surface composition, e.g. as needed in radiative transfer analyses.Our analysis derives the spectral features at the four wavelengths that describe Titan's tropical surface. We detect a large almost contiguous region that extends roughly 160 degrees in longitude and which exhibits absorption features at 1.6 and 2.0, as well as 2.8 um (characteristic of water ice). This vast and perhaps tectonic feature is, in part, associated with terrain that is hypothesized to be some of the oldest surfaces on Titan. In addition, the PCA analysis indicates at least 2 separate organic spectra signatures, potentially due to the separation of liquid and refractory sediments or to their chemically alteration over time. Here we discuss the PCA analysis and compare our derived compositional maps of Titan's surface with Radar maps of the topography and morphology, to entertain questions regarding the geology of Titan's surface the age of its atmosphere.

  7. Screening Mississippi River Levees Using Texture-Based and Polarimetric-Based Features from Synthetic Aperture Radar Data

    Directory of Open Access Journals (Sweden)

    Lalitha Dabbiru

    2017-03-01

    Full Text Available This article reviews the use of synthetic aperture radar remote sensing data for earthen levee mapping with an emphasis on finding the slump slides on the levees. Earthen levees built on the natural levees parallel to the river channel are designed to protect large areas of populated and cultivated land in the Unites States from flooding. One of the signs of potential impending levee failure is the appearance of slump slides. On-site inspection of levees is expensive and time-consuming; therefore, a need to develop efficient techniques based on remote sensing technologies is mandatory to prevent failures under flood loading. Analysis of multi-polarized radar data is one of the viable tools for detecting the problem areas on the levees. In this study, we develop methods to detect anomalies on the levee, such as slump slides and give levee managers new tools to prioritize their tasks. This paper presents results of applying the National Aeronautics and Space Administration (NASA Jet Propulsion Lab (JPL’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR quad-polarized L-band data to detect slump slides on earthen levees. The study area encompasses a portion of levees of the lower Mississippi River in the United States. In this paper, we investigate the performance of polarimetric and texture features for efficient levee classification. Texture features derived from the gray level co-occurrence (GLCM matrix and discrete wavelet transform were computed and analyzed for efficient levee classification. The pixel-based polarimetric decomposition features, such as entropy, anisotropy, and scattering angle were also computed and applied to the support vector machine classifier to characterize the radar imagery and compared the results with texture-based classification. Our experimental results showed that inclusion of textural features derived from the SAR data using the discrete wavelet transform (DWT features and GLCM features provided

  8. QCD spectral sum rules

    CERN Document Server

    Narison, Stéphan

    The aim of the book is to give an introduction to the method of QCD Spectral Sum Rules and to review its developments. After some general introductory remarks, Chiral Symmetry, the Historical Developments of the Sum Rules and the necessary materials for perturbative QCD including the MS regularization and renormalization schemes are discussed. The book also gives a critical review and some improvements of the wide uses of the QSSR in Hadron Physics and QSSR beyond the Standard Hadron Phenomenology. The author has participated actively in this field since 1978 just before the expanding success

  9. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  10. On spectral pollution

    International Nuclear Information System (INIS)

    Llobet, X.; Appert, K.; Bondeson, A.; Vaclavik, J.

    1990-01-01

    Finite difference and finite element approximations of eigenvalue problems, under certain circumstances exhibit spectral pollution, i.e. the appearance of eigenvalues that do not converge to the correct value when the mesh density is increased. In the present paper this phenomenon is investigated in a homogeneous case by means of discrete dispersion relations: the polluting modes belong to a branch of the dispersion relation that is strongly distorted by the discretization method employed, or to a new, spurious branch. The analysis is applied to finite difference methods and to finite element methods, and some indications about how to avoiding polluting schemes are given. (author) 5 figs., 10 refs

  11. Crop Classification by Multitemporal C- and L-Band Single- and Dual-Polarization and Fully Polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning

    2012-01-01

    Classification of crops and other land cover types is an important application of both optical/infrared and synthetic aperture radar (SAR) satellite data. It is already an import application of present satellite systems, as it will be for planned missions, such as the Sentinels. A multitemporal...... data set from the Danish airborne polarimetric EMISAR has been used to assess the performance of different polarization modes for crop classification. Both C- and L-band SAR data were acquired simultaneously over the Foulum agricultural test site in Denmark on a monthly basis during the growing season...

  12. Polarimetric survey of main-belt asteroids. VI. New results from the second epoch of the CASLEO survey

    Science.gov (United States)

    Gil-Hutton, R.; García-Migani, E.

    2017-11-01

    Aims: We present the results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry and to estimate the diversity in the polarimetric properties of asteroids that belong to different taxonomic classes. Methods: The data were obtained using the CASPOL polarimeter at the 2.15 m telescope. CASPOL is a polarimeter based on a CCD detector and a Savart plate. The survey began in 1995 and data on a large sample of asteroids were obtained until 2012. A second period began in 2013 using a polarimeter with a more sensitive detector in order to study small asteroids, families, and special taxonomic groups. Results: We present and analyze the unpublished results for 128 asteroids of different taxonomic types, 55 of them observed for the first time. The observational data allowed us to find probable new cases of Barbarian objects but also two D-type objects, (565) Marbachia and (1481) Tubingia, that seem to have phase-polarization curves with a large inversion angle. The data obtained combined with data from the literature enabled us to find phase-polarization curves for 121 objects of different taxonomic types and to study the relations between several polarimetric and physical parameters. Using an approximation for the phase-polarization curve we found the index of refraction of the surface material and the scatter separation distance for all the objects with known polarimetric parameters. We also found that the inversion angle is a function of the index of refraction of the surface, while the phase angle where the minimum of polarization is produced provides information about the distance between scatter particles or, to some extent, the porosity of the surface. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la

  13. Visualization of and Software for Omnibus Test Based Change Detected in a Time Series of Polarimetric SAR Data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2017-01-01

    Based on an omnibus likelihood ratio test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution and a factorization of this test statistic with associated p-values, change analysis in a time series of multilook polarimetric SAR data...... in the covariance matrix representation is carried out. The omnibus test statistic and its factorization detect if and when change occurs. Using airborne EMISAR and spaceborne RADARSAT-2 data this paper focuses on change detection based on the p-values, on visualization of change at pixel as well as segment level......, and on computer software....

  14. Impact of Reducing Polarimetric SAR Input on the Uncertainty of Crop Classifications Based on the Random Forests Algorithm

    DEFF Research Database (Denmark)

    Loosvelt, Lien; Peters, Jan; Skriver, Henning

    2012-01-01

    Although the use of multidate polarimetric synthetic aperture radar (SAR) data for highly accurate land cover classification has been acknowledged in the literature, the high dimensionality of the data set remains a major issue. This study presents two different strategies to reduce the number...... acquired by the Danish EMISAR on four dates within the period April to July in 1998. The predictive capacity of each feature is analyzed by the importance score generated by random forests (RF). Results show that according to the variation in importance score over time, a distinction can be made between...

  15. Derivation of the pure Faraday and Cotton-Mouton effects when polarimetric effects in a tokamak are large

    International Nuclear Information System (INIS)

    Segre, S E; Zanza, V

    2006-01-01

    When polarimetric effects are large the Cotton-Mouton and Faraday effects do not combine linearly and it is not possible to separate exactly the pure Cotton-Mouton effect W 1 and the pure Faraday effect, W 3 . Four alternative approximate expressions for W 1 and W 3 in terms of measurable quantities are examined for tokamak configurations. Two of these approximations proposed recently are found to be preferable, some previous statements concerning them are corrected and the errors incurred by their use are evaluated

  16. Empirical Soil Moisture Estimation with Spaceborne L-band Polarimetric Radars: Aquarius, SMAP, and PALSAR-2

    Science.gov (United States)

    Burgin, M. S.; van Zyl, J. J.

    2017-12-01

    Traditionally, substantial ancillary data is needed to parametrize complex electromagnetic models to estimate soil moisture from polarimetric radar data. The Soil Moisture Active Passive (SMAP) baseline radar soil moisture retrieval algorithm uses a data cube approach, where a cube of radar backscatter values is calculated using sophisticated models. In this work, we utilize the empirical approach by Kim and van Zyl (2009) which is an optional SMAP radar soil moisture retrieval algorithm; it expresses radar backscatter of a vegetated scene as a linear function of soil moisture, hence eliminating the need for ancillary data. We use 2.5 years of L-band Aquarius radar and radiometer derived soil moisture data to determine two coefficients of a linear model function on a global scale. These coefficients are used to estimate soil moisture with 2.5 months of L-band SMAP and L-band PALSAR-2 data. The estimated soil moisture is compared with the SMAP Level 2 radiometer-only soil moisture product; the global unbiased RMSE of the SMAP derived soil moisture corresponds to 0.06-0.07 cm3/cm3. In this study, we leverage the three diverse L-band radar data sets to investigate the impact of pixel size and pixel heterogeneity on soil moisture estimation performance. Pixel sizes range from 100 km for Aquarius, over 3, 9, 36 km for SMAP, to 10m for PALSAR-2. Furthermore, we observe seasonal variation in the radar sensitivity to soil moisture which allows the identification and quantification of seasonally changing vegetation. Utilizing this information, we further improve the estimation performance. The research described in this paper is supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017. All rights reserved.

  17. Is 67P/Churyumov-Gerasimenko a Classical JFC? Clues from Recent Polarimetric Observations

    Science.gov (United States)

    Hadamcik, Edith; Levasseur-Regourd, A.; Sen, A.; Gupta, R.; Lasue, J.

    2009-09-01

    Remote observations of the light scattered by comet 67P/Churyumov-Gerasimenko dust coma are of major importance to determine the physical properties of the particles and prepare the rendezvous with the ESA/Rosetta spacecraft in 2014. While dust observations have been made during different apparitions, polarization measurements were only obtained during the 1982 apparition by spectropolarimetry [1-2]. Recent imaging polarimetric observations were conducted at Haute-Provence observatory (France) on 2009 March 17-19 at 35 deg. phase angle and at IUCAA Girawali observatory (India) on 2008 December 25-27 at 36 deg. phase angle and on 2009 April 30-May 1 at 29 deg. phase angle. The imaging technique allows us to follow the intensity and polarization variations through the coma and their evolution. The decrease in intensity as a function of the distance to nucleus in log-log scale is close to -1 on average but important variations with values down to -1.5 are observed in agreement with previous observations in 1982-83 and 1995-96 [3]. Aperture polarization values are nominal before perihelion. Nevertheless, after perihelion, the increase in polarization suggests that an outburst occurred. Finally, comet 67P/C-G results will be compared to those obtained for other comets, including Jupiter Family Comets [4,5]. Polarization and intensity variations in the coma are reminiscent of those noticed for 9P/Tempel 1 (before Deep Impact) and comet C/2000 WM1 [5]. The presence of rather large particles can thus be suggested before and after perihelion. The properties of the particles ejected during post-perihelion will be discussed. [1] Myers and Nordsieck, Icarus 58, 431 (1984) [2] Levasseur-Regourd et al., The New Rosetta Targets, Kluwer, 111 (2004) [3] Schleicher, Icarus 181, 442 (2006) [4] Hadamcik and Levasseur-Regourd, PSS 57, 1118 (2009) [5] Hadamcik and Levasseur-Regourd, JQSRT, 79-80, 661 (2003)

  18. Marsh dieback, loss, and recovery mapped with satellite optical, airborne polarimetric radar, and field data

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Chi, Zhaohui; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Landsat Thematic Mapper and Satellite Pour l'Observation de la Terre (SPOT) satellite based optical sensors, NASA Uninhabited Aerial Vehicle synthetic aperture radar (UAVSAR) polarimetric SAR (PolSAR), and field data captured the occurrence and the recovery of an undetected dieback that occurred between the summers of 2010, 2011, and 2012 in the Spartina alterniflora marshes of coastal Louisiana. Field measurements recorded the dramatic biomass decrease from 2010 to 2011 and a biomass recovery in 2012 dominated by a decrease of live biomass, and the loss of marsh as part of the dieback event. Based on an established relationship, the near-infrared/red vegetation index (VI) and site-specific measurements delineated a contiguous expanse of marsh dieback encompassing 6649.9 ha of 18,292.3 ha of S. alterniflora marshes within the study region. PolSAR data were transformed to variables used in biophysical mapping, and of this variable suite, the cross-polarization HV (horizontal send and vertical receive) backscatter was the best single indicator of marsh dieback and recovery. HV backscatter exhibited substantial and significant changes over the dieback and recovery period, tracked measured biomass changes, and significantly correlated with the live/dead biomass ratio. Within the context of regional trends, both HV and VI indicators started higher in pre-dieback marshes and exhibited substantially and statistically higher variability from year to year than that exhibited in the non-dieback marshes. That distinct difference allowed the capturing of the S. alterniflora marsh dieback and recovery; however, these changes were incorporated in a regional trend exhibiting similar but more subtle biomass composition changes.

  19. Radiometric and Polarimetric Accuracy Assessment and Calibration of the Hyper-Angular Rainbow Polarimeter (HARP) Instrument

    Science.gov (United States)

    McBride, B.; Martins, J. V.; Fernandez Borda, R. A.; Barbosa, H. M.

    2017-12-01

    The Laboratory for Aerosols, Clouds, and Optics (LACO) at the University of Maryland, Baltimore County (UMBC) present a novel, wide FOV, hyper-angular imaging polarimeter for the microphysical sampling of clouds and aerosols from aircraft and space. The instrument, the Hyper-Angular Rainbow Polarimeter (HARP), is a precursor to the multi-angle imaging polarimeter solicited by the upcoming NASA Aerosols, Clouds, and Ecosystems (ACE) mission. HARP currently operates in two forms: a spaceborne CubeSat slated for a January 2018 launch to the ISS orbit, and an identical aircraft platform that participated in the Lake Michigan Ozone Study (LMOS) and Aerosol Characterization from Polarimeter and Lidar (ACEPOL) NASA campaigns in 2017. To ensure and validate the instrument's ability to produce high quality Level 2 cloud and aerosol microphysical products, a comprehensive calibration scheme that accounts for flatfielding, radiometry, and all optical interference processes that contribute to the retrieval of Stokes parameters I, Q, and U, is applied across the entirety of HARP's 114° FOV. We present an innovative calibration algorithm that convolves incident polarization from a linear polarization state generator with intensity information observed at three distinct linear polarizations. The retrieved results are pixel-level, modified Mueller matrices that characterize the entire HARP optical assembly, without the need to characterize every individual element or perform ellipsometric studies. Here we show results from several pre- and post- LMOS campaign radiometric calibrations at NASA GSFC and polarimetric calibration using a "polarization dome" that allows for full-FOV characterization of Stokes parameters I, Q, and U. The polarization calibration is verified by passing unpolarized light through partially-polarized, tilted glass plates with well-characterized degree of linear polarization (DoLP). We apply this calibration to a stratocumulous cloud deck case observed

  20. A Deep Neural Network Model for Rainfall Estimation UsingPolarimetric WSR-88DP Radar Observations

    Science.gov (United States)

    Tan, H.; Chandra, C. V.; Chen, H.

    2016-12-01

    Rainfall estimation based on radar measurements has been an important topic for a few decades. Generally, radar rainfall estimation is conducted through parametric algorisms such as reflectivity-rainfall relation (i.e., Z-R relation). On the other hand, neural networks are developed for ground rainfall estimation based on radar measurements. This nonparametric method, which takes into account of both radar observations and rainfall measurements from ground rain gauges, has been demonstrated successfully for rainfall rate estimation. However, the neural network-based rainfall estimation is limited in practice due to the model complexity and structure, data quality, as well as different rainfall microphysics. Recently, the deep learning approach has been introduced in pattern recognition and machine learning areas. Compared to traditional neural networks, the deep learning based methodologies have larger number of hidden layers and more complex structure for data representation. Through a hierarchical learning process, the high level structured information and knowledge can be extracted automatically from low level features of the data. In this paper, we introduce a novel deep neural network model for rainfall estimation based on ground polarimetric radar measurements .The model is designed to capture the complex abstractions of radar measurements at different levels using multiple layers feature identification and extraction. The abstractions at different levels can be used independently or fused with other data resource such as satellite-based rainfall products and/or topographic data to represent the rain characteristics at certain location. In particular, the WSR-88DP radar and rain gauge data collected in Dallas - Fort Worth Metroplex and Florida are used extensively to train the model, and for demonstration purposes. Quantitative evaluation of the deep neural network based rainfall products will also be presented, which is based on an independent rain gauge

  1. Mapping Forest Height in Gabon Using UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Lidar Fusion

    Science.gov (United States)

    Simard, M.; Denbina, M. W.

    2017-12-01

    Using data collected by NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and Land, Vegetation, and Ice Sensor (LVIS) lidar, we have estimated forest canopy height for a number of study areas in the country of Gabon using a new machine learning data fusion approach. Using multi-baseline polarimetric synthetic aperture radar interferometry (PolInSAR) data collected by UAVSAR, forest heights can be estimated using the random volume over ground model. In the case of multi-baseline UAVSAR data consisting of many repeat passes with spatially separated flight tracks, we can estimate different forest height values for each different image pair, or baseline. In order to choose the best forest height estimate for each pixel, the baselines must be selected or ranked, taking care to avoid baselines with unsuitable spatial separation, or severe temporal decorrelation effects. The current baseline selection algorithms in the literature use basic quality metrics derived from the PolInSAR data which are not necessarily indicative of the true height accuracy in all cases. We have developed a new data fusion technique which treats PolInSAR baseline selection as a supervised classification problem, where the classifier is trained using a sparse sampling of lidar data within the PolInSAR coverage area. The classifier uses a large variety of PolInSAR-derived features as input, including radar backscatter as well as features based on the PolInSAR coherence region shape and the PolInSAR complex coherences. The resulting data fusion method produces forest height estimates which are more accurate than a purely radar-based approach, while having a larger coverage area than the input lidar training data, combining some of the strengths of each sensor. The technique demonstrates the strong potential for forest canopy height and above-ground biomass mapping using fusion of PolInSAR with data from future spaceborne lidar missions such as the upcoming Global Ecosystems

  2. FPGA Coprocessor Design for an Onboard Multi-Angle Spectro-Polarimetric Imager

    Science.gov (United States)

    Pingree, Paula J.; Werne, Thomas A.

    2010-01-01

    A multi-angle spectro-polarimetric imager (MSPI) is an advanced camera system currently under development at JPL for possible future consideration on a satellite-based Aerosol-Cloud-Environ - ment (ACE) interaction study. The light in the optical system is subjected to a complex modulation designed to make the overall system robust against many instrumental artifacts that have plagued such measurements in the past. This scheme involves two photoelastic modulators that are beating in a carefully selected pattern against each other. In order to properly sample this modulation pattern, each of the proposed nine cameras in the system needs to read out its imager array about 1,000 times per second. The onboard processing required to compress this data involves least-squares fits (LSFs) of Bessel functions to data from every pixel in realtime, thus requiring an onboard computing system with advanced data processing capabilities in excess of those commonly available for space flight. As a potential solution to meet the MSPI onboard processing requirements, an LSF algorithm was developed on the Xilinx Virtex-4FX60 field programmable gate array (FPGA). In addition to configurable hardware capability, this FPGA includes Power -PC405 microprocessors, which together enable a combination hardware/ software processing system. A laboratory demonstration was carried out based on a hardware/ software co-designed processing architecture that includes hardware-based data collection and least-squares fitting (computationally), and softwarebased transcendental function computation (algorithmically complex) on the FPGA. Initial results showed that these calculations can be handled using a combination of the Virtex- 4TM Power-PC core and the hardware fabric.

  3. Meterwavelength Single-pulse Polarimetric Emission Survey. IV. The Period Dependence of Component Widths of Pulsars

    Science.gov (United States)

    Skrzypczak, Anna; Basu, Rahul; Mitra, Dipanjan; Melikidze, George I.; Maciesiak, Krzysztof; Koralewska, Olga; Filothodoros, Alexandros

    2018-02-01

    The core component width in normal pulsars, with periods (P) > 0.1 s, measured at the half-power point at 1 GHz, has a lower boundary line (LBL) that closely follows the P ‑0.5 scaling relation. This result is of fundamental importance for understanding the emission process and requires extended studies over a wider frequency range. In this paper we have carried out a detailed study of the profile component widths of 123 normal pulsars observed in the Meterwavelength Single-pulse Polarimetric Emission Survey at 333 and 618 MHz. The components in the pulse profile were separated into core and conal classes. We found that at both frequencies, the core, as well as the conal component widths versus period, had a LBL that followed the P ‑0.5 relation with a similar lower boundary. The radio emission in normal pulsars has been observationally shown to arise from a narrow range of heights around a few hundred kilometers above the stellar surface. In the past the P ‑0.5 relation has been considered as evidence for emission arising from last open dipolar magnetic field lines. We show that the P ‑0.5 dependence only holds if the trailing and leading half-power points of the component are associated with the last open field line. In such a scenario we do not find any physical motivation that can explain the P ‑0.5 dependence for both core and conal components as evidence for dipolar geometry in normal pulsars. We believe the period dependence is a result of a currently unexplained physical phenomenon.

  4. The Impact of Forest Density on Forest Height Inversion Modeling from Polarimetric InSAR Data

    Directory of Open Access Journals (Sweden)

    Changcheng Wang

    2016-03-01

    Full Text Available Forest height is of great significance in analyzing the carbon cycle on a global or a local scale and in reconstructing the accurate forest underlying terrain. Major algorithms for estimating forest height, such as the three-stage inversion process, are depending on the random-volume-over-ground (RVoG model. However, the RVoG model is characterized by a lot of parameters, which influence its applicability in forest height retrieval. Forest density, as an important biophysical parameter, is one of those main influencing factors. However, its influence to the RVoG model has been ignored in relating researches. For this paper, we study the applicability of the RVoG model in forest height retrieval with different forest densities, using the simulated and real Polarimetric Interferometric SAR data. P-band ESAR datasets of the European Space Agency (ESA BioSAR 2008 campaign were selected for experiments. The test site was located in Krycklan River catchment in Northern Sweden. The experimental results show that the forest density clearly affects the inversion accuracy of forest height and ground phase. For the four selected forest stands, with the density increasing from 633 to 1827 stems/Ha, the RMSEs of inversion decrease from 4.6 m to 3.1 m. The RVoG model is not quite applicable for forest height retrieval especially in sparsely vegetated areas. We conclude that the forest stand density is positively related to the estimation accuracy of the ground phase, but negatively correlates to the ground-to-volume scattering ratio.

  5. Intensity Conserving Spectral Fitting

    Science.gov (United States)

    Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.

    2015-01-01

    The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.

  6. DSD Characteristics of a Mid-Winter Tornadic Storm Using C-Band Polarimetric Radar and Two 2D-Video Disdrometers

    Science.gov (United States)

    Thurai, M.; Petersen, W. A.; Carey, L. A.

    2010-01-01

    Drop size distributions in an evolving tornadic storm are examined using C-band polarimetric radar observations and two 2D-video disdrometers. The E-F2 storm occurred in mid-winter (21 January 2010) in northern Alabama, USA, and caused widespread damage. The evolution of the storm occurred within the C-band radar coverage and moreover, several minutes prior to touch down, the storm passed over a site where several disdrometers including two 2D video disdrometers (2DVD) had been installed. One of the 2DVDs is a low profile unit and the other is a new next generation compact unit currently undergoing performance evaluation. Analyses of the radar data indicate that the main region of precipitation should be treated as a "big-drop" regime case. Even the measured differential reflectivity values (i.e. without attenuation correction) were as high as 6-7 dB within regions of high reflectivity. Standard attenuation-correction methods using differential propagation phase have been "fine tuned" to be applicable to the "big drop" regime. The corrected reflectivity and differential reflectivity data are combined with the co-polar correlation coefficient and specific differential phase to determine the mass-weighted mean diameter, Dm, and the width of the mass spectrum, (sigma)M, as well as the intercept parameter , Nw. Significant areas of high Dm (3-4 mm) were retrieved within the main precipitation areas of the tornadic storm. The "big drop" regime assumption is substantiated by the two sets of 2DVD measurements. The Dm values calculated from 1-minute drop size distributions reached nearly 4 mm, whilst the maximum drop diameters were over 6 mm. The fall velocity measurements from the 2DVD indicate almost all hydrometeors to be fully melted at ground level. Drop shapes for this event are also being investigated from the 2DVD camera data.

  7. Spectral clustering for water body spectral types analysis

    Science.gov (United States)

    Huang, Leping; Li, Shijin; Wang, Lingli; Chen, Deqing

    2017-11-01

    In order to study the spectral types of water body in the whole country, the key issue of reservoir research is to obtain and to analyze the information of water body in the reservoir quantitatively and accurately. A new type of weight matrix is constructed by utilizing the spectral features and spatial features of the spectra from GF-1 remote sensing images comprehensively. Then an improved spectral clustering algorithm is proposed based on this weight matrix to cluster representative reservoirs in China. According to the internal clustering validity index which called Davies-Bouldin(DB) index, the best clustering number 7 is obtained. Compared with two clustering algorithms, the spectral clustering algorithm based only on spectral features and the K-means algorithm based on spectral features and spatial features, simulation results demonstrate that the proposed spectral clustering algorithm based on spectral features and spatial features has a higher clustering accuracy, which can better reflect the spatial clustering characteristics of representative reservoirs in various provinces in China - similar spectral properties and adjacent geographical locations.

  8. Spectral Automorphisms in Quantum Logics

    Science.gov (United States)

    Ivanov, Alexandru; Caragheorgheopol, Dan

    2010-12-01

    In quantum mechanics, the Hilbert space formalism might be physically justified in terms of some axioms based on the orthomodular lattice (OML) mathematical structure (Piron in Foundations of Quantum Physics, Benjamin, Reading, 1976). We intend to investigate the extent to which some fundamental physical facts can be described in the more general framework of OMLs, without the support of Hilbert space-specific tools. We consider the study of lattice automorphisms properties as a “substitute” for Hilbert space techniques in investigating the spectral properties of observables. This is why we introduce the notion of spectral automorphism of an OML. Properties of spectral automorphisms and of their spectra are studied. We prove that the presence of nontrivial spectral automorphisms allow us to distinguish between classical and nonclassical theories. We also prove, for finite dimensional OMLs, that for every spectral automorphism there is a basis of invariant atoms. This is an analogue of the spectral theorem for unitary operators having purely point spectrum.

  9. Rectangular spectral collocation

    KAUST Repository

    Driscoll, Tobin A.

    2015-02-06

    Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.

  10. Polarimetric Parameters for Growing Stock Volume Estimation Using ALOS PALSAR L-Band Data over Siberian Forests

    Directory of Open Access Journals (Sweden)

    Martyna Stelmaszczuk-Górska

    2013-11-01

    Full Text Available In order to assess the potentiality of ALOS L-band fully polarimetric radar data for forestry applications, we investigated a four-component decomposition method to characterize the polarization response of Siberian forest. The decomposition powers of surface scattering, double-bounce and volume scattering, derived with and without rotation of coherency matrix, were compared with Growing Stock Volume (GSV. To compensate for topographic effects an adaptive rotation of the coherency matrix was accomplished. After the rotation, the correlation between GSV and double-bounce increased significantly. Volume scattering remained same and the surface scattering power decreased slightly. The volume scattering power and double-bounce power increased as the GSV increased, whereas the surface scattering power decreased. In sparse forest, at unfrozen conditions the surface scattering was higher than volume scattering, while volume scattering was dominant in dense forest. The scenario was different at frozen conditions for dense forest where the surface scattering was higher than volume scattering. Moreover, a slight impact of tree species on polarimetric decomposition powers has been observed. Larch was differed from aspen, birch and pine by +2 dB surface scattering power and also by −1.5 dB and −1.2 dB volume scattering power and double-bounce scattering power respectively at unfrozen conditions.

  11. POLARIMETRIC SIGNATURES IDENTIFICATION FOR DIFFERENT FEATURES IN RADARSAT-2 POLSAR IMAGE: A CASE STUDY OF HALAYIB AREA, EGYPT

    Directory of Open Access Journals (Sweden)

    A. H. Nasr

    2016-06-01

    Full Text Available In fully polarized SAR (PolSAR data the returned signal from a target contains all polarizations. More information about this target may be inferred with respect to single-polarization. Distinct polarization separates targets due to its different backscattering responses. A Radarsat-2 PolSAR image acquired on December 2013 of part of Halayib area (Egypt was used in this study. Polarimetric signatures for various features (Wadi deposits, Tonalite, Chlorite schist, and Radar penetrated areas were derived and identified. Their Co-polarized and Cross-polarized signatures were generated, based on the calculation of the backscattered power at various ellipticity and orientation angles. Graphical 3D-representation of these features was provided and more details of their physical information are depicted according to their different polarization bases. The results illustrate that polarimetric signatures, obtained due to factors like surface roughness, dielectric constant and feature orientation, can be an effective representation for analyzing various features. The shape of the signature is significant and can also indicate the scattering mechanisms dominating the features response.

  12. Polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory

    Science.gov (United States)

    Tsang, Leung; Chan, Chi Hou; Kong, Jin AU; Joseph, James

    1992-01-01

    Complete polarimetric signatures of a canopy of dielectric cylinders overlying a homogeneous half space are studied with the first and second order solutions of the vector radiative transfer theory. The vector radiative transfer equations contain a general nondiagonal extinction matrix and a phase matrix. The energy conservation issue is addressed by calculating the elements of the extinction matrix and the elements of the phase matrix in a manner that is consistent with energy conservation. Two methods are used. In the first method, the surface fields and the internal fields of the dielectric cylinder are calculated by using the fields of an infinite cylinder. The phase matrix is calculated and the extinction matrix is calculated by summing the absorption and scattering to ensure energy conservation. In the second method, the method of moments is used to calculate the elements of the extinction and phase matrices. The Mueller matrix based on the first order and second order multiple scattering solutions of the vector radiative transfer equation are calculated. Results from the two methods are compared. The vector radiative transfer equations, combined with the solution based on method of moments, obey both energy conservation and reciprocity. The polarimetric signatures, copolarized and depolarized return, degree of polarization, and phase differences are studied as a function of the orientation, sizes, and dielectric properties of the cylinders. It is shown that second order scattering is generally important for vegetation canopy at C band and can be important at L band for some cases.

  13. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  14. Spectral Theory of Chemical Bonding

    National Research Council Canada - National Science Library

    Langhoff, P. W; Boatz, J. A; Hinde, R. J; Sheehy, J. A

    2004-01-01

    New theoretical methods are reported for obtaining the binding energies of molecules and other chemical aggregates employing the spectral eigenstates and related properties of their atomic constituents...

  15. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearinga)

    Science.gov (United States)

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-01-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes. PMID:26233047

  16. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearing.

    Science.gov (United States)

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-07-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes.

  17. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...... exactly implies phase as well as group-velocity matching between the input soliton and tunneled soliton, namely a soliton phase matching condition. Examples in realistic photonic crystal fibers are also presented....

  18. Levee Seepage Detection in the Sacramento-San Joaquin Delta Using Polarimetric SAR

    Science.gov (United States)

    An, K.; Jones, C. E.; Bekaert, D. P.

    2017-12-01

    The Sacramento-San Joaquin Delta's extensive levee system protects over 2,800 km2 of reclaimed lands and serves as the main irrigation and domestic water supply for the state of California. However, ongoing subsidence and disaster threats from floods and earthquakes make the Delta levee system highly vulnerable, endangering water supplies for 23 million California residents and 2.5 million acres of agricultural land. Levee failure in the Delta can cause saltwater intrusion from San Francisco Bay, reducing water quality and curtailing water exports to residents, commercial users, and farmers. To protect the Delta levee system, it is essential to search for signs of seepage in which water is piping through or beneath levees, which can be associated with deformation of the levees themselves. Until now, in-situ monitoring has largely been applied, however, this is a time-consuming and expensive approach. We use data acquired with NASA's UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) airborne radar instrument to identify and characterize levee seepages and associated land subsidence through advanced remote sensing technologies. The high spatial resolution of UAVSAR can help to direct surveys to areas that are likely to be experiencing damage. UAVSAR is an L-band airborne sensor with high signal-to-noise ratio, repeat flight track accuracy, and spatial resolution of 7x7 m2 (for multi-looked products) that is necessary for detailed levee monitoring. The adaptability of radar instruments in their ability to see through smoke, haze, and clouds during the day or night, is especially relevant during disaster events, when cloud cover or lack of solar illumination inhibits traditional visual surveys of damage. We demonstrate the advantages of combining polarimetric radar imagery with geographic information systems (GIS) datasets in locating seepage features along critical levee infrastructure in the Delta for 2009-2016. The ability to efficiently locate potential

  19. Estimating Forest Vertical Structure from Multialtitude, Fixed-Baseline Radar Interferometric and Polarimetric Data

    Science.gov (United States)

    Treuhaft, Robert N.; Law, Beverly E.; Siqueira, Paul R.

    2000-01-01

    Parameters describing the vertical structure of forests, for example tree height, height-to-base-of-live-crown, underlying topography, and leaf area density, bear on land-surface, biogeochemical, and climate modeling efforts. Single, fixed-baseline interferometric synthetic aperture radar (INSAR) normalized cross-correlations constitute two observations from which to estimate forest vertical structure parameters: Cross-correlation amplitude and phase. Multialtitude INSAR observations increase the effective number of baselines potentially enabling the estimation of a larger set of vertical-structure parameters. Polarimetry and polarimetric interferometry can further extend the observation set. This paper describes the first acquisition of multialtitude INSAR for the purpose of estimating the parameters describing a vegetated land surface. These data were collected over ponderosa pine in central Oregon near longitude and latitude -121 37 25 and 44 29 56. The JPL interferometric TOPSAR system was flown at the standard 8-km altitude, and also at 4-km and 2-km altitudes, in a race track. A reference line including the above coordinates was maintained at 35 deg for both the north-east heading and the return southwest heading, at all altitudes. In addition to the three altitudes for interferometry, one line was flown with full zero-baseline polarimetry at the 8-km altitude. A preliminary analysis of part of the data collected suggests that they are consistent with one of two physical models describing the vegetation: 1) a single-layer, randomly oriented forest volume with a very strong ground return or 2) a multilayered randomly oriented volume; a homogeneous, single-layer model with no ground return cannot account for the multialtitude correlation amplitudes. Below the inconsistency of the data with a single-layer model is followed by analysis scenarios which include either the ground or a layered structure. The ground returns suggested by this preliminary analysis seem

  20. A Radarsat-2 Polarimetric Analysis Over The UNESCO Site In Danger Of Samarra (Iraq)

    Science.gov (United States)

    Dore, Nicole; Patruno, Jolanda; Pottier, Eric; Crespi, Mattia

    2013-04-01

    This work has as goal the detection of archaeological probable buried remains and the monitoring of the external ones. The archaeological site taken into account for this purpose is the area of the ancient octagonal city of al-Qadisiyya funded by Harun al-Rashid. This city, located in the southern part of the Samarra territory, was abandoned unfinished when the caliph moved to Raqqa (Syria) in 796 A.D. Bigness of the structures, unstable political situation and agricultural expansion threats, that let the city of Samarra be inscribed in the UNESO list of sites in danger since 2007, gave us a reason more to investigate this area. The study was carried out with four fine quad-pol imagery of the Canadian satellite RADARSAT-2, launched in December 2007. However C-band lower capability of penetration compared to ALOS PALSAR L-band, the choice of this satellite is due to its higher spatial resolution compared to the PALSAR one. Thanks to the higher spatial resolution and the location of the site in a semi desert area, we succeeded in balancing a probable lower waves penetration. Our analysis focused on four polarimetric images, two with a 23° incidence angle and two with a 45° incidence angle, acquired in different moments of the year 2012. The difference between the angles was motivated, respectively, by the possibility of a higher penetration of the microwaves in the ground and by the higher possibility of double bounce response in the case of presence of buried structures. The time spacing, on the other hand, allowed a temporal analysis over different months of the same year accompanied by meteorological condition available on the web for the zone. This type of analysis, however, allowed the identification of the qanāt (the underground channel present in the northern part of the octagonal city of al-Qadisiyya) and other structures, thanks to differences visible in all the products. The potentiality of this SAR research for archaeology is well known, in particular

  1. Complex polarimetric and spectral techniques in diagnostics of blood plasma of patients with ovarian cancer as a preliminary stage molecular genetic screening

    Science.gov (United States)

    Grzegorzewski, B.; Peresunko, O. P.; Yermolenko, S. B.

    2018-01-01

    This work is devoted to the substantiation and selection of patients with ovarian cancer (OC) for the purpose of conducting expensive molecular genetic studies on genotyping. As diagnostic methods have been used ultraviolet spectrometry samples of blood plasma in the liquid state, infrared spectroscopy middle range (2,5 - 25 microns) dry residue of plasma polarization and laser diagnostic technique of thin histological sections of biological tissues. Obtained results showed that the use of spectrophotometry in the range of 1000-3000 cm-1 allowed to establish quantitative parameters of the plasma absorption rate of blood of patients in the third group in different ranges, which would allow in the future to conduct an express analysis of the patient's condition (procedure screening) for further molecular-genetic typing on BRCA I and II.

  2. Dual-Polarimetric Radar-Based Tornado Debris Paths Associated with EF-4 and EF-5 Tornadoes over Northern Alabama During the Historic Outbreak of 27 April 2011

    Science.gov (United States)

    Carey, Lawrence D.; Schultz, Chrstopher J.; Schultz, Elise V.; Petersen, Walter A.; Gatlin, Patrick N.; Knupp, Kevin R.; Molthan, Andrew L.; Jedlovec, Gary J.; Darden, Christopher B.

    2012-01-01

    An historic tornado and severe weather outbreak devastated much of the southeastern United States between 25 and 28 April 2011. On 27 April 2011, northern Alabama was particularly hard hit by a large number of tornadoes, including several that reached EF-4 and EF-5 on the Enhanced Fujita damage scale. In northern Alabama alone, there were approximately 100 fatalities and hundreds of more people who were injured or lost their homes during the havoc caused by these violent tornadic storms. Two long-track and violent (EF-4 and EF-5) tornadoes occurred within range of the University of Alabama in Huntsville (UAHuntsville) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). A unique capability of dual-polarimetric radar is the near-real time identification of lofted debris associated with ongoing tornadoes on the ground. The focus of this paper is to analyze the dual-polarimetric radar-inferred tornado debris signatures and identify the associated debris paths of the long-track EF-4 and EF-5 tornadoes near ARMOR. The relative locations of the debris and damage paths for each tornado will be ascertained by careful comparison of the ARMOR analysis with NASA MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite imagery of the tornado damage scenes and the National Weather Service tornado damage surveys. With the ongoing upgrade of the WSR-88D (Weather Surveillance Radar 1988 Doppler) operational network to dual-polarimetry and a similar process having already taken place or ongoing for many private sector radars, dual-polarimetric radar signatures of tornado debris promise the potential to assist in the situational awareness of government and private sector forecasters and emergency managers during tornadic events. As such, a companion abstract (Schultz et al.) also submitted to this conference explores The use of dual-polarimetric tornadic debris

  3. SPECTRAL ANALYSIS OF EXCHANGE RATES

    Directory of Open Access Journals (Sweden)

    ALEŠA LOTRIČ DOLINAR

    2013-06-01

    Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates

  4. Intersection numbers of spectral curves

    CERN Document Server

    Eynard, B

    2011-01-01

    We compute the symplectic invariants of an arbitrary spectral curve with only 1 branchpoint in terms of integrals of characteristic classes in the moduli space of curves. Our formula associates to any spectral curve, a characteristic class, which is determined by the laplace transform of the spectral curve. This is a hint to the key role of Laplace transform in mirror symmetry. When the spectral curve is y=\\sqrt{x}, the formula gives Kontsevich--Witten intersection numbers, when the spectral curve is chosen to be the Lambert function \\exp{x}=y\\exp{-y}, the formula gives the ELSV formula for Hurwitz numbers, and when one chooses the mirror of C^3 with framing f, i.e. \\exp{-x}=\\exp{-yf}(1-\\exp{-y}), the formula gives the topological vertex formula, i.e. the generating function of Gromov-Witten invariants of C^3. In some sense this formula generalizes ELSV formula, and Mumford formula.

  5. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  6. Unsupervised Classification of Mercury's Surface Spectral and Chemical Characteristics

    Science.gov (United States)

    D'Amore, M.; Helbert, J.; Ferrari, S.; Maturilli, A.; Nittler, L. R.; Domingue, D. L.; Vilas, F.; Weider, S. Z.; Starr, R. D.; Crapster-Pregont, E. J.; Ebel, D. S.; Solomon, S. C.

    2014-12-01

    The spectral reflectance of Mercury's surface has been mapped in the 400-1145 nm wavelength range by the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) instrument during orbital observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Under the hypothesis that surface compositional information can be efficiently derived from such spectral measurements with the use of statistical techniques, we have conducted unsupervised hierarchical clustering analyses to identify and characterize spectral units from MASCS observations. The results display a large-scale dichotomy, with two spectrally distinct units: polar and equatorial, possibly linked to differences in surface environment or composition. The spatial extent of the polar unit in the northern hemisphere correlates approximately with that of the northern volcanic plains. To explore possible relations between composition and spectral behavior, we have compared the spectral units with elemental abundance maps derived from MESSENGER's X-Ray Spectrometer (XRS). It is important to note that the mapping coverage for XRS differs from that of MASCS, particularly for the heavy elements. Nonetheless, by comparing the visible and near-infrared MASCS and XRS datasets and investigating the links between them, we seek further clues to the formation and evolution of Mercury's crust. Moreover, the methodology will permit automation of the production of new maps of the spectral and chemical signature of the surface.

  7. Polarimetric SAR Interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest

    Science.gov (United States)

    Kumar, Shashi; Khati, Unmesh G.; Chandola, Shreya; Agrawal, Shefali; Kushwaha, Satya P. S.

    2017-08-01

    The regulation of the carbon cycle is a critical ecosystem service provided by forests globally. It is, therefore, necessary to have robust techniques for speedy assessment of forest biophysical parameters at the landscape level. It is arduous and time taking to monitor the status of vast forest landscapes using traditional field methods. Remote sensing and GIS techniques are efficient tools that can monitor the health of forests regularly. Biomass estimation is a key parameter in the assessment of forest health. Polarimetric SAR (PolSAR) remote sensing has already shown its potential for forest biophysical parameter retrieval. The current research work focuses on the retrieval of forest biophysical parameters of tropical deciduous forest, using fully polarimetric spaceborne C-band data with Polarimetric SAR Interferometry (PolInSAR) techniques. PolSAR based Interferometric Water Cloud Model (IWCM) has been used to estimate aboveground biomass (AGB). Input parameters to the IWCM have been extracted from the decomposition modeling of SAR data as well as PolInSAR coherence estimation. The technique of forest tree height retrieval utilized PolInSAR coherence based modeling approach. Two techniques - Coherence Amplitude Inversion (CAI) and Three Stage Inversion (TSI) - for forest height estimation are discussed, compared and validated. These techniques allow estimation of forest stand height and true ground topography. The accuracy of the forest height estimated is assessed using ground-based measurements. PolInSAR based forest height models showed enervation in the identification of forest vegetation and as a result height values were obtained in river channels and plain areas. Overestimation in forest height was also noticed at several patches of the forest. To overcome this problem, coherence and backscatter based threshold technique is introduced for forest area identification and accurate height estimation in non-forested regions. IWCM based modeling for forest

  8. Nearest-Regularized Subspace Classification for PolSAR Imagery Using Polarimetric Feature Vector and Spatial Information

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2017-11-01

    Full Text Available Feature extraction using polarimetric synthetic aperture radar (PolSAR images is of great interest in SAR classification, no matter if it is applied in an unsupervised approach or a supervised approach. In the supervised classification framework, a major group of methods is based on machine learning. Various machine learning methods have been investigated for PolSAR image classification, including neural network (NN, support vector machine (SVM, and so on. Recently, representation-based classifications have gained increasing attention in hyperspectral imagery, such as the newly-proposed sparse-representation classification (SRC and nearest-regularized subspace (NRS. These classifiers provide excellent performance that is comparable to or even better than the classic SVM for remotely-sensed image processing. However, rare studies have been found to extend this representation-based NRS classification into PolSAR images. By the use of the NRS approach, a polarimetric feature vector-based PolSAR image classification method is proposed in this paper. The polarimetric SAR feature vector is constructed by the components of different target decomposition algorithms for each pixel, including those scattering components of Freeman, Huynen, Krogager, Yamaguchi decomposition, as well as the eigenvalues, eigenvectors and their consequential parameters such as entropy, anisotropy and mean scattering angle. Furthermore, because all these representation-based methods were originally designed to be pixel-wise classifiers, which only consider the separate pixel signature while ignoring the spatial-contextual information, the Markov random field (MRF model is also introduced in our scheme. MRF can provide a basis for modeling contextual constraints. Two AIRSAR data in the Flevoland area are used to validate the proposed classification scheme. Experimental results demonstrate that the proposed method can reach an accuracy of around 99 % for both AIRSAR data by

  9. Adjustment errors of sunstones in the first step of sky-polarimetric Viking navigation: studies with dichroic cordierite/ tourmaline and birefringent calcite crystals.

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Blahó, Miklós; Barta, András; Egri, Ádám; Kretzer, Balázs; Hegedüs, Tibor; Jäger, Zoltán; Horváth, Gábor

    2016-01-01

    According to an old but still unproven theory, Viking navigators analysed the skylight polarization with dichroic cordierite or tourmaline, or birefringent calcite sunstones in cloudy/foggy weather. Combining these sunstones with their sun-dial, they could determine the position of the occluded sun, from which the geographical northern direction could be guessed. In psychophysical laboratory experiments, we studied the accuracy of the first step of this sky-polarimetric Viking navigation. We measured the adjustment error e of rotatable cordierite, tourmaline and calcite crystals when the task was to determine the direction of polarization of white light as a function of the degree of linear polarization p. From the obtained error functions e(p), the thresholds p* above which the first step can still function (i.e. when the intensity change seen through the rotating analyser can be sensed) were derived. Cordierite is about twice as reliable as tourmaline. Calcite sunstones have smaller adjustment errors if the navigator looks for that orientation of the crystal where the intensity difference between the two spots seen in the crystal is maximal, rather than minimal. For higher p (greater than p crit) of incident light, the adjustment errors of calcite are larger than those of the dichroic cordierite (p crit=20%) and tourmaline (p crit=45%), while for lower p (less than p crit) calcite usually has lower adjustment errors than dichroic sunstones. We showed that real calcite crystals are not as ideal sunstones as it was believed earlier, because they usually contain scratches, impurities and crystal defects which increase considerably their adjustment errors. Thus, cordierite and tourmaline can also be at least as good sunstones as calcite. Using the psychophysical e(p) functions and the patterns of the degree of skylight polarization measured by full-sky imaging polarimetry, we computed how accurately the northern direction can be determined with the use of the Viking

  10. Binding abilities of a chiral calix[4]resorcinarene: a polarimetric investigation on a complex case of study

    Directory of Open Access Journals (Sweden)

    Marco Russo

    2017-12-01

    Full Text Available Polarimetry was used to investigate the binding abilities of a chiral calix[4]resorcinarene derivative, bearing L-proline subunits, towards a set of suitably selected organic guests. The simultaneous formation of 1:1 and 2:1 host–guest inclusion complexes was observed in several cases, depending on both the charge status of the host and the structure of the guest. Thus, the use of the polarimetric method was thoroughly revisited, in order to keep into account the occurrence of multiple equilibria. Our data indicate that the stability of the host–guest complexes is affected by an interplay between Coulomb interactions, π–π interactions, desolvation effects and entropy-unfavorable conformational dynamic restraints. Polarimetry is confirmed as a very useful and versatile tool for the investigation of supramolecular interactions with chiral hosts, even in complex systems involving multiple equilibria.

  11. Four-Component Scattering Power Decomposition Algorithm with Rotation of Covariance Matrix Using ALOS-PALSAR Polarimetric Data

    Directory of Open Access Journals (Sweden)

    Yasuhiro Nakamura

    2012-07-01

    Full Text Available The present study introduces the four-component scattering power decomposition (4-CSPD algorithm with rotation of covariance matrix, and presents an experimental proof of the equivalence between the 4-CSPD algorithms based on rotation of covariance matrix and coherency matrix. From a theoretical point of view, the 4-CSPD algorithms with rotation of the two matrices are identical. Although it seems obvious, no experimental evidence has yet been presented. In this paper, using polarimetric synthetic aperture radar (POLSAR data acquired by Phased Array L-band SAR (PALSAR on board of Advanced Land Observing Satellite (ALOS, an experimental proof is presented to show that both algorithms indeed produce identical results.

  12. Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar

    Directory of Open Access Journals (Sweden)

    R. A. Stillwell

    2018-02-01

    Full Text Available The unambiguous retrieval of cloud phase from polarimetric lidar observations is dependent on the assumption that only cloud scattering processes affect polarization measurements. A systematic bias of the traditional lidar depolarization ratio can occur due to a lidar system's inability to accurately measure the entire backscattered signal dynamic range, and these biases are not always identifiable in traditional polarimetric lidar systems. This results in a misidentification of liquid water in clouds as ice, which has broad implications on evaluating surface energy budgets. The Clouds Aerosol Polarization and Backscatter Lidar at Summit, Greenland employs multiple planes of linear polarization, and photon counting and analog detection schemes, to self evaluate, correct, and optimize signal combinations to improve cloud classification. Using novel measurements of diattenuation that are sensitive to both horizontally oriented ice crystals and counting system nonlinear effects, unambiguous measurements are possible by over constraining polarization measurements. This overdetermined capability for cloud-phase determination allows for system errors to be identified and quantified in terms of their impact on cloud properties. It is shown that lidar system dynamic range effects can cause errors in cloud-phase fractional occurrence estimates on the order of 30 % causing errors in attribution of cloud radiative effects on the order of 10–30 %. This paper presents a method to identify and remove lidar system effects from atmospheric polarization measurements and uses co-located sensors at Summit to evaluate this method. Enhanced measurements are achieved in this work with non-orthogonal polarization retrievals as well as analog and photon counting detection facilitating a more complete attribution of radiative effects linked to cloud properties.

  13. Polarimetric analysis of a CdZnTe spectro-imager under multi-pixel irradiation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, M. [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); Physics Department, University of Coimbra, Coimbra (Portugal); Curado da Silva, R.M., E-mail: rui.silva@coimbra.lip.pt [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); Physics Department, University of Coimbra, Coimbra (Portugal); Maia, J.M. [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); Physics Department, University of Beira-Interior, Covilhã (Portugal); Simões, N. [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); Physics Department, University of Coimbra, Coimbra (Portugal); Marques, J. [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); Centro de Astrofísica, Universidade do Porto, Porto (Portugal); Pereira, L.; Trindade, A.M.F. [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); and others

    2016-12-21

    So far, polarimetry in high-energy astrophysics has been insufficiently explored due to the complexity of the required detection, electronic and signal processing systems. However, its importance is today largely recognized by the astrophysical community, therefore the next generation of high-energy space instruments will certainly provide polarimetric observations, contemporaneously with spectroscopy and imaging. We have been participating in high-energy observatory proposals submitted to ESA Cosmic Vision calls, such as GRI (Gamma-Ray Imager), DUAL and ASTROGAM, where the main instrument was a spectro-imager with polarimetric capabilities. More recently, the H2020 AHEAD project was launched with the objective to promote more coherent and mature future high-energy space mission proposals. In this context of high-energy proposal development, we have tested a CdZnTe detection plane prototype polarimeter under a partially polarized gamma-ray beam generated from an aluminum target irradiated by a {sup 22}Na (511 keV) radioactive source. The polarized beam cross section was 1 cm{sup 2}, allowing the irradiation of a wide multi-pixelated area where all the pixels operate simultaneously as a scatterer and as an absorber. The methods implemented to analyze such multi-pixel irradiation are similar to those required to analyze a spectro-imager polarimeter operating in space, since celestial source photons should irradiate its full pixilated area. Correction methods to mitigate systematic errors inherent to CdZnTe and to the experimental conditions were also implemented. The polarization level (~40%) and the polarization angle (precision of ±5° up to ±9°) obtained under multi-pixel irradiation conditions are presented and compared with simulated data.

  14. Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar

    Science.gov (United States)

    Stillwell, Robert A.; Neely, Ryan R., III; Thayer, Jeffrey P.; Shupe, Matthew D.; Turner, David D.

    2018-02-01

    The unambiguous retrieval of cloud phase from polarimetric lidar observations is dependent on the assumption that only cloud scattering processes affect polarization measurements. A systematic bias of the traditional lidar depolarization ratio can occur due to a lidar system's inability to accurately measure the entire backscattered signal dynamic range, and these biases are not always identifiable in traditional polarimetric lidar systems. This results in a misidentification of liquid water in clouds as ice, which has broad implications on evaluating surface energy budgets. The Clouds Aerosol Polarization and Backscatter Lidar at Summit, Greenland employs multiple planes of linear polarization, and photon counting and analog detection schemes, to self evaluate, correct, and optimize signal combinations to improve cloud classification. Using novel measurements of diattenuation that are sensitive to both horizontally oriented ice crystals and counting system nonlinear effects, unambiguous measurements are possible by over constraining polarization measurements. This overdetermined capability for cloud-phase determination allows for system errors to be identified and quantified in terms of their impact on cloud properties. It is shown that lidar system dynamic range effects can cause errors in cloud-phase fractional occurrence estimates on the order of 30 % causing errors in attribution of cloud radiative effects on the order of 10-30 %. This paper presents a method to identify and remove lidar system effects from atmospheric polarization measurements and uses co-located sensors at Summit to evaluate this method. Enhanced measurements are achieved in this work with non-orthogonal polarization retrievals as well as analog and photon counting detection facilitating a more complete attribution of radiative effects linked to cloud properties.

  15. A WFS-SVM Model for Soil Salinity Mapping in Keriya Oasis, Northwestern China Using Polarimetric Decomposition and Fully PolSAR Data

    Directory of Open Access Journals (Sweden)

    Ilyas Nurmemet

    2018-04-01

    Full Text Available Timely monitoring and mapping of salt-affected areas are essential for the prevention of land degradation and sustainable soil management in arid and semi-arid regions. The main objective of this study was to develop Synthetic Aperture Radar (SAR polarimetry techniques for improved soil salinity mapping in the Keriya Oasis in the Xinjiang Uyghur Autonomous Region (Xinjiang, China, where salinized soil appears to be a major threat to local agricultural productivity. Multiple polarimetric target decomposition, optimal feature subset selection (wrapper feature selector, WFS, and support vector machine (SVM algorithms were used for optimal soil salinization classification using quad-polarized PALSAR-2 data. A threefold exercise was conducted. First, 16 polarimetric decomposition methods were implemented and a wide range of polarimetric parameters and SAR discriminators were derived in order to mine hidden information in PolSAR data. Second, the optimal polarimetric feature subset that constitutes 19 polarimetric elements was selected adopting the WFS approach; optimum classification parameters were identified, and the optimal SVM classification model was obtained by employing a cross-validation method. Third, the WFS-SVM classification model was constructed, optimized, and implemented based on the optimal match of polarimetric features and optimum classification parameters. Soils with different salinization degrees (i.e., highly, moderately and slightly salinized soils were extracted. Finally, classification results were compared with the Wishart supervised classification and conventional SVM classification to examine the performance of the proposed method for salinity mapping. Detailed field investigations and ground data were used for the validation of the adopted methods. The overall accuracy and kappa coefficient of the proposed WFS-SVM model were 87.57% and 0.85, respectively that were much higher than those obtained by the Wishart supervised

  16. Sensitivity of C-Band Polarimetric Radar-Based Drop Size Distribution Measurements to Maximum Diameter Assumptions

    Science.gov (United States)

    Carey, Lawrence D.; Petersen, Walter A.

    2011-01-01

    The estimation of rain drop size distribution (DSD) parameters from polarimetric radar observations is accomplished by first establishing a relationship between differential reflectivity (Z(sub dr)) and the central tendency of the rain DSD such as the median volume diameter (D0). Since Z(sub dr) does not provide a direct measurement of DSD central tendency, the relationship is typically derived empirically from rain drop and radar scattering models (e.g., D0 = F[Z (sub dr)] ). Past studies have explored the general sensitivity of these models to temperature, radar wavelength, the drop shape vs. size relation, and DSD variability. Much progress has been made in recent years in measuring the drop shape and DSD variability using surface-based disdrometers, such as the 2D Video disdrometer (2DVD), and documenting their impact on polarimetric radar techniques. In addition to measuring drop shape, another advantage of the 2DVD over earlier impact type disdrometers is its ability to resolve drop diameters in excess of 5 mm. Despite this improvement, the sampling limitations of a disdrometer, including the 2DVD, make it very difficult to adequately measure the maximum drop diameter (D(sub max)) present in a typical radar resolution volume. As a result, D(sub max) must still be assumed in the drop and radar models from which D0 = F[Z(sub dr)] is derived. Since scattering resonance at C-band wavelengths begins to occur in drop diameters larger than about 5 mm, modeled C-band radar parameters, particularly Z(sub dr), can be sensitive to D(sub max) assumptions. In past C-band radar studies, a variety of D(sub max) assumptions have been made, including the actual disdrometer estimate of D(sub max) during a typical sampling period (e.g., 1-3 minutes), D(sub max) = C (where C is constant at values from 5 to 8 mm), and D(sub max) = M*D0 (where the constant multiple, M, is fixed at values ranging from 2.5 to 3.5). The overall objective of this NASA Global Precipitation Measurement

  17. Spectral Unmixing With Multiple Dictionaries

    Science.gov (United States)

    Cohen, Jeremy E.; Gillis, Nicolas

    2018-02-01

    Spectral unmixing aims at recovering the spectral signatures of materials, called endmembers, mixed in a hyperspectral or multispectral image, along with their abundances. A typical assumption is that the image contains one pure pixel per endmember, in which case spectral unmixing reduces to identifying these pixels. Many fully automated methods have been proposed in recent years, but little work has been done to allow users to select areas where pure pixels are present manually or using a segmentation algorithm. Additionally, in a non-blind approach, several spectral libraries may be available rather than a single one, with a fixed number (or an upper or lower bound) of endmembers to chose from each. In this paper, we propose a multiple-dictionary constrained low-rank matrix approximation model that address these two problems. We propose an algorithm to compute this model, dubbed M2PALS, and its performance is discussed on both synthetic and real hyperspectral images.

  18. Special topics in spectral distributions

    International Nuclear Information System (INIS)

    French, J.B.

    1980-01-01

    We discuss two problems which relate to the foundations of the subject, and a third about asymptotic properties of spectral distributions. We give also a brief list of topics which should be further explored

  19. Substitution dynamical systems spectral analysis

    CERN Document Server

    Queffélec, Martine

    2010-01-01

    This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...

  20. Spectral dimensionality reduction for HMMs

    OpenAIRE

    Foster, Dean P.; Rodu, Jordan; Ungar, Lyle H.

    2012-01-01

    Hidden Markov Models (HMMs) can be accurately approximated using co-occurrence frequencies of pairs and triples of observations by using a fast spectral method in contrast to the usual slow methods like EM or Gibbs sampling. We provide a new spectral method which significantly reduces the number of model parameters that need to be estimated, and generates a sample complexity that does not depend on the size of the observation vocabulary. We present an elementary proof giving bounds on the rel...

  1. Compressive spectroscopy by spectral modulation

    Science.gov (United States)

    Oiknine, Yaniv; August, Isaac; Stern, Adrian

    2017-05-01

    We review two compressive spectroscopy techniques based on modulation in the spectral domain that we have recently proposed. Both techniques achieve a compression ratio of approximately 10:1, however each with a different sensing mechanism. The first technique uses a liquid crystal cell as a tunable filter to modulate the spectral signal, and the second technique uses a Fabry-Perot etalon as a resonator. We overview the specific properties of each of the techniques.

  2. Spectral unmixing: estimating partial abundances

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available the ingredients for this chocolate cake? Debba (CSIR) Spectral Unmixing LQM 2009 3 / 22 Background and Research Question Ingredients Quantity unsweetened chocolate unsweetened cocoa powder boiling water flour baking powder baking soda salt unsalted... butter white sugar eggs pure vanilla extract milk Table: Chocolate cake ingredients Debba (CSIR) Spectral Unmixing LQM 2009 4 / 22 Background and Research Question Ingredients Quantity unsweetened chocolate 120 grams unsweetened cocoa powder 28...

  3. Change Detection Analysis With Spectral Thermal Imagery

    National Research Council Canada - National Science Library

    Behrens, Richard

    1998-01-01

    ... (LWIR) region. This study used analysis techniques of differencing, histograms, and principal components analysis to detect spectral changes and investigate the utility of spectral change detection...

  4. Relation between Radio Polarization and Spectral Index of Blazars ...

    Indian Academy of Sciences (India)

    ties, including rapid variability, high and variability polarization, high luminosity and superluminal motion, etc. Their optical variability timescales can cover a range of hours to years from radio to γ-rays (Fan et al. 2004; Ulrich et al. 1997). When we analyse the different characters of blazars, spectral index (α) is very important.

  5. Stars and planets at high spatial and spectral resolution

    NARCIS (Netherlands)

    Albrecht, Simon

    2008-01-01

    The work presented in this thesis involves the development of new instrumental techniques and analysing tools, combining high spectral resolution with high spatial information, with the aim to increase our understanding of the formation and evolution of stars and planets. First, a novel instrumental

  6. Spectral analysis of wind field in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rashmi, R.; Samiksha, S.V.; Polnikov, V.; Pogarskii, F.; Sudheesh, K.; Vethamony, P.

    inhomogeneity in the analysed wind fields Spectral analysis of the time series (extracted at the centre of each zone) was performed using the auto-regression analysis based on the Yule-Walker equations Frequency spectra show distinct annual variations at all...

  7. Spectral filtering for plant production

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.E.; McMahon, M.J.; Rajapakse, N.C.; Becoteau, D.R.

    1994-12-31

    Research to date suggests that spectral filtering can be an effective alternative to chemical growth regulators for altering plant development. If properly implemented, it can be nonchemical and environmentally friendly. The aqueous CuSO{sub 4}, and CuCl{sub 2} solutions in channelled plastic panels have been shown to be effective filters, but they can be highly toxic if the solutions contact plants. Some studies suggest that spectral filtration limited to short EOD intervals can also alter plant development. Future research should be directed toward confirmation of the influence of spectral filters and exposure times on a broader range of plant species and cultivars. Efforts should also be made to identify non-noxious alternatives to aqueous copper solutions and/or to incorporate these chemicals permanently into plastic films and panels that can be used in greenhouse construction. It would also be informative to study the impacts of spectral filters on insect and microbal populations in plant growth facilities. The economic impacts of spectral filtering techniques should be assessed for each delivery methodology.

  8. Solar Spectral Irradiance and Climate

    Science.gov (United States)

    Pilewskie, P.; Woods, T.; Cahalan, R.

    2012-01-01

    Spectrally resolved solar irradiance is recognized as being increasingly important to improving our understanding of the manner in which the Sun influences climate. There is strong empirical evidence linking total solar irradiance to surface temperature trends - even though the Sun has likely made only a small contribution to the last half-century's global temperature anomaly - but the amplitudes cannot be explained by direct solar heating alone. The wavelength and height dependence of solar radiation deposition, for example, ozone absorption in the stratosphere, absorption in the ocean mixed layer, and water vapor absorption in the lower troposphere, contribute to the "top-down" and "bottom-up" mechanisms that have been proposed as possible amplifiers of the solar signal. New observations and models of solar spectral irradiance are needed to study these processes and to quantify their impacts on climate. Some of the most recent observations of solar spectral variability from the mid-ultraviolet to the near-infrared have revealed some unexpected behavior that was not anticipated prior to their measurement, based on an understanding from model reconstructions. The atmospheric response to the observed spectral variability, as quantified in climate model simulations, have revealed similarly surprising and in some cases, conflicting results. This talk will provide an overview on the state of our understanding of the spectrally resolved solar irradiance, its variability over many time scales, potential climate impacts, and finally, a discussion on what is required for improving our understanding of Sun-climate connections, including a look forward to future observations.

  9. Using polarimetric radar observations and probabilistic inference to develop the Bayesian Observationally-constrained Statistical-physical Scheme (BOSS), a novel microphysical parameterization framework

    Science.gov (United States)

    van Lier-Walqui, M.; Morrison, H.; Kumjian, M. R.; Prat, O. P.

    2016-12-01

    Microphysical parameterization schemes have reached an impressive level of sophistication: numerous prognostic hydrometeor categories, and either size-resolved (bin) particle size distributions, or multiple prognostic moments of the size distribution. Yet, uncertainty in model representation of microphysical processes and the effects of microphysics on numerical simulation of weather has not shown a improvement commensurate with the advanced sophistication of these schemes. We posit that this may be caused by unconstrained assumptions of these schemes, such as ad-hoc parameter value choices and structural uncertainties (e.g. choice of a particular form for the size distribution). We present work on development and observational constraint of a novel microphysical parameterization approach, the Bayesian Observationally-constrained Statistical-physical Scheme (BOSS), which seeks to address these sources of uncertainty. Our framework avoids unnecessary a priori assumptions, and instead relies on observations to provide probabilistic constraint of the scheme structure and sensitivities to environmental and microphysical conditions. We harness the rich microphysical information content of polarimetric radar observations to develop and constrain BOSS within a Bayesian inference framework using a Markov Chain Monte Carlo sampler (see Kumjian et al., this meeting for details on development of an associated polarimetric forward operator). Our work shows how knowledge of microphysical processes is provided by polarimetric radar observations of diverse weather conditions, and which processes remain highly uncertain, even after considering observations.

  10. Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China

    Science.gov (United States)

    Wu, Chong; Liu, Liping; Wei, Ming; Xi, Baozhu; Yu, Minghui

    2018-03-01

    A modified hydrometeor classification algorithm (HCA) is developed in this study for Chinese polarimetric radars. This algorithm is based on the U.S. operational HCA. Meanwhile, the methodology of statistics-based optimization is proposed including calibration checking, datasets selection, membership functions modification, computation thresholds modification, and effect verification. Zhuhai radar, the first operational polarimetric radar in South China, applies these procedures. The systematic bias of calibration is corrected, the reliability of radar measurements deteriorates when the signal-to-noise ratio is low, and correlation coefficient within the melting layer is usually lower than that of the U.S. WSR-88D radar. Through modification based on statistical analysis of polarimetric variables, the localized HCA especially for Zhuhai is obtained, and it performs well over a one-month test through comparison with sounding and surface observations. The algorithm is then utilized for analysis of a squall line process on 11 May 2014 and is found to provide reasonable details with respect to horizontal and vertical structures, and the HCA results—especially in the mixed rain-hail region—can reflect the life cycle of the squall line. In addition, the kinematic and microphysical processes of cloud evolution and the differences between radar-detected hail and surface observations are also analyzed. The results of this study provide evidence for the improvement of this HCA developed specifically for China.

  11. Spectral element simulation of ultrafiltration

    DEFF Research Database (Denmark)

    Hansen, M.; Barker, Vincent A.; Hassager, Ole

    1998-01-01

    A spectral element method for simulating stationary 2-D ultrafiltration is presented. The mathematical model is comprised of the Navier-Stokes equations for the velocity field of the fluid and a transport equation for the concentration of the solute. In addition to the presence of the velocity...... vector in the transport equation, the system is coupled by the dependency of the fluid viscosity on the solute concentration and by a concentration-dependent boundary condition for the Navier-Stokes equations at the membrane surface. The spectral element discretization yields a nonlinear algebraic system....... The performance of the spectral element code when applied to several ultrafiltration problems is reported. (C) 1998 Elsevier Science Ltd. All rights reserved....

  12. Spectrally Compatible Iterative Water Filling

    Science.gov (United States)

    Verlinden, Jan; Bogaert, Etienne Vanden; Bostoen, Tom; Zanier, Francesca; Luise, Marco; Cendrillon, Raphael; Moonen, Marc

    2006-12-01

    Until now static spectrum management has ensured that DSL lines in the same cable are spectrally compatible under worst-case crosstalk conditions. Recently dynamic spectrum management (DSM) has been proposed aiming at an increased capacity utilization by adaptation of the transmit spectra of DSL lines to the actual crosstalk interference. In this paper, a new DSM method for downstream ADSL is derived from the well-known iterative water-filling (IWF) algorithm. The amount of boosting of this new DSM method is limited, such that it is spectrally compatible with ADSL. Hence it is referred to as spectrally compatible iterative water filling (SC-IWF). This paper focuses on the performance gains of SC-IWF. This method is an autonomous DSM method (DSM level 1) and it will be investigated together with two other DSM level-1 algorithms, under various noise conditions, namely, iterative water-filling algorithm, and flat power back-off (flat PBO).

  13. Spectrally Compatible Iterative Water Filling

    Directory of Open Access Journals (Sweden)

    Cendrillon Raphael

    2006-01-01

    Full Text Available Until now static spectrum management has ensured that DSL lines in the same cable are spectrally compatible under worst-case crosstalk conditions. Recently dynamic spectrum management (DSM has been proposed aiming at an increased capacity utilization by adaptation of the transmit spectra of DSL lines to the actual crosstalk interference. In this paper, a new DSM method for downstream ADSL is derived from the well-known iterative water-filling (IWF algorithm. The amount of boosting of this new DSM method is limited, such that it is spectrally compatible with ADSL. Hence it is referred to as spectrally compatible iterative water filling (SC-IWF. This paper focuses on the performance gains of SC-IWF. This method is an autonomous DSM method (DSM level 1 and it will be investigated together with two other DSM level-1 algorithms, under various noise conditions, namely, iterative water-filling algorithm, and flat power back-off (flat PBO.

  14. Spectral Information System for Australian Spectroscopy Data

    Science.gov (United States)

    Chisholm, L. A.; Ong, C.; Hueni, A.; Suarez, L.; Restrepo-Coupe, N.

    2013-12-01

    data processing. When associated with intelligent software, data is not only retrievable and usable by other users or systems, but additional processing functionalities become available which further transform the data/information held by the information system (Chisholm et al 2013). The Australian remote sensing community has moved towards a system that can support scientists in analysing their data using the full potential of combined metadata spaces (Wason and Wiley, 2000) and spectral spaces (Hueni et al 2012). Combined with efforts towards establishing a metadata standard, the development of best practice protocols, and conceptualisation of the spectroscopy data life cycle, a series of operational case studies from operational testing serve to highlight the capacity of the system to capture and manage an expanding range of spectroscopy research data. This paper will summarise case studies to illustrate the use of the system as data repository and as a platform for post-processing and storage of according results in the database. This approach will address the use of the system to characterize vegetation attributes which infer function, and uses which demonstrate the generic nature of the SPECCHIO system for the handling of in-situ spectral data and metadata, and as a platform for post-processing and storage of according results in the database.

  15. Spectral scheme for spacetime physics

    International Nuclear Information System (INIS)

    Seriu, Masafumi

    2002-01-01

    Based on the spectral representation of spatial geometry, we construct an analysis scheme for spacetime physics and cosmology, which enables us to compare two or more universes with each other. In this scheme the spectral distance plays a central role, which is the measure of closeness between two geometries defined in terms of the spectra. We apply this scheme for analyzing the averaging problem in cosmology; we explicitly investigate the time evolution of the spectra, distance between two nearby spatial geometries, simulating the relation between the real Universe and its model. We then formulate the criteria for a model to be a suitable one

  16. Spectral ellipsometry of nanodiamond composite

    International Nuclear Information System (INIS)

    Yastrebov, S.G.; Ivanov-Omskij, V.I.; Gordeev, S.K.; Garriga, M.; Alonso, I.A.

    2006-01-01

    Methods of spectral ellipsometry were applied for analysis of optical properties of nanodiamond based composite in spectral region 1.4-5 eV. The nanocomposite was synthesized by molding of ultradispersed nanodiamond powder in the course of heterogeneous chemical reaction of decomposition of methane, forming pyrocarbon interconnecting nanodiamond grains. The energy of σ + π plasmon of pyrocarbon component of nanodiamond composite was restored which proves to be ∼ 24 eV; using this value, an estimation was done of pyrocarbon matrix density, which occurs to be 2 g/cm 3 [ru

  17. Polarimetric C-/X-band Synthetic Aperture Radar Observations of Melting Sea Ice in the Canadian Arctic Archipelago

    Science.gov (United States)

    Casey, J. A.; Beckers, J. F.; Brossier, E.; Haas, C.

    2013-12-01

    Operational ice information services rely heavily on space-borne synthetic aperture radar (SAR) data for the production of ice charts to meet their mandate of providing timely and accurate sea ice information to support safe and efficient marine operations. During the summer melt period, the usefulness of SAR data for sea ice monitoring is limited by the presence of wet snow and melt ponds on the ice surface, which can mask the signature of the underlying ice. This is a critical concern for ice services whose clients (e.g. commercial shipping, cruise tourism, resource exploration and extraction) are most active at this time of year when sea ice is at its minimum extent, concentration and thickness. As a result, there is a need to further quantify the loss of ice information in SAR data during the melt season and to identify what information can still be retrieved about ice surface conditions and melt pond evolution at this time of year. To date the majority of studies have been limited to analysis of single-polarization C-band SAR data. This study will investigate the potential complimentary and unique sea ice information that polarimetric C- and X-band SAR data can provide to supplement the information available from traditional single co-polarized C-band SAR data. A time-series of polarimetric C- and X-band SAR data was acquired over Jones Sound in the Canadian Arctic Archipelago, in the vicinity of the Grise Fiord, Nunavut. Five RADARSAT-2 Wide Fine Quad-pol images and 11 TerraSAR-X StripMap dual-pol (HH/VV) images were acquired. The time-series begins at the onset of melt in early June and extends through advanced melt conditions in late July. Over this period several ponding and drainage events and two snowfall events occurred. Field observations of sea ice properties were collected using an Ice Mass Balance (IMB) buoy, hourly photos from a time-lapse camera deployed on a coastal cliff, and manual in situ measurements of snow thickness and melt pond depth

  18. Development of spectral analysis math models and software program and spectral analyzer, digital converter interface equipment design

    Science.gov (United States)

    Hayden, W. L.; Robinson, L. H.

    1972-01-01

    Spectral analyses of angle-modulated communication systems is studied by: (1) performing a literature survey of candidate power spectrum computational techniques, determining the computational requirements, and formulating a mathematical model satisfying these requirements; (2) implementing the model on UNIVAC 1230 digital computer as the Spectral Analysis Program (SAP); and (3) developing the hardware specifications for a data acquisition system which will acquire an input modulating signal for SAP. The SAP computational technique uses extended fast Fourier transform and represents a generalized approach for simple and complex modulating signals.

  19. Spectral analysis of the turbulent mixing of two fluids

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, Michael James [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1995-01-01

    We describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The Technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used as a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.

  20. Spectral analysis of the turbulent mixing of two fluids

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, M.J.

    1996-02-01

    The authors describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used as a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.

  1. SPECTRAL DEPENDENT ELECTRICAL CHARACTERISTICS OF ...

    African Journals Online (AJOL)

    ABSTRACT: The illuminated current-voltage characteristics of thin film a-Si:H. p-i-n solar cells were measured for the visible and near infrared spectral regions. The fill factor, the conversion efficiency, the open circuit Voltage and the short circuit current were compared to the parameters of crystalline silicon pit-junction.

  2. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    Abstract. Information is carried in changes of a signal. The paper starts with revis- iting Dudley's concept of the carrier nature of speech. It points to its close connection to modulation spectra of speech and argues against short-term spectral envelopes as dominant carriers of the linguistic information in speech. The history of ...

  3. Optical Spectral Variability of Blazars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... It is well established that blazars show flux variations in the complete electromagnetic (EM) spectrum on all possible time scales ranging from a few tens of minutes to several years. Here, we report the review of optical flux and spectral variability properties of different classes of blazars on IDV and STV ...

  4. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Some of the history of gradual infusion of the modulation spectrum concept into Automatic recognition of speech (ASR) comes next, pointing to the relationship of modulation spectrum processing to wellaccepted ASR techniques such as dynamic speech features or RelAtive SpecTrAl (RASTA) filtering. Next ...

  5. Spectral problems for operator matrices

    NARCIS (Netherlands)

    Bátkai, A.; Binding, P.; Dijksma, A.; Hryniv, R.; Langer, H.

    2005-01-01

    We study spectral properties of 2 × 2 block operator matrices whose entries are unbounded operators between Banach spaces and with domains consisting of vectors satisfying certain relations between their components. We investigate closability in the product space, essential spectra and generation of

  6. Spectral Methods for Numerical Relativity

    Directory of Open Access Journals (Sweden)

    Grandclément Philippe

    2009-01-01

    Full Text Available Equations arising in general relativity are usually too complicated to be solved analytically and one must rely on numerical methods to solve sets of coupled partial differential equations. Among the possible choices, this paper focuses on a class called spectral methods in which, typically, the various functions are expanded in sets of orthogonal polynomials or functions. First, a theoretical introduction of spectral expansion is given with a particular emphasis on the fast convergence of the spectral approximation. We then present different approaches to solving partial differential equations, first limiting ourselves to the one-dimensional case, with one or more domains. Generalization to more dimensions is then discussed. In particular, the case of time evolutions is carefully studied and the stability of such evolutions investigated. We then present results obtained by various groups in the field of general relativity by means of spectral methods. Work, which does not involve explicit time-evolutions, is discussed, going from rapidly-rotating strange stars to the computation of black-hole–binary initial data. Finally, the evolution of various systems of astrophysical interest are presented, from supernovae core collapse to black-hole–binary mergers.

  7. Functional Analysis-Spectral Theoryl

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Functional Analysis - Spectral Theory1. Cherian Varughese. Book Review Volume 6 Issue 4 April 2001 pp 91-92 ... Author Affiliations. Cherian Varughese1. Indian Statistical Institute, 8th Mile, Mysore Road, Bangalore 560 059, India.

  8. Spectral Diagonal Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Kasanický, Ivan; Mandel, Jan; Vejmelka, Martin

    2015-01-01

    Roč. 22, č. 4 (2015), s. 485-497 ISSN 1023-5809 R&D Projects: GA ČR GA13-34856S Grant - others:NSF(US) DMS -1216481 Institutional support: RVO:67985807 Keywords : data assimilation * ensemble Kalman filter * spectral representation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.321, year: 2015

  9. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    Some of the history of gradual infusion of the modulation spectrum concept into Automatic recognition of speech (ASR) comes next, pointing to the relationship of modulation spectrum processing to wellaccepted ASR techniques such as dynamic speech features or RelAtive SpecTrAl (RASTA) filtering. Next, the frequency ...

  10. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    automatic recognition of speech (ASR). Instead, likely for historical reasons, envelopes of power spectrum were adopted as main carrier of linguistic information in ASR. However, the relationships between phonetic values of sounds and their short-term spectral envelopes are not straightforward. Consequently, this asks for ...

  11. Spectral representation of Gaussian semimartingales

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas

    2009-01-01

    The aim of the present paper is to characterize the spectral representation of Gaussian semimartingales. That is, we provide necessary and sufficient conditions on the kernel K for X t =∫ K t (s) dN s to be a semimartingale. Here, N denotes an independently scattered Gaussian random measure...

  12. Assessing FRET using Spectral Techniques

    Science.gov (United States)

    Leavesley, Silas J.; Britain, Andrea L.; Cichon, Lauren K.; Nikolaev, Viacheslav O.; Rich, Thomas C.

    2015-01-01

    Förster resonance energy transfer (FRET) techniques have proven invaluable for probing the complex nature of protein–protein interactions, protein folding, and intracellular signaling events. These techniques have traditionally been implemented with the use of one or more fluorescence band-pass filters, either as fluorescence microscopy filter cubes, or as dichroic mirrors and band-pass filters in flow cytometry. In addition, new approaches for measuring FRET, such as fluorescence lifetime and acceptor photobleaching, have been developed. Hyperspectral techniques for imaging and flow cytometry have also shown to be promising for performing FRET measurements. In this study, we have compared traditional (filter-based) FRET approaches to three spectral-based approaches: the ratio of acceptor-to-donor peak emission, linear spectral unmixing, and linear spectral unmixing with a correction for direct acceptor excitation. All methods are estimates of FRET efficiency, except for one-filter set and three-filter set FRET indices, which are included for consistency with prior literature. In the first part of this study, spectrofluorimetric data were collected from a CFP–Epac–YFP FRET probe that has been used for intracellular cAMP measurements. All comparisons were performed using the same spectrofluorimetric datasets as input data, to provide a relevant comparison. Linear spectral unmixing resulted in measurements with the lowest coefficient of variation (0.10) as well as accurate fits using the Hill equation. FRET efficiency methods produced coefficients of variation of less than 0.20, while FRET indices produced coefficients of variation greater than 8.00. These results demonstrate that spectral FRET measurements provide improved response over standard, filter-based measurements. Using spectral approaches, single-cell measurements were conducted through hyperspectral confocal microscopy, linear unmixing, and cell segmentation with quantitative image analysis

  13. Spectral Analysis Methods of Social Networks

    Directory of Open Access Journals (Sweden)

    P. G. Klyucharev

    2017-01-01

    Full Text Available Online social networks (such as Facebook, Twitter, VKontakte, etc. being an important channel for disseminating information are often used to arrange an impact on the social consciousness for various purposes - from advertising products or services to the full-scale information war thereby making them to be a very relevant object of research. The paper reviewed the analysis methods of social networks (primarily, online, based on the spectral theory of graphs. Such methods use the spectrum of the social graph, i.e. a set of eigenvalues of its adjacency matrix, and also the eigenvectors of the adjacency matrix.Described measures of centrality (in particular, centrality based on the eigenvector and PageRank, which reflect a degree of impact one or another user of the social network has. A very popular PageRank measure uses, as a measure of centrality, the graph vertices, the final probabilities of the Markov chain, whose matrix of transition probabilities is calculated on the basis of the adjacency matrix of the social graph. The vector of final probabilities is an eigenvector of the matrix of transition probabilities.Presented a method of dividing the graph vertices into two groups. It is based on maximizing the network modularity by computing the eigenvector of the modularity matrix.Considered a method for detecting bots based on the non-randomness measure of a graph to be computed using the spectral coordinates of vertices - sets of eigenvector components of the adjacency matrix of a social graph.In general, there are a number of algorithms to analyse social networks based on the spectral theory of graphs. These algorithms show very good results, but their disadvantage is the relatively high (albeit polynomial computational complexity for large graphs.At the same time it is obvious that the practical application capacity of the spectral graph theory methods is still underestimated, and it may be used as a basis to develop new methods.The work

  14. Attempts to separate (-)-α-thujone, (+)-β-thujone epimers from camphor enantiomers by enantioselective HPLC with polarimetric detection.

    Science.gov (United States)

    El Montassir, Dahmane; Aamouche, Ahmed; Vanthuyne, Nicolas; Jean, Marion; Vanloot, Pierre; Taourirte, Moha; Dupuy, Nathalie; Roussel, Christian

    2013-03-01

    In a first step, 26 chiral stationary phases (CSPs) have been screened for the separation of (-)-α-thujone, (+)-β-thujone epimers and camphor enantiomers by LC. The separations were monitored by a polarimeter detector. None of these CSPs provided a noticeable resolution for camphor enantiomers. The three components of a test mixture were clearly baseline separated on Chiralpak AS-H, Chiralpak AZ-H and TCI-MBS (poly(N-alpha-(S)-methylbenzylmaleimide) coated on silica gel) in a mobile phase composed of hexane/2-PrOH (99:1 v/v). Interestingly, for a preparative application, the three CSPs produced different elution orders for the three constituents of the mixture. In a second step, it is shown that the use of online polarimetric detection constitutes an unprecedented method to reveal the occurrence and the relative content of thujone epimers and the chirality of the major camphor enantiomer in crude essential oils. A proof of concept is illustrated on crude essential oils from Rosmarinus tournefortii, Artemisia herba alba and A. arborescens, which grow in Morocco and have several traditional uses there. In a third step, pure (+)-β-thujone was quantitatively collected from A. arborescens crude oil by semi-preparative HPLC on Chiralpak AZ-H monitored by a polarimeter. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Detecting the Depth of a Subsurface Brine Layer in Lop Nur Lake Basin Using Polarimetric L-Band SAR

    Directory of Open Access Journals (Sweden)

    Chang-An Liu

    2015-01-01

    Full Text Available Lop Nur once was a huge lake located in northwestern China. At present, there is no surface water in Lop Nur Lake basin and on SAR images it looks like an “Ear.” The objective of this paper is to retrieve the depth of subsurface brine layer in Lop Nur by copolarized phase difference of surface scattering. Based on field investigation and analysis of sample properties, a two-layer scattering structure was proposed with detailed explanations of scattering mechanisms. The relationship between copolarized phase difference and the brine layer depth in the region of Lop Nur were studied. The copolarized phase difference of surface scattering was extracted by model-based polarimetric decomposition method. A good linear correlation between measured subsurface brine layer depth and copolarized phase difference with R2 reaching 0.82 was found. Furthermore, the subsurface brine layer depth of the entire lake area was analyzed. According to the retrieved maps, some interesting phenomena were found, and several hypotheses about the past water withdrawal process and the environmental evolution had been proposed to theoretically explain these phenomena. Based on the penetration capability of SAR the reconstruction of historical evolution process of Lop Nur will be an interesting topic for future research.

  16. On polarimetric radar signatures of deep convection for model evaluation: columns of specific differential phase observed during MC3E

    Energy Technology Data Exchange (ETDEWEB)

    van Lier-Walqui, Marcus; Fridlind, Ann; Ackerman, Andrew S; Collis, Scott; Helmus, Jonathan; MacGorman, Donald R; North, Kirk; Kollias, Pavlos; Posselt, Derek J

    2016-02-01

    The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase observed above the melting level are associated with deep convection updraft cells, so-called columns are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity . Results indicate strong correlations of volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of to shows commonalities in information content of each, as well as potential problems with associated with observational artifacts.

  17. Oil source-fingerprinting in support of polarimetric radar mapping of Macondo-252 oil in Gulf Coast marshes

    Science.gov (United States)

    Ramsey, Elijah W.; Meyer, Buffy M.; Rangoonwala, Amina; Overton, Edward; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Polarimetric synthetic aperture radar (PolSAR) data exhibited dramatic, spatially extensive changes from June 2009 to June 2010 in Barataria Bay, Louisiana. To determine whether these changes were associated with the Deepwater Horizon (DWH) oil spill, twenty-nine sediment samples were collected in 2011 from shoreline and nearshore–interior coastal marsh locations where oil was not observed visually or with optical sensors during the spill. Oil source-fingerprinting and polytopic vector analysis were used to link DWH oil to PolSAR changes. Our results prove that DWH oil extended beyond shorelines and confirm the association between presence of DWH oil and PolSAR change. These results show that the DWH oil spill probably affected much more of the southeastern Louisiana marshland than originally concluded from ground and aerial surveys and verify that PolSAR is a powerful tool for tracking oil intrusion into marshes with high probability even where contamination is not visible from above the canopy.

  18. Accurate sea-land segmentation using ratio of average constrained graph cut for polarimetric synthetic aperture radar data

    Science.gov (United States)

    She, Xiaoqiang; Qiu, Xiaolan; Lei, Bin

    2017-04-01

    Separating sea surface and land areas in synthetic aperture radar (SAR) images is challenging yet of great importance to coastline extraction and subsequent coastal classification. Results of the previous state-of-art methods often suffer from a number of limitations that arise from the presence of the speckle effect and the inadequate returned signal around the boundaries. We propose a graph cut (GC)-based approach to tackle these limitations and achieve accurate sea-land segmentation results. To be more specific, as the first step, three powerful multipolarization features are extracted from the polarimetric SAR data as descriptors to fully characterize the sea area and land area. Starting from that, seeds of the sea and land are selected automatically to build the prior model for GC. Based on the prior model, we construct the undirected graph in GC using the multipolarization descriptors. Finally, we incorporate the ratio of average operator to eliminate the speckle effect and get finer results for some finer structures. Experiments on Radarsat-2 quad-polarization images demonstrate significantly improved results of our proposed algorithms compared with several state-of-the-art methods in terms of both quantitative and visual performance.

  19. Polarimetric imaging of turbid inhomogeneous slab media based on backscattering using a pencil beam for illumination: Monte Carlo simulation

    Science.gov (United States)

    Otsuki, Soichi

    2018-04-01

    Polarimetric imaging of absorbing, strongly scattering, or birefringent inclusions is investigated in a negligibly absorbing, moderately scattering, and isotropic slab medium. It was proved that the reduced effective scattering Mueller matrix is exactly calculated from experimental or simulated raw matrices even if the medium is anisotropic and/or heterogeneous, or the outgoing light beam exits obliquely to the normal of the slab surface. The calculation also gives a reasonable approximation of the reduced matrix using a light beam with a finite diameter for illumination. The reduced matrix was calculated using a Monte Carlo simulation and was factorized in two dimensions by the Lu-Chipman polar decomposition. The intensity of backscattered light shows clear and modestly clear differences for absorbing and strongly scattering inclusions, respectively, whereas it shows no difference for birefringent inclusions. Conversely, some polarization parameters, for example, the selective depolarization coefficients exhibit only a slight difference for the absorbing inclusions, whereas they showed clear difference for the strongly scattering or birefringent inclusions. Moreover, these quantities become larger with increasing the difference in the optical properties of the inclusions relative to the surrounding medium. However, it is difficult to recognize inclusions that buried at the depth deeper than 3 mm under the surface. Thus, the present technique can detect the approximate shape and size of these inclusions, and considering the depth where inclusions lie, estimate their optical properties. This study reveals the possibility of the polarization-sensitive imaging of turbid inhomogeneous media using a pencil beam for illumination.

  20. Oil source-fingerprinting in support of polarimetric radar mapping of Macondo-252 oil in Gulf Coast marshes.

    Science.gov (United States)

    Ramsey, Elijah; Meyer, Buffy M; Rangoonwala, Amina; Overton, Edward; Jones, Cathleen E; Bannister, Terri

    2014-12-15

    Polarimetric synthetic aperture radar (PolSAR) data exhibited dramatic, spatially extensive changes from June 2009 to June 2010 in Barataria Bay, Louisiana. To determine whether these changes were associated with the Deepwater Horizon (DWH) oil spill, twenty-nine sediment samples were collected in 2011 from shoreline and nearshore-interior coastal marsh locations where oil was not observed visually or with optical sensors during the spill. Oil source-fingerprinting and polytopic vector analysis were used to link DWH oil to PolSAR changes. Our results prove that DWH oil extended beyond shorelines and confirm the association between presence of DWH oil and PolSAR change. These results show that the DWH oil spill probably affected much more of the southeastern Louisiana marshland than originally concluded from ground and aerial surveys and verify that PolSAR is a powerful tool for tracking oil intrusion into marshes with high probability even where contamination is not visible from above the canopy. Published by Elsevier Ltd.